Science.gov

Sample records for femtosecond laser systems

  1. Construction of a femtosecond laser microsurgery system

    PubMed Central

    Steinmeyer, Joseph D; Gilleland, Cody L; Pardo-Martin, Carlos; Angel, Matthew; Rohde, Christopher B; Scott, Mark A; Yanik, Mehmet Fatih

    2014-01-01

    Femtosecond laser microsurgery is a powerful method for studying cellular function, neural circuits, neuronal injury and neuronal regeneration because of its capability to selectively ablate sub-micron targets in vitro and in vivo with minimal damage to the surrounding tissue. Here, we present a step-by-step protocol for constructing a femtosecond laser microsurgery setup for use with a widely available compound fluorescence microscope. The protocol begins with the assembly and alignment of beam-conditioning optics at the output of a femtosecond laser. Then a dichroic mount is assembled and installed to direct the laser beam into the objective lens of a standard inverted microscope. Finally, the laser is focused on the image plane of the microscope to allow simultaneous surgery and fluorescence imaging. We illustrate the use of this setup by presenting axotomy in Caenorhabditis elegans as an example. This protocol can be completed in 2 d. PMID:20203659

  2. Hybrid high power femtosecond laser system

    NASA Astrophysics Data System (ADS)

    Trunov, V. I.; Petrov, V. V.; Pestryakov, E. V.; Kirpichnikov, A. V.

    2006-01-01

    Design of a high-power femtosecond laser system based on hybrid chirped pulse amplification (CPA) technique developed by us is presented. The goal of the hybrid principle is the use of the parametric and laser amplification methods in chirped pulse amplifiers. It makes it possible to amplify the low-cycle pulses with a duration of <= fs to terawatt power with a high contrast and high conversion efficiency of the pump radiation. In a created system the Ti:Sapphire laser with 10 fs pulses at 810 nm and output energy about 1-3 nJ will be used like seed source. The oscillator pulses were stretched to duration of about 500 ps by an all-reflective grating stretcher. Then the stretched pulses are injected into a nondegenerate noncollinear optical parametric amplifier (NOPA) on the two BBO crystals. After amplification in NOPA the residual pump was used in a bow-tie four pass amplifier with hybrid active medium (based on Al II0 3:Ti 3+ and BeAl IIO 4:Ti 3+ crystals). The final stage of the amplification system consists of two channels, namely NIR (820 nm) and short-VIS (410 nm). Numerical simulation has shown that the terawatt level of output power can be achieved also in a short-VIS channel at the pumping of the double-crystal BBO NOPA by the radiation of the fourth harmonic of the Nd:YAG laser at 266 nm. Experimentally parametric amplification in BBO crystals of 30-50 fs pulses were investigated and optimized using SPIDER technique and single-shot autocomelator for the realization of shortest duration 40 fs.

  3. [Femtosecond laser: a micromachining system for corneal surgery].

    PubMed

    Donate, D; Albert, O; Colliac, J-P; Tubelis, P; Sabatier, P; Mourou, G; Burillon, C; Pouliquen, Y; Legeais, J-M

    2004-09-01

    The authors present the diode-pumped, all-solid state, neodymium:glass femtosecond laser from the Laboratory of Ocular Biotechnology, Hotel-Dieu Hospital. We worked with a 1,065-nm wavelength infrared laser. This laser is composed of an oscillator and amplification glass matrix mixed with neodymium. Its stretching and compression system is capable of producing pulses lasting a few hundred femtoseconds. The repetition rate is adjustable, ranging from 1 to 10 kHz, and can reach energies up to 60 microJ. The delivery system was set up on an optical table, with human corneal samples fixed to an anterior chamber system, which can be moved over the X-Y-Z axis by a computer-guided translation motor with micrometric precision. We analyzed the biological effects of laser impacts in human corneal tissue, obtained from the French Eye Bank. The femtosecond laser provides automated corneal cutting with a high level of precision, which can be verified on the corneal surface regularity by scanning electron microscopy analysis. Silicon samples can also be cut and can be used for calibration testing of the laser. The set-up composed of the femtosecond laser and the described delivery system enable precise corneal cutting and offer the opportunity to study its characteristics.

  4. High power, high contrast hybrid femtosecond laser systems

    NASA Astrophysics Data System (ADS)

    Dabu, Razvan

    2017-06-01

    For many research applications a very high laser intensity of more than 1022 W/cm2 in the focused beam is required. If a laser intensity of about 1011W/cm2 is reached on the target before the main laser pulse, the generated pre-plasma disturbs the experiment. High power femtosecond lasers must be tightly focused to get high intensity and in the same time must have a high enough intensity contrast of the temporally compressed amplified pulses. Reaching an intensity contrast in the range of 1012 represents a challenging task for a Ti:sapphire CPA laser. Hybrid femtosecond lasers combine optical parametric chirped pulsed amplification (OPCPA) in nonlinear crystals with the chirped pulse amplification (CPA) in laser active media. OPCPA provides large amplification spectral bandwidth and improves the intensity contrast of the amplified pulses. A key feature of these systems consists in the adaptation of the parametric amplification phase-matching bandwidth of nonlinear crystals to the spectral gain bandwidth of laser amplifying Ti:sapphire crystals. OPCPA in BBO crystals up to mJ energy level in the laser Front-End, followed by CPA up to ten/hundred Joules in large aperture Ti:sapphire crystals, represents a suitable solution for PW-class femtosecond lasers. The configuration and expected output beam characteristics of the hybrid amplification 2 × 10 PW ELI-NP laser are described.

  5. Femtosecond Synchronization of Laser Systems for the LCLS

    SciTech Connect

    Byrd, John; Doolittle, Lawrence; Huang, Gang; Staples, John; Wilcox, Russell; Arthur, John; Frisch, Josef; White, William; /SLAC

    2012-08-24

    The scientific potential of femtosecond x-ray pulses at linac-driven free-electron lasers such as the Linac Coherent Light Source is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. An optical timing system based on stabilized fiber links has been developed for the LCLS to provide this synchronization. Preliminary results show synchronization of the installed stabilized links at the sub-20-femtosecond level. We present details of the implementation at LCLS and potential for future development.

  6. CONTROLLING THE CHARACTERISTICS OF LASER LIGHT: Stimulated-Raman pulse peaker for terawatt femtosecond laser systems

    NASA Astrophysics Data System (ADS)

    Losev, Leonid L.; Lutsenko, Andrei P.

    1993-04-01

    An optical layout for shortening the rise time of femtosecond light pulses is proposed. A stimulated-Raman converter operating on rotational levels of orthohydrogen is placed between amplifier stages of a wide-band, terawatt, femtosecond titanium-sapphire laser system. Light in the first Stokes component is extracted by a polarization technique and then amplified.

  7. Surgical applications of femtosecond lasers.

    PubMed

    Chung, Samuel H; Mazur, Eric

    2009-10-01

    Femtosecond laser ablation permits non-invasive surgeries in the bulk of a sample with submicrometer resolution. We briefly review the history of optical surgery techniques and the experimental background of femtosecond laser ablation. Next, we present several clinical applications, including dental surgery and eye surgery. We then summarize research applications, encompassing cell and tissue studies, research on C. elegans, and studies in zebrafish. We conclude by discussing future trends of femtosecond laser systems and some possible application directions.

  8. Micromachining using femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Toenshoff, Hans K.; Ostendorf, Andreas; Nolte, Stefan; Korte, Frank; Bauer, Thorsten

    2000-11-01

    Femtosecond laser systems have been proved to be effective tools for high precision micro-machining. Almost all solid materials can be processed with high precision. The dependence on material properties like thermal conductivity, transparency, heat- or shock sensitivity is strongly reduced and no significant influence on the remaining bulk material is observed after ablation using femtosecond laser pulses. In contrast to conventional laser processing, where the achievable precision is reduced due to a formed liquid phase causing burr formation, the achievable precision using femtosecond pulses is only limited by the diffraction of the used optics. Potential applications of this technique, aincluding the structuring of biodegradable polymers for cardiovascular implants, so-called stents, as well as high precision machining of transparent materials are presented.

  9. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  10. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B

    1998-08-05

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area. Applications ranging from drilling teeth to cutting explosives to precision cuts in composites are possible by using this technology. For material removal at reasonable rates, we have developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  11. Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies

    NASA Astrophysics Data System (ADS)

    Sudo, Masaaki; Takayanagi, Jun; Ohtake, Hideyuki

    2016-11-01

    Because optical fiber-based optical systems are generally robust against external interference, they can be used as reliable systems in industrial applications in various fields. This paper describes fiber lasers generating femtosecond pulses that use optical fibers as gain media and optical paths. Additionally, the nondestructive paint multilayer thickness measurement of automotive parts using terahertz waves generated and detected by femtosecond fiber laser systems was conducted.

  12. In vivo manipulation of biological systems with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Nishimura, Nozomi; Schaffer, Chris B.; Kleinfeld, David

    2006-05-01

    Femtosecond laser pulses have the unique ability to deposit energy into a microscopic volume in the bulk of a material that is transparent to the laser wavelength without affecting the surface of the material. Here we review the use of this capability to disrupt specifically targeted structures in live cells and animals with the goal of elucidating function and modeling disease states. Particular attention will be paid to recent work that uses femtosecond laser disruption to injure cerebral blood vessels that lie below the brain surface in a live, anesthetized rat. By varying the degree of injury, the vessel can be made to leak blood plasma, to rupture, or to clot. This technique thus provides a versatile model of cerebrovascular disorders such as small-scale stroke.

  13. Holographic vector-wave femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio; Hasegawa, Satoshi

    2016-03-01

    Arbitrary and variable beam shaping of femtosecond pulses by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM) have been applied to femtosecond laser processing. The holographic femtosecond laser processing has been widely used in many applications such as two-photon polymerization, optical waveguide fabrication, fabrication of volume phase gratings in polymers, and surface nanostructuring. A vector wave that has a spatial distribution of polarization states control of femtosecond pulses gives good performances for the femtosecond laser processing. In this paper, an in- system optimization of a CGH for massively-parallel femtosecond laser processing, a dynamic control of spatial spectral dispersion to improve the focal spot shape, and the holographic vector-wave femtosecond laser processing are demonstrated.

  14. Profitability analysis of a femtosecond laser system for cataract surgery using a fuzzy logic approach

    PubMed Central

    Trigueros, José Antonio; Piñero, David P; Ismail, Mahmoud M

    2016-01-01

    AIM To define the financial and management conditions required to introduce a femtosecond laser system for cataract surgery in a clinic using a fuzzy logic approach. METHODS In the simulation performed in the current study, the costs associated to the acquisition and use of a commercially available femtosecond laser platform for cataract surgery (VICTUS, TECHNOLAS Perfect Vision GmbH, Bausch & Lomb, Munich, Germany) during a period of 5y were considered. A sensitivity analysis was performed considering such costs and the countable amortization of the system during this 5y period. Furthermore, a fuzzy logic analysis was used to obtain an estimation of the money income associated to each femtosecond laser-assisted cataract surgery (G). RESULTS According to the sensitivity analysis, the femtosecond laser system under evaluation can be profitable if 1400 cataract surgeries are performed per year and if each surgery can be invoiced more than $500. In contrast, the fuzzy logic analysis confirmed that the patient had to pay more per surgery, between $661.8 and $667.4 per surgery, without considering the cost of the intraocular lens (IOL). CONCLUSION A profitability of femtosecond laser systems for cataract surgery can be obtained after a detailed financial analysis, especially in those centers with large volumes of patients. The cost of the surgery for patients should be adapted to the real flow of patients with the ability of paying a reasonable range of cost. PMID:27500115

  15. Profitability analysis of a femtosecond laser system for cataract surgery using a fuzzy logic approach.

    PubMed

    Trigueros, José Antonio; Piñero, David P; Ismail, Mahmoud M

    2016-01-01

    To define the financial and management conditions required to introduce a femtosecond laser system for cataract surgery in a clinic using a fuzzy logic approach. In the simulation performed in the current study, the costs associated to the acquisition and use of a commercially available femtosecond laser platform for cataract surgery (VICTUS, TECHNOLAS Perfect Vision GmbH, Bausch & Lomb, Munich, Germany) during a period of 5y were considered. A sensitivity analysis was performed considering such costs and the countable amortization of the system during this 5y period. Furthermore, a fuzzy logic analysis was used to obtain an estimation of the money income associated to each femtosecond laser-assisted cataract surgery (G). According to the sensitivity analysis, the femtosecond laser system under evaluation can be profitable if 1400 cataract surgeries are performed per year and if each surgery can be invoiced more than $500. In contrast, the fuzzy logic analysis confirmed that the patient had to pay more per surgery, between $661.8 and $667.4 per surgery, without considering the cost of the intraocular lens (IOL). A profitability of femtosecond laser systems for cataract surgery can be obtained after a detailed financial analysis, especially in those centers with large volumes of patients. The cost of the surgery for patients should be adapted to the real flow of patients with the ability of paying a reasonable range of cost.

  16. The TriBeam system: Femtosecond laser ablation in situ SEM

    SciTech Connect

    Echlin, McLean P.; Straw, Marcus; Randolph, Steven; Filevich, Jorge; Pollock, Tresa M.

    2015-02-15

    Femtosecond laser ablation offers the unique ability to remove material at rates that are orders of magnitude faster than existing ion beam technologies with little or no associated damage. By combining ultrafast lasers with state-of-the-art electron microscopy equipment, we have developed a TriBeam system capable of targeted, in-situ tomography providing chemical, structural, and topographical information in three dimensions of near mm{sup 3} sized volumes. The origins, development, physics, current uses, and future potential for the TriBeam system are described in this tutorial review. - Graphical abstract: Display Omitted - Highlights: • An emerging tool, the TriBeam, for in situ femtosecond (fs) laser ablation is presented. • Fs laser ablation aided tomography at the mm{sup 3}-scale is demonstrated. • Fs laser induced deposition of Pt is demonstrated at sub-diffraction limit resolution. • Fs laser surface structuring is reviewed as well as micromachining applications.

  17. Femtosecond laser corneal refractive surgery

    NASA Astrophysics Data System (ADS)

    Kurtz, Ron M.; Spooner, Greg J. R.; Sletten, Karin R.; Yen, Kimberly G.; Sayegh, Samir I.; Loesel, Frieder H.; Horvath, Christopher; Liu, HsiaoHua; Elner, Victor; Cabrera, Delia; Muenier, Marie-Helene; Sacks, Zachary S.; Juhasz, Tibor

    1999-06-01

    We evaluated the efficacy, safety, and stability of femtosecond laser intrastromal refractive procedures in ex vivo and in vivo models. When compared with longer pulsewidth nanosecond or picosecond laser pulses, femtosecond laser-tissue interactions are characterized by significantly smaller and more deterministic photodisruptive energy thresholds, as well as reduced shock waves and smaller cavitation bubbles. We utilized a highly reliable, all-solid-state femtosecond laser system for all studies to demonstrate clinical practicality. Contiguous tissue effects were achieved by scanning a 5 μm focused laser spot below the corneal surface at pulse energies of approximately 2 - 4 microjoules. A variety of scanning patterns was used to perform three prototype procedures in animal eyes; corneal flap cutting, keratomileusis, and intrastromal vision correction. Superior dissection and surface quality results were obtained for lamellar procedures (corneal flap cutting and keratomileusis). Preliminary in vivo evaluation of intrastromal vision correction in a rabbit model revealed consistent and stable pachymetry changes, without significant inflammation or loss of corneal transparency. We conclude that femtosecond laser technology may be able to perform a variety of corneal refractive procedures with high precision, offering advantages over current mechanical and laser devices and techniques.

  18. Synchronized femtosecond laser pulse switching system based nano-patterning technology

    NASA Astrophysics Data System (ADS)

    Sohn, Ik-Bu; Choi, Hun-Kook; Yoo, Dongyoon; Noh, Young-Chul; Sung, Jae-Hee; Lee, Seong-Ku; Ahsan, Md. Shamim; Lee, Ho

    2017-07-01

    This paper demonstrates the design and development of a synchronized femtosecond laser pulse switching system and its applications in nano-patterning of transparent materials. Due to synchronization, we are able to control the location of each irradiated laser pulse in any kind of substrate. The control over the scanning speed and scanning step of the laser beam enables us to pattern periodic micro/nano-metric holes, voids, and/or lines in various materials. Using the synchronized laser system, we pattern synchronized nano-holes on the surface of and inside various transparent materials including fused silica glass and polymethyl methacrylate to replicate any image or pattern on the surface of or inside (transparent) materials. We also investigate the application areas of the proposed synchronized femtosecond laser pulse switching system in a diverse field of science and technology, especially in optical memory, color marking, and synchronized micro/nano-scale patterning of materials.

  19. Noncontact microsurgery and micromanipulation of living cells with combined system femtosecond laser scalpel-optical tweezers

    NASA Astrophysics Data System (ADS)

    Il'ina, Inna V.; Sitnikov, Dmitry S.; Ovchinnikov, Andrey V.; Agranat, Mikhail B.; Khramova, Yulia V.; Semenova, Maria L.

    2012-06-01

    We report on the results of using self-developed combined laser system consisting of a femtosecond laser scalpel (Cr:Forsterite seed oscillator and a regenerative amplifier, 620 nm, 100 fs, 10 Hz) and optical tweezers (cw laser, 1064 nm) for performing noncontact laser-mediated polar body (PB) and trophectoderm (TE) biopsy of early mammalian embryos. To perform PB biopsy the femtosecond laser scalpel was initially used to drill an opening in the zona pellucida, and then the PB was extracted out of the zygote with the optical tweezers. Unlike PB biopsy, TE biopsy allows diagnosing maternally-derived as well as paternally-derived defects. Moreover, as multiple TE cells can be taken from the embryo, more reliable diagnosis can be done. TE biopsy was performed by applying laser pulses to dissect the desired amount of TE cells that had just left the zona pellucida during the hatching. Optical tweezers were then used to trap and move the dissected TE cells in a prescribed way. Laser power in optical tweezers and energy of femtosecond laser pulses were thoroughly optimized to prevent cell damage and obtain high viability rates. In conclusion, the proposed techniques of laser-based embryo biopsy enable accurate, contamination-free, simple and quick microprocessing of living cells.

  20. Micromachining of Silicon Carbide using femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Farsari, M.; Filippidis, G.; Zoppel, S.; Reider, G. A.; Fotakis, C.

    2007-04-01

    We have demonstrated micromachining of bulk 3C silicon carbide (3C- SiC) wafers by employing 1028nm wavelength femtosecond laser pulses of energy less than 10 nJ directly from a femtosecond laser oscillator, thus eliminating the need for an amplified system and increasing the micromachining speed by more than four orders of magnitude.

  1. Femtosecond laser materials processing

    NASA Astrophysics Data System (ADS)

    Banks, Paul S.; Stuart, Brent C.; Komashko, Aleksey M.; Feit, Michael D.; Rubenchik, Alexander M.; Perry, Michael D.

    2000-05-01

    The use of femtosecond lasers allows materials processing of practically any material with extremely high precision and minimal collateral damage. Advantages over conventional laser machining (using pulses longer than a few tens of picoseconds) are realized by depositing the laser energy into the electrons of the material on a time scale short compared to the transfer time of this energy to the bulk of the material, resulting in increased ablation efficiency and negligible shock or thermal stress. The improvement in the morphology by using femtosecond pulses rather than nanosecond pulses has been studied in numerous materials from biological materials to dielectrics to metals. During the drilling process, we have observed the onset of small channels which drill faster than the surrounding material.

  2. Femtosecond Laser Materials Processing

    SciTech Connect

    Banks, P.S.; Stuart, B.C.; Komashko, A.M.; Feit, M.D.; Rubenchik, A.M.; Perry, M.D.

    2000-03-06

    The use of femtosecond lasers allows materials processing of practically any material with extremely high precision and minimal collateral damage. Advantages over conventional laser machining (using pulses longer than a few tens of picoseconds) are realized by depositing the laser energy into the electrons of the material on a time scale short compared to the transfer time of this energy to the bulk of the material, resulting in increased ablation efficiency and negligible shock or thermal stress. The improvement in the morphology by using femtosecond pulses rather than nanosecond pulses has been studied in numerous materials from biologic materials to dielectrics to metals. During the drilling process, we have observed the onset of small channels which drill faster than the surrounding material.

  3. Fiber laser-microscope system for femtosecond photodisruption of biological samples.

    PubMed

    Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F Ömer; Eldeniz, Y Burak; Tazebay, Uygar H

    2012-03-01

    We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells.

  4. Fiber laser-microscope system for femtosecond photodisruption of biological samples

    PubMed Central

    Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F. Ömer; Eldeniz, Y. Burak; Tazebay, Uygar H.

    2012-01-01

    We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells. PMID:22435105

  5. Range extension in laser-induced breakdown spectroscopy using femtosecond-nanosecond dual-beam laser system

    NASA Astrophysics Data System (ADS)

    Chu, Wei; Zeng, Bin; Li, Ziting; Yao, Jinping; Xie, Hongqiang; Li, Guihua; Wang, Zhanshan; Cheng, Ya

    2017-06-01

    We extend the detection range of laser-induced breakdown spectroscopy by combining high-intensity femtosecond laser pulses with high-energy nanosecond CO2 laser pulses. The femtosecond laser pulses ionize the molecules and generate filament in air. The free electrons generated in the self-confined plasma channel by the femtosecond laser serve as the seed electrons which cause efficient avalanche ionization in the nanosecond CO2 laser field. We show that the detection distance has been extended by three times with the assistance of femtosecond laser filamentation.

  6. An amplified femtosecond laser system for material micro-/nanostructuring with an integrated Raman microscope.

    PubMed

    Zalloum, Othman H Y; Parrish, Matthew; Terekhov, Alexander; Hofmeister, William

    2010-05-01

    In order to obtain new insights into laser-induced chemical material modifications, we introduce a novel combined approach of femtosecond pulsed laser-direct writing and in situ Raman microscopy within a single experimental apparatus. A newly developed scanning microscope, the first of its kind, provides a powerful tool for micro-/nanomachining and characterization of material properties and allows us to relate materials' functionality with composition. We address the issues of light delivery to the photomodification site and show the versatility of the system using tight focusing. Amplified femtosecond pulses are generated by a Ti:sapphire laser oscillator and a chirped-pulse regenerative amplifier, both pumped by a diode-pumped frequency doubled neodymium-doped yttrium orthovanadate (Nd:YVO(4)) laser operating at 532 nm. Results of Raman spectroscopy and scanning electron microscopy images of femtosecond laser micro-/nanomachining on the surface and in the bulk of single-crystal diamond obtained from first trials of this instrument are also presented. This effective combination could help to shed light on the influence of the local structure fluctuations on controllability of the laser processing and the role of the irradiation in the ablation processes ruling out possible imprecisions coming from the use of the two independent techniques.

  7. Ophthalmic applications of femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Kurtz, Ron M.; Spooner, Greg J. R.; Sletten, Karin R.; Yen, Kimberly G.; Sayegh, Samir I.; Loesel, Frieder H.; Horvath, Christopher; Liu, HsiaoHua; Elner, Victor; Cabrera, Delia; Muenier, Marie-Helene; Sacks, Zachary S.; Juhasz, Tibor; Miller, Doug L.; Williams, A. R.

    1999-06-01

    We investigated three potential femtosecond laser ophthalmic procedures: intrastromal refractive surgery, transcleral photodisruptive glaucoma surgery and photodisruptive ultrasonic lens surgery. A highly reliable, all-solid-state system was used to investigate tissue effects and demonstrate clinical practicality. Compared with longer duration pulses, femtosecond laser-tissue interactions are characterized by smaller and more deterministic photodisruptive energy thresholds, smaller shock wave and cavitation bubble sizes. Scanning a 5 (mu) spot below the target tissue surface produced contiguous tissue effects. Various scanning patterns were used to evaluate the efficacy, safety, and stability of three intrastromal refractive procedures in animal eyes: corneal flap cutting, keratomileusis, and intrastromal vision correction (IVC). Superior dissection and surface quality results were obtained for the lamellar procedures. IVC in rabbits revealed consistent, stable pachymetric changes, without significant inflammation or corneal transparency degradation. Transcleral photodisruption was evaluated as a noninvasive method for creating partial thickness scleral channels to reduce elevated intraocular pressure associated with glaucoma. Photodisruption at the internal scleral surface was demonstrated by focusing through tissue in vitro without collateral damage. Femtosecond photodisruptions nucleated ultrasonically driven cavitation to demonstrate non-invasive destruction of in vitro lens tissue. We conclude that femtosecond lasers may enable practical novel ophthalmic procedures, offering advantages over current techniques.

  8. Study on the repetition rate locking system of the femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zhao, Chunbo; Wu, Tengfei; Zhang, Li; Zhu, Zhenyu

    2015-04-01

    The new technique known as "The femtosecond frequency comb technology" has dramatic impact on the diverse fields of precision measurement and nonlinear optical physics. In order to acquire high-precision and high-stability femtosecond comb, it's necessary to stabilize the repetition rate fRep and the offset frequency f0. This article presents the details of stabilizing and controlling the comb parameter fRep and finally phase lock the repetition rate of femtosecond laser to a radio frequency reference, derived from an atomic clock. In practice, the narrower the bandwidth of lock system (close-loop system), the higher stability we can achieve, but it becomes easier to be unlocked for external disturb. We adopt a method in servo unit to avoid this problem in this paper. The control parameters P and I can be adjusted and optimized more flexibly. The lock steps depend on the special servo system make it easier to find the right parameters and the lock becomes more convenient and quickly. With this idea, the locked time of repetition rate can be as long as the mode-locking time of the laser. The stability of laser can be evaluated by allan deviation. In this research, the contrast of stability of fRep between the locked laser and the unlocked is given. The new lock system is proved reasonable.

  9. 2 micron femtosecond fiber laser

    DOEpatents

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  10. Cataract surgery with femtosecond lasers.

    PubMed

    Alió, Jorge L

    2011-07-01

    Cataract surgery with femtosecond lasers is approaching its practical application in ophthalmology. These lasers, working in the near infrared wavelength (1030 nm) can penetrate the transparent and even opaque tissues of the anterior segment of the eye, with limitations related to vessels and mineral opacities. Femtosecond lasers, guided by image systems can precisely outline the anatomy of the anterior segment of the eye, acting in a very precise way, performing corneal incisions, capsulorhexis, softening and breaking of the nucleus, which are essential steps in cataract surgery. In this article we summarize the four technologies available and approaching commercial application in the coming future. The main differences between the systems are based on the diagnostic imaging techniques, which might either be based on optical coherence tomography or the Scheimpflug principles. One model (the Technolas Femtec 520 F custom lens, 20/10 Perfect Vision), offers the possibility of combined use in corneal and intraocular surgery. While clinical studies are being performed with all of them, and most probably becoming available on the market during 2011 and 2012, the main problem of this emerging technology is its practical application as the increase in costs will affect their availability in the market of cataract surgery. Research is needed to confirm the practicality and the advantages of femtosecond laser cataract surgery over conventional surgery. Meanwhile, a new path for the future of cataract surgery is opening.

