Sample records for femtosecond laser microstructuring

  1. Femtosecond laser-induced inverted microstructures inside glasses by tuning refractive index of objective's immersion liquid.

    PubMed

    Luo, Fangfang; Song, Juan; Hu, Xiao; Sun, Haiyi; Lin, Geng; Pan, Huaihai; Cheng, Ya; Liu, Li; Qiu, Jianrong; Zhao, Quanzhong; Xu, Zhizhan

    2011-06-01

    We report the formation of inverted microstructures inside glasses after femtosecond laser irradiation by tuning the refractive index contrast between the immersion liquid and the glass sample. By using water as well as 1-bromonaphthalene as immersion liquids, microstructures with similar shape but opposite directions are induced after femtosecond laser irradiation. Interestingly, the elemental distribution in the induced structures is also inverted. The simulation of laser intensity distribution along the laser propagation direction indicates that the interfacial spherical aberration effect is responsible for the inversion of microstructures and elemental distribution. © 2011 Optical Society of America

  2. Control of the kerf size and microstructure in Inconel 738 superalloy by femtosecond laser beam cutting

    NASA Astrophysics Data System (ADS)

    Wei, J.; Ye, Y.; Sun, Z.; Liu, L.; Zou, G.

    2016-05-01

    Femtosecond laser beam cutting is becoming widely used to meet demands for increasing accuracy in micro-machining. In this paper, the effects of processing parameters in femtosecond laser beam cutting on the kerf size and microstructure in Inconel 738 have been investigated. The defocus, pulse width and scanning speed were selected to study the controllability of the cutting process. Adjusting and matching the processing parameters was a basic enhancement method to acquire well defined kerf size and the high-quality ablation of microstructures, which has contributed to the intensity clamping effect. The morphology and chemical compositions of these microstructures on the cut surface have been characterized by a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Additionally, the material removal mechanism and oxidation mechanism on the Inconel 738 cut surface have also been discussed on the basis of the femtosecond laser induced normal vaporization or phase explosion, and trapping effect of the dangling bonds.

  3. Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses

    DOE PAGES

    Wootton, Kent P.; Wu, Ziran; Cowan, Benjamin M.; ...

    2016-06-02

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m –1 accelerating gradients is possible only with laser pulse durations shorter than ~1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Furthermore, using this technique, an electron accelerating gradient of 690±100 MV m –1 was measured—a record for dielectric laser accelerators.

  4. A facile preparation route for netlike microstructures on a stainless steel using an ethanol-mediated femtosecond laser irradiation.

    PubMed

    Bian, Hao; Yang, Qing; Liu, Hewei; Chen, Feng; Du, Guangqing; Si, Jinhai; Hou, Xun

    2013-03-01

    Netlike or porous microstructures are highly desirable in metal implants and biomedical monitoring applications. However, realization of such microstructures remains technically challenging. Here, we report a facile and environmentally friendly method to prepare netlike microstructures on a stainless steel by taking the full advantage of the liquid-mediated femtosecond laser ablation. An unordered netlike structure and a quasi-ordered array of holes can be fabricated on the surface of stainless steel via an ethanol-mediated femtosecond laser line-scan method. SEM analysis of the surface morphology indicates that the porous netlike structure is in the micrometer scale and the diameter of the quasi-ordered holes ranges from 280 nm to 320 nm. Besides, we find that the obtained structures are tunable by altering the laser processing parameters especially scanning speed. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Using femtosecond laser to fabricate highly precise interior three-dimensional microstructures in polymeric flow chip

    PubMed Central

    Lee, Chia-Yu; Chang, Ting-Chou; Wang, Shau-Chun; Chien, Chih-Wei; Cheng, Chung-Wei

    2010-01-01

    This paper reports using femtosecond laser marker to fabricate the three-dimensional interior microstructures in one closed flow channel of plastic substrate. Strip-like slots in the dimensions of 800 μm×400 μm×65 μm were ablated with pulse Ti:sapphire laser at 800 nm (pulse duration of ∼120 fs with 1 kHz repetition rate) on acrylic slide. After ablation, defocused beams were used to finish the surface of microstructures. Having finally polished with sonication, the laser fabricated structures are highly precise with the arithmetic roughness of 1.5 and 4.5 nm. Fabricating such highly precise microstructures cannot be accomplished with nanosecond laser marking or other mechanical drilling methods. In addition, since laser ablation can directly engrave interior microstructures in one closed chip, glue smearing problems to damage molded microstructures possibly to occur during the chip sealing procedures can be avoided too. PMID:21079695

  6. Using femtosecond laser to fabricate highly precise interior three-dimensional microstructures in polymeric flow chip.

    PubMed

    Lee, Chia-Yu; Chang, Ting-Chou; Wang, Shau-Chun; Chien, Chih-Wei; Cheng, Chung-Wei

    2010-10-18

    This paper reports using femtosecond laser marker to fabricate the three-dimensional interior microstructures in one closed flow channel of plastic substrate. Strip-like slots in the dimensions of 800 μm×400 μm×65 μm were ablated with pulse Ti:sapphire laser at 800 nm (pulse duration of ∼120 fs with 1 kHz repetition rate) on acrylic slide. After ablation, defocused beams were used to finish the surface of microstructures. Having finally polished with sonication, the laser fabricated structures are highly precise with the arithmetic roughness of 1.5 and 4.5 nm. Fabricating such highly precise microstructures cannot be accomplished with nanosecond laser marking or other mechanical drilling methods. In addition, since laser ablation can directly engrave interior microstructures in one closed chip, glue smearing problems to damage molded microstructures possibly to occur during the chip sealing procedures can be avoided too.

  7. Chemical etching mechanism and properties of microstructures in sapphire modified by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Liu, Manyu; Hu, Youwang; Sun, Xiaoyan; Wang, Cong; Zhou, Jianying; Dong, Xinran; Yin, Kai; Chu, Dongkai; Duan, Ji'an

    2017-01-01

    Sapphire, with extremely high hardness, high-temperature stability and wear resistance, often corroded in molten KOH at 300 °C after processing. The fabrication of microstructures on sapphire substrate performed by femtosecond laser irradiation combined with KOH solution chemical etching at room temperature is presented. It is found that this method reduces the harsh requirements of sapphire corrosion. After femtosecond irradiation, the sapphire has a high corrosion speed at room temperature. Through the analysis of Raman spectrum and XRD spectrum, a novel insight of femtosecond laser interaction with sapphire (α-Al2O3) is proposed. Results indicated that grooves on sapphire surface were formed by the lasers ablation removal, and the groove surface was modified in a certain depth. The modified area of the groove surface was changed from α-Al2O3 to γ-Al2O3. In addition, the impacts of three experimental parameters, laser power, scanning velocities and etching time, on the width and depth of microstructures are investigated, respectively. The modified area dimension is about 2 μm within limits power and speed. This work could fabricate high-quality arbitrary microstructures and enhance the performance of sapphire processing.

  8. Growth mechanisms of multiscale, mound-like surface structures on titanium by femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Peng, Edwin; Bell, Ryan; Zuhlke, Craig A.; Wang, Meiyu; Alexander, Dennis R.; Gogos, George; Shield, Jeffrey E.

    2017-10-01

    Femtosecond laser surface processing (FLSP) can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or super-hydrophobicity/-hydrophilicity. In this study, the subsurface microstructure of a series of mound-like FLSP structures formed on commercially pure titanium using five combinations of laser fluence and cumulative pulse counts was studied. Using a dual beam Scanning Electron Microscope with a Focused Ion Beam, the subsurface microstructure for each FLSP structure type was revealed by cross-sectioning. The microstructure of the mounds formed using the lowest fluence value consists of the original Ti grains. This is evidence that preferential laser ablation is the primary formation mechanism. However, the underlying microstructure of mounds produced using higher fluence values was composed of a distinct smaller-grained α-Ti region adjacent to the original larger Ti grains remaining deeper beneath the surface. This layer was attributed to resolidification of molten Ti from the hydrodynamic Marangoni effect driven fluid flow of molten Ti, which is the result of the femtosecond pulse interaction with the material.

  9. Femtosecond laser-induced structural difference in fused silica with a non-reciprocal writing process

    NASA Astrophysics Data System (ADS)

    Song, Hui; Dai, Ye; Song, Juan; Ma, Hongliang; Yan, Xiaona; Ma, Guohong

    2017-04-01

    In this paper, we report a non-reciprocal writing process for inducing asymmetric microstructure using a femtosecond laser with tilted pulse fronts in fused silica. The shape of the induced microstructure at the focus closely depends on the laser scan direction. An elongated end is observed as a kind of structural difference between the written lines with two reverse scans along + x and - x, which further leads to a birefringence intensity difference. We also find a bifurcation in the head region of the induced microstructure between the written lines along x and y. That process results from the focal intensity distortion caused by the pulse front tilt by comparing the simulated intensity distribution with the experimental results. The current results demonstrate that the pulse front tilt not only affects the free electron excitation at the focus but also further distorts the shape of the induced microstructure during a high-energy femtosecond laser irradiation. These results offer a route to fabricate optical elements by changing the spatiotemporal characteristics of ultrashort pulses.

  10. Femtosecond Laser Ablated FBG with Composite Microstructure for Hydrogen Sensor Application.

    PubMed

    Zou, Meng; Dai, Yutang; Zhou, Xian; Dong, Ke; Yang, Minghong

    2016-12-01

    A composite microstructure in fiber Bragg grating (FBG) with film deposition for hydrogen detection is presented. Through ablated to FBG cladding by a femtosecond laser, straight-trenches and spiral micro-pits are formed. A Pd-Ag film is sputtered on the surface of the laser processed FBG single mode fiber, and acts as hydrogen sensing transducer. The demonstrated experimental outcomes show that a composite structure produced the highest sensitivity of 26.3 pm/%H, nearly sevenfold more sensitive compared with original standard FBG. It offers great potential in engineering applications for its good structure stability and sensitivity.

  11. Enhancement of 800 nm upconversion emission in a thulium doped tellurite microstructured fiber pumped by a 1560 nm femtosecond fiber laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Zhixu; Zheng, Kezhi; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012

    We report enhanced upconversion (UC) fluorescence in Tm{sup 3+} doped tellurite microstructured fibers (TDTMFs) fabricated by using a rod-in-tube method. Under the pumping of a 1560 nm femtosecond fiber laser, ultrabroadband supercontinuum light expanding from ∼1050 to ∼2700 nm was generated in a 4 cm long TDTMF. Simultaneously, intense 800 nm UC emission from the {sup 3}H{sub 4} → {sup 3}H{sub 6} transition of Tm{sup 3+} was observed in the same TDTMF. Compared to that pumped by a 1560 nm continuous wave fiber laser, the UC emission intensity was enhanced by ∼4.1 times. The enhancement was due to the spectral broadening in the TDTMF under themore » pumping of the 1560 nm femtosecond fiber laser.« less

  12. Controlling periodic ripple microstructure formation on 4H-SiC crystal with three time-delayed femtosecond laser beams of different linear polarizations.

    PubMed

    He, Wanlin; Yang, Jianjun; Guo, Chunlei

    2017-03-06

    The control of laser-induced periodic ripple microstructures on 4H-SiC crystal surface is studied using temporally delayed collinear three femtosecond laser pulse trains linearly polarized in different directions. The ripple orientation appears to develop independent of the individual laser polarizations and exhibits non-monotonical change with variable time delays, whose variation tendency is also affected by the polarization intersection angles. Remarkably, the ripple period is observed to transfer from high- to low-spatial-frequency regions, accompanied by distinctly improved morphological uniformity and clearness. The results are satisfactorily interpreted based on a physical model of the surface wave excitation on a transient index metasurface, which is confirmed by further experiments. Our investigations indicate that transient noneqilibrium dynamics of the material surface provides an effective way to manipulate the laser-induced microstructures.

  13. Specific features of direct formation of graphite-like microstructures in polycarbonate samples by single femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganin, D V; Lapshin, K E; Obidin, A Z

    2015-11-30

    We present the result of the experiments on producing graphite-like cylindrical microstructures by focusing single femtosecond laser pulses into the bulk of a transparent polymer (polycarbonate). The microstructures are embedded in a cladding with a modified refractive index, possessing waveguide properties. In the experiments with nontransparent screens and diaphragms, placed in the laser beam in front of the entrance pupil of the objective with a large numerical aperture, we have found that the paraxial rays are blocked by the peripheral ones, which reduces the length of the destruction region in the pre-focal zone. In the experiments with transparent screens andmore » diaphragms, introducing optical delays τ{sub d} between the paraxial and peripheral rays, the quantitative dependence of the destruction region length in the pre-focal zone on the value of τ{sub d} is determined. (interaction of laser radiation with matter. laser plasma)« less

  14. Femtosecond laser ablated durable superhydrophobic PTFE sheet for oil/water separation

    NASA Astrophysics Data System (ADS)

    Li, Wentao; Yang, Qing; Chen, Feng; Yong, Jiale; Fang, Yao; Huo, Jinglan

    2017-02-01

    Femtosecond laser microfabrication has been attracting increasing interest of researchers in recent years, and been applied on interface science to control the wettability of solid surfaces. Herein, we fabricate a kind of rough microstructures on polytetrafluoroethylene (PTFE) sheet by femtosecond laser. The femtosecond laser ablated surfaces show durable superhydrophobicity and ultralow water adhesion even after storing in a harsh environment for a long time, including strong acid, strong alkali, and high temperature. A penetrating microholes array was further generated on the rough superhydrophobic PTFE sheet by a subsequent mechanical drilling process. The as-prepared material was successfully applied in the field of oil/water separation due to the inverse superhydrophobicity and superoleophilicity.

  15. Femtosecond laser microfabrication in polymers towards memory devices and microfluidic applications

    NASA Astrophysics Data System (ADS)

    Deepak, K. L. N.; Venugopal Rao, S.; Narayana Rao, D.

    2011-12-01

    We have investigated femtosecond laser induced microstructures, gratings, and craters in four different polymers: poly methyl methacrylate (PMMA), poly dimethyl siloxane (PDMS), polystyrene (PS) and poly vinyl alcohol (PVA) using Ti:sapphire laser delivering 800 nm, 100 femtosecond (fs) pulses at 1 kHz repetition rate with a maximum pulse energy of 1 mJ. Local chemical modifications leading to the formation of optical centers and peroxide radicals which were studied using UV-Visible absorption and emission, confocal micro-Raman and Electron Spin Resonance (ESR) spectroscopic techniques.

  16. Fabrication of nanofibers reinforced polymer microstructures using femtosecond laser material processing

    NASA Astrophysics Data System (ADS)

    Alubaidy, Mohammed-Amin

    A new method has been introduced for the formation of microfeatures made of nanofibers reinforced polymer, using femtosecond laser material processing. The Femtosecond laser is used for the generation of three-dimensional interweaved nanofibers and the construction of microfeatures, like microchannels and voxels, through multi photon polymerization of nanofiber dispersed polymer resin. A new phenomenon of multiphoton polymerization induced by dual wavelength irradiation was reported for the first time. A significant improvement in the spatial resolution, compared to the two photon absorption (2PA) and the three photon absorption (3PA) processes has been achieved. Conductive polymer microstructures and magnetic polymer microstructures have been fabricated through this method. The mechanical properties of nanofiber reinforced polymer microstructures has been investigated by means of nanoindentation and the volume fraction of the generated nanofibers in the nanocomposite was calculated by using nanoindentation analysis. The results showed significant improvement in strength of the material. The electrical conductivity of the two photon polymerization (TPP) generated microfeatures was measured by a two-probe system at room temperature and the conductivity-temperature relationship was measured at a certain temperature range. The results suggest that the conductive polymer microstructure is reproducible and has a consistent conductivity-temperature relation. The magnetic strength has been characterized using Guassmeter. To demonstrate the potential application of the new fabrication method, a novel class of DNA-functionalized three-dimensional (3D), stand-free, and nanostructured electrodes were fabricated. The developed nanofibrous DNA biosensor has been characterized by cyclic voltammetry with the use of ferrocyanide as an electrochemical redox indicator. Results showed that the probe--target recognition has been improved. This research demonstrated that femtosecond laser materials processing is a viable tool of the construction of naomaterial- reinforced polymer microfeatures with tailored properties.

  17. Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Zhao, Quanzhong; Wang, Chengwei; Zhang, Yang

    2015-06-01

    We reported on the modification of tribological properties of stainless steel by femtosecond laser surface microstructuring. Regular arranged micro-grooved textures with different spacing were produced on the AISI 304L steel surfaces by an 800-nm femtosecond laser. The tribological properties of smooth surface and textured surface were investigated by carrying out reciprocating ball-on-flat tests against Al2O3 ceramic balls under dry friction. Results show that the spacing of micro-grooves had a significant impact on friction coefficient of textured surfaces. Furthermore, the wear behaviors of smooth and textured surface were also investigated. Femtosecond laser surface texturing had a marked potential for modulating friction and wear properties if the micro-grooves were distributed in an appropriate manner.

  18. Direct printing of microstructures by femtosecond laser excitation of nanocrystals in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shou, Wan; Pan, Heng, E-mail: hp5c7@mst.edu

    2016-05-23

    We report direct printing of micro/sub-micron structures by femtosecond laser excitation of semiconductor nanocrystals (NCs) in solution. Laser excitation with moderate intensity (10{sup 11}–10{sup 12} W/cm{sup 2}) induces 2D and 3D deposition of CdTe nanocrystals in aqueous solution, which can be applied for direct printing of microstructures. It is believed that laser irradiation induces charge formation on nanocrystals leading to deposition. Furthermore, it is demonstrated that the charged nanocrystals can respond to external electrical bias, enabling a printing approach based on selective laser induced electrophoretic deposition. Finally, energy dispersive X-ray analysis of deposited structures shows oxidation occurs and deposited structure mainlymore » consists of Cd{sub x}O.« less

  19. Femtosecond laser machining and lamination for large-area flexible organic microfluidic chips

    NASA Astrophysics Data System (ADS)

    Malek, C. Khan; Robert, L.; Salut, R.

    2009-04-01

    A hybrid process compatible with reel-to-reel manufacturing is developed for ultra low-cost large-scale manufacture of disposable microfluidic chips. It combines ultra-short laser microstructuring and lamination technology. Microchannels in polyester foils were formed using focused, high-intensity femtosecond laser pulses. Lamination using a commercial SU8-epoxy resist layer was used to seal the microchannel layer and cover foil. This hybrid process also enables heterogeneous material structuration and integration.

  20. Femtosecond Laser Micro-structuring Of Transparent Materials And Its Ophthalmologic Applications

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey A.; Kozhushko, Svetlana E.; Kudryashov, Sergey I.; Seleznev, Leonid V.; Sinitsyn, Dmitry V.; Zakharov, Stanislav D.; Alekhin, Alexander I.; Kourylyova, Irina M.; Kuz'min, Kirill K.; Likhvantseva, Vera G.; Samoylov, Michail V.

    2010-10-01

    We have successfully fabricated in vitro femtosecond laser micro-incisions inside cornea and—for the first time—inside sclera mildly pre-cleared by a biocompatible and clinically safe (non-toxic) natural agent (replacive refractive index-matching 40%-glucose solution in water), with the tissues taken as fresh cool cuts of human cadaver eyes, and reported on basic operational conditions of the micro-surgical procedures.

  1. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes.

    PubMed

    Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R; Castillo, Gabriel R; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng

    2014-08-07

    Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips.

  2. Low-loss optical waveguides in β-BBO crystal fabricated by femtosecond-laser writing

    NASA Astrophysics Data System (ADS)

    Li, Ziqi; Cheng, Chen; Romero, Carolina; Lu, Qingming; Vázquez de Aldana, Javier Rodríguez; Chen, Feng

    2017-11-01

    We report on the fabrication and characterization of β-BBO depressed cladding waveguides fabricated by femtosecond-laser writing with no significant changes in the waveguide lattice microstructure. The waveguiding properties and the propagation losses of the cladding structures are investigated, showing good transmission properties at wavelengths of 400 and 800 nm along TM polarization. The minimum propagation losses are measured to be as low as 0.19 dB/cm at wavelength of 800 nm. The well-preserved waveguide lattice microstructure and good guiding performances with low propagation losses suggest the potential applications of the cladding waveguides in β-BBO crystal as novel integrated photonic devices.

  3. Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays.

    PubMed

    Jing, Xufeng; Shao, Jianda; Zhang, Junchao; Jin, Yunxia; He, Hongbo; Fan, Zhengxiu

    2009-12-21

    In order to more exactly predict femtosecond pulse laser induced damage threshold, an accurate theoretical model taking into account photoionization, avalanche ionization and decay of electrons is proposed by comparing respectively several combined ionization models with the published experimental measurements. In addition, the transmittance property and the near-field distribution of the 'moth eye' broadband antireflective microstructure directly patterned into the substrate material as a function of the surface structure period and groove depth are performed by a rigorous Fourier model method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure for TE polarization, but for TM wave it is insensitive to the period. What's more, the femtosecond pulse laser damage threshold of the surface microstructure on the pulse duration taking into account the local maximum electric field enhancement was calculated using the proposed relatively accurate theoretical ionization model. For the longer incident wavelength of 1064 nm, the weak linear damage threshold on the pulse duration is shown, but there is a surprising oscillation peak of breakdown threshold as a function of the pulse duration for the shorter incident wavelength of 532 nm.

  4. Direct laser writing for micro-optical devices using a negative photoresist.

    PubMed

    Tsutsumi, Naoto; Hirota, Junichi; Kinashi, Kenji; Sakai, Wataru

    2017-12-11

    Direct laser writing (DLW) via two-photon absorption (TPA) has attracted much attention as a new microfabrication technique because it can be applied to fabricate complex, three-dimensional (3D) microstructures. In this study, 3D microstructures and micro-optical devices of micro-lens array on the micrometer scale are fabricated using the negative photoresist SU-8 through TPA with a femtosecond laser pulse under a microscope. The effects of the irradiation conditions on linewidths, such as laser power, writing speed, and writing cycles (a number of times a line is overwritten), are investigated before the fabrication of the 3D microstructures. Various microstructures such as woodpiles, hemisphere and microstructures, 3D micro-lens and micro-lens array for micro-optical devices are fabricated. The shape of the micro-lens is evaluated using the shape analysis mode of a laser microscope to calculate the working distance of the fabricated micro-lenses. The calculated working distance corresponds well to the experimentally measured value. The focusing performance of the fabricated micro-lens is confirmed by the TPA fluorescence of an isopropyl thioxanthone (ITX) ethanol solution excited by a Ti:sapphire femtosecond laser at 800 nm. Micro-lens array (assembled 9 micro-lenses) are fabricated. Nine independent woodpile structures are simultaneously manufactured by DLW via TPA to confirm the multi-focusing ability using the fabricated micro-lens array.

  5. Femtosecond laser fabricating black silicon in alkaline solution

    NASA Astrophysics Data System (ADS)

    Meng, Jiao; Song, Haiying; Li, Xiaoli; Liu, Shibing

    2015-03-01

    An efficient approach for enhancing the surface antireflection is proposed, in which a black silicon is fabricated by a femtosecond laser in alkaline solution. In the experiment, 2 wt% NaOH solution is formulated at room temperature (22 ± 1 °C). Then, a polished silicon is scanned via femtosecond laser irradiation in 2 wt% NaOH solution. Jungle-like microstructures on the black silicon surface are characterized using an atomic force microscopy. The reflectance of the black silicon is measured at the wavelengths ranging from 400 to 750 nm. Compared to the polished silicon, the black silicon can significantly suppress the optical reflection throughout the visible region (<5 %). Meanwhile, we also investigated the factors of the black silicon, including the femtosecond laser pulse energy and the scanning speed. This method is simple and effective to acquire the black silicon, which probably has a large advantage in fast and cost-effective black silicon fabrication.

  6. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.

    PubMed

    Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin

    2015-05-13

    Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas.

  7. Nitinol laser cutting: microstructure and functional properties of femtosecond and continuous wave laser processing

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2017-03-01

    Thermal processing can affect the properties of smart materials, and the correct selection of the best manufacturing technology is fundamental for producing high tech smart devices, containing embedded functional properties. In this work cutting of thin superelastic Nitinol plates using a femtosecond (fs) and continuous wave (CW) laser was studied. Diamond shaped elements were cut to characterize the kerf qualitative features; microstructural analysis of the cross sections allowed identification of thermal damage characteristics introduced into the material during the laser processes. A thermally undamaged microstructure was observed for fs laser cutting, while CW was seen to be characterized by a large heat-affected zone. Functional properties were investigated by differential scanning calorimetry and tensile testing of laser cut microelements and of the reference material. It was seen that the martensitic transformation behavior of Nitinol is not affected by fs regime, while cw cutting provokes an effect equivalent to a high temperature thermal treatment in the material surrounding the cutting kerf, degradating the material properties. Finally, tensile testing indicated that superelastic performances were guaranteed by fs regime, while strong reduction of the recoverable strain was detected in the CW processed sample.

  8. Multi-image mosaic with SIFT and vision measurement for microscale structures processed by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Fu-Bin; Tu, Paul; Wu, Chen; Chen, Lei; Feng, Ding

    2018-01-01

    In femtosecond laser processing, the field of view of each image frame of the microscale structure is extremely small. In order to obtain the morphology of the whole microstructure, a multi-image mosaic with partially overlapped regions is required. In the present work, the SIFT algorithm for mosaic images was analyzed theoretically, and by using multiple images of a microgroove structure processed by femtosecond laser, a stitched image of the whole groove structure could be studied experimentally and realized. The object of our research concerned a silicon wafer with a microgroove structure ablated by femtosecond laser. First, we obtained microgrooves at a width of 380 μm at different depths. Second, based on the gray image of the microgroove, a multi-image mosaic with slot width and slot depth was realized. In order to improve the image contrast between the target and the background, and taking the slot depth image as an example, a multi-image mosaic was then realized using pseudo color enhancement. Third, in order to measure the structural size of the microgroove with the image, a known width streak ablated by femtosecond laser at 20 mW was used as a calibration sample. Through edge detection, corner extraction, and image correction for the streak images, we calculated the pixel width of the streak image and found the measurement ratio constant Kw in the width direction, and then obtained the proportional relationship between a pixel and a micrometer. Finally, circular spot marks ablated by femtosecond laser at 2 mW and 15 mW were used as test images, and proving that the value Kw was correct, the measurement ratio constant Kh in the height direction was obtained, and the image measurements for a microgroove of 380 × 117 μm was realized based on a measurement ratio constant Kw and Kh. The research and experimental results show that the image mosaic, image calibration, and geometric image parameter measurements for the microstructural image ablated by femtosecond laser were realized effectively.

  9. Microfabrication technology by femtosecond laser direct scanning using two-photon photo-polymerization

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Liu, Li-Peng; Dai, Qi-Xun; Pan, Chuan-Peng

    2005-01-01

    Two-photon absorption (TPA) is confined at the focus under tight-focusing conditions, which provides a novel concept for micro-fabrication using two-photon photo-polymerization in resin. The development of three-dimensional micro-fabrication by femtosecond laser was introduced at first, then the merits of femtosecond two-photon photo-polymerization was expatiated. Femtosecond laser direct scanning three-dimensional (3D) micro-fabrication system was set up and corresponding controlling software was developed. We demonstrated a fabrication of three-dimensional microstructures using photo-polymerization of resin by two-photon absorption. The precision of micro-machining and the spatial resolution reached 1um because of TPA. The dependence of fabricated line width to the micro-fabrication speed was investigated. Benzene ring, CHINA and layer-by-layer of log structures were fabricated in this 3D- micro-fabrication system as examples.

  10. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes

    PubMed Central

    Jia, Yuechen; Cheng, Chen; Vázquez de Aldana, Javier R.; Castillo, Gabriel R.; Rabes, Blanca del Rosal; Tan, Yang; Jaque, Daniel; Chen, Feng

    2014-01-01

    Miniature laser sources with on-demand beam features are desirable devices for a broad range of photonic applications. Lasing based on direct-pump of miniaturized waveguiding active structures offers a low-cost but intriguing solution for compact light-emitting devices. In this work, we demonstrate a novel family of three dimensional (3D) photonic microstructures monolithically integrated in a Nd:YAG laser crystal wafer. They are produced by the femtosecond laser writing, capable of simultaneous light waveguiding and beam manipulation. In these guiding systems, tailoring of laser modes by both passive/active beam splitting and ring-shaped transformation are achieved by an appropriate design of refractive index patterns. Integration of graphene thin-layer as saturable absorber in the 3D laser structures allows for efficient passive Q-switching of tailored laser radiations which may enable miniature waveguiding lasers for broader applications. Our results pave a way to construct complex integrated passive and active laser circuits in dielectric crystals by using femtosecond laser written monolithic photonic chips. PMID:25100561

  11. Enhanced Ultrafast Nonlinear Optics With Microstructure Fibers And Photonic Crystals

    DTIC Science & Technology

    2004-07-01

    NANOHOLES FREQUENCY-TUNABLE ANTI-STOKES LINE EMISSION BY EIGENMODES OF A BIREFRINGENT MICROSTRUCTURE FIBER GENERATION OF FEMTOSECOND ANTI-STOKES PULSES...laser technologies, and ultrafast photonics. ANTI-STOKES GENERATION IN GUIDED MODES OF PHOTONIC-CRYSTAL FIBERS MODIFIED WITH AN ARRAY OF NANOHOLES

  12. Femtosecond laser-induced microstructures on Ti substrates for reduced cell adhesion

    NASA Astrophysics Data System (ADS)

    Heitz, J.; Plamadeala, C.; Muck, M.; Armbruster, O.; Baumgartner, W.; Weth, A.; Steinwender, C.; Blessberger, H.; Kellermair, J.; Kirner, S. V.; Krüger, J.; Bonse, J.; Guntner, A. S.; Hassel, A. W.

    2017-12-01

    Miniaturized pacemakers with a surface consisting of a Ti alloy may have to be removed after several years from their implantation site in the heart and shall, therefore, not be completely overgrown by cells or tissue. A method to avoid this may be to create at the surface by laser-ablation self-organized sharp conical spikes, which provide too little surface for cells (i.e., fibroblasts) to grow on. For this purpose, Ti-alloy substrates were irradiated in the air by 790 nm Ti:sapphire femtosecond laser pulses at fluences above the ablation threshold. The laser irradiation resulted in pronounced microstructure formation with hierarchical surface morphologies. Murine fibroblasts were seeded onto the laser-patterned surface and the coverage by cells was evaluated after 3-21 days of cultivation by means of scanning electron microscopy. Compared to flat surfaces, the cell density on the microstructures was significantly lower, the coverage was incomplete, and the cells had a clearly different morphology. The best results regarding suppression of cell growth were obtained on spike structures which were additionally electrochemically oxidized under acidic conditions. Cell cultivation with additional shear stress could reduce further the number of adherent cells.

  13. Underwater superoleophobicity, anti-oil and ultra-broadband enhanced absorption of metallic surfaces produced by a femtosecond laser inspired by fish and chameleons

    NASA Astrophysics Data System (ADS)

    Yin, K.; Song, Y. X.; Dong, X. R.; Wang, C.; Duan, J. A.

    2016-11-01

    Reported here is the bio-inspired and robust function of underwater superoleophobic, anti-oil metallic surfaces with ultra-broadband enhanced optical absorption obtained through femtosecond laser micromachining. Three distinct surface structures are fabricated using a wide variety of processing parameters. Underwater superoleophobic and anti-oil surfaces containing coral-like microstructures with nanoparticles and mount-like microstructures are achieved. These properties of the as-prepared surfaces exhibit good chemical stability when exposed to various types of oils and when immersed in water with a wide range of pH values. Moreover, coral-like microstructures with nanoparticle surfaces show strongly enhanced optical absorption over a broadband wavelength range from 0.2-25 μm. The potential mechanism for the excellent performance of the coral-like microstructures with a nanoparticle surface is also discussed. This multifunctional surface has potential applications in military submarines, amphibious military aircraft and tanks, and underwater anti-oil optical counter-reconnaissance devices.

  14. Role of the heat accumulation effect in the multipulse modes of the femtosecond laser microstructuring of silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guk, I. V., E-mail: corchand@gmail.com; Shandybina, G. D.; Yakovlev, E. B.

    2016-05-15

    The results of quantitative evaluation of the heat accumulation effect during the femtosecond laser microstructuring of the surface of silicon are presented for discussion. In the calculations, the numerical–analytical method is used, in which the dynamics of electronic processes and lattice heating are simulated by the numerical method, and the cooling stage is described on the basis of an analytical solution. The effect of multipulse irradiation on the surface temperature is studied: in the electronic subsystem, as the dependence of the absorbance on the excited carrier density and the dependence of the absorbance on the electron-gas temperature; in the latticemore » subsystem, as the variation in the absorbance from pulse to pulse. It was shown that, in the low-frequency pulse-repetition mode characteristic of the femtosecond microstructuring of silicon, the heat accumulation effect is controlled not by the residual surface temperature by the time of the next pulse arrival, which corresponds to conventional concepts, but by an increase in the maximum temperature from pulse to pulse, from which cooling begins. The accumulation of the residual temperature of the surface can affect the microstructuring process during irradiation near the evaporation threshold or with increasing pulse-repetition rate.« less

  15. Controllable Si (100) micro/nanostructures by chemical-etching-assisted femtosecond laser single-pulse irradiation

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Xie, Qian; Jiang, Lan; Han, Weina; Wang, Qingsong; Wang, Andong; Hu, Jie; Lu, Yongfeng

    2017-05-01

    In this study, silicon micro/nanostructures of controlled size and shape are fabricated by chemical-etching-assisted femtosecond laser single-pulse irradiation, which is a flexible, high-throughput method. The pulse fluence is altered to create various laser printing patterns for the etching mask, resulting in the sequential evolution of three distinct surface micro/nanostructures, namely, ring-like microstructures, flat-top pillar microstructures, and spike nanostructures. The characterized diameter of micro/nanostructures reveals that they can be flexibly tuned from the micrometer (˜2 μm) to nanometer (˜313 nm) scales by varying the laser pulse fluence in a wide range. Micro-Raman spectroscopy and transmission electron microscopy are utilized to demonstrate that the phase state changes from single-crystalline silicon (c-Si) to amorphous silicon (a-Si) after single-pulse femtosecond laser irradiation. This amorphous layer with a lower etching rate then acts as a mask in the wet etching process. Meanwhile, the on-the-fly punching technique enables the efficient fabrication of large-area patterned surfaces on the centimeter scale. This study presents a highly efficient method of controllably manufacturing silicon micro/nanostructures with different single-pulse patterns, which has promising applications in the photonic, solar cell, and sensors fields.

  16. Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Wang, Zhongke; Sugioka, Koji; Midorikawa, Katsumi

    2007-12-01

    We report the three-dimensional (3D) integration of microoptical components such as microlenses, micromirrors and optical waveguides in a single glass chip by femtosecond (fs) laser direct writing. First, two types of microoptical lenses were fabricated inside photosensitive Foturan glass by forming hollow microstructures using fs laser direct writing followed by thermal treatment, successive wet etching and additional annealing. One type of lens is the cylindrical microlens with a curvature radius R of 1.0 mm, and the other is the plano-convex microlens with radius R of 0.75 mm. Subsequently, by the continuous procedure of hollow microstructure fabrication, a micromirror was integrated with the plano-convex microlens in the single glass chip. Further integration of waveguides was performed by internal refractive index modification using fs laser direct writing after the hollow structure fabrication of the microlens and the micromirror. A demonstration of the laser beam transmission in the integrated optical microdevice shows that the 3D integration of waveguides with a micromirror and a microoptical lens in a single glass chip is highly effective for light beam guiding and focusing.

  17. Ti:Sapphire micro-structures by femtosecond laser inscription: Guiding and luminescence properties

    NASA Astrophysics Data System (ADS)

    Ren, Yingying; Jiao, Yang; Vázquez de Aldana, Javier R.; Chen, Feng

    2016-08-01

    We report on the fabrication of buried cladding waveguides with different diameters in a Ti:Sapphire crystal by femtosecond laser inscription. The propagation properties are studied, showing that the cladding waveguides could support near- to mid-infrared waveguiding at both TE and TM polarizations. Confocal micro-photoluminescence experiments reveal that the original fluorescence properties in the waveguide region are very well preserved, while it suffers from a strong quenching at the centers of laser induced filaments. Broadband waveguide fluorescence emissions with high efficiency are realized, indicating the application of the cladding waveguides in Ti:Sapphire as compact broadband luminescence sources in biomedical fields.

  18. Effect of Repetition Rate on Femtosecond Laser-Induced Homogenous Microstructures

    PubMed Central

    Biswas, Sanchari; Karthikeyan, Adya; Kietzig, Anne-Marie

    2016-01-01

    We report on the effect of repetition rate on the formation and surface texture of the laser induced homogenous microstructures. Different microstructures were micromachined on copper (Cu) and titanium (Ti) using femtosecond pulses at 1 and 10 kHz. We studied the effect of the repetition rate on structure formation by comparing the threshold accumulated pulse (FΣpulse) values and the effect on the surface texture through lacunarity analysis. Machining both metals at low FΣpulse resulted in microstructures with higher lacunarity at 10 kHz compared to 1 kHz. On increasing FΣpulse, the microstructures showed higher lacunarity at 1 kHz. The effect of the repetition rate on the threshold FΣpulse values were, however, considerably different on the two metals. With an increase in repetition rate, we observed a decrease in the threshold FΣpulse on Cu, while on Ti we observed an increase. These differences were successfully allied to the respective material characteristics and the resulting melt dynamics. While machining Ti at 10 kHz, the melt layer induced by one laser pulse persists until the next pulse arrives, acting as a dielectric for the subsequent pulse, thereby increasing FΣpulse. However, on Cu, the melt layer quickly resolidifies and no such dielectric like phase is observed. Our study contributes to the current knowledge on the effect of the repetition rate as an irradiation parameter. PMID:28774143

  19. Nanoaquariums Fabricated by Femtosecond Laser for Exploration of Dynamics and Functions of Microorganisms

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Hanada, Yasutaka; Kawano, Hiroyuki; Ishikawa, Ikuko S.; Miyawaki, Atsushi; Midorikawa, Katsumi

    2010-10-01

    We demonstrate to fabricate microfluidic chips integrated with some functional elements such as optical attenuators and optical waveguides by femtosecond (fs) laser direct writing for mechanism study of gliding movement of Phormidium to a seedling root. Femtosecond laser irradiation followed by annealing and wet etching in dilute hydrofluoric (HF) acid solution resulted in formation of three-dimensional (3D) hollow microstructures embedded in a photosensitive glass. The embedded microfludic structures enabled us to easily and efficiently observe Phormidium gliding to the seedling root, which accelerates growth of the vegetable seedling. In addition, integration of optical attenuators and optical waveguides into the microfluidic structures in the microchip clarified the mechanism of the gliding movement of Phormidium. Such microchips, referred to as nanoaquariums, realized the highly efficient and functional observation and analysis of various microorganisms.

  20. Formation of aggregated nanoparticle spheres through femtosecond laser surface processing

    NASA Astrophysics Data System (ADS)

    Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.

    2017-10-01

    A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.

  1. Polarization dependent formation of femtosecond laser-induced periodic surface structures near stepped features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.

    2014-06-09

    Laser-induced periodic surface structures (LIPSS) are formed near 110 nm-tall Au microstructured edges on Si substrates after single-pulse femtosecond irradiation with a 150 fs pulse centered near a 780 nm wavelength. We investigate the contributions of Fresnel diffraction from step-edges and surface plasmon polariton (SPP) excitation to LIPSS formation on Au and Si surfaces. For certain laser polarization vector orientations, LIPSS formation is dominated by SPP excitation; however, when SPP excitation is minimized, Fresnel diffraction dominates. The LIPSS orientation and period distributions are shown to depend on which mechanism is activated. These results support previous observations of the laser polarization vectormore » influencing LIPSS formation on bulk surfaces.« less

  2. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ding, Li

    High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death has been observed in or around the laser-induced refractive index modification regions. These results support the notion that femtosecond laser micro-processing method may be an excellent means of altering the refraction or higher order aberration content of corneal tissue without cell death and short-term tissue damage, and has been named as Intra-tissue Refractive Index Shaping (IRIS). The femtosecond laser micro-processing workstation has also been employed for laser transfection of single defined cells. Some preliminary results suggest that this method can be used to trace individual cells and record their biological and morphological evolution, which is quite promising in many biomedical applications especially in immunology science. In conclusion, high repetition rate femtosecond laser micro-processing has been employed to fabricate microstructures in ophthalmological hydrogels and ocular tissues. Its unique three-dimensional capability over transparent materials and biological media makes it a powerful tool and will greatly impact the future of laser material-processing.

  3. Micro-structured femtosecond laser assisted FBG hydrogen sensor.

    PubMed

    Karanja, Joseph Muna; Dai, Yutang; Zhou, Xian; Liu, Bin; Yang, Minghong

    2015-11-30

    We discuss hydrogen sensors based on fiber Bragg gratings (FBGs) micro-machined by femtosecond laser to form microgrooves and sputtered with Pd/Ag composite film. The atomic ratio of the two metals is controlled at Pd:Ag = 3:1. At room temperature, the hydrogen sensitivity of the sensor probe micro-machined by 75 mW laser power and sputtered with 520 nm of Pd/Ag film is 16.5 pm/%H. Comparably, the standard FBG hydrogen sensitivity becomes 2.5 pm/%H towards the same 4% hydrogen concentration. At an ambient temperature of 35°C, the processed sensor head has a dramatic rise in hydrogen sensitivity. Besides, the sensor shows good response and repeatability during hydrogen concentration test.

  4. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.

    PubMed

    Liu, Hongliang; Jia, Yuechen; Vázquez de Aldana, Javier Rodríguez; Jaque, Daniel; Chen, Feng

    2012-08-13

    We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.

  5. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    NASA Astrophysics Data System (ADS)

    Vasileva, A. A.; Nazarov, I. A.; Olshin, P. K.; Povolotskiy, A. V.; Sokolov, I. A.; Manshina, A. A.

    2015-10-01

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium-phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. The process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass.

  6. Femtosecond-Laser Patterning of Polymers: Nonlinear and Negative Index Devices

    DTIC Science & Technology

    2011-01-20

    LITHOGRAPHY; PHOTOPOLYMERIZATION; MICROSTRUCTURES; NANOPARTICLES; CHITIN ; POLYMERS; BIOMATERIALS; RAMAN SPECTROSCOPY AND SCATTERING; ENHANCED Eric Mazur...cationic polysaccharide obtained by deacetylation of chitin [(1→4)-2 acetamide–2 –deoxy--D-glucan], a structural polysaccharide normally encountered in

  7. Composition analysis by scanning femtosecond laser ultraprobing (CASFLU).

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Campbell, E. Michael; Stuart, Brent C.; Perry, Michael D.

    2002-01-01

    The composition analysis by scanning femtosecond ultraprobing (CASFLU) technology scans a focused train of extremely short-duration, very intense laser pulses across a sample. The partially-ionized plasma ablated by each pulse is spectrometrically analyzed in real time, determining the ablated material's composition. The steering of the scanned beam thus is computer directed to either continue ablative material-removal at the same site or to successively remove nearby material for the same type of composition analysis. This invention has utility in high-speed chemical-elemental, molecular-fragment and isotopic analyses of the microstructure composition of complex objects, e.g., the oxygen isotopic compositions of large populations of single osteons in bone.

  8. German national femtosecond technology project (FST)

    NASA Astrophysics Data System (ADS)

    Dausinger, Friedrich

    2002-06-01

    The German federal government started the funding of a national project intended to exploit the potential of femtosecond technology. In a forgoing competition five research consortia had been successful and have started now together with an adjoin research consortium their investigations in the following fields: (i) micro-machining of technical materials for microstructuring and drilling, (ii) medical therapy in: ophthalmology, dentistry, neurology and ear surgery, (iii) metrology, (iv) laser safety, (v) x- ray generation. Lasers, systems and technologies required in these potential fields of applications will be investigated. The program aims at industrial success and is dominated by industrial partners, therefore. The more fundamental research is done in university institutes and research centers.

  9. Femtosecond pulses for medicine and production technology: overview of a German national project

    NASA Astrophysics Data System (ADS)

    Dausinger, Friedrich

    2002-02-01

    With the beginning of the new century the German federal government started the funding of a program intended to exploit the potential of femtosecond technology. In a foregoing competition, five research consortia had been successful and have started their investigations in the following fields. - micro-machining of technical materials for microstructure and drilling - medical therapy in : ophthalmology, dentistry, neurology and ear surgery - metrology - laser safety. Lasers, systems and technologies required in these potential fields of applications will be investigated. The program aims at industrial success and is dominated by industrial partners, therefore. The more fundamental research is done in university institutes and research centers.

  10. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    NASA Astrophysics Data System (ADS)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  11. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: Separating oil from water and corrosive solutions

    NASA Astrophysics Data System (ADS)

    Yong, Jiale; Fang, Yao; Chen, Feng; Huo, Jinglan; Yang, Qing; Bian, Hao; Du, Guangqing; Hou, Xun

    2016-12-01

    Separating the mixture of water and oil by the superhydrophobic porous materials has attracted increasing research interests; however, the surface microstructures and chemical composition of those materials are easily destroyed in a harsh environment, resulting in materials losing the superhydrophobicity as well as the oil/water separation function. In this paper, a kind of rough microstructures was formed on polytetrafluoroethylene (PTFE) sheet by femtosecond laser treatment. The rough surfaces showed durable superhydrophobicity and ultralow water adhesion even after storing in various harsh environment for a long time, including strong acid, strong alkali, and high temperature. A micro-through-holes array was further generated on the rough superhydrophobic PTFE film by a subsequent mechanical drilling process. The resultant sample was successfully applied in the field of oil/water separation due to the inverse superhydrophobicity and superoleophilicity. The designed separation system is also very efficient to separate the mixtures of oil and corrosive acid/alkali solutions, exhibiting the strong potential for practical application.

  12. Microreplication of laser-fabricated surface and three-dimensional structures

    NASA Astrophysics Data System (ADS)

    Koroleva, Anastasia; Schlie, Sabrina; Fadeeva, Elena; Gittard, Shaun D.; Miller, Philip; Ovsianikov, Aleksandr; Koch, Jürgen; Narayan, Roger J.; Chichkov, Boris N.

    2010-12-01

    The fabrication of defined surface topographies and three-dimensional structures is a challenging process for various applications, e.g. in photonics and biomedicine. Laser-based technologies provide a promising approach for the production of such structures. The advantages of femtosecond laser ablation and two-photon polymerization for microstructuring are well known. However, these methods cannot be applied to all materials and are limited by their high cost and long production time. In this study, biomedical applications of an indirect rapid prototyping, molding microreplication of laser-fabricated two- and three-dimensional structures are examined. We demonstrate that by this method any laser-generated surface topography as well as three-dimensional structures can be replicated in various materials without losing the original geometry. The replication into multiple copies enables fast and perfect reproducibility of original microstructures for investigations of cell-surface interactions. Compared to unstructured materials, we observe that microstructures have strong influence on morphology and localization of fibroblasts, whereas neuroblastoma cells are not negatively affected.

  13. Wettability modification of porous PET by atmospheric femtosecond PLD

    NASA Astrophysics Data System (ADS)

    Assaf, Youssef; Forstmann, Guillaume; Kietzig, Anne-Marie

    2018-04-01

    In this study, porous structures were created on poly(ethylene terephthalate) (PET) by femtosecond (fs) laser micromachining. While such structures offer a texture that is desirable for several applications, their wettability does not always match the application in question. The aim of this investigation is to tune the wettability of such surfaces by incorporating a controlled amount of nanoparticles into the structure. The machined PET samples were thus used as substrates for fs pulsed laser deposition (PLD) of titanium under ambient conditions. The nanoparticles were deposited as nanochain clusters due to the formation of an oxide layer between individual nanoparticles. The stability of nanoparticle incorporation was tested by placing the samples in an ultrasonic ethanol bath. Results indicated that nanoparticles were still successfully incorporated into the microstructure after sonication. Nanoparticle surface coverage was observed to be controllable through the operating fluence. The dynamic contact angles of the resulting composite surface were observed to decrease with increasing titanium incorporation. Therefore, this work highlights atmospheric fs PLD as a method for wettability modification of high surface area microstructures without undermining their topology. In addition, this technique uses almost the same equipment as the machining process by which the microstructures are initially created, further highlighting its practicality.

  14. Material removal effect of microchannel processing by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zhang, Pan; Chen, Lei; Chen, Jianxiong; Tu, Yiliu

    2017-11-01

    Material processing using ultra-short-pulse laser is widely used in the field of micromachining, especially for the precision processing of hard and brittle materials. This paper reports a theoretical and experimental study of the ablation characteristics of a silicon wafer under micromachining using a femtosecond laser. The ablation morphology of the silicon wafer surface is surveyed by a detection test with an optical microscope. First, according to the relationship between the diameter of the ablation holes and the incident laser power, the ablation threshold of the silicon wafer is found to be 0.227 J/cm2. Second, the influence of various laser parameters on the size of the ablation microstructure is studied and the ablation morphology is analyzed. Furthermore, a mathematical model is proposed that can calculate the ablation depth per time for a given laser fluence and scanning velocity. Finally, a microchannel milling test is carried out on the micromachining center. The effectiveness and accuracy of the proposed models are verified by comparing the estimated depth to the actual measured results.

  15. Direct-writing of copper-based micropatterns on polymer substrates using femtosecond laser reduction of copper (II) oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mizoshiri, Mizue; Ito, Yasuaki; Sakurai, Junpei; Hata, Seiichi

    2017-04-01

    Copper (Cu)-based micropatterns were fabricated on polymer substrates using femtosecond laser reduction of copper (II) oxide (CuO) nanoparticles. CuO nanoparticle solution, which consisted of CuO nanoparticles, ethylene glycol as a reductant agent, and polyvinylpyrrolidone as a dispersant, was spin-coated on poly(dimethylsiloxane) (PDMS) substrates and was irradiated by focused femtosecond laser pulses to fabricate Cu-based micropatterns. When the laser pulses were raster-scanned onto the solution, CuO nanoparticles were reduced and sintered. Cu-rich and copper (I)-oxide (Cu2O)-rich micropatterns were formed at laser scanning speeds of 15 mm/s and 0.5 mm/s, respectively, and at a pulse energy of 0.54 nJ. Cu-rich electrically conductive micropatterns were obtained without significant damages on the substrates. On the other hand, Cu2O-rich micropatterns exhibited no electrical conductivity, indicating that microcracks were generated on the micropatterns by thermal expansion and shrinking of the substrates. We demonstrated a direct-writing of Cu-rich micro-temperature sensors on PDMS substrates using the foregoing laser irradiation condition. The resistance of the fabricated sensors increased with increasing temperature, which is consistent with that of Cu. This direct-writing technique is useful for fabricating Cu-polymer composite microstructures.

  16. Effect of scanning velocity on femtosecond laser-induced periodic surface structures on HgCdTe crystal

    NASA Astrophysics Data System (ADS)

    Gu, Hongan; Dai, Ye; Wang, Haodong; Yan, Xiaona; Ma, Guohong

    2017-12-01

    In this paper, a femtosecond laser line-scanning irradiation was used to induce the periodic surface microstructure on HgCdTe crystal. Low spatial frequency laser induced periodic surface structures of 650-770 nm and high spatial frequency laser induced periodic surface structures of 152-246 nm were respectively found with different scanning speeds. The evolution process from low spatial frequency laser induced periodic surface structures to high spatial frequency laser induced periodic surface structures is characterized by scanning electron microscope. Their spatial periods deduced by using a two-dimensional Fourier transformation partly agree with the predictions of the Sipe-Drude theory. Confocal micro-Raman spectral show that the atomic arrangement of induced low spatial frequency laser-induced structures are basically consistent with the crystal in the central area of laser-scanning line, however a new peak at 164 cm-1 for the CdTe-like mode becomes evident due to the Hg vaporization when strong laser ablation happens. The obtained surface periodic ripples may have applications in fabricating advanced infrared detector.

  17. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Du, Wen-Qiang; Li, Jia-Wen; Hu, Yan-Lei; Yang, Liang; Zhang, Chen-Chu; Li, Guo-Qiang; Lao, Zhao-Xin; Ni, Jin-Cheng; Chu, Jia-Ru; Wu, Dong; Liu, Su-Ling; Sugioka, Koji

    2016-01-01

    High efficiency fabrication and integration of three-dimension (3D) functional devices in Lab-on-a-chip systems are crucial for microfluidic applications. Here, a spatial light modulator (SLM)-based multifoci parallel femtosecond laser scanning technology was proposed to integrate microstructures inside a given ‘Y’ shape microchannel. The key novelty of our approach lies on rapidly integrating 3D microdevices inside a microchip for the first time, which significantly reduces the fabrication time. The high quality integration of various 2D-3D microstructures was ensured by quantitatively optimizing the experimental conditions including prebaking time, laser power and developing time. To verify the designable and versatile capability of this method for integrating functional 3D microdevices in microchannel, a series of microfilters with adjustable pore sizes from 12.2 μm to 6.7 μm were fabricated to demonstrate selective filtering of the polystyrene (PS) particles and cancer cells with different sizes. The filter can be cleaned by reversing the flow and reused for many times. This technology will advance the fabrication technique of 3D integrated microfluidic and optofluidic chips.

  18. Femtosecond laser micromachining of polylactic acid/graphene composites for designing interdigitated microelectrodes for sensor applications

    NASA Astrophysics Data System (ADS)

    Paula, Kelly T.; Gaál, Gabriel; Almeida, G. F. B.; Andrade, M. B.; Facure, Murilo H. M.; Correa, Daniel S.; Riul, Antonio; Rodrigues, Varlei; Mendonça, Cleber R.

    2018-05-01

    There is an increasing interest in the last years towards electronic applications of graphene-based materials and devices fabricated from patterning techniques, with the ultimate goal of high performance and temporal resolution. Laser micromachining using femtosecond pulses is an attractive methodology to integrate graphene-based materials into functional devices as it allows changes to the focal volume with a submicrometer spatial resolution due to the efficient nonlinear nature of the absorption, yielding rapid prototyping for innovative applications. We present here the patterning of PLA-graphene films spin-coated on a glass substrate using a fs-laser at moderate pulse energies to fabricate interdigitated electrodes having a minimum spatial resolution of 5 μm. Raman spectroscopy of the PLA-graphene films indicated the presence of multilayered graphene fibers. Subsequently, the PLA-graphene films were micromachined using a femtosecond laser oscillator delivering 50-fs pulses and 800 nm, where the pulse energy and scanning speed was varied in order to determine the optimum irradiation parameters (16 nJ and 100 μm/s) to the fabrication of microstructures. The micromachined patterns were characterized by optical microscopy and submitted to electrical measurements in liquid samples, clearly distinguishing all tastes tested. Our results confirm the femtosecond laser micromachining technique as an interesting approach to efficiently pattern PLA-graphene filaments with high precision and minimal mechanical defects, allowing the easy fabrication of interdigitated structures and an alternative method to those produced by conventional photolithography.

  19. Microstructure of the multiple-filamentation zone formed by femtosecond laser radiation in a solid dielectric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geints, Yu E; Zemlyanov, A A; Kabanov, A M

    The regularities of multiple filamentation of gigawatt femtosecond laser pulses in a solid dielectric (optical glass) have been considered. The fine spatial structure of the plasma region that is formed under glass photoionisation and accompanies the formation of light filaments is analysed experimentally and by means of numerical simulation. The dependence of the number, position, and extension of individual 'generations' of plasma channels on the laser pulse energy has been investigated for the first time. It is found that the distribution of the number of plasma channels over the length of a dielectric sample has a maximum, the position ofmore » which correlates well with the position of the nonlinear focus of the light beam as a whole; at the same time, the average channel length decreases with increasing pulse power, whereas the number of successive channel 'generations', on the contrary, increases. (interaction of laser radiation with matter. laser plasma)« less

  20. Cutting of optical materials by using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Nolte, Stefan; Will, Matthias; Augustin, Markus; Triebel, Peter; Zoellner, Karsten; Tuennermann, Andreas

    2001-11-01

    In the past years, ultrashort pulse lasers have been established as precise and universal tools for the microstructuring of solid materials. Since thermal and mechanical influences are minimized, the application of this technology is also suitable for the structuring of optical materials and opens new possibilities. In this paper, the influence of pulse duration, pulse energy (fluence) and polarization on the cutting quality for glass and silicon will be discussed. As a concrete application, the cutting and micromarking of dielectric coated mirrors for high power fiber lasers will be highlighted.

  1. Femtosecond fiber laser additive manufacturing and welding for 3D manufacturing

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Nie, Bai; Wan, Peng; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-03-01

    Due to the unique ultra-short pulse duration and high peak power, femtosecond (fs) laser has emerged as a powerful tool for many applications but has rarely been studied for 3D printing. In this paper, welding of both bulk and powder materials is demonstrated for the first time by using high energy and high repetition rate fs fiber lasers. It opens up new scenarios and opportunities for 3D printing with the following advantages - greater range of materials especially with high melting temperature, greater-than-ever level of precision (sub-micron) and less heat-affected-zone (HAZ). Mechanical properties (strength and hardness) and micro-structures (grain size) of the fabricated parts are investigated. For dissimilar materials bulk welding, good welding quality with over 210 MPa tensile strength is obtained. Also full melting of the micron-sized refractory powders with high melting temperature (above 3000 degree C) is achieved for the first time. 3D parts with shapes like ring and cube are fabricated. Not only does this study explore the feasibility of melting dissimilar and high melting temperature materials using fs lasers, but it also lays out a solid foundation for 3D printing of complex structure with designed compositions, microstructures and properties. This can greatly benefit the applications in automobile, aerospace and biomedical industries, by producing parts like nozzles, engines and miniaturized biomedical devices.

  2. Laser induced periodic surface structuring on Si by temporal shaped femtosecond pulses.

    PubMed

    Almeida, G F B; Martins, R J; Otuka, A J G; Siqueira, J P; Mendonca, C R

    2015-10-19

    We investigated the effect of temporal shaped femtosecond pulses on silicon laser micromachining. By using sinusoidal spectral phases, pulse trains composed of sub-pulses with distinct temporal separations were generated and applied to the silicon surface to produce Laser Induced Periodic Surface Structures (LIPSS). The LIPSS obtained with different sub-pulse separation were analyzed by comparing the intensity of the two-dimensional fast Fourier Transform (2D-FFT) of the AFM images of the ripples (LIPSS). It was observed that LIPSS amplitude is more emphasized for the pulse train with sub-pulses separation of 128 fs, even when compared with the Fourier transform limited pulse. By estimating the carrier density achieved at the end of each pulse train, we have been able to interpret our results with the Sipe-Drude model, that predicts that LIPSS efficacy is higher for a specific induced carrier density. Hence, our results indicate that temporal shaping of the excitation pulse, performed by spectral phase modulation, can be explored in fs-laser microstructuring.

  3. Surface transmission enhancement of ZnS via continuous-wave laser microstructuring

    NASA Astrophysics Data System (ADS)

    Major, Kevin J.; Florea, Catalin M.; Poutous, Menelaos K.; Busse, Lynda E.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.

    2014-03-01

    Fresnel reflectivity at dielectric boundaries between optical components, lenses, and windows is a major issue for the optics community. The most common method to reduce the index mismatch and subsequent surface reflection is to apply a thin film or films of intermediate indices to the optical materials. More recently, surface texturing or roughening has been shown to approximate a stepwise refractive index thin-film structure, with a gradient index of refraction transition from the bulk material to the surrounding medium. Short-pulse laser ablation is a recently-utilized method to produce such random anti-reflective structured surfaces (rARSS). Typically, high-energy femtosecond pulsed lasers are focused on the surface of the desired optical material to produce periodic or quasi-periodic assemblies of nanostructures which provide reduced surface reflection. This technique is being explored to generate a variety of structures across multiple optical materials. However, femtosecond laser systems are relatively expensive and more difficult to maintain. We present here a low power and low-cost alternative to femtosecond laser ablation, demonstrating random antireflective structures on the surface of Cleartran ZnS windows produced with a continuous-wave laser. In particular, we find that irradiation with a low-powered (<10 mW), defocused, CW 325nm-wavelength laser produces a random surface with significant roughness on ZnS substrates. The transmission through the structured ZnS windows is shown to increase by up to 9% across a broad wavelength range from the visible to the near-infrared.

  4. Large-area one-step assembly of three-dimensional porous metal micro/nanocages by ethanol-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity.

    PubMed

    Li, Guoqiang; Li, Jiawen; Zhang, Chenchu; Hu, Yanlei; Li, Xiaohong; Chu, Jiaru; Huang, Wenhao; Wu, Dong

    2015-01-14

    The capability to realize 2D-3D controllable metallic micro/nanostructures is of key importance for various fields such as plasmonics, electronics, bioscience, and chemistry due to unique properties such as electromagnetic field enhancement, catalysis, photoemission, and conductivity. However, most of the present techniques are limited to low-dimension (1D-2D), small area, or single function. Here we report the assembly of self-organized three-dimensional (3D) porous metal micro/nanocages arrays on nickel surface by ethanol-assisted femtosecond laser irradiation. The underlying formation mechanism was investigated by a series of femtosecond laser irradiation under exposure time from 5 to 30 ms. We also demonstrate the ability to control the size of micro/nanocage arrays from 0.8 to 2 μm by different laser pulse energy. This method features rapidness (∼10 min), simplicity (one-step process), and ease of large-area (4 cm(2) or more) fabrication. The 3D cagelike micro/nanostructures exhibit not only improved antireflection from 80% to 7% but also enhanced hydrophobicity from 98.5° to 142° without surface modification. This simple technique for 3D large-area controllable metal microstructures will find great potential applications in optoelectronics, physics, and chemistry.