  11. Femtosecond laser in laser in situ keratomileusis

    PubMed Central

    Salomão, Marcella Q.; Wilson, Steven E.

    2014-01-01

    Flap creation is a critical step in laser in situ keratomileusis (LASIK). Efforts to improve the safety and predictability of the lamellar incision have fostered the development of femtosecond lasers. Several advantages of the femtosecond laser over mechanical microkeratomes have been reported in LASIK surgery. In this article, we review common considerations in management and complications of this step in femtosecond laser–LASIK and concentrate primarily on the IntraLase laser because most published studies relate to this instrument. PMID:20494777

  12. Advances in femtosecond laser technology

    PubMed Central

    Callou, Thais Pinheiro; Garcia, Renato; Mukai, Adriana; Giacomin, Natalia T; de Souza, Rodrigo Guimarães; Bechara, Samir J

    2016-01-01

    Femtosecond laser technology has become widely adopted by ophthalmic surgeons. The purpose of this study is to discuss applications and advantages of femtosecond lasers over traditional manual techniques, and related unique complications in cataract surgery and corneal refractive surgical procedures, including: LASIK flap creation, intracorneal ring segment implantation, presbyopic treatments, keratoplasty, astigmatic keratotomy, and intrastromal lenticule procedures. PMID:27143847

  13. Parameters of the THL-100 Hybrid Femtosecond Laser System After Modernization

    NASA Astrophysics Data System (ADS)

    Alekseev, S. V.; Ivanov, M. V.; Ivanov, N. G.; Losev, V. F.; Mesyats, G. A.; Panchenko, Yu. N.; Ratakhin, N. A.

    2015-12-01

    The first experimental results obtained in visible range using the THL-100 multi-terawatt hybrid laser system after modernization of the starting femtosecond complex and the gas amplifier are reported. The modernization was performed to increase the output beam power at the expense of changing the configuration of the vacuum diode of the electron accelerator used for pumping of the XeF(C-A) amplifier. As a result, the increase of the VUV radiation pumping energy of the active medium of the XeF(C-A) amplifier by 30% is attained. This leads to doubling of the output laser beam energy of the XeF(C-A) amplifier.

  14. Progress in Cherenkov femtosecond fiber lasers.

    PubMed

    Liu, Xiaomin; Svane, Ask S; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry

    2016-01-20

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  15. Progress in Cherenkov femtosecond fiber lasers

    PubMed Central

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems – broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed. PMID:27110037

  16. A Spectroscopic Comparison of Femtosecond Laser Modified Fused Silica using kHz and MHz Laser Systems.

    SciTech Connect

    Reichman, W J; Krol, D M; Shah, L; Yoshino, F; Arai, A; Eaton, S M; Herman, P R

    2005-09-29

    Waveguides were written in fused silica using both a femtosecond fiber laser with a 1 MHz pulse repetition rate and a femtosecond amplified Ti:sapphire laser with a 1 kHz repetition rate. Confocal Raman and fluorescence microscopy were used to study structural changes in the waveguides written with both systems. A broad fluorescence band, centered at 650 nm, associated with non-bridging oxygen hole center (NBOHC) defects was observed after waveguide fabrication with the MHz laser. With the kHz laser system these defects were only observed for pulse energies above 1 {mu}J. Far fewer NBOHC defects were formed with the MHz laser than with kHz writing, possibly due to thermal annealing driven by heat accumulation effects at 1 MHz. When the kHz laser was used with pulse energies below 1 {mu}J, the predominant fluorescence was centered at 550 nm, a band assigned to the presence of silicon clusters (E{prime}{sub {delta}}). We also observed an increase in the intensity of the 605 cm{sup -1} Raman peak relative to the total Raman intensity, corresponding to an increase in the concentration of 3-membered rings in the lines fabricated with both laser systems.

  17. Progress in Cherenkov femtosecond fiber lasers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems—broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted—dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40% conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  18. Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe

    PubMed Central

    Liu, Gangjun; Kieu, Khanh; Wise, Frank W.; Chen, Zhongping

    2012-01-01

    We report on the development of a compact multiphoton microscopy (MPM) system that integrates a compact and robust fiber laser with a miniature probe. The all normal dispersion fiber femtosecond laser has a central wavelength of 1.06 μm, pulse width of 125 fs and average power of more than 1 W. A double cladding photonic crystal fiber was used to deliver the excitation beam and to collect the two-photon signal. The hand-held probe included galvanometer-based mirror scanners, relay lenses and a focusing lens. The packaged probe had a diameter of 16 mm. Second harmonic generation (SHG) images and two-photon excited fluorescence (TPEF) images of biological tissues were demonstrated using the system. MPM images of different biological tissues acquired by the compact system which integrates an FBFP laser, an DCPCF and a miniature handheld probe. PMID:20635426

  19. Synchronizing single-shot high-energy iodine photodissociation laser PALS and high-repetition-rate femtosecond Ti:sapphire laser system

    NASA Astrophysics Data System (ADS)

    Dostal, J.; Dudzak, R.; Pisarczyk, T.; Pfeifer, M.; Huynh, J.; Chodukowski, T.; Kalinowska, Z.; Krousky, E.; Skala, J.; Hrebicek, J.; Medrik, T.; Golasowski, J.; Juha, L.; Ullschmied, J.

    2017-04-01

    A system of precise pulse synchronization between a single-shot large-scale laser exploiting an acousto-optical modulator and a femtosecond high repetition rate laser is reported in this article. This opto-electronical system has been developed for synchronization of the sub-nanosecond kJ-class iodine photodissociation laser system (Prague Asterix Laser System—PALS) with the femtosecond 25-TW Ti:sapphire (Ti:Sa) laser operating at a repetition rate 1 kHz or 10 Hz depending on the required energy level of output pulses. At 1 kHz synchronization regime, a single femtosecond pulse of duration about 45 fs and a small energy less than 1 mJ are exploited as a probe beam for irradiation of a three-frame interferometer, while at 10 Hz repetition rate a single femtosecond pulse with higher energy about 7-10 mJ is exploited as a probe beam for irradiation of a two-channel polaro-interferometer. The synchronization accuracy ±100 ps between the PALS and the Ti:Sa laser pulses has been achieved in both regimes of synchronization. The femtosecond interferograms of laser-produced plasmas obtained by the three-frame interferometer and the femtosecond polarimetric images obtained by the two-frame polaro-interferometer confirm the full usefulness and correct functionality of the proposed method of synchronization.

  20. Large-scale proton radiography with micrometer spatial resolution using femtosecond petawatt laser system

    SciTech Connect

    Wang, W. P.; Shen, B. F. Zhang, H.; Lu, X. M.; Wang, C.; Liu, Y. Q.; Yu, L. H.; Chu, Y. X.; Li, Y. Y.; Xu, T. J.; Zhang, H.; Zhai, S. H.; Leng, Y. X.; Liang, X. Y.; Li, R. X.; Xu, Z. Z.

    2015-10-15

    An image of dragonfly with many details is obtained by the fundamental property of the high-energy proton source on a femtosecond petawatt laser system. Equal imaging of the dragonfly and high spatial resolution on the micrometer scale are simultaneously obtained. The head, wing, leg, tail, and even the internal tissue structures are clearly mapped in detail by the proton beam. Experiments show that image blurring caused by multiple Coulomb scattering can be reduced to a certain extent and the spatial resolution can be increased by attaching the dragonfly to the RCFs, which is consistent with theoretical assumptions.

  1. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  2. Stand-off detection and classification of CBRNe using a Lidar system based on a high power femtosecond laser

    NASA Astrophysics Data System (ADS)

    Izawa, Jun; Yokozawa, Takeshi; Kurata, Takao; Yoshida, Akihiro; Mastunaga, Yasushi; Somekawa, Toshihiro; Eto, Shuzo; Manago, Naohiro; Horisawa, Hideyuki; Yamaguchi, Shigeru; Fujii, Takashi; Kuze, Hiroaki

    2014-10-01

    We propose a stand-off system that enables detection and classification of CBRNe (Chemical, Biological, Radioactive, Nuclear aerosol and explosive solids). The system is an integrated lidar using a high-power (terawatt) femtosecond laser. The detection and classification of various hazardous targets with stand-off distances from several hundred meters to a few kilometers are achieved by means of laser-induced breakdown spectroscopy (LIBS) and two-photon fluorescence (TPF) techniques. In this work, we report on the technical considerations on the system design of the present hybrid lidar system consisting of a nanosecond laser and a femtosecond laser. Also, we describe the current progress in our laboratory experiments that have demonstrated the stand-off detection and classification of various simulants. For the R and N detection scheme, cesium chloride aerosols have successfully been detected by LIBS using a high-power femtosecond laser. For the B detection scheme, TPF signals of organic aerosols such as riboflavin have clearly been recorded. In addition, a compact femtosecond laser has been employed for the LIBS classification of organic plastics employed as e-simulants.

  3. Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe.

    PubMed

    Liu, Gangjun; Kieu, Khanh; Wise, Frank W; Chen, Zhongping

    2011-01-01

    We report on the development of a compact multiphoton microscopy (MPM) system that integrates a compact and robust fiber laser with a miniature probe. The all normal dispersion fiber femtosecond laser has a central wavelength of 1.06 μm, pulse width of 125 fs and average power of more than 1 W. A double cladding photonic crystal fiber was used to deliver the excitation beam and to collect the two-photon signal. The hand-held probe included galvanometer-based mirror scanners, relay lenses and a focusing lens. The packaged probe had a diameter of 16 mm. Second harmonic generation (SHG) images and two-photon excited fluorescence (TPEF) images of biological tissues were demonstrated using the system.

  4. Femtosecond lasers for microsurgery of cornea

    SciTech Connect

    Vartapetov, Sergei K; Khudyakov, D V; Lapshin, Konstantin E; Obidin, Aleksei Z; Shcherbakov, Ivan A

    2012-03-31

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting {approx}400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 {mu}J. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 {mu}m. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s{sup -1}. At a stage of preliminary tests of the system, the {Kappa}8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  5. Femtosecond lasers for microsurgery of cornea

    NASA Astrophysics Data System (ADS)

    Vartapetov, Sergei K.; Khudyakov, D. V.; Lapshin, Konstantin E.; Obidin, Aleksei Z.; Shcherbakov, Ivan A.

    2012-03-01

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting ~400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 μJ. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 μm. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s-1. At a stage of preliminary tests of the system, the Κ8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  6. Direct femtosecond laser writing system for sub-micron and micron scale patterning

    NASA Astrophysics Data System (ADS)

    Vanagas, Egidijus; Tuzhilin, Dmitry; Zinkou, Michail; Sedunov, Alexander; Vasiliev, Nikolai; Kudryashov, Igor; Kononov, Vladimir; Suruga, Shozi

    2003-11-01

    Commercial femtosecond micromachining system (FMS) has been developed that capable to process the material in sub-micron (< 200 nm) and micron scale. Core of the system are: optical unit, controller unit and software. The other parts: fs-laser system; focusing unit; stage unit can be varied (exchangeable). Two different fs-laser systems already are compatible with core of FMS: Mira/RegA (Coherent) and Hurricane (Spectra-Physics). FMS controller unit allows to control every single fs-pulse delivery on the target. Three possible types of focusing unit are available: microscope type unit, long focal distance lens unit, and axicon lens based unit. Standard stage unit options are: three-axis piezostage, and two-axis air bearing stage combined with Z-axis piezostage. Repeatability for all dimensions is within +/-5 nm. Also, step motor stages are available. The system allows 3D scan with confocal laser-microscope (resolution δr=200nm, δz=540nm) build in optical unit. Software controls all basic functions of the system performance and writing any pattern (including 3D) on or into specimen. The results obtained by direct fs-laser writing method are presented and discussed: bits in the range of 100 - 200 nm sizes, 6 TB/cm3 density optical storage matrix, waveguides fabrication inside transparent materials, high aspect ratio (1:125) patterning of dielectric materials with Gauss-Bessel beam.

  7. A Comparison of Different Operating Systems for Femtosecond Lasers in Cataract Surgery

    PubMed Central

    Wu, B. M.; Williams, G. P.; Tan, A.; Mehta, J. S.

    2015-01-01

    The introduction of femtosecond lasers is potentially a major shift in the way we approach cataract surgery. The development of increasingly sophisticated intraocular lenses (IOLs), coupled with heightened patient expectation of high quality postsurgical visual outcomes, has generated the need for a more precise, highly reproducible and standardized method to carry out cataract operations. As femtosecond laser-assisted cataract surgery (FLACS) becomes more commonplace in surgical centers, further evaluation of the potential risks and benefits needs to be established, particularly in the medium/long term effects. Healthcare administrators will also have to weigh and balance out the financial costs of these lasers relative to the advantages they put forth. In this review, we provide an operational overview of three of five femtosecond laser platforms that are currently commercially available: the Catalys (USA), the Victus (USA), and the LDV Z8 (Switzerland). PMID:26483973

  8. A Comparison of Different Operating Systems for Femtosecond Lasers in Cataract Surgery.

    PubMed

    Wu, B M; Williams, G P; Tan, A; Mehta, J S

    2015-01-01

    The introduction of femtosecond lasers is potentially a major shift in the way we approach cataract surgery. The development of increasingly sophisticated intraocular lenses (IOLs), coupled with heightened patient expectation of high quality postsurgical visual outcomes, has generated the need for a more precise, highly reproducible and standardized method to carry out cataract operations. As femtosecond laser-assisted cataract surgery (FLACS) becomes more commonplace in surgical centers, further evaluation of the potential risks and benefits needs to be established, particularly in the medium/long term effects. Healthcare administrators will also have to weigh and balance out the financial costs of these lasers relative to the advantages they put forth. In this review, we provide an operational overview of three of five femtosecond laser platforms that are currently commercially available: the Catalys (USA), the Victus (USA), and the LDV Z8 (Switzerland).

  9. A feasibility study on femtosecond laser thrombolysis.

    PubMed

    Bidinger, Johannes; Ackermann, Roland; Cattaneo, Giorgio; Kammel, Robert; Nolte, Stefan

    2014-01-01

    In this feasibility study, we investigate possible femtosecond laser thrombolysis. Because of low pulse energies, femtosecond laser surgery inherently minimizes side effects on the surrounding tissue. Moreover, current femtosecond laser sources as well as fiber technology allow consideration of catheter-based treatments. Two femtosecond laser systems (λ=800 nm, λ=1030 nm) along with a three dimensional (3D) scanner system (NA ~0.1) were used in this study. In vitro experiments were performed on porcine thrombi and blood vessels. Ablation thresholds were determined in air, by determining the pulse energy at which single shot ablation was visible under the optical microscope. Ablation rates were determined in physiological saline. Additionally, ablation of thrombi and blood vessels was monitored by means of a fiber spectrometer. Depending upon the scan velocity, typical ablation rates for thrombi were ~0.04 mm(3)/sec. Ablation thresholds of thrombi and blood vessels differ by factors of 3 and 1.5 at laser wavelengths of 800 and 1030 nm, respectively. At a distance of 5 mm above the surface, second harmonic generation was observed in blood vessels, but not within thrombi. The results show that a typical thrombus volume can be destroyed within a reasonable time frame. Because of the higher threshold difference of thrombi and blood vessels, the use of a laser wavelength of 800 nm is preferable. Furthermore, the detection of the second harmonic could provide a feedback mechanism to protect the vascular wall from mechanical and laser damage.

  10. Preliminary clinical investigation of cataract surgery with a noncontact femtosecond laser system

    PubMed Central

    Ni, Li‐Yang; Wang, Qin‐Mei; Huang, Fang; Zhu, Shuang‐Qian; Zheng, Lin‐Yan; Su, Yan‐Feng

    2015-01-01

    Background and Objective Femtosecond laser‐assisted cataract surgery (FLACS) is rapidly gaining popularity due to the improved consistency and predictability for capsulorhexis. This study aimed to investigate the preliminary clinical outcomes of FLACS with a noncontact femtosecond laser system. Patients and Methods This prospective study enrolled 25 eyes in the trial group underwent FLACS (LLS‐fs 3D, LENSAR, USA), and 29 eyes in the control group underwent conventional cataract surgery (Stellaris, Bausch & Lomb, USA). The phacoemulsification time, energy, and complications during operation were recorded. Postoperative refraction at 1 day, 1 week, 1 and 3 months, the capsulorhexis size and corneal endothelial density at 1 and 3 months were also measured. Results Compared to the control group, reduction in phacoemulsification time was 51.5% (P = 0.02), and in overall energy, 65.1% (P = 0.02) in the trial group. In the trial group and the control group, total time of cataract procedure was 10.04 ± 1.37 minutes, 10.52 ± 1.92 minutes, respectively (P = 0.31); the absolute difference between attempted and achieved capsulorhexis diameter at 1 month was 192.9 ± 212.0 µm, 626.9 ± 656.6 µm, respectively (P = 0.04), and at 3 months, 256.6 ± 181.9 µm, 572.1 ± 337.0 µm, respectively (P= 0.03); the absolute difference between attempted and achieved spherical equivalent at 3 months was 0.16 ± 0.16 D, 0.74 ± 0.65 D, respectively (P < 0.01); mean corneal endothelial cell loss at 1 month was 15.6% and 14.2%, respectively (P = 0.77), and at 3 months, 2.9%, 4.2%, respectively (P = 0.50). Conclusions With the noncontact femtosecond laser system, FLACS can significantly improve the accuracy and repeatability of capsulorhexis, reduce the phacoemulsification time and overall energy, and enhance the predictability and stability of postoperative refraction. Lasers Surg. Med. 47:698–703, 2015. © 2015

  11. Bond strengths of brackets bonded to enamel surfaces conditioned with femtosecond and Er:YAG laser systems.

    PubMed

    Aglarci, Cahide; Demir, Necla; Aksakalli, Sertac; Dilber, Erhan; Sozer, Ozlem Akinci; Kilic, Hamdi Sukur

    2016-08-01

    The aim of this study was to compare femtosecond and Er:YAG laser systems with regard to enamel demineralization and bracket bond strength. Human-extracted premolars were randomized to three groups (n = 17) depending on the conditioning treatment used for the buccal surfaces: 37 % orthophosphoric acid, Er:YAG laser etching (MSP mode 120 mJ, 10 Hz, 1.2 W), and femtosecond laser etching (0.4 W, 800 nm, 90 fs/pulse, 1 kHz). Metal brackets were bonded with Transbond XT to the conditioned surfaces and light cured for 20 s. The samples were thermocycled (5000 cycles, 5-55 °C) and subjected to shear bond strength (SBS) testing using a universal testing machine. Failure types were analyzed under an optical stereomicroscope and SEM. The adhesive remnant index (ARI) was evaluated to assess residual adhesive on the enamel surface. The results revealed no significant differences in SBS between the Er:YAG laser (7.2 ± 3.3 MPa) and acid etching groups (7.3 ± 2.7 MPa; p < 0.05), whereas a significant difference was observed between the femtosecond laser etching group (3.3 ± 1.2 MPa) and the other two groups (p < 0.01). ARI scores were significantly different among the three groups. The results of our study suggest that laser conditioning with an Er:YAG system results in successful etching, similar to that obtained with acid. The sole use of a femtosecond laser system may not provide an adequate bond strength at the bracket-enamel interface.

  12. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  13. First experience with the new high-frequency femtosecond laser system (LDV Z8) for cataract surgery

    PubMed Central

    Pajic, Bojan; Vastardis, Iraklis; Gatzioufas, Zisis; Pajic-Eggspuehler, Brigitte

    2014-01-01

    Background The purpose of this work is to report our experience using the new Z8 laser system for femtosecond laser-assisted cataract surgery (FLACS) and to provide a sample of the performance and safety results using this new technology. Methods This prospective observational study was performed at the Swiss Eye Research Foundation, Eye Clinic ORASIS, Reinach, Switzerland. Fourteen patients were subjected to unilateral FLACS. Capsulotomy and lens fragmentation were performed with the aid of the LDV Z8 femtosecond laser system. Ease of phacoemulsification (on a 4-point scale), completeness of capsulotomy (on a 10-point scale), time for preparation of femtosecond laser (minutes), effective phacoemulsification time (seconds), total duration of surgery (minutes), and safety of the procedure were evaluated. Results Ease of fragmentation and completeness of capsulotomy were estimated at 3.9 and 9.9, respectively. The preparation time for femtosecond was 3.6±0.7 minutes, effective phacoemulsification time was 2.5±3.1 seconds, and total duration of the FLACS procedure was 16.3±4.5 minutes. No major complications were observed. Approximately 42% of all patients (6/14) showed Descemet’s folds directly postoperatively. Conclusion FLACS with the LDV Z8 system was characterized by complete capsulotomy and highly effective and reproducible lens fragmentation. The safety of the procedure was very good as perceived by the surgeon operating in this observational case series. The cost to benefit ratio should be further debated by assessing the results of a major prospective study, which is required for valid evaluation of the efficiency and safety of the LDV Z8 laser system and of FLACS in general. PMID:25525326

  14. Femtosecond laser cataract surgery: technology and clinical practice.

    PubMed

    Roberts, Timothy V; Lawless, Michael; Chan, Colin Ck; Jacobs, Mark; Ng, David; Bali, Shveta J; Hodge, Chris; Sutton, Gerard

    2013-03-01

    The recent introduction of femtosecond lasers to cataract surgery has generated much interest among ophthalmologists around the world. Laser cataract surgery integrates high-resolution anterior segment imaging systems with a femtosecond laser, allowing key steps of the procedure, including the primary and side-port corneal incisions, the anterior capsulotomy and fragmentation of the lens nucleus, to be performed with computer-guided laser precision. There is emerging evidence of reduced phacoemulsification time, better wound architecture and a more stable refractive result with femtosecond cataract surgery, as well as reports documenting an initial learning curve. This article will review the current state of technology and discuss our clinical experience.

  15. Investigation of the thermally induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems

    PubMed Central

    Fourmaux, S.; Serbanescu, C.; Lecherbourg, L.; Payeur, S.; Martin, F.; Kieffer, J. C.

    2009-01-01

    We report successful compensation of the thermally induced laser beam distortion associated with high energy 110 mJ and high average power femtosecond laser system of 11 Watts operated with vacuum compressor gratings. To enhance laser-based light source brightness requires development of laser systems with higher energy and higher average power. Managing the high thermal loading on vacuum optical components is a key issue in the implementation of this approach. To our knowledge this is the first time that such thermal induced distortions on the vacuum compressor gratings are characterized and compensated. PMID:19129886

  16. Investigation of the thermally induced laser beam distortion associated with vacuum compressor gratings in high energy and high average power femtosecond laser systems.

    PubMed

    Fourmaux, S; Serbanescu, C; Lecherbourg, L; Payeur, S; Martin, F; Kieffer, J C

    2009-01-05

    We report successful compensation of the thermally induced laser beam distortion associated with high energy 110 mJ and high average power femtosecond laser system of 11 Watts operated with vacuum compressor gratings. To enhance laser-based light source brightness requires development of laser systems with higher energy and higher average power. Managing the high thermal loading on vacuum optical components is a key issue in the implementation of this approach. To our knowledge this is the first time that such thermal induced distortions on the vacuum compressor gratings are characterized and compensated.

  17. Silver nanoprisms/silicone hybrid rubber materials and their optical limiting property to femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang

    2017-08-01

    Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.

  18. Femtosecond laser ablation of copper

    NASA Astrophysics Data System (ADS)

    Goh, Yeow-Whatt; Lu, Yong-Feng; Hong, Ming-Hui; Chong, Tow Chong

    2003-02-01

    In recent years, femtosecond (fs) laser ablation has attracted much interest in both basic and applied physics, mainly because of its potential application in micromachining and pulsed laser deposition. Ultrashort laser ablation have the capability to ablate materials precisely with little or no collateral damage, even with materials that are impervious to laser energy from conventional pulsed lasers. The extreme intensities and short timescale at which ultrashort pulsed lasers operate differentiate them from other lasers such as nanosecond laser. In this work, we investigate the expansion dynamics of Cu (copper) plasma generated by ultrashort laser ablation of pure copper targets by optically examining the plasma plume. Time-integrated optical emission spectroscopy measurements by using intensified charged couple detector array (ICCD) imaging were used to detect the species present in the plasma and to study the laser-generated plasma formation and evolution. Temporal emission profiles are measured. Our interest in the dynamics of laser-generated copper plasma arises from the fact that copper has been considered as a substitute for Aluminum (Al) interconnects/metallization in ULSI devices (for future technology). It is important to know the composition and behavior of copper plasma species for the understanding of the mechanisms involved and optimizing the micro-machining processes and deposition conditions.

  19. LASERS AND AMPLIFIERS: Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions

    NASA Astrophysics Data System (ADS)

    Pestryakov, Efim V.; Alimpiev, A. I.; Matrosov, V. N.

    2001-08-01

    The physical and laser properties of beryllium-containing BeAl2O4, BeAl6O10, Be3Al2Si6O18, and BeLaAl11O19 oxide crystals doped with chromium and titanium ions are studied. The Cr3+:BeAl2O4, Cr3+:BeAl6O10, and Ti3+:BeAl2O4 crystals were shown to compare favourably in physical and laser properties with the well-known laser media and to be candidates for femtosecond laser systems.

  20. Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions

    SciTech Connect

    Pestryakov, Efim V; Alimpiev, A I; Matrosov, V N

    2001-08-31

    The physical and laser properties of beryllium-containing BeAl{sub 2}O{sub 4}, BeAl{sub 6}O{sub 10}, Be{sub 3}Al{sub 2}Si{sub 6}O{sub 18}, and BeLaAl{sub 11}O{sub 19} oxide crystals doped with chromium and titanium ions are studied. The Cr{sup 3+}:BeAl{sub 2}O{sub 4}, Cr{sup 3+}:BeAl{sub 6}O{sub 10}, and Ti{sup 3+}:BeAl{sub 2}O{sub 4} crystals were shown to compare favourably in physical and laser properties with the well-known laser media and to be candidates for femtosecond laser systems. (lasers and amplifiers)

  1. Optimisation of wide-band parametric amplification stages of a femtosecond laser system with coherent combining of fields

    SciTech Connect

    Bagayev, S N; Trunov, V I; Pestryakov, E V; Leshchenko, V E; Frolov, S A; Vasiliev, V A

    2014-05-30

    For the first time the pulses with the energy of ∼150 mJ and the spectrum corresponding to the transform-limited duration of ∼20 fs amplified in three-stage parametric amplifiers have been coherently combined in a dual-channel femtosecond laser system. The efficiency of coherent combining of above 90% has been obtained at the residual relative time jitter of amplified pulses of 110 as. For the first time the modulation of spectrum was experimentally observed under the parametric amplification of a wideband femtosecond radiation in crystals placed in series. The model of parametric luminescence evolution was developed which allows one to calculate the whole range of the frequency-angular spectrum that, in addition to simulations of the contrast of amplified pulses, gives the possibility of optimising the amplifier efficiency. The results of experiments on measuring the contrast are presented and compared with the calculated data. Methods for enhancing the contrast in the created laser system are analysed. Possible schemes of multibeam pumping of the output cascade are considered for obtaining a petawatt power in the laser system based on cascades of a parametric amplifier in LBO crystals which is being developed at the Institute of Laser Physics of SB RAS. (lasers)

  2. Femtosecond Laser-Induced Damage of Dielectrics

    NASA Astrophysics Data System (ADS)

    Lenzner, M.