  5. Polarization and fluence effects in femtosecond laser induced micro/nano structures on stainless steel with antireflection property

    NASA Astrophysics Data System (ADS)

    Yao, Caizhen; Ye, Yayun; Jia, Baoshen; Li, Yuan; Ding, Renjie; Jiang, Yong; Wang, Yuxin; Yuan, Xiaodong

    2017-12-01

    In this paper, micro/nano structures on stainless steel were prepared in single spot irradiation mode and scan mode by using femtosecond laser technique. The influence of polarization and fluence on the formation of micro/nano structures were explored. Surface morphology, microstructure, roughness and composition of prepared samples were characterized. The antireflection property and wettability of laser treated samples were also tested and compared with that of original stainless steel.Results showed that the laser-induced spot consists of two distinct regions due to the Gaussian beam profile: a core region of moth-eye-like structure and a peripheral region of nanoparticles-covered laser-induced periodic surface structure (NC-LIPSS). The proportion of the core region and dimension of micro/nano structure increase with increasing laser fluence. Polarization can be used to tune the direction of NC-LIPSS. Atomic ratios of Cr and Mn increase and atomic ratio of Ni decreases after laser irradiation. Oxygen is not detected on laser irradiated samples, indicating that oxidation reactions are not significant during the interaction process between femtosecond laser and 304 stainless steel. These are good for the application of stainless steel as its physical properties would not change or even enhanced. The overlaps between two laser scan lines significantly influence the surface roughness and should be controlled carefully during the preparation process. The laser irradiated surface has a better antireflection property in comparison with that of original stainless steel, which may due to the scattering and absorption of micro/nano structures. Contact angle of micro/nano structured stainless steel decreases with the increase of laser fluence. The hydrophilic property can be explained by Wenzel's model. The interference between the surface plasmon wave and the incident light wave leads to the formation of NC-LIPSS.

  6. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels.

    PubMed

    Zhang, Chenchu; Hu, Yanlei; Du, Wenqiang; Wu, Peichao; Rao, Shenglong; Cai, Ze; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Li, Jiawen; Zhao, Gang; Wu, Dong; Chu, Jiaru; Sugioka, Koji

    2016-09-13

    Rapid integration of high-quality functional devices in microchannels is in highly demand for miniature lab-on-a-chip applications. This paper demonstrates the embellishment of existing microfluidic devices with integrated micropatterns via femtosecond laser MRAF-based holographic patterning (MHP) microfabrication, which proves two-photon polymerization (TPP) based on spatial light modulator (SLM) to be a rapid and powerful technology for chip functionalization. Optimized mixed region amplitude freedom (MRAF) algorithm has been used to generate high-quality shaped focus field. Base on the optimized parameters, a single-exposure approach is developed to fabricate 200 × 200 μm microstructure arrays in less than 240 ms. Moreover, microtraps, QR code and letters are integrated into a microdevice by the advanced method for particles capture and device identification. These results indicate that such a holographic laser embellishment of microfluidic devices is simple, flexible and easy to access, which has great potential in lab-on-a-chip applications of biological culture, chemical analyses and optofluidic devices.

  7. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels

    NASA Astrophysics Data System (ADS)

    Zhang, Chenchu; Hu, Yanlei; Du, Wenqiang; Wu, Peichao; Rao, Shenglong; Cai, Ze; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Li, Jiawen; Zhao, Gang; Wu, Dong; Chu, Jiaru; Sugioka, Koji

    2016-09-01

    Rapid integration of high-quality functional devices in microchannels is in highly demand for miniature lab-on-a-chip applications. This paper demonstrates the embellishment of existing microfluidic devices with integrated micropatterns via femtosecond laser MRAF-based holographic patterning (MHP) microfabrication, which proves two-photon polymerization (TPP) based on spatial light modulator (SLM) to be a rapid and powerful technology for chip functionalization. Optimized mixed region amplitude freedom (MRAF) algorithm has been used to generate high-quality shaped focus field. Base on the optimized parameters, a single-exposure approach is developed to fabricate 200 × 200 μm microstructure arrays in less than 240 ms. Moreover, microtraps, QR code and letters are integrated into a microdevice by the advanced method for particles capture and device identification. These results indicate that such a holographic laser embellishment of microfluidic devices is simple, flexible and easy to access, which has great potential in lab-on-a-chip applications of biological culture, chemical analyses and optofluidic devices.

  8. Femtosecond laser processing of optical fibres for novel sensor development

    NASA Astrophysics Data System (ADS)

    Kalli, Kyriacos; Theodosiou, Antreas; Ioannou, Andreas; Lacraz, Amedee

    2017-04-01

    We present results of recent research where we have utilized a femtosecond laser to micro-structure silica and polymer optical fibres in order to realize versatile optical components such as diffractive optical elements on the fibre end face, the inscription of integrated waveguide circuits in the fibre cladding and novel optical fibre sensors designs based on Bragg gratings in the core. A major hurdle in tailoring or modifying the properties of optical fibres is the development of an inscription method that can prove to be a flexible and reliable process that is generally applicable to all optical fibre types; this requires careful matching of the laser parameters and optics in order to examine the spatial limits of direct laser writing, whether the application is structuring at the surface of the optical fibre or inscription in the core and cladding of the fibre. We demonstrate a variety of optical components such as two-dimensional grating structures, Bessel, Airy and vortex beam generators; moreover, optical bridging waveguides inscribed in the cladding of single-mode fibre as a means to selectively couple light from single-core to multi-core optical fibres, and demonstrate a grating based sensor; finally, we have developed a novel femtosecond laser inscription method for the precise inscription of tailored Bragg grating sensors in silica and polymer optical fibres. We also show that this novel fibre Bragg grating inscription technique can be used to modify and add versatility to an existing, encapsulated optical fibre pressure sensor.

  9. Supercontinuum generation from 437 to 2850 nm in a tapered fluorotellurite microstructured fiber

    NASA Astrophysics Data System (ADS)

    Wang, F.; Jia, Z. X.; Yao, C. F.; Wang, S. B.; Hu, M. L.; Wu, C. F.; Ohishi, Y.; Qin, W. P.; Qin, G. S.

    2016-12-01

    We demonstrated supercontinuum (SC) generation in a tapered fluorotellurite microstructured fiber (MF) with a sub-micrometer core diameter. Fluorotellurite MFs based on TeO2-BaF2-Y2O3 glasses were fabricated by using a rod-in-tube method and a tapered fluorotellurite MF with a minimum core diameter of ~0.65 µm was prepared by employing a tapering system. A 1560 nm femtosecond fiber laser was used as the pumping source. With increasing the peak power of the launched pump laser to ~11 kW, SC light expanding from 437 to 2850 nm was generated in the tapered fluorotellurite MF. In addition, relatively strong blue-shifted dispersive wave at ~489 nm was also observed from the tapered fluorotellurite MF.

  10. Broad emission band of Yb3+ in the nonlinear Nb:RbTiOPO4 crystal: origin and applications.

    PubMed

    Carvajal, J J; Ciatto, G; Mateos, X; Schmidt, A; Griebner, U; Petrov, V; Boulon, G; Brenier, A; Peña, A; Pujol, M C; Aguiló, M; Díaz, F

    2010-03-29

    By means of micro-structural and optical characterization of the Yb:Nb:RbTiOPO(4) crystal, we demonstrated that the broad emission band of Yb(3+) in these crystals is due to the large splitting of the ytterbium ground state only, and not to a complex multisite occupation by the ytterbium ions in the crystals. We used this broad emission band to demonstrate wide laser tuning range and generation of femtosecond laser pulses. Passive mode-locked laser operation has been realized by using a semiconductor saturable absorber mirror, generating ultra short laser pulses of 155 fs, which were very stable in time, under Ti:sapphire laser pumping at 1053 nm.

  11. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-07-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  12. The Femtosecond Laser Ablation on Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Lu, Jianxun; Wu, Xiaoyu; Ruan, Shuangchen; Guo, Dengji; Du, Chenlin; Liang, Xiong; Wu, Zhaozhi

    2018-05-01

    To investigate the effects of femtosecond laser ablation on the surface morphology and microstructure of ultrafine-grained copper, point, single-line scanning, and area scanning ablation of ultrafine-grained and coarse-grained copper were performed at room temperature. The ablation threshold gradually increased and materials processing became more difficult with decreasing grain size. In addition, the ablation depth and width of the channels formed by single-line scanning ablation gradually increased with increasing grain size for the same laser pulse energy. The microhardness of the ablated specimens was also evaluated as a function of laser pulse energy using area scanning ablation. The microhardness difference before and after ablation increased with decreasing grain size for the same laser pulse energy. In addition, the microhardness after ablation gradually decreased with increasing laser pulse energy for the ultrafine-grained specimens. However, for the coarse-grained copper specimens, no clear changes of the microhardness were observed after ablation with varying laser pulse energies. The grain sizes of the ultrafine-grained specimens were also surveyed as a function of laser pulse energy using electron backscattered diffraction (EBSD). The heat generated by laser ablation caused recrystallization and grain growth of the ultrafine-grained copper; moreover, the grain size gradually increased with increasing pulse energy. In contrast, no obvious changes in grain size were observed for the coarse-grained copper specimens with increasing pulse energy.

  13. Femtosecond Laser Microstructuring and Chalcogen Inclusion in Silicon

    DTIC Science & Technology

    2011-02-12

    a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a ...material a potential candidate for a variety of optoelectronic devices. In this report, we demonstrate the capability of chalcogen (S, Se, Te...the diffusion behavior of dopants in silicon matrix. Our findings contribute to a better understanding of the mechanism of infrared absorption in

  14. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels

    PubMed Central

    Zhang, Chenchu; Hu, Yanlei; Du, Wenqiang; Wu, Peichao; Rao, Shenglong; Cai, Ze; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Li, Jiawen; Zhao, Gang; Wu, Dong; Chu, Jiaru; Sugioka, Koji

    2016-01-01

    Rapid integration of high-quality functional devices in microchannels is in highly demand for miniature lab-on-a-chip applications. This paper demonstrates the embellishment of existing microfluidic devices with integrated micropatterns via femtosecond laser MRAF-based holographic patterning (MHP) microfabrication, which proves two-photon polymerization (TPP) based on spatial light modulator (SLM) to be a rapid and powerful technology for chip functionalization. Optimized mixed region amplitude freedom (MRAF) algorithm has been used to generate high-quality shaped focus field. Base on the optimized parameters, a single-exposure approach is developed to fabricate 200 × 200 μm microstructure arrays in less than 240 ms. Moreover, microtraps, QR code and letters are integrated into a microdevice by the advanced method for particles capture and device identification. These results indicate that such a holographic laser embellishment of microfluidic devices is simple, flexible and easy to access, which has great potential in lab-on-a-chip applications of biological culture, chemical analyses and optofluidic devices. PMID:27619690

  15. Silver nanoprisms/silicone hybrid rubber materials and their optical limiting property to femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang

    2017-08-01

    Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.

  16. The effects of femtosecond laser-textured Ti-6Al-4V on wettability and cell response.

    PubMed

    Raimbault, Ophélie; Benayoun, Stephane; Anselme, Karine; Mauclair, Cyril; Bourgade, Tatiana; Kietzig, Anne-Marie; Girard-Lauriault, Pierre-Luc; Valette, Stephane; Donnet, Christophe

    2016-12-01

    To study the biological activity effects of femtosecond laser-induced structures on cell behavior, TA6V samples were micro-textured with focused femtosecond laser pulses generating grooves of various dimensions on the micrometer scale (width: 25-75μm; depth: 1-10μm). LIPSS (Laser Induced Periodic Surface Structures) were also generated during the laser irradiation, providing a supplementary structure (sinusoidal form) of hundreds of nanometers at the bottom of the grooves oriented perpendicular (⊥ LIPPS) or parallel (// LIPPS) to the direction of these grooves. C3H10 T1/2 murine mesenchymal stem cells were cultivated on the textured biomaterials. To have a preliminary idea of the spreading of biological media on the substrate, prior to cell culture, contact angle measurement were performed. This showed that the post-irradiation hydrophilicity of the samples can decrease with time according to its storage environment. The multiscale structuration either induced a collaborative or a competitive influence of the LIPSS and grooves on the cells. It has been shown that cells individually and collectively were most sensitive to microscale grooves which were narrower than 25μm and deeper than 5μm with ⊥ LIPPS. In some cases, cells were individually sensitive to the LIPSS but the cell layer organization did not exhibit significant differences in comparison to a non-textured surface. These results showed that cells are more sensitive to the nanoscale structures (LIPSS), unless the microstructures's size is close to the cell size and deeper than 5μm. There, the cells are sensitive to the microscale structures and go on spreading following these structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Porcine cadaver iris model for iris heating during corneal surgery with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Wang, Jiang; Yan, Ying; Juhasz, Tibor; Kurtz, Ron

    2015-03-01

    Multiple femtosecond lasers have now been cleared for use for ophthalmic surgery, including for creation of corneal flaps in LASIK surgery. Preliminary study indicated that during typical surgical use, laser energy may pass beyond the cornea with potential effects on the iris. As a model for laser exposure of the iris during femtosecond corneal surgery, we simulated the temperature rise in porcine cadaver iris during direct illumination by the femtosecond laser. Additionally, ex-vivo iris heating due to femtosecond laser irradiation was measured with an infrared thermal camera (Fluke corp. Everett, WA) as a validation of the simulation.

  18. Femtosecond laser in laser in situ keratomileusis

    PubMed Central

    Salomão, Marcella Q.; Wilson, Steven E.

    2014-01-01

    Flap creation is a critical step in laser in situ keratomileusis (LASIK). Efforts to improve the safety and predictability of the lamellar incision have fostered the development of femtosecond lasers. Several advantages of the femtosecond laser over mechanical microkeratomes have been reported in LASIK surgery. In this article, we review common considerations in management and complications of this step in femtosecond laser–LASIK and concentrate primarily on the IntraLase laser because most published studies relate to this instrument. PMID:20494777

  19. Comparison of laser in situ keratomileusis flaps created by 2 femtosecond lasers.

    PubMed

    Zheng, Yan; Zhou, Yuehua; Zhang, Jing; Liu, Qian; Zhai, Changbin; Wang, Yonghua

    2015-03-01

    To compare flap morphology created by the WaveLight FS200 femtosecond laser and the VisuMax femtosecond laser, assessing the uniformity, accuracy, and predictability of flap creation. A total of 400 eyes had corneal flaps created with the WaveLight FS200 femtosecond laser (200 eyes) or the VisuMax femtosecond laser (200 eyes). The desired flap thickness was 110 μm. At 1 week postoperatively, all eyes were evaluated with RTVue Fourier-domain optical coherence tomography. Dimensions of the flaps were tested for their regularity, uniformity, accuracy, and predictability comparison. One week after surgery, the central flap thickness and the mean flap thickness of the FS200 group were 105.4 ± 3.4 μm and 105.7 ± 2.6 μm, respectively. They were both thinner than those of the VisuMax group, which were 110.8 ± 3.9 μm and 111.3 ± 2.3 μm, respectively. The mean deviation between the achieved and attempted flap thickness of the FS200 group (5.2 ± 1.9 μm) was greater than that of the VisuMax group (3.2 ± 1.8 μm). Flap thickness measurements at 36 points in both groups were close to the intended thickness. Morphology of the flaps in the 0-, 45-, 90-, and 135-degree lines created by the FS200 femtosecond laser and VisuMax femtosecond laser were uniform and regular. Flap dimensions created by the WaveLight FS200 femtosecond laser and VisuMax femtosecond laser were uniform and regular. Although the flap thickness created by the FS200 was less than that created by the VisuMax, measurements of both femtosecond lasers were close to the intended thickness.

  20. Effects of femtosecond laser radiation on the skin

    NASA Astrophysics Data System (ADS)

    Rogov, P. Yu; Bespalov, V. G.

    2016-08-01

    A mathematical model of linear and nonlinear processes is presented occurring under the influence of femtosecond laser radiation on the skin. There was held an analysis and the numerical solution of an equation system describing the dynamics of the electron and phonon subsystems were received. The results can be used to determine the maximum permissible levels of energy generated by femtosecond laser systems and the establishment of Russian laser safety standards for femtosecond laser systems.

  1. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.

    PubMed

    Stachs, Oliver; Schumacher, Silvia; Hovakimyan, Marine; Fromm, Michael; Heisterkamp, Alexander; Lubatschowski, Holger; Guthoff, Rudolf

    2009-11-01

    To evaluate a new method for visualizing femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Laser Zentrum Hannover e.V., Hannover, Germany. Lenses removed from porcine eyes were modified ex vivo by femtosecond laser pulses (wavelength 1040 nm, pulse duration 306 femtoseconds, pulse energy 1.0 to 2.5 microJ, repetition rate 100 kHz) to create defined planes at which lens fibers separate. The femtosecond laser pulses were delivered by a 3-dimension (3-D) scanning unit and transmitted by focusing optics (numerical aperture 0.18) into the lens tissue. Lens fiber orientation and femtosecond laser-induced microincisions were examined using a confocal laser scanning microscope (CLSM) based on a Rostock Cornea Module attached to a Heidelberg Retina Tomograph II. Optical sections were analyzed in 3-D using Amira software (version 4.1.1). Normal lens fibers showed a parallel pattern with diameters between 3 microm and 9 microm, depending on scanning location. Microincision visualization showed different cutting effects depending on pulse energy of the femtosecond laser. The effects ranged from altered tissue-scattering properties with all fibers intact to definite fiber separation by a wide gap. Pulse energies that were too high or overlapped too tightly produced an incomplete cutting plane due to extensive microbubble generation. The 3-D CLSM method permitted visualization and analysis of femtosecond laser pulse-induced microincisions inside crystalline lens tissue. Thus, 3-D CLSM may help optimize femtosecond laser-based procedures in the treatment of presbyopia.

  2. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Electron beam deflection, focusing, and collimation by a femtosecond laser lens

    NASA Astrophysics Data System (ADS)

    Minogin, V. G.

    2009-11-01

    This work examines spatial separation of femtosecond electron bunches using the ponderomotive potential created by femtosecond laser pulses. It is shown that ponderomotive optical potentials are capable of effectively deflecting, focusing, and collimating narrow femtosecond electron bunches.

  3. Femtosecond visualization of lattice dynamics in shock-compressed matter.

    PubMed

    Milathianaki, D; Boutet, S; Williams, G J; Higginbotham, A; Ratner, D; Gleason, A E; Messerschmidt, M; Seibert, M M; Swift, D C; Hering, P; Robinson, J; White, W E; Wark, J S

    2013-10-11

    The ultrafast evolution of microstructure is key to understanding high-pressure and strain-rate phenomena. However, the visualization of lattice dynamics at scales commensurate with those of atomistic simulations has been challenging. Here, we report femtosecond x-ray diffraction measurements unveiling the response of copper to laser shock-compression at peak normal elastic stresses of ~73 gigapascals (GPa) and strain rates of 10(9) per second. We capture the evolution of the lattice from a one-dimensional (1D) elastic to a 3D plastically relaxed state within a few tens of picoseconds, after reaching shear stresses of 18 GPa. Our in situ high-precision measurement of material strength at spatial (<1 micrometer) and temporal (<50 picoseconds) scales provides a direct comparison with multimillion-atom molecular dynamics simulations.

  4. Femtosecond lasers in ophthalmology: clinical applications in anterior segment surgery

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Nagy, Zoltan; Sarayba, Melvin; Kurtz, Ronald M.

    2010-02-01

    The human eye is a favored target for laser surgery due to its accessibility via the optically transparent ocular tissue. Femtosecond lasers with confined tissue effects and minimized collateral tissue damage are primary candidates for high precision intraocular surgery. The advent of compact diode-pumped femtosecond lasers, coupled with computer controlled beam delivery devices, enabled the development of high precision femtosecond laser for ophthalmic surgery. In this article, anterior segment femtosecond laser applications currently in clinical practice and investigation are reviewed. Corneal procedures evolved first and remain dominant due to easy targeting referenced from a contact surface, such as applanation lenses placed on the eye. Adding a high precision imaging technique, such as optical coherence tomography (OCT), can enable accurate targeting of tissue beyond the cornea, such as the crystalline lens. Initial clinical results of femtosecond laser cataract surgery are discussed in detail in the latter portion part of the article.

  5. Comparison of Surgically Induced Astigmatism and Morphologic Features Resulting From Femtosecond Laser and Manual Clear Corneal Incisions for Cataract Surgery.

    PubMed

    Ferreira, Tiago B; Ribeiro, Filomena J; Pinheiro, João; Ribeiro, Paulo; O'Neill, João G

    2018-05-01

    To compare the surgically induced astigmatism (SIA) vector, flattening effect, torque, and wound architecture following femtosecond laser and manual clear corneal incisions (CCIs). In a double-armed, randomized, prospective case series, cataract surgery was performed for 600 eyes using femtosecond laser (300 eyes) or manual (300 eyes) 2.4-mm CCIs in temporal or superior oblique locations. SIA, flattening effect, torque, and the summated vector mean for SIA were calculated. Correlation with individual features was established and incision morphology was investigated by anterior segment optical coherence tomography at 3 months of follow-up. The SIA, flattening effect, and torque were lower in the femtosecond laser group for both incision locations, although the differences were not significant (all P > .05). The femtosecond laser group showed less dispersion of SIA magnitude and flattening effect. Temporal and superior oblique incisions resulted in flattening effect values of -0.11 and -0.21 diopters (D), respectively, in the femtosecond laser group and -0.13 and -0.34 D, respectively, in the manual group. Significant correlations with individual features were only found in the femtosecond laser group, with preoperative astigmatism being the only significant SIA predictor by multiple regression analysis (P = .003). Femtosecond laser CCIs showed less deviation from the intended length, wound enlargement, endothelial misalignment, and Descemet membrane detachments (all P < .037). Femtosecond laser CCIs were more reproducible. Although SIAs were smaller in femtosecond laser CCIs than in manual CCIs for both temporal and superior oblique incisions, the difference was not statistically significant. Association with individual features is highly variable. [J Refract Surg. 2018;34(5):322-329.]. Copyright 2018, SLACK Incorporated.

  6. High-precision cutting of polyimide film using femtosecond laser for the application in flexible electronics

    NASA Astrophysics Data System (ADS)

    Ganin, D. V.; Lapshin, K. E.; Obidin, A. Z.; Vartapetov, S. K.

    2018-01-01

    The experimental results of cutting a polyimide film on the optical glass substrate by means of femtosecond lasers are given. Two modes of laser cutting of this film without damages to a glass base are determined. The first is the photo graphitization using a high repetition rate femtosecond laser. The second is ablative, under the effect of femtosecond laser pulses with high energy and low repetition rate. Cutting of semiconductor chips formed on the polyimide film surface is successfully demonstrated.

  7. Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence

    PubMed Central

    Lu, Xin; Chen, Shi-You; Ma, Jing-Long; Hou, Lei; Liao, Guo-Qian; Wang, Jin-Guang; Han, Yu-Jing; Liu, Xiao-Long; Teng, Hao; Han, Hai-Nian; Li, Yu-Tong; Chen, Li-Ming; Wei, Zhi-Yi; Zhang, Jie

    2015-01-01

    A long air plasma channel can be formed by filamentation of intense femtosecond laser pulses. However, the lifetime of the plasma channel produced by a single femtosecond laser pulse is too short (only a few nanoseconds) for many potential applications based on the conductivity of the plasma channel. Therefore, prolonging the lifetime of the plasma channel is one of the key challenges in the research of femtosecond laser filamentation. In this study, a unique femtosecond laser source was developed to produce a high-quality femtosecond laser pulse sequence with an interval of 2.9 ns and a uniformly distributed single-pulse energy. The metre scale quasi-steady-state plasma channel with a 60–80 ns lifetime was formed by such pulse sequences in air. The simulation study for filamentation of dual femtosecond pulses indicated that the plasma channel left by the previous pulse was weakly affected the filamentation of the next pulse in sequence under our experimental conditions. PMID:26493279

  8. Controlling nanoscale acoustic strains in silicon using chirped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Tzianaki, E.; Bakarezos, M.; Tsibidis, G. D.; Petrakis, S.; Loukakos, P. A.; Kosmidis, C.; Tatarakis, M.; Papadogiannis, N. A.

    2016-06-01

    The influence of femtosecond laser pulse chirp on laser-generated longitudinal acoustic strains in Si (100) monocrystal substrates is studied. Degenerate femtosecond pump-probe transient reflectivity measurements are performed using a layered structure of thin Ti transducer film on an Si substrate. Experimental results show that acoustic strains, manifested as strong Brillouin oscillations, are more effectively induced when negatively chirped femtosecond laser pulses pump the transducer. These results are theoretically supported by a modified thermo-mechanical model based on the combination of a revised two-temperature model and elasticity theory that takes into account the instantaneous frequency of the chirped femtosecond laser pump pulses.

  9. [Evaluation of free radical quantity in the anterior chamber following femtosecond laser-assisted capsulotomy].

    PubMed

    Tóth, Gábor; Sándor, Gábor László; Kleiner, Dénes; Szentmáry, Nóra; Kiss, Huba J; Blázovics, Anna; Nagy, Zoltán Zsolt

    2016-11-01

    Femtosecond laser is a revolutionary, innovative treatment method used in cataract surgery. To evaluate free radical quantity in the anterior chamber of the eye, during femtosecond laser assisted capsulotomy, in a porcine eye model. Seventy fresh porcine eyes were collected within 2 hours post mortem, were transported at 4 ºC and treated within 7 hours. Thirty-five eyes were used as control and 35 as femtosecond laser assisted capsulotomy group. A simple luminol-dependent chemiluminescence method was used to measure the total scavenger capacity in the aqueous humour, as an indicator of free radical production. The emitted photons were expressed in relative light unit %. The relative light unit % was lower in the control group (median 1%, interquartile range [0.4-3%]) than in the femtosecond laser assisted capsulotomy group (median 4.4%, interquartile range [1.5%-21%]) (p = 0.01). Femtosecond laser assisted capsulotomy decreases the antioxidant defense of the anterior chamber, which refers to a significant free radical production during femtosecond laser assisted capsulotomy. Orv. Hetil., 2016, 157(47), 1880-1883.

  10. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  11. Femtosecond Lasers and Corneal Surgical Procedures.

    PubMed

    Marino, Gustavo K; Santhiago, Marcony R; Wilson, Steven E

    2017-01-01

    Our purpose is to present a broad review about the principles, early history, evolution, applications, and complications of femtosecond lasers used in refractive and nonrefractive corneal surgical procedures. Femtosecond laser technology added not only safety, precision, and reproducibility to established corneal surgical procedures such as laser in situ keratomileusis (LASIK) and astigmatic keratotomy, but it also introduced new promising concepts such as the intrastromal lenticule procedures with refractive lenticule extraction (ReLEx). Over time, the refinements in laser optics and the overall design of femtosecond laser platforms led to it becoming an essential tool for corneal surgeons. In conclusion, femtosecond laser is a heavily utilized tool in refractive and nonrefractive corneal surgical procedures, and further technological advances are likely to expand its applications. Copyright 2017 Asia-Pacific Academy of Ophthalmology.

  12. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  13. Complications of femtosecond-assisted laser in-situ keratomileusis flaps.

    PubMed

    Shah, Deepika N; Melki, Samir

    2014-01-01

    Femtosecond-assisted laser in-situ keratomileusis flaps have revolutionized refractive surgery since their introduction. Although these lasers are exceedingly safe, complications still do occur. This review focuses specifically on examining the literature and evidence for flap complications during femtosecond-assisted laser in-situ keratomileusis as well as their management.

  14. Volume gratings and welding of glass/plastic by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru

    2018-01-01

    Femtosecond laser direct writing is used to fabricate diffractive optical elements in three dimensions and to weld glass and/or plastic. In this paper, we review volume gratings in plastics and welding of glass/plastic by femtosecond laser direct writing. Volume gratings were embedded inside polymethyl methacrylate (PMMA) by femtosecond laser pulses. The diffraction efficiency of the gratings increased after fabrication and reached the maximum. After an initial slow decrease within first several days after the fabrication, the efficiency increased again. This phenomena was called regeneration of the grating. We also demonstrate welding of PMMA by dendrite pattern using femtosecond laser pulses. Laser pulses are focused at the interface of two PMMA substrates with an air gap and melted materials in laser-irradiated region spread within a gap of the substrates and dendrite morphology of melted PMMA was observed outside the laser irradiated area. Finally, we show welding of glass/plastic and metal.

  15. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation.

    PubMed

    Wang, Fang; Wang, Kangkang; Yao, Chuanfei; Jia, Zhixu; Wang, Shunbin; Wu, Changfeng; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-02-01

    Fluorotellurite microstructured fibers (MFs) based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. Tapered fluorotellurite MFs with varied transition region lengths are prepared by employing an elongation machine. By using a tapered fluorotellurite MF with a transition region length of ∼3.3  cm as the nonlinear medium and a 1560 nm femtosecond fiber laser as the pump source, broadband supercontinuum generation covering from 470 to 2770 nm is obtained. The effects of the transition region length of the tapered fluorotellurite MF on supercontinuum generation are also investigated. Our results show that tapered fluorotellurite MFs are promising nonlinear media for generating broadband supercontinuum light expanding from visible to mid-infrared spectral region.

  16. Optically Clear and Resilient Free-Form µ-Optics 3D-Printed via Ultrafast Laser Lithography.

    PubMed

    Jonušauskas, Linas; Gailevičius, Darius; Mikoliūnaitė, Lina; Sakalauskas, Danas; Šakirzanovas, Simas; Juodkazis, Saulius; Malinauskas, Mangirdas

    2017-01-02

    We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm² intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures.

  17. Femtosecond laser fabricated spike structures for selective control of cellular behavior.

    PubMed

    Schlie, Sabrina; Fadeeva, Elena; Koch, Jürgen; Ngezahayo, Anaclet; Chichkov, Boris N

    2010-09-01

    In this study we investigate the potential of femtosecond laser generated micrometer sized spike structures as functional surfaces for selective cell controlling. The spike dimensions as well as the average spike to spike distance can be easily tuned by varying the process parameters. Moreover, negative replications in soft materials such as silicone elastomer can be produced. This allows tailoring of wetting properties of the spike structures and their negative replicas representing a reduced surface contact area. Furthermore, we investigated material effects on cellular behavior. By comparing human fibroblasts and SH-SY5Y neuroblastoma cells we found that the influence of the material was cell specific. The cells not only changed their morphology, but also the cell growth was affected. Whereas, neuroblastoma cells proliferated at the same rate on the spike structures as on the control surfaces, the proliferation of fibroblasts was reduced by the spike structures. These effects can result from the cell specific adhesion patterns as shown in this work. These findings show a possibility to design defined surface microstructures, which could control cellular behavior in a cell specific manner.

  18. Optically Clear and Resilient Free-Form μ-Optics 3D-Printed via Ultrafast Laser Lithography

    PubMed Central

    Jonušauskas, Linas; Gailevičius, Darius; Mikoliūnaitė, Lina; Sakalauskas, Danas; Šakirzanovas, Simas; Juodkazis, Saulius; Malinauskas, Mangirdas

    2017-01-01

    We introduce optically clear and resilient free-form micro-optical components of pure (non-photosensitized) organic-inorganic SZ2080 material made by femtosecond 3D laser lithography (3DLL). This is advantageous for rapid printing of 3D micro-/nano-optics, including their integration directly onto optical fibers. A systematic study of the fabrication peculiarities and quality of resultant structures is performed. Comparison of microlens resiliency to continuous wave (CW) and femtosecond pulsed exposure is determined. Experimental results prove that pure SZ2080 is ∼20 fold more resistant to high irradiance as compared with standard lithographic material (SU8) and can sustain up to 1.91 GW/cm2 intensity. 3DLL is a promising manufacturing approach for high-intensity micro-optics for emerging fields in astro-photonics and atto-second pulse generation. Additionally, pyrolysis is employed to homogeneously shrink structures up to 40% by removing organic SZ2080 constituents. This opens a promising route towards downscaling photonic lattices and the creation of mechanically robust glass-ceramic microstructures. PMID:28772389

  19. Microstructured FBG hydrogen sensor based on Pt-loaded WO3.

    PubMed

    Zhou, Xian; Dai, Yutang; Karanja, Joseph Muna; Liu, Fufei; Yang, Minghong

    2017-04-17

    Hydrogen gas sensing properties of Pt-WO3 films on spiral microstructured fiber Bragg grating (FBG) has been demonstrated. Pt-WO3 film was prepared by hydrothermal method. The spiral microsturctured FBG was fabricated using femtosecond laser. Spiral microstructure FBG hydrogen sensor can detect hydrogen concentration from 0.02% H2 to 4% H2 at room temperature, and the response time is shortened from a few minutes to 10~30 s. Double spiral microstructure at pitch 60 μm and sputtered with 2 μm Pt-WO3 film recorded hydrogen sensitivity of 522 pm/%(v/v) H2 responding to hydrogen gas in air. This translated to approximately 2~4 times higher than the unprocessed standard FBG. The humidity has little effect on the sensing property. The sensor has fast response time, good stability, large detection range and has the good prospect of practical application for hydrogen leak detection.

  20. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam

    PubMed Central

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285

  1. All-femtosecond laser-assisted in situ keratomileusis

    NASA Astrophysics Data System (ADS)

    Gabryte, Egle; Danieliene, Egle; Vaiceliunaite, Agne; Ruksenas, Osvaldas; Vengris, Mikas; Danielius, Romualdas

    2013-03-01

    We present a femtosecond solid-state Yb:KGW laser system capable of performing the complete laser-assisted in situ keratomileusis (LASIK) ophthalmic procedure. The fundamental infrared radiation (IR) is used to create the corneal flap, and subsequently the corneal stromal ablation is performed using the ultraviolet (UV) pulses of the fifth harmonic. The heating of cornea, ablated surface quality, and healing outcomes of the surgeries performed using the femtosecond laser system are investigated by both ex vivo and in vivo experiments and compared to the results of conventional clinical ArF excimer laser application. The results of this research indicate the feasibility of clinical application of femtosecond UV lasers for LASIK procedure.

  2. Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass

    PubMed Central

    He, Fei; Liao, Yang; Lin, Jintian; Song, Jiangxin; Qiao, Lingling; Cheng, Ya; Sugioka, Koji

    2014-01-01

    Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent advancements in femtosecond laser processing of glass for a variety of microfluidic sensor applications. These include 3D integration of micro-/nanofluidic, optofluidic, electrofluidic, surface-enhanced Raman-scattering devices, in addition to fabrication of devices for microfluidic bioassays and lab-on-fiber sensors. This paper describes the unique characteristics of femtosecond laser processing and the basic concepts involved in femtosecond laser direct writing. Advanced spatiotemporal beam shaping methods are also discussed. Typical examples of microfluidic sensors fabricated using femtosecond lasers are then highlighted, and their applications in chemical and biological sensing are described. Finally, a summary of the technology is given and the outlook for further developments in this field is considered. PMID:25330047

  3. Supercontinuum generation and lasing in thulium doped tellurite microstructured fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Zhi-Xu; Liu, Lai; Yao, Chuan-Fei

    2014-02-14

    We report supercontinuum (SC) generation in Tm{sup 3+} doped tellurite microstructured fibers (TMFs) pumped by a 1.56 μm femtosecond fiber laser. In comparison with SC generation in undoped TMFs, the SC spectral bandwidth and the spectral intensity in the wavelength region of >1.9 μm are evidently enlarged in Tm{sup 3+} doped TMFs owing to the contribution of the combination of linear gain of Tm{sup 3+} and the nonlinear optical effects to spectral broadening. Furthermore, a transition from SC generation to 1.887 μm lasing (Tm{sup 3+}: {sup 3}F{sub 4}→{sup 3}H{sub 6} transition) is observed in Tm{sup 3+} doped TMFs by varying the pulse widthmore » of the pump laser from 0.29 to 3.47 ps, which gives the evidence of the above spectral broadening mechanism. This is the first observation of the transition from SC generation to lasing, to the best of our knowledge.« less

  4. Precise femtosecond laser ablation of dental hard tissue: preliminary investigation on adequate laser parameters

    NASA Astrophysics Data System (ADS)

    Hikov, Todor; Pecheva, Emilia; Montgomery, Paul; Antoni, Frederic; Leong-Hoi, Audrey; Petrov, Todor

    2017-01-01

    This work aims at evaluating the possibility of introducing state-of-the-art commercial femtosecond laser system in restorative dentistry by maintaining well-known benefits of lasers for caries removal, but also in overcoming disadvantages such as thermal damage of irradiated substrate. Femtosecond ablation of dental hard tissue is investigated by changing the irradiation parameters (pulsed laser energy, scanning speed and pulse repetition rate), assessed for enamel and dentin. The femtosecond laser system used in this work may be suitable for cavity preparation in dentin and enamel, due to the expected effective ablation and low temperature increase when using ultra short laser pulses. If adequate laser parameters are selected, this system seems to be promising for promoting a laser-assisted, minimally invasive approach in restorative dentistry.

  5. Investigation of interaction femtosecond laser pulses with skin and eyes mathematical model

    NASA Astrophysics Data System (ADS)

    Rogov, P. U.; Smirnov, S. V.; Semenova, V. A.; Melnik, M. V.; Bespalov, V. G.

    2016-08-01

    We present a mathematical model of linear and nonlinear processes that takes place under the action of femtosecond laser radiation on the cutaneous covering. The study is carried out and the analytical solution of the set of equations describing the dynamics of the electron and atomic subsystems and investigated the processes of linear and nonlinear interaction of femtosecond laser pulses in the vitreous of the human eye, revealed the dependence of the pulse duration on the retina of the duration of the input pulse and found the value of the radiation power density, in which there is a self-focusing is obtained. The results of the work can be used to determine the maximum acceptable energy, generated by femtosecond laser systems, and to develop Russian laser safety standards for femtosecond laser systems.

  6. Femtosecond Laser Flap Creation for Laser In Situ Keratomileusis in the Setting of Previous Radial Keratotomy.

    PubMed

    Rush, Sloan W; Rush, Ryan B

    2015-01-01

    The aim of the study was to report the outcomes of laser in situ keratomileusis (LASIK) in subjects with previous radial keratotomy (RK) using a novel femtosecond laser setting on a proprietary femtosecond laser platform. This was a retrospective, consecutive chart review of patients at a single private practice institution. The medical records of 16 eyes of 8 subjects who underwent femtosecond-assisted LASIK for consecutive hyperopia after RK were retrospectively reviewed. The preoperative characteristics, intraoperative details, and postoperative outcomes were analyzed. All 16 eyes had successful femtosecond laser flap creation without significant intraoperative or postoperative complications. Uncorrected visual acuity significantly improved postoperatively (P = 0.0142) and remained stable through the final follow-up interval at 9 to 12 months postoperatively. None of the subjects lost any lines of best spectacle-corrected visual acuity in the postoperative period. The novel femtosecond laser technique described in this study can provide a safe and effective method for patients undergoing LASIK after previous RK. Future investigations are required to further validate the findings reported in this study.

  7. Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasileva, A.A., E-mail: anvsilv@gmail.com; Nazarov, I.A.; Olshin, P.K.

    2015-10-15

    Femtosecond (fs) laser writing of two-dimensional microstructures (waveguides) is demonstrated in bulk phosphate glasses doped with silver ions. Silver-content phosphate and silver-content niobium–phosphate glasses with high concentration of silver oxide 55 mol% were used as samples for fs laser writing. The chemical network structure of the synthesized samples is analyzed through Raman spectroscopy and was found to be strongly sensitive to Nb incorporation. It was found that the direct laser writing process enables not only reorganization of glass network, but also formation of color centers and silver nanoparticles that are revealed in appearance of luminescence signal and plasmon absorption. Themore » process of NPs' formation is more efficient for Nb-phosphate glass, while color centers are preferably formed in phosphate glass. - Graphical abstract: Formation of silver NPs on the surface of 0.5Ag{sub 2}O–0.4P{sub 2}O{sub 5}–0,1Nb{sub 2}O{sub 5} glass induced by CW laser irradiation. - Highlights: • The structure of 0.5Ag{sub 2}O–0.1Nb{sub 2}O{sub 5}–0.4P{sub 2}O{sub 5} and 0.55Ag{sub 2}O–0.45P{sub 2}O{sub 5} glasses was investigated by Raman spectroscopy. • Fs laser writing induces formation of silver NPs in investigated glasses. • Surface plasmon resonance in the absorption spectra confirms the formation of NP. • The possibility of CW laser induced formation of silver NPs on the surface of sample with niobium is shown.« less

  8. Femtosecond laser microstructured Alumina toughened Zirconia: A new strategy to improve osteogenic differentiation of hMSCs

    NASA Astrophysics Data System (ADS)

    Carvalho, Angela; Cangueiro, Liliana; Oliveira, Vítor; Vilar, Rui; Fernandes, Maria H.; Monteiro, Fernando J.

    2018-03-01

    The use of topographic patterns has been a continuously growing area of research for tissue engineering and it is widely accepted that the surface topography of biomaterials can influence and modulate the initial biological response. Ultrafast lasers are extremely powerful tools to machine and pattern the surface of a wide range of biomaterials, however, only few work has been performed on ceramics with the intent of biomedical applications, and the biological characterization of these structured materials is scarce. In this work, relevance is given to the biological performance of such materials. A femtosecond laser ablation technique was used to modify Alumina toughened Zirconia (ATZ) surface topography, developing surfaces structured at the micro and nanoscale levels (μATZ), in a controlled and reproducible manner. Materials characterization was performed before and after laser treatment, and both materials were compared in terms of osteogenic response of human bone marrow derived mesenchymal stem cells cultured under basal conditions, expecting that the micro/nanofeatures will improve the biological response of cells. Cells metabolic activity and proliferation increased with the culture time and surface microtopography modulated cells alignment and guided proliferation. The modified surface, displayed significantly higher expression of osteogenic transcription factors and genes and, additionally, the formation of a mineralized extracellular matrix, when compared to the control surface, i.e. unmodified ATZ.

  9. Femtosecond lasers as novel tool in dental surgery

    NASA Astrophysics Data System (ADS)

    Serbin, J.; Bauer, T.; Fallnich, C.; Kasenbacher, A.; Arnold, W. H.

    2002-09-01

    There is a proven potential of femtosecond lasers for medical applications like cornea shaping [1], ear surgery or dental surgery [2]. Minimal invasive treatment of carious tissue has become an increasingly important aspect in modern dentistry. State of the art methods like grinding using turbine-driven drills or ablation by Er:YAG lasers [3] generate mechanical and thermal stress, thus generating micro cracks of several tens of microns in the enamel [4]. These cracks are starting points for new carious attacks and have to be avoided for long term success of the dental treatment. By using femtosecond lasers (1 fs=10 -15 s) for ablating dental tissue, these drawbacks can be overcome. We have demonstrated that femtosecond laser ablation offers a tool for crack-free generation of cavities in dental tissue. Furthermore, spectral analysis of the laser induced plasma has been used to indicate carious oral tissue. Our latest results on femtosecond laser dentistry will be presented, demonstrating the great potential of this kind of laser technology in medicine.

  10. Mode coupling enhancement by astigmatism compensation in a femtosecond laser cavity

    NASA Astrophysics Data System (ADS)

    Castro-Olvera, Gustavo; Garduño-Mejía, Jesus; Rosete-Aguilar, Martha; Roman-Moreno, Carlos J.

    2016-09-01

    In this work we present a numerical analysis of the mode coupling between the pump-beam and the laser-beam in a Ti:Sapphire crystal used as a gain medium of a femtosecond laser. Using the Matrix ABCD and propagation gaussian beam models, we obtained an optimal configuration for compensate the astigmatism in the output beam laser. Also we analysed pump-beam propagation and got the settings to fix the astigmatism in the crystal. Furthermore we apply this configuration to a homemade femtosecond laser, accomplishing an overall efficiency of laser to 20% in continuum wave (CW) and 16% in mode looking (ML) operation. The femtosecond laser have 30 nm bandwidth to FWHM at 810 nm corresponding 30fs.

  11. Simulation of the temperature increase in human cadaver retina during direct illumination by 150-kHz femtosecond laser pulses

    PubMed Central

    Sun, Hui; Hosszufalusi, Nora; Mikula, Eric R.; Juhasz, Tibor

    2011-01-01

    We have developed a two-dimensional computer model to predict the temperature increase of the retina during femtosecond corneal laser flap cutting. Simulating a typical clinical setting for 150-kHz iFS advanced femtosecond laser (0.8- to 1-μJ laser pulse energy and 15-s procedure time at a laser wavelength of 1053 nm), the temperature increase is 0.2°C. Calculated temperature profiles show good agreement with data obtained from ex vivo experiments using human cadaver retina. Simulation results obtained for different commercial femtosecond lasers indicate that during the laser in situ keratomileusis procedure the temperature increase of the retina is insufficient to induce damage. PMID:22029369

  12. Femtosecond laser subsurface scleral treatment in cadaver human sclera and evaluation using two-photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yan, Ying; Lian, Fuqiang; Kurtz, Ron; Juhasz, Tibor

    2016-03-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial-thickness drainage channels can be created with femtosecond laser in the translucent sclera for the potential treatment of glaucoma. We demonstrate the creation of partial-thickness subsurface drainage channels with the femtosecond laser in the cadaver human eyeballs and describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. A femtosecond laser operating at a wavelength of 1700 nm was scanned along a rectangular raster pattern to create the partial thickness subsurface drainage channels in the sclera of cadaver human eyes. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such partial thickness subsurface scleral channels. Our studies suggest that the confocal and two-photon microscopy can be used to investigate femtosecond-laser created partial-thickness drainage channels in the sclera of cadaver human eyes.

  13. Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates

    NASA Astrophysics Data System (ADS)

    Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather

    2016-09-01

    Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.

  14. DNA Damage in Bone Marrow Cells Induced by Femtosecond and Nanosecond Ultraviolet Laser Pulses.

    PubMed

    Morkunas, Vaidotas; Gabryte, Egle; Vengris, Mikas; Danielius, Romualdas; Danieliene, Egle; Ruksenas, Osvaldas

    2015-12-01

    The purpose of this study was to investigate the possible genotoxic impact of new generation 205 nm femtosecond solid-state laser irradiation on the DNA of murine bone marrow cells in vitro, and to compare the DNA damage caused by both femtosecond and nanosecond UV laser pulses. Recent experiments of corneal stromal ablation in vitro and in vivo applying femtosecond UV pulses showed results comparable with or superior to those obtained using nanosecond UV lasers. However, the possible genotoxic effect of ultrashort laser pulses was not investigated. Mouse bone marrow cells were exposed to different doses of 205 nm femtosecond, 213 and 266 nm nanosecond lasers, and 254 nm UV lamp irradiation. The comet assay was used for the evaluation of DNA damage. All types of irradiation demonstrated intensity-dependent genotoxic impact. The DNA damage induced depended mainly upon wavelength rather than on other parameters such as pulse duration, repetition rate, or beam delivery to a target. Both 205 nm femtosecond and clinically applied 213 nm nanosecond lasers' pulses induced a comparable amount of DNA breakage in cells exposed to the same irradiation dose. To further evaluate the suitability of femtosecond UV laser sources for microsurgery, a separate investigation of the genotoxic and mutagenic effects on corneal cells in vitro and, particularly, in vivo is needed.

  15. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery

    NASA Astrophysics Data System (ADS)

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J. F.

    2014-09-01

    Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuries in the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential use of laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ=2.94 μm), titanium:sapphire femtosecond laser system (λ=1700 nm), and Nd:glass femtosecond laser (λ=1053 nm). Bovine samples were ablated at fluences of 8 to 18 J/cm2 with the erbium:YAG laser, at a power of 300±15 mW with the titanium:sapphire femtosecond system, and at an energy of 3 μJ/pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18 J/cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates.

  16. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery.

    PubMed

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J F

    2014-09-01

    Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuriesin the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential useof laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ = 2.94 μm), titanium:sapphire femtosecond laser system (λ = 1700 nm), and Nd:glass femtosecond laser (λ = 1053 nm). Bovine samples were ablated at fluences of 8 to 18 J∕cm2 with the erbium:YAG laser, at a power of 300 ± 15 mW with the titanium:sapphire femtosecond system, and at an energy of 3 μJ∕pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18 J∕cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates.

  17. Direct writing of 150 nm gratings and squares on ZnO crystal in water by using 800 nm femtosecond laser.

    PubMed

    Liu, Jukun; Jia, Tianqing; Zhou, Kan; Feng, Donghai; Zhang, Shian; Zhang, Hongxin; Jia, Xin; Sun, Zhenrong; Qiu, Jianrong

    2014-12-29

    We present a controllable fabrication of nanogratings and nanosquares on the surface of ZnO crystal in water based on femtosecond laser-induced periodic surface structures (LIPSS). The formation of nanogrooves depends on both laser fluence and writing speed. A single groove with width less than 40 nm and double grooves with distance of 150 nm have been produced by manipulating 800 nm femtosecond laser fluence. Nanogratings with period of 150 nm, 300 nm and 1000 nm, and nanosquares with dimensions of 150 × 150 nm2 were fabricated by using this direct femtosecond laser writing technique.

  18. Theoretical modeling and experiments on a DBR waveguide laser fabricated by the femtosecond laser direct-write technique.

    PubMed

    Duan, Yuwen; McKay, Aaron; Jovanovic, Nemanja; Ams, Martin; Marshall, Graham D; Steel, M J; Withford, Michael J

    2013-07-29

    We present a model for a Yb-doped distributed Bragg reflector (DBR) waveguide laser fabricated in phosphate glass using the femtosecond laser direct-write technique. The model gives emphasis to transverse integrals to investigate the energy distribution in a homogenously doped glass, which is an important feature of femtosecond laser inscribed waveguide lasers (WGLs). The model was validated with experiments comparing a DBR WGL and a fiber laser, and then used to study the influence of distributed rare earth dopants on the performance of such lasers. Approximately 15% of the pump power was absorbed by the doped "cladding" in the femtosecond laser inscribed Yb doped WGL case with the length of 9.8 mm. Finally, we used the model to determine the parameters that optimize the laser output such as the waveguide length, output coupler reflectivity and refractive index contrast.

  19. Femtosecond laser eye surgery: the first clinical experience

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Kurtz, Ron M.; Horvath, Christopher; Suarez, Carlos G.; Nordan, Lee; Slade, Steven

    2002-04-01

    A brief review of commercial applications of femtosecond lasers in a clinical setting with emphasis on applications to corneal surgery is presented. The first clinical results of 208 procedures conducted from June to November 2000 is reported. The results show that femtosecond lasers may be safely used as keratome for use in LASIK procedures.

  20. Polarized micro-Raman studies of femtosecond laser written stress-induced optical waveguides in diamond

    NASA Astrophysics Data System (ADS)

    Sotillo, B.; Chiappini, A.; Bharadwaj, V.; Hadden, J. P.; Bosia, F.; Olivero, P.; Ferrari, M.; Ramponi, R.; Barclay, P. E.; Eaton, S. M.

    2018-01-01

    Understanding the physical mechanisms of the refractive index modulation induced by femtosecond laser writing is crucial for tailoring the properties of the resulting optical waveguides. In this work, we apply polarized Raman spectroscopy to study the origin of stress-induced waveguides in diamond, produced by femtosecond laser writing. The change in the refractive index induced by the femtosecond laser in the crystal is derived from the measured stress in the waveguides. The results help to explain the waveguide polarization sensitive guiding mechanism, as well as provide a technique for their optimization.

  1. TiOx-based thin-film transistors prepared by femtosecond laser pre-annealing

    NASA Astrophysics Data System (ADS)

    Shan, Fei; Kim, Sung-Jin

    2018-02-01

    We report on thin-film transistors (TFTs) based on titanium oxide (TiOx) prepared using femtosecond laser pre-annealing for electrical application of n-type channel oxide transparent TFTs. Amorphous TFTs using TiOx semiconductors as an active layer have a low-temperature process and show remarkable electrical performance. And the femtosecond laser pre-annealing process has greater flexibility and development space for semiconductor production activity, with a fast preparation method. TFTs with a TiOx semiconductor pre-annealed via femtosecond laser at 3 W have a pinhole-free and smooth surface without crystal grains.

  2. Influence of effective number of pulses on the morphological structure of teeth and bovine femur after femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Nicolodelli, Gustavo; de Fátima Zanirato Lizarelli, Rosane; Salvador Bagnato, Vanderlei

    2012-04-01

    Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788+/-0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses.

  3. Morphologic features and surgically induced astigmatism of femtosecond laser versus manual clear corneal incisions.

    PubMed

    Zhu, Sha; Qu, Naibin; Wang, Wei; Zhu, Yanan; Shentu, Xingchao; Chen, Peiqing; Xu, Wen; Yao, Ke

    2017-11-01

    To compare the morphologic features and surgically induced astigmatism (SIA) between laser and manual clear corneal incisions (CCIs) after femtosecond laser-assisted cataract surgery. Eye Center, 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China. Prospective case series. Patients had femtosecond laser-assisted cataract surgery with a CCI created with the laser or manually after random allocation. The corrected distance visual acuity, corneal topography, and anterior segment optical coherence tomography were assessed at the 1-day, 1-week, 1-month, and 3-month follow-ups. The laser CCI group comprised 45 eyes and the manual CCI group, 48 eyes. The SIA was significantly lower in the manual CCI group than the laser CCI group at all visits (P < .05). At the 1-day and 1-week follow-ups, the mean CCI thickness was significantly smaller in the manual CCI group (P < .05). In the laser CCI group, the perpendicular linear distance between the external wound opening and the corneal vertex central line was statistically shorter than in the manual CCI group (P < .05). At 3 months, the SIA was correlated with the perpendicular linear distance with a Pearson correlation coefficient of -0.341 (P = .001). Femtosecond laser-created CCIs for cataract surgery caused more SIA than manually created CCIs, which could have resulted from inaccurate or uncertain corneal incision positioning of the femtosecond machine. Manual creation of CCIs is recommended in femtosecond laser-assisted cataract surgery until the locating system for the femtosecond laser incision is updated. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Two-photon excited microscale colour centre patterns in Ag-activated phosphate glass written using a focused proton beam

    NASA Astrophysics Data System (ADS)

    Kurobori, Toshio; Kada, Wataru; Shirao, Taichi; Satoh, Takahiro

    2018-02-01

    We report a demonstration of microscale patterns in Ag-activated phosphate glass fabricated using a focused proton beam with an energy range of 1-3 MeV. Various microscale patterns are based on blue and orange radiophotoluminescent (RPL) centres. Two- and three-dimensional (2D and 3D) microstructures are visualised by combining two-photon confocal microscopy with femtosecond (fs) laser pulses generated from a mode-locked Ti:sapphire laser operating at 700 nm. The reconstructed images are analytically evaluated using lateral/axial dose mapping and RPL spectra. In addition, the advantages of two-photon excitation applied to Ag-activated phosphate glass are discussed, and this method is compared with single-photon excitation.

  5. Femtosecond laser-assisted cataract surgery in anterior lenticonus due to Alport syndrome.

    PubMed

    Barnes, Alexander C; Roth, Allen S

    2017-06-01

    We describe a case of bilateral anterior lenticonus in a patient with Alport syndrome treated with femtosecond laser-assisted cataract surgery (FLACS). FLACS was performed without complication, and a desirable postoperative visual acuity was achieved. Femtosecond laser-assisted cataract surgery is an effective approach for managing patients with anterior lenticonus secondary to Alport syndrome.

  6. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery

    PubMed Central

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    Abstract. Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuries in the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential use of laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ=2.94  μm), titanium:sapphire femtosecond laser system (λ=1700  nm), and Nd:glass femtosecond laser (λ=1053  nm). Bovine samples were ablated at fluences of 8 to 18  J/cm2 with the erbium:YAG laser, at a power of 300±15  mW with the titanium:sapphire femtosecond system, and at an energy of 3  μJ/pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18  J/cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates. PMID:25200394

  7. Cox proportional hazards model of myopic regression for laser in situ keratomileusis flap creation with a femtosecond laser and with a mechanical microkeratome.

    PubMed

    Lin, Meng-Yin; Chang, David C K; Hsu, Wen-Ming; Wang, I-Jong

    2012-06-01

    To compare predictive factors for postoperative myopic regression between laser in situ keratomileusis (LASIK) with a femtosecond laser and LASIK with a mechanical microkeratome. Nobel Eye Clinic, Taipei, Taiwan. Retrospective comparative study. Refractive outcomes were recorded 1 day, 1 week, and 1, 3, 6, 9, and 12 months after LASIK. A Cox proportional hazards model was used to evaluate the impact of the 2 flap-creating methods and other covariates on postoperative myopic regression. The femtosecond group comprised 409 eyes and the mechanical microkeratome group, 377 eyes. For both methods, significant predictors for myopic regression after LASIK included preoperative manifest spherical equivalent (P=.0001) and central corneal thickness (P=.027). Laser in situ keratomileusis with a mechanical microkeratome had a higher probability of postoperative myopic regression than LASIK with a femtosecond laser (P=.0002). After adjusting for other covariates in the Cox proportional hazards model, the cumulative risk for myopic regression with a mechanical microkeratome was higher than with a femtosecond laser 12 months postoperatively (P=.0002). With the definition of myopic regression as a myopic shift of 0.50 diopter (D) or more and residual myopia of -0.50 D or less, the risk estimate based on the mean covariates in all eyes in the femtosecond group and mechanical microkeratome group at 12 months was 43.6% and 66.9%, respectively. Laser in situ keratomileusis with a mechanical microkeratome had a higher risk for myopic regression than LASIK with a femtosecond laser through 12 months postoperatively. Copyright © 2012. Published by Elsevier Inc.

  8. Correlation between anterior chamber characteristics and laser flare photometry immediately after femtosecond laser treatment before phacoemulsification

    PubMed Central

    Pahlitzsch, M; Torun, N; Pahlitzsch, M L; Klamann, M K J; Gonnermann, J; Bertelmann, E; Pahlitzsch, T

    2016-01-01

    Purpose To assess the anterior chamber (AC) characteristics and its correlation to laser flare photometry immediately after femtosecond laser-assisted capsulotomy and photodisruption. Patients and methods The study included 97 cataract eyes (n=97, mean age 68.6 years) undergoing femtosecond laser-assisted cataract surgery (FLACS). Three cohorts were analysed relating to the flare photometry directly post femtosecond laser treatment (flare <100 n=28, 69.6±7 years; flare 100–249 n=47, 67.7±8 years; flare >249 photon counts per ms cohort n=22, 68.5±10 years). Flare photometry (KOWA FM-700), corneal topography (Oculus Pentacam, Germany: AC depth, volume, angle, pachymetry), axial length, pupil diameter, and endothelial cells were assessed before FLACS, immediately after femtosecond laser treatment and 1 day postoperative (LenSx Alcon, USA). Statistical data were analysed by SPSS v19.0, Inc. Results The AC depth, AC volume, AC angle, central and thinnest corneal thickness showed a significant difference between flare <100 vs flare 100–249 10 min post femtosecond laser procedure (P=0.002, P=0.023, P=0.007, P=0.003, P=0.011, respectively). The AC depth, AC volume, and AC angle were significantly larger (P=0.001, P=0.007, P=0.003, respectively) in the flare <100 vs flare >249 cohort 10 min post femtosecond laser treatment. Conclusions A flat AC, low AC volume, and a narrow AC angle were parameters associated with higher intraocular inflammation. These criteria could be used for patient selection in FLACS to reduce postoperative intraocular inflammation. PMID:27229702

  9. Correlation between anterior chamber characteristics and laser flare photometry immediately after femtosecond laser treatment before phacoemulsification.

    PubMed

    Pahlitzsch, M; Torun, N; Pahlitzsch, M L; Klamann, M K J; Gonnermann, J; Bertelmann, E; Pahlitzsch, T

    2016-08-01

    PurposeTo assess the anterior chamber (AC) characteristics and its correlation to laser flare photometry immediately after femtosecond laser-assisted capsulotomy and photodisruption.Patients and methodsThe study included 97 cataract eyes (n=97, mean age 68.6 years) undergoing femtosecond laser-assisted cataract surgery (FLACS). Three cohorts were analysed relating to the flare photometry directly post femtosecond laser treatment (flare <100 n=28, 69.6±7 years; flare 100-249 n=47, 67.7±8 years; flare >249 photon counts per ms cohort n=22, 68.5±10 years). Flare photometry (KOWA FM-700), corneal topography (Oculus Pentacam, Germany: AC depth, volume, angle, pachymetry), axial length, pupil diameter, and endothelial cells were assessed before FLACS, immediately after femtosecond laser treatment and 1 day postoperative (LenSx Alcon, USA). Statistical data were analysed by SPSS v19.0, Inc.ResultsThe AC depth, AC volume, AC angle, central and thinnest corneal thickness showed a significant difference between flare <100 vs flare 100-249 10 min post femtosecond laser procedure (P=0.002, P=0.023, P=0.007, P=0.003, P=0.011, respectively). The AC depth, AC volume, and AC angle were significantly larger (P=0.001, P=0.007, P=0.003, respectively) in the flare <100 vs flare >249 cohort 10 min post femtosecond laser treatment.ConclusionsA flat AC, low AC volume, and a narrow AC angle were parameters associated with higher intraocular inflammation. These criteria could be used for patient selection in FLACS to reduce postoperative intraocular inflammation.

  10. Laser parameters, focusing optics, and side effects in femtosecond laser corneal surgery

    NASA Astrophysics Data System (ADS)

    Plamann, Karsten; Nuzzo, Valeria; Peyrot, Donald A.; Deloison, Florent; Savoldelli, Michèle; Legeais, Jean-Marc

    2008-02-01

    Nowadays, femtosecond lasers are routinely used in refractive eye surgery. Until recently, commercialised clinical systems were exclusively based on ytterbium or neodymium-doped solid state lasers emitting sub-picosecond pulses at a wavelength of about 1 μm and repetition rates of a few 10 kHz. These systems use pulse energies in the μJ range and focussing optics of NA = 0.3 to 0.5. Recent developments have provided a variety of alternative and equally viable approaches: systems are now available using nJ pulses at high numerical apertures and MHz repetition rates - an approach so far only used for femtosecond cell surgery - and fibre laser technology is now being used for femtosecond laser corneal surgery. Recent research has also provided more insight in side effects occurring in present systems: self focusing phenomena and so far unexplained periodical structures have been observed even at high numerical apertures (NA >> 0.5) and moderate pulse energies. The interaction of femtosecond laser pulses with strongly scattering tissue has been studied in view of extending the application of femtosecond lasers to keratoplasty for opaque corneas and to glaucoma surgery. The use of new laser wavelengths and adaptive optics has been proposed. Despite the reputation of femtosecond surgical systems for their precision, repeatability and the absence of secondary effects or complications, a closer examination reveals the presence of subtle phenomena which merit further investigation. We present three of these phenomena: the influence of optical aberration on the quality of the incision, the occurrence of filamentation effects, and the deposit of microscopic glass fragments when performing penetrating incisions.

  11. High incidence of rainbow glare after femtosecond laser assisted-LASIK using the upgraded FS200 femtosecond laser.

    PubMed

    Zhang, Yu; Chen, Yue-Guo

    2018-03-05

    To compare the incidence of rainbow glare (RG) after femtosecond laser assisted-LASIK (FS-LASIK) using the upgraded FS200 femtosecond laser with different flap cut parameter settings. A consecutive series of 129 patients (255 eyes) who underwent FS-LASIK for correcting myopia and/or astigmatism using upgraded WaveLight FS200 femtosecond laser with the original settings was included in group A. Another consecutive series of 129 patients (255 eyes) who underwent FS-LASIK using upgraded WaveLight FS200 femtosecond laser with flap cut parameter settings changed (decreased pulse energy, spot and line separation) was included in group B. The incidence and fading time of RG, confocal microscopic image and postoperative clinical results were compared between the two groups. There were no differences between the two groups in age, baseline refraction, excimer laser ablation depth, postoperative uncorrected visual acuity and refraction. The incidence rate of RG in group A (35/255, 13.73%) was significantly higher than that in group B (4/255, 1.57%) (P < 0.05). The median fading time was 3 months in group A and 1 month in group B (P > 0.05).The confocal microscopic images showed wider laser spot spacing in group A than group B. The incidence of RG was significantly correlated with age and grouping (P < 0.05). The upgraded FS200 femtosecond laser with original flap cut parameter settings could increase the incidence of RG. The narrower grating size and lower pulse energy could ameliorate this side effect.

  12. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel.

    PubMed

    Qi, Litao; Nishii, Kazuhiro; Namba, Yoshiharu

    2009-06-15

    In this research, we studied the formation of laser-induced periodic surface structures on the stainless steel surface using femtosecond laser pulses. A 780 nm wavelength femtosecond laser, through a 0.2 mm pinhole aperture for truncating fluence distribution, was focused onto the stainless steel surface. Under different experimental condition, low-spatial-frequency laser-induced periodic surface structures with a period of 526 nm and high-spatial-frequency laser-induced periodic surface structures with a period of 310 nm were obtained. The mechanism of the formation of laser-induced periodic surface structures on the stainless steel surface is discussed.

  13. Nanosurgery with near-infrared 12-femtosecond and picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Zhang, Huijing; Lemke, Cornelius; König, Karsten

    2011-03-01

    Laser-assisted surgery based on multiphoton absorption of NIR laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. Here we apply femtosecond laser scanning microscopes for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) with an in situ pulse duration at the target ranging from 12 femtoseconds up to 3 picoseconds was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy (AFM) and electron microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery.

  14. Hyperopic laser in situ keratomileusis: comparison of femtosecond laser and mechanical microkeratome flap creation.

    PubMed

    Antonios, Rafic; Arba Mosquera, Samuel; Awwad, Shady T

    2015-08-01

    To evaluate and compare the refractive predictability and stability of laser in situ keratomileusis (LASIK) flap creation performed with a femtosecond laser and with a mechanical microkeratome to correct mild to moderate hyperopia. American University of Beirut Medical Center, Beirut, Lebanon. Retrospective case series. Patients who had hyperopic LASIK treatment using the Amaris excimer laser were included. Eyes in which the LDV femtosecond laser was used for flap creation were compared with eyes in which the Moria M2 microkeratome was used. The microkeratome group comprised 53 eyes and the femtosecond laser group, 72 eyes. Baseline characteristics were similar between groups (P > .05). The mean spherical equivalent (SE) deviation from target 1 week postoperatively was -0.08 diopter (D) ± 0.58 (SD) in the femtosecond laser group and -0.06 ± 0.87 D in the microkeratome group (P = .92). Thereafter, the mean SE deviation from target increased gradually and by 6 months postoperatively was +0.30 ± 0.50 D and +0.70 ± 0.71 D, respectively (P = .001). The correlation between the achieved and the attempted SE refraction was better in the femtosecond laser group (R(2) = 0.806) than the microkeratome group (R(2) = 0.671). Using the same nomogram, the short-term refractive outcomes of hyperopic LASIK with flap creation performed with the femtosecond laser were comparable to those for the microkeratome; however, the femtosecond group showed significantly better stability over the 6-month follow-up and better predictability, as reflected by a lower standard deviation and stronger Pearson correlation. Dr. Arba Mosquera is an employee of Schwind eye-tech-solutions GmbH and Co. KG. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction.

    PubMed

    Ichikawa, Tetsuo; Hayasaki, Yoshio; Fujita, Keiji; Nagao, Kan; Murata, Masayo; Kawano, Takanori; Chen, JianRong

    2006-12-01

    The purpose of this study was to evaluate the feasibility of using a femtosecond pulse laser processing technique to store information on a dental prosthesis. Commercially pure titanium plates were processed by a femtosecond pulse laser system. The processed surface structure was observed with a reflective illumination microscope, scanning electron microscope, and atomic force microscope. Processed area was an almost conical pit with a clear boundary. When laser pulse energy was 2 microJ, the diameter and depth were approximately 10microm and 0.2 microm respectively--whereby both increased with laser pulse energy. Further, depth of pit increased with laser pulse number without any thermal effect. This study showed that the femtosecond pulse processing system was capable of recording personal identification and optional additional information on a dental prosthesis.

  16. Single-cell optoporation and transfection using femtosecond laser and optical tweezers.

    PubMed

    Waleed, Muhammad; Hwang, Sun-Uk; Kim, Jung-Dae; Shabbir, Irfan; Shin, Sang-Mo; Lee, Yong-Gu

    2013-01-01

    In this paper, we demonstrate a new single-cell optoporation and transfection technique using a femtosecond Gaussian laser beam and optical tweezers. Tightly focused near-infrared (NIR) femtosecond laser pulse was employed to transiently perforate the cellular membrane at a single point in MCF-7 cancer cells. A distinct technique was developed by trapping the microparticle using optical tweezers to focus the femtosecond laser precisely on the cell membrane to puncture it. Subsequently, an external gene was introduced in the cell by trapping and inserting the same plasmid-coated microparticle into the optoporated cell using optical tweezers. Various experimental parameters such as femtosecond laser exposure power, exposure time, puncture hole size, exact focusing of the femtosecond laser on the cell membrane, and cell healing time were closely analyzed to create the optimal conditions for cell viability. Following the insertion of plasmid-coated microparticles in the cell, the targeted cells exhibited green fluorescent protein (GFP) under the fluorescent microscope, hence confirming successful transfection into the cell. This new optoporation and transfection technique maximizes the level of selectivity and control over the targeted cell, and this may be a breakthrough method through which to induce controllable genetic changes in the cell.

  17. Comparison of characteristics of femtosecond laser-assisted anterior capsulotomy versus manual continuous curvilinear capsulorrhexis: A meta-analysis of 5-year results.

    PubMed

    Ali, Muhammad Hassaan; Ullah, Samee; Javaid, Usman; Javaid, Mamoona; Jamal, Samreen; Butt, Nadeem Hafeez

    2017-10-01

    To perform a meta-analysis on the precision and safety of femtosecond laser-assisted anterior capsulotomy versus conventional manual continuous curvilinear capsulorrhexis. This meta-analysis was conducted from February 2010 to November 2014. Literature search on PubMed, Google Scholar, ExcerptaMedica database and Cochrane Library was done to identify randomised controlled trials and case-control studies. SPSS 20 was used for data analysis. Of the 10 articles included, there were 3(30%) randomised controlled trials and 7(70%) non-randomised controlled trials. The meta-analysis was based on a total of 2,882eyes. Of them, 1,498(51.97%) underwent femtosecond laser-assisted capsulotomy and 1,384(48.02%) underwent manual continuous curvilinear capsulorrhexis. The diameter of the capsulotomy and the rates of anterior capsule tear showed no statistical difference between the femtosecond laser group and the manual capsulorrhexis group (p=0.29 and p=0.68). In terms of circularity of capsulotomy, femtosecond laser group had a more significant advantage than the manual capsulorrhexis group (p<0.001). Femtosecond laser performed capsulotomy with more precision and higher reliability than the manual continuous curvilinear capsulorrhexis.

  18. Femtosecond laser cataract surgery: technology and clinical practice.

    PubMed

    Roberts, Timothy V; Lawless, Michael; Chan, Colin Ck; Jacobs, Mark; Ng, David; Bali, Shveta J; Hodge, Chris; Sutton, Gerard

    2013-03-01

    The recent introduction of femtosecond lasers to cataract surgery has generated much interest among ophthalmologists around the world. Laser cataract surgery integrates high-resolution anterior segment imaging systems with a femtosecond laser, allowing key steps of the procedure, including the primary and side-port corneal incisions, the anterior capsulotomy and fragmentation of the lens nucleus, to be performed with computer-guided laser precision. There is emerging evidence of reduced phacoemulsification time, better wound architecture and a more stable refractive result with femtosecond cataract surgery, as well as reports documenting an initial learning curve. This article will review the current state of technology and discuss our clinical experience. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  19. Femtosecond laser structuring of titanium implants

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2007-06-01

    In this study we perform the first femtosecond laser surface treatment of titanium in order to determine the potential of this technology for surface structuring of titanium implants. We find that the femtosecond laser produces a large variety of nanostructures (nanopores, nanoprotrusions) with a size down to 20 nm, multiple parallel grooved surface patterns with a period on the sub-micron level, microroughness in the range of 1-15 μm with various configurations, smooth surface with smooth micro-inhomogeneities, and smooth surface with sphere-like nanostructures down to 10 nm. Also, we have determined the optimal conditions for producing these surface structural modifications. Femtosecond laser treatment can produce a richer variety of surface structures on titanium for implants and other biomedical applications than long-pulse laser treatments.

  20. Consequences of Femtosecond Laser Filament Generation Conditions in Standoff Laser Induced Breakdown Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.

    2016-08-08

    We investigate the role of femtosecond laser focusing conditions on ablation properties and its implications on analytical merits and standoff detection applications. Femtosecond laser pulses can be used for ablation either by tightly focusing or by using filaments generated during its propagation. We evaluated the persistence of atomic, and molecular emission features as well as time evolution of the fundamental properties (temperature and density) of ablation plumes generated using different methods.

  1. Femtosecond laser-induced herringbone patterns

    NASA Astrophysics Data System (ADS)

    Garcell, Erik M.; Lam, Billy; Guo, Chunlei

    2018-06-01

    Femtosecond laser-induced herringbone patterns are formed on copper (Cu). These novel periodic structures are created following s-polarized, large incident angle, femtosecond laser pulses. Forming as slanted and axially symmetric laser-induced periodic surface structures along the side walls of ablated channels, the result is a series of v-shaped structures that resemble a herringbone pattern. Fluence mapping, incident angle studies, as well as polarization studies have been conducted and provide a clear understanding of this new structure.

  2. Investigation of the formation mechanism and morphology of the features created in the interior of cornea by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Vukelic, Sinisa

    2015-03-01

    Laser assisted corneal surgeries often rely on the nonlinear absorption effect of ultrafast lasers to induce features in the interior of the cornea without affecting the surface. In particular, corneal flap formation in femtosecond assisted Laser- Assisted in situ Keratomileusis (LASIK) is based on the bubble creation. This study focuses on the interaction between the tissue and the femtosecond laser. Interior of cornea is treated with tightly focused femtosecond laser pulses. Due to the nature of the process, heating of the tissue within and around the focal volume is practically instantaneous. The affected region is subject to thermoelastic stress that arises with the steep temperature elevation. To predict the size of the region subject to the morphological changes due to the laser treatment, the temperature field is calculated. Cavitation bubble initiation and expansion process, which acts as precursor to the stress induced tissue trauma, is studied as well. Theoretical findings are compared against experimental results. High-speed camera is utilized to assess the laser treatment process, showing the temporal development of the cavitation bubbles. The results obtained in this study facilitate a better understanding of the effects of femtosecond laser assisted corneal surgeries and help in choosing optimal laser parameters.

  3. Progress in Cherenkov femtosecond fiber lasers

    PubMed Central

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems – broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed. PMID:27110037

  4. Latest results on solarization of optical glasses with pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Petzold, Uwe

    2017-02-01

    Femtosecond lasers are more and more used for material processing and lithography. Femtosecond laser help to generate three dimensional structures in photoresists without using masks in micro lithography. This technology is of growing importance for the field of backend lithography or advanced packaging. Optical glasses used for beam shaping and inspection tools need to withstand high laser pulse energies. Femtosecond laser radiation in the near UV wavelength range generates solarization effects in optical glasses. In this paper results are shown of femtosecond laser solarization experiments on a broad range of optical glasses from SCHOTT. The measurements have been performed by the Laser Zentrum Hannover in Germany. The results and their impact are discussed in comparison to traditional HOK-4 and UVA-B solarization measurements of the same materials. The target is to provide material selection guidance to the optical designer of beam shaping lens systems.

  5. Influence of Femtosecond Laser Parameters and Environment on Surface Texture Characteristics of Metals and Non-Metals - State of the Art

    NASA Astrophysics Data System (ADS)

    Bharatish, A.; Soundarapandian, S.

    2018-04-01

    Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.

  6. Progress in Cherenkov femtosecond fiber lasers.

    PubMed

    Liu, Xiaomin; Svane, Ask S; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry

    2016-01-20

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  7. Influence of Femtosecond Laser Parameters and Environment on Surface Texture Characteristics of Metals and Non-Metals - State of the Art

    NASA Astrophysics Data System (ADS)

    Bharatish, A.; Soundarapandian, S.

    2018-06-01

    Enhancing the surface functionality by ultrashort pulsed laser texturing has received the considerable attention from researchers in the past few decades. Femtosecond lasers are widely adopted since it provides high repeatability and reproducibility by minimizing the heat affected zone (HAZ) and other collateral damages to a great extent. The present paper reports some recent studies being made worldwide on femtosecond laser surface texturing of metals, ceramics, polymers, semiconductors, thinfilms and advanced nanocomposites. It presents the state of the art knowledge in femtosecond laser surface texturing and the potential of this technology to improve properties in terms of biological, tribological and wetting performance. Since the texture quality and functionality are enhanced by the proper selection of appropriate laser parameters and ambient conditions for individual application, reporting the influence of laser parameters on surface texture characteristics assume utmost importance.

  8. Inactivation of Viruses by Coherent Excitations with a Low Power Visible Femtosecond Laser

    DTIC Science & Technology

    2007-06-05

    visible femtosecond laser having a wavelength of 425 nm and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power density...was greater than or equal to 50 MW/cm2. The inactivation of M13 phages was determined by plaque counts and had been found to depend on the pulse width...visible femtosecond laser having a wavelength of 425 nm and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power

  9. Ultraprecise medical applications with ultrafast lasers: corneal surgery with femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Loesel, Frieder H.; Kurtz, Ron M.; Horvath, Christopher; Sayegh, Samir I.; Mourou, Gerard A.; Bille, Josef F.; Juhasz, Tibor

    1999-02-01

    We investigated refractive corneal surgery in vivo and in vitro by intrastromal photodisruption using a compact ultrafast femtosecond laser system. Ultrashort-pulsed lasers operating in the femtosecond time regime are associated with significantly smaller and deterministic threshold energies for photodisruption, as well as reduced shock waves and smaller cavitation bubbles than the nanosecond or picosecond lasers. Our reliable all-solid-state laser system was specifically designed for real world medical applications. By scanning the 5 micron focus spot of the laser below the corneal surface, the overlapping small ablation volumes of single pulses resulted in contiguous tissue cutting and vaporization. Pulse energies were typically in the order of a few microjoules. Combination of different scanning patterns enabled us to perform corneal flap cutting, femtosecond-LASIK, and femtosecond intrastromal keratectomy in porcine, rabbit, and primate eyes. The cuts proved to be highly precise and possessed superior dissection and surface quality. Preliminary studies show consistent refractive changes in the in vivo studies. We conclude that the technology is capable to perform a variety of corneal refractive procedures at high precision, offering advantages over current mechanical and laser devices and enabling entirely new approaches for refractive surgery.

  10. Fabrication of micro-optical components using femtosecond oscillator pulses

    NASA Astrophysics Data System (ADS)

    Rodrigues, Vanessa R. M.; Ramachandran, Hema; Chidangil, Santhosh; Mathur, Deepak

    2017-06-01

    With a penchant for integrated photonics and miniaturization, the fabrication of micron sized optical elements using precision laser pulse management is drawing attention due to the possibility of minimizing tolerances for collateral material damage. The work presented here deals with the design, fabrication and characterization of a range of diffractive optics - gratings, grids and Fresnel zone plates - on transparent and metallic samples. Their low volume, light weight, transmission bandwidth, high damage threshold and flexible design make them suited for replacing conventional refractive optical elements. Our one-step, mask-less, 3-D laser direct writing process is a green fabrication technique which is in stark contrast to currently popular Photo-lithography based micro-structuring. Our method provides scope for modifications on the surface as well as within the bulk of the material. The mechanism involved in the fabrication of these optics on transparent and thin metallic substrates differ from each other. Our studies show that both amplitude and phase versions of micro-structures were achieved successfully with performances bearing 98% accuracy vis-a-vis theoretical expectations.

  11. Mechanical Strains Induced in Osteoblasts by Use of Point Femtosecond Laser Targeting

    PubMed Central

    Bomzon, Ze'ev; Day, Daniel; Gu, Min; Cartmell, Sarah

    2006-01-01

    A study demonstrating how ultrafast laser radiation stimulates osteoblasts is presented. The study employed a custom made optical system that allowed for simultaneous confocal cell imaging and targeted femtosecond pulse laser irradiation. When femtosecond laser light was focused onto a single cell, a rise in intracellular Ca2+ levels was observed followed by contraction of the targeted cell. This contraction caused deformation of neighbouring cells leading to a heterogeneous strain field throughout the monolayer. Quantification of the strain fields in the monolayer using digital image correlation revealed local strains much higher than threshold values typically reported to stimulate extracellular bone matrix production in vitro. This use of point targeting with femtosecond pulse lasers could provide a new method for stimulating cell activity in orthopaedic tissue engineering. PMID:23165014

  12. Measurement of ablation threshold of oxide-film-coated aluminium nanoparticles irradiated by femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chefonov, O V; Ovchinnikov, A V; Il'ina, I V

    We report the results of experiments on estimation of femtosecond laser threshold intensity at which nanoparticles are removed from the substrate surface. The studies are performed with nanoparticles obtained by femtosecond laser ablation of pure aluminium in distilled water. The attenuation (or extinction, i.e. absorption and scattering) spectra of nanoparticles are measured at room temperature in the UV and optical wavelength ranges. The size of nanoparticles is determined using atomic force microscopy. A new method of scanning photoluminescence is proposed to evaluate the threshold of nanoparticle removal from the surface of a glass substrate exposed to IR femtosecond laser pulsesmore » with intensities 10{sup 11} – 10{sup 13} W cm{sup -2}. (interaction of laser radiation with matter)« less

  13. Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths.

    PubMed

    Wang, Jenny; Schuele, Georg; Palanker, Daniel

    2015-01-01

    Transparent ocular tissues, such as the cornea and crystalline lens, can be ablated or dissected using short-pulse lasers. In refractive and cataract surgeries, the cornea, lens, and lens capsule can be cut by producing dielectric breakdown in the focus of a near-infrared (IR) femtosecond laser, which results in explosive vaporization of the interstitial water, causing mechanical rupture of the surrounding tissue. Here, we compare the texture of edges of lens capsule cut by femtosecond lasers with IR and ultraviolet (UV) wavelengths and explore differences in interactions of these lasers with biological molecules. Scanning electron microscopy indicates that a 400-nm laser is capable of producing very smooth cut edges compared to 800 or 1030 nm at a similar focusing angle. Using gel electrophoresis and liquid chromatography/mass spectrometry, we observe laser-induced nonlinear breakdown of proteins and polypeptides by 400-nm femtosecond pulses above and below the dielectric breakdown threshold. On the other hand, 800-nm femtosecond lasers do not produce significant dissociation even above the threshold of dielectric breakdown. However, despite this additional interaction of UV femtosecond laser with proteins, we determine that efficient cutting requires plasma-mediated bubble formation and that remarkably smooth edges are the result of reduced thresholds and smaller focal volume.

  14. Femtosecond laser refractive surgery: small-incision lenticule extraction vs. femtosecond laser-assisted LASIK.

    PubMed

    Lee, Jimmy K; Chuck, Roy S; Park, Choul Yong

    2015-07-01

    Small-incision lenticule extraction (SMILE) is a novel technique devised to correct refractive errors. SMILE circumvents excimer laser photoablation of cornea, as the stromal lenticule cut by femtosecond laser is removed manually. Smaller incisions and preservation of anterior corneal biomechanical strength have been suggested as some of the advantages of SMILE over femtosecond laser-assisted LASIK (FS-LASIK). In this review, we compared previous published results of SMILE and FS-LASIK. The advantage, efficacy and safety of SMILE are compared with FS-LASIK. SMILE achieved similar efficacy, predictability and safety as FS-LASIK. Greater preservations of corneal biomechanical strength and corneal nerves were observed in SMILE when compared with LASIK or PRK. Additionally, the incidence of postoperative dry eye syndrome was found to be less problematic in SMILE than in FS-LASIK. SMILE is a promising new surgery for refractive error correction. Prospective and retrospective studies of SMILE have shown that results of SMILE are similar to FS-LASIK. With advances in femtosecond laser technology, SMILE may gain greater acceptance in the future.

  15. Experimental investigation on the spiral trepanning of K24 superalloy with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Maolu; Yang, Lijun; Zhang, Shuai; Wang, Yang

    2018-05-01

    Film cooling holes are crucial for improving the performance of the aviation engine. In the paper, the processing of the film cooling holes on K24 superalloy by femtosecond laser is investigated. By comparing the three different drilling methods, the spiral trepanning method is chosen, and all the drilling experiments are carried out in this way. The experimental results show that the drilling of femtosecond laser pulses has distinct merits against that of the traditional long pulse laser, which can realize the "cold" processing with less recasting layer and less crack. The influence of each process parameter on roundness and taper, which are the important parameters to measure the quality of holes, is analyzed in detail, and the method to decrease it is proposed. To further reduce the recasting layer, the processing quality of the inner wall of the micro hole is investigated by scanning electron microscopy (SEM) equipped with energy disperse spectroscopy (EDS), the mechanism of the femtosecond laser interaction with K24 superalloy is further revealed. The investigation to the film hole machining by femtosecond laser has important practical significance.

  16. Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Justin E.; Qiu, S. Roger; Stolz, Christopher J.

    2011-03-20

    Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.

  17. Controlling the femtosecond laser-driven transformation of dicyclopentadiene into cyclopentadiene

    PubMed Central

    Goswami, Tapas; Das, Dipak K.; Goswami, Debabrata

    2013-01-01

    Dynamics of the chemical transformation of dicyclopentadiene into cyclopentadiene in a supersonic molecular beam is elucidated using femtosecond time-resolved degenerate pump–probe mass spectrometry. Control of this ultrafast chemical reaction is achieved by using linearly chirped frequency modulated pulses. We show that negatively chirped femtosecond laser pulses enhance the cyclopentadiene photoproduct yield by an order of magnitude as compared to that of the unmodulated or the positively chirped pulses. This demonstrates that the phase structure of femtosecond laser pulse plays an important role in determining the outcome of a chemical reaction. PMID:24098059

  18. A method for spatial regularisation of a bunch of filaments in a femtosecond laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandidov, V P; Kosareva, O G; Nyakk, A V

    A method for spatial regularisation of chaotically located filaments, which appear in a high-power femtosecond laser pulse, is proposed, numerically substantiated, and experimentally tested. This method is based on the introduction of regular light-field perturbations into the femtosecond-pulse cross section. (letters)

  19. Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, W. C.; Wang, R.; Xu, Z. J.

    2014-05-28

    In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scalemore » array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.« less

  20. Construction of a femtosecond laser microsurgery system.

    PubMed

    Steinmeyer, Joseph D; Gilleland, Cody L; Pardo-Martin, Carlos; Angel, Matthew; Rohde, Christopher B; Scott, Mark A; Yanik, Mehmet Fatih

    2010-03-01

    Femtosecond laser microsurgery is a powerful method for studying cellular function, neural circuits, neuronal injury and neuronal regeneration because of its capability to selectively ablate sub-micron targets in vitro and in vivo with minimal damage to the surrounding tissue. Here, we present a step-by-step protocol for constructing a femtosecond laser microsurgery setup for use with a widely available compound fluorescence microscope. The protocol begins with the assembly and alignment of beam-conditioning optics at the output of a femtosecond laser. Then a dichroic mount is assembled and installed to direct the laser beam into the objective lens of a standard inverted microscope. Finally, the laser is focused on the image plane of the microscope to allow simultaneous surgery and fluorescence imaging. We illustrate the use of this setup by presenting axotomy in Caenorhabditis elegans as an example. This protocol can be completed in 2 d.

  1. Tear menisci after laser in situ keratomileusis with mechanical microkeratome and femtosecond laser.

    PubMed

    Xie, Wenjia; Zhang, Dong; Chen, Jia; Liu, Jing; Yu, Ye; Hu, Liang

    2014-08-21

    To investigate the effect on tear menisci after laser in situ keratomileusis (LASIK) with flap creation by either microkeratome or femtosecond laser. Sixty eyes of 30 myopes were analyzed. Fifteen patients underwent LASIK with Moria II microkeratome, and the other 15 patients with 60-KHz IntraLase femtosecond laser. Upper and lower tear meniscus parameters of height (UTMH, LTMH) and area (UTMA, LTMA) were measured by SD-OCT preoperatively and 1 week, 1 month, and 3 months postoperatively. Compared with the baseline values, all tear meniscus parameters decreased significantly at each postoperative time point (all P < 0.01) in both groups. LTMH increased significantly between 1 week and 1 month and between 1 and 3 months after surgery in the microkeratome (both P < 0.01) and femtosecond laser groups (P < 0.01, P = 0.012, respectively). There were significant increases in LTMA between 1 week and 1 month after surgery in the microkeratome group (P < 0.01) and in the femtosecond laser group (P = 0.028). There were no significant differences in UTMH, UTMA, LTMH, or LTMA between two groups. The depth of ablation was negatively correlated with the LTMA at 1 week after surgery (R = -0.256, P = 0.049) for all patients. There were no significant differences in the tear meniscus parameters between the microkeratome and femtosecond laser groups. The depth of ablation was significantly correlated with the LTMA only at 1 week after surgery. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  2. [Alternatives to femtosecond laser technology: subnanosecond UV pulse and ring foci for creation of LASIK flaps].

    PubMed

    Vogel, A; Freidank, S; Linz, N

    2014-06-01

    In refractive corneal surgery femtosecond (fs) lasers are used for creating LASIK flaps, dissecting lenticules and for astigmatism correction by limbal incisions. Femtosecond laser systems are complex and expensive and cutting precision is compromised by the large focal length associated with the commonly used infrared (IR) wavelengths. Based on investigations of the cutting dynamics, novel approaches for corneal dissection using ultraviolet A (UVA) picosecond (ps) pulses and ring foci from vortex beams are presented. Laser-induced bubble formation in corneal stroma was investigated by high-speed photography at 1-50 million frames/s. Using Gaussian and vortex beams of UVA pulses with durations between 200 and 850 ps the laser energy needed for easy removal of flaps created in porcine corneas was determined and the quality of the cuts by scanning electron microscopy was documented. Cutting parameters for 850 ps are reported also for rabbit eyes. The UV-induced and mechanical stress were evaluated for Gaussian and vortex beams. The results show that UVA picosecond lasers provide better cutting precision than IR femtosecond lasers, with similar processing times. Cutting energy decreases by >50 % when the laser pulse duration is reduced to 200 ps. Vortex beams produce a short, donut-shaped focus allowing efficient and precise dissection along the corneal lamellae which results in a dramatic reduction of the absorbed energy needed for cutting and of mechanical side effects as well as in less bubble formation in the cutting plane. A combination of novel approaches for corneal dissection provides the option to replace femtosecond lasers by compact UVA microchip laser technology. Ring foci are also of interest for femtosecond laser surgery, especially for improved lenticule excision.

  3. Femtosecond imaging of nonlinear acoustics in gold.

    PubMed

    Pezeril, Thomas; Klieber, Christoph; Shalagatskyi, Viktor; Vaudel, Gwenaelle; Temnov, Vasily; Schmidt, Oliver G; Makarov, Denys

    2014-02-24

    We have developed a high-sensitivity, low-noise femtosecond imaging technique based on pump-probe time-resolved measurements with a standard CCD camera. The approach used in the experiment is based on lock-in acquisitions of images generated by a femtosecond laser probe synchronized to modulation of a femtosecond laser pump at the same rate. This technique allows time-resolved imaging of laser-excited phenomena with femtosecond time resolution. We illustrate the technique by time-resolved imaging of the nonlinear reshaping of a laser-excited picosecond acoustic pulse after propagation through a thin gold layer. Image analysis reveals the direct 2D visualization of the nonlinear acoustic propagation of the picosecond acoustic pulse. Many ultrafast pump-probe investigations can profit from this technique because of the wealth of information it provides over a typical single diode and lock-in amplifier setup, for example it can be used to image ultrasonic echoes in biological samples.

  4. High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator.

    PubMed

    Gu, Chenglin; Hu, Minglie; Zhang, Limeng; Fan, Jintao; Song, Youjian; Wang, Chingyue; Reid, Derryck T

    2013-06-01

    We report on the highly efficient generation of widely tunable femtosecond pulses based on intracavity second harmonic generation (SHG) and sum frequency generation (SFG) in a MgO-doped periodically poled LiNbO(3) optical parametric oscillator (OPO), which is pumped by a Yb-doped large-mode-area photonics crystal fiber femtosecond laser. Red and near infrared from intracavity SHG and SFG and infrared signals were directly obtained from the OPO. A 2 mm β-BaB(2)O(4) is applied for Type I (oo → e) intracavity SHG and SFG, and then femtosecond laser pulses over 610 nm ~ 668 nm from SFG and 716 nm ~ 970 nm from SHG are obtained with high efficiency. In addition, the oscillator simultaneously generates signal and idler femtosecond pulses over 1450 nm ~ 2200 nm and 2250 nm ~ 4000 nm, respectively.

  5. Direct laser writing of microstructures on optically opaque and reflective surfaces

    NASA Astrophysics Data System (ADS)

    Rekštytė, S.; Jonavičius, T.; Malinauskas, M.

    2014-02-01

    Direct laser writing (DLW) based on ultra-localized polymerization is an efficient way to produce three-dimensional (3D) micro/nano-structures for diverse applications in science and industry. It is attractive for its flexibility to materialize CAD models out of wide spectrum of materials on the desired substrates. In case of direct laser lithography, photo-crosslinking can be achieved by tightly focusing ultrashort laser pulses to a photo- or thermo-polymers. Selectively exposing material to laser radiation allows creating fully 3D structures with submicrometer spatial resolution. In this paper we present DLW results of hybrid organic-inorganic material SZ2080 on optically opaque and reflective surfaces, such as silicon and various metals (Cr, Ti, Au). Our studies prove that one can precisely fabricate 2D and 3D structures with lower than 1 μm spatial resolution even on glossy or rough surfaces (surface roughness rms 0.068-0.670 μm) using sample translation velocities of up to 1 mm/s. Using femtosecond high pulse repetition rate laser, sample translation velocity can reach over 1 mm/s ensuring repeatable submicrometer structuring resolution.

  6. Femtosecond lasers for microsurgery of cornea

    NASA Astrophysics Data System (ADS)

    Vartapetov, Sergei K.; Khudyakov, D. V.; Lapshin, Konstantin E.; Obidin, Aleksei Z.; Shcherbakov, Ivan A.

    2012-03-01

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting ~400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 μJ. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 μm. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s-1. At a stage of preliminary tests of the system, the Κ8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  7. Femtosecond lasers for microsurgery of cornea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vartapetov, Sergei K; Khudyakov, D V; Lapshin, Konstantin E

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting {approx}400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 {mu}J. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceedmore » 3 {mu}m. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s{sup -1}. At a stage of preliminary tests of the system, the {Kappa}8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.« less

  8. Femtosecond laser melting of silver nanoparticles: comparison of model simulations and experimental results

    NASA Astrophysics Data System (ADS)

    Cheng, Chung-Wei; Chang, Chin-Lun; Chen, Jinn-Kuen; Wang, Ben

    2018-05-01

    Ultrafast laser-induced melting of silver nanoparticles (NPs) using a femtosecond laser pulse is investigated both theoretically and experimentally. The sintered Ag structure fabricated from printed Ag NP ink using femtosecond laser (1064 nm, 300 fs) irradiation is experimentally studied. A two-temperature model with dynamic optical properties and particle size effects on the melting temperature of Ag NPs is considered. The rapid phase change model is incorporated to simulate the Ag NPs' ultrafast laser-induced melting process, and a multi-shot melting threshold fluence predicted from the simulated single-shot melting threshold is developed.

  9. Laser assisted bioprinting using a femtosecond laser with and without a gold transductive layer: a parametric study

    NASA Astrophysics Data System (ADS)

    Desrus, H.; Chassagne, B.; Catros, S.; Artiges, C.; Devillard, R.; Petit, S.; Deloison, F.; Fricain, J. C.; Guillemot, F.; Kling, R.

    2016-03-01

    Experimental results of femtosecond Laser Assisted Bioprinting (LAB) are reported on. Two set-up, used to print different model bioinks and keratinocytes cells line HaCaT, were studied: first one was using a femtosecond laser with low pulse energy and an absorbing gold layer, whereas the second one used high pulse energy enabling the removal of the absorbing layer. Printed drop diameter and resulting height of the bioink jet are then quantified as a function of the LAB parameters such as laser energy, focus spot location or numerical aperture.

  10. The formation of periodic micro/nano structured on stainless steel by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Yao, Caizhen; Gao, Wei; Ye, Yayun; Jiang, Yong; Xu, Shizhen; Yuan, Xiaodong

    2017-07-01

    Stainless steel surface was irradiated by linear polarized laser (800 nm, 35 fs, 4 Hz and 0.7 J/cm2) with different pulse numbers. Environmental scanning electron microscope (ESEM/EDS) was used for detailed morphology, microstructure and composition studies. The wettability of irradiated steel surface was tested by Interface Tensiometer JC-2000X and compared with untreated stainless steel. Results showed that micro/nanostripes with different periods were formed. The period increased with the increasing pulse numbers from 450 nm for 90 pulses to 500 nm for 180 pulses. The orientation of those stripes was parallel with the laser beam polarization. Nanoparticles were observed on those periodic structures. EDS indicated that the atomic ratio of Cr increased and the atomic ratios of Fe and Ni decreased after laser irradiation, which may enhance the corrosion resistance due to the Cr-rich layer. The prepared structure exhibited hydrophobic property without further treatment. The formation mechanism of micro/nanoperiodic structures was also explored.

  11. Flexible metal patterning in glass microfluidic structures using femtosecond laser direct-write ablation followed by electroless plating

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2014-03-01

    A simple and flexible technique for integrating metal micropatterns into glass microfluidic structures based on threedimensional femtosecond laser microfabrication is presented. Femtosecond laser direct writing followed by thermal treatment and successive chemical etching allows us to fabricate three-dimensional microfluidic structures such as microchannels and microreservoirs inside photosensitive glass. Then, the femtosecond laser direct-write ablation followed by electroless metal plating enables space-selective deposition of patterned metal films on desired locations of internal walls of the fabricated microfluidic structures. The developed technique is applied to integrate a metal microheater into a glass microchannel to control the temperature of liquid samples in the channel, which can be used as a microreactor for enhancement of chemical reactions.

  12. Effect of Doping on the Properties of Hydrogenated Amorphous Silicon Irradiated with Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Denisova, K. N.; Il'in, A. S.; Martyshov, M. N.; Vorontsov, A. S.

    2018-04-01

    A comparative analysis of the effect of femtosecond laser irradiation on the structure and conductivity of undoped and boron-doped hydrogenated amorphous silicon ( a-Si: H) is performed. It is demonstrated that the process of nanocrystal formation in the amorphous matrix under femtosecond laser irradiation is initiated at lower laser energy densities in undoped a-Si: H samples. The differences in conductivity between undoped and doped a-Si: H samples vanish almost completely after irradiation with an energy density of 150-160 mJ/cm2.

  13. Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol

    NASA Astrophysics Data System (ADS)

    Kudryashov, S. I.; Saraeva, I. N.; Lednev, V. N.; Pershin, S. M.; Rudenko, A. A.; Ionin, A. A.

    2018-05-01

    Single-shot IR femtosecond-laser ablation of gold surfaces in ambient air and liquid isopropyl alcohol was studied by scanning electron microscopy characterization of crater topographies and time-resolved optical emission spectroscopy of ablative plumes in regimes, typical for non-filamentary and non-fragmentation laser production of nanoparticle sols. Despite one order of magnitude shorter (few nanoseconds) lifetimes and almost two orders of magnitude lower intensities of the quenched ablative plume emission in the alcohol ambient at the same peak laser fluence, craters for the dry and wet conditions appeared with rather similar nanofoam-like spallative topographies and the same thresholds. These facts envision the underlying surface spallation as one of the basic ablation mechanisms relevant for both dry and wet advanced femtosecond laser surface nano/micro-machining and texturing, as well as for high-throughput femtosecond laser ablative production of colloidal nanoparticles by MHz laser-pulse trains via their direct nanoscale jetting from the nanofoam in air and fluid environments.

  14. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency.

    PubMed

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3∕J when the laser fluence was set at 6.51 J∕cm2. For enamel, the maximum ablation efficiency was 0.009 mm3∕J at a fluence of 7.59 J∕cm2.Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

  15. Femtosecond pulses generated from a synchronously pumped chromium-doped forsterite laser

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1993-01-01

    Kerr lens mode-locking (KLM) has become a standard method to produce femtosecond pulses from tunable solid state lasers. High power inside the laser resonator propagating through the laser-medium with nonlinear index of refraction, coupled with the stability conditions of the laser modes in the resonator, result in a passive amplitude modulation which explains the mechanism for pulse shortening. Recently, chromium doped forsterite was shown to exhibit similar pulse behavior. A successful attempt to generate femtosecond pulses from a synchronously pumped chromium-doped forsterite laser with intracavity dispersion compensation is reported. Stable, transform limited pulses with duration of 105 fs were routinely generated, tunable between 1240 to 1270 nm.

  16. Femtosecond laser three-dimensional micro- and nanofabrication

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Cheng, Ya

    2014-12-01

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper describes the concepts and principles of femtosecond laser 3D micro- and nanofabrication and presents a comprehensive review on the state-of-the-art, applications, and the future prospects of this technology.

  17. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia

    PubMed Central

    García-Sanz, Verónica; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto

    2017-01-01

    Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (p<0.001) for ceramic brackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p < 0.05). For ceramic brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method. PMID:29049418

  18. Femtosecond laser three-dimensional micro- and nanofabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugioka, Koji, E-mail: ksugioka@riken.jp; Cheng, Ya, E-mail: ya.cheng@siom.ac.cn

    2014-12-15

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement ofmore » the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper describes the concepts and principles of femtosecond laser 3D micro- and nanofabrication and presents a comprehensive review on the state-of-the-art, applications, and the future prospects of this technology.« less

  19. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia.

    PubMed

    García-Sanz, Verónica; Paredes-Gallardo, Vanessa; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto

    2017-01-01

    Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (p<0.001) for ceramic brackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p < 0.05). For ceramic brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method.

  20. Development of a nomogram for femtosecond laser astigmatic keratotomy for astigmatism after keratoplasty.

    PubMed

    St Clair, Ryan M; Sharma, Anushree; Huang, David; Yu, Fei; Goldich, Yakov; Rootman, David; Yoo, Sonia; Cabot, Florence; Jun, Jason; Zhang, Lijun; Aldave, Anthony J

    2016-04-01

    To develop a nomogram for femtosecond laser astigmatic keratotomy (AK) to treat post-keratoplasty astigmatism. Three academic medical centers. Retrospective interventional case series. A review of post-keratoplasty femtosecond laser AK was performed. Uncorrected (UDVA) and corrected (CDVA) distance visual acuities, manifest refraction, and keratometry were recorded preoperatively and 1, 3, 6, and 12 months postoperatively. The location, length, depth, and diameter of the AK incisions were recorded, and the surgically induced astigmatic correction was related to these variables using regression analysis. One hundred forty femtosecond laser AK procedures were performed after penetrating keratoplasty (PKP) (n = 129) or deep anterior lamellar keratoplasty (DALK) (n =11), with 89 procedures (80 PKP, 9 DALK) included in the analysis. The mean CDVA improved from 20/59 (0.47 logMAR ± 0.38 [SD]) preoperatively to 20/45 (0.35 ± 0.31 logMAR) postoperatively (P = .013) (n = 46). The mean keratometric astigmatism decreased from 8.26 ± 2.90 diopters (D) preoperatively to 3.62 ± 2.59 D postoperatively (P < .0001) (n = 89). The mean refractive cylinder decreased from 6.77 ± 2.80 D preoperatively to 2.85 ± 2.57 D postoperatively (P < .0001) (n = 69). A nomogram for femtosecond laser AK to treat post-keratoplasty astigmatism was generated using regression analysis. Femtosecond laser AK significantly improved UDVA and CDVA and significantly reduced keratometric astigmatism and refractive cylinder after keratoplasty. The nomogram generated should improve the accuracy of post-keratoplasty femtosecond laser AK. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Song, Yuxin; Wang, Cong; Dong, Xinran; Yin, Kai; Zhang, Fan; Xie, Zheng; Chu, Dongkai; Duan, Ji'an

    2018-06-01

    In this study, a facile and detailed strategy to fabricate superhydrophobic aluminum surfaces with controllable adhesion by femtosecond laser ablation is presented. The influences of key femtosecond laser processing parameters including the scanning speed, laser power and interval on the wetting properties of the laser-ablated surfaces are investigated. It is demonstrated that the adhesion between water and superhydrophobic surface can be effectively tuned from extremely low adhesion to high adhesion by adjusting laser processing parameters. At the same time, the mechanism is discussed for the changes of the wetting behaviors of the laser-ablated surfaces. These superhydrophobic surfaces with tunable adhesion have many potential applications, such as self-cleaning surface, oil-water separation, anti-icing surface and liquid transportation.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osychenko, A A; Zalesskii, A D; Krivokharchenko, A S

    Using the method of femtosecond laser surgery we study the fusion of two-cell mouse embryos under the action of tightly focused femtosecond laser radiation with the fusion efficiency reaching 60%. The detailed statistical analysis of the efficiency of blastomere fusion and development of the embryo up to the blastocyst stage after exposure of the embryos from different mice to a femtosecond pulse is presented. It is shown that the efficiency of blastocyst formation essentially depends on the biological characteristics of the embryo, namely, the strain and age of the donor mouse. The possibility of obtaining hexaploid embryonal cells using themore » methods of femtosecond laser surgery is demonstrated. (extreme light fields and their applications)« less

  3. Holographic femtosecond laser processing and its application to biological materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio

    2017-02-01

    Femtosecond laser processing is a promising tool for fabricating novel and useful structures on the surfaces of and inside materials. An enormous number of pulse irradiation points will be required for fabricating actual structures with millimeter scale, and therefore, the throughput of femtosecond laser processing must be improved for practical adoption of this technique. One promising method to improve throughput is parallel pulse generation based on a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM), a technique called holographic femtosecond laser processing. The holographic method has the advantages such as high throughput, high light use efficiency, and variable, instantaneous, and 3D patterning. Furthermore, the use of an SLM gives an ability to correct unknown imperfections of the optical system and inhomogeneity in a sample using in-system optimization of the CGH. Furthermore, the CGH can adaptively compensate in response to dynamic unpredictable mechanical movements, air and liquid disturbances, a shape variation and deformation of the target sample, as well as adaptive wavefront control for environmental changes. Therefore, it is a powerful tool for the fabrication of biological cells and tissues, because they have free form, variable, and deformable structures. In this paper, we present the principle and the experimental setup of holographic femtosecond laser processing, and the effective way for processing the biological sample. We demonstrate the femtosecond laser processing of biological materials and the processing properties.

  4. Profitability analysis of a femtosecond laser system for cataract surgery using a fuzzy logic approach.

    PubMed

    Trigueros, José Antonio; Piñero, David P; Ismail, Mahmoud M

    2016-01-01

    To define the financial and management conditions required to introduce a femtosecond laser system for cataract surgery in a clinic using a fuzzy logic approach. In the simulation performed in the current study, the costs associated to the acquisition and use of a commercially available femtosecond laser platform for cataract surgery (VICTUS, TECHNOLAS Perfect Vision GmbH, Bausch & Lomb, Munich, Germany) during a period of 5y were considered. A sensitivity analysis was performed considering such costs and the countable amortization of the system during this 5y period. Furthermore, a fuzzy logic analysis was used to obtain an estimation of the money income associated to each femtosecond laser-assisted cataract surgery (G). According to the sensitivity analysis, the femtosecond laser system under evaluation can be profitable if 1400 cataract surgeries are performed per year and if each surgery can be invoiced more than $500. In contrast, the fuzzy logic analysis confirmed that the patient had to pay more per surgery, between $661.8 and $667.4 per surgery, without considering the cost of the intraocular lens (IOL). A profitability of femtosecond laser systems for cataract surgery can be obtained after a detailed financial analysis, especially in those centers with large volumes of patients. The cost of the surgery for patients should be adapted to the real flow of patients with the ability of paying a reasonable range of cost.

  5. Calculation of Ophthalmic Viscoelastic Device–Induced Focus Shift During Femtosecond Laser–Assisted Cataract Surgery

    PubMed Central

    de Freitas, Carolina P.; Cabot, Florence; Manns, Fabrice; Culbertson, William; Yoo, Sonia H.; Parel, Jean-Marie

    2015-01-01

    Purpose. To assess if a change in refractive index of the anterior chamber during femtosecond laser-assisted cataract surgery can affect the laser beam focus position. Methods. The index of refraction and chromatic dispersion of six ophthalmic viscoelastic devices (OVDs) was measured with an Abbe refractometer. Using the Gullstrand eye model, the index values were used to predict the error in the depth of a femtosecond laser cut when the anterior chamber is filled with OVD. Two sources of error produced by the change in refractive index were evaluated: the error in anterior capsule position measured with optical coherence tomography biometry and the shift in femtosecond laser beam focus depth. Results. The refractive indices of the OVDs measured ranged from 1.335 to 1.341 in the visible light (at 587 nm). The error in depth measurement of the refilled anterior chamber ranged from −5 to +7 μm. The OVD produced a shift of the femtosecond laser focus ranging from −1 to +6 μm. Replacement of the aqueous humor with OVDs with the densest compound produced a predicted error in cut depth of 13 μm anterior to the expected cut. Conclusions. Our calculations show that the change in refractive index due to anterior chamber refilling does not sufficiently shift the laser beam focus position to cause the incomplete capsulotomies reported during femtosecond laser–assisted cataract surgery. PMID:25626971

  6. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    PubMed Central

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-01-01

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications. PMID:23478599

  7. Investigations on femtosecond laser modified micro-textured surface with anti-friction property on bearing steel GCr15

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang

    2018-03-01

    This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.

  8. Use of the Femtosecond Lasers in Ophthalmology

    NASA Astrophysics Data System (ADS)

    Roszkowska, Anna M.; Urso, Mario; Signorino, Alberto; Aragona, Pasquale

    2018-01-01

    Femtosecond laser (FSL) is an infrared laser with a wavelength of 1053 nm. FS laser works producing photodisruption or photoionization of the optically transparent tissue such as cornea. Currently FS lasers have a wide range of applications in ophthalmic surgery. They are used above all in corneal surgery in refractive procedures and keratoplasty, and recently in cataract surgery. The use of the FSL in corneal refractive surgery includes LASIK flap creation, astigmatic keratotomy, Femtosecond Lenticule Extraction (FLEx), Small Incision Lenticule Extraction (SMILE) and channels creation for implantation of the intrastromal corneal rings. As to the corneal grafting, the FS lasers are used in laser-assisted anterior and posterior lamellar keratoplasty and customized trephination in the penetrating keratoplasty. FS Laser Assisted Cataract Surgery (FLACS) includes capsulorrhexis and nuclear fragmentation that enhance safety and efficacy of the procedure.

  9. Cytosolic Irradiation of Femtosecond Laser Induces Mitochondria-dependent Apoptosis-like Cell Death via Intrinsic Reactive Oxygen Cascades

    PubMed Central

    Yoon, Jonghee; Ryu, Seung-wook; Lee, Seunghee; Choi, Chulhee

    2015-01-01

    High-intensity femtosecond lasers have recently been used to irreversibly disrupt nanoscale structures, such as intracellular organelles, and to modify biological functions in a reversible manner: so-called nanosurgery and biophotomodulation. Femtosecond laser pulses above the threshold intensity sufficient for reversible biophotomodulation can cause irreversible changes in the irradiated cell, eventually leading to cell death. Here, we demonstrated that cytosolic irradiation with a femtosecond laser produced intrinsic cascades of reactive oxygen species (ROS), which led to rapid apoptosis-like cell death via a caspase and poly (ADP-ribose) polymerase 1 (PARP-1) signaling pathway. We further showed that cells with enhanced mitochondrial fusion activity are more resilient to laser-induced stress compared to those with enforced mitochondrial fission. Taken together, these findings provide fundamental insight into how optical stimulation intervenes in intrinsic cellular signaling pathways and functions. PMID:25648455

  10. Cytosolic irradiation of femtosecond laser induces mitochondria-dependent apoptosis-like cell death via intrinsic reactive oxygen cascades.

    PubMed

    Yoon, Jonghee; Ryu, Seung-Wook; Lee, Seunghee; Choi, Chulhee

    2015-02-04

    High-intensity femtosecond lasers have recently been used to irreversibly disrupt nanoscale structures, such as intracellular organelles, and to modify biological functions in a reversible manner: so-called nanosurgery and biophotomodulation. Femtosecond laser pulses above the threshold intensity sufficient for reversible biophotomodulation can cause irreversible changes in the irradiated cell, eventually leading to cell death. Here, we demonstrated that cytosolic irradiation with a femtosecond laser produced intrinsic cascades of reactive oxygen species (ROS), which led to rapid apoptosis-like cell death via a caspase and poly (ADP-ribose) polymerase 1 (PARP-1) signaling pathway. We further showed that cells with enhanced mitochondrial fusion activity are more resilient to laser-induced stress compared to those with enforced mitochondrial fission. Taken together, these findings provide fundamental insight into how optical stimulation intervenes in intrinsic cellular signaling pathways and functions.

  11. A Comparison of Different Operating Systems for Femtosecond Lasers in Cataract Surgery.

    PubMed

    Wu, B M; Williams, G P; Tan, A; Mehta, J S

    2015-01-01

    The introduction of femtosecond lasers is potentially a major shift in the way we approach cataract surgery. The development of increasingly sophisticated intraocular lenses (IOLs), coupled with heightened patient expectation of high quality postsurgical visual outcomes, has generated the need for a more precise, highly reproducible and standardized method to carry out cataract operations. As femtosecond laser-assisted cataract surgery (FLACS) becomes more commonplace in surgical centers, further evaluation of the potential risks and benefits needs to be established, particularly in the medium/long term effects. Healthcare administrators will also have to weigh and balance out the financial costs of these lasers relative to the advantages they put forth. In this review, we provide an operational overview of three of five femtosecond laser platforms that are currently commercially available: the Catalys (USA), the Victus (USA), and the LDV Z8 (Switzerland).

  12. Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix

    NASA Astrophysics Data System (ADS)

    Gleitsmann, T.; Bernhardt, T. M.; Wöste, L.

    2006-01-01

    Strong visible luminescence is observed from silver clusters generated by femtosecond-laser-induced reduction of silver oxide nanoparticles embedded in a polymeric gelatin matrix. Light emission from the femtosecond-laser-activated matrix areas considerably exceeds the luminescence intensity of similarly activated bare silver oxide nanoparticle films. Optical spectroscopy of the activated polymer films supports the assignment of the emissive properties to the formation of small silver clusters under focused femtosecond-laser irradiation. The size of the photogenerated clusters is found to sensitively depend on the laser exposure time, eventually leading to the formation of areas of metallic silver in the biopolymer matrix. In this case, luminescence can still be observed in the periphery of the metallic silver structures, emphasizing the importance of the organic matrix for the stabilization of the luminescent nanocluster structures at the metal matrix interface.

  13. Femtosecond laser for cavity preparation in enamel and dentin: ablation efficiency related factors.

    PubMed

    Chen, H; Li, H; Sun, Yc; Wang, Y; Lü, Pj

    2016-02-11

    To study the effects of laser fluence (laser energy density), scanning line spacing and ablation depth on the efficiency of a femtosecond laser for three-dimensional ablation of enamel and dentin. A diode-pumped, thin-disk femtosecond laser (wavelength 1025 nm, pulse width 400 fs) was used for the ablation of enamel and dentin. The laser spot was guided in a series of overlapping parallel lines on enamel and dentin surfaces to form a three-dimensional cavity. The depth and volume of the ablated cavity was then measured under a 3D measurement microscope to determine the ablation efficiency. Different values of fluence, scanning line spacing and ablation depth were used to assess the effects of each variable on ablation efficiency. Ablation efficiencies for enamel and dentin were maximized at different laser fluences and number of scanning lines and decreased with increases in laser fluence or with increases in scanning line spacing beyond spot diameter or with increases in ablation depth. Laser fluence, scanning line spacing and ablation depth all significantly affected femtosecond laser ablation efficiency. Use of a reasonable control for each of these parameters will improve future clinical application.

  14. Penetrating and Intrastromal Corneal Arcuate Incisions in Rabbit and Human Cadaver Eyes: Manual Diamond Blade and Femtosecond Laser-Created Incisions.

    PubMed

    Gray, Brad; Binder, Perry S; Huang, Ling C; Hill, Jim; Salvador-Silva, Mercedes; Gwon, Arlene

    2016-07-01

    To compare morphologic differences between freehand diamond or femtosecond laser-assisted penetrating and intrastromal arcuate incisions. Freehand diamond blade, corneal arcuate incisions (180° apart, 60° arc lengths) and 150 kHz femtosecond laser (80% scheimpflug pachymetry depth corneal thickness) arcuate incisions were performed in rabbits. Intrastromal arcuate incisions (100 μm above Descemet's membrane, 100 μm below epithelium) were performed in rabbit corneas (energy 1.2 μJ, spot line separation 3 × 3 μm, 90° side cut angle). Eyes were examined by slit lamp and light microscopy up to 47 days post-procedure. Freehand diamond blade penetrating incisions, and femtosecond laser penetrating and intrastromal arcuate incisions (energy 1.8 μJ, spot line separation 2 × 2 μm) were performed in cadaver eyes. Optical coherence tomography was performed immediately after surgery and the corneas were fixed for light scanning and transmission electron microscopy. The rabbit model showed anterior stromal inflammation with epithelial hyperplasia in penetrating blade and laser penetrating wounds. The laser intrastromal and penetrating incisions showed localized constriction of the stromal layers of the cornea near the wound. In cadaver eyes, penetrating wound morphology was similar between blade and laser whereas intrastromal wounds did not affect the cornea above or below incisions. Penetrating femtosecond laser arcuate incisions have more predictable and controlled outcomes shown by less post-operative scarring than incisions performed with a diamond blade. Intrastromal incisions do not affect uncut corneal layers as demonstrated by histopathology. The femtosecond laser has significant advantages in its ability to make intrastromal incisions which are not achievable by traditional freehand or mechanical diamond blades.

  15. Evidence of femtosecond-laser pulse induced cell membrane nanosurgery

    NASA Astrophysics Data System (ADS)

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y.

    2017-02-01

    The mechanism of femtosecond laser nanosurgical attachment is investigated in the following article. Using sub-10 femtosecond laser pulses with 800 nm central wavelength were used to attach retinoblastoma cells. During the attachment process the cell membrane phospholipid bilayers hemifuse into one shared phospholipid bilayer, at the location of attachment. Transmission electron microscopy was used in order to verify the above hypothesis. Based on the imaging results, it was concluded that the two cell membrane coalesce to form one single shared membrane. The technique of cell-cell attachment via femtosecond laser pulses could potentially serve as a platform for precise cell membrane manipulation. Manipulation of the cellular membrane is valuable for studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.

  16. Basic Research of Intrinsic Tamper Indication Markings Defined by Pulsed Laser Irradiation (Quad Chart).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Neville R.

    Objective: We will research how short (ns) and ultrashort (fs) laser pulses interact with the surfaces of various materials to create complex color layers and morphological patterns. Method: We are investigating the site-specific, formation of microcolor features. Also, research includes a fundamental study of the physics underlying periodic ripple formation during femtosecond laser irradiation. Status of effort: Laser induced color markings were demonstrated on an increased number of materials (including metal thin films) and investigated for optical properties and microstructure. Technology that allows for marking curved surfaces (and large areas) has been implemented. We have used electro-magnetic solvers to modelmore » light-solid interactions leading to periodic surface ripple patterns. This includes identifying the roles of surface plasmon polaritons. Goals/Milestones: Research corrosion resistance of oxide color markings (salt spray, fog, polarization tests); Through modeling, investigate effects of multi-source scattering and interference on ripple patterns; Investigate microspectrophotometry for mapping color; and Investigate new methods for laser color marking curved surfaces and large areas.« less

  17. Microfabrication of passive electronic components with printed graphene-oxide deposition

    NASA Astrophysics Data System (ADS)

    Sinar, Dogan; Knopf, George K.; Nikumb, Suwas

    2014-03-01

    Flexible electronic circuitry is an emerging technology that will significantly impact the future of healthcare and medicine, food safety inspection, environmental monitoring, and public security. Recent advances in drop-on-demand printing technology and electrically conductive inks have enabled simple electronic circuits to be fabricated on mechanically flexible polymers, paper, and bioresorbable silk. Research has shown that graphene, and its derivative formulations, can be used to create low-cost electrically conductive inks. Graphene is a one atom thick two-dimensional layer composed of carbon atoms arranged in a hexagonal lattice forming a material with very high fracture strength, high Young's Modulus, and low electrical resistance. Non-conductive graphene-oxide (GO) inks can also be synthesized from inexpensive graphite powders. Once deposited on the flexible substrate the electrical conductivity of the printed GO microcircuit traces can be restored through thermal reduction. In this paper, a femtosecond laser with a wavelength of 775nm and pulse width of 120fs is used to transform the non-conductive printed GO film into electrically conductive oxygen reduced graphene-oxide (rGO) passive electronic components by the process of laser assisted thermal reduction. The heat affected zone produced during the process was minimized because of the femtosecond pulsed laser. The degree of conductivity exhibited by the microstructure is directly related to the laser power level and exposure time. Although rGO films have higher resistances than pristine graphene, the ability to inkjet print capacitive elements and modify local resistive properties provides for a new method of fabricating sensor microcircuits on a variety of substrate surfaces.