    Optical damage in non-metals (dielectrics) may severely affect the performance of high-power laser systems as well as the efficiency of optical systems based on nonlinear processes and has therefore been subject to extensive research for some 30 years. The current knowledge of laser-induced optical damage in these materials is reviewed. Emphasis is placed on the recent extension of available experimental data into the femtosecond range. Recent results are presented achieved with a sub-10 fs laser system which explores the limits of time resolution as well as the limit of intensities that a solid can sustain without irreversible damage. It is concluded that sub-10fs laser pulses open up the way to reversible nonperturbative nonlinear optics at intensities greater than 1014 W/cm2 (slightly below damage threshold) and to nanometer-precision laser ablation (slightly above threshold) in dielectric materials.

  3. Production and Characterization of High Repetition Rate Terahertz Radiation in Femtosecond-Laser-Induced Air Plasma

    DTIC Science & Technology

    2009-03-01

    20 3.1 Verdi -Pumped Femtosecond Laser System...current which then produces the observed THz pulse [9]. 20 III. EQUIPMENT 3.1 VERDI -PUMPED FEMTOSECOND LASER SYSTEM The laser used in...this research is a Coherent fs pulsed laser system as shown schematically in figure 4. The 18 W Verdi beam pumps the 76 MHz MIRA, which produces 50

  4. Femtosecond Lasers and Corneal Surgical Procedures.

    PubMed

    Marino, Gustavo K; Santhiago, Marcony R; Wilson, Steven E

    2017-01-01

    Our purpose is to present a broad review about the principles, early history, evolution, applications, and complications of femtosecond lasers used in refractive and nonrefractive corneal surgical procedures. Femtosecond laser technology added not only safety, precision, and reproducibility to established corneal surgical procedures such as laser in situ keratomileusis (LASIK) and astigmatic keratotomy, but it also introduced new promising concepts such as the intrastromal lenticule procedures with refractive lenticule extraction (ReLEx). Over time, the refinements in laser optics and the overall design of femtosecond laser platforms led to it becoming an essential tool for corneal surgeons. In conclusion, femtosecond laser is a heavily utilized tool in refractive and nonrefractive corneal surgical procedures, and further technological advances are likely to expand its applications. Copyright 2017 Asia-Pacific Academy of Ophthalmology.

  5. Photoemission using femtosecond laser pulses

    SciTech Connect

    Srinivasan-Rao, T.; Tsang, T.; Fischer, J.

    1991-10-01

    Successful operation of short wavelength FEL requires an electron bunch of current >100 A and normalized emittance < 1 mm-mrad. Recent experiments show that RF guns with photocathodes as the electron source may be the ideal candidate for achieving these parameters. To reduce the emittance growth due to space charge and RF dynamics effects, the gun may have to operate at high field gradient (hence at high RF frequency) and a spot size small compared to the aperture. This may necessitate the laser pulse duration to be in the subpicosecond regime to reduce the energy spread. We will present the behavior of metal photocathodes upon irradiation with femtosecond laser beams, comparison of linear and nonlinear photoemission, and scalability to high currents. Theoretical estimate of the intrinsic emittance at the photocathode in the presence of the anomalous heating of the electrons, and the tolerance on the surface roughness of the cathode material will be discussed.

  6. High power femtosecond lasers at ELI-NP

    SciTech Connect

    Dabu, Razvan

    2015-02-24

    Specifications of the high power laser system (HPLS) designed for nuclear physics experiments are presented. Configuration of the 2 × 10 PW femtosecond laser system is described. In order to reach the required laser beam parameters, advanced laser techniques are proposed for the HPLS: parametric amplification and cross-polarized wave generation for the intensity contrast improvement and spectral broadening, acousto-optic programmable filters to compensate for spectral phase dispersion, optical filters for spectrum management, combined methods for transversal laser suppression.

  7. Regenerative amplification of femtosecond pulses: Design and construction of a sub-100fs, {mu}J laser system

    SciTech Connect

    Schumacher, A.B. |

    1996-10-01

    Femtosecond lasers are a powerful tool for a wealth of applications in physics, chemistry and biology. In most cases, however, their use is fundamentally restricted to a rather narrow spectral range. This thesis deals with the construction and characterization of a femtosecond light source for spectroscopic applications which overcomes that restriction. It is demonstrated how the output of a continuously pumped Ti:sapphire femtosecond oscillator is amplified to the {mu}J level, while the pulse duration remains below 100fs. A combination of continuous pumping, acousto-optic switching and Ti:Al{sub 2}O{sub 3} as a gain medium allows amplification at high repetition rates. By focusing the high energy pulses into a sapphire crystal, a broad-band continuum can be generated, extended in wavelengths over several hundred nanometers. To accomplish amplification of three orders of magnitude while maintaining the pulse length, a regenerative multipass amplifier system was built. The thesis describes theoretical design, realization and characterization of the system. Theoretical calculations and preliminary measurements were carried out and allow a critical evaluation of the final performance.

  8. Regenerative Amplification of Femtosecond Pulses: Design andConstruction of a sub-100fs, muon J Laser System

    SciTech Connect

    Schumacher, Andreas B.

    1996-10-01

    Femtosecond lasers are a powerful tool for a wealth of applications in physics, chemistry and biology. In most cases, however, their use is fundamentally restricted to a rather narrow spectral range. This thesis deals with the construction and characterization of a femtosecond light source for spectroscopic applications which overcomes that restriction. It is demonstrated how the output of a continuously pumped Ti:sapphire femtosecond oscillator is amplified to the μJ level,while the pulse duration remains below 100 fs. A combination of continuous pumping, acousto-optic switching and Ti:Al2O3 as a gain medium allows amplification at high repetition rates. By focusing the high energy pulses into a sapphire crystal, a broad-band continuum can be generated, extended in wavelengths over several hundred nanometers. To accomplish amplification of three orders of magnitude while maintaining the pulse length, a regenerative multipass amplifier system was built. The thesis describes theoretical design, realization and characterization of the system. Theoretical calculations and preliminary measurements were carried out and allow a critical evaluation of the final performance.

  9. Optical coherence tomography and 3-dimensional confocal structured imaging system-guided femtosecond laser capsulotomy versus manual continuous curvilinear capsulorhexis.

    PubMed

    Mastropasqua, Leonardo; Toto, Lisa; Mattei, Peter A; Vecchiarino, Luca; Mastropasqua, Alessandra; Navarra, Riccardo; Di Nicola, Marta; Nubile, Mario

    2014-12-01

    To compare the features of capsulotomy obtained during femtosecond laser-assisted cataract surgery with those of continuous curvilinear capsulorhexis (CCC) obtained using a standard manual technique. Ophthalmology Clinic, Department of Medicine and Science of Ageing, University G. D'Annunzio Chieti-Pescara, Chieti, Italy. Prospective randomized clinical study. Candidates for cataract extraction were randomized into 1 of 3 groups as follows: Lensx femtosecond laser-assisted cataract surgery capsulotomy (laser group 1), Lensar femtosecond laser-assisted cataract surgery capsulotomy (laser group 2), and manual CCC (manual group). Each group comprised 30 eyes (30 patients). The capsulotomies in laser group 1 and laser group 2 showed significantly better circularity than the manual CCCs at 7 days (P<.001). There was a significant correlation between the intended versus achieved capsulotomy size in the 2 laser groups. Both laser groups had better intraocular lens (IOL) centration than the manual group at all timepoints (P<.001). Between-group differences in uncorrected and corrected distance visual acuities were not statistically significant. The residual spherical equivalent and mean absolute error were statistically significantly smaller in the 2 laser groups than in the manual group (P=.038) and increased significantly over time in all the groups (P<.001). Femtosecond laser capsulotomies showed better circularity with more predictable size than manual CCCs. In addition, IOL centration was better immediately after surgery and over time with better refractive results in the 2 laser groups. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. REVIEW: Optical frequency standards and femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Baklanov, E. V.; Pokasov, P. V.

    2003-05-01

    A review is presented of the state of the art in a new direction in quantum electronics based on the use of femtosecond lasers for precision frequency measurements and the development of optical frequency and time standards.

  11. Chemical aerosol detection using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Alexander, Dennis R.; Rohlfs, Mark L.; Stauffer, John C.

    1997-07-01

    Many chemical warfare agents are dispersed as small aerosol particles. In the past, most electro-optical excitation and detection schemes have used continuous or pulsed lasers with pulse lengths ranging from nanoseconds to microseconds. In this paper, we present interesting ongoing new results on femtosecond imaging and on the time dependent solutions to the scattering problem of a femtosecond laser pulse interacting with a single small aerosol particle. Results are presented for various incident pulse lengths. Experimental imaging results using femtosecond pulses indicate that the diffraction rings present when using nanosecond laser pulses for imaging are greatly reduced when femtosecond laser pulses are used. Results are presented in terms of the internal fields as a function of time and the optical size parameter.

  12. The effects of a low-energy, high frequency liquid optic interface femtosecond laser system on lens capsulotomy

    PubMed Central

    Williams, Geraint P.; George, Ben L.; Wong, Yoke R.; Seah, Xin-Yi; Ang, Heng-Pei; Loke, Mun Kitt A.; Tay, Shian Chao; Mehta, Jod S.

    2016-01-01

    The introduction of femtosecond laser assisted cataract surgery (FLACS) is a paradigm changing approach in cataract surgery, the most commonly performed surgical procedure. FLACS has the potential to optimize the creation of an anterior lens capsulotomy, a critical step in accessing the cataractous lens. The merits of using a laser instead of a manual approach include a potentially more circular, consistent, and stronger aperture. In this study we demonstrated for the first time in both a porcine and human experimental setting that with a low energy, high repetition FLACS system, that a circular, smooth and strong capsulotomy was achievable. While there was no demonstrable difference in the resistance to rupture before or after the removal of the nucleus, larger capsulotomies had an increase in tensile strength. The LDV Z8 system appeared to create circular, rupture-resistant and smooth capsulotomies in both porcine and more importantly human globes. PMID:27090745

  13. Cornea surgery with nanojoule femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Wang, Bagui; Riemann, Iris; Kobow, Jens

    2005-04-01

    We report on a novel optical method for (i) flap-generation in LASIK procedures as well as (ii) for flap-free intrastromal refractive surgery based on nanojoule femtosecond laser pulses. The near infrared 200 fs pulses for multiphoton ablation have been provided by ultracompact turn-key MHz laser resonators. LASIK flaps and intracorneal cavities have been realized with high precision within living New Zealand rabbits using the system FemtoCutO (JenLab GmbH, Jena, Germany) at 800 nm laser wavelength. Using low-energy sub-2 nJ laser pulses, collateral damage due to photodisruptive and self-focusing effects was avoided. The laser ablation system consists of fast galvoscanners, focusing optics of high numerical aperture as well as a sensitive imaging system and provides also the possibility of 3D multiphoton imaging of fluorescent cellular organelles and SHG signals from collagen. Multiphoton tomography of the cornea was used to determine the exact intratissue beam position and to visualize intraocular post-laser effects. The wound healing process has been investigated up to 90 days after instrastromal laser ablation by histological analysis. Regeneration of damaged collagen structures and the migration of inflammation cells have been detected.

  14. Initial experience using a femtosecond laser cataract surgery system at a UK National Health Service cataract surgery day care centre

    PubMed Central

    Dhallu, Sandeep K; Maurino, Vincenzo; Wilkins, Mark R

    2016-01-01

    Objectives To describe the initial outcomes following installation of a cataract surgery laser system. Setting National Health Service cataract surgery day care unit in North London, UK. Participants 158 eyes of 150 patients undergoing laser-assisted cataract surgery. Interventions Laser cataract surgery using the AMO Catalys femtosecond laser platform. Primary and secondary outcome measures Primary outcome measure: intraoperative complications including anterior and posterior capsule tears. Secondary outcome measures: docking to the laser platform, successful treatment delivery, postoperative visual acuities. Results Mean case age was 67.7±10.8 years (range 29–88 years). Docking was successful in 94% (148/158 cases), and in 4% (6/148 cases) of these, the laser delivery was aborted part way during delivery due to patient movement. A total of 32 surgeons, of grades from junior trainee to consultant, performed the surgeries. Median case number per surgeon was 3 (range from 1–20). The anterior capsulotomy was complete in 99.3% of cases, there were no anterior capsule tears (0%). There were 3 cases with posterior capsule rupture requiring anterior vitrectomy, and 1 with zonular dialysis requiring anterior vitrectomy (4/148 eyes, 2.7%). These 4 cases were performed by trainee surgeons, and were either their first laser cataract surgery (2 surgeons) or their first and second laser cataract surgeries (1 surgeon). Conclusions Despite the learning curve, docking and laser delivery were successfully performed in almost all cases, and surgical complication rates and visual outcomes were similar to those expected based on national data. Complications were predominately confined to trainee surgeons, and with the exception of intraoperative pupil constriction appeared unrelated to the laser-performed steps. PMID:27466243

  15. Efficient femtosecond laser micromachining of bulk 3C-SiC

    NASA Astrophysics Data System (ADS)

    Farsari, M.; Filippidis, G.; Zoppel, S.; Reider, G. A.; Fotakis, C.

    2005-09-01

    We demonstrate surface micromachining of bulk 3C silicon carbide (3C-SiC) wafers by employing tightly focused infrared femtosecond laser pulses of energy less than 10 nJ directly from a femtosecond laser oscillator, thus eliminating the need for an amplified system and increasing the micromachining speed by more than four orders of magnitude. In addition, we show that high aspect ratio through-tapered vias can be drilled in 400 µm thick wafers using an amplified femtosecond laser.

  16. A zero-crossing point locking system in the time-of-flight measurement of femtosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Li, Shuyi; Zhao, Chunbo; Wu, Tengfei; Han, Jibo

    2016-10-01

    The background and principle of zero-crossing point locking technology are introduced in this paper. An experimental locking system is designed to realize fast locking of zero-crossing point, and the results of locking is studied by analyzing zero-crossing point locking signal. In the distance measurement of femtosecond pulsed laser, a crystal produces the balanced cross-correlation (BCC) signal, which signifies the time offset of the target pulses with respect to the reference pulses. By continuously pulling this signal to zero-crossing point, the locking system provides a closed loop control process, which ensures the stability of the zero-crossing point and the precision of measurement. This locking system is mainly made up by five sections. As a core section of system, P-I circuit can optimize the locking state by changing parameters. A frequency counter referenced to the rubidium atomic clock is used to measure the pulse repetition rate with a stability of 10-12 in the sampling rate of 10s in 24 hours, which is helpful to analyze the measurement precision. In the experiment, the result of zero-crossing point lock can reach to 15mV, in other words, the range of amplitude variation can be reduced to less than 15mV after locking. With the repetition rate data evaluated, the jitter of the pulse repetition rate is within 25Hz in the sampling time of 15s after locking the zero-crossing point. It is proved that the locking system designed has a high practical value in the distance and vibration measurement of femtosecond pulsed laser.

  17. Femtosecond Pulse Generation in Solid-State Lasers.

    NASA Astrophysics Data System (ADS)

    Paye, Malini

    Femtosecond laser technology has seen rapid advances over the last five years due to the emergence of reliable, broad-band solid-state laser media in particular the Ti:sapphire gain medium. This thesis deals with various aspects of femtosecond pulse generation in solid-state lasers, with particular emphasis on the Ti:sapphire laser system. A novel passive modelocking technique called Microdot mirror modelocking was implemented. It is a passive, all -solid-state, intracavity modelocking mechanism based on self-focussing due to the Kerr nonlinearity. This technique was applied to the modelocking of a medium power, laser -pumped Ti:sapphire system, to produce 190fs pulses. It was also extended to a higher power, arc-lamp-pumped Nd:YLF laser system to produce 2.3 ps pulses. A numerical procedure for modeling the nonlinear behaviour of resonators was implemented. This iterative procedure solves for self-consistent nonlinear resonator modes using a description of self-focussing as a nonlinear scaling of the Gaussian beam q parameter. It was used to provide an exemplary, intuitive understanding of nonlinear effects in a simple resonator closely related to the high -repetition rate femtosecond source that was subsequently implemented. A novel, compact, femtosecond, Kerr Lens Modelocked laser geometry was designed and implemented. 111 fs pulses were produced from a Ti:sapphire oscillator at a repetition rate of 1 GHz and 54 fs pulses at a repetition rate of 385 MHz. To realize this source, a novel method for dispersion compensation was conceived, analyzed and implemented. Negative dispersion was shown to be achievable using resonator geometries that enforce the spatial separation of propagation axes corresponding to monochromatic Gaussian modes that compose the total broad-band beam in a femtosecond oscillator. This work serves to demonstrate the scalability of Kerr lens modelocking techniques to very high repetition rates. The compact, high-repetition rate source has

  18. Precise femtosecond laser ablation of dental hard tissue: preliminary investigation on adequate laser parameters

    NASA Astrophysics Data System (ADS)

    Hikov, Todor; Pecheva, Emilia; Montgomery, Paul; Antoni, Frederic; Leong-Hoi, Audrey; Petrov, Todor

    2017-01-01

    This work aims at evaluating the possibility of introducing state-of-the-art commercial femtosecond laser system in restorative dentistry by maintaining well-known benefits of lasers for caries removal, but also in overcoming disadvantages such as thermal damage of irradiated substrate. Femtosecond ablation of dental hard tissue is investigated by changing the irradiation parameters (pulsed laser energy, scanning speed and pulse repetition rate), assessed for enamel and dentin. The femtosecond laser system used in this work may be suitable for cavity preparation in dentin and enamel, due to the expected effective ablation and low temperature increase when using ultra short laser pulses. If adequate laser parameters are selected, this system seems to be promising for promoting a laser-assisted, minimally invasive approach in restorative dentistry.

  19. Femtosecond Laser Filamentation for Atmospheric Sensing

    PubMed Central

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  20. Femtosecond Laser Processing of Agarose Gel Surrounding Protein Crystals for Development of an Automated Crystal Capturing System

    NASA Astrophysics Data System (ADS)

    Sugiyama, Shigeru; Hasenaka, Hitoshi; Hirose, Mika; Shimizu, Noriko; Kitatani, Tomoya; Takahashi, Yoshinori; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Matsumura, Hiroyoshi

    2009-10-01

    Protein crystals must be captured to be mounted onto the goniometer head of X-ray diffraction equipment for structural analysis. However, this capturing operation has to be performed manually under microscopic observation. Crystallographers often face problems with this operation because protein crystals are very soft and fragile. Here, we crystallized elastase, thaumatin, glucose isomerase, and lysozyme in 2.0% (w/v) agarose gels and applied a femtosecond laser to process the agarose gel surrounding the protein crystals. A software-based operation system was established to enable automated laser processing. This new approach allows high-speed, high-precision, and reproducible processing of the gel without unsealing the crystallization trays. The processed gel containing crystals could be captured using a nylon loop without difficulty, followed by mounting the crystal onto the goniometer head of the X-ray diffraction equipment. X-ray diffraction analysis of such crystals suggested that the processed agarose gel with a thickness of approximately <0.2 mm has little effect on the background X-ray scattering. Furthermore, the effect of laser irradiation was investigated by X-ray diffraction and subsequent structural analyses, which demonstrated that the quality of the diffraction data and obtained electron density was essentially the same as that obtained before laser irradiation. On the other hand, the manually processed gel-grown crystals gave higher values on the background X-ray scattering. These comparative experimental results show clear advantages of our laser processing system. This approach leads to the possibility that protein crystals can be captured reproducibly without affecting any later crystallographic analysis, thereby providing an automated system for crystal capture.

  1. Femtosecond laser controlled wettability of solid surfaces.

    PubMed

    Yong, Jiale; Chen, Feng; Yang, Qing; Hou, Xun

    2015-12-14

    Femtosecond laser microfabrication is emerging as a hot tool for controlling the wettability of solid surfaces. This paper introduces four typical aspects of femtosecond laser induced special wettability: superhydrophobicity, underwater superoleophobicity, anisotropic wettability, and smart wettability. The static properties are characterized by the contact angle measurement, while the dynamic features are investigated by the sliding behavior of a liquid droplet. Using different materials and machining methods results in different rough microstructures, patterns, and even chemistry on the solid substrates. So, various beautiful wettabilities can be realized because wettability is mainly dependent on the surface topography and chemical composition. The distinctions of the underlying formation mechanism of these wettabilities are also described in detail.

  2. Photostimulation of astrocytes with femtosecond laser pulses.

    PubMed

    Zhao, Yuan; Zhang, Yuan; Liu, Xiuli; Lv, Xiaohua; Zhou, Wei; Luo, Qingming; Zeng, Shaoqun

    2009-02-02

    The involvement of astrocytes in brain functions rather than support has been identified and widely concerned. However the lack of an effective stimulation of astrocytes hampers our understanding of their essential roles. Here, we employed 800-nm near infrared (NIR) femtosecond laser to induce Ca2+ wave in astrocytes. It was demonstrated that photostimulation of astrocytes with femtosecond laser pulses is efficient with the advantages of non-contact, non-disruptiveness, reproducibility, and high spatiotemporal precision. Photostimulation of astrocytes would facilitate investigations on information processing in neuronal circuits by providing effective way to excite astrocytes.

  3. Femtosecond laser three-dimensional micro- and nanofabrication

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Cheng, Ya

    2014-12-01

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper

  4. Femtosecond laser three-dimensional micro- and nanofabrication

    SciTech Connect

    Sugioka, Koji; Cheng, Ya

    2014-12-15

    The rapid development of the femtosecond laser has revolutionized materials processing due to its unique characteristics of ultrashort pulse width and extremely high peak intensity. The short pulse width suppresses the formation of a heat-affected zone, which is vital for ultrahigh precision fabrication, whereas the high peak intensity allows nonlinear interactions such as multiphoton absorption and tunneling ionization to be induced in transparent materials, which provides versatility in terms of the materials that can be processed. More interestingly, irradiation with tightly focused femtosecond laser pulses inside transparent materials makes three-dimensional (3D) micro- and nanofabrication available due to efficient confinement of the nonlinear interactions within the focal volume. Additive manufacturing (stereolithography) based on multiphoton absorption (two-photon polymerization) enables the fabrication of 3D polymer micro- and nanostructures for photonic devices, micro- and nanomachines, and microfluidic devices, and has applications for biomedical and tissue engineering. Subtractive manufacturing based on internal modification and fabrication can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. These microcomponents can be easily integrated in a single glass microchip by a simple procedure using a femtosecond laser to realize more functional microdevices, such as optofluidics and integrated photonic microdevices. The highly localized multiphoton absorption of a tightly focused femtosecond laser in glass can also induce strong absorption only at the interface of two closely stacked glass substrates. Consequently, glass bonding can be performed based on fusion welding with femtosecond laser irradiation, which provides the potential for applications in electronics, optics, microelectromechanical systems, medical devices, microfluidic devices, and small satellites. This review paper

  5. Application of femtosecond lasers for subcellular nanosurgery

    NASA Astrophysics Data System (ADS)

    Maxwell, Iva

    This dissertation offers a study of femtosecond laser disruption in single cells. Cells and tissues do not ordinarily absorb light in the near-IR wavelength range of femtosecond lasers. However, the peak intensity of a femtosecond laser pulse is very high and material disruption is possible through nonlinear absorption and plasma generation. Because the pulse duration is very short, it is possible to reach the intensity of optical breakdown at only nanojoules of energy per pulse. The low energy deposition and the high spatial localization of the nonlinear absorption, make femtosecond laser pulses an ideal tool for minimally disruptive subcellular nanosurgery. We show definitively that there can be bulk ablation within a single cell by studying the disrupted region under a transmission electron microscope. The width of the ablated area can be as small as 250 nm in diameter at energies near the ablation threshold. We also studied the effect of the laser repetition rate on the subcellular disruption threshold. We compared the pulse energies for kHz and MHz pulse trains, and found that in the MHz regime heat accumulation in the focal volume needs to be accounted for. For this repetition rate the minimum pulse energy necessary for disruption depends on the laser irradiation time. We used femtosecond laser nanosurgery to probe tension in actin stress fibers in living endothelial cells. By severing an individual stress fiber and visualizing its retraction, we showed that actin carries prestress in adherent, non-contractile cells. By plating the cells on softer, more compliant substrates, we measured the deflection of the substrate and extrapolated the force contribution of a stress filament on total amount of force exerted by the cell.

  6. Superresolved femtosecond laser nanosurgery of cells

    PubMed Central

    Pospiech, Matthias; Emons, Moritz; Kuetemeyer, Kai; Heisterkamp, Alexander; Morgner, Uwe

    2011-01-01

    We report on femtosecond nanosurgery of fluorescently labeled structures in cells with a spatially superresolved laser beam. The focal spot width is reduced using phase filtering applied with a programmable phase modulator. A comprehensive statistical analysis of the resulting cuts demonstrates an achievable average resolution enhancement of 30 %. PMID:21339872

  7. Laser-Induced Damage with Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps

  8. Femtosecond Laser Interaction with Energetic Materials

    SciTech Connect

    Roos, E; Benterou, J; Lee, R; Roeske, F; Stuart, B

    2002-03-25

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  9. Femtosecond laser interaction with energetic materials

    NASA Astrophysics Data System (ADS)

    Roos, Edward V.; Benterou, Jerry J.; Lee, Ronald S.; Roseke, Frank; Stuart, Brent C.

    2002-09-01

    Femtosecond laser ablation shows promise in machining energetic materials into desired shapes with minimal thermal and mechanical effects to the remaining material. We will discuss the physical effects associated with machining energetic materials and assemblies containing energetic materials, based on experimental results. Interaction of ultra-short laser pulses with matter will produce high temperature plasma at high-pressure which results in the ablation of material. In the case of energetic material, which includes high explosives, propellants and pyrotechnics, this ablation process must be accomplished without coupling energy into the energetic material. Experiments were conducted in order to characterize and better understand the phenomena of femtosecond laser pulse ablation on a variety of explosives and propellants. Experimental data will be presented for laser fluence thresholds, machining rates, cutting depths and surface quality of the cuts.