  18. Photomechanical ablation of biological tissue induced by focused femtosecond laser and its application for acupuncture

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh; Ohta, Mika; Ito, Akihiko; Takaoka, Yutaka

    2013-03-01

    Photomechanical laser ablation due to focused femtosecond laser irradiation was induced on the hind legs of living mice, and its clinical influence on muscle cell proliferation was investigated via histological examination and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to examine the expression of the gene encoding myostatin, which is a growth repressor in muscle satellite cells. The histological examination suggested that damage of the tissue due to the femtosecond laser irradiation was localized on epidermis and dermis and hardly induced in the muscle tissue below. On the other hand, gene expression of the myostatin of muscle tissue after laser irradiation was suppressed. The suppression of myostatin expression facilitates the proliferation of muscle cells, because myostatin is a growth repressor in muscle satellite cells. On the basis of these results, we recognize the potential of the femtosecond laser as a tool for noncontact, high-throughput acupuncture in the treatment of muscle disease.

  19. Femtosecond laser-induced cell-cell surgical attachment.

    PubMed

    Katchinskiy, Nir; Godbout, Roseline; Goez, Helly R; Elezzabi, Abdulhakem Y

    2014-04-01

    Laser-induced cell-cell surgical attachment using femtosecond laser pulses is reported. We have demonstrated the ability to attach single cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength delivered from a Ti:Sapphire laser. To check that the cells did not go through a cell-fusion process, a fluorescent dye Calcein AM was used to verify that the fluorescent dye did not migrate from a dyed cell to a non-dyed cell. The mechanical integrity of the attached joint was assessed using an optical tweezer. Attachment of cells was performed without the induction of cell-cell fusion, with attachment efficiency of 95%, and while preserving the cells' viability. Cell-cell attachment was achieved by delivery of one to two trains of femtosecond laser pulses lasting 15 ms each. Laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane. The inner cell membrane remained intact during the attachment procedure, and isolation of the cells' cytoplasm from the surrounding medium was obtained. A strong physical attachment between the cells was obtained due to the bonding of the membranes' ionized phospholipid molecules and the formation of a joint cellular membrane at the connection point. The cellular attachment technique, femtosecond laser-induced cell-cell surgical attachment, can potentially provide a platform for the creation of engineered tissue and cell cultures. © 2014 Wiley Periodicals, Inc.

  20. Monitoring femtosecond laser microscopic photothermolysis with multimodal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; McLean, David I.; Zeng, Haishan

    2016-02-01

    Photothermolysis induced by femtosecond (fs) lasers may be a promising modality in dermatology because of its advantages of high precision due to multiphoton absorption and deeper penetration due to the use of near infrared wavelengths. Although multiphoton absorption nonlinear effects are capable of precision targeting, the femtosecond laser photothermolysis could still have effects beyond the targeted area if a sufficiently high dose of laser light is used. Such unintended effects could be minimized by real time monitoring photothermolysis during the treatment. Targeted photothermolytic treatment of ex vivo mouse skin dermis was performed with tightly focused fs laser beams. Images of reflectance confocal microscopy (RCM), second harmonic generation (SHG), and two-photon fluorescence (TPF) of the mouse skins were obtained with integrated multimodal microscopy before, during, and after the laser treatment. The RCM, SHG, and TPF signal intensities of the treatment areas changed after high power femtosecond laser irradiation. The intensities of the RCM and SHG signals decreased when the tissue was damaged, while the intensity of the TPF signal increased when the photothermolysis was achieved. Moreover, the TPF signal was more susceptible to the degree of the photothermolysis than the RCM and SHG signals. The results suggested that multimodal microscopy is a potentially useful tool to monitor and assess the femtosecond laser treatment of the skin to achieve microscopic photothermolysis with high precision.

  1. Femtosecond pulsed laser processing of electronic materials: Fundamentals and micro/nano-scale applications

    NASA Astrophysics Data System (ADS)

    Choi, Tae-Youl

    Ultra-short pulsed laser radiation has been shown to be effective for precision materials processing and surface micro-modification. One of advantages is the substantial reduction of the heat penetration depth, which leads to minimal lateral damage. Other advantages include non-thermal nature of ablation process, controlled ablation and ideal characteristics for precision micro-structuring. Yet, fundamental questions remain unsolved regarding the nature of melting and ablation mechanisms in femtosecond laser processing of materials. In addition to micro engineering problems, nano-structuring and nano-fabrication are emerging fields that are of particular interest in conjunction with femtosecond laser processing. A comprehensive experimental study as well as theoretical development is presented to address these issues. Ultra-short pulsed laser irradiation was used to crystallize 100 nm amorphous silicon (a-Si) films. The crystallization process was observed by time-resolved pump-and-probe reflection imaging in the range of 0.2 ps to 100 ns. The in-situ images in conjunction with post-processed SEM and AFM mapping of the crystallized structure provide evidence for non-thermal ultra-fast phase transition and subsequent surface-initiated crystallization. Mechanisms of ultra-fast laser-induced ablation on crystalline silicon and copper are investigated by time-resolved pump-and-probe microscopy in normal imaging and shadowgraph arrangements. A one-dimensional model of the energy transport is utilized to predict the carrier temperature and lattice temperature as well as the electron and vapor flux emitted from the surface. The temporal delay between the pump and probe pulses was set by a precision translation stage up to about 500 ps and then extended to the nanosecond regime by an optical fiber assembly. The ejection of material was observed at several picoseconds to tens of nanoseconds after the main (pump) pulse by high-resolution, ultra-fast shadowgraphs. The ultrashort laser pulse accompanied by the pre-pulse induces air breakdown that can be detrimental to materials processing. A time-resolved pump-and-probe experiment provides distinct evidence for the occurrence of an air plasma and air breakdown. This highly nonlinear phenomenon takes place before the commencement of the ablation process, which is traced beyond elapsed time of the order of 10 ps with respect to the ablating pulse. The nonlinear refractive index of the generated air plasma is calculated as a function of electron density. The self-focusing of the main pulse is identified by the third order nonlinear susceptibility. A crystalline silicon sample is subjected to two optically separated ultra-fast laser pulses of full-width-half-maximum (FWHM) duration of about 80 femtoseconds. These pulses are delivered at wavelength, lambda = 800 nm. Femtosecond-resolved imaging pump-and-probe experiments in reflective and Schlieren configurations have been performed to investigate plasma dynamics and shock wave propagation during the sample ablation process. By using a diffractive optical element (DOE) for beam shaping, microchannels were fabricated. A super-long working distance objective lens was used to machine silicon materials in the sub-micrometer scale. As an extension of micro-machining, the finite difference time domain (FDTD) method is used to assess the feasibility of using near-field distribution of laser light. Gold coated films were machined with nano-scale dimensions and characterized with atomic force microscopy (AFM).

  2. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-07-31

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

  3. Controllable photoinduced optical attenuation in a single-mode optical fiber by irradiation of a femtosecond pulse laser.

    PubMed

    Himei, Yusuke; Qiu, Jianrong; Nakajima, Sotohiro; Sakamoto, Akihiko; Hirao, Kazuyuki

    2004-12-01

    Novel optical attenuation fibers were fabricated by the irradiation of a focused infrared femtosecond pulsed laser onto the core of a silica glass single-mode optical fiber. Optical attenuation at a wavelength of 1.55 microm proportionally increased with increasing numbers of irradiation points and was controllable under laser irradiation conditions. The single-mode property of the waveguide and the mode-field diameter of the optical fiber were maintained after irradiation of the femtosecond laser. It is suggested that the attenuation results from optical scattering at photoinduced spots formed inside the fiber core.

  4. UV waveguides light fabricated in fluoropolymer CYTOP by femtosecond laser direct writing.

    PubMed

    Hanada, Yasutaka; Sugioka, Koji; Midorikawa, Katsumi

    2010-01-18

    We have fabricated optical waveguides inside the UV-transparent polymer, CYTOP, by femtosecond laser direct writing for propagating UV light in biochip applications. Femtosecond laser irradiation is estimated to increase the refractive index of CYTOP by 1.7 x 10(-3) due to partial bond breaking in CYTOP. The waveguide in CYTOP has propagation losses of 0.49, 0.77, and 0.91 dB/cm at wavelengths of 632.8, 355, and 266 nm, respectively.

  5. On femtosecond laser shock peening of stainless steel AISI 316

    NASA Astrophysics Data System (ADS)

    Hoppius, Jan S.; Kukreja, Lalit M.; Knyazeva, Marina; Pöhl, Fabian; Walther, Frank; Ostendorf, Andreas; Gurevich, Evgeny L.

    2018-03-01

    In this paper we report on the competition in metal surface hardening between the femtosecond shock peening on the one hand, and formation of laser-induced periodic surface structures (LIPSS) and surface oxidation on the other hand. Peening of the stainless steel AISI 316 due to shock loading induced by femtosecond laser ablation was successfully demonstrated. However, for some range of processing parameters, surface erosion due to LIPSS and oxidation seems to dominate over the peening effect. Strategies to increase the peening efficiency are discussed.

  6. Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers

    PubMed Central

    Harada, Takaaki; Spence, Stephanie; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Ploeger, Rebecca; Shugar, Aaron N.; Hamm, James F.; Dani, Keshav M.; Dani, Anya R.

    2017-01-01

    Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects. PMID:28772468

  7. Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers.

    PubMed

    Harada, Takaaki; Spence, Stephanie; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Ploeger, Rebecca; Shugar, Aaron N; Hamm, James F; Dani, Keshav M; Dani, Anya R

    2017-01-26

    Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects.

  8. Comparison of Sub-Bowman Keratoplasty Laser In situ Keratomileusis Flap Properties between Microkeratome and Femtosecond Laser.

    PubMed

    Fazel, Farhad; Ghoreishi, Mohammad; Ashtari, Alireza; Arefpour, Reza; Namgar, Mohammad

    2017-01-01

    Since thin and high-quality flaps produce more satisfactory surgical outcomes, flaps created by mechanical microkeratomes are more economical as compared with femtosecond lasers, and no Iranian study has concentrated laser in situ keratomileusis (LASIK) flap peculiarities between Moria Sub-Bowman keratoplasty (SBK) microkeratomes and LDV femtoseconds, the present study compares and contrasts them. This cross-sectional study was done on all patients who underwent LASIK surgery 1-month before this study. Thirty eyes were divided into per group. Flaps in the first group and second group were created, respectively, using Moria SBK microkeratome and LDV femtosecond laser. The other stages of LASIK were done equally in both groups. One month after surgery, the thickness of flaps was measured by anterior segment optical coherence tomography in five regions of flaps. Corneal anterior density was calculated and recorded 1-month after surgery using pentacam and by employing optical densitometry in a distance in the limit range of 0-6 mm from cornea center. Densitometry measurements were obtained and expressed in standardized grayscale units (GSUs). Postsurgery densitometry results reveal that anterior densities of cornea in limit range of 0-2 mm in groups of LDV femtosecond laser and Moria microkeratome are 21.35 ± 0.87 GSU and 22.85 ± 1.25 GSU, respectively. Accordingly, these two groups are significantly different in this regard ( P < 0.001). Moreover, anterior densities of the cornea in the limit range of 2-6 mm in these groups are 19.66 ± 0.99 GSU and 20.73 ± 1.24 GSU, respectively. Accordingly, these two groups are significantly different in this regard ( P = 0.04). There is a lower mean of flap thickness in the case of LDV femtosecond laser. Femtosecond laser method is greatly preferred as compared with Moria microkeratome because of greater homogeneity in flap thickness, smaller thickness, and lower density in optical zone.

  9. Low-temperature diffusion assisted by femtosecond laser-induced modifications at Ni/SiC interface

    NASA Astrophysics Data System (ADS)

    Okada, Tatsuya; Tomita, Takuro; Ueki, Tomoyuki; Hashimoto, Takuya; Kawakami, Hiroki; Fuchikami, Yuki; Hisazawa, Hiromu; Tanaka, Yasuhiro

    2018-01-01

    We investigated low-temperature diffusion at the Ni/SiC interface with the assistance of femtosecond laser-induced modifications. Cross sections of the laser-irradiated lines of two different pulse energies — 0.84 and 0.60 J/cm2 in laser fluence — were compared before and after annealing at 673 K. At the laser fluence of 0.60 J/cm2, a single flat Ni-based particle was formed at the interface after annealing. The SiC crystal under the particle was defect-free. The present results suggest the potential application of femtosecond laser-induced modifications to the low-temperature fabrication of contacts at the interface without introducing crystal defects, e.g., dislocations and stacking faults, in SiC.

  10. Nano-aquarium fabrication with cut-off filter for mechanism study of Phormidium assemblage

    NASA Astrophysics Data System (ADS)

    Hanada, Y.; Sugioka, K.; Ishikawa, I.; Kawano, H.; Miyawaki, A.; Midorikawa, K.

    2010-02-01

    We demonstrate fabrication of microfluidic chips integrated with different functional elements such as optical filters and optical waveguide for mechanism study of gliding movement of Phormidium to a seedling root using a femtosecond (fs) laser. Fs laser direct writing followed by annealing and successive wet etching in dilute hydrofluoric (HF) acid solution resulted in formation of three dimensional (3D) hollow microstructures embedded in a photostructurable glass. The embedded microfludic structures enabled us to easily and efficiently observe Phormidium gliding to the seedling root, which accelerates growth of the seedling. In addition, fabrication of optical filter and optical waveguide integrated with the microfluidic structures in the microchip clarified the mechanism of the gliding movement. Such microchips, referred to as a nano-aquarium, realize the efficient and highly functional observation and analysis of the gliding movement of Phormidium.

  11. Invisible two-dimensional barcode fabrication inside a synthetic fused silica by femtosecond laser processing using a computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Kawashima, Hayato; Yamaji, Masahiro; Suzuki, Jun'ichi; Tanaka, Shuhei

    2011-03-01

    We report an invisible two-dimensional (2D) barcode embedded into a synthetic fused silica by femtosecond laser processing using a computer-generated hologram (CGH) that generates a spatially extended femtosecond pulse beam in the depth direction. When we illuminate the irradiated 2D barcode pattern with a 254 nm ultraviolet (UV) light, a strong red photoluminescence (PL) is observed, and we can read it by using a complementary metal oxide semiconductor (CMOS) camera and image processing technology. This work provides a novel barcode fabrication method by femtosecond laser processing using a CGH and a barcode reading method by a red PL.

  12. Photofragmentation of colloidal solutions of gold nanoparticles under femtosecond laser pulses in IR and visible ranges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danilov, P A; Zayarnyi, D A; Ionin, A A

    The specific features of photofragmentation of sols of gold nanoparticles under focused femtosecond laser pulses in IR (1030 nm) and visible (515 nm) ranges is experimentally investigated. A high photofragmentation efficiency of nanoparticles in the waist of a pulsed laser beam in the visible range (at moderate radiation scattering) is demonstrated; this efficiency is related to the excitation of plasmon resonance in nanoparticles on the blue shoulder of its spectrum, in contrast to the regime of very weak photofragmentation in an IR-laser field of comparable intensity. Possible mechanisms of femtosecond laser photofragmentation of gold nanoparticles are discussed. (extreme light fieldsmore » and their applications)« less

  13. Femtosecond phacoemulsification: the business and the medicine.

    PubMed

    Uy, Harvey S; Edwards, Keith; Curtis, Nick

    2012-01-01

    PURPOSE FOR REVIEW: Phacoemulsification is the preferred method for cataract surgery in the developed world. The number of phacoemulsification procedures performed annually is expected to increase as the population ages. Femtosecond cataract surgery offers several surgical advantages over conventional phacoemulsification and has already attained commercial application in some countries. The purpose of this review is to outline the benefits, risks and commercial issues of femtosecond lasers as applied to cataract surgery. Cataract surgeons are adopting femtosecond technology to perform laser capsulotomy, lens fragmentation, clear cornea incisions and limbal relaxing incisions. Femtosecond lasers clearly perform these surgical steps with greater precision and reproducibility. Further benefits such as improved postoperative refractive results and reduced complication rates are being investigated. Commercial issues have invariably arisen such as cost of installation and operation, value proposition and return on investment. Femtosecond cataract surgery is an evolving procedure that can potentially lead to better and safer surgical outcomes. This review presents the currently available scientific evidence and discusses some of the relevant financial issues concerning this technology.

  14. Improved optical efficiency of bulk laser amplifiers with femtosecond written waveguides

    NASA Astrophysics Data System (ADS)

    Bukharin, Mikhail A.; Lyashedko, Andrey; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.

    2016-04-01

    In the paper we proposed improved technique of three-dimensional waveguides writing with direct femtosecond laser inscription technology. The technique allows, for the first time of our knowledge, production of waveguides with mode field diameter larger than 200 μm. This result broadens field of application of femtosecond writing technology into bulk laser schemes and creates an opportunity to develop novel amplifiers with increased efficiency. We proposed a novel architecture of laser amplifier that combines free-space propagation of signal beam with low divergence and propagation of pump irradiation inside femtosecond written waveguide with large mode field diameter due to total internal reflection effect. Such scheme provides constant tight confinement of pump irradiation over the full length of active laser element (3-10 cm). The novel amplifier architecture was investigated numerically and experimentally in Nd:phosphate glass. Waveguides with 200 μm mode field diameter were written with high frequency femtosecond oscillator. Proposed technique of three-dimensional waveguides writing based on decreasing and compensation of spherical aberration effect due to writing in heat cumulative regime and dynamic pulse energy adjustment at different depths of writing. It was shown, that written waveguides could increase optical efficiency of amplifier up to 4 times compared with corresponding usual free-space schemes. Novelty of the results consists in technique of femtosecond writing of waveguides with large mode field diameter. Actuality of the results consists in originally proposed architecture allows to improve up to 4 times optical efficiency of conventional bulk laser schemes and especially ultrafast pulse laser amplifiers.

  15. Profitability analysis of a femtosecond laser system for cataract surgery using a fuzzy logic approach

    PubMed Central

    Trigueros, José Antonio; Piñero, David P; Ismail, Mahmoud M

    2016-01-01

    AIM To define the financial and management conditions required to introduce a femtosecond laser system for cataract surgery in a clinic using a fuzzy logic approach. METHODS In the simulation performed in the current study, the costs associated to the acquisition and use of a commercially available femtosecond laser platform for cataract surgery (VICTUS, TECHNOLAS Perfect Vision GmbH, Bausch & Lomb, Munich, Germany) during a period of 5y were considered. A sensitivity analysis was performed considering such costs and the countable amortization of the system during this 5y period. Furthermore, a fuzzy logic analysis was used to obtain an estimation of the money income associated to each femtosecond laser-assisted cataract surgery (G). RESULTS According to the sensitivity analysis, the femtosecond laser system under evaluation can be profitable if 1400 cataract surgeries are performed per year and if each surgery can be invoiced more than $500. In contrast, the fuzzy logic analysis confirmed that the patient had to pay more per surgery, between $661.8 and $667.4 per surgery, without considering the cost of the intraocular lens (IOL). CONCLUSION A profitability of femtosecond laser systems for cataract surgery can be obtained after a detailed financial analysis, especially in those centers with large volumes of patients. The cost of the surgery for patients should be adapted to the real flow of patients with the ability of paying a reasonable range of cost. PMID:27500115

  16. Terahertz pulse generation from metal nanoparticle ink

    NASA Astrophysics Data System (ADS)

    Kato, Kosaku; Takano, Keisuke; Tadokoro, Yuzuru; Phan, Thanh Nhat Khoa; Nakajima, Makoto

    2016-11-01

    Terahertz pulse generation from metallic nanostructures irradiated by femtosecond laser pulses is of interest because the conversion efficiency from laser pulses to terahertz waves is increased by the local field enhancement resulting from the plasmon oscillation. In this talk we present our recent study on terahertz generation from metal nanoparticle ink. We baked a silver nanoparticle ink spin-coated onto a glass coverslip in various temperatures. On the surface of the baked ink, bumpy nanostructures are spontaneously formed, and the average size of bumps depends on the baking temperature. These structures are expected to lead to local field enhancement and then large nonlinear polarizations on the surface. The baked ink was irradiated by the output of regeneratively amplified Ti:sapphire femtosecond laser at an incidence angle of 45°. Waveforms of generated terahertz pulses are detected by electro-optical sampling. The generation efficiency was high when the average diameter of bumps was around 100 nm, which is realized when the ink is baked in 205 to 235°C in our setup. One of our next research targets is terahertz wave generation from micro-patterned metallic nanoparticle ink. It is an advantage of the metal nanoparticle ink that by using inkjet printers one can fabricate various patterns with micrometer scales, in which terahertz waves have a resonance. Combination of microstructures made by a printer and nanostructure spontaneously formed in the baking process will provide us terahertz emitters with unique frequency characteristics.

  17. Optical breakdown of air triggered by femtosecond laser filaments

    NASA Astrophysics Data System (ADS)

    Polynkin, Pavel; Moloney, Jerome V.

    2011-10-01

    We report experiments on the generation of dense plasma channels in ambient air using a dual laser pulse excitation scheme. The dilute plasma produced through the filamentation of an ultraintense femtosecond laser pulse is densified via avalanche ionization driven by a co-propagating multi-Joule nanosecond pulse.

  18. Dynamics of focused femtosecond laser pulse during photodisruption of crystalline lens

    NASA Astrophysics Data System (ADS)

    Gupta, Pradeep Kumar; Singh, Ram Kishor; Sharma, R. P.

    2018-04-01

    Propagation of laser pulses of femtosecond time duration (focused through a focusing lens inside the crystalline lens) has been investigated in this paper. Transverse beam diffraction, group velocity dispersion, graded refractive index structure of the crystalline lens, self-focusing, and photodisruption in which plasma is formed due to the high intensity of laser pulses through multiphoton ionization have been taken into account. The model equations are the modified nonlinear Schrödinger equation along with a rate equation that takes care of plasma generation. A close analysis of model equations suggests that the femtosecond laser pulse duration is critical to the breakdown in the lens. Our numerical simulations reveal that the combined effect of self-focusing and multiphoton ionization provides the breakdown threshold. During the focusing of femtosecond laser pulses, additional spatial pulse splitting arises along with temporal splitting. This splitting of laser pulses arises on account of self-focusing, laser induced breakdown, and group velocity distribution, which modifies the shape of laser pulses. The importance of the present study in cavitation bubble generation to improve the elasticity of the eye lens has also been discussed in this paper.

  19. Simple and effective preparation of nano-pulverized curcumin by femtosecond laser ablation and the cytotoxic effect on C6 rat glioma cells in vitro.

    PubMed

    Tagami, Tatsuaki; Imao, Yukino; Ito, Shunsuke; Nakada, Akiko; Ozeki, Tetsuya

    2014-07-01

    The pulverization of poorly water-soluble drugs and drug candidates into nanoscale particles is a simple and effective means of increasing their pharmacological effect. Consequently, efficient methods for pulverizing compounds are being developed. Femtosecond lasers, which emit ultrashort laser pulses, can be used to generate nanoscale particles without heating and are finding in various fields, including pharmaceutical science. Laser ablation holds promise as a novel top-down pulverization method for obtaining drug nanoparticles. We used a poorly water-soluble compound, curcumin (diferuloyl methane), to understand the characteristics of femtosecond laser pulverization. Various factors such as laser strength, laser scan speed, and the buffer solution affected the size of the curcumin particles. The minimum curcumin particle size was approximately 500 nm; the particle size was stable after 30 days. In vitro studies suggested that curcumin nanoparticles exhibited a cytotoxic effect on C6 rat glioma cells, and remarkable intracellular uptake of the curcumin nanoparticles was observed. The results suggest that femtosecond laser ablation is a useful approach for preparing curcumin nanoparticles that exhibit remarkable therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Femtosecond Beam Sources and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uesaka, Mitsuru

    2004-12-07

    Short particle beam science has been promoted by electron linac and radiation chemistry up to picoseconds. Recently, table-top TW laser enables several kinds of short particle beams and pump-and-probe analyses. 4th generation SR sources aim to generation and application of about 100 fs X-ray. Thus, femtosecond beam science has become one of the important field in advanced accelerator concepts. By using electron linac with photoinjector, about 200 fs single bunch and 3 fs multi-bunches are available. Tens femtoseconds monoenergetic electron bunch is expected by laser plasma cathode. Concerning the electron bunch diagnosis, we have seen remarkable progress in streak camera,more » coherent radiation spectroscopy, fluctuation method and E/O crystal method. Picosecond time-resolved pump-and-probe analysis by synchronizing electron linac and laser is now possible, but the timing jitter and drift due to several fluctuations in electronic devices and environment are still in picoseconds. On the other hand, the synchronization between laser and secondary beam is done passively by an optical beam-splitter in the system based on one TW laser. Therefore, the timing jitter and drift do not intrinsically exist there. The author believes that the femtosecond time-resolved pump-and-probe analysis must be initiated by the laser plasma beam sources. As to the applications, picosecond time-resolved system by electron photoinjector/linac and femtosecond laser are operating in more than 5 facilities for radiation chemistry in the world. Ti:Sapphire-laser-based repetitive pump-and-probe analysis started by time-resolved X-ray diffraction to visualize the atomic motion. Nd:Glass-laser-based single-shot analysis was performed to visualize the laser ablation via the single-shot ion imaging. The author expects that protein dynamics and ultrafast nuclear physics would be the next interesting targets. Monograph titled 'Femtosecond Beam Science' is published by Imperial College Press/World Scientific in 2004.« less

  1. Secondary pool boiling effects

    NASA Astrophysics Data System (ADS)

    Kruse, C.; Tsubaki, A.; Zuhlke, C.; Anderson, T.; Alexander, D.; Gogos, G.; Ndao, S.

    2016-02-01

    A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top of the microstructures, resulting in a decreased surface superheat with an increasing heat flux. This decrease in the wall superheat at higher heat fluxes is reflected by a "hook back" of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.

  2. The dependence on optical energy of terahertz emission from air plasma induced by two-color femtosecond laser-pulses

    NASA Astrophysics Data System (ADS)

    Wu, Si-Qing; Liu, Jin-Song; Wang, Sheng-Lie; Hu, Bing

    2013-10-01

    The generation of terahertz (THz) emission from air plasma induced by two-color femtosecond laser pulses is studied on the basis of a transient photocurrent model. While the gas is ionized by the two-color femtosecond laser-pulses composed of the fundamental and its second harmonic, a non-vanishing directional photoelectron current emerges, radiating a THz electromagnetic pulse. The gas ionization processes at three different laser-pulse energies are simulated, and the corresponding THz waveforms and spectra are plotted. The results demonstrate that, by keeping the laser-pulse width and the relative phase between two pulses invariant when the laser energy is at a moderate value, the emitted THz fields are significantly enhanced with a near-linear dependence on the optical energy.

  3. In situ ultrahigh-resolution optical coherence tomography characterization of eye bank corneal tissue processed for lamellar keratoplasty.

    PubMed

    Brown, Jamin S; Wang, Danling; Li, Xiaoli; Baluyot, Florence; Iliakis, Bernie; Lindquist, Thomas D; Shirakawa, Rika; Shen, Tueng T; Li, Xingde

    2008-08-01

    To use optical coherence tomography (OCT) as a noninvasive tool to perform in situ characterization of eye bank corneal tissue processed for lamellar keratoplasty. A custom-built ultrahigh-resolution OCT (UHR-OCT) was used to characterize donor corneal tissue that had been processed for lamellar keratoplasty. Twenty-seven donor corneas were analyzed. Four donor corneas were used as controls, whereas the rest were processed into donor corneal buttons for lamellar transplantation by using hand dissection, a microkeratome, or a femtosecond laser. UHR-OCT was also used to noninvasively characterize and monitor the viable corneal tissue immersed in storage medium over 3 weeks. The UHR-OCT captured high-resolution images of the donor corneal tissue in situ. This noninvasive technique showed the changes in donor corneal tissue morphology with time while in storage medium. The characteristics of the lamellar corneal tissue with each processing modality were clearly visible by UHR-OCT. The in situ characterization of the femtosecond laser-cut corneal tissue was noted to have more interface debris than shown by routine histology. The effects of the femtosecond laser microcavitation bubbles on the corneal tissue were well visualized at the edges of the lamellar flap while in storage medium. The results of our feasibility study show that UHR-OCT can provide superb, in situ microstructural characterization of eye bank corneal tissue noninvasively. The UHR-OCT interface findings and corneal endothelial disc thickness uniformity analysis are valuable information that may be used to optimize the modalities and parameters for lamellar tissue processing. The UHR-OCT is a powerful approach that will allow us to further evaluate the tissue response to different processing techniques for posterior lamellar keratoplasty. It may also provide information that can be used to correlate with postoperative clinical outcomes. UHR-OCT has the potential to become a routine part of tissue analysis for any eye bank or centers creating customized lamellar corneal tissue for transplantation.

  4. Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Lessel, Matthias; Nietzsche, Sander; Zeitz, Christian; Jacobs, Karin; Lemke, Cornelius; König, Karsten

    2012-10-01

    Laser-assisted surgery based on multiphoton absorption of near-infrared laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. In this paper we describe usage of an ultrashort femtosecond laser scanning microscope for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) and an in situ pulse duration at the target ranging from 12 fs up to 3 ps was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery of cells and cellular organelles.

  5. Optical synchronization system for femtosecond X-ray sources

    DOEpatents

    Wilcox, Russell B [El Cerrito, CA; Holzwarth, Ronald [Munich, DE

    2011-12-13

    Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  6. Comparison of efficacy and safety of laser in situ keratomileusis using 2 femtosecond laser platforms in contralateral eyes.

    PubMed

    Rosman, Mohamad; Hall, Reece C; Chan, Cordelia; Ang, Andy; Koh, Jane; Htoon, Hla Myint; Tan, Donald T H; Mehta, Jodhbir S

    2013-07-01

    To compare the efficacy, predictability, and refractive outcomes of laser in situ keratomileusis (LASIK) using 2 femtosecond platforms for flap creation. Multisurgeon single center. Clinical trial. Bilateral femtosecond LASIK was performed using the Wavelight Allegretto Eye-Q 400 Hz excimer laser system. The Visumax femtosecond platform (Group 1) was used to create the LASIK flap in 1 eye, while the Intralase femtosecond platform (Group 2) was used to create the LASIK flap in the contralateral eye. The preoperative, 1-month, and 3-month postoperative visual acuities, refraction, and contrast sensitivity in the 2 groups were compared. The study enrolled 45 patients. Three months after femtosecond LASIK, 79.5% of eyes in Group 1 and 82.1% in Group 2 achieved an uncorrected distance visual acuity of 20/20 (P=.808). The mean efficacy index was 0.97 in Group 1 and 0.98 in Group 2 at 3 months (P=.735); 89.7% of eyes in Group 1 and 84.6% of eyes in Group 2 were within ± 0.50 diopter of emmetropia at 3 months (P=.498). No eye in either group lost more than 2 lines of corrected distance visual acuity. The mean safety index at 3 months was 1.11 in Group 1 and 1.10 in Group 2 (P=.570). The results of LASIK with both femtosecond lasers were similar, and both platforms produced efficacious and predictable LASIK outcomes. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. High power, high contrast hybrid femtosecond laser systems

    NASA Astrophysics Data System (ADS)

    Dabu, Razvan

    2017-06-01

    For many research applications a very high laser intensity of more than 1022 W/cm2 in the focused beam is required. If a laser intensity of about 1011W/cm2 is reached on the target before the main laser pulse, the generated pre-plasma disturbs the experiment. High power femtosecond lasers must be tightly focused to get high intensity and in the same time must have a high enough intensity contrast of the temporally compressed amplified pulses. Reaching an intensity contrast in the range of 1012 represents a challenging task for a Ti:sapphire CPA laser. Hybrid femtosecond lasers combine optical parametric chirped pulsed amplification (OPCPA) in nonlinear crystals with the chirped pulse amplification (CPA) in laser active media. OPCPA provides large amplification spectral bandwidth and improves the intensity contrast of the amplified pulses. A key feature of these systems consists in the adaptation of the parametric amplification phase-matching bandwidth of nonlinear crystals to the spectral gain bandwidth of laser amplifying Ti:sapphire crystals. OPCPA in BBO crystals up to mJ energy level in the laser Front-End, followed by CPA up to ten/hundred Joules in large aperture Ti:sapphire crystals, represents a suitable solution for PW-class femtosecond lasers. The configuration and expected output beam characteristics of the hybrid amplification 2 × 10 PW ELI-NP laser are described.

  8. Interaction of femtosecond laser pulses with plants: towards distinguishing weeds and crops using plasma temperature

    NASA Astrophysics Data System (ADS)

    Kunz, Jeremy N.; Voronine, Dmitri V.; Ko, Brian A.; Lee, Ho Wai Howard; Rana, Aman; Bagavathiannan, Muthukumar V.; Sokolov, Alexei V.; Scully, Marlan O.

    2017-05-01

    The ability to distinguish between crops and weeds using sensors from a distance will greatly benefit the farming community through improved and efficient scouting for weeds, reduced herbicide input costs and improved profitability. In the present study, we examined the utility of femtosecond laser-induced breakdown spectroscopy (LIBS) for plant species differentiation. Greenhouse-grown plants of dallisgrass, wheat, soybean and bell pepper were evaluated using LIBS under an ambient environment. LIBS experiments were performed on the leaf samples of different plant species using a femtosecond laser system with an inexpensive lightweight detector. Temperatures of laser-induced plasma in plants depend on many parameters and were determined for each of the study species by the constituent elements interacting with femtosecond laser pulses. Using elemental calcium transitions in plant tissue samples to measure plasma temperatures, we report consistent differences among the four study species, with average values ranging from 5090 ± 168 K (soybean) to 5647 ± 223 K (dallisgrass).

  9. Dynamics of Molecular Emission Features from Nanosecond, Femtosecond Laser and Filament Ablation Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.

    2016-06-15

    The evolutionary paths of molecular species and nanoparticles in laser ablation plumes are not well understood due to the complexity of numerous physical processes that occur simultaneously in a transient laser-plasma system. It is well known that the emission features of ions, atoms, molecules and nanoparticles in a laser ablation plume strongly depend on the laser irradiation conditions. In this letter we report the temporal emission features of AlO molecules in plasmas generated using a nanosecond laser, a femtosecond laser and filaments generated from a femtosecond laser. Our results show that, at a fixed laser energy, the persistence of AlOmore » is found to be highest and lowest in ns and filament laser plasmas respectively while molecular species are formed at early times for both ultrashort pulse (fs and filament) generated plasmas. Analysis of the AlO emission band features show that the vibrational temperature of AlO decays rapidly in filament assisted laser ablation plumes.« less

  10. Direct analysis of intact biological macromolecules by low-energy, fiber-based femtosecond laser vaporization at 1042 nm wavelength with nanospray postionization mass spectrometry.

    PubMed

    Shi, Fengjian; Flanigan, Paul M; Archer, Jieutonne J; Levis, Robert J

    2015-03-17

    A fiber-based laser with a pulse duration of 435 fs and a wavelength of 1042 nm was used to vaporize biological macromolecules intact from the condensed phase into the gas phase for nanospray postionization and mass analysis. Laser vaporization of dried standard protein samples from a glass substrate by 10 Hz bursts of 20 pulses having 10 μs pulse separation and <50 μJ pulse energy resulted in signal comparable to a metal substrate. The protein signal observed from an aqueous droplet on a glass substrate was negligible compared to either a droplet on metal or a thin film on glass. The mass spectra generated from dried and aqueous protein samples by the low-energy, fiber laser were similar to the results from high-energy (500 μJ), 45-fs, 800-nm Ti:sapphire-based femtosecond laser electrospray mass spectrometry (LEMS) experiments, suggesting that the fiber-based femtosecond laser desorption mechanism involves a nonresonant, multiphoton process, rather than thermal- or photoacoustic-induced desorption. Direct analysis of whole blood performed without any pretreatment resulted in features corresponding to hemoglobin subunit-heme complex ions. The observation of intact molecular ions with low charge states from protein, and the tentatively assigned hemoglobin α subunit-heme complex from blood suggests that fiber-based femtosecond laser vaporization is a "soft" desorption source at a laser intensity of 2.39 × 10(12) W/cm(2). The low-energy, turnkey fiber laser demonstrates the potential of a more robust and affordable laser for femtosecond laser vaporization to deliver biological macromolecules into the gas phase for mass analysis.

  11. [INVITED] Control of femtosecond pulsed laser ablation and deposition by temporal pulse shaping

    NASA Astrophysics Data System (ADS)

    Garrelie, Florence; Bourquard, Florent; Loir, Anne--Sophie; Donnet, Christophe; Colombier, Jean-Philippe

    2016-04-01

    This study explores the effects of temporal laser pulse shaping on femtosecond pulsed laser deposition (PLD). The potential of laser pulses temporally tailored on ultrafast time scales is used to control the expansion and the excitation degree of ablation products including atomic species and nanoparticles. The ablation plume generated by temporally shaped femtosecond pulsed laser ablation of aluminum and graphite targets is studied by in situ optical diagnostic methods. Taking advantage of automated pulse shaping techniques, an adaptive procedure based on spectroscopic feedback regulates the irradiance for the enhancement of typical plasma features. Thin films elaborated by unshaped femtosecond laser pulses and by optimized sequence indicate that the nanoparticles generation efficiency is strongly influenced by the temporal shaping of the laser irradiation. The ablation processes leading either to the generation of the nanoparticles either to the formation of plasma can be favored by using a temporal shaping of the laser pulse. Insights are given on the possibility to control the quantity of the nanoparticles. The temporal laser pulse shaping is shown also to strongly modify the laser-induced plasma contents and kinetics for graphite ablation. Temporal pulse shaping proves its capability to reduce the number of slow radicals while increasing the proportion of monomers, with the addition of ionized species in front of the plume. This modification of the composition and kinetics of plumes in graphite ablation using temporal laser pulse shaping is discussed in terms of modification of the structural properties of deposited Diamond-Like Carbon films (DLC). This gives rise to a better understanding of the growth processes involved in femtosecond-PLD and picosecond-PLD of DLC suggesting the importance of neutral C atoms, which are responsible for the subplantation process.

  12. Surface morphology of refractive-index waveguide gratings fabricated in polymer films

    NASA Astrophysics Data System (ADS)

    Dong, Yi; Song, Yan-fang; Ma, Lei; Gao, Fang-fang

    2016-09-01

    The characteristic modifications are reported on the surface of polymeric waveguide film in the process of volume- grating fabrication. The light from a mode-locked 76 MHz femtosecond laser with pulse duration of 200 fs and wavelength of 800 nm is focused normal to the surface of the sample. The surface morphology modifications are ascribed to a fact that surface swelling occurs during the process. Periodic micro-structure is inscribed with increasing incident power. The laser-induced swelling threshold on the grating, which is higher than that of two-photon initiated photo-polymerization (TPIP) (8 mW), is verified to be about 20 mW. It is feasible to enhance the surface smoothness of integrated optics devices for further encapsulation. The variation of modulation depth is studied for different values of incident power and scan spacing. Ablation accompanied with surface swelling appears when the power is higher. By optimizing the laser carving parameters, highly efficient grating devices can be fabricated.

  13. Curve micromachining on the edges of nitinol biliary stent by ultrashort pulses laser

    NASA Astrophysics Data System (ADS)

    Hung, Chia-Hung; Chang, Fuh-Yu

    2017-05-01

    In this study, a curve micromaching process on the edges of nitinol biliary stent was proposed by a femtosecond laser system with a galvano-mirror scanner. Furthermore, the outer diameter of nitinol tube was 5.116 mm, its inner diameter was 4.648 mm, and its length was 100 mm. The initial fabricated results of nitinol biliary stent represented that the edges of nitinol biliary stent were steep and squared by femtosecond laser. However, the results also indicated that if the laser movement path was precisely programmed by utilizing the unique characteristic of Gaussian beam of femtosecond laser with aligning the edges of stent, the radius of edges enhanced significantly from 9 μm to 42.5 μm. As a result, the edges of nitinol biliary stent can be successfully fabricated from squared edges to rounded-shaped edges with precise dimension, clean surface morphology, and minimal heat-affected zone remained. Hence, the nitinol biliary stent, after femtosecond laser micromachining, would not need any further post-process to remove heat-affected zone and the squared edges.

  14. Acoustic experimental investigation of interaction femtosecond laser pulses with gas-aerosol media and biological tissues

    NASA Astrophysics Data System (ADS)

    Bochkarev, N. N.; Kabanov, A. M.; Stepanov, A. N.

    2008-02-01

    Using two optical acoustic approaches we experimentally investigated spatial location of filament zone of propagation channel of focused laser radiation. For femtosecond pulses passing in air it was shown that nonlinear focus length had spatial scale of 1/P at initial power P moderate for self-focusing and at optical system focus distance significantly lower than Rayleigh beam length. The results of experimental optical acoustic investigation of femto- and nanosecond pulses attenuation by some biological tissues (muscular tissue, adipose tissue, cutaneous covering, milk) and optical breakdown thresholds on these one are presented. It was shown that penetration depth of short laser pulse radiation into biological tissues is the same as for longer one. However, amplitude of acoustic response to a process of interaction of femtosecond laser pulse with biological tissue is larger in several times than that to interaction with nanosecond pulses of the same power and spectral distribution. The obtained of threshold values can be interesting for tabulation of limit allowable levels of irradiation at work with laser radiation. Such values are unknown for femtosecond laser pulses today.

  15. Postfabrication Phase Error Correction of Silicon Photonic Circuits by Single Femtosecond Laser Pulses

    DOE PAGES

    Bachman, Daniel; Chen, Zhijiang; Wang, Christopher; ...

    2016-11-29

    Phase errors caused by fabrication variations in silicon photonic integrated circuits are an important problem, which negatively impacts device yield and performance. This study reports our recent progress in the development of a method for permanent, postfabrication phase error correction of silicon photonic circuits based on femtosecond laser irradiation. Using beam shaping technique, we achieve a 14-fold enhancement in the phase tuning resolution of the method with a Gaussian-shaped beam compared to a top-hat beam. The large improvement in the tuning resolution makes the femtosecond laser method potentially useful for very fine phase trimming of silicon photonic circuits. Finally, wemore » also show that femtosecond laser pulses can directly modify silicon photonic devices through a SiO 2 cladding layer, making it the only permanent post-fabrication method that can tune silicon photonic circuits protected by an oxide cladding.« less

  16. A stabilized optical frequency comb based on an Er-doped fiber femtosecond laser

    NASA Astrophysics Data System (ADS)

    Xia, Chuanqing; Wu, Tengfei; Zhao, Chunbo; Xing, Shuai

    2018-03-01

    An optical frequency comb based on a 250 MHz home-made Er-doped fiber femtosecond laser is presented in this paper. The Er-doped fiber laser has a ring cavity and operates mode-locked in femtosecond regime with the technique of nonlinear polarization rotation. The pulse duration is 118 fs and the spectral width is 30 nm. A part of the femtosecond laser is amplified in Er-doped fiber amplifier before propagating through a piece of highly nonlinear fiber for expanding the spectrum. The carrier-envelope offset frequency of the comb which has a signal-to-noise ratio more than 35 dB is extracted by means of f-2f beating. It demonstrates that both carrier-envelope offset frequency and repetition frequency keep phase locked to a Rubidium atomic clock simultaneously for 2 hours. The frequency stabilized fiber combs will be increasingly applied in optical metrology, attosecond pulse generation, and absolute distance measurement.

  17. Femtosecond Laser Filamentation for Atmospheric Sensing

    PubMed Central

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  18. Second-wave hydrodissection for aspiration of cortical remains after femtosecond laser-assisted cataract surgery.

    PubMed

    Lake, Jonathan C; Boianovsky, Celso; de Faria Pacini, Thiago; Crema, Armando

    2018-06-14

    We describe the technique of second-wave hydrodissection (the first wave being the initial cortical cleaving hydrodissection) performed after the removal of the cataract nucleus in femtosecond laser-assisted cataract surgery. After femtosecond laser application, the cortex is typically found adhered to the anterior capsule. Under high magnification, a steady stream of a balanced salt solution is directed toward the anterior capsule using a hydrodissection cannula. Full cleavage of the remaining cortex is observed by noting the appearance of a dark inner circle by the capsulotomy edge once the balanced salt solution wave has separated the cortex from the capsule. Irrigation/aspiration (I/A) of the cortical remains after the second wave is faster than I/A without this step in femtosecond laser-assisted cataract surgery. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. Evaluation of human sclera after femtosecond laser ablation using two photon and confocal microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Kurtz, Ronald; Juhasz, Tibor

    2012-08-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial thickness intrascleral channels can be created with a femtosecond laser operating at a wavelength of 1700 nm. Such channels have the potential to increase outflow facility and reduce elevated IOP. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in human cadaver eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such channels. This demonstrates that concept of integrating femtosecond laser surgery, and two-photon and confocal imaging has the future potential for image-guided high-precision surgery in transparent and translucent tissue.

  20. Differences in energy expenditure for conventional and femtosecond-assisted cataract surgery using 2 different phacoemulsification systems.

    PubMed

    Yesilirmak, Nilufer; Diakonis, Vasilios F; Sise, Adam; Waren, Daniel P; Yoo, Sonia H; Donaldson, Kendall E

    2017-01-01

    To compare the mean cumulative dissipated energy (CDE) in patients having femtosecond laser-assisted or conventional phacoemulsification cataract surgery using 2 different phacoemulsification platforms. Bascom Palmer Eye Institute, Miami, Florida, USA. Prospective comparative nonrandomized clinical study. Consecutive patients were scheduled to have femtosecond laser-assisted cataract surgery with the Lensx laser or conventional phacoemulsification using an active-fluidics torsional platform (Centurion) or torsional platform (Infiniti). The mean CDE and cataract grade were recorded. The study comprised 570 eyes (570 patients). There was no statistically significant difference in mean age (P = .41, femtosecond group; P = .33, conventional group) or cataract grade (P = .78 and P = .45, respectively) between the active-fluidics and gravity-fluidics platforms. In femtosecond cases (145 eyes), the mean CDE (percent-seconds) was 5.18 ± 4.58 (SD) with active fluidics and 7.00 ± 6.85 with gravity fluidics; in conventional cases (425 eyes), the mean CDE was 7.77 ± 6.97 and 11.43 ± 9.12, respectively. In both femtosecond cases and conventional cases, the CDE was lower with the active-fluidics platform than with the gravity-fluidics platform (P = .029, femtosecond group; P < .001 conventional group). With both fluidics platforms, the mean CDE was significantly lower in the femtosecond group than in the conventional group (both P < .001). The active-fluidics phacoemulsification platform achieved lower CDE values than the gravity-fluidics platform for conventional cataract extraction. Femtosecond laser pretreatment with the active-fluidics platform further reduced CDE. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Temperature increase in human cadaver retina during direct illumination by femtosecond laser pulses.

    PubMed

    Sun, Hui; Mikula, Eric; Kurtz, Ronald M; Juhasz, Tibor

    2010-04-01

    Femtosecond lasers have been approved by the US Food and Drug Administration for ophthalmic surgery, including use in creating corneal flaps in LASIK surgery. During normal operation, approximately 50% to 60% of laser energy may pass beyond the cornea, with potential effects on the retina. As a model for retinal laser exposure during femtosecond corneal surgery, we measured the temperature rise in human cadaver retinas during direct illumination by the laser. The temperature increase induced by a 150-kHz iFS Advanced Femtosecond Laser (Abbott Medical Optics) in human cadaver retinas was measured in situ using an infrared thermal imaging camera. To model the geometry of the eye during the surgery, an approximate 11x11-mm excised section of human cadaver retina was placed 17 mm behind the focus of the laser beam. The temperature field was observed in 10 cadaver retina samples at energy levels ranging from 0.4 to 1.6 microJ (corresponding approximately to surgical energies of 0.8 to 3.2 microJ per pulse). Maximal temperature increases up to 1.15 degrees C (corresponding to 3.2 microJ and 52-second illumination) were observed in the cadaver retina sections with little variation in temperature profiles between specimens for the same laser energy illumination. The commercial iFS Advanced Femtosecond Laser operating with pulse energies at approximately the lower limit of the range evaluated in this study would be expected to result in a 0.2 degrees C temperature increase and do not therefore present a safety hazard to the retina. Copyright 2010, SLACK Incorporated.

  2. Wavelength Dependence of Nanosecond IR Laser-Induced Breakdown in Water: Evidence for Multiphoton Initiation via an Intermediate State

    DTIC Science & Technology

    2015-04-29

    bubble generation and shock wave emission in water for femtosecond to nanosecond laser pulses . ...breakdown threshold in water for nanosecond (ns) IR laser pulses . Avalanche ionization (AI) is the most powerful mechanism driving IR ns laser-induced...acknowledged that femtosecond (fs) and picosecond (ps) IR breakdown is initiated by photoionization because ultrashort pulses are sufficiently

  3. Fabrication and Characterization of Linear and Nonlinear Photonic Devices in Fused Silica by Femtosecond Laser Writing

    NASA Astrophysics Data System (ADS)

    Ng, Jason Clement

    Femtosecond laser processing is a flexible, three-dimensional (3D) fabrication technique used to make integrated low-loss photonic devices in fused silica. My work expanded the suite of available optical devices through the design and optimization of linear optical components such as low-loss (< 0.5 dB) curved waveguides, directional couplers (DCs), and Mach-Zehnder interferometers (MZIs). The robustness and consistency of this maturing fabrication process was also reinforced through the scalable design and integration of a more complex, multi-component flat-top interleaver over a wide >70-nm spectral window. My work further complemented femtosecond laser processing with the development of nonlinear device capabilities. While thermal poling is a well known process, significant challenges had restricted the development of nonlinear devices in fused silica. The laser writing process would erase the induced nonlinearity (erasing) while a written waveguide core acted as a barrier to the thermal poling process (blocking). Using second harmonic (SH) microscopy, the effectiveness of thermal poling on laser-written waveguides was systematically analyzed leading to the technique of "double poling", which effectively overcomes the two challenges of erasing and blocking. In this new process the substrate is poled before and after waveguide writing to restore the induced nonlinearity within the vicinity of the waveguide to enable effective poling for inducing a second-order nonlinearity (SON) in fused silica. A new flexible, femtosecond laser based erasure process was also developed to enable quasi-phase matching and to form arbitrarily chirped gratings. Following this result, second harmonic generation (SHG) in a quasiphase-matched (QPM) femtosecond laser written waveguide device was demonstrated. SHG in a chirped QPM structure was also demonstrated to illustrate the flexibility of the femtosecond laser writing technique. These are the first demonstration of frequency doubling in an all-femtosecond-laser-written structure. A maximum SHG conversion efficiency of 1.3 +/- 0.1x10 -11/W-cm-2 was achieved for the fundamental wavelength of 1552.8 nm with a phase-matching bandwidth of 4.4 nm for a 10.0-mm-long waveguide. For a shorter sample, an effective SON of chi(2) = 0:020 +/- 0:002 pm/V was measured. The results collectively demonstrate the versatility of femtosecond laser additive and subtractive fabrication and opens up the development of integrated nonlinear applications and photonic devices for future lab-on-a-chip and lab-in-a-fiber devices.

  4. Corneal tissue interactions of a new 345 nm ultraviolet femtosecond laser.

    PubMed

    Hammer, Christian M; Petsch, Corinna; Klenke, Jörg; Skerl, Katrin; Paulsen, Friedrich; Kruse, Friedrich E; Seiler, Theo; Menzel-Severing, Johannes

    2015-06-01

    To assess the suitability of a new 345 nm ultraviolet (UV) femtosecond laser for refractive surgery. Department of Ophthalmology, University of Erlangen-Nürnberg, Erlangen, Germany. Experimental study. Twenty-five porcine corneas were used for stromal flap or lamellar bed creation (stromal depth, 150 μm) and 15 rabbit corneas for lamellar bed creation near the endothelium. Ultraviolet femtosecond laser cutting-line morphology, gas formation, and keratocyte death rate were evaluated using light and electron microscopy and compared with a standard infrared (IR) femtosecond laser. Endothelial cell survival was examined after application of a laser cut near the endothelium. Flaps created by the UV laser were lifted easily. Gas formation was reduced 4.2-fold compared with the IR laser (P = .001). The keratocyte death rate near the interface was almost doubled; however, the death zone was confined to a region within 38 μm ± 10 (SD) along the cutting line. Histologically and ultrastructurally, a distinct and continuous cutting line was not found after UV femtosecond laser application if flap lifting was omitted and standard energy parameters were used. Instead, a regular pattern of vertical striations, presumably representing self-focusing induced regions of optical tissue breakdown, were identified. Lamellar bed creation with standard energy parameters 50 μm from the endothelium rendered the endothelial cells intact and viable. The new 345 nm femtosecond laser is a candidate for pending in vivo trials and future high-precision flap creation, intrastromal lenticule extraction, and ultrathin Descemet-stripping endothelial keratoplasty. Mr. Klenke and Ms. Skerl were paid employees of Wavelight GmbH when the study was performed. Dr. Seiler is a scientific consultant to Wavelight GmbH. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Applications of ultrashort laser pulses in science and technology; Proceedings of the Meeting, The Hague, Netherlands, Mar. 12, 13, 1990

    NASA Technical Reports Server (NTRS)

    Antonetti, Andre (Editor)

    1990-01-01

    Topics discussed are on the generation of high-intensity femtosecond lasers, the high-repetition and infrared femtosecond pulses, and physics of semiconductors and applications. Papers are presented on the femtosecond pulse generation at 193 nm; the generation of intense subpicosecond and femtosecond pulses; intense tunable subpicosecond and femtosecond pulses in the visible and infrared, generated by optical parametric oscillators; a high-efficiency high-energy optical amplifier for femtosecond pulses; and the generation of solitons, periodic pulsing, and nonlinearities in GaAs. Other papers are on ultrafast relaxation dynamics of photoexcited carriers in GaAs, high-order optical nonlinear susceptibilities of transparent glasses, subnanosecond risetime high-power pulse generation using photoconductive bulk GaAs devices, femtosecond studies of plasma formation in crystalline and amorphous silicon, and subpicosecond dynamics of hot carrier relaxation in InP and GaAs.

  6. Repetition rate dependency of low-density plasma effects during femtosecond-laser-based surgery of biological tissue

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, K.; Baumgart, J.; Lubatschowski, H.; Heisterkamp, A.

    2009-11-01

    Femtosecond laser based nanosurgery of biological tissue is usually done in two different regimes. Depending on the application, low kHz repetition rates above the optical breakdown threshold or high MHz repetition rates in the low-density plasma regime are used. In contrast to the well understood optical breakdown, mechanisms leading to dissection below this threshold are not well known due to the complexity of chemical effects with high numbers of interacting molecules. Furthermore, the laser repetition rate may influence their efficiency. In this paper, we present our study on low-density plasma effects in biological tissue depending on repetition rate by static exposure of porcine corneal stroma to femtosecond pulses. We observed a continuous increase of the laser-induced damage with decreasing repetition rate over two orders of magnitude at constant numbers of applied laser pulses or constant laser pulse energies. Therefore, low repetition rates in the kHz regime are advantageous to minimize the total delivered energy to biological tissue during femtosecond laser irradiation. However, due to frequent excessive damage in this regime directly above the threshold, MHz repetition rates are preferable to create nanometer-sized cuts in the low-density plasma regime.

  7. Magnetic field effects on ultrafast lattice compression dynamics of Si(111) crystal when excited by linearly-polarized femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hatanaka, Koji; Odaka, Hideho; Ono, Kimitoshi; Fukumura, Hiroshi

    2007-03-01

    Time-resolved X-ray diffraction measurements of Si (111) single crystal are performed when excited by linearly-polarized femtosecond laser pulses (780 nm, 260 fs, negatively-chirped, 1 kHz) under a magnetic field (0.47 T). Laser fluence on the sample surface is 40 mJ/cm^2, which is enough lower than the ablation threshold at 200 mJ/cm^2. Probing X-ray pulses of iron characteristic X-ray lines at 0.193604 and 0.193998 nm are generated by focusing femtosecond laser pulses onto audio-cassette tapes in air. Linearly-polarized femtosecond laser pulse irradiation onto Si(111) crystal surface induces transient lattice compression in the picosecond time range, which is confirmed by transient angle shift of X-ray diffraction to higher angles. Little difference of compression dynamics is observed when the laser polarization is changed from p to s-pol. without a magnetic field. On the other hand, under a magnetic field, the lattice compression dynamics changes when the laser is p-polarized which is vertical to the magnetic field vector. These results may be assigned to photo-carrier formation and energy-band distortion.

  8. Femtosecond laser machining for characterization of local mechanical properties of biomaterials: a case study on wood

    PubMed Central

    Jakob, Severin; Pfeifenberger, Manuel J.; Hohenwarter, Anton; Pippan, Reinhard

    2017-01-01

    Abstract The standard preparation technique for micro-sized samples is focused ion beam milling, most frequently using Ga+ ions. The main drawbacks are the required processing time and the possibility and risks of ion implantation. In contrast, ultrashort pulsed laser ablation can process any type of material with ideally negligible damage to the surrounding volume and provides 4 to 6 orders of magnitude higher ablation rates than the ion beam technique. In this work, a femtosecond laser was used to prepare wood samples from spruce for mechanical testing at the micrometre level. After optimization of the different laser parameters, tensile and compressive specimens were produced from microtomed radial-tangential and longitudinal-tangential sections. Additionally, laser-processed samples were exposed to an electron beam prior to testing to study possible beam damage. The specimens originating from these different preparation conditions were mechanically tested. Advantages and limitations of the femtosecond laser preparation technique and the deformation and fracture behaviour of the samples are discussed. The results prove that femtosecond laser processing is a fast and precise preparation technique, which enables the fabrication of pristine biological samples with dimensions at the microscale. PMID:28970867

  9. Femtosecond laser machining for characterization of local mechanical properties of biomaterials: a case study on wood

    NASA Astrophysics Data System (ADS)

    Jakob, Severin; Pfeifenberger, Manuel J.; Hohenwarter, Anton; Pippan, Reinhard

    2017-12-01

    The standard preparation technique for micro-sized samples is focused ion beam milling, most frequently using Ga+ ions. The main drawbacks are the required processing time and the possibility and risks of ion implantation. In contrast, ultrashort pulsed laser ablation can process any type of material with ideally negligible damage to the surrounding volume and provides 4 to 6 orders of magnitude higher ablation rates than the ion beam technique. In this work, a femtosecond laser was used to prepare wood samples from spruce for mechanical testing at the micrometre level. After optimization of the different laser parameters, tensile and compressive specimens were produced from microtomed radial-tangential and longitudinal-tangential sections. Additionally, laser-processed samples were exposed to an electron beam prior to testing to study possible beam damage. The specimens originating from these different preparation conditions were mechanically tested. Advantages and limitations of the femtosecond laser preparation technique and the deformation and fracture behaviour of the samples are discussed. The results prove that femtosecond laser processing is a fast and precise preparation technique, which enables the fabrication of pristine biological samples with dimensions at the microscale.

  10. Guiding of Long-Distance Electric Discharges by Combined Femtosecond and Nanosecond Pulses Emitted by Hybrid KrF Laser System

    DTIC Science & Technology

    2014-01-30

    AFRL-AFOSR-UK-TR-2014-0040 Guiding of long-distance electric discharges by combined femtosecond and nanosecond pulses emitted by...To) 27 September 2010 – 31 December 2013 4. TITLE AND SUBTITLE Guiding of long-distance electric discharges by combined femtosecond and...plasma channels in the atmosphere and laser guiding of high-voltage electric discharges . 15. SUBJECT TERMS EOARD, triggering

  11. Interaction of intense laser pulses with hydrogen atomic clusters

    NASA Astrophysics Data System (ADS)

    Du, Hong-Chuan; Wang, Hui-Qiao; Liu, Zuo-Ye; Sun, Shao-Hua; Li, Lu; Ma, Ling-Ling; Hu, Bi-Tao

    2010-03-01

    The interaction between intense femtosecond laser pulses and hydrogen atomic clusters is studied by a simplified Coulomb explosion model. The dependences of average proton kinetic energy on cluster size, pulse duration, laser intensity and wavelength are studied respectively. The calculated results indicate that the irradiation of a femtosecond laser of longer wavelength on hydrogen atomic clusters may be a simple, economical way to produce highly kinetic hydrogen ions. The phenomenon suggests that the irradiation of femtosecond laser of longer wavelength on deuterium atomic clusters may be easier than that of shorter wavelength to drive nuclear fusion reactions. The product of the laser intensity and the squared laser wavelength needed to make proton energy saturated as a function of the squared cluster radius is also investigated. The proton energy distribution calculated is also shown and compared with the experimental data. Our results are in agreement with the experimental results fairly well.

  12. Surface treatment of CFRP composites using femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Oliveira, V.; Sharma, S. P.; de Moura, M. F. S. F.; Moreira, R. D. F.; Vilar, R.

    2017-07-01

    In the present work, we investigate the surface treatment of carbon fiber-reinforced polymer (CFRP) composites by laser ablation with femtosecond laser radiation. For this purpose, unidirectional carbon fiber-reinforced epoxy matrix composites were treated with femtosecond laser pulses of 1024 nm wavelength and 550 fs duration. Laser tracks were inscribed on the material surface using pulse energies and scanning speeds in the range 0.1-0.5 mJ and 0.1-5 mm/s, respectively. The morphology of the laser treated surfaces was investigated by field emission scanning electron microscopy. We show that, by using the appropriate processing parameters, a selective removal of the epoxy resin can be achieved, leaving the carbon fibers exposed. In addition, sub-micron laser induced periodic surface structures (LIPSS) are created on the carbon fibers surface, which may be potentially beneficial for the improvement of the fiber to matrix adhesion in adhesive bonds between CFRP parts.

  13. Keratin film ablation for the fabrication of brick and mortar skin structure using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam

    2015-09-01

    The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.

  14. Femtosecond all-optical synchronization of an X-ray free-electron laser

    DOE PAGES

    Schulz, S.; Grguraš, I.; Behrens, C.; ...

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less

  15. Femtosecond all-optical synchronization of an X-ray free-electron laser

    PubMed Central

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  16. Testing of a femtosecond pulse laser in outer space

    PubMed Central

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-01-01

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future. PMID:24875665

  17. Testing of a femtosecond pulse laser in outer space.

    PubMed

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-05-30

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future.

  18. Analysis on ultrashort-pulse laser ablation for nanoscale film of ceramics

    NASA Astrophysics Data System (ADS)

    Ho, C. Y.; Tsai, Y. H.; Chiou, Y. J.

    2017-06-01

    This paper uses the dual-phase-lag model to study the ablation characteristics of femtosecond laser processing for nanometer-sized ceramic films. In ultrafast process and ultrasmall size where the two lags occur, a dual-phase-lag can be applied to analyse the ablation characteristics of femtosecond laser processing for materials. In this work, the ablation rates of nanometer-sized lead zirconate titanate (PZT) ceramics are investigated using a dual-phase-lag and the model is solved by Laplace transform method. The results obtained from this work are validated by the available experimental data. The effects of material thermal properties on the ablation characteristics of femtosecond laser processing for ceramics are also discussed.

  19. Temporal-spatial measurement of electron relaxation time in femtosecond laser induced plasma using two-color pump-probe imaging technique

    NASA Astrophysics Data System (ADS)

    Pan, Changji; Jiang, Lan; Wang, Qingsong; Sun, Jingya; Wang, Guoyan; Lu, Yongfeng

    2018-05-01

    The femtosecond (fs) laser is a powerful tool to study ultrafast plasma dynamics, especially electron relaxation in strong ionization of dielectrics. Herein, temporal-spatial evolution of femtosecond laser induced plasma in fused silica was investigated using a two-color pump-probe technique (i.e., 400 nm and 800 nm, respectively). We demonstrated that when ionized electron density is lower than the critical density, free electron relaxation time is inversely proportional to electron density, which can be explained by the electron-ion scattering regime. In addition, electron density evolution within plasma was analyzed in an early stage (first 800 fs) of the laser-material interaction.

  20. Characterization of femtosecond-laser pulse induced cell membrane nanosurgical attachment.

    PubMed

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y

    2016-07-01

    This article provides insight into the mechanism of femtosecond laser nanosurgical attachment of cells. We have demonstrated that during the attachment of two retinoblastoma cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength, the phospholipid molecules of both cells hemifuse and form one shared phospholipid bilayer, at the attachment location. In order to verify the hypothesis that hemifusion takes place, transmission electron microscope images of the cell membranes of retinoblastoma cells were taken. It is shown that at the attachment interface, the two cell membranes coalesce and form one single membrane shared by both cells. Thus, further evidence is provided to support the hypothesis that laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane, which resulted in cross-linking of the phospholipid molecules in each membrane. This process of hemifusion occurs throughout the entire penetration depth of the femtosecond laser pulse train. Thus, the attachment between the cells takes place across a large surface area, which affirms our findings of strong physical attachment between the cells. The femtosecond laser pulse hemifusion technique can potentially provide a platform for precise molecular manipulation of cellular membranes. Manipulation of the cellular membrane is an important procedure that could aid in studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.

  1. Effect of marking pens on femtosecond laser-assisted flap creation.

    PubMed

    Ide, Takeshi; Kymionis, George D; Abbey, Ashkan M; Yoo, Sonia H; Culbertson, William W; O'Brien, Terrence P

    2009-06-01

    To compare the ease of the flap lift after central corneal marking with 2 types of marking pens after femtosecond laser-assisted flap creation in laser in situ keratomileusis. Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA. Porcine eyes were prepared for flap creation with a femtosecond laser (IntraLase). The eyes were assigned to 1 of 4 groups. After the femtosecond laser treatment, the difficulty of flap lifting the 4 groups was compared. Twelve porcine eyes, 3 in each group, were evaluated. In the 2 groups in which an oil-based pen was used, the corneal flap could not be lifted. In the 2 groups in which a water-based pen was used, the corneal flap was easily lifted. Oil-based ink may reduce the ability of the femtosecond laser to penetrate the cornea. The resultant corneal flap may require aggressive manipulation to be lifted. When used to mark the center of the cornea before flap creation, water-based ink provided greater ease of corneal flap lifting than oil-based ink. Because the marking is located over the center of the pupil, any alteration of the cornea in this area from aggressive flap lifting may result in substantial visual loss. Therefore, the use of an oil-based ink to mark the central cornea must be avoided to prevent traumatic irregularities of the flap stroma.

  2. Inverse cutting of posterior lamellar corneal grafts by a femtosecond laser.

    PubMed

    Hjortdal, Jesper; Nielsen, Esben; Vestergaard, Anders; Søndergaard, Anders

    2012-01-01

    Posterior lamellar grafting of the cornea has become the preferred technique for treatment of corneal endothelial dysfunction. Posterior lamellar grafts are usually cut by a micro-keratome or a femto-second laser after the epithelial side of the donor cornea has been applanated. This approach often results in variable central graft thickness in different grafts and an increase in graft thickness towards the periphery in every graft. The purpose of this study was to evaluate if posterior lamellar grafts can be prepared from the endothelial side by a femto-second laser, resulting in reproducible, thin grafts of even thickness. A CZM 500 kHz Visumax femto-second laser was used. Organ cultured donor grafts were mounted in an artifical anterior chamber with the endothelial side up and out. Posterior grafts of 7.8 mm diameter and 130 micron thickness were prepared by femto-second laser cutting. A standard DSAEK procedure was performed in 10 patients with Fuchs endothelial dystrophy. Patients were followed-up regularly and evaluated by measurement of complications, visual acuity, corneal thickness (Pentacam HR), and endothelial cell density. Femto-laser cutting of grafts and surgery was uncomplicated. Rebubbling was necessary in 5 of 10 cases (normally only in 1 of 20 cases). All grafts were attached and cleared up during the first few weeks. After six months, the average visual acuity was 0.30 (range: 0.16 to 0.50), corneal thickness was 0.58 mm (range 0.51 to 0.63), and endothelial cell density was 1.570 per sq. mm (range: 1.400 to 2.000 cells per sq. mm). The grafts were of uniform thickness, but substantial interface haze was present in most grafts. Posterior lamellar corneal grafts can be prepared from the endothelial side using a femto-second laser. All grafts were clear after 6 months with satisfying endothelial cell counts. Poor visual acuity caused by interface scatter was observed in most patients. Femto-second laser cutting parameters needs to be optimised to enable smooth cutting in the posterior stroma.

  3. Inverse Cutting of Posterior Lamellar Corneal Grafts by a Femtosecond Laser

    PubMed Central

    Hjortdal, Jesper; Nielsen, Esben; Vestergaard, Anders; Søndergaard, Anders

    2012-01-01

    Purpose Posterior lamellar grafting of the cornea has become the preferred technique for treatment of corneal endothelial dysfunction. Posterior lamellar grafts are usually cut by a micro-keratome or a femto-second laser after the epithelial side of the donor cornea has been applanated. This approach often results in variable central graft thickness in different grafts and an increase in graft thickness towards the periphery in every graft. The purpose of this study was to evaluate if posterior lamellar grafts can be prepared from the endothelial side by a femto-second laser, resulting in reproducible, thin grafts of even thickness. Methods A CZM 500 kHz Visumax femto-second laser was used. Organ cultured donor grafts were mounted in an artifical anterior chamber with the endothelial side up and out. Posterior grafts of 7.8 mm diameter and 130 micron thickness were prepared by femto-second laser cutting. A standard DSAEK procedure was performed in 10 patients with Fuchs endothelial dystrophy. Patients were followed-up regularly and evaluated by measurement of complications, visual acuity, corneal thickness (Pentacam HR), and endothelial cell density. Results Femto-laser cutting of grafts and surgery was uncomplicated. Rebubbling was necessary in 5 of 10 cases (normally only in 1 of 20 cases). All grafts were attached and cleared up during the first few weeks. After six months, the average visual acuity was 0.30 (range: 0.16 to 0.50), corneal thickness was 0.58 mm (range 0.51 to 0.63), and endothelial cell density was 1.570 per sq. mm (range: 1.400 to 2.000 cells per sq. mm). The grafts were of uniform thickness, but substantial interface haze was present in most grafts. Conclusions Posterior lamellar corneal grafts can be prepared from the endothelial side using a femto-second laser. All grafts were clear after 6 months with satisfying endothelial cell counts. Poor visual acuity caused by interface scatter was observed in most patients. Femto-second laser cutting parameters needs to be optimised to enable smooth cutting in the posterior stroma. PMID:22582107

  4. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam

    NASA Astrophysics Data System (ADS)

    Lin, Han; Gu, Min

    2013-02-01

    Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.

  5. Modification of surface properties of solids by femtosecond LIPSS writing: comparative studies on silicon and stainless steel

    NASA Astrophysics Data System (ADS)

    Varlamova, Olga; Hoefner, Kevin; Ratzke, Markus; Reif, Juergen; Sarker, Debasish

    2017-12-01

    We investigate the implication of modified surface morphology on wettability of stainless steel (AISI 304) and silicon (100) targets covered by laser-induced periodic surface structures (LIPSS) on extended areas (10 × 10 mm2). Using multiple pulses from a Ti: Sapphire laser (790 nm/100 fs/1 kHz) at a fluence in the range of 0.35-2.1 J/cm2 on a spot of 1.13 × 10- 4 cm2, we scanned the target under the spot to cover a large area. A systematical variation of the irradiation dose by changing the scanning speed and thus dwelling time per spot results in the formation of surface patterns ranging from very regular linear structures with a lateral period of about 500-600 nm to complex patterns of 3D microstructures with several-µm feature size, hierarchically covered by nano-ripples.

  6. Double-pulse femtosecond laser peening of aluminum alloy AA5038: Effect of inter-pulse delay on transient optical plume emission and final surface micro-hardness

    NASA Astrophysics Data System (ADS)

    Ageev, E. I.; Bychenkov, V. Yu.; Ionin, A. A.; Kudryashov, S. I.; Petrov, A. A.; Samokhvalov, A. A.; Veiko, V. P.

    2016-11-01

    Double-pulse ablative femtosecond laser peening of the AA5038 aluminum alloy surface in the phase explosion regime results in its enhanced microhardness, which monotonously decreases till the initial value versus inter-pulse delay, increasing on a sub-nanosecond timescale. Optical emission spectroscopy of the double-pulse ablative plume reveals the same trend in the yield of the corresponding atomic and ion emission versus inter-pulse delay, enlightening the interaction of the second femtosecond laser pump pulse with the surface and the resulting plume.

  7. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.

    PubMed

    Long, Xuewen; Bai, Jing; Zhao, Wei; Stoian, Razvan; Hui, Rongqing; Cheng, Guanghua

    2012-08-01

    We report on the single-step fabrication of stressed optical waveguides with tubular depressed-refractive-index cladding in phosphate glasses by the use of focused femtosecond hollow laser beams. Tubelike low index regions appear under direct exposure due to material rarefaction following expansion. Strained compacted zones emerged in domains neighboring the tubular track of lower refractive index, and waveguiding occurs mainly within the tube core fabricated by the engineered femtosecond laser beam. The refractive index profile of the optical waveguide was reconstructed from the measured transmitted near-field intensity.

  8. Femtosecond Laser-Assisted Descemetorhexis: A Novel Technique in Descemet Membrane Endothelial Keratoplasty.

    PubMed

    Pilger, Daniel; von Sonnleithner, Christoph; Bertelmann, Eckart; Joussen, Antonia M; Torun, Necip

    2016-10-01

    To explore the feasibility of femtosecond laser-assisted descemetorhexis (DR) to facilitate Descemet membrane endothelial keratoplasty (DMEK) surgery. Six pseudophakic patients suffering from Fuchs' endothelial dystrophy underwent femtosecond laser-assisted DMEK surgery. DR was performed using the LenSx femtosecond laser, followed by manual removal of the Descemet membrane. Optical coherence tomography images were used to measure DR parameters. Patients were followed up for 1 month to examine best corrected visual acuity, endothelial cell loss, flap detachment, and structure of the anterior chamber of the eye. The diameter of the DR approximated the intended diameter closely [mean error of 34 μm (0.45%) and 54 μm (0.67%) in the x- and y-diameter, respectively] and did not require manual correction. The median visual acuity increased from 0.4 logMAR (range 0.6-0.4 logMAR) preoperative to 0.2 logMAR (range 0-0.4 logMAR) postoperative. The median endothelial cell loss was 22% (range 7%-34%). No clinically significant flap detachments were noted. All patients had clear corneas after surgery, and no side effects or damage to structures of the anterior chamber were noted. Femtosecond laser-assisted DR is a safe and precise method for facilitating DMEK surgery.

  9. Non-contact quantification of laser micro-impulse in water by atomic force microscopy and its application for biomechanics

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh

    2011-12-01

    We developed a local force measurement system of a femtosecond laser-induced impulsive force, which is due to shock and stress waves generated by focusing an intense femtosecond laser into water with a highly numerical aperture objective lens. In this system, the force localized in micron-sized region was detected by bending movement of a cantilever of atomic force microscope (AFM). Here we calculated the bending movement of the AFM cantilever when the femtosecond laser is focused in water at the vicinity of the cantilever and the impulsive force is loaded on the cantilever. From the result, a method to estimate the total of the impulsive force at the laser focal point was suggested and applied to estimate intercellular adhesion strength.

  10. Modulations of anisotropic optical transmission on alumina-doped zinc oxide surface by femtosecond laser induced ripples

    NASA Astrophysics Data System (ADS)

    Lu, Yanhui; Jiang, Lan; Sun, Jingya; Cao, Qiang; Wang, Qingsong; Han, Weina; Lu, Yongfeng

    2018-04-01

    This study demonstrated that femtosecond-laser-induced ripples on an alumina-doped zinc oxide (AZO) film with space intervals of approximately 340 and 660 nm exhibit modulations of anisotropic optical transmission. At low laser fluence, ripples can not affect the original absorption peak of AZO film, but at higher laser fluence, the absorption peak of AZO film is disappeared due to the modulation by femtosecond laser induced ripples. Moreover, the relationship between the anisotropic optical transmission and the features of nanostructures is discussed. Ripples with a space interval of approximately 660 nm have a higher ability to block light than nanostructures with a space interval of approximately 340 nm. These observations indicate that anisotropic optical transmission has potential applications in the field of optoelectronics.

  11. Impact of the Femtosecond Laser in Line with the Femtosecond Laser-Assisted Cataract Surgery (FLACS) on the Anterior Chamber Characteristics in Comparison to the Manual Phacoemulsification.

    PubMed

    Pahlitzsch, Milena; Torun, Necip; Pahlitzsch, Marie Luise; Klamann, Matthias K J; Gonnermann, Johannes; Bertelmann, Eckart; Pahlitzsch, Thomas

    2017-01-01

    To assess the alterations of the anterior chamber conditions including laser flare photometry after femtosecond laser-assisted cataract surgery (FLACS) compared to the manual phacoemulsification. Data of n=70 FLACS (mean age 67.2 ± 8.9 years) and n=40 manual phacoemulsification (mean age 69.5 ± 9.6 years) were analyzed. The procedures were performed by LenSx Alcon, USA, and Alcon Infiniti Vision System, USA. The following parameters were recorded: laser flare photometry (Kowa FM 700, Japan), anterior chamber (AC) depth, AC volume, AC angle (Pentacam, Oculus Inc., Germany), lens density, pupil diameter, endothelial cell count and pachymetry. The analysis was performed preoperatively, immediately after femtosecond laser procedure and one day postoperatively. Between FLACS and the phaco control group, there was a significant difference in the AC depth (p=0.023, 3.77 mm vs. 4.05 mm) one day postoperatively. The AC angle (p=0.016) showed a significant difference immediately after the femto laser treatment. The central and thinnest pachymetry and endothelial cell count did not show a significant difference between the two study cohorts (p=0.165, p=0.291, p=0.979). The phaco cohort (n=40) demonstrated a non-statistically significant difference in the flare photometry of 15.80 photons/ms one postoperative day compared to the FLACS group 26.62 photons/ms (p=0.322). In this study population, no evidence for an additive damage caused by the use of the femtosecond laser was demonstrated. Furthermore, no increase in the central and thinnest corneal thickness and no increased endothelial cell loss was demonstrated by the laser energy.

  12. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy.

    PubMed

    Wise, Frank W

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging.

  13. Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing.

    PubMed

    Ren, Yingying; Dong, Ningning; Macdonald, John; Chen, Feng; Zhang, Huaijin; Kar, Ajoy K

    2012-01-30

    Buried channel waveguides in Nd:LuVO<4 were fabricated by femtosecond laser writing with the double-line technique. The photoluminescence properties of the bulk materials were found to be well preserved within the waveguide core region. Continuous-wave laser oscillation at 1066.4 nm was observed from the waveguide under ~809 nm optical excitation, with the absorbed pump power at threshold and laser slope efficiency of 98 mW and 14%, respectively.

  14. A plasma microlens for ultrashort high power lasers

    NASA Astrophysics Data System (ADS)

    Katzir, Yiftach; Eisenmann, Shmuel; Ferber, Yair; Zigler, Arie; Hubbard, Richard F.

    2009-07-01

    We present a technique for generation of miniature plasma lens system that can be used for focusing and collimating a high intensity femtosecond laser pulse. The plasma lens was created by a nanosecond laser, which ablated a capillary entrance. The spatial configuration of the ablated plasma focused a high intensity femtosecond laser pulse. This configuration offers versatility in the plasma lens small f-number for extremely tight focusing of high power lasers with no damage threshold restrictions of regular optical components.

  15. Vibration-Assisted Femtosecond Laser Drilling with Controllable Taper Angles for AMOLED Fine Metal Mask Fabrication.

    PubMed

    Choi, Wonsuk; Kim, Hoon Young; Jeon, Jin Woo; Chang, Won Seok; Cho, Sung-Hak

    2017-02-21

    This study investigates the effect of focal plane variation using vibration in a femtosecond laser hole drilling process on Invar alloy fabrication quality for the production of fine metal masks (FMMs). FMMs are used in the red, green, blue (RGB) evaporation process in Active Matrix Organic Light-Emitting Diode (AMOLED) manufacturing. The taper angle of the hole is adjusted by attaching the objective lens to a micro-vibrator and continuously changing the focal plane position. Eight laser pulses were used to examine how the hole characteristics vary with the first focal plane's position, where the first pulse is focused at an initial position and the focal planes of subsequent pulses move downward. The results showed that the hole taper angle can be controlled by varying the amplitude of the continuously operating vibrator during femtosecond laser hole machining. The taper angles were changed between 31.8° and 43.9° by adjusting the vibrator amplitude at a frequency of 100 Hz. Femtosecond laser hole drilling with controllable taper angles is expected to be used in the precision micro-machining of various smart devices.

  16. Nanosurgery of cells and chromosomes using near-infrared twelve-femtosecond laser pulses.

    PubMed

    Uchugonova, Aisada; Lessel, Matthias; Nietzsche, Sander; Zeitz, Christian; Jacobs, Karin; Lemke, Cornelius; König, Karsten

    2012-10-01

    ABSTRACT. Laser-assisted surgery based on multiphoton absorption of near-infrared laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. In this paper we describe usage of an ultrashort femtosecond laser scanning microscope for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770  nm/830  nm) and an in situ pulse duration at the target ranging from 12 fs up to 3 ps was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery of cells and cellular organelles.

  17. Femtosecond laser-assisted compared with standard cataract surgery for removal of advanced cataracts.

    PubMed

    Hatch, Kathryn M; Schultz, Tim; Talamo, Jonathan H; Dick, H Burkhard

    2015-09-01

    To compare effective phacoemulsification time (EPT) for the removal of brunescent cataracts treated with femtosecond laser-assisted cataract surgery with standard cataract phacoemulsification techniques. Ruhr University Eye Hospital, Bochum, Germany. Comparative prospective case study. The Lens Opacities Classification System III (LOCS III) grading system was used to measure eyes divided into 4 groups having cataract surgery. Groups 1 and 2 contained eyes with LOCS III grade nuclear opalescence (NO) 3 cataracts treated with standard cataract surgery and femtosecond laser-assisted cataract surgery, respectively. Groups 3 and 4 contained brunescent cataracts, LOCS III grades NO5, treated with standard cataract surgery and femtosecond laser-assisted cataract surgery, respectively. There were 240 eyes, with 60 eyes in each group. The EPT in Group 1 ranged from 0.46 to 3.10 (mean 1.38); the EPT in all eyes in Group 2 was 0 (P < .001). The EPT in Groups 3 and 4 was 2.12 to 19.29 (mean 6.85) and 0 to 6.75 (mean 1.35), respectively (P < .001). A comparison between EPT in Groups 1 and 4 showed that EPT in Group 4 was also lower than in Group 1 (P = .013). Groups 4 and 1 were the most statistically similar of all groups compared, suggesting that EPT for a femtosecond laser-treated grade 5 cataract was most similar to that of a standard-treated grade 3 cataract. Femtosecond laser pretreatment for brunescent cataracts allowed for a significant reduction in EPT compared with manual standard phacoemulsification techniques. Drs. Hatch, Talamo, and Dick are consultants to Abbott Medical Optics, Inc. Dr. Schultz has no financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Effects of Short-term Preoperative Topical Ketorolac on Pupil Diameter in Eyes Undergoing Femtosecond Laser-Assisted Capsulotomy.

    PubMed

    Diakonis, Vasilios F; Kontadakis, Georgios A; Anagnostopoulos, Apostolos G; Yesilirmak, Nilufer; Waren, Daniel P; Cabot, Florence; Yoo, Sonia H; Donaldson, Kendall E

    2017-04-01

    To assess pupil diameter before and after femtosecond laser-assisted capsulotomy in patients who were pretreated with a short-term topical nonsteroidal anti-inflammatory drug (NSAID) (ketorolac) versus those without pretreatment. This prospective, randomized, observational case series included consecutive patients scheduled to undergo cataract extraction using the Catalys femtosecond laser platform (Abbott Medical Optics, Inc., Santa Ana, CA) to perform only capsulotomies. The same protocol for preoperative medical mydriasis was used for all patients, whereas pupil diameter was assessed using a surgical ruler immediately before and 3 minutes after femtosecond laser-assisted capsulotomy. The patients were divided into two groups: one received short-term topical ketorolac preoperatively and the other did not receive NSAID pretreatment (control). A total of 42 eyes of 42 patients (1 eye per patient) were included in the study. Mean pupillary miosis was 0.79 ± 1.08 and 1.57 ± 1.19 mm for the ketorolac and control groups, respectively. There was a statistically significant decrease in pupil diameter for both groups individually (P < .05). There was also a statistically significant difference between the two groups (P < .05) with the induced miosis in the eyes that did not receive topical NSAIDs prior to cataract extraction being twofold greater when compared with the miosis of the eyes that received ketorolac pretreatment. Short-term topical use of ketorolac prior to femtosecond laser-assisted cataract surgery seems to induce significantly less pupillary miosis in comparison to eyes that did not receive NSAID pretreatment. NSAID use is advised prior to femtosecond laser-assisted cataract surgery to minimize pupil miosis-related surgical difficulties or complications during cataract extraction. [J Refract Surg. 2017;33(4):230-234.]. Copyright 2017, SLACK Incorporated.

  19. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haisu; Tzortzakis, Stelios, E-mail: stzortz@iesl.forth.gr; Materials Science and Technology Department, University of Crete, 71003 Heraklion

    2016-05-23

    We demonstrate a reliable authentication method by femtosecond laser filament induced scattering surfaces. The stochastic nonlinear laser fabrication nature results in unique authentication robust properties. This work provides a simple and viable solution for practical applications in product authentication, while also opens the way for incorporating such elements in transparent media and coupling those in integrated optical circuits.

  20. Femtosecond laser pulse modification of amorphous silicon films: control of surface anisotropy

    NASA Astrophysics Data System (ADS)

    Shuleiko, D. V.; Potemkin, F. V.; Romanov, I. A.; Parhomenko, I. N.; Pavlikov, A. V.; Presnov, D. E.; Zabotnov, S. V.; Kazanskii, A. G.; Kashkarov, P. K.

    2018-05-01

    A one-dimensional surface relief with a 1.20  ±  0.02 µm period was formed in amorphous hydrogenated silicon films as a result of irradiation by femtosecond laser pulses (1.25 µm) with a fluence of 0.15 J cm‑2. Orientation of the formed structures was determined by the polarization vector of the radiation and the number of acting pulses. Nanocrystalline silicon phases with volume fractions from 40 to 67% were detected in the irradiated films according to the analysis of Raman spectra. Observed micro- and nanostructuring processes were caused by surface plasmon–polariton excitation and near-surface region nanocrystallization, respectively, in the high-intensity femtosecond laser field. Furthermore, the formation of Si-III and Si-XII silicon polymorphous modifications was observed after laser treatment with a large exposure dose. The conductivity of the film increased by three orders of magnitude at proper conditions after femtosecond laser nanocrystallization compared to the conductivity of the untreated amorphous surface. The conductivity anisotropy of the irradiated regions was also observed due to the depolarizing contribution of the surface structure, and the non-uniform intensity distribution in the cross-section of the laser beam used for modification.

  1. Modeling of silicon in femtosecond laser-induced modification regimes: accounting for ambipolar diffusion

    NASA Astrophysics Data System (ADS)

    Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.

    2017-05-01

    During the last decades, femtosecond laser irradiation of materials has led to the emergence of various applications based on functionalization of surfaces at the nano- and microscale. Via inducing a periodic modification on material surfaces (band gap modification, nanostructure formation, crystallization or amorphization), optical and mechanical properties can be tailored, thus turning femtosecond laser to a key technology for development of nanophotonics, bionanoengineering, and nanomechanics. Although modification of semiconductor surfaces with femtosecond laser pulses has been studied for more than two decades, the dynamics of coupling of intense laser light with excited matter remains incompletely understood. In particular, swift formation of a transient overdense electron-hole plasma dynamically modifies optical properties in the material surface layer and induces large gradients of hot charge carriers, resulting in ultrafast charge-transport phenomena. In this work, the dynamics of ultrafast laser excitation of a semiconductor material is studied theoretically on the example of silicon. A special attention is paid to the electron-hole pair dynamics, taking into account ambipolar diffusion effects. The results are compared with previously developed simulation models, and a discussion of the role of charge-carrier dynamics in localization of material modification is provided.

  2. Laser-Induced Damage with Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps) and femtosecond (33 fs) regimes for a large number of optics contributed by manufacturers globally. The damage performance of the mirrors in the 150 ps tests was shown to be uncorrelated with the 33 fs tests, which implies that the two regimes are guided by different mechanisms. In fact, one of the worst-performing mirrors in the long-pulse regime turned out to be the best-performer in the femtosecond regime. The broad array of experimental results presented here all found that LID in the femtosecond regime is distinctly different from long pulse damage, and paves multiple pathways into developing the next stage of theoretical models and applications of femtosecond laser-induced damage.

  3. Understanding the Femtosecond Laser-Solid Interaction Near and Beyond the Material Damage Threshold

    DTIC Science & Technology

    2016-05-23

    study of the fundamentals of femtosecond laser damage as a function of various parameters, laser wavelength, pulsewidth, pulse number, experimental ... experimental observation without any free parameters. The brand new FSD Lab constructed under the BRI grant in the Physics Research Building at the Ohio... studied across a range of band-gaps for s- and p-polarized light and it is found that conventional theoretical prediction on laser damage threshold

  4. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    NASA Astrophysics Data System (ADS)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  5. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications.

    PubMed

    Li, Lingqi; Nie, Weijie; Li, Ziqi; Lu, Qingming; Romero, Carolina; Vázquez de Aldana, Javier R; Chen, Feng

    2017-08-01

    The femtosecond laser micromachining of transparent optical materials offers a powerful and feasible solution to fabricate versatile photonic components towards diverse applications. In this work, we report on a new design and fabrication of ridge waveguides in LiNbO 3 crystal operating at the mid-infrared (MIR) band by all-femtosecond-laser microfabrication. The ridges consist of laser-ablated sidewalls and laser-written bottom low-index cladding tracks, which are constructed for horizontal and longitudinal light confinement, respectively. The ridge waveguides are found to support good guidance at wavelength of 4 μm. By applying this configuration, Y-branch waveguiding structures (1 × 2 beam splitters) have been produced, which reach splitting ratios of ∼1:1 at 4 μm. This work paves a simple and feasible way to construct novel ridge waveguide devices in dielectrics through all-femtosecond-laser micro-processing.

  6. Ultrafast pre-breakdown dynamics in Al₂O₃SiO₂ reflector by femtosecond UV laser spectroscopy.

    PubMed

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-06-29

    Ultrafast carrier dynamics in Al2O3/SiO2 high reflectors has been investigated by UV femtosecond laser. It is identified by laser spectroscopy that, the carrier dynamics contributed from the front few layers of Al2O3 play a dominating role in the initial laser-induced damage of the UV reflector. Time-resolved reflection decrease after the UV excitation is observed, and conduction electrons is found to relaxed to a mid-gap defect state locating about one photon below the conduction band . To interpret the laser induced carrier dynamics further, a theoretical model including electrons relaxation to a mid-gap state is built, and agrees very well with the experimental results.. To the best of our knowledge, this is the first study on the pre-damage dynamics in UV high reflector induced by femtosecond UV laser.

  7. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing.

    PubMed

    Nie, Weijie; He, Ruiyun; Cheng, Chen; Rocha, Uéslen; Rodríguez Vázquez de Aldana, Javier; Jaque, Daniel; Chen, Feng

    2016-05-15

    We report on the fabrication of optical lattice-like waveguide structures in an Nd:YAP laser crystal by using direct femtosecond laser writing. With periodically arrayed laser-induced tracks, the waveguiding cores can be located in either the regions between the neighbored tracks or the central zone surrounded by a number of tracks as outer cladding. The polarization of the femtosecond laser pulses for the inscription has been found to play a critical role in the anisotropic guiding behaviors of the structures. The confocal photoluminescence investigations reveal different stress-induced modifications of the structures inscribed by different polarization of the femtosecond laser beam, which are considered to be responsible for the refractive index changes of the structures. Under optical pump at 808 nm, efficient waveguide lasing at ∼1  μm wavelength has been realized from the optical lattice-like structure, which exhibits potential applications as novel miniature light sources.

  8. Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, X., E-mail: jiaxin@sdju.edu.cn; Department of Mathematics and Physics, Shanghai Dianji University, Shanghai 201306; Jia, T. Q., E-mail: tqjia@phy.ecnu.edu.cn

    2014-04-14

    The formation dynamics of periodic ripples induced by femtosecond laser pulses (pulse duration τ = 50 fs and central wavelength λ = 800 nm) are studied by a collinear pump-probe imaging technique with a temporal resolution of 1 ps and a spatial resolution of 440 nm. The ripples with periods close to the laser wavelength begin to appear upon irradiation of two pump pulses at surface defects produced by the prior one. The rudiments of periodic ripples emerge in the initial tens of picoseconds after fs laser irradiation, and the ripple positions keep unmoved until the formation processes complete mainly in a temporal span of 1500 ps. Themore » results suggest that the periodic deposition of laser energy during the interaction between femtosecond laser pulses and sample surface plays a dominant role in the formation of periodic ripples.« less

  9. High-speed photorefractive keratectomy with femtosecond ultraviolet pulses

    NASA Astrophysics Data System (ADS)

    Danieliene, Egle; Gabryte, Egle; Vengris, Mikas; Ruksenas, Osvaldas; Gutauskas, Algimantas; Morkunas, Vaidotas; Danielius, Romualdas

    2015-05-01

    Femtosecond near-infrared lasers are widely used for a number of ophthalmic procedures, with flap cutting in the laser-assisted in situ keratomileusis (LASIK) surgery being the most frequent one. At the same time, lasers of this type, equipped with harmonic generators, have been shown to deliver enough ultraviolet (UV) power for the second stage of the LASIK procedure, the stromal ablation. However, the speed of the ablation reported so far was well below the currently accepted standards. Our purpose was to perform high-speed photorefractive keratectomy (PRK) with femtosecond UV pulses in rabbits and to evaluate its predictability, reproducibility and healing response. The laser source delivered femtosecond 206 nm pulses with a repetition rate of 50 kHz and an average power of 400 mW. Transepithelial PRK was performed using two different ablation protocols, to a total depth of 110 and 150 μm. The surface temperature was monitored during ablation; haze dynamics and histological samples were evaluated to assess outcomes of the PRK procedure. For comparison, analogous excimer ablation was performed. Increase of the ablation speed up to 1.6 s/diopter for a 6 mm optical zone using femtosecond UV pulses did not significantly impact the healing process.

  10. Laser eye protection bleaching with femtosecond exposure

    NASA Astrophysics Data System (ADS)

    Stolarski, Jacob; Hayes, Kristy L.; Thomas, Robert J.; Noojin, Gary D.; Stolarski, David J.; Rockwell, Benjamin A.

    2003-06-01

    The measured optical density of various laser eye protection samples is presented as a function of irradiance using femtosecond laser pulses. We show that the protective quality of some eyewear degrades as irradiance increases. In previous studies this problem has been demonstrated for samples irradiated by nanosecond pulses, but the current study shows that some modern laser eye protection seems to be robust except for the irradiance level possible with ultrashort laser pulse exposure. We discuss the most likely saturation mechanisms in this pulse duration regime and its relevance to laser safety.

  11. Comparison of the femtosecond laser and mechanical microkeratome for flap cutting in LASIK.

    PubMed

    Xia, Li-Kun; Yu, Jie; Chai, Guang-Rui; Wang, Dang; Li, Yang

    2015-01-01

    To compare refractive results, higher-order aberrations (HOAs), contrast sensitivity and dry eye after laser in situ keratomileusis (LASIK) performed with a femtosecond laser versus a mechanical microkeratome for myopia and astigmatism. In this prospective, non-randomized study, 120 eyes with myopia received a LASIK surgery with the VisuMax femtosecond laser for flap cutting, and 120 eyes received a conventional LASIK surgery with a mechanical microkeratome. Flap thickness, visual acuity, manifest refraction, contrast sensitivity function (CSF) curves, HOAs and dry-eye were measured at 1wk; 1, 3, 6mo after surgery. At 6mo postoperatively, the mean central flap thickness in femtosecond laser procedure was 113.05±5.89 µm (attempted thickness 110 µm), and 148.36±21.24 µm (attempted thickness 140 µm) in mechanical microkeratome procedure. An uncorrected distance visual acuity (UDVA) of 4.9 or better was obtained in more than 98% of eyes treated by both methods, a gain in logMAR lines of corrected distance visual acuity (CDVA) occurred in more than 70% of eyes treated by both methods, and no eye lost ≥1 lines of CDVA in both groups. The difference of the mean UDVA and CDVA between two groups at any time post-surgery were not statistically significant (P>0.05). The postoperative changes of spherical equivalent occurred markedly during the first month in both groups. The total root mean square values of HOAs and spherical aberrations in the femtosecond treated eyes were markedly less than those in the microkeratome treated eyes during 6mo visit after surgery (P<0.01). The CSF values of the femtosecond treated eyes were also higher than those of the microkeratome treated eyes at all space frequency (P<0.01). The mean ocular surface disease index scores in both groups were increased at 1wk, and recovered to preoperative level at 1mo after surgery. The mean tear breakup time (TBUT) of the femtosecond treated eyes were markedly longer than those of the microkeratome treated eyes at postoperative 1, 3mo (P<0.01). Both the femtosecond laser and the mechanical microkeratome for LASIK flap cutting are safe and effective to correct myopia, with no statistically significant difference in the UDVA, CDVA during 6mo follow-up. Refractive results remained stable after 1mo post-operation for both groups. The femtosecond laser may have advantages over the microkeratome in the flap thickness predictability, fewer induced HOAs, better CSF, and longer TBUT.

  12. Comparison of the femtosecond laser and mechanical microkeratome for flap cutting in LASIK

    PubMed Central

    Xia, Li-Kun; Yu, Jie; Chai, Guang-Rui; Wang, Dang; Li, Yang

    2015-01-01

    AIM To compare refractive results, higher-order aberrations (HOAs), contrast sensitivity and dry eye after laser in situ keratomileusis (LASIK) performed with a femtosecond laser versus a mechanical microkeratome for myopia and astigmatism. METHODS In this prospective, non-randomized study, 120 eyes with myopia received a LASIK surgery with the VisuMax femtosecond laser for flap cutting, and 120 eyes received a conventional LASIK surgery with a mechanical microkeratome. Flap thickness, visual acuity, manifest refraction, contrast sensitivity function (CSF) curves, HOAs and dry-eye were measured at 1wk; 1, 3, 6mo after surgery. RESULTS At 6mo postoperatively, the mean central flap thickness in femtosecond laser procedure was 113.05±5.89 µm (attempted thickness 110 µm), and 148.36±21.24 µm (attempted thickness 140 µm) in mechanical microkeratome procedure. An uncorrected distance visual acuity (UDVA) of 4.9 or better was obtained in more than 98% of eyes treated by both methods, a gain in logMAR lines of corrected distance visual acuity (CDVA) occurred in more than 70% of eyes treated by both methods, and no eye lost ≥1 lines of CDVA in both groups. The difference of the mean UDVA and CDVA between two groups at any time post-surgery were not statistically significant (P>0.05). The postoperative changes of spherical equivalent occurred markedly during the first month in both groups. The total root mean square values of HOAs and spherical aberrations in the femtosecond treated eyes were markedly less than those in the microkeratome treated eyes during 6mo visit after surgery (P<0.01). The CSF values of the femtosecond treated eyes were also higher than those of the microkeratome treated eyes at all space frequency (P<0.01). The mean ocular surface disease index scores in both groups were increased at 1wk, and recovered to preoperative level at 1mo after surgery. The mean tear breakup time (TBUT) of the femtosecond treated eyes were markedly longer than those of the microkeratome treated eyes at postoperative 1, 3mo (P<0.01). CONCLUSION Both the femtosecond laser and the mechanical microkeratome for LASIK flap cutting are safe and effective to correct myopia, with no statistically significant difference in the UDVA, CDVA during 6mo follow-up. Refractive results remained stable after 1mo post-operation for both groups. The femtosecond laser may have advantages over the microkeratome in the flap thickness predictability, fewer induced HOAs, better CSF, and longer TBUT. PMID:26309880

  13. Femtosecond solid-state laser based on a few-layered black phosphorus saturable absorber.

    PubMed

    Su, Xiancui; Wang, Yiran; Zhang, Baitao; Zhao, Ruwei; Yang, Kejian; He, Jingliang; Hu, Qiangqiang; Jia, Zhitai; Tao, Xutang

    2016-05-01

    In this Letter, a high-quality, few-layered black phosphorus (BP) saturable absorber (SA) was fabricated successfully, and a femtosecond solid-state laser modulated by BP-SA was experimentally demonstrated for the first time, to the best of our knowledge. Pulses as short as 272 fs were achieved with an average output power of 0.82 W, corresponding to the pulse energy of 6.48 nJ and peak power of 23.8 MW. So far, these represent the shortest pulse duration and highest output power ever obtained with a BP-based mode-locked solid-state laser. The results indicate the promising potential of few-layered BP-SA for applications in solid-state femtosecond mode-locked lasers.

  14. Femtosecond fibre laser stabilisation to an optical frequency standard using a KTP electro-optic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyushkov, B N; Pivtsov, V S; Koliada, N A

    2015-05-31

    A miniature intracavity KTP-based electro-optic phase modulator has been developed which can be used for effective stabilisation of an optical frequency comb of a femtosecond erbiumdoped fibre laser to an optical frequency standard. The use of such an electro-optic modulator (EOM) has made it possible to extend the working frequency band of a phase-locked loop system for laser stabilisation to several hundred kilohertz. We demonstrate that the KTP-based EOM is sufficiently sensitive even at a small optical length, which allows it to be readily integrated into cavities of femtosecond fibre lasers with high mode frequency spacings (over 100 MHz). (extrememore » light fields and their applications)« less

  15. [Advantages and disadvantages of femtosecond laser assisted LASIK and SMILE].

    PubMed

    Zhang, F J; Sun, M S

    2018-01-11

    With the development of excimer laser and femtosecond laser equipment, application of diversified and customized surgical decision in modern corneal refractive surgery has been an inevitable trend. However, how to make a personalized decision with an accurate surgical design to achieve better visual quality becomes the main focus in clinical applications. Small-incision lenticule extraction (SMILE) and femtosecond assisted laser in situ keratomileusis (FS-LASIK) have been commonly acknowledged as the mainstream of corneal refractive surgery for ametropia correction nowadays. Both methods have been verified by clinical practice for many years. This article compares and elaborates the different characteristics with advantages and disadvantages of the two methods so as to provide some reasonable treatment options for refractive surgery. (Chin J Ophthalmol, 2018, 54: 7-10) .

  16. Imaging ultrafast dynamics of molecules with laser-induced electron diffraction.

    PubMed

    Lin, C D; Xu, Junliang

    2012-10-14

    We introduce a laser-induced electron diffraction method (LIED) for imaging ultrafast dynamics of small molecules with femtosecond mid-infrared lasers. When molecules are placed in an intense laser field, both low- and high-energy photoelectrons are generated. According to quantitative rescattering (QRS) theory, high-energy electrons are produced by a rescattering process where electrons born at the early phase of the laser pulse are driven back to rescatter with the parent ion. From the high-energy electron momentum spectra, field-free elastic electron-ion scattering differential cross sections (DCS), or diffraction images, can be extracted. With mid-infrared lasers as the driving pulses, it is further shown that the DCS can be used to extract atomic positions in a molecule with sub-angstrom spatial resolution, in close analogy to the standard electron diffraction method. Since infrared lasers with pulse duration of a few to several tens of femtoseconds are already available, LIED can be used for imaging dynamics of molecules with sub-angstrom spatial and a few-femtosecond temporal resolution. The first experiment with LIED has shown that the bond length of oxygen molecules shortens by 0.1 Å in five femtoseconds after single ionization. The principle behind LIED and its future outlook as a tool for dynamic imaging of molecules are presented.

  17. Intraocular Lens Fragmentation Using Femtosecond Laser: An In Vitro Study

    PubMed Central

    Bala, Chandra; Shi, Jeffrey; Meades, Kerrie

    2015-01-01

    Purpose: To transect intraocular lenses (IOLs) using a femtosecond laser in cadaveric human eyes. To determine the optimal in vitro settings, to detect and characterize gasses or particles generated during this process. Methods: A femtosecond laser was used to transect hydrophobic and hydrophilic acrylic lenses. The settings required to enable easy separation of the lens fragment were determined. The gasses and particles generated were analysed using gas chromatography mass spectrometer (GC-MS) and total organic carbon analyzer (TOC), respectively. Results: In vitro the IOL fragments easily separated at the lowest commercially available energy setting of 1 μJ, 8-μm spot, and 2-μm line separation. No particles were detected in the 0.5- to 900-μm range. No significant gasses or other organic breakdown by products were detected at this setting. At much higher energy levels 12 μJ (4 × 6 μm spot and line separation) significant pyrolytic products were detected, which could be harmful to the eye. In cadaveric explanted IOL capsule complex the laser pulses could be applied through the capsule to the IOL and successfully fragment the IOL. Conclusion: IOL transection is feasible with femtosecond lasers. Further in vivo animal studies are required to confirm safety. Translational Relevance: In clinical practice there are a number of large intraocular lenses that can be difficult to explant. This in-vitro study examines the possibility of transecting the lasers quickly using femtosecond lasers. If in-vivo studies are successful, then this innovation could help ophthalmic surgeons in IOL explantation. PMID:26101721

  18. Measure the spatial distribution of corneal elasticity by combining femtosecond laser induced breakdown spectroscopy and acoustic radiation force elasticity microscope

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Li, Xin; Hu, Mingyong

    2017-08-01

    The unique spatial distribution of corneal elasticity is shown by the nonhomogeneous structure of the cornea. It is critical to understanding how biomechanics control corneal stability and refraction and one way to do this job is non-invasive measurement of this distribution. Femtosecond laser pulses have the ability to induce optical breakdown and produced cavitation in the anterior and posterior cornea. A confocal ultrasonic transducer applied 6.5 ms acoustic radiation forcechirp bursts to the bubble at 1.5 MHz while monitoring bubble position using pulse-echoes at 20 MHz. The laser induced breakdown spectroscopy (LIBS) were measured in the anterior and posterior cornea with the plasmas that induced by the same femtosecond laser to see whether the laser induced plasmas signals will show relationship to Young's modulus.

  19. Research on spectrum broadening covering visible light of a fiber femtosecond optical frequency comb for absolute frequency measurement

    NASA Astrophysics Data System (ADS)

    Xing, Shuai; Wu, Tengfei; Li, Shuyi; Xia, Chuanqing; Han, Jibo; Zhang, Lei; Zhao, Chunbo

    2018-03-01

    As a bridge connecting microwave frequency and optical frequency, femtosecond laser has important significance in optical frequency measurement. Compared with the traditional Ti-sapphire femtosecond optical frequency comb, with the advantages of compact structure, strong anti-interference ability and low cost, the fiber femtosecond optical frequency comb has a wider application prospect. An experiment of spectrum broadening in a highly nonlinear photonic crystal fiber pumped by an Er-fiber mode-locked femtosecond laser is studied in this paper. Based on optical amplification and frequency doubling, the central wavelength of the output spectrum is 780nm and the average power is 232mW. With the femtosecond pulses coupled into two different photonic crystal fibers, the coverage of visible spectrum is up to 500nm-960nm. The spectral shape and width can be optimized by changing the polarization state for satisfying the requirments of different optical frequencies measurement.

  20. Optimizing the 391-nm lasing intensity from ionized nitrogen molecules in 800-nm femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Zhong, Xunqi; Miao, Zhiming; Zhang, Linlin; Jiang, Hongbing; Liu, Yunquan; Gong, Qihuang; Wu, Chengyin

    2018-03-01

    We investigate the 391-nm lasing dynamics from ionized nitrogen molecules in 800-nm femtosecond laser fields. By comparing the radiation intensity, spectrum shape, and temporal profile of the 391-nm lasing at various experimental conditions, we conclude that the lasing dynamics contains not only the generation and the decay of ionized nitrogen molecules, but also the seed-built coherence among emitters as well as the propagation effect in the plasma filamentation. These results provide reliable guidance for optimizing the 391-nm lasing from ionized nitrogen molecules in 800-nm femtosecond laser fields, which have potential applications for remote sensing in the atmosphere.

  1. Comparison of femtosecond laser ablation of aluminum in water and in air by time-resolved optical diagnosis.

    PubMed

    Hu, Haofeng; Liu, Tiegen; Zhai, Hongchen

    2015-01-26

    The dynamic process of material ejection and shock wave evolution during one single femtosecond laser pulse ablation of aluminum target in water and air is experimentally investigated by employing pump-probe technique. Shadowgraphs and digital holograms with high temporal resolution are recorded, which intuitively reveal the characteristics of femtosecond laser ablation in the water-confined environment. The experimental result indicates that the liquid significantly restrict the diffusion of the ejected material, and it has a considerable effect on the attenuation of the shock wave. In addition, the expansion Mach wave generated by the ultrasonic expansion of the shock wave is observed.

  2. Experimental and calculative estimation of femtosecond laser induced-impulsive force in culture medium solution with motion analysis of polymer micro-beads

    NASA Astrophysics Data System (ADS)

    Yamakawa, Takeshi; Maruyama, Akihiro; Uedan, Hirohisa; Iino, Takanori; Hosokawa, Yoichiroh

    2015-03-01

    A new methodology to estimate the dynamics of femtosecond laser-induced impulsive force generated into water under microscope was developed. In this method, the position shift of the bead in water before and after the femtosecond laser irradiation was investigated experimentally and compared with motion equation assuming stress wave propagation with expansion and collapse the cavitation bubble. In the process of the comparison, parameters of force and time of the stress wave were determined. From these results, dynamics of propagations of shock and stress waves, cavitation bubble generation, and these actions to micro-objects were speculated.

  3. Femtosecond Laser Eyewear Protection: Measurements and Precautions

    PubMed Central

    Stromberg, Christopher J.; Hadler, Joshua A.; Alberding, Brian G.; Heilweil, Edwin J.

    2018-01-01

    Ultrafast laser systems are becoming more widespread throughout the research and industrial communities yet eye protection for these high power, bright pulsed sources still require scrupulous characterization and testing before use. Femtosecond lasers, with pulses naturally possessing broad-bandwidth and high average power with variable repetition rate, can exhibit spectral side-bands and subtly changing center wavelengths, which may unknowingly affect eyewear safety protection. Pulse spectral characterization and power diagnostics are presented for a 80 MHz, Ti+3:Sapphire, ≈ 800 nm, ≈40 femtosecond oscillator system. Power and spectral transmission for 22 test samples are measured to determine whether they fall within manufacturer specifications. PMID:29353984

  4. Femtosecond Laser Eyewear Protection: Measurements and Precautions.

    PubMed

    Stromberg, Christopher J; Hadler, Joshua A; Alberding, Brian G; Heilweil, Edwin J

    2017-11-01

    Ultrafast laser systems are becoming more widespread throughout the research and industrial communities yet eye protection for these high power, bright pulsed sources still require scrupulous characterization and testing before use. Femtosecond lasers, with pulses naturally possessing broad-bandwidth and high average power with variable repetition rate, can exhibit spectral side-bands and subtly changing center wavelengths, which may unknowingly affect eyewear safety protection. Pulse spectral characterization and power diagnostics are presented for a 80 MHz, Ti +3 :Sapphire, ≈ 800 nm, ≈40 femtosecond oscillator system. Power and spectral transmission for 22 test samples are measured to determine whether they fall within manufacturer specifications.

  5. Real-time in situ study of femtosecond-laser-induced periodic structures on metals by linear and nonlinear optics.

    PubMed

    Zhang, Jihua; He, Yizhuo; Lam, Billy; Guo, Chunlei

    2017-08-21

    Femtosecond-laser surface structuring on metals is investigated in real time by both fundamental and second harmonic generation (SHG) signals. The onset of surface modification and its progress can be monitored by both the fundamental and SHG probes. However, the dynamics of femtosecond-laser-induced periodic surface structures (FLIPSSs) formation can only be revealed by SHG but not fundamental because of the higher sensitivity of SHG to structural geometry on metal. Our technique provides a simple and effective way to monitor the surface modification and FLIPSS formation thresholds and allows us to obtain the optimal FLIPSS for SHG enhancement.

  6. Efficient Surface Enhanced Raman Scattering substrates from femtosecond laser based fabrication

    NASA Astrophysics Data System (ADS)

    Parmar, Vinod; Kanaujia, Pawan K.; Bommali, Ravi Kumar; Vijaya Prakash, G.

    2017-10-01

    A fast and simple femtosecond laser based methodology for efficient Surface Enhanced Raman Scattering (SERS) substrate fabrication has been proposed. Both nano scaffold silicon (black silicon) and gold nanoparticles (Au-NP) are fabricated by femtosecond laser based technique for mass production. Nano rough silicon scaffold enables large electromagnetic fields for the localized surface plasmons from decorated metallic nanoparticles. Thus giant enhancement (approximately in the order of 104) of Raman signal arises from the mixed effects of electron-photon-phonon coupling, even at nanomolar concentrations of test organic species (Rhodamine 6G). Proposed process demonstrates the low-cost and label-less application ability from these large-area SERS substrates.

  7. Dual Laser-Assisted Lamellar Anterior Keratoplasty with Tophat Graft: A Laboratory Study

    PubMed Central

    Cleary, Catherine; Song, Jonathan C.; Tang, Maolong; Li, Yan; Liu, Ying; Yiu, Samuel; Huang, David

    2011-01-01

    Objectives To develop a dual laser-assisted lamellar anterior keratoplasty (LALAK) technique, using excimer and femtosecond lasers to perform surgery on eye-bank eyes. Methods First we compared corneal stromal surfaces produced by (1) deep excimer ablation, (2) femtosecond lamellar cuts, and (3) manual dissection, and evaluated the effect of excimer laser smoothing with fluid masking on each surface. Masked observers graded scanning electron microscopy (SEM) images on a 5-point roughness scale. Then we performed a 6-mm diameter excimer laser phototherapeutic keratectomy (PTK) ablation to a residual bed thickness of 200μm, followed by laser smoothing. We used the femtosecond laser to cut donors in a modified top-hat design with a thin tapered brim, which fitted into a manually dissected circumferential pocket at the base of the recipient bed. Fourier-domain optical coherence tomography (OCT) was used to measure corneal pachymetry and evaluate graft fit. Results Deep excimer ablation with smoothing (n=4) produced a significantly (p<0.05) smoother surface (grade=3.5) than deep excimer alone (n=4, grade=3.8) or manual dissection with (n=1, grade=3.8) and without smoothing (n=1, grade=4.8). Deep femtosecond cuts (n=2) produced macroscopic concentric ridges on the stromal surface. Experimental LALAK was performed on 4 recipients prepared by deep excimer ablation and 4 donors cut with the femtosecond laser. After suturing good peripheral graft-host match was observed on FD-OCT imaging. Conclusion These preliminary studies show that the LALAK technique permits improved interface smoothness and graft edge matching. Clinical trials are needed to determine whether these improvements can translate to better vision. PMID:22378114

  8. Bond strengths of brackets bonded to enamel surfaces conditioned with femtosecond and Er:YAG laser systems.

    PubMed

    Aglarci, Cahide; Demir, Necla; Aksakalli, Sertac; Dilber, Erhan; Sozer, Ozlem Akinci; Kilic, Hamdi Sukur

    2016-08-01

    The aim of this study was to compare femtosecond and Er:YAG laser systems with regard to enamel demineralization and bracket bond strength. Human-extracted premolars were randomized to three groups (n = 17) depending on the conditioning treatment used for the buccal surfaces: 37 % orthophosphoric acid, Er:YAG laser etching (MSP mode 120 mJ, 10 Hz, 1.2 W), and femtosecond laser etching (0.4 W, 800 nm, 90 fs/pulse, 1 kHz). Metal brackets were bonded with Transbond XT to the conditioned surfaces and light cured for 20 s. The samples were thermocycled (5000 cycles, 5-55 °C) and subjected to shear bond strength (SBS) testing using a universal testing machine. Failure types were analyzed under an optical stereomicroscope and SEM. The adhesive remnant index (ARI) was evaluated to assess residual adhesive on the enamel surface. The results revealed no significant differences in SBS between the Er:YAG laser (7.2 ± 3.3 MPa) and acid etching groups (7.3 ± 2.7 MPa; p < 0.05), whereas a significant difference was observed between the femtosecond laser etching group (3.3 ± 1.2 MPa) and the other two groups (p < 0.01). ARI scores were significantly different among the three groups. The results of our study suggest that laser conditioning with an Er:YAG system results in successful etching, similar to that obtained with acid. The sole use of a femtosecond laser system may not provide an adequate bond strength at the bracket-enamel interface.

  9. Measurement of the temperature increase in the porcine cadaver iris during direct illumination by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Kurtz, Ronald M.; Juhasz, Tibor

    2010-02-01

    Multiple femtosecond lasers have now been cleared for use for ophthalmic surgery, including for creation of corneal flaps in LASIK surgery. Preliminary measurements indicated that during typical surgical use, 50-60% of laser energy may pass beyond the cornea with potential effects on the iris. To further evaluate iris laser exposure during femtosecond corneal surgery, we measured the temperature increase in porcine cadaver iris in situ during direct illumination by the iFS Advanced Femtoosecond Laser (AMO Inc. Santa Ana, CA) with an infrared thermal imaging camera. To replicate the illumination geometry of the eye during the surgery, an excised porcine cadaver iris was placed 1.5 mm from the flat glass contact lens. The temperature field was observed in twenty cadaver iris at laser pulse energy levels ranging from 1 to 2 μJ (corresponding approximately to surgical energies of 2 to 4 μJ per pulse). Temperature increases up to 2.3 °C (corresponding to 2 μJ per pulse and 24 second procedure time) were observed in the cadaver iris with little variation in temperature profiles between specimens for the same laser energy illumination. For laser pulse energy and procedure time characteristic to the iFS Advanced Femtoosecond Laser the temperature increase was measured to be 1.2 °C. Our studies suggest that the magnitude of iris heating that occurs during such femtosecond laser corneal surgery is small and does not present a safety hazard to the iris.

  10. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis

    PubMed

    Jones; Diddams; Ranka; Stentz; Windeler; Hall; Cundiff

    2000-04-28

    We stabilized the carrier-envelope phase of the pulses emitted by a femtosecond mode-locked laser by using the powerful tools of frequency-domain laser stabilization. We confirmed control of the pulse-to-pulse carrier-envelope phase using temporal cross correlation. This phase stabilization locks the absolute frequencies emitted by the laser, which we used to perform absolute optical frequency measurements that were directly referenced to a stable microwave clock.

  11. X-Ray Laser Program Final Report for FY92

    DTIC Science & Technology

    1993-07-01

    also produced population inversion. Ultra- intense , femtosecond- pulsed laboratory lasers ranging from the ultraviolet to the infrared represent an...with pulse lengths of 650 femtoseconds normally Incident on a 2p. thick planar aluminum slab. Comparisons are made for two laser Intensities , two...prepulse is subsequently irradiated by the main high intensity pulse . The persistence of the heliumlike ground state raises the possibility that a photon

  12. Femtosecond laser cutting of human corneas for the subbasal nerve plexus evaluation.

    PubMed

    Kowtharapu, B S; Marfurt, C; Hovakimyan, M; Will, F; Richter, H; Wree, A; Stachs, O; Guthoff, R F

    2017-01-01

    Assessment of various morphological parameters of the corneal subbasal nerve plexus is a valuable method of documenting the structural and presumably functional integrity of the corneal innervation in health and disease. The aim of this work is to establish a rapid, reliable and reproducible method for visualization of the human corneal SBP using femtosecond laser cut corneal tissue sections. Trephined healthy corneal buttons were fixed and processed using TissueSurgeon-a femtosecond laser based microtome, to obtain thick tissue sections of the corneal epithelium and anterior stroma cut parallel to the ocular surface within approximately 15 min. A near infrared femtosecond laser was focused on to the cornea approximately 70-90 μm from the anterior surface to induce material separation using TissueSurgeon. The obtained corneal sections were stained following standard immunohistochemical procedures with anti-neuronal β-III tubulin antibody for visualization of the corneal nerves. Sections that contained the epithelium and approximately 20-30 μm of anterior stroma yielded excellent visualisation of the SBP with minimal optical interference from underlying stromal nerves. In conclusion, the results of this study have demonstrated that femtosecond laser cutting of the human cornea offers greater speed, ease and reliability than standard tissue preparation methods for obtaining high quality thick sections of the anterior cornea cut parallel to the ocular surface. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  13. Multi-photon microscopy with a low-cost and highly efficient Cr:LiCAF laser

    PubMed Central

    Sakadić, Sava; Demirbas, Umit; Mempel, Thorsten R.; Moore, Anna; Ruvinskaya, Svetlana; Boas, David A.; Sennaroglu, Alphan; Kartner, Franz X.; Fujimoto, James G.

    2009-01-01

    Multi-photon microscopy (MPM) is a powerful tool for biomedical imaging, enabling molecular contrast and integrated structural and functional imaging on the cellular and subcellular level. However, the cost and complexity of femtosecond laser sources that are required in MPM are significant hurdles to widespread adoption of this important imaging modality. In this work, we describe femtosecond diode pumped Cr:LiCAF laser technology as a low cost alternative to femtosecond Ti:Sapphire lasers for MPM. Using single mode pump diodes which cost only $150 each, a diode pumped Cr:LiCAF laser generates ~70-fs duration, 1.8-nJ pulses at ~800 nm wavelengths, with a repetition rate of 100 MHz and average output power of 180 mW. Representative examples of MPM imaging in neuroscience, immunology, endocrinology and cancer research using Cr:LiCAF laser technology are presented. These studies demonstrate the potential of this laser source for use in a broad range of MPM applications. PMID:19065223

  14. Intacs for keratoconus and post-LASIK ectasia: mechanical versus femtosecond laser-assisted channel creation.

    PubMed

    Carrasquillo, Karen G; Rand, Janet; Talamo, Jonathan H

    2007-09-01

    To evaluate the efficacy of intracorneal ring segments to treat keratoconus and post-laser in situ keratomileusis (LASIK) keratectasia implanted by using either mechanical dissection or a femtosecond laser. Thirty-three eyes of 29 patients had intracorneal ring segments implanted by using mechanical dissection (17 eyes) or a femtosecond laser (16 eyes). Mean follow-up was 10.3 months. Parameters assessed before and after surgery included uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest refractive spherical equivalent (MRSE), refractive cylinder (RC), best contact lens-corrected visual acuity (BCLVA), and contact lens tolerance. Statistically significant changes occurred for all parameters when we analyzed all 33 eyes as 1 group. Mean UCVA LogMar values improved from 1.0 +/- 0.3 (20/200) to 0.6 +/- 0.4 (20/80) (P < 0.0005). Mean BSCVA changed from 0.3 +/- 0.2 (20/40) to 0.2 +/- 0.2 (20/30) (10%; P < 0.05), and MRSE from -9 +/- 4 to -7 +/- 4 D (P < 0.05; 20%). There was a decrease of 0.5 D or more of RC in 62% of eyes. BCLVA improved from 0.2 +/- 0.2 (20/30) to 0.1 +/- 0.1 (20/25) after surgery (P < 0.02). Contact lens tolerance improved in 81% of eyes. There was no statistically significant difference in outcomes between mechanical dissection and femtosecond laser-assisted techniques. However, although statistical power was adequate to detect changes in clinical parameters as a result of surgery, it was not sufficient to conclusively show such differences between surgical techniques. For mild to moderate cases of keratoconus and post-LASIK keratectasia, the use of a femtosecond laser for Intacs channel creation seems as effective as mechanical dissection. Future studies are warranted to further evaluate channel creation by a femtosecond laser.