  10. Femtosecond laser additive manufacturing of YSZ

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Bai, Shuang

    2017-04-01

    Laser additive manufacturing (LAM) of Yttria-Stabilized Zirconia (YSZ) is investigated using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. High-density (>99%) YSZ part with refined grain and increased hardness was obtained. Microstructure features of fabricated specimens were studied with SEM, EDX, the measured micro hardness is achieved as high as 18.84 GPa.

  11. Gigawatt mid-IR (4-5 μm) femtosecond hybrid Fe2+:ZnSe laser system

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Migal, E. A.; Pushkin, A. V.; Bravy, B. G.; Sirotkin, A. A.; Kozlovsky, V. I.; Korostelin, Yu. V.; Podmar'kov, Yu. P.; Firsov, V. V.; Frolov, M. P.; Gordienko, V. M.

    2017-05-01

    We demonstrate a first-of-its-kind efficient chirped pulse amplification of broadband mid-IR (4-5 μm) femtosecond seed pulse (230 ps, 4μJ) generated in AgGaS2 based OPA driven by Cr:forsterite laser in multi-pass Fe2+:ZnSe amplifier optically pumped by solid-state Q-switched Cr:Yb:Ho:YSGG laser (2.85 μm, 30mJ, 5Hz, 0.6 J/cm2). The system delivers 1.2 mJ at pulse duration of 230 ps. Straightforward compression to 150 fs pulse is achievable with 70% efficiency using diffraction grating pair with peak power of about 6 GW. Further non-linear compression in a bulk CaF2 due to the SPM and anomalous GVD should provide the enhancement of peak power up to 20 GW. Possible routes to reach sub-TW and even TW power level in mid-IR are discussed.

  12. Femtosecond fiber laser additive manufacturing of tungsten

    NASA Astrophysics Data System (ADS)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  13. Direct femtosecond laser waveguide writing inside zinc phosphate glass.

    PubMed

    Fletcher, Luke B; Witcher, Jon J; Troy, Neil; Reis, Signo T; Brow, Richard K; Krol, Denise M

    2011-04-25

    We report the relationship between the initial glass composition and the resulting microstructural changes after direct femtosecond laser waveguide writing with a 1 kHz repetition rate Ti:sapphire laser system. A zinc polyphosphate glass composition with an oxygen to phosphorus ratio of 3.25 has demonstrated positive refractive index changes induced inside the focal volume of a focusing microscope objective for laser pulse energies that can achieve intensities above the modification threshold. The permanent photo-induced changes can be used for direct fabrication of optical waveguides using single scan writing techniques. Changes to the localized glass network structure that produce positive changes in the refractive index of zinc phosphate glasses upon femtosecond laser irradiation have been studied using scanning confocal micro-Raman and fluorescence spectroscopy.

  14. Femtosecond laser processing and spatial light modulator

    NASA Astrophysics Data System (ADS)

    Paivasaari, Kimmo; Silvennoinen, Martti; Kaakkunen, Jarno; Vahimaa, Pasi

    2014-03-01

    The use of the femtosecond laser enables generation of small spot sizes and ablation features. Ablation of the small features usually requires only a small amount of laser power to be delivered to the ablation spot. When using only a one beam for the ablation of the small features this process is bound to be time consuming. The spatial light modulator (SLM) together with the computer generated holograms (CGH) can be used for manipulating and shaping of the laser beam in various applications. In laser micromachining, when using laser with relatively high power, the original beam can be divided up to hundreds beams and still have the energy of the individual beam above the ablation threshold of the material. This parallel laser processing enables more efficient use of the laser power regardless of the machining task.

  15. Investigation on femtosecond laser-assisted microfabrication in silica glasses

    NASA Astrophysics Data System (ADS)

    Liu, Hewei; Chen, Feng; Yang, Qing; Si, Jinhai; Hou, Xun

    2010-11-01

    Fabrication of microstructures embedded in silica glasses using a femtosecond (fs)-laser-assisted chemical etching technique is systematically studied in this work. By scanning the laser pulses inside samples followed by the treatment of 5%-diluted hydrofluoric (HF) acid, groups of straight channels are fabricated and the relationship between the etching rate and processing parameters, including laser power, scanning speed, scanning time and laser polarization, is demonstrated. Based on the optimization of these parameters, complicated microstructures such as channels, cavities and their combinations are manufactured. The work has great potential applications in microelectromechanical systems, biomedical detection and chemical analysis.

  16. Generating femtosecond optical pulses tunable from 2 to 3  μm with a silica-based all-fiber laser system.

    PubMed

    Anashkina, E A; Andrianov, A V; Yu Koptev, M; Muravyev, S V; Kim, A V

    2014-05-15

    Femtosecond pulses with broad tunability in the range of 2-3 μm are generated in a germanate-glass core silica-glass cladding fiber with a driving pulse at 2 μm produced by an all-fiber laser system consisting of an Er:fiber source at 1.6 μm, a Raman fiber shifter, and a Tm:fiber amplifier. We demonstrate optical pulses with a duration of the order of 100 fs that are the shortest ones reported in the 2.5-3 μm range obtained by fiber laser systems.

  17. Femtosecond-laser assisted cell reprogramming

    NASA Astrophysics Data System (ADS)

    Breunig, Hans Georg; Uchugonova, Aisada; Batista, Ana; König, Karsten

    2017-02-01

    Femtosecond-laser pulses can assist to transfect cells by creating transient holes in the cell membrane, thus making them temporarily permeable for extraneous genetic material. This procedure offers the advantage of being completely "virus free" since no viruses are used for the delivery and integration of gene factors into the host genome and, thereby, avoiding serious side effects which so far prevent clinical application. Unfortunately, focusing of the laser radiation onto individual cell membranes is quite elaborate and time consuming. Regarding these obstacles, we briefly review two optical setups for fast, efficient and high throughput laser-assisted cell transfection based on femtosecond laser pulse excitation. The first setup aims at assisting the transfection of adherent cells. It comprises of a modified laser-scanning microscope with beamshaping optics as well as home-made software to automate the detection, targeting and laser-irradiation process. The second setup aims at laser-assisted transfection of non-adherent cells in suspension which move in a continuous flow through the laser focus region. The setup allows to address a large number of cells, however, with much lower transfection efficiency than the individual-cell targeting approach.

  18. Femtosecond compressed-nitrogen Raman laser

    NASA Astrophysics Data System (ADS)

    Konyashchenko, A. V.; Kostryukov, P. V.; Losev, L. L.; Pazyuk, V. S.

    2017-01-01

    We have estimated the minimum laser pulse duration at which stimulated Raman scattering in gases is possible. Femtosecond Ti : sapphire laser pulses have been converted to the first Stokes in compressed nitrogen using double-pulse pumping of a gas-filled capillary tube by orthogonally polarised chirped pulses. We have obtained 980-nm Stokes pulses of 51 fs duration. The energy conversion efficiency was 12% at a pulse repetition rate of 1 kHz and average laser output power of 2 W.

  19. Femtosecond laser-assisted inverted mushroom keratoplasty.

    PubMed

    Cheng, Yanny Y Y; Tahzib, Nayyirih G; van Rij, Gabriel; van Cleynenbreugel, Hugo; Pels, Elisabeth; Hendrikse, Fred; Nuijts, Rudy

    2008-07-01

    To evaluate best-corrected visual acuity (BCVA), refractive outcome, corneal topography, optical coherence tomography, and endothelial cell density 12 months after femtosecond laser-assisted inverted mushroom keratoplasty. We performed a prospective study of a surgical case series of 5 patients undergoing femtosecond laser-assisted inverted mushroom keratoplasty for pseudophakic bullous keratopathy or pre-Descemet X-linked ichthyosis. The femtosecond laser was used to create a top-hat configuration in the donor cornea and recipient cornea. Laser parameters were as follows: energy, 4.0 (anterior inner vertical side cut and horizontal lamellar cut) and 7.0 microJ (posterior outer vertical side cut); spiral pattern with a firing rate of 15 kHz. The size of the anterior inner diameter was 7.4 mm in the donor cornea and 7.0 mm in the recipient cornea. The posterior outer diameter was 9.0 mm in all eyes. At 6 and 12 months after surgery, all corneal grafts were clear and showed an excellent adaptation of the lamellar donor and recipient wound surfaces. At 12 months postoperatively, BCVA averaged 20/32 (range, 20/60-20/20), refractive cylinder averaged -3.20 +/- 2.0 D, topographical cylinder averaged 3.26 +/- 2.1 D, and the mean endothelial cell density was 1793 +/- 491 cells/mm2 (range, 954-2237 cells/mm2). The mean central corneal thickness and thickness of the posterior shelf was 517 +/- 3 and 175 +/- 8 microm, respectively. The femtosecond laser-assisted inverted mushroom keratoplasty shows good promise in surgical treatment of corneal diseases. The multiplanar fit between the donor and recipient cornea allows early suture removal and visual rehabilitation.

  20. Histologic and ultrastructural characterization of corneal femtosecond laser trephination.

    PubMed

    Nuzzo, Valeria; Aptel, Florent; Savoldelli, Michèle; Plamann, Karsten; Peyrot, Donald; Deloison, Florent; Donate, David; Legeais, Jean-Marc

    2009-09-01

    The purpose of this study was to evaluate the quality of femtosecond laser corneal trephination in eye bank eyes by histologic and ultrastructural investigation. We performed Z-shaped, tophat-shaped, and mushroom-shaped trephinations of swelled corneas from eye bank eyes using an Intralase FS60 system. The corneoscleral discs were fixed immediately after the laser procedure without removing the buttons. Thin and ultrathin tissue sections were examined by light and transmission electron microscopy. Optical micrographs of the corneal tissue revealed that the femtosecond laser was efficient in producing Z-shaped, tophat-shaped, and mushroom-shaped dissections with reproducible high cut regularity. Investigations by transmission electron microscopy demonstrated that cut edges were of good quality devoid of thermal or mechanical damage of the adjacent tissues. However, cellular and collagenous nanometric debris was created by the laser. In the anterior stroma, they formed a layer of several microns in thickness residing on the terminated disrupted collagen fibers, whereas in the posterior stroma, they formed a thinner pseudomembrane running along the edges of the incision. Corneal trephination performed by the femtosecond laser preserves the ultrastructure of the disrupted collagen fibers. In edematous corneas, a layer of cellular and collagenic debris thicker in the anterior stroma and thinner in the posterior stroma runs along the edges of the incision obtained at a constant laser energy density.

  1. Femtosecond laser application in biotechnology and medicine

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten

    2004-10-01

    Near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses of low sub-nanojoule and nJ pulse energies in combination with focusing optics of high numerical aperture can be used as versatile multiphoton tools in nanobiotechnology and nano/micro-medicine. Novel diagnostic applications include gene imaging by multiphoton multicolor FISH (MM-FISH) and high-resolution multiphoton tomography of skin as well as tissue engineered cardiovascular structures based on two-photon autofluorescence excitation and second harmonic generation (SHG) of endogenous biomolecules. Using high-intense (1011 - 1012 W/cm2) 80 MHz femtosecond laser beams, non-invasive targeted transfection of mammalian cells with DNA can be realized by creation of highly localized membrane perforations. Nanosurgery can be performed by optical knocking out of intracellular and intratissue structures. Potential applications include gene and cancer therapy, eye and brain surgery as well as optical engineering of single DNA molecules as key elements in bionanotechnology.

  2. Monte-carlo simulation of the prompt gamma neutron activation analysis system with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Shim, Hyunha; Hong, Byungsik; Lee, Kyong-Sei; Lee, Sungman; Cha, Hyungki

    2012-09-01

    The prompt gamma neutron activation analysis (PGNAA) system is a useful tool to detect the concentrations of the various composite elements of a sample by measuring the prompt gammas that are activated by neutrons. The composition in terms of the constituent elements is essential information for the identification of the material species of any unknown object. A PGNAA system initiated by a high-power laser has been designed and optimized by using a Monte-Carlo simulation. In order to improve the signal-to-background ratio, we designed an improved neutron-shielding structure and imposed a proper time window in the analysis. In particular, the yield ratio of nitrogen to carbon in a TNT sample was investigated in detail. These simulation results demonstrate that the gamma rays from an explosive sample under a vast level of background can indeed be identified.

  3. Corneal trephination with the femtosecond laser.

    PubMed

    Meltendorf, Christian; Schroeter, Jan; Bug, Reinhold; Kohnen, Thomas; Deller, Thomas

    2006-10-01

    To evaluate the feasibility and cut quality of corneal trephination in human donor corneal tissue with the femtosecond laser. Twelve human corneoscleral discs were inserted in an artificial anterior chamber. After corneal thickness measurement and tonometry, the cornea was mounted on a femtosecond laser (FEMTEC; 20/10 Perfect Vision, Heidelberg, Germany) through a contact lens (patient interface). Trephination was performed with diameters of 7.0, 7.5, 8.0, and 8.5 mm in 3 corneas each. The corneal button was removed from the corneoscleral disc in 2 of the 3 corneas in each case. The cut was not manipulated in the remaining corneas to enable histologic detection of possible tissue bridges. The cut edges were macroscopically and light-microscopically examined for quality. Corneal buttons and corneoscleral discs could be separated by blunt dissection in all cases. Tissue bridges were more common in thicker edematous corneas than in thinner ones. Both the macro- and microscopic examination disclosed smooth rectilinear cut margins with a perpendicular cut edge. This feasibility study shows that the femtosecond laser enables sufficient trephination of human donor corneas.

  4. Femtosecond fiber-laser-based, laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2012-06-01

    This paper reports the LIBS studies on elemental composition detection and identification by employing a femtosecond (fs) fiber laser. High quality LIBS spectra were obtained in air using near-infrared fs fiber laser coupled with a broadband high sensitivity spectrometer without gating control. Specific ion and neutral emission lines of different materials have been characterized by line scanning, including metals, glasses and even explosive materials. Different laser parameters including pulse energy, repetition rate, scanning speed and integration times have been investigated to optimize the sensitivity. Results show that faster scanning speed and higher pulse energies can greatly enhance the signal level and reduce the integration time. The LIBS spectra are highly reproducible at different repetition rates up to 1 MHz. Furthermore, detection of explosive materials was also achieved and both the constituent elemental emission and the CN and C2 molecules emission were collected. Compared with conventional LIBS, fs fiber laser based LIBS system have advantages of less sample heating and damage, better spatial resolution and signal to background ratio, compact, reliable and cost-effective. This shows a potential portable LIBS system for versatile and rapid analysis of chemical and special explosive materials.

  5. Producing ORMOSIL scaffolds by femtosecond laser polymerization

    NASA Astrophysics Data System (ADS)

    Matei, A.; Zamfirescu, M.; Radu, C.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Radu, M.; Dinescu, M.

    2012-07-01

    Structures with different geometries and sizes were built via direct femtosecond laser writing, starting from new organic/inorganic hybrid monomers based on hybrid methacrylate containing triethoxysilane, in addition to urethane and urea groups. Multifunctional oligomer of urethane dimethacrylate type was chosen as comonomer in polymerization experiments because dimethacrylates give rise to the formation of a polymer network, having a number of favorable properties including biocompatibility and surface nanostructuring. Free standing polymeric structures were designed and created in order to be tested in fibroblast cells culture. Investigations of the cellular adhesion, proliferation, and viability of L929 mouse fibroblasts on free-standing laser processed scaffolds were performed for different scaffold designs.

  6. Femtosecond laser crystallization of amorphous Ge

    NASA Astrophysics Data System (ADS)

    Salihoglu, Omer; Kürüm, Ulaş; Yaglioglu, H. Gul; Elmali, Ayhan; Aydinli, Atilla

    2011-06-01

    Ultrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm-1 as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified.

  7. Femtosecond laser crystallization of amorphous Ge

    SciTech Connect

    Salihoglu, Omer; Aydinli, Atilla; Kueruem, Ulas; Gul Yaglioglu, H.; Elmali, Ayhan

    2011-06-15

    Ultrafast crystallization of amorphous germanium (a-Ge) in ambient has been studied. Plasma enhanced chemical vapor deposition grown a-Ge was irradiated with single femtosecond laser pulses of various durations with a range of fluences from below melting to above ablation threshold. Extensive use of Raman scattering has been employed to determine post solidification features aided by scanning electron microscopy and atomic force microscopy measurements. Linewidth of the Ge optic phonon at 300 cm{sup -1} as a function of laser fluence provides a signature for the crystallization of a-Ge. Various crystallization regimes including nanostructures in the form of nanospheres have been identified.

  8. From cells to embryos: the application of femtosecond laser pulses for altering cellular material in complex biological systems

    NASA Astrophysics Data System (ADS)

    Kohli, V.; Elezzabi, A. Y.

    2008-02-01

    We report the application of high-intensity femtosecond laser pulses as a novel tool for manipulating biological specimens. When femtosecond laser pulses were focused to a near diffraction-limited focal spot, cellular material within the laser focal volume was surgically ablated. Several dissection cuts were made in the membrane of live mammalian cells, and membrane surgery was accomplished without inducing cell collapse or disassociation. By altering how the laser pulses were applied, focal adhesions joining live epithelial cells were surgically removed, resulting in single cell isolation. To further examine the versatility of this reported tool, cells were transiently permeabilized for introducing foreign material into the cytoplasm of live mammalian cells. Localizing focused femtosecond laser pulses on the biological membrane resulted in the formation of transient pores, which were harnessed as a pathway for the delivery of exogenous material. Individual mammalian cells were permeabilized in the presence of a hyperosmotic cryoprotective disaccharide. Material delivery was confirmed by measuring the volumetric response of cells permeabilized in 0.2, 0.3, 0.4 and 0.5 M cryoprotective sugar. The survival of permeabilized cells in increasing osmolarity of sugar was assessed using a membrane integrity assay. Further demonstrating the novelty of this reported tool, laser surgery of an aquatic embryo, the zebrafish (Danio rerio), was also performed. Utilizing the transient pores that were formed in the embryonic cells of the zebrafish embryo, an exogenous fluorescent probe FITC, Streptavidin-conjugated quantum dots or plasmid DNA (sCMV) encoding EGFP was introduced into the developing embryonic cells. To determine if the laser induced any short- or long-term effects on development, laser-manipulated embryos were reared to 2 and 7 days post-fertilization and compared to control embryos at the same developmental stages. Light microscopy and scanning electron microscopy

  9. Femtosecond laser ablation of the stapes

    PubMed Central

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations. PMID:19405768

  10. Femtosecond Lasers in Ophthalmology: Surgery and Imaging

    NASA Astrophysics Data System (ADS)

    Bille, J. F.

    Ophthalmology has traditionally been the field with prevalent laser applications in medicine. The human eye is one of the most accessible human organs and its transparency for visible and near-infrared light allows optical techniques for diagnosis and treatment of almost any ocular structure. Laser vision correction (LVC) was introduced in the late 1980s. Today, the procedural ease, success rate, and lack of disturbing side-effects in laser assisted in-situ keratomileusis (LASIK) have made it the most frequently performed refractive surgical procedure (keratomileusis(greek): cornea-flap-cutting). Recently, it has been demonstrated that specific aspects of LVC can take advantage of unique light-matter interaction processes that occur with femtosecond laser pulses.

  11. Femtosecond lasers in ophthalmology: clinical applications in anterior segment surgery

    NASA Astrophysics Data System (ADS)

    Juhasz, Tibor; Nagy, Zoltan; Sarayba, Melvin; Kurtz, Ronald M.

    2010-02-01

    The human eye is a favored target for laser surgery due to its accessibility via the optically transparent ocular tissue. Femtosecond lasers with confined tissue effects and minimized collateral tissue damage are primary candidates for high precision intraocular surgery. The advent of compact diode-pumped femtosecond lasers, coupled with computer controlled beam delivery devices, enabled the development of high precision femtosecond laser for ophthalmic surgery. In this article, anterior segment femtosecond laser applications currently in clinical practice and investigation are reviewed. Corneal procedures evolved first and remain dominant due to easy targeting referenced from a contact surface, such as applanation lenses placed on the eye. Adding a high precision imaging technique, such as optical coherence tomography (OCT), can enable accurate targeting of tissue beyond the cornea, such as the crystalline lens. Initial clinical results of femtosecond laser cataract surgery are discussed in detail in the latter portion part of the article.

  12. Application of femtosecond laser range finder in space debris monitoring

    NASA Astrophysics Data System (ADS)

    Yuan, Jiang; Ji, Rongyi; Zhou, Weihu

    2016-11-01

    The space-based long-distance ranging of space debris will help to avoid collision. Compared with radar and telescope, the infrared binocular monitoring system can track and range space debris quickly. Because the measurement range is related to the baseline length, two cameras are placed on different satellites. Due to the lack of rigid connection between satellites, femtosecond laser ranging is used to measure the attitude of the camera.

  13. Investigation of interaction femtosecond laser pulses with skin and eyes mathematical model

    NASA Astrophysics Data System (ADS)

    Rogov, P. U.; Smirnov, S. V.; Semenova, V. A.; Melnik, M. V.; Bespalov, V. G.

    2016-08-01

    We present a mathematical model of linear and nonlinear processes that takes place under the action of femtosecond laser radiation on the cutaneous covering. The study is carried out and the analytical solution of the set of equations describing the dynamics of the electron and atomic subsystems and investigated the processes of linear and nonlinear interaction of femtosecond laser pulses in the vitreous of the human eye, revealed the dependence of the pulse duration on the retina of the duration of the input pulse and found the value of the radiation power density, in which there is a self-focusing is obtained. The results of the work can be used to determine the maximum acceptable energy, generated by femtosecond laser systems, and to develop Russian laser safety standards for femtosecond laser systems.

  14. Nanochemical effects in femtosecond laser ablation of metals

    SciTech Connect

    Vorobyev, A. Y.; Guo, Chunlei

    2013-02-18

    We study chemical energy released from the oxidation of aluminum in multipulse femtosecond laser ablation in air and oxygen. Our study shows that the released chemical energy amounts to about 13% of the incident laser energy, and about 50% of the ablated material is oxidized. The ablated material mass per laser pulse is measured to be on the nanogram scale. Our study indicates that femtosecond laser ablation is capable of inducing nanochemical reactions since the femtosecond laser pulse can controllably produce nanoparticles, clusters, and atoms from a solid target.

  15. Ultrahigh-Resolution Optical Coherence Tomography Using Femtosecond Lasers

    NASA Astrophysics Data System (ADS)

    Fujimoto, J. G.; Aguirre, A. D.; Chen, Y.; Herz, P. R.; Hsiung, P.-L.; Ko, T. H.; Nishizawa, N.; Kärtner, F. X.

    Optical coherence tomography (OCT) is an emerging optical imaging modality for biomedical research and clinical medicine. OCT can perform high resolution, cross-sectional tomographic imaging in materials and biological systems by measuring the echo time delay and magnitude of backreflected or backscattered light [1]. In medical applications, OCT has the advantage that imaging can be performed in situ and in real time, without the need to remove and process specimens as in conventional excisional biopsy and histopathology. OCT can achieve axial image resolutions of 1 to 15 μm; one to two orders of magnitude higher than standard ultrasound imaging. The image resolution in OCT is determined by the coherence length of the light source and is inversely proportional to its bandwidth. Femtosecond lasers can generate extremely broad bandwidths and have enabled major advances in ultrahigh-resolution OCT imaging. This chapter provides an overview of OCT technology and ultrahigh-resolution OCT imaging using femtosecond lasers.

  16. Thin Film Femtosecond Laser Damage Competition

    SciTech Connect

    Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

    2009-11-14

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  17. Optical gene transfer by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Konig, Karsten; Riemann, Iris; Tirlapur, Uday K.

    2003-07-01

    Targeted transfection of cells is an important technique for gene therapy and related biomedical applications. We delineate how high-intensity (1012 W/cm2) near-infrared (NIR) 80 MHz nanojoule femtosecond laser pulses can create highly localised membrane perforations within a minute focal volume, enabling non-invasive direct transfection of mammalian cells with DNA. We suspended Chinese hamster ovarian (CHO), rat kangaroo kidney epithelial (PtK2) and rat fibroblast cells in 0.5 ml culture medium in a sterile miniaturized cell chamber (JenLab GmbH, Jena, Germany) containing 0.2 μg plasmid DNA vector pEGFP-N1 (4.7 kb), which codes for green fluorescent protein (GFP). The NIR laser beam was introduced into a femtosecond laser scanning microscope (JenLab GmbH, Jena, Germany; focussed on the edge of the cell membrane of a target cell for 16 ms. The integration and expression efficiency of EGFP were assessed in situ by two-photon fluorescence-lifetime imaging using time-correlated single photon counting. The unique capability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells), circumventing mechanical, electrical or chemical means, will have many applications, such as targeted gene therapy and DNA vaccination.

  18. Colorizing metals with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2008-01-01

    For centuries, it had been the dream of alchemists to turn inexpensive metals into gold. Certainly, it is not enough from an alchemist's point of view to transfer only the appearance of a metal to gold. However, the possibility of rendering a certain metal to a completely different color without coating can be very interesting in its own right. In this work, we demonstrate a femtosecond laser processing technique that allows us to create a variety of colors on a metal that ultimately leads us to control its optical properties from UV to terahertz.

  19. Colorizing metals with femtosecond laser pulses

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2008-01-28

    For centuries, it had been the dream of alchemists to turn inexpensive metals into gold. Certainly, it is not enough from an alchemist's point of view to transfer only the appearance of a metal to gold. However, the possibility of rendering a certain metal to a completely different color without coating can be very interesting in its own right. In this work, we demonstrate a femtosecond laser processing technique that allows us to create a variety of colors on a metal that ultimately leads us to control its optical properties from UV to terahertz.

  20. Femtosecond laser studies of ultrafast intramolecular processes

    SciTech Connect

    Hayden, C.

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  1. Metallic Clusters in Strong Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Suraud, Eric; Reinhard, P.-G.; Ullrich, Carsten A.

    1998-03-01

    We present a theoretical study of the electron response of a Na_9^+ cluster excited by strong femtosecond laser pulses.(C. A. Ullrich, P.-G. Reinhard, and E. Suraud, J. Phys. B 30), 5043 (1997) Our approach is based on time-dependent density functional theory within the adiabatic local density approximation, including a recently developed self-interaction correction scheme. We investigate numerically the full electronic dipolar response and multiphoton ionization of the cluster and discuss the ionization mechanism. A strong correlation between induced electronic dipole oscillations and electron emission is observed, leading to a pronounced resonant enhancement of ionization at the frequency of the Mie plasmon.

  2. Portable Diode Pumped Femtosecond Lasers

    DTIC Science & Technology

    2007-03-01

    Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov , T. A. Matrosava, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller...Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov , T. A. Matrosava, and M. I. Kupchenko. “Spectroscopy and continuous-wave diode-pumped laser...Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov , T. A. Matrosova, and M. I. Kupchenko. “Yb3+-doped YVO4 crystal for efficient

  3. Treating capsule contraction syndrome with a femtosecond laser.

    PubMed

    Gerten, Georg; Schultz, Michael; Oberheide, Uwe

    2016-09-01

    We describe a technique that uses a femtosecond laser (femtosecond laser pseudophakic capsulotomy) to treat capsule contraction syndrome (capsule phimosis) that may occur after cataract surgery and intraocular lens (IOL) implantation. Enlarging the capsulotomy with a femtosecond laser may offer advantages over the existing treatment methods, neodymium:YAG laser capsulotomy and manual extension of the capsulorhexis. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    PubMed

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.

  5. Femtosecond laser polishing of optical materials

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2015-10-01

    Technologies including magnetorheological finishing and CNC polishing are commonly used to finish optical elements, but these methods are often expensive, generate waste through the use of fluids or abrasives, and may not be suited for specific freeform substrates due to the size and shape of finishing tools. Pulsed laser polishing has been demonstrated as a technique capable of achieving nanoscale roughness while offering waste-free fabrication, material-specific processing through direct tuning of laser radiation, and access to freeform shapes using refined beam delivery and focusing techniques. Nanosecond and microsecond pulse duration radiation has been used to perform successful melting-based polishing of a variety of different materials, but this approach leads to extensive heat accumulation resulting in subsurface damage. We have experimentally investigated the ability of femtosecond laser radiation to ablate silicon carbide and silicon. By substituting ultrafast laser radiation, polishing can be performed by direct evaporation of unwanted surface asperities with minimal heating and melting, potentially offering damage-free finishing of materials. Under unoptimized laser processing conditions, thermal effects can occur leading to material oxidation. To investigate these thermal effects, simulation of the heat accumulation mechanism in ultrafast laser ablation was performed. Simulations have been extended to investigate the optimum scanning speed and pulse energy required for processing various substrates. Modeling methodologies and simulation results will be presented.

  6. Laser optoacoustic tomography for the study of femtosecond laser filaments in air

    NASA Astrophysics Data System (ADS)

    Bychkov, A. S.; Cherepetskaya, E. B.; Karabutov, A. A.; Makarov, V. A.

    2016-08-01

    We propose to use optoacoustic tomography to study the characteristics of femtosecond laser filamentation in air and condensed matter. The high spatial resolution of the proposed system, which consists of an array of broadband megahertz piezoelectric elements, ensures its effectiveness, despite the attenuation of ultrasonic waves in air.

  7. Nanodot formation induced by femtosecond laser irradiation

    SciTech Connect

    Abere, M. J.; Kang, M.; Goldman, R. S.; Yalisove, S. M.; Chen, C.; Rittman, D. R.; Phillips, J. D.; Torralva, B.

    2014-10-20

    The femtosecond laser generation of ZnSe nanoscale features on ZnSe surfaces was studied. Irradiation with multiple exposures produces 10–100 nm agglomerations of nanocrystalline ZnSe while retaining the original single crystal structure of the underlying material. The structure of these nanodots was verified using a combination of scanning transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. The nanodots continue to grow hours after irradiation through a combination of bulk and surface diffusion. We suggest that in nanodot formation the result of ultrafast laser induced point defect formation is more than an order of magnitude below the ZnSe ultrafast melt threshold fluence. This unique mechanism of point defect injection will be discussed.

  8. Optical reprogramming with ultrashort femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  9. Femtosecond fiber laser welding of dissimilar metals.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  10. Femtosecond laser induced breakdown for combustion diagnostics

    SciTech Connect

    Kotzagianni, M.; Couris, S.

    2012-06-25

    The focused beam of a 100 fs, 800 nm laser is used to induce a spark in some laminar premixed air-methane flames operating with variable fuel content (equivalence ratio). The analysis of the light escaping from the plasma revealed that the Balmer hydrogen lines, H{sub {alpha}} and H{sub {beta}}, and some molecular origin emissions were the most prominent spectral features, while the CN ({Beta}{sup 2}{Sigma}{sup +}-{Chi}{sup 2}{Sigma}{sup +}) band intensity was found to depend linearly with methane content, suggesting that femtosecond laser induced breakdown spectroscopy can be a useful tool for the in-situ determination and local mapping of fuel content in hydrocarbon-air combustible mixtures.

  11. Femtosecond laser refractive surgery: small-incision lenticule extraction vs. femtosecond laser-assisted LASIK.

    PubMed

    Lee, Jimmy K; Chuck, Roy S; Park, Choul Yong

    2015-07-01

    Small-incision lenticule extraction (SMILE) is a novel technique devised to correct refractive errors. SMILE circumvents excimer laser photoablation of cornea, as the stromal lenticule cut by femtosecond laser is removed manually. Smaller incisions and preservation of anterior corneal biomechanical strength have been suggested as some of the advantages of SMILE over femtosecond laser-assisted LASIK (FS-LASIK). In this review, we compared previous published results of SMILE and FS-LASIK. The advantage, efficacy and safety of SMILE are compared with FS-LASIK. SMILE achieved similar efficacy, predictability and safety as FS-LASIK. Greater preservations of corneal biomechanical strength and corneal nerves were observed in SMILE when compared with LASIK or PRK. Additionally, the incidence of postoperative dry eye syndrome was found to be less problematic in SMILE than in FS-LASIK. SMILE is a promising new surgery for refractive error correction. Prospective and retrospective studies of SMILE have shown that results of SMILE are similar to FS-LASIK. With advances in femtosecond laser technology, SMILE may gain greater acceptance in the future.

  12. Comparative shock wave analysis during corneal ablation with an excimer laser, picosecond laser, and femtosecond laser

    NASA Astrophysics Data System (ADS)

    Krueger, Ronald R.; Juhasz, Tibor

    1995-05-01

    With the event of topographic steep central islands following excimer laser surgery and the potential damage to the corneal endothelium, shock waves are playing an increasingly important role in laser refractive surgery. With this in mind, we performed a comparative shock wave analysis in corneal tissue using an excimer laser, picosecond laser, and femtosecond laser. We used a Lambda Physik excimer laser at 308 nm wavelength, a Nd:YLF picosecond laser at 1053 nm wavelength and a synchronously pumped linear cavity femtosecond laser at 630 nm wavelength. The pulse widths of the corresponding lasers were 8 ns, 18 ps, 150 fs, respectively. The energy density of irradiation was 2.5 to 8 times the threshold level being 2 J/cm2 (excimer laser), 86 J/cm2 (picosecond laser) and 10.3 J/cm2 (femtosecond laser). Shock wave dynamics were analyzed using time-resolved photography on a nanosecond time scale using the picosecond laser in corneal tissue, water and air. Shock wave dynamics using the femtosecond laser were studied in water only while the excimer laser induced shock wave during corneal ablation was studied in air only. We found the dynamics of shock waves to be similar in water and corneal tissue indicating that water is a good model to investigate shock wave effects in the cornea. The magnitude of the shock wave velocity and pressure decays over time to that of a sound wave. The distance over which it decays is 3 mm in air with the excimer laser and 600 - 700 micrometers in air with the picosecond laser. In water, the picosecond laser shock wave decays over a distance of 150 micrometers compared to the femtosecond laser shock wave which decays over a distance of 30 micrometers . Overall the excimer laser shock wave propagates 5 times further than that of the picosecond laser and the picosecond laser shock wave propagates 5 times further than that of the femtosecond laser. In this preliminary comparison, the time and distance for shock wave decay appears to be directly

  13. Broadband wavelength tuning of hybrid femtosecond Er/Tm fiber laser system in microstructured suspended-core tellurite fiber

    NASA Astrophysics Data System (ADS)

    Koptev, Maksim Y.; Anashkina, Elena A.; Andrianov, Alexey V.; Dorofeev, Vitaly V.; Kosolapov, Alexey F.; Muravyev, Sergey V.; Kim, Arkady V.

    2016-03-01

    In this study, we propose a widely tunable in the 1.6-2.65 μm range femtosecond fiber laser source, generating high-quality sech-shaped pulses with the duration of order 100 fs. Experimental setup contains hybrid all-fiber Er/Tm pump laser generating 150 fs pulses of 2 nJ in Erbium (1.56 μm) channel and 125 fs pulses of 4 nJ in Thulium (2 μm) channel respectively. This laser source was coupled to a 50 cm piece of suspended-core microstructured TeO2-WO3- La2O3 glass fiber with launching efficiency of about 10%. We have observed Raman self-frequency shifting solitons in this fiber with maximum red shift of 2.25 μm for Erbium channel and 2.65 μm for Thulium channel. By varying energy of pump pulses, solitons can be tuned in broadband spectral region. We have made theoretical studies of nonlinear pulse dynamics in the tellurite fiber with carefully measured and calculated parameters. Numerical simulation is in a very good agreement with the experiment

  14. Femtosecond-laser-assisted Descemet's stripping endothelial keratoplasty.

    PubMed

    Cheng, Yanny Y Y; Pels, Elisabeth; Nuijts, Rudy M M A

    2007-01-01

    To our knowledge, we describe the first patient with pseudophakic bullous keratoplasty treated with femtosecond-laser-assisted endothelial keratoplasty. A 5.5 mm corneoscleral tunnel incision was made; after Descemet's membrane was stripped, an 8.0 mm posterior lamellar corneal disk prepared with a femtosecond laser was inserted into the anterior chamber against the recipient cornea without the use of corneal sutures. Four months postoperatively, the posterior corneal disk was clear and the induced astigmatism was 2.1 diopters, demonstrating a functional corneal endothelial layer. The femtosecond laser offers a new surgical approach for minimally invasive endothelial keratoplasty in corneal endothelial disorders.

  15. Polarization effects in femtosecond laser induced amorphization of monocrystalline silicon

    NASA Astrophysics Data System (ADS)

    Bai, Feng; Li, Hong-Jin; Huang, Yuan-Yuan; Fan, Wen-Zhong; Pan, Huai-Hai; Wang, Zhuo; Wang, Cheng-Wei; Qian, Jing; Li, Yang-Bo; Zhao, Quan-Zhong

    2016-10-01

    We have used femtosecond laser pulses to ablate monocrystalline silicon wafer. Raman spectroscopy and X-ray diffraction analysis of ablation surface indicates horizontally polarized laser beam shows an enhancement in amorphization efficiency by a factor of 1.6-1.7 over the circularly polarized laser ablation. This demonstrates that one can tune the amorphization efficiency through the polarization of irradiation laser.

  16. Directly Written DFB Waveguide Lasers Using Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Ams, Martin; Dekker, Peter; Marshall, Graham D.; Little, Douglas J.; Withford, Michael J.

    2010-10-01

    There is still significant speculation regarding the nature of femtosecond laser induced index change in bulk glasses with colour centre formation and densification the main candidates. In the work presented here, we fabricated waveguide Bragg gratings in doped and undoped phosphate glasses and use these as a diagnostic for monitoring subtle changes in the induced refractive index during photo- and thermal annealing experiments. Reductions in grating strengths during such experiments were attributed to the annihilation of colour centres.

  17. Microfabrication of transparent materials using filamented femtosecond laser beams

    NASA Astrophysics Data System (ADS)

    Butkus, S.; Paipulas, D.; Gaižauskas, Eugenijus; KaškelytÄ--, D.; Sirutkaitis, V.

    2014-05-01

    Glass drilling realized with the help of femtosecond lasers attract industrial attention, however, desired tasks may require systems employing high numerical aperture (NA) focusing conditions, low repetition rate lasers and complex fast motion translation stages. Due to the sensitivity of such systems, slight instabilities in parameter values can lead to crack formations, severe fabrication rate decrement and poor quality overall results. A microfabrication system lacking the stated disadvantages was constructed and demonstrated in this report. An f-theta lens was used in combination with a galvanometric scanner, in addition, a water pumping system that enables formation of water films of variable thickness in real time on the samples. Water acts as a medium for filament formation, which in turn decreases the focal spot diameter and increases fluence and axial focal length. This article demonstrates the application of a femtosecond (280fs) laser towards rapid cutting of different transparent materials. Filament formation in water gives rise to strong ablation at the surface of the sample, moreover, the water, surrounding the ablated area, adds increased cooling and protection from cracking. The constructed microfabrication system is capable of drilling holes in thick soda-lime, hardened glasses and sapphire. The fabrication time varies depending on the diameter of the hole and spans from a few to several hundred seconds. Moreover, complex-shape fabrication was demonstrated.

  18. Femtosecond Laser-Induced Coulomb Explosion Imaging

    NASA Astrophysics Data System (ADS)

    Karimi, Reza; Liu, Wing-Ki; Sanderson, Joseph

    2016-07-01

    We review recent progress in the field of Coulomb imaging using femtosecond laser pulses of variable length, referred to as Femtosecond Multiple Pulse Length Spectroscopy (FEMPULS). This method introduces a multi-dimensional approach to the study of the molecular dynamics of the multiply ionized triatomic molecules: CO2, OCS, and N2O. We describe the experimental setup used and the approaches needed to optimize the multi-particle detection, coincidence technique. The results show the degree of high resolution imaging which can be achieved with few cycle pulses, and how the onset of charge resonance enhanced ionization (CREI) can be observed as pulse length is increased. By coupling pulse length variation with Dalitz and Newton plotting techniques, stepwise processes can be identified for all three molecules, giving insight into the dynamics, particularly on the 3+ state, which has been revealed as the doorway state to CREI. Finally, in the case of OCS, pulse length variation is shown to have the potential as a control mechanism, as it modulates the ratio of stepwise to concerted processes.

  19. Dynamics of Molecular Emission Features from Nanosecond, Femtosecond Laser and Filament Ablation Plasmas

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.; Suter, Jonathan D.; Phillips, Mark C.

    2016-06-15

    The evolutionary paths of molecular species and nanoparticles in laser ablation plumes are not well understood due to the complexity of numerous physical processes that occur simultaneously in a transient laser-plasma system. It is well known that the emission features of ions, atoms, molecules and nanoparticles in a laser ablation plume strongly depend on the laser irradiation conditions. In this letter we report the temporal emission features of AlO molecules in plasmas generated using a nanosecond laser, a femtosecond laser and filaments generated from a femtosecond laser. Our results show that, at a fixed laser energy, the persistence of AlO is found to be highest and lowest in ns and filament laser plasmas respectively while molecular species are formed at early times for both ultrashort pulse (fs and filament) generated plasmas. Analysis of the AlO emission band features show that the vibrational temperature of AlO decays rapidly in filament assisted laser ablation plumes.

  20. Atomistic modeling of femtosecond laser-induced melting and atomic mixing in Au film - Cu substrate system

    NASA Astrophysics Data System (ADS)

    Thomas, Derek A.; Lin, Zhibin; Zhigilei, Leonid V.; Gurevich, Evgeny L.; Kittel, Silke; Hergenröder, Roland

    2009-09-01

    The mechanisms of femtosecond laser-induced transient melting and atomic mixing in a target composed of a 30 nm Au film deposited on a bulk Cu substrate are investigated in a series of atomistic simulations. The relative strength and the electron temperature dependence of the electron-phonon coupling of the metals composing the layered target are identified as major factors affecting the initial energy redistribution and the location of the region(s) undergoing transient melting and resolidification. The higher strength of the electron-phonon coupling in Cu, as compared to Au, results in a preferential sub-surface heating and melting of the Cu substrate, while the overlaying Au film largely retains its original crystalline structure. The large difference in the atomic mobility in the transiently melted and crystalline regions of the target makes it possible to connect the final distributions of the components in the resolidified targets to the history of the laser-induced melting process, thus allowing for experimental verification of the computational predictions.

  1. Femtosecond laser ablation of gold interdigitated electrodes for electronic tongues

    NASA Astrophysics Data System (ADS)

    Manzoli, Alexandra; de Almeida, Gustavo F. B.; Filho, José A.; Mattoso, Luiz H. C.; Riul, Antonio; Mendonca, Cleber R.; Correa, Daniel S.

    2015-06-01

    Electronic tongue (e-tongue) sensors based on impedance spectroscopy have emerged as a potential technology to evaluate the quality and chemical composition of food, beverages, and pharmaceuticals. E-tongues usually employ transducers based on metal interdigitated electrodes (IDEs) coated with a thin layer of an active material, which is capable of interacting chemically with several types of analytes. IDEs are usually produced by photolithographic methods, which are time-consuming and costly, therefore, new fabrication technologies are required to make it more affordable. Here, we employed femtosecond laser ablation with pulse duration of 50 fs to microfabricate gold IDEs having finger width from 2.3 μm up to 3.2 μm. The parameters used in the laser ablation technique, such as light intensity, scan speed and beam spot size have been optimized to achieve uniform IDEs, which were characterized by optical and scanning electron microscopy. The electrical properties of gold IDEs fabricated by laser ablation were evaluated by impedance spectroscopy, and compared to those produced by conventional photolithography. The results show that femtosecond laser ablation is a promising alternative to conventional photolithography for fabricating metal IDEs for e-tongue systems.

  2. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Electron beam deflection, focusing, and collimation by a femtosecond laser lens

    NASA Astrophysics Data System (ADS)

    Minogin, V. G.

    2009-11-01

    This work examines spatial separation of femtosecond electron bunches using the ponderomotive potential created by femtosecond laser pulses. It is shown that ponderomotive optical potentials are capable of effectively deflecting, focusing, and collimating narrow femtosecond electron bunches.

  3. High fidelity femtosecond pulses from an ultrafast fiber laser system via adaptive amplitude and phase pre-shaping.

    PubMed

    Prawiharjo, Jerry; Daga, Nikita K; Geng, Rui; Price, Jonathan H; Hanna, David C; Richardson, David J; Shepherd, David P

    2008-09-15

    The generation of high-fidelity femtosecond pulses is experimentally demonstrated in a fiber based chirped-pulse amplification (CPA) system through an adaptive amplitude and phase pre-shaping technique. A pulse shaper, based on a dual-layer liquid crystal spatial light modulator (LC-SLM), was implemented in the fiber CPA system for amplitude and phase shaping prior to amplification. The LC-SLM was controlled using a differential evolution algorithm, to maximize a two-photon absorption detector signal from the compressed fiber CPA output pulses. It is shown that this approach compensates for both accumulated phase from material dispersion and nonlinear phase modulation. A train of pulses was produced with an average power of 12.6W at a 50MHz repetition rate from our fiber CPA system, which were compressible to high fidelity pulses with a duration of 170 fs.

  4. Characterization of femtosecond laser-induced breakdown spectroscopy (fsLIBS) and applications for biological samples.

    PubMed

    Gill, Ruby K; Knorr, Florian; Smith, Zachary J; Kahraman, Mehmet; Madsen, Dorte; Larsen, Delmar S; Wachsmann-Hogiu, Sebastian

    2014-01-01

    We characterize the femtosecond laser-induced breakdown spectroscopy (fsLIBS) signal for biological tissues as a function of different excitation parameters with femtosecond laser systems. These parameters include laser energy, depth of focus, and number of pulses per focal volume. We used femtosecond laser pulses of 800 nm and energy between 25 and 123 μJ to generate LIBS signals in biological tissues. As expected, we observed a linear increase in the fsLIBS intensity as a function of the laser energy. In addition, we show that moving the beam out of focus and the presence of overlapping pulses on the same focal area leads to a decrease in fsLIBS intensity due to changes in focal spot size. We also demonstrate that fsLIBS can distinguish between different biological tissue samples.

  5. CO2 laser polishing of microfluidic channels fabricated by femtosecond laser assisted carving

    NASA Astrophysics Data System (ADS)

    Serhatlioglu, Murat; Ortaç, Bülend; Elbuken, Caglar; Biyikli, Necmi; Solmaz, Mehmet E.

    2016-11-01

    In this study, we investigate the effects of CO2 laser polishing on microscopic structures fabricated by femtosecond laser assisted carving (FLAC). FLAC is the peripheral laser irradiation of 2.5D structures suitable for low repetition rate lasers and is first used to define the microwell structures in fused silica followed by chemical etching. Subsequently, the bottom surface of patterned microwells is irradiated with a pulsed CO2 laser. The surfaces were characterized using an atomic force microscope (AFM) and scanning electron microscope (SEM) in terms of roughness and high quality optical imaging before and after the CO2 laser treatment. The AFM measurements show that the surface roughness improves more than threefold after CO2 laser polishing, which promises good channel quality for applications that require optical imaging. In order to demonstrate the ability of this method to produce low surface roughness systems, we have fabricated a microfluidic channel. The channel is filled with polystyrene bead-laden fluid and imaged with transmission mode microscopy. The high quality optical images prove CO2 laser processing as a practical method to reduce the surface roughness of microfluidic channels fabricated by femtosecond laser irradiation. We further compared the traditional and laser-based glass micromachining approaches, which includes FLAC followed by the CO2 polishing technique.

  6. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using 66Zn/63Cu, 208Pb/238U, 232Th/238U, 66Zn/232Th and 66Zn/208Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%).

  7. Femtosecond laser processing of protein crystals grown in agarose gel

    NASA Astrophysics Data System (ADS)

    Hasenaka, Hitoshi; Sugiyama, Shigeru; Hirose, Mika; Shimizu, Noriko; Kitatani, Tomoya; Takahashi, Yoshinori; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Matsumura, Hiroyoshi

    2009-12-01

    Manual manipulation of protein crystals is often required in order to obtain X-ray diffraction (XRD) data, but the success of the manual operation depends on the experience and fortuity of the operators. Here, we demonstrated the processing of protein crystals grown in semi-solid agarose gel using a femtosecond laser. This high-precision, reproducible processing could be achieved without unsealing the crystallization trays by using a focused femtosecond laser. We confirmed that the gel-immobilized crystals of hen egg white lysozyme, glucose isomerase and thaumatin could be processed by this technique. In contrast, the processing of protein crystals grown in non-gelled solution triggered polycrystallization or was unsuccessful. The processed gel-grown lysozyme crystal was subsequently captured by a nylon loop without difficulty and mounted onto the goniometer head of the XRD equipment for XRD data collection. The statistics of the obtained XRD data indicated that laser irradiation has little influence on crystallinity, suggesting that the processed protein crystals are virtually suitable for X-ray analysis. This approach provides a reliable method of processing protein crystals and may lead to an automated system for protein crystal processing.

  8. Femtosecond pulsed laser deposition of biological and biocompatible thin layers

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Smausz, T.; Kecskeméti, G.; Klini, A.; Bor, Zs.

    2007-07-01

    In our study we investigate and report the femtosecond pulsed laser deposition of biological and biocompatible materials. Teflon, polyhydroxybutyrate, polyglycolic-acid, pepsin and tooth in the form of pressed pellets were used as target materials. Thin layers were deposited using pulses from a femtosecond KrF excimer laser system (FWHM = 450 fs, λ = 248 nm, f = 10 Hz) at different fluences: 0.6, 0.9, 1.6, 2.2, 2.8 and 3.5 J/cm 2, respectively. Potassium bromide were used as substrates for diagnostic measurements of the films on a FTIR spectrometer. The pressure in the PLD chamber was 1 × 10 -3 Pa, and in the case of tooth and Teflon the substrates were heated at 250 °C. Under the optimized conditions the chemical structure of the deposited materials seemed to be largely preserved as evidenced by the corresponding IR spectra. The polyglycolic-acid films showed new spectral features indicating considerable morphological changes during PLD. Surface structure and thickness of the layers deposited on Si substrates were examined by an atomic force microscopy (AFM) and a surface profilometer. An empirical model has been elaborated for the description of the femtosecond PLD process. According to this the laser photons are absorbed in the surface layer of target resulting in chemical dissociation of molecules. The fast decomposition causes explosion-like gas expansion generating recoil forces which can tear off and accelerate solid particles. These grains containing target molecules without any chemical damages are ejected from the target and deposited onto the substrate forming a thin layer.

  9. High-resolution spectroscopy with a femtosecond laser frequency comb.

    PubMed

    Gerginov, V; Tanner, C E; Diddams, S A; Bartels, A; Hollberg, L

    2005-07-01

    The output of a mode-locked femtosecond laser is used for precision single-photon spectroscopy of 133Cs in an atomic beam. By changing the laser's repetition rate, the cesium D1 (6s 2S(1/2)-->6p 2P(1/2)) and D2 (6s 2S(1/2)-->6p 2P(3/2)) transitions are detected and the optical frequencies are measured with accuracy similar to that obtained with a cw laser. Control of the femtosecond laser repetition rate by use of the atomic fluorescence is also implemented, thus realizing a simple cesium optical clock.

  10. Generation of intense femtosecond optical vortex pulses with blazed-phase grating in chirped-pulse amplification system of Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chieh; Nabekawa, Yasuo; Midorikawa, Katsumi

    2016-11-01

    We demonstrate the generation of an intense femtosecond optical vortex (OV) pulse by employing an OV converter set between two laser amplifiers in a chirped-pulse amplification (CPA) system of a Ti:sapphire laser. The OV converter is composed of a liquid-crystal spatial light modulator (LC-SLM) exhibiting a blazed-phase computer-generated hologram, a concave mirror, and a flat mirror in the 4f setup. Owing to the intrinsic nature of the 4f setup, the OV converter is free from chromatic and topological-charge dispersions, which are always induced in a spiral phase plate conventionally used to convert an intense Gaussian laser pulse to an OV pulse, while we can avoid damage to the LC-SLM by the irradiation of a low-energy pulse before the second amplifier. We have increased the throughput of the OV converter to 42% by systematically investigating the diffraction efficiency of the blazed-phase hologram on the LC-SLM, which relaxes the gain condition required for the second amplifier. The combination of the high-throughput OV converter and the two-stage amplification enables us to generate OV pulses with an energy of 1.63 mJ and a pulse duration of 60 fs at a wavelength of 720 nm, at which the gain of the Ti:sapphire laser is only 60% of the peak gain around 800 nm.

  11. Photochemical reduction of graphene oxide (GO) by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Muttaqin; Nakamura, Takahiro; Sato, Shunichi

    2016-03-01

    In this study, we demonstrated a facile method for the reduction of graphene oxide (GO) by applying femtosecond laser pulse irradiation in aqueous colloidal solution. Utilization of femtosecond (fs) laser pulse irradiation enabled us to control GO reduction by adjusting laser fluence and irradiation time. The formation of reduced graphene oxide (rGO) was induced by solvated electrons generated through laser irradiation of colloidal GO solution, which was confirmed by means of UV-visible and Raman spectroscopy, XPS and XRD. By applying an optimum femtosecond laser condition, the interplanar spacing between carbon layers decreased significantly from 9.81 Å to 3.52Å indicating the effective removal of oxygen-containing groups from the basal plane of GO. Furthermore, the sheet resistivity of the fabricated rGO in disk form was 1,200 times lower than GO.