  15. Femtosecond Lasers with Diode Pumping for Using in Precision Metrology and Optical Fiber Communication

    DTIC Science & Technology

    2008-11-24

    folding angle of 32° to compensate astigmatism of the Brewster -cut Cr:F crystal. The gain crystal was 17 mm long and introduced positive group-delay...accomplished. For complete stabilization of the femtosecond comb one needs to control its absolute frequency. To realize this we use either angle - tilted...Kerr- lens mode-locking. To the best of our knowledge there is no published works on KLM ytterbium femtosecond lasers with multimode pumping. Stable

  16. Femtosecond-laser assisted cell reprogramming

    NASA Astrophysics Data System (ADS)

    Breunig, Hans Georg; Uchugonova, Aisada; Batista, Ana; König, Karsten

    2017-02-01

    Femtosecond-laser pulses can assist to transfect cells by creating transient holes in the cell membrane, thus making them temporarily permeable for extraneous genetic material. This procedure offers the advantage of being completely "virus free" since no viruses are used for the delivery and integration of gene factors into the host genome and, thereby, avoiding serious side effects which so far prevent clinical application. Unfortunately, focusing of the laser radiation onto individual cell membranes is quite elaborate and time consuming. Regarding these obstacles, we briefly review two optical setups for fast, efficient and high throughput laser-assisted cell transfection based on femtosecond laser pulse excitation. The first setup aims at assisting the transfection of adherent cells. It comprises of a modified laser-scanning microscope with beamshaping optics as well as home-made software to automate the detection, targeting and laser-irradiation process. The second setup aims at laser-assisted transfection of non-adherent cells in suspension which move in a continuous flow through the laser focus region. The setup allows to address a large number of cells, however, with much lower transfection efficiency than the individual-cell targeting approach.

  17. Comparative study of CW, nanosecond- and femtosecond-pulsed laser microcutting of AZ31 magnesium alloy stents.

    PubMed

    Gökhan Demir, Ali; Previtali, Barbara

    2014-06-01

    Magnesium alloys constitute an interesting solution for cardiovascular stents due to their biocompatibility and biodegradability in human body. Laser microcutting is the industrially accepted method for stent manufacturing. However, the laser-material interaction should be well investigated to control the quality characteristics of the microcutting process that concern the surface roughness, chemical composition, and microstructure of the final device. Despite the recent developments in industrial laser systems, a universal laser source that can be manipulated flexibly in terms of process parameters is far from reality. Therefore, comparative studies are required to demonstrate processing capabilities. In particular, the laser pulse duration is a key factor determining the processing regime. This work approaches the laser microcutting of AZ31 Mg alloy from the perspective of a comparative study to evaluate the machining capabilities in continuous wave (CW), ns- and fs-pulsed regimes. Three industrial grade machining systems were compared to reach a benchmark in machining quality, productivity, and ease of postprocessing. The results confirmed that moving toward the ultrashort pulse domain the machining quality increases, but the need for postprocessing remains. The real advantage of ultrashort pulsed machining was the ease in postprocessing and maintaining geometrical integrity of the stent mesh after chemical etching. Resultantly, the overall production cycle time was shortest for fs-pulsed laser system, despite the fact that CW laser system provided highest cutting speed.

  18. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy

    PubMed Central

    Wise, Frank W.

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  19. A simple high-voltage high current spark gap with subnanosecond jitter triggered by femtosecond laser filamentation

    NASA Astrophysics Data System (ADS)

    Arantchouk, L.; Houard, A.; Brelet, Y.; Carbonnel, J.; Larour, J.; André, Y.-B.; Mysyrowicz, A.

    2013-04-01

    We describe a simple, sturdy, and reliable spark gap operating with air at atmospheric pressure and able to switch currents in excess of 10 kA with sub-nanosecond jitter. The spark gap is remotely triggered by a femtosecond laser filament.

  20. Tellurite microstructure fibers with small hexagonal core for supercontinuum generation.

    PubMed

    Liao, Meisong; Chaudhari, Chitrarekha; Qin, Guanshi; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake

    2009-07-06

    Tellurite glass microstructure fibers with a 1 microm hexagonal core were fabricated successfully by accurately controlling the temperature field in the fiber-drawing process. The diameter ratio of holey region to core (DRHC) for the fiber can be adjusted freely in the range of 1-20 by pumping a positive pressure into the holes when drawing fiber, which provides much freedom in engineering the chromatic dispersion. With the increase of DRHC from 3.5 to 20, the zero dispersion wavelengths were shifted several hundred nanometers, the cutoff wavelength due to confinement loss was increased from 1600 nm to 3800 nm, and the nonlinear coefficient gamma was increased from 3.9 to 5.7 W(-1)/m. Efficient visible emissions due to third harmonic generation were found for fibers with a DRHC of 10 and 20 under the 1557 nm pump of a femtosecond fiber laser. One octave flattened supercontinuum spectrum was generated from fibers with a DRHC of 3.5, 10 and 20 by the 1064 nm pump of a picosecond fiber laser. To the best of our knowledge, we have for the first time fabricated a hexagonal core fiber by soft glass with such a small core size, and have demonstrated a large influence of the holey region on the dispersion, nonlinear coefficient and supercontinuum generation for such fiber.

  1. Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser

    NASA Astrophysics Data System (ADS)

    Zi-Ye, Gao; Jiang-Feng, Zhu; Ke, Wang; Jun-Li, Wang; Zhao-Hua, Wang; Zhi-Yi, Wei

    2016-02-01

    We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration. Project supported by the National Major Scientific Instrument Development Project of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant No. 61205130), and the Fundamental Research Funds for the Central Universities, China (Grant No. JB140502).

  2. Femtosecond laser-induced blazed periodic grooves on metals.

    PubMed

    Hwang, Taek Yong; Guo, Chunlei

    2011-07-01

    In this Letter, we generate laser-induced periodic surface structures (LIPSSs) on platinum following femtosecond laser pulse irradiation. For the first time to our knowledge, we study the morphological profile of LIPSSs over a broad incident angular range, and find that the morphological profile of LIPSSs depends significantly on the incident angle of the laser beam. We show that LIPSS grooves become more asymmetric at a larger incident angle, and the morphological profile of LIPSSs formed at an incident angle over 55° eventually resembles that of a blazed grating. Our study suggests that the formation of the blazed groove structures is attributed to the selective ablation of grooves through the asymmetric periodic surface heating following femtosecond pulse irradiation. The blazed grooves are useful for controlling the diffraction efficiency of LIPSSs.

  3. Nano-machining of biosensor electrodes through gold nanoparticles deposition produced by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Della Ventura, B.; Funari, R.; Anoop, K. K.; Amoruso, S.; Ausanio, G.; Gesuele, F.; Velotta, R.; Altucci, C.

    2015-06-01

    We report an application of femtosecond laser ablation to improve the sensitivity of biosensors based on a quartz crystal microbalance device. The nanoparticles produced by irradiating a gold target with 527-nm, 300-fs laser pulses, in high vacuum, are directly deposited on the quartz crystal microbalance electrode. Different gold electrodes are fabricated by varying the deposition time, thus addressing how the nanoparticles surface coverage influences the sensor response. The modified biosensor is tested by weighting immobilized IgG antibody from goat and its analyte (IgG from mouse), and the results are compared with a standard electrode. A substantial increase of biosensor sensitivity is achieved, thus demonstrating that femtosecond laser ablation and deposition is a viable physical method to improve the biosensor sensitivity by means of nanostructured electrodes.

  4. Observation of coherent optical phonons excited by femtosecond laser radiation in Sb films by ultrafast electron diffraction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mironov, B. N.; Kompanets, V. O.; Aseev, S. A., E-mail: isanfemto@yandex.ru

    2017-03-15

    The generation of coherent optical phonons in a polycrystalline antimony film sample has been investigated using femtosecond electron diffraction method. Phonon vibrations have been induced in the Sb sample by the main harmonic of a femtosecond Ti:Sa laser (λ = 800 nm) and probed by a pulsed ultrashort photoelectron beam synchronized with the pump laser. The diffraction patterns recorded at different times relative to the pump laser pulse display oscillations of electron diffraction intensity corresponding to the frequencies of vibrations of optical phonons: totally symmetric (A{sub 1g}) and twofold degenerate (E{sub g}) phonon modes. The frequencies that correspond to combinationsmore » of these phonon modes in the Sb sample have also been experimentally observed.« less

  5. Observing quantum control of up-conversion luminescence in Dy3+ ion doped glass from weak to intermediate shaped femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Liu, Pei; Cheng, Wenjing; Yao, Yunhua; Xu, Cheng; Zheng, Ye; Deng, Lianzhong; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong; Zhang, Shian

    2017-11-01

    Controlling the up-conversion luminescence of rare-earth ions in real-time, in a dynamical and reversible manner, is very important for their application in laser sources, fiber-optic communications, light-emitting diodes, color displays and biological systems. In previous studies, the up-conversion luminescence control mainly focused on the weak femtosecond laser field. Here, we further extend this control behavior from weak to intermediate femtosecond laser fields. In this work, we experimentally and theoretically demonstrate that the up-conversion luminescence in Dy3+ ion doped glass can be artificially controlled by a π phase step modulation, but the up-conversion luminescence control behavior will be affected by the femtosecond laser intensity, and the up-conversion luminescence is suppressed by lower laser intensity while enhanced by higher laser intensity. We establish a new theoretical model (i.e. the fourth-order perturbation theory) to explain the physical control mechanism by considering the two- and four-photon absorption processes, and the theoretical results show that the relative weight of four-photon absorption in the whole excitation process will increase with the increase in laser intensity, and the interference between two- and four-photon absorptions results in up-conversion luminescence control modulation under different laser intensities. These theoretical and experimental works can provide a new method to control and understand up-conversion luminescence in rare-earth ions, and also may open a new opportunity to the related application areas of rare-earth ions.

  6. Femtosecond laser etching of dental enamel for bracket bonding.

    PubMed

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  7. Investigating radiation induced damage processes with femtosecond x-ray pulses (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Changyong

    2017-05-01

    Interest in high-resolution structure investigation has been zealous, especially with the advent of X-ray free electron lasers (XFELs). The intense and ultra-short X-ray laser pulses ( 10 GW) pave new routes to explore structures and dynamics of single macromolecules, functional nanomaterials and complex electronic materials. In the last several years, we have developed XFEL single-shot diffraction imaging by probing ultrafast phase changes directly. Pump-probe single-shot imaging was realized by synchronizing femtosecond (<10 fs in FWHM) X-ray laser (probe) with femtosecond (50 fs) IR laser (pump) at better than 1 ps resolution. Nanoparticles under intense fs-laser pulses were investigated with fs XFEL pulses to provide insight into the irreversible particle damage processes with nanoscale resolution. Research effort, introduced, aims to extend the current spatio-temporal resolution beyond the present limit. We expect this single-shot dynamic imaging to open new science opportunity with XFELs.

  8. Structure determination of molecules in an alignment laser field by femtosecond photoelectron diffraction using an X-ray free-electron laser

    PubMed Central

    Minemoto, Shinichirou; Teramoto, Takahiro; Akagi, Hiroshi; Fujikawa, Takashi; Majima, Takuya; Nakajima, Kyo; Niki, Kaori; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Tono, Kensuke; Tsuru, Shota; Wada, Ken; Yabashi, Makina; Yoshida, Shintaro; Yagishita, Akira

    2016-01-01

    We have successfully determined the internuclear distance of I2 molecules in an alignment laser field by applying our molecular structure determination methodology to an I 2p X-ray photoelectron diffraction profile observed with femtosecond X-ray free electron laser pulses. Using this methodology, we have found that the internuclear distance of the sample I2 molecules in an alignment Nd:YAG laser field of 6 × 1011 W/cm2 is elongated by from 0.18 to 0.30 Å “in average” relatively to the equilibrium internuclear distance of 2.666 Å. Thus, the present experiment constitutes a critical step towards the goal of femtosecond imaging of chemical reactions and opens a new direction for the study of ultrafast chemical reaction in the gas phase. PMID:27934891

  9. Precise Spatially Selective Photothermolysis Using Modulated Femtosecond Lasers and Real-time Multimodal Microscopy Monitoring.

    PubMed

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; Wu, Zhenguo; Zeng, Haishan

    2017-01-01

    The successful application of lasers in the treatment of skin diseases and cosmetic surgery is largely based on the principle of conventional selective photothermolysis which relies strongly on the difference in the absorption between the therapeutic target and its surroundings. However, when the differentiation in absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To deal with such cases, we introduce a novel spatially selective photothermolysis method based on multiphoton absorption in which the radiant energy of a tightly focused near-infrared femtosecond laser beam can be directed spatially by aiming the laser focal point to the target of interest. We construct a multimodal optical microscope to perform and monitor the spatially selective photothermolysis. We demonstrate that precise alteration of the targeted tissue is achieved while leaving surrounding tissue intact by choosing appropriate femtosecond laser exposure with multimodal optical microscopy monitoring in real time.

  10. Precise Spatially Selective Photothermolysis Using Modulated Femtosecond Lasers and Real-time Multimodal Microscopy Monitoring

    PubMed Central

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; Wu, Zhenguo; Zeng, Haishan

    2017-01-01

    The successful application of lasers in the treatment of skin diseases and cosmetic surgery is largely based on the principle of conventional selective photothermolysis which relies strongly on the difference in the absorption between the therapeutic target and its surroundings. However, when the differentiation in absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To deal with such cases, we introduce a novel spatially selective photothermolysis method based on multiphoton absorption in which the radiant energy of a tightly focused near-infrared femtosecond laser beam can be directed spatially by aiming the laser focal point to the target of interest. We construct a multimodal optical microscope to perform and monitor the spatially selective photothermolysis. We demonstrate that precise alteration of the targeted tissue is achieved while leaving surrounding tissue intact by choosing appropriate femtosecond laser exposure with multimodal optical microscopy monitoring in real time. PMID:28255346

  11. Spectral and spatial resolving of photoelectric property of femtosecond laser drilled holes of GaSb(1-x)Bi(x).

    PubMed

    Pan, C B; Zha, F X; Song, Y X; Shao, J; Dai, Y; Chen, X R; Ye, J Y; Wang, S M

    2015-07-15

    Femtosecond laser drilled holes of GaSbBi were characterized by the joint measurements of photoconductivity (PC) spectroscopy and laser-beam-induced current (LBIC) mapping. The excitation light in PC was focused down to 60 μm presenting the spectral information of local electronic property of individual holes. A redshift of energy band edge of about 6-8 meV was observed by the PC measurement when the excitation light irradiated on the laser drilled holes. The spatial resolving of photoelectric property was achieved by the LBIC mapping which shows "pseudo-holes" with much larger dimensions than the geometric sizes of the holes. The reduced LBIC current with the pseudo-holes is associated with the redshift effect indicating that the electronic property of the rim areas of the holes is modified by the femtosecond laser drilling.

  12. Femtosecond laser surface texturing of 3D poly-ε-caprolactone matrices for bone tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Bliznakova, I.; Zhelyazkova, A.; Ostrowska, B.; Trifonov, A.; Buchvarov, I.; Avramov, L.; Husinsky, W.

    2018-03-01

    Fibrous 3D matrices were fabricated from poly-ɛ-caprolactone (PCL) by fused deposition modeling. Femtosecond laser irradiation was then used to demonstrate the possibility to affect the porosity of the 3D PCL fiber meshes. The surface characteristics were analyzed by scanning electron microscopy (SEM) and confocal microscopy. The interrelationship was examined between the laser processing parameters (number of pulses, pulse energy applied) and the response of the biomaterial. The formation was demonstrated of well-defined micropores, while the original fiber structure was retained. The study of cells cultivation on the laser-modified scaffolds showed good adhesion compared to a non-modified scaffold. The results obtained showed that femtosecond laser processing can be used as an alternative non-contact tool in enhancing the porosity of artificial constructs, thus influencing the cell adhesion into fibrous meshes.

  13. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    PubMed

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.

  14. Theoretical and experimental analysis of the impact on ablation depth of microchannel milling using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Lei, Chen; Pan, Zhang; Jianxiong, Chen; Tu, Yiliu

    2018-04-01

    The plasma brightness cannot be used as a direct indicator of ablation depth detection by femtosecond laser was experimentally demonstrated, which led to the difficulty of depth measurement in the maching process. The tests of microchannel milling on the silicon wafer were carried out in the micromachining center in order to obtain the influences of parameters on the ablation depth. The test results showed that the defocusing distance had no significant impact on ablation depth in LAV effective range. Meanwhile, the reason of this was explained in this paper based on the theoretical analysis and simulation calculation. Then it was proven that the ablation depth mainly depends on laser fluence, step distance and scanning velocity. Finally, a research was further carried out to study the laser parameters which relate with the microchannel ablation depth inside the quartz glass for more efficiency and less cost in processing by femtosecond laser.

  15. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses.

    PubMed

    Zywietz, Urs; Evlyukhin, Andrey B; Reinhardt, Carsten; Chichkov, Boris N

    2014-03-04

    Silicon nanoparticles with sizes of a few hundred nanometres exhibit unique optical properties due to their strong electric and magnetic dipole responses in the visible range. Here we demonstrate a novel laser printing technique for the controlled fabrication and precise deposition of silicon nanoparticles. Using femtosecond laser pulses it is possible to vary the size of Si nanoparticles and their crystallographic phase. Si nanoparticles produced by femtosecond laser printing are initially in an amorphous phase (a-Si). They can be converted into the crystalline phase (c-Si) by irradiating them with a second femtosecond laser pulse. The resonance-scattering spectrum of c-Si nanoparticles, compared with that of a-Si nanoparticles, is blue shifted and its peak intensity is about three times higher. Resonant optical responses of dielectric nanoparticles are characterized by accumulation of electromagnetic energy in the excited modes, which can be used for the realization of nanoantennas, nanolasers and metamaterials.

  16. Waveguides fabricated by femtosecond laser exploiting both depressed cladding and stress-induced guiding core.

    PubMed

    Dong, Ming-Ming; Wang, Cheng-Wei; Wu, Zheng-Xiang; Zhang, Yang; Pan, Huai-Hai; Zhao, Quan-Zhong

    2013-07-01

    We report on the fabrication of stress-induced optical channel waveguides and waveguide splitters with laser-depressed cladding by femtosecond laser. The laser beam was focused into neodymium doped phosphate glass by an objective producing a destructive filament. By moving the sample along an enclosed routine in the horizontal plane followed by a minor descent less than the filament length in the vertical direction, a cylinder with rarified periphery and densified center region was fabricated. Lining up the segments in partially overlapping sequence enabled waveguiding therein. The refractive-index contrast, near- and far-field mode distribution and confocal microscope fluorescence image of the waveguide were obtained. 1-to-2, 1-to-3 and 1-to-4 splitters were also machined with adjustable splitting ratio. Compared with traditional femtosecond laser writing methods, waveguides prepared by this approach showed controllable mode conduction, strong field confinement, large numerical aperture, low propagation loss and intact core region.

  17. Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal.

    PubMed

    Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2012-09-15

    We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.

  18. Large Scale Laser Two-Photon Polymerization Structuring for Fabrication of Artificial Polymeric Scaffolds for Regenerative Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinauskas, M.; Purlys, V.; Zukauskas, A.

    2010-11-10

    We present a femtosecond Laser Two-Photon Polymerization (LTPP) system of large scale three-dimensional structuring for applications in tissue engineering. The direct laser writing system enables fabrication of artificial polymeric scaffolds over a large area (up to cm in lateral size) with sub-micrometer resolution which could find practical applications in biomedicine and surgery. Yb:KGW femtosecond laser oscillator (Pharos, Light Conversion. Co. Ltd.) is used as an irradiation source (75 fs, 515 nm (frequency doubled), 80 MHz). The sample is mounted on wide range linear motor driven stages having 10 nm sample positioning resolution (XY--ALS130-100, Z--ALS130-50, Aerotech, Inc.). These stages guarantee anmore » overall travelling range of 100 mm into X and Y directions and 50 mm in Z direction and support the linear scanning speed up to 300 mm/s. By moving the sample three-dimensionally the position of laser focus in the photopolymer is changed and one is able to write complex 3D (three-dimensional) structures. An illumination system and CMOS camera enables online process monitoring. Control of all equipment is automated via custom made computer software ''3D-Poli'' specially designed for LTPP applications. Structures can be imported from computer aided design STereoLihography (stl) files or programmed directly. It can be used for rapid LTPP structuring in various photopolymers (SZ2080, AKRE19, PEG-DA-258) which are known to be suitable for bio-applications. Microstructured scaffolds can be produced on different substrates like glass, plastic and metal. In this paper, we present microfabricated polymeric scaffolds over a large area and growing of adult rabbit myogenic stem cells on them. Obtained results show the polymeric scaffolds to be applicable for cell growth practice. It exhibit potential to use it for artificial pericardium in the experimental model in the future.« less

  19. Large Scale Laser Two-Photon Polymerization Structuring for Fabrication of Artificial Polymeric Scaffolds for Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Malinauskas, M.; Purlys, V.; Žukauskas, A.; Rutkauskas, M.; Danilevičius, P.; Paipulas, D.; Bičkauskaitė, G.; Bukelskis, L.; Baltriukienė, D.; Širmenis, R.; Gaidukevičiutė, A.; Bukelskienė, V.; Gadonas, R.; Sirvydis, V.; Piskarskas, A.

    2010-11-01

    We present a femtosecond Laser Two-Photon Polymerization (LTPP) system of large scale three-dimensional structuring for applications in tissue engineering. The direct laser writing system enables fabrication of artificial polymeric scaffolds over a large area (up to cm in lateral size) with sub-micrometer resolution which could find practical applications in biomedicine and surgery. Yb:KGW femtosecond laser oscillator (Pharos, Light Conversion. Co. Ltd.) is used as an irradiation source (75 fs, 515 nm (frequency doubled), 80 MHz). The sample is mounted on wide range linear motor driven stages having 10 nm sample positioning resolution (XY—ALS130-100, Z—ALS130-50, Aerotech, Inc.). These stages guarantee an overall travelling range of 100 mm into X and Y directions and 50 mm in Z direction and support the linear scanning speed up to 300 mm/s. By moving the sample three-dimensionally the position of laser focus in the photopolymer is changed and one is able to write complex 3D (three-dimensional) structures. An illumination system and CMOS camera enables online process monitoring. Control of all equipment is automated via custom made computer software "3D-Poli" specially designed for LTPP applications. Structures can be imported from computer aided design STereoLihography (stl) files or programmed directly. It can be used for rapid LTPP structuring in various photopolymers (SZ2080, AKRE19, PEG-DA-258) which are known to be suitable for bio-applications. Microstructured scaffolds can be produced on different substrates like glass, plastic and metal. In this paper, we present microfabricated polymeric scaffolds over a large area and growing of adult rabbit myogenic stem cells on them. Obtained results show the polymeric scaffolds to be applicable for cell growth practice. It exhibit potential to use it for artificial pericardium in the experimental model in the future.

  20. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    PubMed

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.

  1. Refractive index change mechanisms in different glasses induced by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Fuerbach, A.; Gross, S.; Little, D.; Arriola, A.; Ams, M.; Dekker, P.; Withford, M.

    2016-07-01

    Tightly focused femtosecond laser pulses can be used to alter the refractive index of virtually all optical glasses. As the laser-induced modification is spatially limited to the focal volume of the writing beam, this technique enables the fabrication of fully three-dimensional photonic structures and devices that are automatically embedded within the host material. While it is well understood that the laser-material interaction process is initiated by nonlinear, typically multiphoton absorption, the actual mechanism that results in an increase or sometimes decrease of the refractive index of the glass strongly depends on the composition of the material and the process parameters and is still subject to scientific studies. In this paper, we present an overview of our recent work aimed at uncovering the physical and chemical processes that contribute to the observed material modification. Raman microscopy and electron microprobe analysis was used to study the induced modifications that occur within the glass matrix and the influence of atomic species migration forced by the femtosecond laser writing beam. In particular, we concentrate on borosilicate, heavy metal fluoride and phosphate glasses. We believe that our results represent an important step towards the development of engineered glass types that are ideally suited for the fabrication of photonic devices via the femtosecond laser direct write technique.

  2. Femtosecond laser ablation of bovine cortical bone

    NASA Astrophysics Data System (ADS)

    Cangueiro, Liliana T.; Vilar, Rui; Botelho do Rego, Ana M.; Muralha, Vania S. F.

    2012-12-01

    We study the surface topographical, structural, and compositional modifications induced in bovine cortical bone by femtosecond laser ablation. The tests are performed in air, with a Yb:KYW chirped-pulse-regenerative amplification laser system (500 fs, 1030 nm) at fluences ranging from 0.55 to 2.24 J/cm2. The ablation process is monitored by acoustic emission measurements. The topography of the laser-treated surfaces is studied by scanning electron microscopy, and their constitution is characterized by glancing incidence x-ray diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and micro-Raman spectroscopy. The results show that femtosecond laser ablation allows removing bone without melting, carbonization, or cracking. The structure and composition of the remaining tissue are essentially preserved, the only constitutional changes observed being a reduction of the organic material content and a partial recrystallization of hydroxyapatite in the most superficial region of samples. The results suggest that, within this fluence range, ablation occurs by a combination of thermal and electrostatic mechanisms, with the first type of mechanism predominating at lower fluences. The associated thermal effects explain the constitutional changes observed. We show that femtosecond lasers are a promising tool for delicate orthopaedic surgeries, where small amounts of bone must be cut with negligible damage, thus minimizing surgical trauma.

  3. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films

    PubMed Central

    Shi, Xuesong; Li, Xin; Jiang, Lan; Qu, Liangti; Zhao, Yang; Ran, Peng; Wang, Qingsong; Cao, Qiang; Ma, Tianbao; Lu, Yongfeng

    2015-01-01

    We developed a simple, scalable and high-throughput method for fabrication of large-area three-dimensional rose-like microflowers with controlled size, shape and density on graphene films by femtosecond laser micromachining. The novel biomimetic microflower that composed of numerous turnup graphene nanoflakes can be fabricated by only a single femtosecond laser pulse, which is efficient enough for large-area patterning. The graphene films were composed of layer-by-layer graphene nanosheets separated by nanogaps (~10–50 nm), and graphene monolayers with an interlayer spacing of ~0.37 nm constituted each of the graphene nanosheets. This unique hierarchical layering structure of graphene films provides great possibilities for generation of tensile stress during femtosecond laser ablation to roll up the nanoflakes, which contributes to the formation of microflowers. By a simple scanning technique, patterned surfaces with controllable densities of flower patterns were obtained, which can exhibit adhesive superhydrophobicity. More importantly, this technique enables fabrication of the large-area patterned surfaces at centimeter scales in a simple and efficient way. This study not only presents new insights of ultrafast laser processing of novel graphene-based materials but also shows great promise of designing new materials combined with ultrafast laser surface patterning for future applications in functional coatings, sensors, actuators and microfluidics. PMID:26615800

  4. Controlled assembly of high-order nanoarray metal structures on bulk copper surface by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Qin, Wanwan; Yang, Jianjun

    2017-07-01

    We report a new one-step maskless method to fabricate high-order nanoarray metal structures comprising periodic grooves and particle chains on a single-crystal Cu surface using femtosecond laser pulses at the central wavelength of 400 nm. Remarkably, when a circularly polarized infrared femtosecond laser pulse (spectrally centered at 800 nm) pre-irradiates the sample surface, the geometric dimensions of the composite structure can be well controlled. With increasing the energy fluence of the infrared laser pulse, both the groove width and particle diameter are observed to reduce, while the measured spacing-to-diameter ratio of the nanoparticles tends to present an increasing tendency. A physical scenario is proposed to elucidate the underlying mechanisms: as the infrared femtosecond laser pulse pre-irradiates the target, the copper surface is triggered to display anomalous transient physical properties, on which the subsequently incident Gaussian blue laser pulse is spatially modulated into fringe-like energy depositions via the excitation of ultrafast surface plasmon. During the following relaxation processes, the periodically heated thin-layer regions can be transferred into the metastable liquid rivulets and then they break up into nanodroplet arrays owing to the modified Rayleigh-like instability. This investigation indicates a simple integrated approach for active designing and large-scale assembly of complexed functional nanostructures on bulk materials.

  5. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundredsmore » of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.« less

  6. Vibration-Assisted Femtosecond Laser Drilling with Controllable Taper Angles for AMOLED Fine Metal Mask Fabrication

    PubMed Central

    Choi, Wonsuk; Kim, Hoon Young; Jeon, Jin Woo; Chang, Won Seok; Cho, Sung-Hak

    2017-01-01

    This study investigates the effect of focal plane variation using vibration in a femtosecond laser hole drilling process on Invar alloy fabrication quality for the production of fine metal masks (FMMs). FMMs are used in the red, green, blue (RGB) evaporation process in Active Matrix Organic Light-Emitting Diode (AMOLED) manufacturing. The taper angle of the hole is adjusted by attaching the objective lens to a micro-vibrator and continuously changing the focal plane position. Eight laser pulses were used to examine how the hole characteristics vary with the first focal plane’s position, where the first pulse is focused at an initial position and the focal planes of subsequent pulses move downward. The results showed that the hole taper angle can be controlled by varying the amplitude of the continuously operating vibrator during femtosecond laser hole machining. The taper angles were changed between 31.8° and 43.9° by adjusting the vibrator amplitude at a frequency of 100 Hz. Femtosecond laser hole drilling with controllable taper angles is expected to be used in the precision micro-machining of various smart devices. PMID:28772571

  7. Mechanism and applications of new fluorescent compounds produced by femtosecond laser surgery in biological tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qu, Jianan Y.; Sun, Qiqi

    2017-02-01

    The single or multi-photon microscopy based on fluorescent labelling and staining is a sensitive and quantitative method that is widely used in molecular biology and medical research for a variety of experimental, analytical, and quality control applications. However, label-free method is highly desirable in biology and medicine when performing long term live imaging of biological system and obtaining instant tissue examination during surgery procedures. Recently, our group found that femtosecond laser surgery turned a variety of biological tissues and protein samples into highly fluorescent substances. The newly formed fluorescent compounds produced during the laser surgery can be excited via single- and two-photon processes over broad wavelength ranges. We developed a combined confocal and two-photon spectroscopic microscope to characterize the fluorescence from the new compound systematically. The structures of the femtosecond laser treated tissue were studied using Raman spectroscopy and transmission electron microscopy. Our study revealed the mechanisms of the fluorescence emission form the new compound. Furthermore, we demonstrated the applications of the fluorescent compounds for instant evaluation of femtosecond laser microsurgery, study of stem cell responses to muscle injury and neuro-regeneration after spinal cord injury.

  8. Optical cell cleaning with NIR femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-03-01

    Femtosecond laser microscopes have been used as both micro and nanosurgery tools. The optical knock-out of undesired cells in multiplex cell clusters shall be further reported on in this study. Femtosecond laser-induced cell death is beneficial due to the reduced collateral side effects and therefore can be used to selectively destroy target cells within monolayers, as well as within 3D tissues, all the while preserving cells of interest. This is an important characteristic for the application in stem cell research and cancer treatment. Non-precise damage compromises the viability of neighboring cells by inducing side effects such as stress to the cells surrounding the target due to the changes in the microenvironment, resulting from both the laser and laser-exposed cells. In this study, optimum laser parameters for optical cleaning by isolating single cells and cell colonies are exploited through the use of automated software control. Physiological equilibrium and cellular responses to the laser induced damages are also investigated. Cell death dependence on laser focus, determination and selectivity of intensity/dosage, controllable damage and cell recovery mechanisms are discussed.

  9. Efficacy and perioperative timing of bromfenac in the management of ocular discomfort after femtosecond laser-assisted laser in situ keratomileusis.

    PubMed

    Cleaveland, Nathan A; De Mann, Derek W; Carlson, Neil E; Keil, Michael L

    2017-02-01

    To evaluate the safety, efficacy, and appropriate perioperative timing of the use of topical bromfenac ophthalmic solution 0.07% after femtosecond laser-assisted laser in situ keratomileusis (LASIK). Keil LASIK Vision Center, Grand Rapids, Michigan, USA. Prospective case series. Ocular discomfort was assessed 1, 2, and 5 hours postoperatively and the following morning using the Ocular Comfort Grading Assessment in patients treated with topical bromfenac 0.07% or artificial tears just before, just after, or before and after femtosecond laser-assisted LASIK. Visual outcomes and complications were noted up to 24 hours. The study enrolled 64 patients (120 eyes). Patients who were treated with bromfenac 0.07% just before or before and after femtosecond laser-assisted LASIK showed the greatest statistically significant decrease in several discomfort scores within the first few hours in comparison with the control group. Two hours after surgery, the majority of patients who were treated before and after LASIK were sleeping comfortably. There were no significant differences in visual acuity; 1 day postoperatively, the uncorrected distance visual acuity was 20/20 in 106 eyes (89%) and 20/25 or better in 116 eyes (97%). At 3 months, all patients had binocular distance visual acuity of 20/20 or better and 86% of patients had 20/15 or better. Ocular discomfort after femtosecond laser-assisted LASIK was reduced with a single dose of topical bromfenac 0.07% given immediately before surgery or given just before and after surgery and was typically minimal in all groups the morning after surgery. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. Ultrafast amorphization in Ge(10)Sb(2)Te(13) thin film induced by single femtosecond laser pulse.

    PubMed

    Konishi, Mitsutaka; Santo, Hisashi; Hongo, Yuki; Tajima, Kazuyuki; Hosoi, Masaharu; Saiki, Toshiharu

    2010-06-20

    We demonstrate amorphization in a Ge(10)Sb(2)Te(13) (GST) thin film through a nonthermal process by femtosecond electronic excitation. Amorphous recording marks were formed by irradiation with a single femtosecond pulse, and were confirmed to be recrystallized by laser thermal annealing. Scanning electron microscope observations revealed that amorphization occurred below the melting temperature. We performed femtosecond pump-probe measurements to investigate the amorphization dynamics of a GST thin film. We found that the reflectivity dropped abruptly within 500fs after excitation by a single pulse and that a small change in the reflectivity occurred within 5ps of this drop.

  11. Ca2+ waves across gaps in non-excitable cells induced by femtosecond laser exposure

    NASA Astrophysics Data System (ADS)

    He, Hao; Wang, Shaoyang; Li, Xun; Li, Shiyang; Hu, Minglie; Cao, Youjia; Wang, Ching-Yue

    2012-04-01

    Calcium is a second messenger in all cells for various cellular processes. It was found in astrocytes and neurons that femtosecond laser stimulation could induce Ca2+ wave propagation. In this work, a femtosecond laser with a power above a certain threshold was focused on single HeLa/HEK293T cells for Ca2+ mobilization. Several types of Ca2+ oscillation patterns were found in neighboring cells. The Ca2+ wave propagated very fast across 40-μm gaps in the Ca2+-free medium mediated by the adenosine-triphosphate released from cells. This approach could provide a clean methodology to investigate the Ca2+ dynamics in non-excitable cells.

  12. Probing Intermolecular Interactions in Binary Liquid Mixtures Using Femtosecond Laser-Induced Self-Defocusing.

    PubMed

    Maurya, Sandeep Kumar; Das, Dhiman; Goswami, Debabrata

    2016-06-13

    Photo-thermal behavior of binary liquid mixtures has been studied by high repetition rate (HRR) Z-scan technique with femtosecond laser pulses. Changes in the peak-valley difference in transmittance (ΔT P-V ) for closed aperture Z-scan experiments are indicative of thermal effects induced by HRR femtosecond laser pulses. We show such indicative results can have a far-reaching impact on molecular properties and intermolecular interactions in binary liquid mixtures. Spectroscopic parameters derived from this experimental technique show that the combined effect of physical and molecular properties of the constituent binary liquids can be related to the components of the binary liquid. © The Author(s) 2016.

  13. Nonlinear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Qu, Shiliang; Gao, Yachen; Jiang, Xiongwei; Zeng, Huidan; Song, Yinglin; Qiu, Jianrong; Zhu, Congshan; Hirao, K.

    2003-09-01

    Nonlinear absorptions of Au nanoparticles precipitated silicate glasses by irradiation of a focused femtosecond pulsed laser were investigated using Z-scan technique with 8 ns pulses at 532 nm. Optical limiting (OL) effects in such glasses have been also measured. It is observed that the behaviors of transition from saturable absorption to reverse saturable absorption and the OL performances for different samples are significantly different, which depend drastically on the irradiation power density of the femtosecond laser used for the Au nanoparticles precipitation in the glass. Strong nonlinear absorptions in these samples are mainly attributed to the surface plasmon resonance (SPR) and free carrier absorptions of the precipitated Au nanoparticles.

  14. Effect of the Femtosecond Laser on an Intracorneal Inlay for Surgical Compensation of Presbyopia during Cataract Surgery: Scanning Electron Microscope Imaging.

    PubMed

    Ibarz, Marta; Rodríguez-Prats, Jose Luis; Hernández-Verdejo, Jose Luis; Tañá, Pedro

    2017-02-01

    To investigate the effect of the femtosecond laser-assisted cataract surgery (FLACS) on porcine eyes implanted with a Kamra corneal inlay and to describe how the inlay may change the effect of the femtosecond laser on the lens. FLACS was performed on six porcine eyes and a Kamra corneal inlay had been implanted, exploring the lens under the surgical microscope. Another Kamra corneal inlay was attached to the upper part of the transparent hemisphere used for calibration of the femtosecond laser. Capsulorhexis, arcuate incisions, and phacofragmentation were carried out. The Kamra corneal inlay was compared with a nontreated one using a scanning electron microscope (SEM), and the hemisphere was analyzed with a surgical microscope. Capsulorhexis and phacofragmentation were completed in all the porcine eyes, although accuracy to determine the exact effect on the lens was not possible to achieve. The effect of the femtosecond laser on the PMMA hemisphere through the Kamra corneal inlay showed the capsulorhexis was placed outside the outer margin of the inlay and a sharply sculpted fragmentation pattern with a three-dimensional (donut-shaped) annulus untreated beneath it. SEM images of the nontreated and the treated inlays were comparable. No ultrastructural changes were found in the treated Kamra corneal inlay. FLACS can be performed with a Kamra corneal inlay for surgical compensation of presbyopia without the risk of damaging the inlay. The Kamra corneal inlay acts as a screen that avoids the laser to reach the areas beneath its shadow, but not the exposed areas of the lens.

  15. Micro- and macroscopic photonic control of matter

    NASA Astrophysics Data System (ADS)

    Ryabtsev, Anton

    This dissertation outlines the development of several methods and techniques that enable comprehensive control of laser-matter interactions and nonlinear optical processes using shaped femtosecond pulses. Manipulation of the spectral phases and amplitudes of femtosecond laser pulses provides an effective way to adjust laser parameters, both those intrinsic to pulse generation within a laser and those induced by laser-matter interactions. When coupled with a fundamental understanding of the interactions between a laser's electric field and the molecules in the propagation media, these methods make the behavior of laser pulses predictable and allow the experimental information they carry to be extracted accurately. The ultimate motivation is to enhance the accuracy and reproducibility of spectroscopic measurements and to control nonlinear processes during light-matter interaction using shaped femtosecond pulses. Ultrafast laser systems have become one of the most important scientific tools in femtochemistry, nanoscale material science, chemical detection and sensing, and many other applications where processes occur at femtosecond (fs, 10-15 of a second) timescales or when broad laser bandwidths are required. As with any measuring instrument, it is very important to know system's exact parameters in order to make meaningful, accurate and reproducible measurements. For ultrafast lasers, these parameters are the intensities of the spectral components, the spectral phase, the temporal profile, the pulse energy, and the spatial laser beam profile. Due to broadband nature of ultrafast laser sources, they are very sensitive to propagation media: gaseous, liquid or solid matter along the paths of laser pulses to the sample, including the material of the sample itself. Optical parameters describing the propagation media, such as linear and nonlinear dispersion, and birefringence, as well as physical parameters, such as temperature and pressure, all affect laser pulse parameters. In order for measurements not to be skewed, these interactions need to be taken into account and mitigated at the time of the experiment or handled later in data analysis and simulations. Experimental results are presented in four chapters. Chapter 2 describes two topics: (1) single-shot real-time monitoring and correction of spectral phase drifts, which commonly originate from temperature and pointing fluctuations inside the laser cavity when the pulses are generated; (2) an all-optical method for controlling the dispersion of femtosecond pulses using other pulses. Chapter 3 focuses on the effects of the propagation media--how intense laser pulses modify media and how, in turn, the media modifies them back--and how these effects can be counteracted. Self-action effects in fused silica are discussed, along with some interesting and unexpected results. A method is then proposed for mitigating self-action processes using binary modulation of the spectral phases of laser pulses. Chapter 4 outlines the design of two laser systems, which are specifically tailored for particular spectroscopic applications and incorporate the comprehensive pulse control described in previous chapters. Chapter 5 shows how control of spatial beam characteristics can be applied to measurements of the mechanical motion of microscale particles and how it can potentially be applied to molecular motion. It also describes an experiment on laser-induced flow in air in which attempts were made to control the macroscopic molecular rotation of gases. My research, with a pulse shaper as the enabling tool, provides important insights into ultrafast scientific studies by making femtosecond laser research more predictable, reliable and practical for measurement and control. In the long term, some of the research methods in this thesis may help the transition of femtosecond lasers from the laboratory environment into clinics, factories, airports, and other everyday settings.

  16. Laser Materials Processing Final Report CRADA No. TC-1526-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, J.; Lehane, C. J.

    2017-09-08

    This CRADA project was a joint effort between Lawrence Livermore National Laboratory (LLNL) and United Technologies Corporation (UTC)/Pratt & Whitney (P&W) to demonstrate process capability for drilling holes in turbine airfoils using LLNL-developed femtosecond laser machining technology. The basis for this development was the ability of femtosecond lasers to drill precision holes in variety of materials with little or no collateral damage. The ultimate objective was to develop a laser machine tool consisting of an extremely advanced femtosecond laser subsystem to be developed by LLNL on a best-effort basis and a drilling station for turbine blades and vanes to bemore » developed by P&W. In addition, P&W was responsible for commercializing the system. The goal of the so called Advanced Laser Drilling (ALD) system was to drill specified complex hole-shapes in turbine blades and vanes with a high degree precision and repeatability and simultaneously capable of very high speed processing.« less

  17. Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Xian-Feng; Zhang, Cheng-Yun; Tie, Shao-Long; Lan, Sheng

    2017-02-01

    The evolution of the nanostructure induced on a titanium (Ti) surface with increasing irradiation pulse number by using a 400-nm femtosecond laser was examined by using scanning electron microscopy. High spatial frequency periodic structures of TiO2 parallel to the laser polarization were initially observed because of the laser-induced oxidation of the Ti surface and the larger efficacy factor of TiO2 in this direction. Periodically aligned TiO2 nanowires with featured width as small as 20 nm were obtained. With increasing pulse number, however, low spatial frequency periodic structures of Ti perpendicular to the laser polarization became dominant because Ti possesses a larger efficacy factor in this direction. The competition between the high- and low-spatial frequency periodic structures is in good agreement with the prediction of the efficacy factor theory and it should also be observed in the femtosecond laser ablation of other metals which are easily oxidized in air.

  18. Noncontact microsurgery and delivery of substances into stem cells by means of femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Il'ina, I V; Ovchinnikov, A V; Sitnikov, D S

    We have studied the efficiency of microsurgery of a cell membrane in mesenchymal stem cells and the posterior cell viability under the localised short-time action of femtosecond IR laser pulses aimed at noncontact delivery of specified substances into the cells. (extreme light fields and their applications)

  19. Femtosecond OPO based on MgO:PPLN synchronously pumped by a 532 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Cao, Jianjun; Shen, Dongyi; Zheng, Yuanlin; Feng, Yaming; Kong, Yan; Wan, Wenjie

    2017-05-01

    With the rapid progress in fiber technologies, femtosecond fiber lasers, which are compact, cost-effective and stable, have been developed and are commercially available. Studies of optical parametric oscillators (OPOs) pumped by this type of laser are demanding. Here we report a femtosecond optical parametric oscillator (OPO) at 79.6 MHz repetition rate based on MgO-doped periodically poled LiNbO3 (MgO:PPLN), synchronously pumped by the integrated second harmonic radiation of a femtosecond fiber laser at 532 nm. The signal delivered by the single resonant OPO is continuously tunable from 757 to 797 nm by tuning the crystal temperature in a poling period of 7.7 μ \\text{m} . The output signal shows good beam quality in TEM00 mode profile with pulse duration of 206 fs at 771 nm. Maximum output signal power of 71 mW is obtained for a pump power of 763 mW and a low pumping threshold of 210 mW is measured. Moreover, grating tuning and cavity length tuning of the signal wavelength are also investigated.

  20. Femtosecond laser-assisted cataract surgery in Alport syndrome with anterior lenticonus.

    PubMed

    Ecsedy, Mónika; Súndor, Gúbor L; Takúcs, Úgnes I; Krúnitz, Kinga; Kiss, Zoltún; Kolev, Krasimir; Nagy, Zoltún Z

    2015-01-01

    To report the surgical treatment of 3 eyes of 2 patients with bilateral anterior lenticonus due to Alport syndrome using femtosecond laser-assisted cataract surgery (FLACS). Two patients with Alport syndrome presented to our department due to anterior lenticonus in both eyes. We performed FLACS with posterior chamber lens implantation in both eyes of one patient and in one eye of the other patient. Anterior segment morphologic changes were visualized with a Scheimpflug camera, and anterior segment optical coherence tomography preoperatively and 3 months after surgery. Ultrastructure of the cut capsule edges was observed with scanning electron microscopy and compared to the edge of femtosecond laser capsulotomy performed on an otherwise healthy patient with cataract (control). The intraocular lens (IOL) postoperative positioning parameters met the international requirements of aspherical and wavefront customized IOLs (tilt <10 degree, decentration <800 µm). Scanning electron microscopy revealed the same characteristics of the cut capsule edges in the Alport and in the control eyes. Femtosecond laser cataract surgery can be a safe and successful method for optical rehabilitation of anterior lenticonus in patients with Alport syndrome.

  1. Miniature fiber-optic multiphoton microscopy system using frequency-doubled femtosecond Er-doped fiber laser

    PubMed Central

    Huang, Lin; Mills, Arthur K.; Zhao, Yuan; Jones, David J.; Tang, Shuo

    2016-01-01

    We report on a miniature fiber-optic multiphoton microscopy (MPM) system based on a frequency-doubled femtosecond Er-doped fiber laser. The femtosecond pulses from the laser source are delivered to the miniature fiber-optic probe at 1.58 µm wavelength, where a standard single mode fiber is used for delivery without the need of free-space dispersion compensation components. The beam is frequency-doubled inside the probe by a periodically poled MgO:LiNbO3 crystal. Frequency-doubled pulses at 786 nm with a maximum power of 80 mW and a pulsewidth of 150 fs are obtained and applied to excite intrinsic signals from tissues. A MEMS scanner, a miniature objective, and a multimode collection fiber are further used to make the probe compact. The miniature fiber-optic MPM system is highly portable and robust. Ex vivo multiphoton imaging of mammalian skins demonstrates the capability of the system in imaging biological tissues. The results show that the miniature fiber-optic MPM system using frequency-doubled femtosecond fiber laser can potentially bring the MPM imaging for clinical applications. PMID:27231633

  2. Femtosecond laser inscribed cladding waveguide lasers in Nd:LiYF4 crystals

    NASA Astrophysics Data System (ADS)

    Li, Shi-Ling; Huang, Ze-Ping; Ye, Yong-Kai; Wang, Hai-Long

    2018-06-01

    Depressed circular cladding, buried waveguides were fabricated in Nd:LiYF4 crystals with an ultrafast Yb-doped fiber master-oscillator power amplifier laser. Waveguides were optimized by varying the laser writing conditions, such as pulse energy, focus depth, femtosecond laser polarization and scanning velocity. Under optical pump at 799 nm, cladding waveguides showed continuous-wave laser oscillation at 1047 nm. Single- and multi-transverse modes waveguide laser were realized by varying the waveguide diameter. The maximum output power in the 40 μm waveguide is ∼195 mW with a slope efficiency of 34.3%. The waveguide lasers with hexagonal and cubic cladding geometry were also realized.

  3. 2 micron femtosecond fiber laser

    DOEpatents

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  4. Remotely manageable system for stabilizing femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Cizek, Martin; Hucl, Vaclav; Smid, Radek; Mikel, Bretislav; Lazar, Josef; Cip, Ondrej

    2014-05-01

    In the field of precise measurement of optical frequencies, laser spectroscopy and interferometric distance surveying the optical frequency synthesizers (femtosecond combs) are used as optical frequency references. They generate thousands of narrow-linewidth coherent optical frequencies at the same time. The spacing of generated components equals to the repetition frequency of femtosecond pulses of the laser. The position of the comb spectrum has a frequency offset that is derived from carrier to envelope frequency difference. The repetition frequency and mentioned frequency offset belong to main controlled parameters of the optical frequency comb. If these frequencies are electronically locked an ultrastable frequency standard (i.e. H-maser, Cs- or Rb- clock), its relative stability is transferred to the optical frequency domain. We present a complete digitally controlled signal processing chain for phase-locked loop (PLL) control of the offset frequency. The setup is able to overcome some dropouts caused by the femtosecond laser non-stabilities (temperature drifts, ripple noise and electricity spikes). It is designed as a two-stage control loop, where controlled offset frequency is permanently monitored by digital signal processing. In case of dropouts of PLL, the frequency-locked loop keeps the controlled frequency in the required limits. The presented work gives the possibility of long-time operation of femtosecond combs which is necessary when the optical frequency stability measurement of ultra-stable lasers is required. The detailed description of the modern solution of the PLL with remote management is presented.

  5. Assessment of refractive outcome of femtosecond-assisted LASIK for hyperopia correction

    PubMed Central

    El-Naggar, Mohamed Tarek; Hovaghimian, Dikran Gilbert

    2017-01-01

    Introduction Laser vision correction for hyperopia is challenging. The purpose of the study was to assess the refractive outcomes of femtosecond-assisted laser in situ keratomileusis (LASIK) for hyperopic correction using wavefront-optimized ablation profiles. Methods This retrospective case series study included 20 Egyptian patients (40 eyes) with hyperopia or hyperopic astigmatism with a mean manifest refraction spherical equivalent (MRSE) of +2.55D±1.17 (range from +1.00 to +6.00) who had uneventful femtosecond-a assisted LASIK with wavefront-optimized aspheric ablation profile using refractive surgery suite (WaveLight FS200 Femtosecond Laser and WaveLight EX500 Excimer Laser) performed in the Research Institute of Ophthalmology and International Eye Hospital, Giza, Egypt. Statistical analysis was done using Microsoft Excel (Microsoft Corporation, Seattle, WA, USA). Results The procedure significantly reduced the MRSE and cylinder post-operatively (95% were ± 0.50D and 100% ± 1.00 D), with stability of refraction and UDVA over the follow-up period (up to 12 months) after surgery. No eye lost any line of the CDVA, which reflects the excellent safety profile of the procedure; on the other hand, one eye (5%) gained one line and one eye (5%) even gained two lines. There were no significant complications during the procedure. Conclusions Femtosecond-assisted laser in situ keratomileusis for hyperopia showed predictable, effective, and safe refractive outcomes that were stable through 12 months. Longer follow-up period is required to detect any further regression PMID:28461870

  6. Nanostructure and surface activation of mayenite (12CaO·7Al2O3) ceramics via femtosecond laser irradiation in solvents

    NASA Astrophysics Data System (ADS)

    Visbal, Heidy; Hirano, Minami; Omura, Takuya; Shimizu, Masahiro; Takaishi, Taigo; Hirao, Kazuyuki

    2017-07-01

    Mayenite (12CaO·7Al2O3) is a highly interesting functional material due to the wide variety of its possible future applications. In this study, we used femtosecond laser irradiation in several solvents with varying polarities to increase the specific surface area of 12CaO·7Al2O3 ceramics and reduce their particle size without any structural degradation or loss of crystallinity. We observed that when femtosecond laser irradiation was applied to solvents bearing hydroxyl groups, a smaller particle size was obtained with the particle size decreasing as the polarity of the solvent increased. Using infrared spectroscopy, we confirmed the presence of hydroxyl and carbonyl surface functional groups at the surface of 12CaO·7Al2O3 ceramics after femtosecond laser irradiation. This is attributed to the direct chemical bonds breaking of the solvent via multiphoton ionization and/or tunneling ionization, followed by the Coulomb explosion and the subsequent production of ions that are adsorbed on the surfaces of 12CaO·7Al2O3 ceramics. Femtosecond laser irradiation in polar solvents with hydroxyl groups can reduce the particle size and increase the specific surface area without degradation or loss of crystallinity of 12CaO·7Al2O3 ceramics. Additionally, this method can be used for the surface modification and introduction of functional groups on the 12CaO·7Al2O3 ceramics surface.

  7. Generation of a femtosecond electron microbunch train from a photocathode using twofold Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Shevelev, M.; Aryshev, A.; Terunuma, N.; Urakawa, J.

    2017-10-01

    The interest in producing ultrashort electron bunches has risen sharply among scientists working on the design of high-gradient wakefield accelerators. One attractive approach generating electron bunches is to illuminate a photocathode with a train of femtosecond laser pulses. In this paper we describe the design and testing of a laser system for an rf gun based on a commercial titanium-sapphire laser technology. The technology allows the production of four femtosecond laser pulses with a continuously variable pulse delay. We also use the designed system to demonstrate the experimental generation of an electron microbunch train obtained by illuminating a cesium-telluride semiconductor photocathode. We use conventional diagnostics to characterize the electron microbunches produced and confirm that it may be possible to control the main parameter of an electron microbunch train.

  8. Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation

    NASA Astrophysics Data System (ADS)

    Gurevich, Evgeny L.

    2016-06-01

    Here we analyze the formation of laser-induced periodic surface structures (LIPSS) on metal surfaces upon single femtosecond laser pulses. Most of the existing models of the femtosecond LIPSS formation discuss only the appearance of a periodic modulation of the electron and ion temperatures. However the mechanism how the inhomogeneous surface temperature distribution induces the periodically-modulated surface profile under the conditions corresponding to ultrashort-pulse laser ablation is still not clear. Estimations made on the basis of different hydrodynamic instabilities allow to sort out mechanisms, which can bridge the gap between the temperature modulation and the LIPSS. The proposed theory shows that the periodic structures can be generated by single ultrashort laser pulses due to ablative instabilities. The Marangoni and Rayleigh-Bénard convection on the contrary cannot cause the LIPSS formation.

  9. The Effect of Femtosecond Laser Treatment on the Effectiveness of Resin-Zirconia Adhesive: An In Vitro Study

    PubMed Central

    Vicente Prieto, María; Gomes, Ana Luisa Caseiro; Montero Martín, Javier; Alvarado Lorenzo, Alfonso; Seoane Mato, Vicente; Albaladejo Martínez, Alberto

    2016-01-01

    Introduction: When aesthetics is compromised, dental ceramics are excellent materials for dental restorations; owing to their optical properties and biocompatibility, zirconia ceramics are particularly interesting. Self-adhesive resin cements are the most suitable for bonding to zirconia ceramics, but traditional adhesive chemistry is ineffective and surface treatments are required to improve the adhesive bonding between resin and zirconia. The aim of this study was to evaluate the effect of femtosecond laser treatment on the shear bond strength (SBS) of self-adhesive resin cement on zirconia surfaces and to contrast it with other different surface conditioning methods. Methods: Sixty square-shaped zirconia samples were divided randomly into four groups (n = 15) according to their surface conditioning method: the NT group - no surface treatment; the APA25 group - airborne abrasion with 25 μm alumina particles; the TSC group - tribochemical silica coating, and the FS group - femtosecond laser irradiation (800 nm, 4 mJ, 40 fs/pulse, 1 kHz). Self-adhesive resin cements were bonded at the centre of samples, and after 72 hours, they were tested for SBS with a universal testing machine at a crosshead speed of 0.5 mm/min, until fracture. Five zirconia surfaces for each group were subjected to a surface morphology analysis by scanning electron microscopy (SEM). The failure modes were noted and a third of the specimens were prepared to morphological analysis. Results: The NT group showed lower SBS values than the other groups. Femtosecond laser treatment demonstrated higher values than the control and APA25 groups and similar values to those of the TSC group. In the APA25 group, the surface conditioning method had values close to those of the TSC group, but lower than those obtained with femtosecond laser treatment. Conclusion: The treatment of zirconia with femtosecond laser irradiation created a consistent and profound surface roughness, improving the adhesive effectiveness of the zirconia-resin interface. PMID:28491255

  10. Optical sampling by laser cavity tuning.

    PubMed

    Hochrein, Thomas; Wilk, Rafal; Mei, Michael; Holzwarth, Ronald; Krumbholz, Norman; Koch, Martin

    2010-01-18

    Most time-resolved optical experiments rely either on external mechanical delay lines or on two synchronized femtosecond lasers to achieve a defined temporal delay between two optical pulses. Here, we present a new method which does not require any external delay lines and uses only a single femtosecond laser. It is based on the cross-correlation of an optical pulse with a subsequent pulse from the same laser. Temporal delay between these two pulses is achieved by varying the repetition rate of the laser. We validate the new scheme by a comparison with a cross-correlation measurement carried out with a conventional mechanical delay line.

  11. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Feasibility of generation of picosecond and subpicosecond x-ray pulses in thin films

    NASA Astrophysics Data System (ADS)

    Gordienko, Vyacheslav M.; Dzhidzhoev, M. S.; Kolchin, V. V.; Magnitskiy, Sergey A.; Platonenko, Viktor T.; Savel'ev, Andrei B.; Tarasevitch, A. P.

    1995-02-01

    The characteristics of a femtosecond laser plasma, formed by irradiation of a thin freely suspended carbon film, are investigated numerically. It is shown that the use of thin films can increase considerably the electron temperature of a femtosecond laser plasma and make it possible to generate x-rays of shorter wavelengths. This method can also be used to increase the efficiency of conversion of the energy of laser pulses into the radiation emitted by hydrogen-like carbon ions without a significant increase in the duration of x-ray pulses.

  12. Direct femtosecond laser ablation of copper with an optical vortex beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anoop, K. K.; Rubano, A.; Marrucci, L.

    Laser surface structuring of copper is induced by laser ablation with a femtosecond optical vortex beam generated via spin-to-orbital conversion of the angular momentum of light by using a q-plate. The variation of the produced surface structures is studied as a function of the number of pulses, N, and laser fluence, F. After the first laser pulse (N=1), the irradiated surface presents an annular region characterized by a corrugated morphology made by a rather complex network of nanometer-scale ridges, wrinkles, pores, and cavities. Increasing the number of pulses (21000) and a deep crater is formed. The nanostructure variation with themore » laser fluence, F, also evidences an interesting dependence, with a coarsening of the structure morphology as F increases. Our experimental findings demonstrate that direct femtosecond laser ablation with optical vortex beams produces interesting patterns not achievable by the more standard beams with a Gaussian intensity profile. They also suggest that appropriate tuning of the experimental conditions (F, N) can allow generating micro- and/or nano-structured surface for any specific application.« less

  13. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers.

    PubMed

    Yasui, Takeshi; Ichikawa, Ryuji; Hsieh, Yi-Da; Hayashi, Kenta; Cahyadi, Harsono; Hindle, Francis; Sakaguchi, Yoshiyuki; Iwata, Tetsuo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Minoshima, Kaoru; Inaba, Hajime

    2015-06-02

    Terahertz (THz) dual comb spectroscopy (DCS) is a promising method for high-accuracy, high-resolution, broadband THz spectroscopy because the mode-resolved THz comb spectrum includes both broadband THz radiation and narrow-line CW-THz radiation characteristics. In addition, all frequency modes of a THz comb can be phase-locked to a microwave frequency standard, providing excellent traceability. However, the need for stabilization of dual femtosecond lasers has often hindered its wide use. To overcome this limitation, here we have demonstrated adaptive-sampling THz-DCS, allowing the use of free-running femtosecond lasers. To correct the fluctuation of the time and frequency scales caused by the laser timing jitter, an adaptive sampling clock is generated by dual THz-comb-referenced spectrum analysers and is used for a timing clock signal in a data acquisition board. The results not only indicated the successful implementation of THz-DCS with free-running lasers but also showed that this configuration outperforms standard THz-DCS with stabilized lasers due to the slight jitter remained in the stabilized lasers.

  14. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers

    PubMed Central

    Yasui, Takeshi; Ichikawa, Ryuji; Hsieh, Yi-Da; Hayashi, Kenta; Cahyadi, Harsono; Hindle, Francis; Sakaguchi, Yoshiyuki; Iwata, Tetsuo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Minoshima, Kaoru; Inaba, Hajime

    2015-01-01

    Terahertz (THz) dual comb spectroscopy (DCS) is a promising method for high-accuracy, high-resolution, broadband THz spectroscopy because the mode-resolved THz comb spectrum includes both broadband THz radiation and narrow-line CW-THz radiation characteristics. In addition, all frequency modes of a THz comb can be phase-locked to a microwave frequency standard, providing excellent traceability. However, the need for stabilization of dual femtosecond lasers has often hindered its wide use. To overcome this limitation, here we have demonstrated adaptive-sampling THz-DCS, allowing the use of free-running femtosecond lasers. To correct the fluctuation of the time and frequency scales caused by the laser timing jitter, an adaptive sampling clock is generated by dual THz-comb-referenced spectrum analysers and is used for a timing clock signal in a data acquisition board. The results not only indicated the successful implementation of THz-DCS with free-running lasers but also showed that this configuration outperforms standard THz-DCS with stabilized lasers due to the slight jitter remained in the stabilized lasers. PMID:26035687

  15. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemos, N.; Cardoso, L.; Geada, J.

    We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a waveguide for high intensity laser beams. We have successfully guided ~10 15 W cm -2 laser pulses in a 8 mm longmore » hydrogen plasma waveguide with a 35% guiding efficiency.« less

  16. Guiding of laser pulses in plasma waveguides created by linearly-polarized femtosecond laser pulses

    DOE PAGES

    Lemos, N.; Cardoso, L.; Geada, J.; ...

    2018-02-16

    We experimentally demonstrate that plasma waveguides produced with ultra-short laser pulses (sub-picosecond) in gas jets are capable of guiding high intensity laser pulses. This scheme has the unique ability of guiding a high-intensity laser pulse in a plasma waveguide created by the same laser system in the very simple and stable experimental setup. A hot plasma column was created by a femtosecond class laser that expands into an on-axis parabolic low density profile suitable to act as a waveguide for high intensity laser beams. We have successfully guided ~10 15 W cm -2 laser pulses in a 8 mm longmore » hydrogen plasma waveguide with a 35% guiding efficiency.« less

  17. Diode-pumped mode-locked femtosecond Tm:CLNGG disordered crystal laser.

    PubMed

    Ma, J; Xie, G Q; Gao, W L; Yuan, P; Qian, L J; Yu, H H; Zhang, H J; Wang, J Y

    2012-04-15

    A diode-end-pumped passively mode-locked femtosecond Tm-doped calcium lithium niobium gallium garnet (Tm:CLNGG) disordered crystal laser was demonstrated for the first time to our knowledge. With a 790 nm laser diode pumping, stable CW mode-locking operation was obtained by using a semiconductor saturable absorber mirror. The disordered crystal laser generated mode-locked pulses as short as 479 fs, with an average output power of 288 mW, and repetition rate of 99 MHz in 2 μm spectral region. © 2012 Optical Society of America

  18. Unidirectionally oriented nanocracks on metal surfaces irradiated by low-fluence femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Shimizu, Masahiro; Hashida, Masaki; Miyasaka, Yasuhiro; Tokita, Shigeki; Sakabe, Shuji

    2013-10-01

    We have investigated the origin of nanostructures formed on metals by low-fluence femtosecond laser pulses. Nanoscale cracks oriented perpendicular to the incident laser polarization are induced on tungsten, molybdenum, and copper targets. The number density of the cracks increases with the number of pulses, but crack length plateaus. Electromagnetic field simulation by the finite-difference time-domain method indicates that electric field is locally enhanced along the direction perpendicular to the incident laser polarization around a nanoscale hole on the metal surface. Crack formation originates from the hole.

  19. Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, Luke B.; Witcher, Jon J.; Troy, Neil

    We have investigated waveguide writing in Er-Yb doped zinc polyphosphate glass using a femtosecond laser with a repetition rate of 1 KHz. We find that fabrication of good waveguides requires a glass composition with an O/P ratio of 3.25. The dependence on laser writing parameters including laser fluence, focusing conditions, and scan speed is reported. Waveguide properties together with absorption and emission data indicate that these glasses can be used for the fabrication of compact, high gain amplifying devices.

  20. Tuning the frequency of ultrashort laser pulses by a cross-phase-modulation-induced shift in a photonic crystal fiber.

    PubMed

    Konorov, S O; Akimov, D A; Zheltikov, A M; Ivanov, A A; Alfimov, M V; Scalora, M

    2005-06-15

    Femtosecond pulses of fundamental Cr:forsterite laser radiation are used as a pump field to tune the frequency of copropagating second-harmonic pulses of the same laser through cross-phase modulation in a photonic crystal fiber. Sub-100-kW femtosecond pump pulses coupled into a photonic crystal fiber with an appropriate dispersion profile can shift the central frequency of the probe field by more than 100 nm, suggesting a convenient way to control propagation and spectral transformations of ultrashort laser pulses.

  1. Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing.

    PubMed

    Nie, Weijie; Cheng, Chen; Jia, Yuechen; Romero, Carolina; Vázquez de Aldana, Javier R; Chen, Feng

    2015-05-15

    Low-loss depressed cladding waveguides have been produced in Nd:YAP laser crystal by using direct femtosecond laser writing. Under optical pump at 812 nm at room temperature, continuous-wave simultaneous dual-wavelength laser oscillations at 1064 and 1079 nm, both along TM polarization, have been realized in the waveguiding structures. It has been found that, with the variation of pump polarization, the intensity ratio of 1064 and 1079 nm emissions varies periodically, while the polarization of output dual-wavelength laser remains unchanged. The maximum output power achieved for the Nd:YAP waveguide lasers is ∼200  mW with a slope efficiency of 33.4%.

  2. Tesla coil discharges guided by femtosecond laser filaments in air

    NASA Astrophysics Data System (ADS)

    Brelet, Yohann; Houard, Aurélien; Arantchouk, Leonid; Forestier, Benjamin; Liu, Yi; Prade, Bernard; Carbonnel, Jérôme; André, Yves-Bernard; Mysyrowicz, André

    2012-04-01

    A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 kHz synchronisable with a nanosecond temporal jitter. Using this compact high voltage generator, we demonstrate reproducible meter long discharges in air at a repetition rate of 1 Hz. Triggering and guiding of the discharges are performed in air by femtosecond laser filaments.

  3. Beam wandering of femtosecond laser filament in air.

    PubMed

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-05

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc.

  4. Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal

    NASA Astrophysics Data System (ADS)

    Li, Rang; Nie, Weijie; Lu, Qingming; Cheng, Chen; Shang, Zhen; Vázquez de Aldana, Javier R.; Chen, Feng

    2017-07-01

    We report on the superficial cladding waveguides fabricated by direct femtosecond laser writing in Nd: CaF2 crystal with three different groups of parameters. The lowest propagation loss of waveguides has been determined to be 0.7 dB/cm at wavelength of 632.8 nm along TE polarization. The near fundamental modal distributions have been imaged through the end-face coupling technique. The guidance of the waveguides is found to possess low sensitivity on polarization of the probe light. By using a confocal microscope system, the micro-photoluminescence mappings and micro-fluorescence spectra are also obtained, which indicates the photoluminescence features of the Nd3+ ions are well preserved in the waveguide cores after direct femtosecond laser writing.

  5. Viability evaluation of culture cells patterned by femtosecond laser-induced impulsive force

    NASA Astrophysics Data System (ADS)

    Takizawa, Noriko; Okano, Kazunori; Uwada, Takayuki; Hosokawa, Yoichiroh; Masuhara, Hiroshi

    2008-02-01

    PC12 cells, which are derived from a rat pheochromocytoma, were independently patterned utilizing an impulsive force resulting in impulsive shockwave and cavitation bubble generation by focused femtosecond laser irradiation. Since the PC12 cells respond reversibly to nerve growth factor by induction of the neuronal phenotype, we can assess an influence that the impulsive force gives to the bioactivity in term of the cell differentiation. The patterned cells were accumulated on an intact dish and cultured for 3 days. The behavior of appearance and cell differentiation was observed by multipoint time-lapse system. On bases of these results, it was proved that the biological activity of the cell is unaffected by the femtosecond laser patterning.

  6. Long-term stable coherent beam combination of independent femtosecond Yb-fiber lasers.

    PubMed

    Tian, Haochen; Song, Youjian; Meng, Fei; Fang, Zhanjun; Hu, Minglie; Wang, Chingyue

    2016-11-15

    We demonstrate coherent beam combination between independent femtosecond Yb-fiber lasers by using the active phase locking of relative pulse timing and the carrier envelope phase based on a balanced optical cross-correlator and extracavity acoustic optical frequency shifter, respectively. The broadband quantum noise of femtosecond fiber lasers is suppressed via precise cavity dispersion control, instead of complicated high-bandwidth phase-locked loop design. Because of reduced quantum noise and a simplified phase-locked loop, stable phase locking that lasts for 1 hour has been obtained, as verified via both spectral interferometry and far-field beam interferometry. The approach can be applied to coherent pulse synthesis, as well as to remote frequency comb connection, allowing a practical all-fiber configuration.

  7. Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing.

    PubMed

    Liao, Yang; Ju, Yongfeng; Zhang, Long; He, Fei; Zhang, Qiang; Shen, Yinglong; Chen, Danping; Cheng, Ya; Xu, Zhizhan; Sugioka, Koji; Midorikawa, Katsumi

    2010-10-01

    We demonstrate, for the first time to the best of our knowledge, fabrication of three-dimensional microfluidic channels with arbitrary lengths and configurations inside glass by femtosecond laser direct writing. The main fabrication process includes two steps: (1) direct formation of hollow microchannels in a porous glass substrate immersed in water by femtosecond laser ablation and (2) postannealing of the glass substrate at ∼1150°C by which the porous glass can be consolidated. We show that a square-wavelike channel with a total length of ∼1.4 cm and a diameter of ∼64 μm can be easily produced ∼250 μm beneath the glass surface.

  8. Irregularity of the posterior corneal surface during applanation using a curved femtosecond laser interface and microkeratome cutting head.

    PubMed

    Vetter, Jan M; Holtz, Carsten; Vossmerbaeumer, Urs; Pfeiffer, Norbert

    2012-03-01

    To evaluate the irregularity of the posterior corneal surface and intrastromal dissection during the preparation of donor tissue for Descemet stripping automated endothelial keratoplasty (DSAEK) using a curved interface femtosecond laser and microkeratome. Sixteen human donor corneas unsuitable for transplantation were divided into two groups: a femtosecond (FS) laser group (n=7) using the VisuMax femtosecond laser (Carl Zeiss Meditec) and a microkeratome group (n=9) using the Amadeus II microkeratome (Ziemer Ophthalmic Group). The corneas were fixed on artificial anterior chambers. Horizontal cross-sections were obtained using spectral-domain optical coherence tomography prior to applanation, during applanation, as well as during and after intrastromal dissection at 450-μm corneal depth. The posterior surface and the dissection line were evaluated for irregularity by fitting a second-order polynomial curve using regression analysis and obtaining the root-mean-square error (RMSE). Groups were compared using analysis of variance. The RMSE of the posterior surface prior to applanation was 9.7 ± 3.1 μm in the FS laser group and 10.2 ± 2.3 μm in the microkeratome group. The RMSE increased to 50.7 ± 9.4 μm and 20.9 ± 6.1 μm during applanation and decreased again to 10.6 ± 1.4 μm and 8.1 ± 1.8 μm after applanation in the FS laser and microkeratome groups, respectively. The RMSE of the intrastromal cut was 19.5 ± 5.7 μm in the FS laser group and 7.7 ± 3.0 μm in the microkeratome group (P<.001). Our results show significantly greater irregularity with the curved interface femtosecond laser-assisted cleavage compared to microkeratome-assisted corneal dissection, possibly due to applanation-derived deformation of the posterior cornea. Copyright 2012, SLACK Incorporated.

  9. Noncontact microsurgery of cell membranes using femtosecond laser pulses for optoinjection of specified substances into cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Il'ina, I V; Ovchinnikov, A V; Chefonov, O V

    IR femtosecond laser pulses were used for microsurgery of a cell membrane aimed at local and short-duration change in its permeability and injection of specified extracellular substances into the cells. The possibility of noncontact laser delivery of the propidium iodide fluorescent dye and the pEGFP plasmid, encoding the green fluorescent protein, into the cells with preservation of the cell viability was demonstrated. (extreme light fields and their applications)

  10. Intrastromal corneal reshaping using a high-intensity femtosecond laser: A novel method of vision correction

    NASA Astrophysics Data System (ADS)

    Han, Taehee

    A new technology to perform a minimally invasive cornea reshaping procedure has been developed. This can eliminate the incidence of the flap-related complications of the conventional eye refractive procedures by multiphoton processes using a very high-intensity (I ≥ 1013 W/cm 2), but low energy (Ep ˜ 100-200 microJ) femtosecond laser pulses. Due to much lower energy than that of the nanosecond laser pulses for the thermal photoablation, the multiphoton processes cause almost no collateral damage by heat and shock wave generation. In this method, a series of femtosecond laser pulses is used to create very narrow (< 30 microm) and sufficiently long (≥ 2.5 mm) micro-channels in the cornea. The micro-channels are oriented almost perpendicular to the eye's optical axis. Once the micro-channel reaches a desired length, another series of femtosecond pulses with higher intensity is efficiently delivered through the micro-channel to the endpoint where a certain amount of the stromal tissue is disintegrated by the multiphoton processes. The disintegrated fragments are ejected out of the cornea via the same micro-channel, allowing the corneal surface to collapse, and changing its refractive power. This new corneal reshaping method obviates any process of damaging the corneal surface layer, while retaining the advantages of the conventional refractive procedures such as Laser in situ keratomileusis (LASIK) and Photorefractive keratectomy (PRK). In order to demonstrate the flapless cornea reshaping procedure, we have conducted ex-vivo experiments on fresh porcine eyes. The reshaped corneas were evaluated by using optical coherence tomography (OCT). The test results have shown that this flapless intrastromal procedure can reshape the cornea as intended with almost no surface damage. We have also performed a series of experiments to demonstrate the multiphoton processes in the corneal tissue by very high-intensity femtosecond laser pulses. Through the optical emission spectroscopy, we investigated the spectral lines of calcium atom and ions from the femtosecond laser-induced plasma from the porcine corneal tissue. The experimental results have shown the intensity-dependence of ablation rate, which qualitatively verifies the characteristics of the multiphoton processes.

  11. Small incision lenticule extraction (SMILE) and femtosecond laser LASIK: comparison of corneal wound healing and inflammation

    PubMed Central

    Dong, Zixian; Zhou, Xingtao; Wu, Jihong; Zhang, Zhehuan; Li, Tao; Zhou, Zimei; Zhang, Shenghai; Li, Gang

    2014-01-01

    Aim To evaluate and compare early corneal wound healing and inflammatory responses after small incision lenticule extraction (SMILE) versus femtosecond laser laser in situ keratomileusis (LASIK). Methods Thirty-six eyes of 36 rabbits underwent SMILE, while another 36 eyes of 36 rabbits were treated with femtosecond laser LASIK. All the eyes were subjected to the same refractive correction of −6.00 DS/−1.00 DC. Twelve eyes that had no surgery were included for control. After euthanisation, corneal tissue sections were evaluated with terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick-end labelling (TUNEL) assay to detect apoptosis at postoperative 4 and 24 h, immunocytochemistry for Ki67 to detect keratocyte proliferation at postoperative day 3, week 1 and month 1, and immunocytochemistry for CD11b to detect inflammation at postoperative day 1, day 3 and week 1, respectively. Results No adverse effects were noted after SMILE or LASIK. Corneal healing postoperatively was uneventful in all cases. There were significantly fewer TUNEL-positive corneal stromal cells after the SMILE procedure at 4 and 24 h postoperatively (p<0.01) compared with the LASIK procedure. In addition, immunocytochemistry showed significantly fewer Ki67-positive cells in the SMILE group than those in the femtosecond laser LASIK group at day 3 and week 1 postoperatively (p<0.05), but there was little expression of Ki67 at month 1 postoperatively in both groups. The CD11b-positive cells were significantly fewer in the SMILE group at day 1, day 3 and week 1 postoperatively (p<0.01). Conclusions SMILE induces less keratocyte apoptosis, proliferation and inflammation compared with femtosecond laser LASIK. PMID:24227802

  12. Fabrication of low loss waveguide using fundamental light of Yb-based femtosecond laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Imai, Ryo; Konishi, Kuniaki; Yumoto, Junji; Gonokami, Makoto K.

    2017-03-01

    Laser direct writing of optical devices and circuits is attracted attention because of its ability of three-dimensional fabrication without any mask[1]. Recently, Yb-fiber or solid-state laser has been commonly used for fabrication in addition to traditional Ti:S laser. However, it is reported that waveguide cannot be fabricated in fused silica by using the fundamental light from Yb-based femtosecond laser[2]. Some groups reported on waveguide fabrication by using second-harmonic beam of such lasers[3], but wavelength conversion using nonlinear process has drawbacks such as destabilization of laser power and beam deformation by walk off. In this study, we investigated fabrication of low-loss waveguide in fused silica by using the fundamental beam (1030nm) from an Yb solid-state femtosecond laser with a pulse duration of 250 fs. The NA of focusing objective lens was 0.42. The fabricated waveguide was made to have a circular cross-section by shaping laser beam with a slit[4]. We fixed repetition rate to 150 kHz, and identified appropriate scan speed and pulse energy for fabrication of low loss waveguide. Waveguide fabricated with appropriate condition had a propagation loss of 0.2 dB/cm, and this is the first report on optical waveguides in a fused silica fabricated by femto-second laser pulses at a wavelength of 1030nm. [1]K. M. Davis, et. al., Opt. Lett 21, 1729(1996) [2]J. Canning, et. al., Opt. Mater. Express 1, 998(2011) [3]L. Shah, et. al., Opt. Express 13, 1999(2005) [4]M. Ams, et. al., Opt. Express 13, 5676(2005)

  13. Three-dimensional femtosecond laser processing for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Sima, Felix; Sugioka, Koji; Vázquez, Rebeca Martínez; Osellame, Roberto; Kelemen, Lóránd; Ormos, Pal

    2018-02-01

    The extremely high peak intensity associated with ultrashort pulse width of femtosecond laser allows us to induce nonlinear interaction such as multiphoton absorption and tunneling ionization with materials that are transparent to the laser wavelength. More importantly, focusing the femtosecond laser beam inside the transparent materials confines the nonlinear interaction only within the focal volume, enabling three-dimensional (3D) micro- and nanofabrication. This 3D capability offers three different schemes, which involve undeformative, subtractive, and additive processing. The undeformative processing preforms internal refractive index modification to construct optical microcomponents including optical waveguides. Subtractive processing can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. Additive processing represented by two-photon polymerization enables the fabrication of 3D polymer micro- and nanostructures for photonic and microfluidic devices. These different schemes can be integrated to realize more functional microdevices including lab-on-a-chip devices, which are miniaturized laboratories that can perform reaction, detection, analysis, separation, and synthesis of biochemical materials with high efficiency, high speed, high sensitivity, low reagent consumption, and low waste production. This review paper describes the principles and applications of femtosecond laser 3D micro- and nanofabrication for lab-on-a-chip applications. A hybrid technique that promises to enhance functionality of lab-on-a-chip devices is also introduced.

  14. Laser chirp effect on femtosecond laser filamentation generated for pulse compression.

    PubMed

    Park, Juyun; Lee, Jae-Hwan; Nam, Chang H

    2008-03-31

    The influence of laser chirp on the formation of femtosecond laser filamentation in Ar was investigated for the generation of few-cycle high-power laser pulses. The condition for the formation of a single filament has been carefully examined using 28-fs laser pulses with energy over 3 mJ. The filament formation and output spectrum changed very sensitively to the initial laser chirp and gas pressure. Much larger spectral broadening was obtained with positively chirped pulses, compared to the case of negatively chirped pulses that generated much longer filament, and compressed pulses of 5.5 fs with energy of 0.5 mJ were obtained from the filamentation of positively chirped 30-fs laser pulses in a single Ar cell.

  15. Ti : sapphire laser synchronised with femtosecond Yb pump laser via nonlinear pulse coupling in Ti : sapphire active medium

    NASA Astrophysics Data System (ADS)

    Didenko, N. V.; Konyashchenko, A. V.; Konyashchenko, D. A.; Kostryukov, P. V.; Kuritsyn, I. I.; Lutsenko, A. P.; Mavritskiy, A. O.

    2017-02-01

    A laser system utilising the method of synchronous pumping of a Ti : sapphire laser by a high-power femtosecond Yb3+-doped laser is described. The pulse repetition rate of the Ti : sapphire laser is successfully locked to the repetition rate of the Yb laser for more than 6 hours without the use of any additional electronics. The measured timing jitter is shown to be less than 1 fs. A simple qualitative model addressing the synchronisation mechanism utilising the cross-phase modulation of oscillation and pump pulses within a Ti : sapphire active medium is proposed. Output parameters of the Ti : sapphire laser as functions of its cavity length are discussed in terms of this model.

  16. Laser emission from diode-pumped Nd:YAG ceramic waveguide lasers realized by direct femtosecond-laser writing technique.

    PubMed

    Salamu, Gabriela; Jipa, Florin; Zamfirescu, Marian; Pavel, Nicolaie

    2014-03-10

    We report on realization of buried waveguides in Nd:YAG ceramic media by direct femtosecond-laser writing technique and investigate the waveguides laser emission characteristics under the pump with fiber-coupled diode lasers. Laser pulses at 1.06 μm with energy of 2.8 mJ for the pump with pulses of 13.1-mJ energy and continuous-wave output power of 0.49 W with overall optical efficiency of 0.13 were obtained from a 100-μm diameter circular cladding waveguide realized in a 0.7-at.% Nd:YAG ceramic. A circular waveguide of 50-μm diameter yielded laser pulses at 1.3 μm with 1.2-mJ energy.

  17. Femtosecond all-solid-state laser for refractive surgery

    NASA Astrophysics Data System (ADS)

    Zickler, Leander; Han, Meng; Giese, G.'nter; Loesel, Frieder H.; Bille, Josef F.

    2003-06-01

    Refractive surgery in the pursuit of perfect vision (e.g. 20/10) requires firstly an exact measurement of abberations induced by the eye and then a sophisticated surgical approach. A recent extension of wavefront measurement techniques and adaptive optics to ophthalmology has quantitatively characterized the quality of the human eye. The next milestone towards perfect vision is developing a more efficient and precise laser scalpel and evaluating minimal-invasive laser surgery strategies. Femtosecond all-solid-state MOPA lasers based on passive modelocking and chirped pulse amplification are excellent candidates for eye surgery due to their stability, ultra-high intensity and compact tabletop size. Furthermore, taking into account the peak emission in the near IR and diffraction limited focusing abilities, surgical laser systems performing precise intrastromal incisions for corneal flap resection and intrastromal corneal reshaping promise significant improvement over today's Photorefractive Keratectomy (PRK) and Laser Assisted In Situ Keratomileusis (LASIK) techniques which utilize UV excimer lasers. Through dispersion control and optimized regenerative amplification, a compact femtosecond all-solid-state laser with pulsed energy well above LIOB threshold and kHz repetition rate is constructed. After applying a pulse sequence to the eye, the modified corneal morphology is investigated by high resolution microscopy (Multi Photon/SHG Confocal Microscope).

  18. Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation

    NASA Astrophysics Data System (ADS)

    Ji, Xu; Jiang, Lan; Li, Xiaowei; Han, Weina; Liu, Yang; Wang, Andong; Lu, Yongfeng

    2015-01-01

    A cross-patterned surface periodic structure in femtosecond laser processing of crystalline silicon was revealed under a relatively low shots (4 < N < 10) with the pulse energy slightly higher than the ablation threshold. The experimental results indicated that the cross-pattern was composed of mutually orthogonal periodic structures (ripples). Ripples with a direction perpendicular to laser polarization (R⊥) spread in the whole laser-modified region, with the periodicity around 780 nm which was close to the central wavelength of the laser. Other ripples with a direction parallel to laser polarization (R‖) were found to be distributed between two of the adjacent ripples R⊥, with a periodicity about the sub-wavelength of the irradiated laser, 390 nm. The geometrical morphology of two mutually orthogonal ripples under static femtosecond laser irradiation could be continuously rotated as the polarization directions changed, but the periodicity remained almost unchanged. The underlying physical mechanism was revealed by numerical simulations based on the finite element method. It was found that the incubation effect with multiple shots, together with the redistributed electric field after initial ablation, plays a crucial role in the generation of the cross-patterned periodic surface structures.

  19. Comparison of intra-ocular pressure changes with liquid or flat applanation interfaces in a femtosecond laser platform.

    PubMed

    Williams, G P; Ang, H P; George, B L; Liu, Y C; Peh, G; Izquierdo, L; Tan, D T; Mehta, J S

    2015-10-06

    Cataract surgery is the most common surgical procedure and femtosecond laser assisted cataract surgery (FLACS) has gained increased popularity. FLACS requires the application of a suction device to stabilize the laser head and focus the laser beam accurately. This may cause a significant escalation in intra-ocular pressure (IOP), which poses potential risks for patients undergoing cataract surgery. In this study we aimed to assess the effect of the Ziemer LDV Z8 femtosecond cataract machine on IOP. We demonstrated through a porcine model that IOP was significantly higher with a flat interface but could be abrogated by reducing surgical compression and vacuum. Pressure was lower with a liquid interface, and further altering angulation of the laser arm could reduce the IOP to 36 mmHg. A pilot series in patients showed comparable pressure rises with the porcine model (30 mmHg). These strategies may improve the safety profile in patients vulnerable to high pressure when employing FLACS with the Ziemer LDV Z8.

  20. Fiber laser-microscope system for femtosecond photodisruption of biological samples

    PubMed Central

    Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F. Ömer; Eldeniz, Y. Burak; Tazebay, Uygar H.

    2012-01-01

    We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells. PMID:22435105

  1. Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials.

    PubMed

    Matsubara, E; Okada, S; Ichitsubo, T; Kawaguchi, T; Hirata, A; Guan, P F; Tokuda, K; Tanimura, K; Matsunaga, T; Chen, M W; Yamada, N

    2016-09-23

    Despite the fact that phase-change materials are widely used for data storage, no consensus exists on the unique mechanism of their ultrafast phase change and its accompanied large and rapid optical change. By using the pump-probe observation method combining a femtosecond optical laser and an x-ray free-electron laser, we substantiate experimentally that, in both GeTe and Ge_{2}Sb_{2}Te_{5} crystals, rattling motion of mainly Ge atoms takes place with keeping the off-center position just after femtosecond-optical-laser irradiation, which eventually leads to a higher symmetry or disordered state. This very initial rattling motion in the undistorted lattice can be related to instantaneous optical change due to the loss of resonant bonding that characterizes GeTe-based phase change materials. Based on the amorphous structure derived by first-principles molecular dynamics simulation, we infer a plausible ultrafast amorphization mechanism via nonmelting.

  2. Experimental and FDTD study of silicon surface morphology induced by femtosecond laser irradiation at a high substrate temperature.

    PubMed

    Deng, Guoliang; Feng, Guoying; Zhou, Shouhuan

    2017-04-03

    Substrate temperature is an important parameter for controlling the properties of femtosecond laser induced surface structures besides traditional ways. The morphology on silicon surface at different temperatures are studied experimentally. Compared to those formed at 300 K, smoother ripples, micro-grooves and nano/micro-holes are formed at 700 K. A two temperature model and FDTD method are used to discuss the temperature dependence of surface structures. The results show that the increased light absorption at elevated temperature leads to the reduction of surface roughness. The type-g feature in the FDTD-η map at 700 K, which corresponds to the energy deposition modulation parallel to the laser polarization with a periodicity bigger than the wavelength, is the origin of the formation of grooves. This work can benefit both surface structures based applications and the study of femtosecond laser-matter interactions.

  3. X-ray free electron lasers motivate bioanalytical characterization of protein nanocrystals: serial femtosecond crystallography.

    PubMed

    Bogan, Michael J

    2013-04-02

    Atomic resolution structures of large biomacromolecular complexes can now be recorded at room temperature from crystals with submicrometer dimensions using intense femtosecond pulses delivered by the world's largest and most powerful X-ray machine, a laser called the Linac Coherent Light Source. Abundant opportunities exist for the bioanalytical sciences to help extend this revolutionary advance in structural biology to the ultimate goal of recording molecular-movies of noncrystalline biomacromolecules. This Feature will introduce the concept of serial femtosecond crystallography to the nonexpert, briefly review progress to date, and highlight some potential contributions from the analytical sciences.

  4. Understanding of the Formation of Micro/Nanoscale Structures on Metal Surfaces by Ultrafast Pulse Laser Processing

    NASA Astrophysics Data System (ADS)

    Peng, Edwin

    In the recent decades, there has been much interest in functionalized surfaces produced by ultrafast laser processing. Using pulse lasers with nanosecond to femtosecond time scale, a wide range of micro/nanoscale structures can be produced on virtually all metal surfaces. These surface structures create special optoelectronic, wetting, and tribological properties with a diverse range of potential applications. The formation mechanisms of these surface structures, especially microscale, mound-like structures, are not fully understood. There has been wide study of ultrafast laser processing of metals. Yet, the proposed formation models present in current literature often lack sufficient experimental verification. Specifically, many studies are limited to surface characterization, e.g. scanning electron microscopy of the surfaces of these micro/nanoscale structures. Valuable insight into the physical processes responsible for formation can be obtained if standard material science characterization methods are performed across the entire mound. In our study, we examined mound-like structures formed on three metal alloys. Using cross section and 3D slice and view operations by a dual beam scanning electron microscope-focused ion beam, the interior microstructures of these mounds are revealed. Taking advantage of amorphous phase formation during laser processing of Ni60Nb40, we verified the fluence-dependent formation model: mounds formed at low fluence are primarily the result of ablation while mounds formed at high fluence are formed by both ablation and rapid resolidification by hydrodynamical fluid flow. For the first time, we revealed the cross section of a wide variety of mound-like structures on titanium surfaces. The increased contribution to mound formation by fluid flow with increasing fluence was observed. Finally, a 3D scanning electron microscopy technique was applied for mounds produced on silver surface by delayed-pulse laser processing. The interior microstructure demonstrated that most of the volume comprised of resolidified silver grains with 1% porosity.

  5. Intense Femtosecond Laser-Mediated Electrical Discharge Enables Preparation of Amorphous Nickel Phosphide Nanoparticles.

    PubMed

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Li, He-Long; Wang, Lei; Zhang, Yong-Lai; Sun, Hong-Bo

    2018-05-09

    Reported here is a high-efficiency preparation method of amorphous nickel phosphide (Ni-P) nanoparticles by intense femtosecond laser irradiation of nickel sulfate and sodium hypophosphite aqueous solution. The underlying mechanism of the laser-assisted preparation was discussed in terms of the breaking of chemical bond in reactants via highly intense electric field discharge generated by the intense femtosecond laser. The morphology and size of the nanoparticles can be tuned by varying the reaction parameters such as ion concentration, ion molar ratio, laser power, and irradiation time. X-ray diffraction and transmission electron microscopy results demonstrated that the nanoparticles were amorphous. Finally, the thermogravimetric-differential thermal analysis experiment verified that the as-synthesized noncrystalline Ni-P nanoparticles had an excellent catalytic capability toward thermal decomposition of ammonium perchlorate. This strategy of laser-mediated electrical discharge under such an extremely intense field may create new opportunities for the decomposition of molecules or chemical bonds that could further facilitate the recombination of new atoms or chemical groups, thus bringing about new possibilities for chemical reaction initiation and nanomaterial synthesis that may not be realized under normal conditions.

  6. SPECIAL ISSUE DEVOTED TO THE 80TH BIRTHDAY OF S.A. AKHMANOV: Discrete conical emission rings observed upon filamentation of a femtosecond laser pulse in quartz

    NASA Astrophysics Data System (ADS)

    Dormidonov, A. E.; Kandidov, V. P.; Kompanets, V. O.; Chekalin, Sergei V.

    2009-07-01

    Supercontinuum emission observed upon filamentation of transform-limited collimated femtosecond laser pulses in a transparent condensed medium (fused KU-1 quartz) is studied experimentally and numerically. The splitting of diverging conical supercontinuum emission into discrete rings was observed with increasing the pulse energy.

  7. Synthesis of fluorescent nanocarbons by femtosecond laser induced plasma in liquid

    NASA Astrophysics Data System (ADS)

    Agatsuma, Naoki; Fujimatsu, Yusei; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka

    2016-07-01

    Fluorescent Carbon nanoparticles (CNPs) with tunable emission are successfully synthesized from the water suspension of graphene oxide by the femtosecond laser irradiation. The luminescence properties were controllable by doping nitrogen into CNPs in the presence of an ammonia molecule. We have also confirmed that CNPs with diamond structure were directly precipitated from the solvent molecules such as cyclohexane.

  8. Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate

    PubMed Central

    JJ Nivas, Jijil; He, Shutong; Rubano, Andrea; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2015-01-01

    Creation of patterns and structures on surfaces at the micro- and nano-scale is a field of growing interest. Direct femtosecond laser surface structuring with a Gaussian-like beam intensity profile has already distinguished itself as a versatile method to fabricate surface structures on metals and semiconductors. Here we present an approach for direct femtosecond laser surface structuring based on optical vortex beams with different spatial distributions of the state of polarization, which are easily generated by means of a q-plate. The different states of an optical vortex beam carrying an orbital angular momentum ℓ = ±1 are used to demonstrate the fabrication of various regular surface patterns on silicon. The spatial features of the regular rippled and grooved surface structures are correlated with the state of polarization of the optical vortex beam. Moreover, scattered surface wave theory approach is used to rationalize the dependence of the surface structures on the local state of the laser beam characteristics (polarization and fluence). The present approach can be further extended to fabricate even more complex and unconventional surface structures by exploiting the possibilities offered by femtosecond optical vector fields. PMID:26658307

  9. Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Yang-Bo; Bai, Feng; Wang, Cheng-Wei; Zhao, Quan-Zhong

    2016-07-01

    Lubricated tribological properties of stainless steel were investigated by femtosecond laser surface texturing. Regular-arranged micro-grooved textures with different spacing and micro-groove inclination angles (between micro-groove path and sliding direction) were produced on AISI 304L steel surfaces by an 800 nm femtosecond laser. The spacing of micro-groove was varied from 25 to 300 μm, and the inclination angles of micro-groove were measured as 90° and 45°. The tribological properties of the smooth and textured surfaces with micro-grooves were investigated by reciprocating ball-on-flat tests against Al2O3 ceramic balls under starved oil lubricated conditions. Results showed that the spacing of micro-grooves significantly affected the tribological property. With the increase of micro-groove spacing, the average friction coefficients and wear rates of textured surfaces initially decreased then increased. The tribological performance also depended on the inclination angles of micro-grooves. Among the investigated patterns, the micro-grooves perpendicular to the sliding direction exhibited the lowest average friction coefficient and wear rate to a certain extent. Femtosecond laser-induced surface texturing may remarkably improve friction and wear properties if the micro-grooves were properly distributed.

  10. Relativistic Acceleration of Electrons Injected by a Plasma Mirror into a Radially Polarized Laser Beam.

    PubMed

    Zaïm, N; Thévenet, M; Lifschitz, A; Faure, J

    2017-09-01

    We propose a method to generate femtosecond, relativistic, and high-charge electron bunches using few-cycle and tightly focused radially polarized laser pulses. In this scheme, the incident laser pulse reflects off an overdense plasma that injects electrons into the reflected pulse. Particle-in-cell simulations show that the plasma injects electrons ideally, resulting in a dramatic increase of charge and energy of the accelerated electron bunch in comparison to previous methods. This method can be used to generate femtosecond pC bunches with energies in the 1-10 MeV range using realistic laser parameters corresponding to current kHz laser systems.

  11. Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gemini, Laura; Department of Physics, Graduate School of Science, Kyoto University, 606-85802 Kyoto; FNSPE, Czech Technical University in Prague, 11519 Prague

    Periodic structures were generated on Si and SiC surfaces by irradiation with femtosecond laser pulses. Self-organized structures with spatial periodicity of approximately 600 nm appear on silicon and silicon carbide in the laser fluence range just above the ablation threshold and upon irradiation with a large number of pulses. As in the case of metals, the dependence of the spatial periodicity on laser fluence can be explained by the parametric decay of laser light into surface plasma waves. The results show that the proposed model might be universally applicable to any solid state material.

  12. Bonding of glass with femtosecond laser pulses at high repetition rates

    NASA Astrophysics Data System (ADS)

    Richter, S.; Döring, S.; Tünnermann, A.; Nolte, S.

    2011-05-01

    We report on the welding of fused silica with ultrashort laser pulses at high repetition rates. Femtosecond laser pulses were focused at the interface of two optically contacted fused silica samples. Due to the nonlinear absorption in the focal volume and heat accumulation of successive pulses, the laser acts as a localized heat source at the focus position. Here, we analyze the influence of the laser and processing parameters on the amount of molten material. Moreover, we determine the achievable breaking stress by a three point bending test. With optimized parameters up to 75% of the breaking stress of the bulk material have been obtained.

  13. LIPSS formed on the sidewalls of microholes in stainless steel trepanned by a circularly polarized femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hu, Youwang; Fan, Nannan; Lu, Yunpeng; Sun, Xiaoyan; Wang, Cong; Xia, Zhendong; Duan, Ji'an; Wang, Hua; Zhou, Jianying; Luo, Zhi; Yin, Kai

    2016-07-01

    In order to take advantage of microhole fluidynamics, laser-induced periodic surface structures (LIPSS, ripples) orientation should offer the lowest angle γ as possible with respect to hole axis. Investigations have been performed to explore the morphology of LIPSS formed on the sidewalls of microholes by circularly polarized femtosecond laser trepanning. The period of LIPSS on average was smaller than laser wavelength. The energy density of laser beam generally affected the processing effect. Experiments showed that the angle of the LIPSS decreases with increasing single pulse energy. However, increasing trepanning speed led to a decreasing in LIPSS angle.

  14. Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air

    NASA Astrophysics Data System (ADS)

    Dergachev, A. A.; Ionin, A. A.; Kandidov, V. P.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.; Shlenov, S. A.; Shustikova, A. P.

    2014-12-01

    We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis.

  15. EFFECTS OF LASER RADIATION ON MATTER: Simulation of photon acceleration upon irradiation of a mylar target by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Andreev, Stepan N.; Rukhadze, Anri A.; Tarakanov, V. P.; Yakutov, B. P.

    2010-01-01

    Acceleration of protons is simulated by the particle-in-cell (PIC) method upon irradiation of mylar targets of different thicknesses by femtosecond plane-polarised pulsed laser radiation and at different angles of radiation incidence on the target. The comparison of the results of calculations with the experimental data obtained in recent experiments shows their good agreement. The optimal angle of incidence (458) at which the proton energy achieves its absolute maximum is obtained.

  16. Comparison of 2 femtosecond lasers for flap creation in myopic laser in situ keratomileusis: one-year results.

    PubMed

    Yu, Charles Q; Manche, Edward E

    2015-04-01

    To compare laser in situ keratomileusis (LASIK) outcomes between 2 femtosecond lasers for flap creation in the treatment of myopia up to 1 year. University eye clinic. Prospective randomized eye-to-eye study. Consecutive myopic patients were treated with wavefront-guided LASIK. One eye had a flap created by the Intralase FS 60 kHz femtosecond laser, and the fellow eye was treated with the Intralase iFS 150 kHz femtosecond laser. Eyes were randomized according to ocular dominance. Evaluations included measurement of uncorrected distance visual acuity (UDVA), corrected distance visual acuity, contrast sensitivity and wavefront aberrometry. The study enrolled 122 eyes of 61 patients. The mean preoperative spherical equivalent refraction was -4.62 diopters (D) ± 2.32 (SD) and -4.66 ± 2.30 D in the 150 kHz group and 60 kHz group, respectively. Patients preferred the 150 kHz laser to the 60 kHz laser intraoperatively (52.5% versus 26.2%) (P = .005). One week postoperatively, UDVA was 20/16 or better in 85.2% in the 150 kHz group and 70.5% in the 60 kHz group; the difference was statistically significant (P < .05). At 12 months, there were no significant differences in refractive outcomes or higher-order aberrations between the 2 groups. Flap creation with the 150 kHz system and the 60 kHz system resulted in excellent LASIK outcomes. Intraoperatively, patients preferred the 150 kHz system, which yielded better UDVA in the early postoperative period. There were no significant differences at 1 year between the 2 laser systems. Proprietary or commercial disclosures are listed after the references. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. First in vivo animal studies on intraocular nanosurgery and multiphoton tomography with low-energy 80-MHz near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Wang, Bagui; Krauss, Oliver; Riemann, Iris; Schubert, Harald; Kirste, Sigrun; Fischer, Peter

    2004-07-01

    We report on a method for refractive laser surgery based on low-energy femtosecond laser pulses provided by ultracompact turn-key non-amplified laser systems. An additional excimer laser is not required for ablation of the stroma. The novel method has the potential to be used for (i) optical flap creation as well as stroma ablation and (ii) for non-invasive flap-free intrastromal ablation. In addition, 3D multiphoton imaging of the cornea can be performed. In particular, we used sub-nanojoule near infrared 80 MHz femtosecond laser pulses for multiphoton imaging of corneal structures with ultrahigh resolution (< 1μm) as well as for highly precise intraocular refractive surgery. Imaging based on two-photon excited cellular autofluorescence and SHG formation in collagen structures was performed at GW/cm2 intensities, whereas destructive optical breakdown for nanoprocessing occurred at TW/cm2 light intensities. These high intensities were realized with sub-nJ pulses within a subfemtoliter intrastromal volume by diffraction-limited focussing with high NA objectives and beam scanning 50 to 140 μm below the epithelial surface. Multiphoton tomography of the cornea was used to determine the target of interest and to visualize intraocular post-laser effects. Histological examination with light- and electron microscopes of laser-exposed porcine and rabbit eyes reveal a minimum intratissue cut size below 1 μm without destructive effects to surrounding collagen structures. LASIK flaps and intracorneal cavities could be realized with high precision using 200 fs, 80 MHz, sub-nanojoule pulses at 800 nm. First studies on 80 MHz femtosecond laser surgery on living rabbits have been performed.

  18. Finite element model of the temperature increase in excised porcine cadaver iris during direct illumination by femtosecond laser pulses

    PubMed Central

    Sun, Hui; Kurtz, Ronald M.

    2012-01-01

    Abstract. In order to model the thermal effect of laser exposure of the iris during laser corneal surgery, we simulated the temperature increase in porcine cadaver iris. The simulation data for the 60 kHz FS60 Laser showed that the temperature increased up to 1.23°C and 2.45°C (at laser pulse energy 1 and 2 µJ, respectively) by the 24 second procedure time. Calculated temperature profiles show good agreement with data obtained from ex vivo experiments using porcine cadaver iris. Simulation results of different types of femtosecond lasers indicate that the Laser in situ keratomileusis procedure does not present a safety hazard to the iris. PMID:22894525

  19. On the role of nanopore formation and evolution in multi-pulse laser nanostructuring of glasses

    NASA Astrophysics Data System (ADS)

    Rudenko, Anton; Ma, Hongfeng; Veiko, Vadim P.; Colombier, Jean-Philippe; Itina, Tatiana E.

    2018-01-01

    Laser nanostructuring of glasses has attracted particular attention during laser decades due to its numerous applications in optics, telecommunications, sensing, nanofluidics, as well as in the development of nanocomposite materials. Despite a significant progress achieved in this field with the development and use of femtosecond laser systems, many questions remain puzzling. This study is focused on the numerical modeling of ultrashort laser interactions with glasses. Firstly, we consider laser light propagation and nonlinear ionization. Then, nanocavitation processes in glasses are modeled, followed by the hydrodynamic evolution of pores and cavities. The required conditions for nanopore formation and volume nanogratings erasure in the typical femtosecond laser-irradiation regimes are discussed in the frame of the developed model.

  20. Gold nanoparticles propulsion from surface fueled by absorption of femtosecond laser pulse at their surface plasmon resonance.

    PubMed

    Huang, Wenyu; Qian, Wei; El-Sayed, Mostafa A

    2006-10-18

    Femtosecond laser irradiation of assembled nanoprisms on a quartz substrate at their strong absorbing surface plasmon resonance frequency causes their propulsion from the substrate. SEM and AFM show that the particles fly while keeping their prismatic shape, but they decrease in size by an amount that can be calculated assuming atomic sublimation. Several mechanisms are mentioned, but the sublimation mechanism, which rapidly builds up pressure under the particle and propels it away from substrate, is discussed in detail. From the kinetic energy given to the flying nanoparticle, an initial velocity of approximately 160 m/s ( approximately 360 miles/h) is calculated. The dependence of the observed flying mechanism on the rate of energy deposition (i.e., with nanosecond vs femtosecond laser pulses) is discussed.

  1. FAST TRACK COMMUNICATION: Selective inactivation of micro-organisms with near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Tsen, K. T.; Tsen, Shaw-Wei D.; Sankey, Otto F.; Kiang, Juliann G.

    2007-11-01

    We demonstrate an unconventional and revolutionary method for selective inactivation of micro-organisms by using near-infrared femtosecond laser pulses. We show that if the wavelength and pulse width of the excitation femtosecond laser are appropriately selected, there exists a window in power density that enables us to achieve selective inactivation of target viruses and bacteria without causing cytotoxicity in mammalian cells. This strategy targets the mechanical (vibrational) properties of micro-organisms, and thus its antimicrobial efficacy is likely unaffected by genetic mutation in the micro-organisms. Such a method may be effective against a wide variety of drug resistant micro-organisms and has broad implications in disinfection as well as in the development of novel treatments for viral and bacterial pathogens.

  2. Femtosecond laser dissection in C. elegans neural circuits

    NASA Astrophysics Data System (ADS)

    Samuel, Aravinthan D. T.; Chung, Samuel H.; Clark, Damon A.; Gabel, Christopher V.; Chang, Chieh; Murthy, Venkatesh; Mazur, Eric

    2006-02-01

    The nematode C. elegans, a millimeter-long roundworm, is a well-established model organism for studies of neural development and behavior, however physiological methods to manipulate and monitor the activity of its neural network have lagged behind the development of powerful methods in genetics and molecular biology. The small size and transparency of C. elegans make the worm an ideal test-bed for the development of physiological methods derived from optics and microscopy. We present the development and application of a new physiological tool: femtosecond laser dissection, which allows us to selectively ablate segments of individual neural fibers within live C. elegans. Femtosecond laser dissection provides a scalpel with submicrometer resolution, and we discuss its application in studies of neural growth, regenerative growth, and the neural basis of behavior.

  3. Graphene production by laser shot on graphene oxide: An ab initio prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Miyamoto, Yoshiyuki

    2012-01-01

    By performing the first-principles simulation of electron-ion dynamics based on the time-dependent density-functional theory, we propose a way to produce graphene from graphene oxides by means of the laser-induced reduction without using chemical species. Epoxy and hydroxyl groups on graphene sheets can be completely removed upon irradiation with femtosecond laser without damaging the graphene sheet. By comparing the simulated results with different pulse shapes and intensities, optimum conditions of the femtosecond laser for reduction of graphene oxide were determined. The current works will be useful for further experimental researches.

  4. Direct-laser metal writing of surface acoustic wave transducers for integrated-optic spatial light modulators in lithium niobate

    NASA Astrophysics Data System (ADS)

    Datta, Bianca C.; Savidis, Nickolaos; Moebius, Michael; Jolly, Sundeep; Mazur, Eric; Bove, V. Michael

    2017-02-01

    Recently, the fabrication of high-resolution silver nanostructures using a femtosecond laser-based direct write process in a gelatin matrix was reported. The application of direct metal writing towards feature development has also been explored with direct metal fusion, in which metal is fused onto the surface of the substrate via a femtosecond laser process. In this paper, we present a comparative study of gelatin matrix and metal fusion approaches for directly laser-written fabrication of surface acoustic wave transducers on a lithium niobate substrate for application in integrated optic spatial light modulators.

  5. High-resolution computer-generated reflection holograms with three-dimensional effects written directly on a silicon surface by a femtosecond laser.

    PubMed

    Wædegaard, Kristian J; Balling, Peter

    2011-02-14

    An infrared femtosecond laser has been used to write computer-generated holograms directly on a silicon surface. The high resolution offered by short-pulse laser ablation is employed to write highly detailed holograms with resolution up to 111 kpixels/mm2. It is demonstrated how three-dimensional effects can be realized in computer-generated holograms. Three-dimensional effects are visualized as a relative motion between different parts of the holographic reconstruction, when the hologram is moved relative to the reconstructing laser beam. Potential security applications are briefly discussed.

  6. Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse.

    PubMed

    Yang, Ming; Wu, Qiang; Chen, Zhandong; Zhang, Bin; Tang, Baiquan; Yao, Jianghong; Drevensek-Olenik, Irena; Xu, Jingjun

    2014-01-15

    We experimentally show that the generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon inducted by irradiation with a single laser pulse (800 nm, 120 fs, linear polarization) depend on the pulse fluence. We propose that this is due to competition between periodic surface structuring originating from the interference of incident light with surface plasmon polaritons and surface smoothing associated with surface melting. Experimental results are supported by theoretical analysis of transient surface modifications based on combining the two-temperature model and the Drude model.

  7. Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe

    2014-04-28

    The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.

  8. A New Femtosecond Laser-Based Three-Dimensional Tomography Technique

    NASA Astrophysics Data System (ADS)

    Echlin, McLean P.

    2011-12-01

    Tomographic imaging has dramatically changed science, most notably in the fields of medicine and biology, by producing 3D views of structures which are too complex to understand in any other way. Current tomographic techniques require extensive time both for post-processing and data collection. Femtosecond laser based tomographic techniques have been developed in both standard atmosphere (femtosecond laser-based serial sectioning technique - FSLSS) and in vacuum (Tri-Beam System) for the fast collection (10 5mum3/s) of mm3 sized 3D datasets. Both techniques use femtosecond laser pulses to selectively remove layer-by-layer areas of material with low collateral damage and a negligible heat affected zone. To the authors knowledge, femtosecond lasers have never been used to serial section and these techniques have been entirely and uniquely developed by the author and his collaborators at the University of Michigan and University of California Santa Barbara. The FSLSS was applied to measure the 3D distribution of TiN particles in a 4330 steel. Single pulse ablation morphologies and rates were measured and collected from literature. Simultaneous two-phase ablation of TiN and steel matrix was shown to occur at fluences of 0.9-2 J/cm2. Laser scanning protocols were developed minimizing surface roughness to 0.1-0.4 mum for laser-based sectioning. The FSLSS technique was used to section and 3D reconstruct titanium nitride (TiN) containing 4330 steel. Statistical analysis of 3D TiN particle sizes, distribution parameters, and particle density were measured. A methodology was developed to use the 3D datasets to produce statistical volume elements (SVEs) for toughness modeling. Six FSLSS TiN datasets were sub-sampled into 48 SVEs for statistical analysis and toughness modeling using the Rice-Tracey and Garrison-Moody models. A two-parameter Weibull analysis was performed and variability in the toughness data agreed well with Ruggieri et al. bulk toughness measurements. The Tri-Beam system combines the benefits of laser based material removal (speed, low-damage, automated) with detectors that collect chemical, structural, and topological information. Multi-modal sectioning information was collected after many laser scanning passes demonstrating the capability of the Tri-Beam system.

  9. Anterior chamber gas bubble emergence pattern during femtosecond LASIK-flap creation.

    PubMed

    Robert, Marie-Claude; Khreim, Nour; Todani, Amit; Melki, Samir A

    2015-09-01

    To characterise the emergence pattern of cavitation bubbles into the anterior chamber (AC) following femtosecond laser-assisted in situ keratomileusis (LASIK)-flap creation Retrospective review of patients undergoing femtosecond LASIK surgery at Boston Laser, a private refractive surgery practice in Boston, Massachusetts, between December 2008 and February 2014. Patient charts were reviewed to identify all cases with gas bubble migration into the AC. Surgical videos were examined and the location of bubble entry was recorded separately for right and left eyes. Five thousand one hundred and fifty-eight patients underwent femtosecond LASIK surgery. Air bubble migration into the AC, presumably via the Schlemm's canal and trabecular meshwork, occurred in 1% of cases. Patients with AC bubbles had an average age of 33±8 years with a measured LASIK flap thickness of 96±21 μm. The occurrence of gas bubbles impaired iris registration in 64% of cases. Gas bubbles appeared preferentially in the nasal or inferior quadrants for right (92% of cases) and left (100% of cases) eyes. This bubble emergence pattern is significantly different from that expected with a random distribution (p<0.0001) and did not seem associated with decentration of the femtosecond laser docking system. The migration of gas bubbles into the AC is a rare occurrence during femtosecond laser flap creation. The preferential emergence of gas bubbles into the nasal and inferior quadrants of the AC may indicate a distinctive anatomy of the nasal Schlemm's canal. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. The Effects of Borides on the Mechanical Properties of TLPB Repaired Inconel 738 Superalloy

    NASA Astrophysics Data System (ADS)

    Wei, J.; Ye, Y.; Sun, Z.; Zou, G.; Bai, H.; Wu, A.; Liu, L.

    2017-10-01

    The transient liquid phase diffusion bonding (TLPB) method was used to repair an artificial crack in Inconel 738, which was notched by a femtosecond laser. Mixed ratios of BNi-1a:DF-4B were investigated at the bonding temperature of 1373 K (1100 °C) for 2 to 36 hours. The effect of borides on the mechanical properties of TLPB repaired joints was studied through analysis of the microstructure, fracture path, and morphology observations. The borides formation, morphology, distribution, and joints strength were studied in detail. The results showed that the diffusion of B can either increase or decrease the joint strength, depending on its distribution and morphology. The amount of large blocky Ni-B compounds in the precipitate zone were reduced with increasing holding time, which resulted in an increase in joint strength. Nevertheless, further increasing the holding time led to a decrease in joint strength because of the formation of continuous acicular borides in the diffusion-affected zone. The fracture modes of TLPB joints were also discussed on the basis of the microstructure and fractography.

  11. Beam by design: Laser manipulation of electrons in modern accelerators

    NASA Astrophysics Data System (ADS)

    Hemsing, Erik; Stupakov, Gennady; Xiang, Dao; Zholents, Alexander

    2014-07-01

    Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology, and medicine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever-increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation are reviewed. Basic theories of electron-laser interactions, techniques to create microstructures and nanostructures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. An overview of laser-based techniques for the generation of fully coherent x rays, mode-locked x-ray pulse trains, light with orbital angular momentum, and attosecond or even zeptosecond long coherent pulses in free-electron lasers is presented. Several methods to generate femtosecond pulses in storage rings are also discussed. Additionally, various schemes designed to enhance the performance of light sources through precision beam preparation including beam conditioning, laser heating, emittance exchange, and various laser-based diagnostics are described. Together these techniques represent a new emerging concept of "beam by design" in modern accelerators, which is the primary focus of this article.

  12. Thermal Conductivity of a Nanoscale Yttrium Iron Garnet Thin-Film Prepared by the Sol-Gel Process

    PubMed Central

    2017-01-01

    The thermal conductivity of a nanoscale yttrium iron garnet (Y3Fe5O12, YIG) thin-film prepared by a sol-gel method was evaluated using the ultrafast pump-probe technique in the present study. The thermoreflectance change on the surface of a 250 nm thick YIG film, induced by the irradiation of femtosecond laser pulses, was measured, and curve fitting of a numerical solution for the transient heat conduction equation to the experimental data was performed using the finite difference method in order to extract the thermal property. Results show that the film’s thermal conductivity is 22–83% higher than the properties of bulk YIG materials prepared by different fabrication techniques, reflecting the microstructural characteristics and quality of the film. PMID:28858249

  13. Manufacture of silicon-based devices having disordered sulfur-doped surface layers

    DOEpatents

    Carey, III; Edward, James [Newton, MA; Mazur, Eric [Concord, MA

    2008-04-08

    The present invention provides methods of fabricating a radiation-absorbing semiconductor wafer by irradiating at least one surface location of a silicon substrate, e.g., an n-doped crystalline silicon, by a plurality of temporally short laser pulses, e.g., femtosecond pulses, while exposing that location to a substance, e.g., SF.sub.6, having an electron-donating constituent so as to generate a substantially disordered surface layer (i.e., a microstructured layer) that incorporates a concentration of that electron-donating constituent, e.g., sulfur. The substrate is also annealed at an elevated temperature and for a duration selected to enhance the charge carrier density in the surface layer. For example, the substrate can be annealed at a temperature in a range of about 700 K to about 900 K.

  14. Computational Modeling of Semiconductor Dynamics at Femtosecond Time Scales

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind P.; Goorjian, Peter M.

    1998-01-01

    The main objective of the Joint-Research Interchange NCC2-5149 was to develop computer codes for accurate simulation of femtosecond pulse propagation in semiconductor lasers and semiconductor amplifiers [I]. The code should take into account all relevant processes such as the interband and intraband carrier relaxation mechanisms and the many-body effects arising from the Coulomb interaction among charge carriers [2]. This objective was fully accomplished. We made use of a previously developed algorithm developed at NASA Ames [3]-[5]. The new algorithm was tested on several problems of practical importance. One such problem was related to the amplification of femtosecond optical pulses in semiconductors. These results were presented in several international conferences over a period of three years. With the help of a postdoctoral fellow, we also investigated the origin of instabilities that can lead to the formation of femtosecond pulses in different kinds of lasers. We analyzed the occurrence of absolute instabilities in lasers that contain a dispersive host material with third-order nonlinearities. Starting from the Maxwell-Bloch equations, we derived general multimode equations to distinguish between convective and absolute instabilities. We find that both self-phase modulation and intensity-dependent absorption can dramatically affect the absolute stability of such lasers. In particular, the self-pulsing threshold (the so-called second laser threshold) can occur at few times the first laser threshold even in good-cavity lasers for which no self-pulsing occurs in the absence of intensity-dependent absorption. These results were presented in an international conference and published in the form of two papers.

  15. [Results of residual ametropia correction using CIRCLE technology after femtosecond laser SMILE surgery].

    PubMed

    Kostin, O A; Rebrikov, S V; Ovchinnikov, A I; Stepanov, A A; Takhchidi, Kh P

    to evaluate functional results of reoperation performed according to the CIRCLE technology and using the VisuMax femtosecond laser and MEL-80 excimer laser in cases of regression of the refractive effect after SMILE surgery. We studied a group of post-SMILE patients. In those, who showed regression of the refractive effect at 1 year, reoperation was performed according to the CIRCLE technology and using the VisuMax femtosecond laser. The corneal flap was separated from the stromal bed and turned aside. Excimer laser ablation of the stromal bed was performed with the MEL 80 machine. The corneal flap was then placed back and rinsed from both sides. Uncorrected (UCVA) and corrected (BCVA) visual acuity as well as spherical equivalent (SE) were estimated before reoperation, on day 1, and at 1 month. After reoperation, BCVA and UCVA improved. Patient refraction became close to emmetropia. Specifically, UCVA was 0.23±0.18 at baseline (i.e. 1 year after SMILE) and 0.93±0.11 after the CIRCLE procedure (p<0.05). The absolute value of SE was 1.86±1.15 D and 0±0 D before and after CIRCLE, respectively (p<0.05). BCVA change was not statistically significant - from 0.95±0.1 to 0.93±0.11 (p>0.05). Reoperation performed according to the CIRCLE technology and using the VisuMax femtosecond laser and MEL-80 excimer laser provides an increase in visual acuity in case of post-SMILE regression of the refractive effect.

  16. Recording of interference fringe structure by femtosecond laser pulses in samples of silver-containing porous glass and thick slabs of dichromated gelatin

    NASA Astrophysics Data System (ADS)

    Andreeva, Olga V.; Dement'ev, Dmitry A.; Chekalin, Sergey V.; Kompanets, V. O.; Matveets, Yu. A.; Serov, Oleg B.; Smolovich, Anatoly M.

    2002-05-01

    The recording geometry and recording media for the method of achromatic wavefront reconstruction are discussed. The femtosecond recording on the thick slabs of dichromated gelatin and the samples of silver-containing porous glass was obtained. The applications of the method to ultrafast laser spectroscopy and to phase conjugation were suggested.

  17. Topical 0.1% Bromfenac Sodium for Intraoperative Miosis Prevention and Prostaglandin E2 Inhibition in Femtosecond Laser-Assisted Cataract Surgery.

    PubMed

    Chen, Hui; Lin, Haotian; Chen, Wan; Zhang, Bo; Xiang, Wu; Li, Jing; Chen, Weirong

    2017-04-01

    The purpose of this study was to evaluate the effect of topical 0.1% bromfenac sodium, a nonsteroidal anti-inflammatory drug (NSAID), on intraoperative pupil dilation maintenance and prostaglandin E 2 (PGE 2 ) inhibition during femtosecond laser-assisted cataract surgery. Sixty patients (30 each in study and control groups) were included in this study. The patients received 0.1% bromfenac ophthalmic solution or control placebo twice a day for 3 days before surgery. Pupil size was measured at the initiation of femtosecond laser pretreatment and phacoemulsification. Aqueous humor was collected at the beginning of routine cataract surgery. PGE 2 levels were measured with an enzyme-linked immunoassay. Laser flare photometry was measured preoperatively and at 1 day postoperatively. Compared with untreated patients, the change in pupil size and postoperative day 1 aqueous flare were significantly reduced throughout the operation in the patients treated with 0.1% bromfenac (P < 0.001). Mean PGE 2 concentrations were also significantly decreased by treatment with 0.1% bromfenac (P < 0.001). The reduction of the pupil area and postoperative day 1 aqueous flare were significantly correlated with PGE 2 levels (P < 0.001). NSAID treatment, when administered before femtosecond laser-assisted cataract surgery, was effective in maintaining intraoperative pupil dilation, preventing miosis, and reducing PGE 2 levels.