  12. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    SciTech Connect

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-07-31

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

  13. Controlling the coulomb explosion of silver clusters by femtosecond dual-pulse laser excitation.

    PubMed

    Döppner, T; Fennel, Th; Diederich, Th; Tiggesbäumker, J; Meiwes-Broer, K H

    2005-01-14

    Silver clusters grown in helium nanodroplets are excited by intense femtosecond laser pulses resulting in the formation of a hot electron plasma far from equilibrium. The ultrafast dynamics is studied by applying optically delayed dual pulses, which allows us to pursue and control the coupling of the laser field to the clusters on a femtosecond time scale. A distinct influence of the optical delay on the ionization efficiency gives strong evidence that a significant contribution of collective dipolar electron motion is present, which is verified by corresponding Vlasov dynamics simulations on a model system. The microscopic approach demonstrates the outstanding role of giant resonances in clusters also in intense laser fields.

  14. Study of femtosecond laser spectrally resolved interferometry distance measurement based on excess fraction method

    NASA Astrophysics Data System (ADS)

    Ji, Rongyi; Hu, Kun; Li, Yao; Gao, Shuyuan; Zhou, Weihu

    2017-02-01

    Spectrally resolved interferometry (SRI) technology is a high precision laser interferometry technology, whose short non-ambiguity range (NAR) increases the precision requirement of pre-measurement in absolute distance measurement. In order to improve NAR of femtosecond laser SRI, the factors affecting NAR are studied in measurement system, and synthetic NAR method is presented based on excess fraction method to solve this question. A theoretical analysis is implemented and two Fabry-Perot Etalons with different free spectral range are selected to carry out digital simulation experiments. The experiment shows that NAR can be improved using synthetic NAR method and the precision is the same with that of fundamental femtosecond laser SRI.

  15. Mechanical Strains Induced in Osteoblasts by Use of Point Femtosecond Laser Targeting

    PubMed Central

    Bomzon, Ze'ev; Day, Daniel; Gu, Min; Cartmell, Sarah

    2006-01-01

    A study demonstrating how ultrafast laser radiation stimulates osteoblasts is presented. The study employed a custom made optical system that allowed for simultaneous confocal cell imaging and targeted femtosecond pulse laser irradiation. When femtosecond laser light was focused onto a single cell, a rise in intracellular Ca2+ levels was observed followed by contraction of the targeted cell. This contraction caused deformation of neighbouring cells leading to a heterogeneous strain field throughout the monolayer. Quantification of the strain fields in the monolayer using digital image correlation revealed local strains much higher than threshold values typically reported to stimulate extracellular bone matrix production in vitro. This use of point targeting with femtosecond pulse lasers could provide a new method for stimulating cell activity in orthopaedic tissue engineering. PMID:23165014

  16. Holographic femtosecond laser processing and its application to biological materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio

    2017-02-01

    Femtosecond laser processing is a promising tool for fabricating novel and useful structures on the surfaces of and inside materials. An enormous number of pulse irradiation points will be required for fabricating actual structures with millimeter scale, and therefore, the throughput of femtosecond laser processing must be improved for practical adoption of this technique. One promising method to improve throughput is parallel pulse generation based on a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM), a technique called holographic femtosecond laser processing. The holographic method has the advantages such as high throughput, high light use efficiency, and variable, instantaneous, and 3D patterning. Furthermore, the use of an SLM gives an ability to correct unknown imperfections of the optical system and inhomogeneity in a sample using in-system optimization of the CGH. Furthermore, the CGH can adaptively compensate in response to dynamic unpredictable mechanical movements, air and liquid disturbances, a shape variation and deformation of the target sample, as well as adaptive wavefront control for environmental changes. Therefore, it is a powerful tool for the fabrication of biological cells and tissues, because they have free form, variable, and deformable structures. In this paper, we present the principle and the experimental setup of holographic femtosecond laser processing, and the effective way for processing the biological sample. We demonstrate the femtosecond laser processing of biological materials and the processing properties.

  17. Diamond photonics platform enabled by femtosecond laser writing

    PubMed Central

    Sotillo, Belén; Bharadwaj, Vibhav; Hadden, J. P.; Sakakura, Masaaki; Chiappini, Andrea; Fernandez, Toney Teddy; Longhi, Stefano; Jedrkiewicz, Ottavia; Shimotsuma, Yasuhiko; Criante, Luigino; Osellame, Roberto; Galzerano, Gianluca; Ferrari, Maurizio; Miura, Kiyotaka; Ramponi, Roberta; Barclay, Paul E.; Eaton, Shane Michael

    2016-01-01

    Diamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV’s states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, still lacking is an efficient photonic fabrication method for diamond akin to the photolithographic methods that have revolutionized silicon photonics. Here, we report the first demonstration of three dimensional buried optical waveguides in diamond, inscribed by focused femtosecond high repetition rate laser pulses. Within the waveguides, high quality NV properties are observed, making them promising for integrated magnetometer or quantum information systems on a diamond chip. PMID:27748428

  18. Diamond photonics platform enabled by femtosecond laser writing.

    PubMed

    Sotillo, Belén; Bharadwaj, Vibhav; Hadden, J P; Sakakura, Masaaki; Chiappini, Andrea; Fernandez, Toney Teddy; Longhi, Stefano; Jedrkiewicz, Ottavia; Shimotsuma, Yasuhiko; Criante, Luigino; Osellame, Roberto; Galzerano, Gianluca; Ferrari, Maurizio; Miura, Kiyotaka; Ramponi, Roberta; Barclay, Paul E; Eaton, Shane Michael

    2016-10-17

    Diamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV's states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, still lacking is an efficient photonic fabrication method for diamond akin to the photolithographic methods that have revolutionized silicon photonics. Here, we report the first demonstration of three dimensional buried optical waveguides in diamond, inscribed by focused femtosecond high repetition rate laser pulses. Within the waveguides, high quality NV properties are observed, making them promising for integrated magnetometer or quantum information systems on a diamond chip.

  19. Diamond photonics platform enabled by femtosecond laser writing

    NASA Astrophysics Data System (ADS)

    Sotillo, Belén; Bharadwaj, Vibhav; Hadden, J. P.; Sakakura, Masaaki; Chiappini, Andrea; Fernandez, Toney Teddy; Longhi, Stefano; Jedrkiewicz, Ottavia; Shimotsuma, Yasuhiko; Criante, Luigino; Osellame, Roberto; Galzerano, Gianluca; Ferrari, Maurizio; Miura, Kiyotaka; Ramponi, Roberta; Barclay, Paul E.; Eaton, Shane Michael

    2016-10-01

    Diamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV’s states are isolated from environmental perturbations making their spin coherence comparable to trapped ions. An important breakthrough would be in connecting, using waveguides, multiple diamond NVs together optically. However, still lacking is an efficient photonic fabrication method for diamond akin to the photolithographic methods that have revolutionized silicon photonics. Here, we report the first demonstration of three dimensional buried optical waveguides in diamond, inscribed by focused femtosecond high repetition rate laser pulses. Within the waveguides, high quality NV properties are observed, making them promising for integrated magnetometer or quantum information systems on a diamond chip.

  20. Femtosecond Laser Microstructuring and Chalcogen Inclusion in Silicon

    DTIC Science & Technology

    2011-02-12

    laser pulses. We introduce the dopant into the microstructuring process as a powder spread on the surface of a silicon wafer . Using a powder allows us...silicon wafers with femtosecond laser pulses and then coating the surfaces with a layer of fluoroalkylsilane molecules. The laser irradiation creates...tosecond laser pulses.22-25 For the experiments described here, we used n-doped Si(100) wafers (F ) 1 Ω/m). Each silicon wafer was cleaned with a 15-min

  1. Response of graphene to femtosecond high-intensity laser irradiation

    SciTech Connect

    Roberts, Adam; Cormode, Daniel; Reynolds, Collin; Newhouse-Illige, Ty; LeRoy, Brian J.; Sandhu, Arvinder S.

    2011-08-01

    We study the response of graphene to high-intensity, 50-femtosecond laser pulse excitation. We establish that graphene has a high ({approx}3 x 10{sup 12} Wcm{sup -2}) single-shot damage threshold. Above this threshold, a single laser pulse cleanly ablates graphene, leaving microscopically defined edges. Below this threshold, we observe laser-induced defect formation leading to degradation of the lattice over multiple exposures. We identify the lattice modification processes through in-situ Raman microscopy. The effective lifetime of chemical vapor deposition grown graphene under femtosecond near-infrared irradiation and its dependence on laser intensity is determined. These results also define the limits of non-linear applications of graphene in femtosecond high-intensity regime.

  2. Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation

    SciTech Connect

    Liu, Wei-Tao; Wu, S.W.; Schuck, P.J.; Salmeron, Miquel; Shen, Y.R.; Wang, F.

    2010-07-01

    Upon femtosecond laser irradiation, a bright, broadband photoluminescence is observed from graphene at frequencies well above the excitation frequency. Analyses show that it arises from radiative recombination of a broad distribution of nonequilibrium electrons and holes, generated by rapid scattering between photoexcited carriers within tens of femtoseconds after the optical excitation. Its highly unusual characteristics come from the unique electronic and structural properties of graphene.

  3. Ambient femtosecond laser vaporization and nanosecond laser desorption electrospray ionization mass spectrometry.

    PubMed

    Flanigan, Paul; Levis, Robert

    2014-01-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of <100 fs to enable matrix-free laser vaporization with little or no fragmentation. When coupled to electrospray ionization, femtosecond laser vaporization provides a universal, rapid mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 10(13) W cm(-2) desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  4. Ambient Femtosecond Laser Vaporization and Nanosecond Laser Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Flanigan, Paul; Levis, Robert

    2014-06-01

    Recent investigations of ambient laser-based transfer of molecules into the gas phase for subsequent mass spectral analysis have undergone a renaissance resulting from the separation of vaporization and ionization events. Here, we seek to provide a snapshot of recent femtosecond (fs) duration laser vaporization and nanosecond (ns) duration laser desorption electrospray ionization mass spectrometry experiments. The former employs pulse durations of <100 fs to enable matrix-free laser vaporization with little or no fragmentation. When coupled to electrospray ionization, femtosecond laser vaporization provides a universal, rapid mass spectral analysis method requiring no sample workup. Remarkably, laser pulses with intensities exceeding 1013 W cm-2 desorb intact macromolecules, such as proteins, and even preserve the condensed phase of folded or unfolded protein structures according to the mass spectral charge state distribution, as demonstrated for cytochrome c and lysozyme. Because of the ability to vaporize and ionize multiple components from complex mixtures for subsequent analysis, near perfect classification of explosive formulations, plant tissue phenotypes, and even the identity of the manufacturer of smokeless powders can be determined by multivariate statistics. We also review the more mature field of nanosecond laser desorption for ambient mass spectrometry, covering the wide range of systems analyzed, the need for resonant absorption, and the spatial imaging of complex systems like tissue samples.

  5. Optical breakdown of air triggered by femtosecond laser filaments

    NASA Astrophysics Data System (ADS)

    Polynkin, Pavel; Moloney, Jerome V.

    2011-10-01

    We report experiments on the generation of dense plasma channels in ambient air using a dual laser pulse excitation scheme. The dilute plasma produced through the filamentation of an ultraintense femtosecond laser pulse is densified via avalanche ionization driven by a co-propagating multi-Joule nanosecond pulse.

  6. Formation of nanostructures under femtosecond laser ablation of metals

    SciTech Connect

    Ashitkov, S I; Romashevskii, S A; Komarov, P S; Burmistrov, A A; Agranat, M B; Zhakhovskii, V V; Inogamov, N A

    2015-06-30

    We present the results of studying the morphology of the modified surface of aluminium, nickel and tantalum after ablation of the surface layer by a femtosecond laser pulse. The sizes of characteristic elements of a cellular nanostructure are found to correlate with thermo-physical properties of the material and the intensity of laser radiation. (superstrong light fields)

  7. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Haisu; Tzortzakis, Stelios

    2016-05-01

    We demonstrate a reliable authentication method by femtosecond laser filament induced scattering surfaces. The stochastic nonlinear laser fabrication nature results in unique authentication robust properties. This work provides a simple and viable solution for practical applications in product authentication, while also opens the way for incorporating such elements in transparent media and coupling those in integrated optical circuits.

  8. Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass

    PubMed Central

    He, Fei; Liao, Yang; Lin, Jintian; Song, Jiangxin; Qiao, Lingling; Cheng, Ya; Sugioka, Koji

    2014-01-01

    Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent advancements in femtosecond laser processing of glass for a variety of microfluidic sensor applications. These include 3D integration of micro-/nanofluidic, optofluidic, electrofluidic, surface-enhanced Raman-scattering devices, in addition to fabrication of devices for microfluidic bioassays and lab-on-fiber sensors. This paper describes the unique characteristics of femtosecond laser processing and the basic concepts involved in femtosecond laser direct writing. Advanced spatiotemporal beam shaping methods are also discussed. Typical examples of microfluidic sensors fabricated using femtosecond lasers are then highlighted, and their applications in chemical and biological sensing are described. Finally, a summary of the technology is given and the outlook for further developments in this field is considered. PMID:25330047

  9. Femtosecond laser fabrication of monolithically integrated microfluidic sensors in glass.

    PubMed

    He, Fei; Liao, Yang; Lin, Jintian; Song, Jiangxin; Qiao, Lingling; Cheng, Ya; Sugioka, Koji

    2014-10-17

    Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent advancements in femtosecond laser processing of glass for a variety of microfluidic sensor applications. These include 3D integration of micro-/nanofluidic, optofluidic, electrofluidic, surface-enhanced Raman-scattering devices, in addition to fabrication of devices for microfluidic bioassays and lab-on-fiber sensors. This paper describes the unique characteristics of femtosecond laser processing and the basic concepts involved in femtosecond laser direct writing. Advanced spatiotemporal beam shaping methods are also discussed. Typical examples of microfluidic sensors fabricated using femtosecond lasers are then highlighted, and their applications in chemical and biological sensing are described. Finally, a summary of the technology is given and the outlook for further developments in this field is considered.

  10. CONTROLLING THE CHARACTERISTICS OF LASER LIGHT: Possibility of generating femtosecond laser pulses by a deflection method

    NASA Astrophysics Data System (ADS)

    Isaakyan, A. R.; Kolchin, K. V.; Makshantsev, B. I.

    1993-05-01

    The transmission of a laser beam through a multiple-prism traveling-wave deflector is examined theoretically. Femtosecond laser pulses can be generated through the use of such a deflector. Possibilities for using a deflector to measure the shape of pulses with a femtosecond time resolution are discussed.

  11. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy.

    PubMed

    Wise, Frank W

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging.

  12. Femtosecond Fiber Lasers Based on Dissipative Processes for Nonlinear Microscopy

    PubMed Central

    Wise, Frank W.

    2012-01-01

    Recent progress in the development of femtosecond-pulse fiber lasers with parameters appropriate for nonlinear microscopy is reviewed. Pulse-shaping in lasers with only normal-dispersion components is briefly described, and the performance of the resulting lasers is summarized. Fiber lasers based on the formation of dissipative solitons now offer performance competitive with that of solid-state lasers, but with the benefits of the fiber medium. Lasers based on self-similar pulse evolution in the gain section of a laser also offer a combination of short pulse duration and high pulse energy that will be attractive for applications in nonlinear bioimaging. PMID:23869163

  13. Femtosecond laser micromachined ridge waveguide lasers in Nd:YAG ceramics

    NASA Astrophysics Data System (ADS)

    Jia, Yuechen; Vázquez de Aldana, Javier R.; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng

    2013-12-01

    We report on the fabrication of ridge waveguides in Nd:YAG ceramic by using femtosecond laser micromachining of the surface of a He ion implanted planar waveguide. Under optical pump of 808 nm light, continuous wave waveguide lasers have been realized at 1.06 μm at room temperature in the Nd:YAG ceramic ridge waveguide system, reaching a maximum output power of 46 mW. The lasing threshold of ˜64.9 mW and the slope efficiency of 42.5% are obtained for the ridge waveguide system, which shows superior lasing performance to the Nd:YAG ceramic planar waveguide.

  14. Ultra-fast laser system

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V

    2014-01-21

    A laser system is provided which selectively excites Raman active vibrations in molecules. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and remote sensing.

  15. Femtosecond Laser Processing of Wide Bandgap Semiconductors and Their Applications

    NASA Astrophysics Data System (ADS)

    Phillips, Katherine Collett Furr

    This thesis explores the production, characterization, and water oxidation efficiency of wide bandgap semiconductors made through femtosecond-laser irradiation of various materials. Our investigation focuses on three main aspects: 1) producing titanium dioxide (TiO2) from titanium metal, 2) using our laser-made materials in a photoelectrochemical cell for water oxidation, and 3) utilizing the femtosecond laser to create a variety of other mixed metal oxides for further water oxidation studies and biological applications. We first discuss producing TiO2 and titanium nitride. We report that there is chemical selectivity at play in the femtosecond laser doping process so not all dopants in the surrounding atmosphere will necessarily be incorporated. We then show that the material made from laser-irradiation of titanium metal, when annealed, has a three-fold enhancement in overall water oxidation when irradiated with UV light. We attribute this enhancement through various material characterization methods to the creation of a more pure form of rutile TiO2 with less defects. We then present a variety of studies done with doping both TiO2 and other oxides with broadband photoelectrochemistry and offer that the dopant incorporation hurts the overall water oxidation rate. Lastly, we use the laser-treated titanium to test cell adhesion and viability. Our results demonstrate an ability to femtosecond-laser process semiconductors to produce materials that no one has made previously and study their properties using collaborations across chemistry and biology, yielding true interdisciplinary research.

  16. Monitoring femtosecond laser microscopic photothermolysis with multimodal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; McLean, David I.; Zeng, Haishan

    2016-02-01

    Photothermolysis induced by femtosecond (fs) lasers may be a promising modality in dermatology because of its advantages of high precision due to multiphoton absorption and deeper penetration due to the use of near infrared wavelengths. Although multiphoton absorption nonlinear effects are capable of precision targeting, the femtosecond laser photothermolysis could still have effects beyond the targeted area if a sufficiently high dose of laser light is used. Such unintended effects could be minimized by real time monitoring photothermolysis during the treatment. Targeted photothermolytic treatment of ex vivo mouse skin dermis was performed with tightly focused fs laser beams. Images of reflectance confocal microscopy (RCM), second harmonic generation (SHG), and two-photon fluorescence (TPF) of the mouse skins were obtained with integrated multimodal microscopy before, during, and after the laser treatment. The RCM, SHG, and TPF signal intensities of the treatment areas changed after high power femtosecond laser irradiation. The intensities of the RCM and SHG signals decreased when the tissue was damaged, while the intensity of the TPF signal increased when the photothermolysis was achieved. Moreover, the TPF signal was more susceptible to the degree of the photothermolysis than the RCM and SHG signals. The results suggested that multimodal microscopy is a potentially useful tool to monitor and assess the femtosecond laser treatment of the skin to achieve microscopic photothermolysis with high precision.

  17. Femtosecond lasers as novel tool in dental surgery

    NASA Astrophysics Data System (ADS)

    Serbin, J.; Bauer, T.; Fallnich, C.; Kasenbacher, A.; Arnold, W. H.

    2002-09-01

    There is a proven potential of femtosecond lasers for medical applications like cornea shaping [1], ear surgery or dental surgery [2]. Minimal invasive treatment of carious tissue has become an increasingly important aspect in modern dentistry. State of the art methods like grinding using turbine-driven drills or ablation by Er:YAG lasers [3] generate mechanical and thermal stress, thus generating micro cracks of several tens of microns in the enamel [4]. These cracks are starting points for new carious attacks and have to be avoided for long term success of the dental treatment. By using femtosecond lasers (1 fs=10 -15 s) for ablating dental tissue, these drawbacks can be overcome. We have demonstrated that femtosecond laser ablation offers a tool for crack-free generation of cavities in dental tissue. Furthermore, spectral analysis of the laser induced plasma has been used to indicate carious oral tissue. Our latest results on femtosecond laser dentistry will be presented, demonstrating the great potential of this kind of laser technology in medicine.

  18. Atmospheric detection applying Laguerre optics to femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Diaz Garcia, C.

    Development of new femtosecond lasers has revolutionized the active remote sensing systems Detection techniques based on light detection and ranging LIDAR have significantly improved thanks to this laser features All instruments based on LIDAR use a laser that transmits light out to a target This light interacts with and is reflected or scattered back to the instrument where it is analyzed Changes in the properties of the light enable to determine some characteristics of the target Different kinds of lasers are used depending on what is intended to measure A very important field of application has been found in the atmosphere The worrying levels of pollution and aerosol have made necessary the study of ozone profile atmospheric ozone solar radiation terrestrial radiation etc The presence of elements in the atmosphere such as ozone O3 oxygen O2 O4 nitrogen dioxide NO2 sulphur dioxide SO2 chlorine monoxide ClO or chlorine dioxide ClO2 can be detected using light in the infrared spectrum from 700 nm to 350um Each component has a different response to wavelength what allows determining if it appears and in what concentration At the same time the development of lasers specially those that generate ultrashort pulses obtains higher power levels higher spatial resolution and less distortion on the measurement producing better results They allow dynamic analysis in real time of chemical reactions and studies of ultrashort physics processes something not possible until now The purpose of this paper is not only for making a

  19. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery

    PubMed Central

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J. F.

    2014-01-01

    Abstract. Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuries in the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential use of laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ=2.94  μm), titanium:sapphire femtosecond laser system (λ=1700  nm), and Nd:glass femtosecond laser (λ=1053  nm). Bovine samples were ablated at fluences of 8 to 18  J/cm2 with the erbium:YAG laser, at a power of 300±15  mW with the titanium:sapphire femtosecond system, and at an energy of 3  μJ/pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18  J/cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates. PMID:25200394

  20. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery

    NASA Astrophysics Data System (ADS)

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J. F.

    2014-09-01

    Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuries in the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential use of laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ=2.94 μm), titanium:sapphire femtosecond laser system (λ=1700 nm), and Nd:glass femtosecond laser (λ=1053 nm). Bovine samples were ablated at fluences of 8 to 18 J/cm2 with the erbium:YAG laser, at a power of 300±15 mW with the titanium:sapphire femtosecond system, and at an energy of 3 μJ/pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18 J/cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates.

  1. Preclinical investigations of articular cartilage ablation with femtosecond and pulsed infrared lasers as an alternative to microfracture surgery.

    PubMed

    Su, Erica; Sun, Hui; Juhasz, Tibor; Wong, Brian J F

    2014-09-01

    Microfracture surgery is a bone marrow stimulation technique for treating cartilage defects and injuriesin the knee. Current methods rely on surgical skill and instrumentation. This study investigates the potential useof laser technology as an alternate means to create the microfracture holes. Lasers investigated in this study include an erbium:YAG laser (λ = 2.94 μm), titanium:sapphire femtosecond laser system (λ = 1700 nm), and Nd:glass femtosecond laser (λ = 1053 nm). Bovine samples were ablated at fluences of 8 to 18 J∕cm2 with the erbium:YAG laser, at a power of 300 ± 15 mW with the titanium:sapphire femtosecond system, and at an energy of 3 μJ∕pulse with the Nd:glass laser. Samples were digitally photographed and histological sections were taken for analysis. The erbium:YAG laser is capable of fast and efficient ablation; specimen treated with fluences of 12 and 18 J∕cm2 experienced significant amounts of bone removal and minimal carbonization with saline hydration. The femtosecond laser systems successfully removed cartilage but not clinically significant amounts of bone. Precise tissue removal was possible but not to substantial depths due to limitations of the systems. With additional studies and development, the use of femtosecond laser systems to ablate bone may be achieved at clinically valuable ablation rates.

  2. Nanostructures synthesis by femtosecond laser ablation of glasses

    NASA Astrophysics Data System (ADS)

    Vipparty, D.; Tan, B.; Venkatakrishnan, K.

    2012-10-01

    In this article, we investigate the variations in ablation dynamics that result in diverse nanostructures on SiO2 based glass samples. A three-dimensional fibrous nanoparticle agglomerate was observed on sodalime glass when exposed to femtosecond laser irradiation. The fused nanoparticles have diameters ranging from 30 nm to 70 nm. Long continuous nanofibers of extremely high aspect ratio (certain fibers up to 100 000:1) were obtained by exposing silica glass surface to femtosecond laser irradiation at MHz repetition rate in air. A nanostructure assembly comprising of nanofiber and nanoparticle agglomerates was also observed by ablating silica glass. From our experimental analysis, it was determined that variation in bandgap and material composition alters ablation dynamics and dictates the response of glass to femtosecond laser irradiation, ultimately leading to the formation of structures with varying morphology on silica and sodalime glass. The possible underlying mechanisms that produce such nanostructures on glass specimens have also been explored.

  3. Evidence of femtosecond-laser pulse induced cell membrane nanosurgery

    NASA Astrophysics Data System (ADS)

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y.

    2017-02-01

    The mechanism of femtosecond laser nanosurgical attachment is investigated in the following article. Using sub-10 femtosecond laser pulses with 800 nm central wavelength were used to attach retinoblastoma cells. During the attachment process the cell membrane phospholipid bilayers hemifuse into one shared phospholipid bilayer, at the location of attachment. Transmission electron microscopy was used in order to verify the above hypothesis. Based on the imaging results, it was concluded that the two cell membrane coalesce to form one single shared membrane. The technique of cell-cell attachment via femtosecond laser pulses could potentially serve as a platform for precise cell membrane manipulation. Manipulation of the cellular membrane is valuable for studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.

  4. Mimicking subsecond neurotransmitter dynamics with femtosecond laser stimulated nanosystems

    NASA Astrophysics Data System (ADS)

    Nakano, Takashi; Chin, Catherine; Myint, David Mo Aung; Tan, Eng Wui; Hale, Peter John; Krishna M., Bala Murali; Reynolds, John N. J.; Wickens, Jeff; Dani, Keshav M.

    2014-06-01

    Existing nanoscale chemical delivery systems target diseased cells over long, sustained periods of time, typically through one-time, destructive triggering. Future directions lie in the development of fast and robust techniques capable of reproducing the pulsatile chemical activity of living organisms, thereby allowing us to mimic biofunctionality. Here, we demonstrate that by applying programmed femtosecond laser pulses to robust, nanoscale liposome structures containing dopamine, we achieve sub-second, controlled release of dopamine - a key neurotransmitter of the central nervous system - thereby replicating its release profile in the brain. The fast delivery system provides a powerful new interface with neural circuits, and to the larger range of biological functions that operate on this short timescale.