  18. Increase of intrinsic emittance induced by multiphoton photoemission from copper cathodes illuminated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    An, Chenjie; Zhu, Rui; Xu, Jun; Liu, Yaqi; Hu, Xiaopeng; Zhang, Jiasen; Yu, Dapeng

    2018-05-01

    Electron sources driven by femtosecond laser have important applications in many aspects, and the research about the intrinsic emittance is becoming more and more crucial. The intrinsic emittance of polycrystalline copper cathode, which was illuminated by femtosecond pulses (FWHM of the pulse duration was about 100 fs) with photon energies above and below the work function, was measured with an extremely low bunch charge (single-electron pulses) based on free expansion method. A minimum emittance was obtained at the photon energy very close to the effective work function of the cathode. When the photon energy decreased below the effective work function, emittance increased rather than decreased or flattened out to a constant. By investigating the dependence of photocurrent density on the incident laser intensity, we found the emission excited by pulsed photons with sub-work-function energies contained two-photon photoemission. In addition, the portion of two-photon photoemission current increased with the reduction of photon energy. We attributed the increase of emittance to the effect of two-photon photoemission. This work shows that conventional method of reducing the photon energy of excited light source to approach the room temperature limit of the intrinsic emittance may be infeasible for femtosecond laser. There would be an optimized photon energy value near the work function to obtain the lowest emittance for pulsed laser pumped photocathode.

  19. Femtosecond laser-induced phase transformations in amorphous Cu77Ni6Sn10P7 alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, L.; Zou, G.; Chen, N.; Wu, A.; Bai, H.; Zhou, Y.

    2015-01-01

    In this study, the femtosecond laser-induced crystallization of CuNiSnP amorphous ribbons was investigated by utilizing an amplified Ti:sapphire laser system. X-ray diffraction and scanning electronic microscope were applied to examine the phase and morphology changes of the amorphous ribbons. Micromachining without crystallization, surface patterning, and selective crystallization were successfully achieved by changing laser parameters. Obvious crystallization occurred under the condition that the laser fluence was smaller than the ablation threshold, indicating that the structural evolution of the material depends strongly on the laser parameters. Back cooling method was used to inhibit heat accumulation; a reversible transformation between the disordered amorphous and crystalline phases can be achieved by using this method.

  20. Fs-laser ablation of teeth is temperature limited and provides information about the ablated components.

    PubMed

    de Menezes, Rebeca Ferraz; Harvey, Catherine Malinda; de Martínez Gerbi, Marleny Elizabeth Márquez; Smith, Zachary J; Smith, Dan; Ivaldi, Juan C; Phillips, Alton; Chan, James W; Wachsmann-Hogiu, Sebastian

    2017-10-01

    The goal of this work is to investigate the thermal effects of femtosecond laser (fs-laser) ablation for the removal of carious dental tissue. Additional studies identify different tooth tissues through femtosecond laser induced breakdown spectroscopy (fsLIBS) for the development of a feedback loop that could be utilized during ablation in a clinical setting. Scanning Election Microscope (SEM) images reveal that minimal morphological damages are incurred at repetition rates below the carbonization threshold of each tooth tissue. Thermal studies measure the temperature distribution and temperature decay during laser ablation and after laser cessation, and demonstrate that repetition rates at or below 10kHz with a laser fluence of 40 J/cm 2 would inflict minimal thermal damage on the surrounding nerve tissues and provide acceptable clinical removal rates. Spectral analysis of the different tooth tissues is also conducted and differences between the visible wavelength fsLIBS spectra are evident, though more robust classification studies are needed for clinical translation. These results have initiated a set of precautionary recommendations that would enable the clinician to utilize femtosecond laser ablation for the removal of carious lesions while ensuring that the solidity and utility of the tooth remain intact. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Femtosecond Lasers in Ophthalmology: Surgery and Imaging

    NASA Astrophysics Data System (ADS)

    Bille, J. F.

    Ophthalmology has traditionally been the field with prevalent laser applications in medicine. The human eye is one of the most accessible human organs and its transparency for visible and near-infrared light allows optical techniques for diagnosis and treatment of almost any ocular structure. Laser vision correction (LVC) was introduced in the late 1980s. Today, the procedural ease, success rate, and lack of disturbing side-effects in laser assisted in-situ keratomileusis (LASIK) have made it the most frequently performed refractive surgical procedure (keratomileusis(greek): cornea-flap-cutting). Recently, it has been demonstrated that specific aspects of LVC can take advantage of unique light-matter interaction processes that occur with femtosecond laser pulses.

  2. Modelling periodic structure formation on 100Cr6 steel after irradiation with femtosecond-pulsed laser beams

    NASA Astrophysics Data System (ADS)

    Tsibidis, George D.; Mimidis, Alexandros; Skoulas, Evangelos; Kirner, Sabrina V.; Krüger, Jörg; Bonse, Jörn; Stratakis, Emmanuel

    2018-01-01

    We investigate the periodic structure formation upon intense femtosecond pulsed irradiation of chrome steel (100Cr6) for linearly polarised laser beams. The underlying physical mechanism of the laser-induced periodic structures is explored, their spatial frequency is calculated and theoretical results are compared with experimental observations. The proposed theoretical model comprises estimations of electron excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. Simulations describe the sequential formation of sub-wavelength ripples and supra-wavelength grooves. In addition, the influence of the laser wavelength on the periodicity of the structures is discussed. The proposed theoretical investigation offers a systematic methodology towards laser processing of steel surfaces with important applications.

  3. Ultrashort pulse laser deposition of thin films

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  4. Soliton self-frequency shift controlled by a weak seed laser in tellurite photonic crystal fibers.

    PubMed

    Liu, Lai; Meng, Xiangwei; Yin, Feixiang; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2013-08-01

    We report the first demonstration of soliton self-frequency shift (SSFS) controlled by a weak continuous-wave (CW) laser, from a tellurite photonic crystal fiber pumped by a 1560 nm femtosecond fiber laser. The control of SSFS is performed by the cross-gain modulation of the 1560 nm femtosecond laser. By varying the input power of the weak CW laser (1560 nm) from 0 to 1.17 mW, the soliton generated in the tellurite photonic crystal fiber blue shifts from 1935 to 1591 nm. The dependence of the soliton wavelength on the operation wavelength of the weak CW laser is also measured. The results show the CW laser with a wavelength tunable range of 1530-1592 nm can be used to control the SSFS generation.

  5. Terahertz Streaking of Few-Femtosecond Relativistic Electron Beams

    NASA Astrophysics Data System (ADS)

    Zhao, Lingrong; Wang, Zhe; Lu, Chao; Wang, Rui; Hu, Cheng; Wang, Peng; Qi, Jia; Jiang, Tao; Liu, Shengguang; Ma, Zhuoran; Qi, Fengfeng; Zhu, Pengfei; Cheng, Ya; Shi, Zhiwen; Shi, Yanchao; Song, Wei; Zhu, Xiaoxin; Shi, Jiaru; Wang, Yingxin; Yan, Lixin; Zhu, Liguo; Xiang, Dao; Zhang, Jie

    2018-04-01

    Streaking of photoelectrons with optical lasers has been widely used for temporal characterization of attosecond extreme ultraviolet pulses. Recently, this technique has been adapted to characterize femtosecond x-ray pulses in free-electron lasers with the streaking imprinted by far-infrared and terahertz (THz) pulses. Here, we report successful implementation of THz streaking for time stamping of an ultrashort relativistic electron beam, whose energy is several orders of magnitude higher than photoelectrons. Such an ability is especially important for MeV ultrafast electron diffraction (UED) applications, where electron beams with a few femtosecond pulse width may be obtained with longitudinal compression, while the arrival time may fluctuate at a much larger timescale. Using this laser-driven THz streaking technique, the arrival time of an ultrashort electron beam with a 6-fs (rms) pulse width has been determined with 1.5-fs (rms) accuracy. Furthermore, we have proposed and demonstrated a noninvasive method for correction of the timing jitter with femtosecond accuracy through measurement of the compressed beam energy, which may allow one to advance UED towards a sub-10-fs frontier, far beyond the approximate 100-fs (rms) jitter.

  6. Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA.

    PubMed

    Yu, Yanwu; Jiang, Lan; Cao, Qiang; Xia, Bo; Wang, Qingsong; Lu, Yongfeng

    2015-12-14

    A pump-probe shadowgraph imaging technique was used to reveal the femtosecond-picosecond-nanosecond multitimescale fundamentals of high-quality, high-aspect-ratio (up to 287:1) microhole drilling in poly-methyl-meth-acrylate (PMMA) by a single-shot femtosecond laser Bessel beam. The propagation of Bessel beam in PMMA (at 1.98 × 10⁸ m/s) and it induced cylindrical pressure wave expansion (at 3000-3950 m/s in radius) were observed during drilling processes. Also, it was unexpectedly found that the expansion of the cylindrical pressure wave in PMMA showed a linear relation with time and was insensitive to the laser energy fluctuation, quite different from the case in air. It was assumed that the energy insensitivity was due to the anisotropy of wave expansion in PMMA and the ambient air.

  7. Femtosecond laser fluorescence and propagation in very dense potassium vapor.

    PubMed

    Makdisi, Y; Kokaj, J; Afrousheh, K; Nair, R; Mathew, J; Pichler, G

    2013-12-16

    Femtosecond (fs) laser propagation and fluorescence of dense potassium vapor was studied, and the spectral region around the first and the second doublets of the principal series lines of potassium atoms was investigated. In our search we did not observe the conical emission in the far field, although it was previously observed in the case of rubidium. We discuss the possible reason of this unexpected result. The fluorescence spectrum revealed Rb impurity resonance lines in emission due to the collisional redistribution from the K(4p) levels into the Rb(5p) levels. In the forward propagation of 400 nm femtosecond light we observed the molecular band red shifted from potassium second doublet. However, no molecular spectrum was observed when the mode-locked fs laser light was discretely tuned within the wings of the first resonance lines, at 770 nm.

  8. Silver nanoparticle formation by femtosecond laser induced reduction of ammonia-containing AgNO3 solution

    NASA Astrophysics Data System (ADS)

    Herbani, Y.; Nakamura, T.; Sato, S.

    2017-04-01

    This paper reports the synthesis of silver colloids by femtosecond laser ablation of ammonia-containing AgNO3 solution. Effect of ammonia concentration in solution on the production of Ag nanoparticles was discussed. It is found that ammonia rules out significantly to the formation of Ag nanoparticles at which no Ag nanoparticle were formed in the solution without ammonia. Using the solution with the optimum ratio of ammonia to Ag+ ions, we further investigate the growth process of Ag nanoparticle by monitoring the evolution of its absorption spectra at 402 nm as a function of irradiation time. The result showed that the growth process was fit to the simple exponential function, and confirmed that the addition of ammonia alone to the metal ion system can boost the particle production by femtosecond laser.

  9. Isolated Capsulorhexis Flap Technique in Femtosecond Laser-Assisted Cataract Surgery to Protect the Corneal Endothelial Cells.

    PubMed

    Li, Shaowei; Chen, Xu; Zhao, Jun; Xu, Man; Yu, Zhouxing

    2017-12-18

    To present a novel technique that using capsulorhexis flap to protect corneal endothelial cells during femtosecond laser-assisted cataract surgery. During the procedure, an isolated capsulorhexis flap was used to lift it up carefully by using OVD until the flap attached to the corneal inner layer. It kept steady during the phaco phase, and been removed by I/A tip after intraocular lens implantation. In our pilot study, the damage to the corneal endothelial cells from the phacoemulsification procedure were no more than the traditional phaco procedure, even femtosecond laser assisted cataract surgery. Isolated capsulorhexis flap technique initiate a new approach to protect the endothelial cell. It is a simple technique with a short learning curve, but still need a further investigation to prove the protection of corneal endothelial cells.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachman, Daniel; Chen, Zhijiang; Wang, Christopher

    Phase errors caused by fabrication variations in silicon photonic integrated circuits are an important problem, which negatively impacts device yield and performance. This study reports our recent progress in the development of a method for permanent, postfabrication phase error correction of silicon photonic circuits based on femtosecond laser irradiation. Using beam shaping technique, we achieve a 14-fold enhancement in the phase tuning resolution of the method with a Gaussian-shaped beam compared to a top-hat beam. The large improvement in the tuning resolution makes the femtosecond laser method potentially useful for very fine phase trimming of silicon photonic circuits. Finally, wemore » also show that femtosecond laser pulses can directly modify silicon photonic devices through a SiO 2 cladding layer, making it the only permanent post-fabrication method that can tune silicon photonic circuits protected by an oxide cladding.« less

  11. UV laser-induced cross-linking in peptides

    PubMed Central

    Leo, Gabriella; Altucci, Carlo; Bourgoin-Voillard, Sandrine; Gravagnuolo, Alfredo M.; Esposito, Rosario; Marino, Gennaro; Costello, Catherine E.; Velotta, Raffaele; Birolo, Leila

    2013-01-01

    RATIONALE The aim of this study was to demonstrate, and to characterize by high resolution mass spectrometry, that it is possible to preferentially induce covalent cross-links in peptides by using high energy femtosecond UV laser pulses. The cross-link is readily formed only when aromatic amino acids are present in the peptide sequence. METHODS Three peptides, xenopsin, angiotensin I, interleukin, individually or in combination, were exposed to high energy femtosecond UV laser pulses, either alone or in the presence of spin trapping molecules, the reaction products being characterized by high resolution mass spectrometry. RESULTS High resolution mass spectrometry and spin trapping strategies showed that cross-linking occurs readily, proceeds via a radical mechanism, and is the highly dominant reaction, proceeding without causing significant photo-damage in the investigated range of experimental parameters. CONCLUSIONS High energy femtosecond UV laser pulses can be used to induce covalent cross-links between aromatic amino acids in peptides, overcoming photo-oxidation processes, that predominate as the mean laser pulse intensity approaches illumination conditions achievable with conventional UV light sources. PMID:23754800

  12. Coherent infrared radiation from the ALS generated via femtosecond laser modulation of the electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrd, J.M.; Hao, Z.; Martin, M.C.

    2004-07-01

    Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces large modulation of the electron energies within a short {approx}100 fs slice of the electron bunch. Propagating around the storage ring, this bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories. The length of the perturbation evolves with a distance from the wiggler but is much shorter than the electron bunch length. This perturbation causes the electron bunch to emit short pulses of temporally and spatially coherent infrared light which are automatically synchronized to the modulating laser. Themore » intensity and spectra of the infrared light were measured in two storage ring locations for a nominal ALS lattice and for an experimental lattice with the higher momentum compaction factor. The onset of instability stimulated by laser e-beam interaction had been discovered. The infrared signal is now routinely used as a sensitive monitor for a fine tuning of the laser beam alignment during data accumulation in the experiments with femtosecond x-ray pulses.« less

  13. Phototransfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Thobakgale, Lebogang; Manoto, Sello Lebohang; Ombinda Lemboumba, Saturnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    Cellular manipulation by delivery of molecules into cells has been applied extensively in tissue engineering research for medical applications . The different molecular delivery techniques used range from viral and chemical agents to physical and electrical methods. Although successful in most studies, these techniques have inherent difficulties such as toxicity, unwanted genetic mutations and low reproducibility respectively. Literature recognizes pulsed lasers at femtosecond level to be most efficient in photonic interactions with biological material. As of late, laser pulses have been used for drug and DNA delivery into cells via transient optical perforation of the cellular membrane. Thus in this study, we design and construct an optical system coupled to a femtosecond laser for the purpose of phototransfection or insertion of plasmid DNA (pDNA) into cells using lasers. We used fluorescent green protein (pGFP) to transfect mouse embryonic stem cells as our model. Secondly, we applied fluorescence imaging to view the extent of DNA delivery using this method. We also assessed the biocompatibility of our system by performing molecular assays of the cells post irradiation using adenosine triphosphate (ATP) and lactate dehydrogenase (LDH).

  14. Crystallization of 21.25Gd 2O 3-63.75MoO 3-15B 2O 3 glass induced by femtosecond laser at the repetition rate of 250 kHz

    NASA Astrophysics Data System (ADS)

    Zhong, M. J.; Han, Y. M.; Liu, L. P.; Zhou, P.; Du, Y. Y.; Guo, Q. T.; Ma, H. L.; Dai, Y.

    2010-12-01

    We report the formation of β'-Gd 2(MoO 4) 3 (GMO) crystal on the surface of the 21.25Gd 2O 3-63.75MoO 3-15B 2O 3 glass, induced by 250 kHz, 800 nm femtosecond laser irradiation. The morphology of the modified region in the glass was clearly examined by scanning electron microscopy (SEM). By micro-Raman spectra, the laser-induced crystals were confirmed to be GMO phases and it is found that these crystals have a strong dependence on the number and power of the femtosecond laser pulses. When the irradiation laser power was 900 mW, not only the Raman peaks of GMO crystals but also some new peaks at 214 cm -1, 240 cm -1, 466 cm -1, 664 cm -1 and 994 cm -1which belong to the MoO 3 crystals were observed. The possible mechanisms are proposed to explain these phenomena.

  15. Ultrafast properties of femtosecond-laser-ablated GaAs and its application to terahertz optoelectronics.

    PubMed

    Madéo, Julien; Margiolakis, Athanasios; Zhao, Zhen-Yu; Hale, Peter J; Man, Michael K L; Zhao, Quan-Zhong; Peng, Wei; Shi, Wang-Zhou; Dani, Keshav M

    2015-07-15

    We report on the first terahertz (THz) emitter based on femtosecond-laser-ablated gallium arsenide (GaAs), demonstrating a 65% enhancement in THz emission at high optical power compared to the nonablated device. Counter-intuitively, the ablated device shows significantly lower photocurrent and carrier mobility. We understand this behavior in terms of n-doping, shorter carrier lifetime, and enhanced photoabsorption arising from the ablation process. Our results show that laser ablation allows for efficient and cost-effective optoelectronic THz devices via the manipulation of fundamental properties of materials.

  16. Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses.

    PubMed

    Grivas, Christos; Corbari, Costantino; Brambilla, Gilberto; Lagoudakis, Pavlos G

    2012-11-15

    Fabrication and cw lasing at 798.25 nm is reported for femtosecond (fs) and picosecond (ps) laser-inscribed channel waveguides in Ti:sapphire crystals. Lasing in channels written by fs (ps) pulses was obtained above a threshold of 84 mW (189 mW) with a maximum output power and a slope efficiency of 143 mW (45 mW) and 23.5% (7.1%), respectively. The emission wavelength was tuned over a 170 nm range by using a birefringent filter in an external cavity.

  17. Fabrication of computer-generated holograms using femtosecond laser direct writing.

    PubMed

    Berlich, René; Richter, Daniel; Richardson, Martin; Nolte, Stefan

    2016-04-15

    We demonstrate a single-step fabrication method for computer-generated holograms based on femtosecond laser direct writing. Therefore, a tightly arranged longitudinal waveguide array is directly inscribed into a transparent material. By tailoring the individual waveguide length, the phase profile of an incident laser beam can be arbitrarily adapted. The approach is verified in common borosilicate glass by inscribing a designed phase hologram, which forms the desired intensity pattern in its far field. The resulting performance is analyzed, and the potential as well as limitations of the method are discussed.

  18. Anisotropic optical transmission of femtosecond laser induced periodic surface nanostructures on indium-tin-oxide films.

    PubMed

    Wang, Chih; Wang, Hsuan-I; Luo, Chih-Wei; Leu, Jihperng

    2012-09-03

    Two types of periodic nanostructures, self-organized nanodots and nanolines, were fabricated on the surfaces of indium-tin-oxide (ITO) films using femtosecond laser pulse irradiation. Multiple periodicities (approximately 800 nm and 400 nm) were clearly observed on the ITO films with nanodot and nanoline structures and were identified using two-dimensional Fourier transformation patterns. Both nanostructures show the anisotropic transmission characteristics in the visible range, which are strongly correlated with the geometry and the metallic content of the laser-induced nanostructures.

  19. Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS).

    PubMed

    Granados, Eduardo; Martinez-Calderon, Miguel; Gomez, Mikel; Rodriguez, Ainara; Olaizola, Santiago M

    2017-06-26

    We study the fabrication of photonic surface structures in single crystal diamond by means of highly controllable direct femtosecond UV laser induced periodic surface structuring. By appropriately selecting the excitation wavelength, intensity, number of impinging pulses and their polarization state, we demonstrate emerging high quality and fidelity diamond grating structures with surface roughness below 1.4 nm. We characterize their optical properties and study their potential for the fabrication of photonic structure anti-reflection coatings for diamond Raman lasers in the near-IR.

  20. Anisotropic optical transmission of femtosecond laser induced periodic surface nanostructures on indium-tin-oxide films

    PubMed Central

    Wang, Chih; Wang, Hsuan-I; Luo, Chih-Wei; Leu, Jihperng

    2012-01-01

    Two types of periodic nanostructures, self-organized nanodots and nanolines, were fabricated on the surfaces of indium-tin-oxide (ITO) films using femtosecond laser pulse irradiation. Multiple periodicities (approximately 800 nm and 400 nm) were clearly observed on the ITO films with nanodot and nanoline structures and were identified using two-dimensional Fourier transformation patterns. Both nanostructures show the anisotropic transmission characteristics in the visible range, which are strongly correlated with the geometry and the metallic content of the laser-induced nanostructures. PMID:23066167

  1. Fabrication of large-scale ripples on fluorine-doped tin oxide films by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Han, Yan-Hua; Li, Yan; Zhao, Xiu-Li; Qu, Shi-Liang

    2014-09-01

    The large-scale uniform self-organized ripples are fabricated on fluorine-doped tin oxide (FTO) coated glass by femtosecond laser. They can be smoothly linked in a horizontal line with the moving of XYZ stage by setting its velocity and the repetition rate of the laser. The ripple-to-ripple linking can also be realized through line-by-line scanning on a vertical level. The mechanism analysis shows that the seeding effect plays a key role in the linking of ripples.

  2. Morphological and chemical evolution on InP(1 0 0) surface irradiated with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Qian, H. X.; Zhou, W.; Zheng, H. Y.; Lim, G. C.

    2005-12-01

    Single crystalline InP was ablated in air with p-polarized Ti:sapphire femtosecond laser at a fixed laser fluence of 82 mJ/cm 2. Ripples parallel to the laser polarization direction were found by scanning electron microscopy and atomic force microscopy to form for laser pulses ranging from 50 to 1000, whereas flower-like structures appeared for laser pulses of 10 4 and above. Analysis by X-ray photoelectron spectroscopy showed formation of indium and phosphorus oxides on the irradiated surface and the amounts of oxides increased with increasing number of laser pulses. The oxide formation is attributed to chemical reaction between the ultrafast laser ablation plume and oxygen in air, and formation of the flower-like structures is shown to be related to deposition of the oxides on the irradiated surface.

  3. Liquid-Assisted Femtosecond Laser Precision-Machining of Silica.

    PubMed

    Cao, Xiao-Wen; Chen, Qi-Dai; Fan, Hua; Zhang, Lei; Juodkazis, Saulius; Sun, Hong-Bo

    2018-04-28

    We report a systematical study on the liquid assisted femtosecond laser machining of quartz plate in water and under different etching solutions. The ablation features in liquid showed a better structuring quality and improved resolution with 1/3~1/2 smaller features as compared with those made in air. It has been demonstrated that laser induced periodic structures are present to a lesser extent when laser processed in water solutions. The redistribution of oxygen revealed a strong surface modification, which is related to the etching selectivity of laser irradiated regions. Laser ablation in KOH and HF solution showed very different morphology, which relates to the evolution of laser induced plasma on the formation of micro/nano-features in liquid. This work extends laser precision fabrication of hard materials. The mechanism of strong absorption in the regions with permittivity (epsilon) near zero is discussed.

  4. Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring

    NASA Astrophysics Data System (ADS)

    Martínez de Mendívil, Jon; del Hoyo, Jesús; Solís, Javier; Lifante, Ginés

    2016-12-01

    Ridge waveguide lasers have been fabricated on Nd3+ doped LiNbO3 crystals. The fs-laser writing technique was used to define ridge structures on a gradient-index planar waveguide fabricated by Zn-diffusion. This planar waveguide was formed in a z-cut LiNbO3 substrate homogeneously doped with a 0.23% of Nd3+ ions. To obtain lateral light confinement, the surface was then micromachined using a multiplexed femtosecond laser writing beam, forming the ridge structures. By butting two mirrors at the channel waveguide end-facets, forming a waveguide laser cavity, TM-polarized laser action at 1085 nm was achieved by end-fire TM-pumping at 815 nm. The waveguide laser shows a threshold of 31 mW, with a 7% of slope efficiency.

  5. Neuroscience imaging enabled by new highly tunable and high peak power femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Hakulinen, T.; Klein, J.

    2017-02-01

    Neuroscience applications benefit from recent developments in industrial femtosecond laser technology. New laser sources provide several megawatts of peak power at wavelength of 1040 nm, which enables simultaneous optogenetics photoactivation of tens or even hundreds of neurons using red shifted opsins. Another recent imaging trend is to move towards longer wavelengths, which would enable access to deeper layers of tissue due to lower scattering and lower absorption in the tissue. Femtosecond lasers pumping a non-collinear optical parametric amplifier (NOPA) enable the access to longer wavelengths with high peak powers. High peak powers of >10 MW at 1300 nm and 1700 nm allow effective 3-photon excitation of green and red shifted calcium indicators respectively and access to deeper, sub-cortex layers of the brain. Early results include in vivo detection of spontaneous activity in hippocampus within an intact mouse brain, where neurons express GCaMP6 activated in a 3-photon process at 1320 nm.

  6. Femtosecond laser-induced refractive index modification in multicomponent glasses

    NASA Astrophysics Data System (ADS)

    Bhardwaj, V. R.; Simova, E.; Corkum, P. B.; Rayner, D. M.; Hnatovsky, C.; Taylor, R. S.; Schreder, B.; Kluge, M.; Zimmer, J.

    2005-04-01

    We present a comprehensive study on femtosecond laser-induced refractive index modification in a wide variety of multicomponent glasses grouped as borosilicate, aluminum-silicate, and heavy-metal oxide glasses along with lanthanum-borate and sodium-phosphate glasses. By using high-spatial resolution refractive index profiling techniques, we demonstrate that under a wide range of writing conditions the refractive index modification in multicomponent glasses can be positive, negative, or nonuniform, and exhibits a strong dependence on the glass composition. With the exception of some aluminum-silicate glasses all other glasses exhibited a negative/nonuniform index change. We also demonstrate direct writing of waveguides in photosensitive Foturan® glass with a femtosecond laser without initiating crystallization by thermal treatment. Upon ceramization of lithium-aluminum-silicate glasses such as Foturan®, Zerodur®, and Robax® we observe switching of laser-induced refractive index change from being positive to negative. The measured transmission losses in the waveguides at 1550nm agree with the index profile measurements in alkali-free aluminum-silicate glasses.

  7. Influence of wave-front curvature on supercontinuum energy during filamentation of femtosecond laser pulses in water

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Mareev, E. I.; Smetanina, E. O.

    2018-03-01

    We demonstrate that using spatially divergent incident femtosecond 1240-nm laser pulses in water leads to an efficient supercontinuum generation in filaments. Optimal conditions were found when the focal plane is placed 100 -400 μ m before the water surface. Under sufficiently weak focusing conditions [numerical aperture (NA )<0.2 ] and low-energy laser pulses, the supercontinuum energy generated in divergent beams is higher than the supercontinuum energy generated in convergent beams. Analysis by means of the unidirectional pulse propagation equation shows a dramatic difference between filamentation scenarios of divergent and convergent beams, that explains corresponding features of the supercontinuum generation. Under strong focusing conditions (NA ⩾0.2 ) and high-energy laser pulses, the supercontinuum generation is suppressed for convergent beams in contrast to divergent beams that nevertheless are shown experimentally to allow supercontinuum generation. The presented technique of the supercontinuum generation in divergent beams in water is highly demanded in a development of femtosecond optical parametric amplifiers.

  8. Femtosecond Laser in situ Keratomileusis Flap Creation in Narrow Palpebral Fissure Eyes without Suction.

    PubMed

    Chang, John S M; Law, Antony K P; Ng, Jack C M; Cheng, May S Y

    2017-01-01

    To evaluate a surgical technique used in eyes with narrow palpebral fissure undergoing femtosecond laser flap creation without suction during laser in situ keratomileusis (LASIK). All data of 2 patient groups were collected through chart review. Group 1 consisted of 6 eyes with narrow palpebral fissure in which the suction ring was manually fixated and femtosecond laser was applied accordingly. Thirty comparison cases were randomly drawn from among eyes that underwent a standard LASIK procedure matched for age and preoperative refraction (group 2). Only 1 eye of each patient was selected to compare the refractive and visual outcomes between groups. In all group 1 eyes, the flaps were created successfully with manual fixation of the suction ring without suction. No eyes lost 2 or more lines of vision. No significant difference was found in the safety and refractive outcomes between groups. Manual fixation of the suction ring in eyes with narrow palpebral fissure without suction was feasible for flap creation during LASIK.

  9. Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser.

    PubMed

    Zheng, Chong; Hu, Anming; Li, Ruozhou; Bridges, Denzel; Chen, Tao

    2015-06-29

    Embedded microball lenses with superior optical properties function as convex microball lens (VMBL) and concave microball lens (CMBL) were fabricated inside a PMMA substrate with a high repetition rate femtosecond fiber laser. The VMBL was created by femtosecond laser-induced refractive index change, while the CMBL was fabricated due to the heat accumulation effect of the successive laser pulses irradiation at a high repetition rate. The processing window for both types of the lenses was studied and optimized, and the optical properties were also tested by imaging a remote object with an inverted microscope. In order to obtain the microball lenses with adjustable focal lengths and suppressed optical aberration, a shape control method was thus proposed and examined with experiments and ZEMAX® simulations. Applying the optimized fabrication conditions, two types of the embedded microball lenses arrays were fabricated and then tested with imaging experiments. This technology allows the direct fabrication of microlens inside transparent bulk polymer material which has great application potential in multi-function integrated microfluidic devices.

  10. Femtosecond Laser in situ Keratomileusis Flap Creation in Narrow Palpebral Fissure Eyes without Suction

    PubMed Central

    Chang, John S.M.; Law, Antony K.P.; Ng, Jack C.M.; Cheng, May S.Y.

    2017-01-01

    Purpose To evaluate a surgical technique used in eyes with narrow palpebral fissure undergoing femtosecond laser flap creation without suction during laser in situ keratomileusis (LASIK). Methods All data of 2 patient groups were collected through chart review. Group 1 consisted of 6 eyes with narrow palpebral fissure in which the suction ring was manually fixated and femtosecond laser was applied accordingly. Thirty comparison cases were randomly drawn from among eyes that underwent a standard LASIK procedure matched for age and preoperative refraction (group 2). Only 1 eye of each patient was selected to compare the refractive and visual outcomes between groups. Results In all group 1 eyes, the flaps were created successfully with manual fixation of the suction ring without suction. No eyes lost 2 or more lines of vision. No significant difference was found in the safety and refractive outcomes between groups. Conclusion Manual fixation of the suction ring in eyes with narrow palpebral fissure without suction was feasible for flap creation during LASIK. PMID:28690535

  11. Nano- and femtosecond UV laser pulses to immobilize biomolecules onto surfaces with preferential orientation

    NASA Astrophysics Data System (ADS)

    Lettieri, S.; Avitabile, A.; Della Ventura, B.; Funari, R.; Ambrosio, A.; Maddalena, P.; Valadan, M.; Velotta, R.; Altucci, C.

    2014-10-01

    By relying on the photonic immobilization technique of antibodies onto surfaces, we realized portable biosensors for light molecules based on the use of quartz crystal microbalances, given the linear dependence of the method on the laser pulse intensity. Here, we compare the quality of the anchoring method when using nanosecond (260 nm, 25 mJ/pulse, 5 ns, 10 Hz rep. rate) and femtosecond (258 nm, 25 μJ/pulse, 150 fs, 10 kHz rep. rate) laser source, delivering the same energy to the sample with the same average power. As a reference, we also tethered untreated antibodies by means of the passive adsorption. The results are striking: When the antibodies are irradiated with the femtosecond pulses, the deposition on the gold plate is much more ordered than in the other two cases. The effects of UV pulses irradiation onto the antibodies are also analyzed by measuring absorption and fluorescence and suggest the occurrence of remarkable degradation when nanosecond pulses are used likely induced by a larger thermal coupling. In view of the high average power required to activate the antibodies for the achievement of the photonic immobilization technique, we conclude that femtosecond rather than nanosecond laser pulses have to be used.

  12. The modification of generalized uncertainty principle applied in the detection technique of femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Ziyi

    2017-12-01

    Generalized uncertainty principle (GUP), also known as the generalized uncertainty relationship, is the modified form of the classical Heisenberg’s Uncertainty Principle in special cases. When we apply quantum gravity theories such as the string theory, the theoretical results suggested that there should be a “minimum length of observation”, which is about the size of the Planck-scale (10-35m). Taking into account the basic scale of existence, we need to fix a new common form of Heisenberg’s uncertainty principle in the thermodynamic system and make effective corrections to statistical physical questions concerning about the quantum density of states. Especially for the condition at high temperature and high energy levels, generalized uncertainty calculations have a disruptive impact on classical statistical physical theories but the present theory of Femtosecond laser is still established on the classical Heisenberg’s Uncertainty Principle. In order to improve the detective accuracy and temporal resolution of the Femtosecond laser, we applied the modified form of generalized uncertainty principle to the wavelength, energy and pulse time of Femtosecond laser in our work. And we designed three typical systems from micro to macro size to estimate the feasibility of our theoretical model and method, respectively in the chemical solution condition, crystal lattice condition and nuclear fission reactor condition.

  13. High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals

    NASA Astrophysics Data System (ADS)

    Ahn, Sanghoon; Choi, Jiyeon; Noh, Jiwhan; Cho, Sung-Hak

    2018-02-01

    Because of its potential uses, high aspect ratio nanostructures have been interested for last few decades. In order to generate nanostructures, various techniques have been attempted. Femtosecond laser ablation is one of techniques for generating nanostructures inside a transparent material. For generating nanostructures by femtosecond laser ablation, previous studies have been attempted beam shaping such as Bessel beam and temporal tailored beam. Both methods suppress electron excitation at near surface and initiate interference of photons at certain depth. Recent researches indicate that shape of nanostructures is related with temporal change of electron density and number of self-trapped excitons. In this study, we try to use the temporal change of electron density induced by femtosecond laser pulse for generating high aspect ratio nanoholes. In order to reveal the effect of temporal change of electron density, secondary pulses are irradiated from 100 to 1000 ps after the irradiation of first pulse. Our result shows that diameter of nanoholes is increasing and depth of nanoholes is decreasing as pulse to pulse interval is getting longer. With manipulating of pulse to pulse interval, we could generate high aspect ratio nanoholes with diameter of 250-350 nm and depth of 4∼6 μm inside a glass.

  14. Femtosecond laser lithotripsy: feasibility and ablation mechanism.

    PubMed

    Qiu, Jinze; Teichman, Joel M H; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D; Chan, Kin Foong; Milner, Thomas E

    2010-01-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (lambda=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 microm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 microm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  15. Efficient femtosecond driven SOX 17 delivery into mouse embryonic stem cells: differentiation studies

    NASA Astrophysics Data System (ADS)

    Thobakgale, Lebogang; Manoto, Sello Lebohang; Lemboumba, Satuurnin Ombinda; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    Embryonic stem cells have great promise in regenerative medicine because of their ability to self-renew and differentiate into various cell types. Delivery of therapeutic genes into cells has already been achieved using of chemical agents and viral vectors with high transfection efficiencies. However, these methods have also been documented as toxic and in the latter case they can cause latent cell infections. In this study we use femtosecond laser pulses to optically deliver genetic material in mouse embryonic stem cells. Femtosecond laser pulses in contrast to the conventional approach, minimises the risk of unwanted side effects because photons are used to create transient pores on the membrane which allow free entry of molecules with no need for delivery agents. Using an Olympus microscope, fluorescence imaging of the samples post irradiation was performed and decreased expression of stage specific embryonic antigen one (SSEA-1) consistent with on-going cellular differentiation was observed. Our results also show that femtosecond laser pulses were effective in delivering SOX 17 plasmid DNA (pSOX17) which resulted in the differentiation of mouse embryonic stem cells into endoderm cells. We thus concluded that laser transfection of stem cells for the purpose of differentiation, holds potential for applications in tissue engineering as a method of generating new cell lines.

  16. Negative-index gratings formed by femtosecond laser overexposure and thermal regeneration

    PubMed Central

    He, Jun; Wang, Yiping; Liao, Changrui; Wang, Chao; Liu, Shen; Yang, Kaiming; Wang, Ying; Yuan, Xiaocong; Wang, Guo Ping; Zhang, Wenjing

    2016-01-01

    We demonstrate a method for the preparation of negative-index fibre Bragg gratings (FBGs) using 800 nm femtosecond laser overexposure and thermal regeneration. A positive-index type I-IR FBG was first inscribed in H2-free single-mode fibre using a femtosecond laser directed through a phase mask, and then a highly polarization dependant phase-shifted FBG (P-PSFBG) was fabricated from the type I-IR FBG by overexposure to the femtosecond laser. Subsequently, the P-PSFBG was thermally annealed at 800 °C for 12 hours. Grating regeneration was observed during thermal annealing, and a negative-index FBG was finally obtained with a high reflectivity of 99.22%, an ultra-low insertion loss of 0.08 dB, a blueshift of 0.83 nm in the Bragg wavelength, and an operating temperature of up to 1000 °C for more than 10 hours. Further annealing tests showed that the thermal stability of the negative-index FBG was lower than that of a type II-IR FBG, but much higher than that of a type I-IR FBG. Moreover, the formation of such a negative-index grating may result from thermally regenerated type IIA photosensitivity. PMID:26979090

  17. Femtosecond laser-assisted deep anterior lamellar keratoplasty with big-bubble technique for keratoconus.

    PubMed

    Lu, Yan; Chen, Xiangfei; Yang, Liping; Xue, Chunyan; Huang, Zhenping

    2016-09-01

    The purpose of this study was to evaluate the clinical results after deep anterior lamellar keratoplasty (DALK) assisted by the femtosecond laser with big-bubble technique for keratoconus. A case series of 22 eyes in 19 patients with keratoconus was enrolled in the study. The 500-kHz VisuMax femtosecond laser (Carl Zeiss Meditec AG, Jena, Germany) was used to create a vertical side cut on donor and recipient corneas. Intraoperative and postoperative complications, uncorrected visual acuity, best-corrected visual acuity, corneal curvature, and central corneal thickness were evaluated in all patients. Big-bubble and naked Descemet's membrane (DM) were successfully achieved in twenty eyes (90.9%). Intraoperative macroperforation of DM occurred in two cases and converted to full-thickness keratoplasty. The mean follow-up time was 18.8 ± 5.3 months. The best-corrected visual acuity was increased from 0.3 to 1.0, mean corneal curvature was 43.0 ± 2.3D, and mean central corneal thickness was 508.9 ± 60.1 μm (range, from 430 to 600 μm) postoperatively. Our results indicate that femtosecond laser-assisted DALK with big-bubble technique is an accurate, safe, and effective method to treat the patients with keratoconus.

  18. Femtosecond laser ablation of transparent microphotonic devices and computer-generated holograms.

    PubMed

    Alqurashi, Tawfiq; Montelongo, Yunuen; Penchev, Pavel; Yetisen, Ali K; Dimov, Stefan; Butt, Haider

    2017-09-21

    Femtosecond laser ablation allows direct patterning of engineering materials in industrial settings without requiring multistage processes such as photolithography or electron beam lithography. However, femtosecond lasers have not been widely used to construct volumetric microphotonic devices and holograms with high reliability and cost efficiency. Here, a direct femtosecond laser writing process is developed to rapidly produce transmission 1D/2D gratings, Fresnel Zone Plate lenses, and computer-generated holograms. The optical properties including light transmission, angle-dependent resolution, and light polarization effects for the microphotonic devices have been characterized. Varying the depth of the microgratings from 400 nm to 1.5 μm allowed the control over their transmission intensity profile. The optical properties of the 1D/2D gratings were validated through a geometrical theory of diffraction model involving 2D phase modulation. The produced Fresnel lenses had transmission efficiency of ∼60% at normal incidence and they preserved the polarization of incident light. The computer-generated holograms had an average transmission efficiency of 35% over the visible spectrum. These microphotonic devices had wettability resistance of contact angle ranging from 44° to 125°. These devices can be used in a variety of applications including wavelength-selective filters, dynamic displays, fiber optics, and biomedical devices.

  19. Revealing the nanoparticles aspect ratio in the glass-metal nanocomposites irradiated with femtosecond laser

    PubMed Central

    Chervinskii, S.; Drevinskas, R.; Karpov, D. V.; Beresna, M.; Lipovskii, A. A.; Svirko, Yu. P.; Kazansky, P. G.

    2015-01-01

    We studied a femtosecond laser shaping of silver nanoparticles embedded in soda-lime glass. Comparing experimental absorption spectra with the modeling based on Maxwell Garnett approximation modified for spheroidal inclusions, we obtained the mean aspect ratio of the re-shaped silver nanoparticles as a function of the laser fluence. We demonstrated that under our experimental conditions the spherical shape of silver nanoparticles changed to a prolate spheroid with the aspect ratio as high as 3.5 at the laser fluence of 0.6 J/cm2. The developed approach can be employed to control the anisotropy of the glass-metal composites. PMID:26348691

  20. Thermal ablation of an aluminium film upon absorption of a femtosecond laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezhanov, S G; Kanavin, A P; Uryupin, S A

    We have found the time dependence of the ablation depth of aluminium irradiated by a femtosecond laser pulse. It is shown to what extent an increase in the radiation energy flux density leads to an increase in the quasi-stationary value of the ablation depth. By reducing the aluminium film thickness down to one hundred nanometres and less, the ablation depth significantly increases. At the same time, the quasi-stationary value of the ablation depth of a thin film is obtained due to the removal of heat from the focal spot region. (interaction of laser radiation with matter. laser plasma)

  1. Limiting of microjoule femtosecond pulses in air-guided modes of a hollow photonic-crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konorov, S.O.; Serebryannikov, E.E.; Sidorov-Biryukov, D.A.

    Self-phase-modulation-induced spectral broadening of laser pulses in air-guided modes of hollow photonic-crystal fibers (PCFs) is shown to allow the creation of fiber-optic limiters for high-intensity ultrashort laser pulses. The performance of PCF limiters is analyzed in terms of elementary theory of self-phase modulation. Experiments performed with 100 fs microjoule pulses of 800 nm Ti:sapphire laser radiation demonstrate the potential of hollow PCFs as limiters for 10 MW ultrashort laser pulses and show the possibility to switch the limiting level of output radiation energy by guiding femtosecond pulses in different PCF modes.

  2. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole

    Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.

  3. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole L.

    We demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security applications.

  4. Thermo-elasto-plastic simulations of femtosecond laser-induced multiple-cavity in fused silica

    NASA Astrophysics Data System (ADS)

    Beuton, R.; Chimier, B.; Breil, J.; Hébert, D.; Mishchik, K.; Lopez, J.; Maire, P. H.; Duchateau, G.

    2018-04-01

    The formation and the interaction of multiple cavities, induced by tightly focused femtosecond laser pulses, are studied using a developed numerical tool, including the thermo-elasto-plastic material response. Simulations are performed in fused silica in cases of one, two, and four spots of laser energy deposition. The relaxation of the heated matter, launching shock waves in the surrounding cold material, leads to cavity formation and emergence of areas where cracks may be induced. Results show that the laser-induced structure shape depends on the energy deposition configuration and demonstrate the potential of the used numerical tool to obtain the desired designed structure or technological process.

  5. Efficient neutron generation from solid-nanoparticle explosions driven by DPSSL-pumped high-repetition rate femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Watari, T.; Matsukado, K.; Sekine, T.; Takeuchi, Y.; Hatano, Y.; Yoshimura, R.; Satoh, N.; Nishihara, K.; Takagi, M.; Kawashima, T.

    2016-03-01

    We propose novel neutron source using high-intensity laser based on the cluster fusion scheme. We developed DPSSL-pumped high-repetition-rate 20-TW laser system and solid nanoparticle target for neutron generation demonstration. In our neutron generation experiment, high-energy deuterons were generated from coulomb explosion of CD solid- nanoparticles and neutrons were generated by DD fusion reaction. Efficient and stable neutron generation was obtained by irradiating an intense femtosecond laser pulse of >2×1018 W/cm2. A yield of ∼105 neutrons per shot was stably observed during 0.1-1 Hz continuous operation.

  6. Femtosecond versus picosecond laser pulses for film-free laser bioprinting.

    PubMed

    Petit, Stephane; Kérourédan, Olivia; Devillard, Raphael; Cormier, Eric

    2017-11-01

    We investigate the properties of microjets in the context of film-free laser induced forward transfer in the femtosecond and picosecond regimes. The influence of the pulse duration (ranging from 0.4 to 12 ps) and the energy (ranging from 6 to 12 μJ) is systematically studied on the height, diameter, speed, volume, and shape of the jets. The 400 fs pulses generate thin and stable jets compatible with bioprinting, while 14 ps pulses generate more unstable jets. A pulse duration around 8 ps seems, therefore, to be an interesting trade-off to cover many bio-applications of microjets generated by lasers.

  7. Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes

    DOE PAGES

    Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole; ...

    2017-06-19

    Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.

  8. Fine-pitched microgratings encoded by interference of UV femtosecond laser pulses.

    PubMed

    Kamioka, Hayato; Miura, Taisuke; Kawamura, Ken-ichi; Hirano, Masahiro; Hosono, Hideo

    2002-01-01

    Fine-pitched microgratings are encoded on fused silica surfaces by a two-beam laser interference technique employing UV femtosecond pulses from the third harmonics of a Ti:sapphire laser. A pump and prove method utilizing a laser-induced optical Kerr effect or transient optical absorption change has been developed to achieve the time coincidence of the two pulses. Use of the UV pulses makes it possible to narrow the grating pitches to an opening as small as 290 nm, and the groove width of the gratings is of nanoscale size. The present technique provides a novel opportunity for the fabrication of periodic nanoscale structures in various materials.

  9. Optical Waveguides Written in Silicon with Femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Pavlov, Ihor; Tokel, Onur; Pavlova, Svitlana; Kadan, Viktor; Makey, Ghaith; Turnali, Ahmed; Ilday, Omer

    Silicon is one of the most widely used materials in modern technology, ranging from electronics and Si-photonics to microfluidic and sensor applications. Despite the long history of Si-based devices, and the strong demand for opto-electronical integration, 3D Si laser processing technology is still challenging. Recently, nanosecond-pulsed laser was used to fabricate embedded holographic elements in Si. However, until now, there was no demonstration of femtosecond-laser-written optical elements inside Si. In this paper, we present optical waveguides written deep inside Si with 1.5 um femtosecond laser. The laser beam, with 2 uJ pulse energy and 350 fs pulse duration focused inside Si sample, produces permanent modification of Si. By moving the lens along the beam direction we were able to produce optical waveguides up to 5 mm long. The diameter of the waveguide is measured to be 10 um. The waveguides were characterized with both optical shadowgraphy and far field imaging after CW light coupling. We observed nearly single mode propagation of light inside of the waveguide. The obtained difference of refractive index inside of the waveguide, is 2.5*10-4. TUBITAK Grant 113M930, TUBITAK Grant 114F256.

  10. New advanced characterization tools for PW-class lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Quéré, Fabien

    2017-05-01

    Spatio-temporal couplings (STC) of laser beams are ubiquitous in ultrafast optics. In the femtosecond range, chirped-pulse amplification (CPA), the key technology of amplified ultrashort pulses, relies on the use of massive STCs induced at different locations in laser systems (for instance by gratings or prisms), which should all eventually perfectly cancel out at the laser output. Residual STCs, for example resulting from imperfect compensation, decrease the peak intensity at focus by increasing both the focal spot size and the pulse duration. This is particularly detrimental for ultrahigh-intensity (UHI) lasers, which aim for the highest possible peak intensities. However, it is precisely with these lasers that such uncontrolled defects are most likely to occur, due to the complexity of these systems and the large diameters of the output beams. Accurately measuring STCs is thus essential in ultrafast optics. Significant progress has been made in the last decade, and several techniques are now available for the partial or complete spatiotemporal characterization of near-visible femtosecond laser beams. However, none of these has yet been applied to UHI femtosecond lasers, due to the difficulty of handling these large and powerful beams. As a result, all UHI lasers are currently characterized under the unjustified and unverified assumption of the absence of STCs, using separate measurements in space and time. This situation is now becoming a major bottleneck for the development of UHI lasers and their applications. In particular, the optimal and reliable operation of PW-class lasers now available or under construction all around the world will simply not be possible without a proper spatiotemporal metrology. In this talk, we present the first complete spatiotemporal experimental reconstruction of the field E(t,r) for a 100 TW peak-power laser, obtained using self-referenced spatially-resolved Fourier transform spectroscopy [1,2], and thus reveal the spatiotemporal distortions that can affect such beams [3]. This new measurement capability opens the way to in-depth characterization and optimization of ultra-intense lasers and ultimately to the advanced control of relativistic motion of matter with femtosecond laser beams structured in space-time.

  11. Mass spectrometric imaging and laser desorption ionization (LDI) with ice as a matrix using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Berry, Jamal Ihsan

    The desorption of biomolecules from frozen aqueous solutions on metal substrates with femtosecond laser pulses is presented for the first time. Unlike previous studies using nanosecond pulses, this approach produces high quality mass spectra of biomolecules repeatedly and reproducibly. This novel technique allows analysis of biomolecules directly from their native frozen environments. The motivation for this technique stems from molecular dynamics computer simulations comparing nanosecond and picosecond heating of water overlayers frozen on Au substrates which demonstrate large water cluster formation and ejection upon substrate heating within ultrashort timescales. As the frozen aqueous matrix and analyte molecules are transparent at the wavelengths used, the laser energy is primarily absorbed by the substrate, causing rapid heating and explosive boiling of the ice overlayer, followed by the ejection of ice clusters and the entrained analyte molecule. Spectral characteristics at a relatively high fluence of 10 J/cm 2 reveal the presence of large molecular weight metal clusters when a gold substrate is employed, with smaller cluster species observed from frozen aqueous solutions on Ag, Cu, and Pb substrates. The presence of the metal clusters is indicative of an evaporative cooling mechanism which stabiles cluster ion formation and the ejection of biomolecules from frozen aqueous solutions. Solvation is necessary as the presence of metal clusters and biomolecular ion signals are not observed from bare metal substrates in absence of the frozen overlayer. The potential for mass spectrometric imaging with femtosecond LDI of frozen samples is also presented. The initial results for the characterization of peptides and peptoids linked to combinatorial beads frozen in ice and the assay of frozen brain tissue from the serotonin transporter gene knockout mouse via LDI imaging are discussed. Images of very good quality and resolution are obtained with 400 nm, 200 fs pulses at a fluence of 1.25 J/cm2 . An attractive feature of this technique is that images are acquired within minutes for large sample areas. Additionally, the images obtained with femtosecond laser desorption are high in lateral resolution with the laser capable of being focused to a spot size of 30 mum. Femtosecond laser desorption from ice is unique in that unlike matrix assisted laser desorption ionization mass spectrometry, it does not employ an organic UV absorbing matrix to desorb molecular ions. Instead, the laser energy is absorbed by the metal substrate causing explosive boiling and ejection of the frozen overlayer. This approach is significant in that femtosecond laser desorption possess the potential of analyzing and assaying biomolecules directly from their frozen native environments. This technique was developed to compliment existing ToF-SIMS imaging capability for analysis of tissue and cells, as well as other biological systems of interest.

  12. Femtosecond laser irradiation of olivine single crystals: Experimental simulation of space weathering

    NASA Astrophysics Data System (ADS)

    Fazio, A.; Harries, D.; Matthäus, G.; Mutschke, H.; Nolte, S.; Langenhorst, F.

    2018-01-01

    Space weathering is one of the most common surface process occurring on atmosphere-free bodies such as asteroids and the Moon. It is caused mainly by solar wind irradiation and the impact of micrometeoroids. In order to simulate space weathering effects, in particular those produced by hypervelocity impacts, we produced microcraters via ultra-short (∼100 fs) laser irradiation of crystallographically oriented slices of forsterite-rich (Fo94.7) olivine. The main advantages of the application of a femtosecond laser radiation to reproduce the space weathering effects are (1) the high peak irradiance (1015 W cm-2), which generates the propagation of the shock wave at the nanosecond timescale (i.e., timescale of the micrometeoroid impacts); (2) the rapid transfer of energy to the target material, which avoids the interaction of laser light with the developing vapor plume; (3) a small laser beam, which allows the effects of a single impact to be simulated. The results of our spectroscopic and electron microscopic investigation validate this approach: the samples show strong darkening and reddening of the reflectance spectra and structural damages similar to the natural microcraters found on regolith grains of the Moon and asteroid 25143 Itokawa. Detailed investigations of several microcrater cross-sections by transmission electron microscopy allowed the detection of shock-induced defect microstructures. From the top to the bottom of the grain, the shock wave causes evaporation, melting, solid-state recrystallization, misorientation, fracturing, and the propagation of dislocations with Burgers vectors parallel to [001]. The formation of a short-lived vapor plume causes the kinetic fractionation of the gas and the preferential loss of lighter elements, mostly magnesium and oxygen. The high temperatures within the melt layer and the kinetic loss of oxygen promote the thermal reduction of iron and nickel, which leads to the formation of metallic nanoparticles (npFe0). The final stage of the microcrater formation is the cooling of the melt layer that results in its partial crystallization and the formation of olivine crystals with a palisade-like texture.

  13. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wei; He, Hao, E-mail: haohe@tju.edu.cn; Wang, Yintao

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the verymore » beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.« less

  14. Incidence of rainbow glare after laser in situ keratomileusis flap creation with a 60 kHz femtosecond laser.

    PubMed

    Bamba, Sonya; Rocha, Karolinne M; Ramos-Esteban, Jerome C; Krueger, Ronald R

    2009-06-01

    To report the incidence of and factors associated with rainbow glare after laser in situ keratomileusis (LASIK) flap creation with a 60 kHz femtosecond laser. Department of Refractive Surgery, Cleveland Clinic Cole Eye Institute, Cleveland, Ohio, USA. Consecutive patients having LASIK by the same surgeon were questioned during postoperative examinations or by telephone about postoperative rainbow glare (radiating colors around a white light at night). Femtosecond laser (IntraLase) settings included pulse frequency 60 kHz, flap thickness 90 to 110 mum, and spot/line separation 8 mum. Raster energy was 0.8 microJ (75% of eyes) and 1.0 to 1.1 microJ (25%). Excimer laser ablation was performed with the LADAR 4000 or 6000 platform using custom or conventional treatments. Of 260 consecutive patients, 256 (98.5%) were successfully contacted. Fifteen patients (28 eyes) reported postoperative rainbow glare (5.8%), described as 4 to 12 bands of color around a white light, with 6 bands most common. The symptom did not correlate with refractive error, age, or sex but was more frequent at 1.0 microJ or 1.1 microJ raster energy (11.6%) than at 0.8 microJ (4.1%). The incidence followed a bimodal distribution, with the first grouping due to inadequate alignment and higher energy just after laser installation and the second just before a later maintenance service call. Rainbow glare is a mild optical side effect of femtosecond LASIK. In this study, higher raster energy levels and length of time between service calls were associated with the occurrence of rainbow glare.

  15. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  16. Dry eyes and corneal sensation after laser in situ keratomileusis with femtosecond laser flap creation Effect of hinge position, hinge angle, and flap thickness.

    PubMed

    Mian, Shahzad I; Li, Amy Y; Dutta, Satavisha; Musch, David C; Shtein, Roni M

    2009-12-01

    To determine whether corneal sensation and dry-eye signs and symptoms after myopic laser in situ keratomileusis (LASIK) surgery with a femtosecond laser are affected by varying hinge position, hinge angle, or flap thickness. University-based academic practice, Ann Arbor, Michigan, USA. This prospective randomized contralateral-eye study evaluated eyes after bilateral myopic LASIK with a femtosecond laser (IntraLase). Superior and temporal hinge positions, 45-degree and 90-degree hinge angles, and 100 microm and 130 microm corneal flap thicknesses were compared. Postoperative follow-up at 1 week and 1, 3, 6, and 12 months included central Cochet-Bonnet esthesiometry, the Ocular Surface Disease Index questionnaire, a Schirmer test with anesthesia, tear breakup time (TBUT), corneal fluorescein staining, and conjunctival lissamine green staining. The study evaluated 190 consecutive eyes (95 patients). Corneal sensation was reduced at all postoperative visits, with improvement over 12 months (P<.001). There was no difference in corneal sensation between the different hinge positions, angles, or flap thicknesses at any time point. The overall ocular surface disease index score was increased at 1 week, 1 month, and 3 months (P<.0001, P<.0001, and P = .046, respectively). The percentage of patients with a TBUT longer than 10 seconds was significantly lower at 1 week and 1 month (P<.0001). Dry-eye syndrome after myopic LASIK with a femtosecond laser was mild and improved after 3 months. Corneal flap hinge position, hinge angle, and thickness had no effect on corneal sensation or dry-eye syndrome.

  17. Generation of H2, O2, and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization

    NASA Astrophysics Data System (ADS)

    Chin, S. L.; Lagacé, S.

    1996-02-01

    An intense femtosecond Ti-sapphire laser pulse was focused into water, leading to self-focusing. Apart from generating a white light (supercontinuum), the intense laser field in the self-focusing regions of the laser pulse dissociated the water molecules, giving rise to hydrogen and oxygen gas as well as hydrogen peroxide. Our analysis shows that the formation of free radicals O, H, and OH preceded the formation of the stable products of H2, O2, and H2O2. Because O radicals and H2O2 are strong oxydizing agents, one can take advantage of this phenomenon to design a laser scheme for sterilization in medical and biological applications.

  18. [Understanding the advantages and disadvantages of femtosecond laser comprehensive applications in ophthalmology].

    PubMed

    Xie, Li-xin; Gao, Hua

    2013-04-01

    The femtosecond (FS) laser is a novel laser technology, and is approved clinical application by FDA in 2000. FS laser initially mainly used in corneal refractive surgery to replace the mechanical microkeratome. Since the accuracy and controllability of the FS laser is very high, it shows superiority in the field of corneal refractive surgery. And with the development of the relative hard and software, FS laser is began to used in other fields of ophthalmology, such as corneal transplants, cataract surgery, as well as assisted diagnosis et al., although still have some limitations, the preliminary clinical results have been shown a very good prospects in the ophthalmology fields. Therefore, we reviewed the alternative applications, challenges and limitations, research direction in the future of FS laser, so that provide a reference and revelations for the peers.

  19. Realizing up-conversion fluorescence tuning in lanthanide-doped nanocrystals by femtosecond pulse shaping method

    PubMed Central

    Zhang, Shian; Yao, Yunhua; Shuwu, Xu; Liu, Pei; Ding, Jingxin; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong

    2015-01-01

    The ability to tune color output of nanomaterials is very important for their applications in laser, optoelectronic device, color display and multiplexed biolabeling. Here we first propose a femtosecond pulse shaping technique to realize the up-conversion fluorescence tuning in lanthanide-doped nanocrystals dispersed in the glass. The multiple subpulse formation by a square phase modulation can create different excitation pathways for various up-conversion fluorescence generations. By properly controlling these excitation pathways, the multicolor up-conversion fluorescence can be finely tuned. This color tuning by the femtosecond pulse shaping technique is realized in single material by single-color laser field, which is highly desirable for further applications of the lanthanide-doped nanocrystals. This femtosecond pulse shaping technique opens an opportunity to tune the color output in the lanthanide-doped nanocrystals, which may bring a new revolution in the control of luminescence properties of nanomaterials. PMID:26290391

  20. High precision laser ranging by time-of-flight measurement of femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Lee, Joohyung; Lee, Keunwoo; Lee, Sanghyun; Kim, Seung-Woo; Kim, Young-Jin

    2012-06-01

    Time-of-flight (TOF) measurement of femtosecond light pulses was investigated for laser ranging of long distances with sub-micrometer precision in the air. The bandwidth limitation of the photo-detection electronics used in timing femtosecond pulses was overcome by adopting a type-II nonlinear second-harmonic crystal that permits the production of a balanced optical cross-correlation signal between two overlapping light pulses. This method offered a sub-femtosecond timing resolution in determining the temporal offset between two pulses through lock-in control of the pulse repetition rate with reference to the atomic clock. The exceptional ranging capability was verified by measuring various distances of 1.5, 60 and 700 m. This method is found well suited for future space missions based on formation-flying satellites as well as large-scale industrial applications for land surveying, aircraft manufacturing and shipbuilding.

Top