  5. [Alternatives to femtosecond laser technology: subnanosecond UV pulse and ring foci for creation of LASIK flaps].

    PubMed

    Vogel, A; Freidank, S; Linz, N

    2014-06-01

    In refractive corneal surgery femtosecond (fs) lasers are used for creating LASIK flaps, dissecting lenticules and for astigmatism correction by limbal incisions. Femtosecond laser systems are complex and expensive and cutting precision is compromised by the large focal length associated with the commonly used infrared (IR) wavelengths. Based on investigations of the cutting dynamics, novel approaches for corneal dissection using ultraviolet A (UVA) picosecond (ps) pulses and ring foci from vortex beams are presented. Laser-induced bubble formation in corneal stroma was investigated by high-speed photography at 1-50 million frames/s. Using Gaussian and vortex beams of UVA pulses with durations between 200 and 850 ps the laser energy needed for easy removal of flaps created in porcine corneas was determined and the quality of the cuts by scanning electron microscopy was documented. Cutting parameters for 850 ps are reported also for rabbit eyes. The UV-induced and mechanical stress were evaluated for Gaussian and vortex beams. The results show that UVA picosecond lasers provide better cutting precision than IR femtosecond lasers, with similar processing times. Cutting energy decreases by >50 % when the laser pulse duration is reduced to 200 ps. Vortex beams produce a short, donut-shaped focus allowing efficient and precise dissection along the corneal lamellae which results in a dramatic reduction of the absorbed energy needed for cutting and of mechanical side effects as well as in less bubble formation in the cutting plane. A combination of novel approaches for corneal dissection provides the option to replace femtosecond lasers by compact UVA microchip laser technology. Ring foci are also of interest for femtosecond laser surgery, especially for improved lenticule excision.

  6. Surface treatment of CFRP composites using femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Oliveira, V.; Sharma, S. P.; de Moura, M. F. S. F.; Moreira, R. D. F.; Vilar, R.

    2017-07-01

    In the present work, we investigate the surface treatment of carbon fiber-reinforced polymer (CFRP) composites by laser ablation with femtosecond laser radiation. For this purpose, unidirectional carbon fiber-reinforced epoxy matrix composites were treated with femtosecond laser pulses of 1024 nm wavelength and 550 fs duration. Laser tracks were inscribed on the material surface using pulse energies and scanning speeds in the range 0.1-0.5 mJ and 0.1-5 mm/s, respectively. The morphology of the laser treated surfaces was investigated by field emission scanning electron microscopy. We show that, by using the appropriate processing parameters, a selective removal of the epoxy resin can be achieved, leaving the carbon fibers exposed. In addition, sub-micron laser induced periodic surface structures (LIPSS) are created on the carbon fibers surface, which may be potentially beneficial for the improvement of the fiber to matrix adhesion in adhesive bonds between CFRP parts.

  7. Programmable femtosecond laser pulses in the ultraviolet

    SciTech Connect

    Hacker, M.; Feurer, T.; Sauerbrey, R.; Lucza, T.; Szabo, G.

    2001-06-01

    Using a combination of a zero-dispersion compressor and spectrally compensated sum-frequency generation, we have produced amplitude-modulated femtosecond pulses in the UV at 200 nm. {copyright} 2001 Optical Society of America

  8. Analysis of chirality by femtosecond laser ionization mass spectrometry.

    PubMed

    Horsch, Philipp; Urbasch, Gunter; Weitzel, Karl-Michael

    2012-09-01

    Recent progress in the field of chirality analysis employing laser ionization mass spectrometry is reviewed. Emphasis is given to femtosecond (fs) laser ionization work from the author's group. We begin by reviewing fundamental aspects of determining circular dichroism (CD) in fs-laser ionization mass spectrometry (fs-LIMS) discussing an example from the literature (resonant fs-LIMS of 3-methylcyclopentanone). Second, we present new data indicating CD in non-resonant fs-LIMS of propylene oxide.

  9. Femtosecond laser bone ablation with a high repetition rate fiber laser source.

    PubMed

    Mortensen, Luke J; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C; Xu, Chris; Intini, Giuseppe; Lin, Charles P

    2015-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process.

  10. Absorption of laser radiation by femtosecond laser-induced plasma of air and its emission characteristics

    NASA Astrophysics Data System (ADS)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.

    2015-11-01

    The energy absorbed by femtosecond laser plasma has nonlinear dependence on incident laser energy. The threshold power for plasma formation is 5.2 GW. Emission of nitrogen molecule, nitrogen molecule ion, atomic oxygen (unresolved triplet O I 777 nm) and nitrogen (triplet N I 742.4, 744.3 and 746.8 nm) lines is detected. Molecular emission consists of second positive and firs negative systems of nitrogen. Time-resolved spectroscopy of plasmas shows short molecular line emission (up to 1 ns) and long atomic line emission (up to 150 ns).

  11. Analysis on volume grating induced by femtosecond laser pulses.

    PubMed

    Zhou, Keya; Guo, Zhongyi; Ding, Weiqiang; Liu, Shutian

    2010-06-21

    We report on a kind of self-assembled volume grating in silica glass induced by tightly focused femtosecond laser pulses. The formation of the volume grating is attributed to the multiple microexplosion in the transparent materials induced by the femtosecond pulses. The first order diffractive efficiency is in dependence on the energy of the pulses and the scanning velocity of the laser greatly, and reaches as high as 30%. The diffraction pattern of the fabricated grating is numerically simulated and analyzed by a two dimensional FDTD method and the Fresnel Diffraction Integral. The numerical results proved our prediction on the formation of the volume grating, which agrees well with our experiment results.

  12. Toward a sub-terawatt mid-IR (4-5 μm) femtosecond hybrid laser system based on parametric seed pulse generation and amplification in Fe2+:ZnSe

    NASA Astrophysics Data System (ADS)

    Potemkin, F. V.; Bravy, B. G.; Kozlovsky, V. I.; Korostelin, Yu V.; Migal, E. A.; Podmar'kov, Yu P.; Podshivalov, A. A.; Platonenko, V. T.; Firsov, V. V.; Frolov, M. P.; Gordienko, V. M.

    2016-01-01

    For the first time, an experimentally measured seed pulse gain of about 2 cm-1 allows possibilities in the scaling power of such a femtosecond laser system in terawatts. The concept of a subterawatt power level hybrid femtosecond mid-IR (4-5 μm) laser system, based on a weak pulse from an optical parametric mid-IR seeder that is amplified in chalcogenide monocrystalline Fe2+:ZnSe, to gain medium has been proposed and designed. The method and approach for optimizing the choice of nonlinear medium, its length, and the required light intensity for the efficient non-linear self-compression of an ultrashort pulse has also been proposed and considered.

  13. Multiphoton tomography, transfection, and nanosurgery with <2-nJ, 80-MHz femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten

    2004-06-01

    Biomedical applications of low-energy (< 2nJ) near infrared (NIR) femtosecond laser pulses provided by compact, turn-key Ti:sapphire lasers are presented in this review. Applications include (i) ultrahigh resolution optical diagnostics ("optical biopsies"), (ii) gene therapy by optical targeted transfection of cells, and (iii) ultraprecise laser therapy ("nanosurgery"). The novel femtosecond laser system DermaInspec (JenLab GmbH) enables for the first time in vivo deep tissue imaging of intracellular compartments with submicron spatial and picosecond temporal resolution in patients with dermatological disorders. Using the system FemtOcut, intracellular surgery, optical gene transfer, and intraocular refractive surgery can be performed. The major process behind the diagnostical and therapeutical laser effects is non-resonant multiphoton absorption which results in two-photon autofluorescence and second harmonic generation at transient intensities of GW/cm2 as well as multiphoton ionization and plasma formation at TW/cm2 intensities, respectively.

  14. Time resolved digital-holographic analysis of femtosecond laser-induced photodisruption

    NASA Astrophysics Data System (ADS)

    Saerchen, Emanuel; Wenzel, Johannes; Antonopoulos, Georgios; Krueger, Alexander; Lubatschowski, Holger; Ripken, Tammo

    2016-03-01

    Femtosecond laser oscillator systems with low pulse energy (< 1 μJ) and high repetition rate (MHz) are increasingly used for precise, fast and safe eye surgery. Therefore, the laser tissue interaction process is of great interest to optimize and improve established and future surgical protocols. Besides, using faster laser systems leads to unintended self-induced interaction effects, where a femtosecond laser pulse modifies the vicinity in the material in such a way that the focus of following laser pulses is changed. We used a femtosecond oscillator laser system with high repetition rate and 66 nJ pulse energy to produce photodisruption in water. Water was used as phantom material for ocular tissue, because tissue mainly consists of water. A custom made digital-holographic system was used to measure the temporal material modification from picoseconds until seconds after occurrence of the photodisruption. For illumination of the sample we used either a continuously light source or the femtosecond laser pulse itself in a pump-probe configuration. The holographic system provides quantitative data of phase difference Δφ for the full field of view of several tenth of micrometers. Phase difference is equivalent to the laser induced change in the material's refractive index which can alter focusing conditions of following laser pulses and might impair surgical outcome. We obtained the largest change in Δφ during the first picoseconds, followed by a slow relaxation of Δφ within some milliseconds. The results of time resolved measurements of the laser induced material modification will help to optimize scanning schemes in ocular surgery.

  15. Inactivation of viruses by coherent excitations with a low power visible femtosecond laser

    PubMed Central

    Tsen, KT; Tsen, Shaw-Wei D; Chang, Chih-Long; Hung, Chien-Fu; Wu, T-C; Kiang, Juliann G

    2007-01-01

    Background Resonant microwave absorption has been proposed in the literature to excite the vibrational states of microorganisms in an attempt to destroy them. But it is extremely difficult to transfer microwave excitation energy to the vibrational energy of microorganisms due to severe absorption of water in this spectral range. We demonstrate for the first time that, by using a visible femtosecond laser, it is effective to inactivate viruses such as bacteriophage M13 through impulsive stimulated Raman scattering. Results and discussion By using a very low power (as low as 0.5 nj/pulse) visible femtosecond laser having a wavelength of 425 nm and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power density was greater than or equal to 50 MW/cm2. The inactivation of M13 phages was determined by plaque counts and had been found to depend on the pulse width as well as power density of the excitation laser. Conclusion Our experimental findings lay down the foundation for an innovative new strategy of using a very low power visible femtosecond laser to selectively inactivate viruses and other microorganisms while leaving sensitive materials unharmed by manipulating and controlling with the femtosecond laser system. PMID:17550590

  16. In vivo femtosecond laser subsurface scleral treatment in rabbit eyes.

    PubMed

    Chai, Dongyul; Chaudhary, Gautam; Mikula, Eric; Sun, Hui; Kurtz, Ron; Juhasz, Tibor

    2010-09-01

    The progression of glaucoma can be reduced or delayed by reducing intraocular pressure (IOP). The properties of femtosecond laser surgery, such as markedly reduced collateral tissue damage, coupled with the ability to achieve isolated subsurface surgical effects in the sclera, make this technology a promising candidate in glaucoma management. In this pilot study we demonstrate the in vivo creation of partial thickness subsurface drainage channels with the femtosecond laser in the sclera of rabbit eyes in order to increase aqueous humor (AH) outflow. A femtosecond laser beam tuned to a 1.7 microm wavelength was scanned along a rectangular raster pattern to create the partial thickness subsurface drainage channels in the sclera of one eye of each of the four rabbits included in this pilot study. IOP was measured before and 20 minutes after the laser treatment to evaluate the acute effect of the procedure. OCT images verified the creation of the partial thickness subsurface scleral channels in the eyes of the in vivo rabbits. Comparison of pre- and postoperative IOP measurements in treated and control eyes revealed a reduction in the intraocular pressure due to the increased rate of AH outflow resulted in by the presence of the partial thickness scleral channels. The creation of partial thickness subsurface drainage channels was demonstrated in the sclera of in vivo rabbit eyes with a 1.7 microm wavelength femtosecond laser. Reduction in IOP achieved by the partial thickness channels suggests potential utility in the treatment of elevated IOP. 2010 Wiley-Liss, Inc.

  17. Silicon precipitation via photoinduced reaction using femtosecond laser.

    PubMed

    Nishimura, Masakazu; Kanehira, Shingo; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki

    2011-11-01

    Silicon precipitation inside a glass is an important technique for silicon photonics. We successfully precipitated silicon inside silicate glasses containing an Al metal film using femtosecond laser irradiation. First, the Al-inserted sandwiched glass was fabricated by the direct bonding method. The results of a tensile test indicated that the adhesive strength of the sandwich structure reached approximately 4 MPa. Next, femtosecond laser pulses were focused at the Al/glass interface in the sandwich structure. A transmission electron microscopy photograph at the focus of the laser showed that the Al particles were dispersed into the glass substrate to a depth of approximately 2 microm from the initial Al layer. In addition, Raman spectra indicated that silicon had formed at the interface between the glass and Al film after the laser irradiation. The morphology or the particle size of the precipitated silicon was successfully modified by changing the repetition rate or the pulse energy of the laser.

  18. Wavelength Effects In Femtosecond Pulsed Laser Ablation And Deposition

    SciTech Connect

    Castillejo, Marta; Nalda, Rebeca de; Oujja, Mohamed; Sanz, Mikel

    2010-10-08

    Ultrafast pulsed laser irradiation of solid materials is highly attractive for the micro-and nanostructuring of substrates and for the fabrication of nanostructured deposits. Femtosecond laser pulses promote efficient material removal with reduced heat transfer and high deposition rates of nanometer scale particles free of microscopic particulates. Most of the studies to date have been performed with light pulses centered around the peak wavelength of the Titanium:Sapphire laser, around 800 nm. Analysis of the process over a broader range of wavelengths can provide important information about the processes involved and serve as experimental tests for advanced theoretical models. We report on our current investigations on the effect that laser wavelength of femtosecond pulses has on the superficial nanostructuring induced on biopolymer substrates, and on the characteristics of nanostructured deposits grown by pulsed laser deposition from semiconductor targets.

  19. Femtosecond laser-induced electronic plasma at metal surface

    SciTech Connect

    Chen Zhaoyang; Mao, Samuel S.

    2008-08-04

    We develop a theoretical analysis to model plasma initiation at the early stage of femtosecond laser irradiation of metal surfaces. The calculation reveals that there is a threshold intensity for the formation of a microscale electronic plasma at the laser-irradidated metal surface. As the full width at half maximum of a laser pulse increases from 15 to 200 fs, the plasma formation threshold decreases by merely about 20%. The dependence of the threshold intensity on laser pulse width can be attributed to laser-induced surface electron emission, in particular due to the effect of photoelectric effect.

  20. Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation

    PubMed Central

    Wang, Hsiao-Wei; Cheng, Chung-Wei; Li, Ching-Wen; Chang, Han-Wei; Wu, Ping-Han; Wang, Gou-Jen

    2012-01-01

    One of the persistent challenges confronting tissue engineering is the lack of intrinsic microvessels for the transportation of nutrients and metabolites. An artificial microvascular system could be a feasible solution to this problem. In this study, the femtosecond laser ablation technique was implemented for the fabrication of pillared microvessel scaffolds of polylactic-co-glycolic acid (PLGA). This novel scaffold facilitates implementation of the conventional cell seeding process. The progress of cell growth can be observed in vitro by optical microscopy. The problems of becoming milky or completely opaque with the conventional PLGA scaffold after cell seeding can be resolved. In this study, PLGA microvessel scaffolds consisting of 47 μm × 80 μm pillared branches were produced. Results of cell culturing of bovine endothelial cells demonstrate that the cells adhere well and grow to surround each branch of the proposed pillared microvessel networks. PMID:22605935

  1. Comparison of laser in situ keratomileusis flaps created by 2 femtosecond lasers.

    PubMed

    Zheng, Yan; Zhou, Yuehua; Zhang, Jing; Liu, Qian; Zhai, Changbin; Wang, Yonghua

    2015-03-01

    To compare flap morphology created by the WaveLight FS200 femtosecond laser and the VisuMax femtosecond laser, assessing the uniformity, accuracy, and predictability of flap creation. A total of 400 eyes had corneal flaps created with the WaveLight FS200 femtosecond laser (200 eyes) or the VisuMax femtosecond laser (200 eyes). The desired flap thickness was 110 μm. At 1 week postoperatively, all eyes were evaluated with RTVue Fourier-domain optical coherence tomography. Dimensions of the flaps were tested for their regularity, uniformity, accuracy, and predictability comparison. One week after surgery, the central flap thickness and the mean flap thickness of the FS200 group were 105.4 ± 3.4 μm and 105.7 ± 2.6 μm, respectively. They were both thinner than those of the VisuMax group, which were 110.8 ± 3.9 μm and 111.3 ± 2.3 μm, respectively. The mean deviation between the achieved and attempted flap thickness of the FS200 group (5.2 ± 1.9 μm) was greater than that of the VisuMax group (3.2 ± 1.8 μm). Flap thickness measurements at 36 points in both groups were close to the intended thickness. Morphology of the flaps in the 0-, 45-, 90-, and 135-degree lines created by the FS200 femtosecond laser and VisuMax femtosecond laser were uniform and regular. Flap dimensions created by the WaveLight FS200 femtosecond laser and VisuMax femtosecond laser were uniform and regular. Although the flap thickness created by the FS200 was less than that created by the VisuMax, measurements of both femtosecond lasers were close to the intended thickness.

  2. Laser-driven plasma wakefield electron acceleration and coherent femtosecond pulse generation in X-ray and gamma ranges

    NASA Astrophysics Data System (ADS)

    Trunov, V. I.; Lotov, K. V.; Gubin, K. V.; Pestryakov, E. V.; Bagayev, S. N.; Logachev, P. V.

    2017-01-01

    The laser wakefield acceleration (LWFA) of electrons in capillaries and gas jets followed by inverse Compton scattering of high intensity femtosecond laser pulses is discussed. The drive and scattered pulses will be produced by the two-channel multi-terawatt laser system developed in ILP SB RAS.

  3. Laser system using ultra-short laser pulses

    DOEpatents

    Dantus, Marcos; Lozovoy, Vadim V.; Comstock, Matthew

    2009-10-27

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  4. Keratin film ablation for the fabrication of brick and mortar skin structure using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Haq, Bibi Safia; Khan, Hidayat Ullah; Dou, Yuehua; Alam, Khan; Attaullah, Shehnaz; Zari, Islam

    2015-09-01

    The patterning of thin keratin films has been explored to manufacture model skin surfaces based on the "bricks and mortar" view of the relationship between keratin and lipids. It has been demonstrated that laser light is capable of preparing keratin-based "bricks and mortar" wall structure as in epidermis, the outermost layer of the human skin. "Bricks and mortar" pattern in keratin films has been fabricated using an ArF excimer laser (193 nm wavelength) and femtosecond laser (800 and 400 nm wavelength). Due to the very low ablation threshold of keratin, femtosecond laser systems are practical for laser processing of proteins. These model skin structures are fabricated for the first time that will help to produce potentially effective moisturizing products for the protection of skin from dryness, diseases and wrinkles.

  5. Density variation in fused silica exposed to femtosecond laser

    NASA Astrophysics Data System (ADS)

    Champion, Audrey; Bellouard, Yves

    2012-01-01

    Fused silica (a-SiO2) exposure to low-energy femtosecond laser pulses leads to interesting effects such as a local increase of etching rate and/or a local increase of refractive index. Up to now the exact modifications occurring in the glass matrix after exposure remains elusive and various hypotheses among which the formation of color centers or of densified zones have been proposed. In the densification model, shorter SiO2 rings form in the glass matrix leading to an enhanced etching rate. In this paper, we investigate quantitatively the amount of volume variation occurring in well-defined laser exposed areas. Our method is based on the deflection of glass cantilevers and hypotheses from classical beam theory. Specifically, 20-mm long cantilevers are fabricated using low-energy femtosecond laser pulses. After chemical etching, the cantilevers are exposed a second time to the same femtosecond laser but only in their upper-half thickness and this time, without a subsequent etching step. We observe micron-scale displacements at the cantilever tips that we use to estimate the volume variation in laser affected zones. Our results not only show that in the regime where nanogratings form (so called type II structures), laser affected zones expand but also provide a quantitative method to estimate the amount of stress as a function of the laser exposure parameters.

  6. Application of femtosecond laser pulses for microfabrication of transparent media

    NASA Astrophysics Data System (ADS)

    Juodkazis, S.; Matsuo, S.; Misawa, H.; Mizeikis, V.; Marcinkevicius, A.; Sun, H.-B.; Tokuda, Y.; Takahashi, M.; Yoko, T.; Nishii, J.

    2002-09-01

    Femtosecond laser microfabrication of 3D optical memories and photonic crystal (PhC) structures in solid glasses and liquid resins are demonstrated. The optical memories can be read out from both transmission and emission images. The PhC structures reveal clear signatures of photonic bandgap (PBG) and microcavity formation.

  7. Diffractive variable attenuator for femtosecond laser radiation control.

    PubMed

    Poleshchuk, Alexander G; Nasyrov, Ruslan K; Cherkashin, Vadim V; Dubov, Mykhaylo V; Mezentsev, Vladimir M; Bennion, Ian

    2009-02-01

    We present a diffractive phase variable attenuator for femtosecond laser radiation control. It allows the control of beam power up to 0.75.10(13) W/cm(2) without introducing serious distortions in spectra and beam shape while it operates in zero order diffraction. The attenuator can operate with wavelengths from DUV to IR.

  8. Femtosecond laser etching of dental enamel for bracket bonding.

    PubMed

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  9. Enhanced operation of femtosecond lasers and applications in cell transfection.

    PubMed

    Brown, Christian T A; Stevenson, David J; Tsampoula, Xanthi; McDougall, Craig; Lagatsky, Alexander A; Sibbett, Wilson; Gunn-Moore, Frank J; Dholakia, Kishan

    2008-08-01

    In this work we present a review and discussion on the enhancement of femtosecond (fs) lasers for use within biophotonics with a particular focus on their use in optical transfection techniques. We describe the broad range of source options now available for the generation of femtosecond pulses before briefly reviewing the application of fs laser in optical transfection studies. We show that major performance enhancements may be obtained by optimising the spatial and temporal performance of the laser source before considering possible future directions in this field. In relation to optical transfection we describe how such laser sources initiate a multiphoton process to permeate the cell membrane in a transient fashion. We look at aspects of this technique including the ability to combine transfection with optical trapping. For future implementation of such transfection we explore the role of new sources and "nondiffracting" light fields.

  10. Universal threshold for femtosecond laser ablation with oblique illumination

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Long; Cheng, Weibo; Petrarca, Massimo; Polynkin, Pavel

    2016-10-01

    We quantify the dependence of the single-shot ablation threshold on the angle of incidence and polarization of a femtosecond laser beam, for three dissimilar solid-state materials: a metal, a dielectric, and a semiconductor. Using the constant, linear value of the index of refraction, we calculate the laser fluence transmitted through the air-material interface at the point of ablation threshold. We show that, in spite of the highly nonlinear ionization dynamics involved in the ablation process, the so defined transmitted threshold fluence is universally independent of the angle of incidence and polarization of the laser beam for all three material types. We suggest that angular dependence of ablation threshold can be utilized for profiling fluence distributions in ultra-intense femtosecond laser beams.

  11. Electron Bunch Timing with Femtosecond Precision in a Superconducting Free-Electron Laser

    SciTech Connect

    Loehl, F.; Arsov, V.; Felber, M.; Hacker, K.; Lorbeer, B.; Ludwig, F.; Matthiesen, K.-H.; Schlarb, H.; Schmidt, B.; Winter, A.; Jalmuzna, W.; Schmueser, P.; Schulz, S.; Zemella, J.; Szewinski, J.

    2010-04-09

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  12. Electron bunch timing with femtosecond precision in a superconducting free-electron laser.

    PubMed

    Löhl, F; Arsov, V; Felber, M; Hacker, K; Jalmuzna, W; Lorbeer, B; Ludwig, F; Matthiesen, K-H; Schlarb, H; Schmidt, B; Schmüser, P; Schulz, S; Szewinski, J; Winter, A; Zemella, J

    2010-04-09

    High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

  13. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    PubMed Central

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-01-01

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications. PMID:23478599

  14. Femtosecond laser-drilling-induced HgCdTe photodiodes.

    PubMed

    Zha, F-X; Li, M S; Shao, J; Yin, W T; Zhou, S M; Lu, X; Guo, Q T; Ye, Z H; Li, T X; Ma, H L; Zhang, B; Shen, X C

    2010-04-01

    Femtosecond-laser drilling may induce holes in HgCdTe with morphology similar to that induced by ion-milling in loophole technique. So-formed hole structures are proven to be pn junction diodes by the laser beam induced current characterization as well as the conductivity measurement. Transmission and photoluminescence spectral measurements on a n-type dominated hole-array structure give rise to different results from those of an ion-milled sample.

  15. Bilateral macular injury caused by a femtosecond laser.

    PubMed

    de Juan-Marcos, L; Cañete-Campos, C; Cruz-González, F; López-Corral, A; Hernández-Galilea, E

    2014-11-01

    We describe the case of a 35-year-old man who arrived in the Emergency Department with bilateral macular injury caused by accidental exposure to an industrial femtosecond laser. Workers operating industrial lasers must protect their eyes properly when handling these devices. Otherwise, retina damage may occur which usually is recoverable. However, sometimes this damage causes permanent visual loss. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  16. Platinum nanostructures formed by femtosecond laser irradiation in water

    SciTech Connect

    Huo Haibin; Shen Mengyan

    2012-11-15

    Platinum nanostructures with various morphologies, such as spike-like, ripple-like and array-like structures, have been fabricated by 400 nm and 800 nm femtosecond laser irradiation in water. Different structures can be formed on the surfaces as a function of the laser wavelength, the fluence and scan methods. The reflectance measurements of these structures show much larger absorption on the irradiated surfaces than untreated platinum surfaces.

  17. Simulation of femtosecond pulsed laser ablation of metals

    NASA Astrophysics Data System (ADS)

    Davydov, R. V.; Antonov, V. I.

    2016-11-01

    In this paper a mathematical model for femtosecond laser ablation of metals is proposed, based on standard two-temperature model connected with 1D hydrodynamic equations. Wide-range equation of state has been developed. The simulation results are compared with experimental data for aluminium and copper. A good agreement for both metals with numerical results and experiment shows that this model can be employed for choosing laser parameters to better accuracy in nanoparticles production by ablation of metals.

  18. Femtosecond laser inscription of Bragg grating waveguides in bulk diamond

    NASA Astrophysics Data System (ADS)

    Bharadwaj, V.; Courvoisier, A.; Fernandez, T. T.; Ramponi, R.; Galzerano, G.; Nunn, J.; Booth, M. J.; Osellame, R.; Eaton, S. M.; Salter, P. S.

    2017-09-01

    Femtosecond laser writing is applied to form Bragg grating waveguides in the diamond bulk. Type II waveguides are integrated with a single pulse point-by-point periodic laser modification positioned towards the edge of the waveguide core. These photonic devices, operating in the telecommunications band, allow for simultaneous optical waveguiding and narrowband reflection from a 4th order grating. This fabrication technology opens the way towards advanced 3D photonic networks in diamond for a range of applications.

  19. Molecular dynamics investigation of mechanisms of femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Cheng, Changrui

    Laser micro-machining has been widely applied for material processing in many industries. A phenomenon called "laser ablation" is usually involved in the laser micro-machining process. Laser ablation is the process of material removal after the irradiation of a laser beam onto the material. It is commonly characterized by small temporal and spatial scales, extremely high material temperature and pressure, and strong non-equilibrium thermodynamic state. In this work, molecular dynamics (MD) simulation is conducted to study the femtosecond laser ablation of metals (nickel and copper) and dielectrics (fused silica, or glass). The laser heating and the ablation processes are numerically modeled, and the computation is accelerated by parallel processing technique. Both the pair-wise Morse potential and the many-body EAM (Embedded-Atom Method) potential are employed for metals. In the simulation of fused silica, the BKS (van Beest, Kramer and van Santen) potential is used, and the generation of free electrons, the energy transport from laser beam to free electrons and energy coupling between electrons and the lattice are considered. The main goal of this work is to illustrate the detailed processes of femtosecond laser ablation and to study its mechanisms. From the MD results, it is found that the mechanism of femtosecond laser ablation is strongly dependent on the laser fluences. For metals, low fluence laser ablation is mainly through phase explosion (homogeneous gas bubble nucleation), while spinodal decomposition is responsible for high fluence ablation. Ablation mechanism is determined by whether or not the material (liquid) temperature exceeds the critical temperature. For fused silica, the generation and existence of free electrons are found to affect ablation significantly, especially at low fluence, where Coulomb explosion is found to play an important role in material separation.

  20. Femtosecond laser ablation of brass in air and liquid media

    SciTech Connect

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2013-06-07

    Laser ablation of brass in air, water, and ethanol was investigated using a femtosecond laser system operating at a wavelength of 785 nm and a pulse width less than 130 fs. Scanning electron and optical microscopy were used to study the efficiency and quality of laser ablation in the three ablation media at two different ablation modes. With a liquid layer thickness of 3 mm above the target, ablation rate was found to be higher in water and ethanol than in air. Ablation under water and ethanol showed cleaner surfaces and less debris re-deposition compared to ablation in air. In addition to spherical particles that are normally formed from re-solidified molten material, micro-scale particles with varying morphologies were observed scattered in the ablated structures (craters and grooves) when ablation was conducted under water. The presence of such particles indicates the presence of a non-thermal ablation mechanism that becomes more apparent when ablation is conducted under water.

  1. Formation of aggregated nanoparticle spheres through femtosecond laser surface processing

    NASA Astrophysics Data System (ADS)

    Tsubaki, Alfred T.; Koten, Mark A.; Lucis, Michael J.; Zuhlke, Craig; Ianno, Natale; Shield, Jeffrey E.; Alexander, Dennis R.

    2017-10-01

    A detailed structural and chemical analysis of a class of self-organized surface structures, termed aggregated nanoparticle spheres (AN-spheres), created using femtosecond laser surface processing (FLSP) on silicon, silicon carbide, and aluminum is reported in this paper. AN-spheres are spherical microstructures that are 20-100 μm in diameter and are composed entirely of nanoparticles produced during femtosecond laser ablation of material. AN-spheres have an onion-like layered morphology resulting from the build-up of nanoparticle layers over multiple passes of the laser beam. The material properties and chemical composition of the AN-spheres are presented in this paper based on scanning electron microscopy (SEM), focused ion beam (FIB) milling, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX) analysis. There is a distinct difference in the density of nanoparticles between concentric rings of the onion-like morphology of the AN-sphere. Layers of high-density form when the laser sinters nanoparticles together and low-density layers form when nanoparticles redeposit while the laser ablates areas surrounding the AN-sphere. The dynamic nature of femtosecond laser ablation creates a variety of nanoparticles that make-up the AN-spheres including Si/C core-shell, nanoparticles that directly fragmented from the base material, nanoparticles with carbon shells that retarded oxidation, and amorphous, fully oxidized nanoparticles.

  2. Ocular safety limits for 1030nm femtosecond laser cataract surgery

    NASA Astrophysics Data System (ADS)

    Wang, Jenny; Sramek, Christopher; Paulus, Yannis M.; Lavinsky, Daniel; Schuele, Georg; Anderson, Dan; Dewey, David; Palanker, Daniel V.

    2013-03-01

    Application of femtosecond lasers to cataract surgery has added unprecedented precision and reproducibility but ocular safety limits for the procedure are not well-quantified. We present an analysis of safety during laser cataract surgery considering scanned patterns, reduced blood perfusion, and light scattering on residual bubbles formed during laser cutting. Experimental results for continuous-wave 1030 nm irradiation of the retina in rabbits are used to calibrate damage threshold temperatures and perfusion rate for our computational model of ocular heating. Using conservative estimates for each safety factor, we compute the limits of the laser settings for cataract surgery that optimize procedure speed within the limits of retinal safety.

  3. High-power synchronously pumped femtosecond Raman fiber laser.

    PubMed

    Churin, D; Olson, J; Norwood, R A; Peyghambarian, N; Kieu, K

    2015-06-01

    We report a high-power synchronously pumped femtosecond Raman fiber laser operating in the normal dispersion regime. The Raman laser is pumped by a picosecond Yb(3+)-doped fiber laser. It produces highly chirped pulses with energy up to 18 nJ, average power of 0.76 W and 88% efficiency. The pulse duration is measured to be 147 fs after external compression. We observed two different regimes of operation of the laser: coherent and noise-like regime. Both regimes were experimentally characterized. Numerical simulations are in a good agreement with experimental results.

  4. Materials processing with a tightly focused femtosecond laser vortex pulse.

    PubMed

    Hnatovsky, Cyril; Shvedov, Vladlen G; Krolikowski, Wieslaw; Rode, Andrei V

    2010-10-15

    In this Letter we present the first (to our knowledge) demonstration of material modification using tightly focused single femtosecond laser vortex pulses. Double-charge femtosecond vortices were synthesized with a polarization-singularity beam converter based on light propagation in a uniaxial anisotropic medium and then focused using moderate- and high-NA optics (viz., NA=0.45 and 0.9) to ablate fused silica and soda-lime glass. By controlling the pulse energy, we consistently machine micrometer-size ring-shaped structures with <100nm uniform groove thickness.

  5. Femtosecond laser pulse induced phase transition of Cr-doped Sb2Te1 films studied with a pump-probe system

    NASA Astrophysics Data System (ADS)

    Jiang, Minghui; Wang, Qing; Lei, Kai; Wang, Yang; Liu, Bo; Song, Zhitang

    2016-10-01

    The Femtosecond laser pulse induced phase transition dynamics of Cr-doped Sb2Te1 films was studied by real-time reflectivity measurements with a pump-probe system. It was found that crystallization of the as-deposited CrxSb2Te1 phase-change thin films exhibits a multi-stage process lasting for about 40ns.The time required for the multi-stage process seems to be not related to the contents of Cr element. The durations of the crystallization and amorphization processes are approximately the same. Doping Cr into Sb2Te1 thin film can improve its photo-thermal stability without obvious change in the crystallization rate. Optical images and image intensity cross sections are used to visualize the transformed regions. This work may provide further insight into the phase-change mechanism of CrxSb2Te1 under extra-non-equilibrium conditions and aid to develop new ultrafast phase-change memory materials.

  6. Comparison of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon.

    PubMed

    Poitrasson, Franck; Mao, Xianglei; Mao, Samuel S; Freydier, Rémi; Russo, Richard E

    2003-11-15

    We compared the analytical performance of ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The benefit of ultrafast lasers was evaluated regarding thermal-induced chemical fractionation, that is otherwise well known to limit LA-ICPMS. Both lasers had a Gaussian beam energy profile and were tested using the same ablation system and ICPMS analyzer. Resulting crater morphologies and analytical signals showed more straightforward femtosecond laser ablation processes, with minimal thermal effects. Despite a less stable energy output, the ultrafast laser yielded elemental (Pb/U, Pb/Th) and Pb isotopic ratios that were more precise, repeatable, and accurate, even when compared to the best analytical conditions for the nanosecond laser. Measurements on NIST glasses, monazites, and zircon also showed that femtosecond LA-ICPMS calibration was less matrix-matched dependent and therefore more versatile.

  7. Laser ablation of iron: A comparison between femtosecond and picosecond laser pulses

    SciTech Connect

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2013-08-28

    In this study, a comparison between femtosecond (fs) and picosecond (ps) laser ablation of electrolytic iron was carried out in ambient air. Experiments were conducted using a Ti:sapphire laser that emits radiation at 785 nm and at pulse widths of 110 ps and 130 fs, before and after pulse compression, respectively. Ablation rates were calculated from the depth of craters produced by multiple laser pulses incident normally to the target surface. Optical and scanning electron microscopy showed that picosecond laser pulses create craters that are deeper than those created by the same number of femtosecond laser pulses at the same fluence. Most of the ablated material was ejected from the ablation site in the form of large particles (few microns in size) in the case of picosecond laser ablation, while small particles (few hundred nanometers) were produced in femtosecond laser ablation. Thermal effects were apparent at high fluence in both femtosecond and picosecond laser ablation, but were less prevalent at low fluence, closer to the ablation threshold of the material. The quality of craters produced by femtosecond laser ablation at low fluence is better than those created at high fluence or using picosecond laser pulses.

  8. Material measurement method based on femtosecond laser plasma shock wave

    NASA Astrophysics Data System (ADS)

    Zhong, Dong; Li, Zhongming

    2017-03-01

    The acoustic emission signal of laser plasma shock wave, which comes into being when femtosecond laser ablates pure Cu, Fe, and Al target material, has been detected by using the fiber Fabry-Perot (F-P) acoustic emission sensing probe. The spectrum characters of the acoustic emission signals for three kinds of materials have been analyzed and studied by using Fourier transform. The results show that the frequencies of the acoustic emission signals detected from the three kinds of materials are different. Meanwhile, the frequencies are almost identical for the same materials under different ablation energies and detection ranges. Certainly, the amplitudes of the spectral character of the three materials show a fixed pattern. The experimental results and methods suggest a potential application of the plasma shock wave on-line measurement based on the femtosecond laser ablating target by using the fiber F-P acoustic emission sensor probe.

  9. Testing of a femtosecond pulse laser in outer space.

    PubMed

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-05-30

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future.

  10. Testing of a femtosecond pulse laser in outer space

    PubMed Central

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-01-01

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future. PMID:24875665

  11. Testing of a femtosecond pulse laser in outer space

    NASA Astrophysics Data System (ADS)

    Lee, Joohyung; Lee, Keunwoo; Jang, Yoon-Soo; Jang, Heesuk; Han, Seongheum; Lee, Sang-Hyun; Kang, Kyung-In; Lim, Chul-Woo; Kim, Young-Jin; Kim, Seung-Woo

    2014-05-01

    We report a test operation of an Er-doped fibre femtosecond laser which was conducted for the first time in outer space. The fibre-based ultrashort pulse laser payload was designed to meet space-use requirements, undergone through ground qualification tests and finally launched into a low-earth orbit early in 2013. Test results obtained during a one-year mission lifetime confirmed stable mode-locking all the way through although the radiation induced attenuation (RIA) in the Er-doped gain fibre caused an 8.6% reduction in the output power. This successful test operation would help facilitate diverse scientific and technological applications of femtosecond lasers in space and earth atmosphere in the near future.

  12. Application of femtosecond-laser induced nanostructures in optical memory.

    PubMed

    Shimotsuma, Yasuhiko; Sakakura, Masaaki; Miura, Kiyotaka; Qiu, Jiarong; Kazansky, Peter G; Fujita, Koji; Hirao, Kazuyuki

    2007-01-01

    The femtosecond laser induced micro- and nanostructures for the application to the three-dimensional optical data storage are investigated. We have observed the increase of refractive index due to local densification and atomic defect generation, and demonstrated the real time observation of photothermal effect after the femtosecond laser irradiation inside a glass by the transient lens (TrL) method. The TrL signal showed a damped oscillation with about an 800 ps period. The essential feature of the oscillation can be reproduced by the pressure wave creation and propagation to the outward direction from the irradiated region. The simulation based on elastodynamics has shown that a large thermoelastic stress is relaxed by the generation of the pressure wave. In the case of soda-lime glass, the velocity of the pressure wave is almost same as the longitudinal sound velocity at room temperature (5.8 microm/ns). We have also observed the localized photo-reduction of Sm3+ to Sm2+ inside a transparent and colorless Sm(3+)-doped borate glass. Photoluminescence spectra showed that some the Sm3+ ions in the focal spot within the glass sample were reduced to Sm2+ ions after femtosecond laser irradiation. A photo-reduction bit of 200 nm in three-dimensions can be recorded with a femtosecond laser and readout clearly by detecting the fluorescence excited by Ar+ laser (lambda = 488 nm). A photo-reduction bit can be also erased by photo-oxidation with a cw Ar+ laser (lambda = 514.5 nm). Since photo-reduction bits can be spaced 150 nm apart in a layer within glass, a memory capacity of as high as 1 Tbit can be achieved in a glass piece with dimensions of 10 mm x 10 mm x 1 mm. We have also demonstrated the first observation of the polarization-dependent periodic nanostructure formation by the interference between femtosecond laser light and electron acoustic waves. The observed nanostructures are the smallest embedded structures ever created by light. The period of self

  13. Non-infrared femtosecond lasers: status and prospects

    NASA Astrophysics Data System (ADS)

    Kahmann, Max; Gebs, Raphael; Fleischhaker, Robert; Zawischa, Ivo; Kleinbauer, Jochen; Russ, Simone; Bauer, Lara; Keller, Uwe; Faisst, Birgit; Budnicki, Aleksander; Sutter, Dirk

    2016-03-01

    The unique properties of ultrafast laser pulses pave the way to numerous novel applications. Particularly lasers in the sub-pico second regime, i.e. femtosecond lasers, in the last decade arrived at a level of reliability suitable for the industrial environment and now gain an increasing recognition since these pulse durations combine the advantages of precise ablation with higher efficiency especially in the case of processing metallic materials. However, for some micro processing applications the infrared wavelength of these lasers is still a limiting factor. Thus, to further broaden the range of possible applications, industrial femtosecond lasers should combine the advantages of femtosecond pulses and shorter wavelengths. To that extend, we present results obtained with a frequency doubled TruMicro 5000 FemtoEdition. We show that depending on the processed material, the higher photon energy as well as tighter focusing options of the shorter wavelength can open up a new regime of processing parameters. This regime is not accessible by infrared light, leading to a wider range of possible applications.

  14. Consequences of Femtosecond Laser Filament Generation Conditions in Standoff Laser Induced Breakdown Spectroscopy

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.; Phillips, Mark C.

    2016-08-08

    We investigate the role of femtosecond laser focusing conditions on ablation properties and its implications on analytical merits and standoff detection applications. Femtosecond laser pulses can be used for ablation either by tightly focusing or by using filaments generated during its propagation. We evaluated the persistence of atomic, and molecular emission features as well as time evolution of the fundamental properties (temperature and density) of ablation plumes generated using different methods.

  15. Femtosecond laser induced periodic nanostructures on titanium dioxide film for improving biocompatibility

    NASA Astrophysics Data System (ADS)

    Shinonaga, T.; Horiguchi, N.; Tsukamoto, M.; Nagai, A.; Yamashita, K.; Hanawa, T.; Matsushita, N.; Guoqiang, X.; Abe, N.

    2013-03-01

    Periodic nanostructures formation on Titanium dioxide (TiO2) film by scanning of femtosecond laser beam spot at fundamental and second harmonic wave is reported. Titanium (Ti) is one of the most widely used for biomaterials, because of its excellent anti-corrosion and high mechanical properties. However, Ti implant is typically artificial materials and has no biofunction. Hence, it is necessary for improving the bioactivity of Ti. Recently, coating of TiO2 film on Ti plate surface is useful methods to improve biocompatibility of Ti plate. Then, if periodic nanostructures were formed on the film surface, cell spreading might be controlled at one direction. We propose periodic nanostructures formation on TiO2 film by femtosecond laser irradiation. Cell spread could be controlled along the grooves of periodic nanostructures. In the experiments, the film was formed on Ti plate with an aerosol beam. A commercial femtosecond Ti : sapphire laser system was employed in our experiments. Periodic nanostructures, lying perpendicular to the laser electric field polarization vector, were formed on the film at fundamental and second harmonic wave. Periodic nanostructures were also produced on Ti plate with femtosecond laser. The period of periodic nanostructures on the film was much shorter than that on Ti plate. By cell test, there was a region of cell spreading along the grooves of periodic nanostructures on the film formed with femtosecond laser at fundamental wave. On bare film surface, cell spreading was observed at all direction. These results suggest that direction of cell spread could be controlled by periodic nanostructures formation on the film.

  16. Intraocular Lens Fragmentation Using Femtosecond Laser: An In Vitro Study

    PubMed Central

    Bala, Chandra; Shi, Jeffrey; Meades, Kerrie

    2015-01-01

    Purpose: To transect intraocular lenses (IOLs) using a femtosecond laser in cadaveric human eyes. To determine the optimal in vitro settings, to detect and characterize gasses or particles generated during this process. Methods: A femtosecond laser was used to transect hydrophobic and hydrophilic acrylic lenses. The settings required to enable easy separation of the lens fragment were determined. The gasses and particles generated were analysed using gas chromatography mass spectrometer (GC-MS) and total organic carbon analyzer (TOC), respectively. Results: In vitro the IOL fragments easily separated at the lowest commercially available energy setting of 1 μJ, 8-μm spot, and 2-μm line separation. No particles were detected in the 0.5- to 900-μm range. No significant gasses or other organic breakdown by products were detected at this setting. At much higher energy levels 12 μJ (4 × 6 μm spot and line separation) significant pyrolytic products were detected, which could be harmful to the eye. In cadaveric explanted IOL capsule complex the laser pulses could be applied through the capsule to the IOL and successfully fragment the IOL. Conclusion: IOL transection is feasible with femtosecond lasers. Further in vivo animal studies are required to confirm safety. Translational Relevance: In clinical practice there are a number of large intraocular lenses that can be difficult to explant. This in-vitro study examines the possibility of transecting the lasers quickly using femtosecond lasers. If in-vivo studies are successful, then this innovation could help ophthalmic surgeons in IOL explantation. PMID:26101721

  17. Experimental and numerical study of surface alloying by femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Gurevich, E. L.; Kittel, S.; Hergenröder, R.

    2012-01-01

    Here we report on experimental studies of femtosecond laser induced surface metal alloying. We demonstrate that layers of different metals can be mixed in a certain range of laser pulse energies. Numeric simulations demonstrate that the sub-surface melting and mixing is advantaged through the difference in the electron-phonon coupling constants of the metals in the multi-layer system. Dependence of the depth of the mixed layer on the number of laser pulses per unit area is studied. Numeric simulations illustrate physical picture of the laser alloying process.

  18. Porcine cadaver iris model for iris heating during corneal surgery with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Wang, Jiang; Yan, Ying; Juhasz, Tibor; Kurtz, Ron

    2015-03-01

    Multiple femtosecond lasers have now been cleared for use for ophthalmic surgery, including for creation of corneal flaps in LASIK surgery. Preliminary study indicated that during typical surgical use, laser energy may pass beyond the cornea with potential effects on the iris. As a model for laser exposure of the iris during femtosecond corneal surgery, we simulated the temperature rise in porcine cadaver iris during direct illumination by the femtosecond laser. Additionally, ex-vivo iris heating due to femtosecond laser irradiation was measured with an infrared thermal camera (Fluke corp. Everett, WA) as a validation of the simulation.

  19. Nanosecond component in a femtosecond laser pulse

    SciTech Connect

    Shneider, M. N.; Semak, V. V.; Zhang Zhili

    2012-11-15

    Experimental and computational results show that the coherent microwave scattering from a laser-induced plasma can be used for measuring the quality of a fs laser pulse. The temporal dynamics of the microwave scattered signal from the fs-laser induced plasma can be related to the effect of nanosecond tail of the fs laser pulse.

  20. Measurements of Intense Femtosecond Laser Pulse Propagation in Air

    NASA Astrophysics Data System (ADS)

    Ting, Antonio

    2004-11-01

    Intense femtosecond pulses generated from chirped pulse amplification (CPA) lasers can deliver laser powers many times above the critical power for self-focusing in air. Catastrophic collapse of the laser pulse is usually prevented by the defocusing of the plasma column formed when the laser intensity gets above the threshold for multiphoton ionization. The resultant laser/plasma filament can extend many meters as the laser pulse propagates in the atmosphere. We have carried out a series of experiments both for understanding the formation mechanisms of the filaments and the nonlinear effects such as white light and harmonics generation associated with them. Many applications of these filaments such as remote atmospheric breakdown, laser induced electrical discharge and femtosecond laser material interactions require direct measurements of their characteristics. Direct measurements of these filaments had been difficult because the high laser intensity ( ˜10^13 W/cm^2) can damage practically any optical diagnostics. A novel technique was invented to obtain the first absolute measurements of laser energy, transverse profile, fluence and spectral content of the filaments. We are investigating a ``remote atmospheric breakdown'' concept of remotely sensing chemical and biological compounds. A short intense laser pulse can be generated at a remote position by using the group velocity dispersion (GVD) of the air to compress an initially long, frequency negatively chirped laser pulse to generate the air breakdown and filaments. We have observed that nonlinear contributions to the laser spectrum through self-phase modulation can lead to modification of the linear GVD compression. We have also observed the generation of ultraviolet (UV) radiations from these filaments in air and the induced fluorescence by the UV radiation of a surrogate biological agent. These and other results such as laser induced electrical discharges will be presented.

  1. Polymer hydrophilicity and hydrophobicity induced by femtosecond laser direct irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Z. K.; Zheng, H. Y.; Lim, C. P.; Lam, Y. C.

    2009-09-01

    Controlled modification of surface wettability of polymethyl methacrylate (PMMA) was achieved by irradiation of PMMA surface with femtosecond laser pulses at various laser fluences and focus distances. Fluences from 0.40 to 2.1 J/cm2 produced a hydrophobic surface and 2.1 to 52.7 J/cm2 (maximum investigated) produced a hydrophilic surface. Fluences less than 0.31 J/cm2 had no effect on the wettability of the raw PMMA. This change in wettability was caused dominantly by laser induced chemical structure modification and not by a change in surface roughness.

  2. Wavelength optimization in femtosecond laser corneal surgery: experimental results

    NASA Astrophysics Data System (ADS)

    Crotti, C.; Deloison, F.; Peyrot, D. A.; Savoldelli, M.; Legeais, J.-M.; Roger, F.; Plamann, K.

    2009-07-01

    Femtosecond laser surgery in the volume of corneal tissue is difficult in the case of oedematous or pathological corneas: in those corneas, the propagation of the laser beam is perturbed by the optical scattering. This phenomenon can be greatly reduced by using a better suited laser wavelength. A series of ex vivo surgical experiments has been conducted at wavelengths around 1600 nm. The results have been compared to experiments performed at 800 nm and 1000 nm. We have compared penetration depth and incision quality as a function of wavelength and energy.

  3. Femtosecond laser surface texturing of a nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Semaltianos, N. G.; Perrie, W.; French, P.; Sharp, M.; Dearden, G.; Watkins, K. G.

    2008-12-01

    Femtosecond laser (180 fs, 775 nm, 1 kHz) surface modification of the nickel-based superalloy C263 is investigated. The laser beam was scanned onto areas on the substrate with macroscopic dimensions using different fluences ( F = 0.28-30 J/cm 2), speeds ( υ = 1-10 mm/s) and number of overscans (5-90). The evolution of surface morphology, roughness, ablation depth and volume ablation rate with laser micromachining parameters were determined. The surface morphology is characterized by ripples for low average powers while for high average powers the surface becomes porous.

  4. Live cell opto-injection by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Baumgart, J.; Bintig, W.; Ngezahayo, A.; Ertmer, W.; Lubatschowski, H.; Heisterkamp, A.

    2007-02-01

    Fluorescence imaging of cells and cell organelles requires labeling by fluorophores. The labeling of living cells is often done by transfection of fluorescent proteins. Viral vectors are transferring the DNA into the cell. To avoid the use of viruses, it is possible to perforate the cell membrane for example by electro-shocks, the so called electroporation, so that the fluorescent proteins can diffuse into the cell. This method causes cell death in up to 50% of the treated cells because the damage of the outer membrane is too large. A less lethal perforation of the cell membrane with high efficiency can be realized by femtosecond (fs) laser pulses. Transient pores are created by focusing the laser beam for some milliseconds on the membrane. Through this pore, the proteins can enter into the cell. This was demonstrated in a proof of principle experiment for a few cells, but it is essential to develop an opto-perforation system for large numbers of cells in order to obtain statistically significant samples for biological experiments. The relationship between pulse energy, irradiation time, repetition rate and efficacy of the transfer of a chromophor into the cells as well as the viability of the cells was analysed. The cell viability was observed up to 90 minutes after manipulation.

  5. Femtosecond laser electronic excitation tagging for aerodynamic and thermodynamic measurements

    NASA Astrophysics Data System (ADS)

    Calvert, Nathan David

    This thesis presents applications of Femtosecond Laser Electronic Excitation Tagging (FLEET) to a variety of aerodynamic and thermodynamic measurements. FLEET tagged line characteristics such as intensity, width and spectral features are investigated in various flow conditions (pressure, temperature, velocity, steadiness, etc.) and environments (gas composition) for both temporally and spatially instantaneous and averaged data. Special attention is drawn to the nature of first and second positive systems of molecular nitrogen and the ramifications on FLEET measurements. Existing laser-based diagnostic techniques are summarized and FLEET is directly compared with Particle Image Velocimetry (PIV) in various low speed flows. Multidimensional velocity, acceleration, vorticity and other flow parameters are extracted in supersonic free jets and within an enclosed in-draft tunnel test section. Probability distribution functions of the mean and standard deviation of critical flow parameters are unveiled by utilizing a Bayesian statistical framework wherein likelihood functions are established from prior and posterior distributions. Advanced image processing techniques based on fuzzy logic are applied to single-shot FLEET images with low signal-to-noise ratio to improve image quality and reduce uncertainty in data processing algorithms. Lastly, FLEET second positive and first negative emission are considered at a wide range of pressures to correct for changes in select rovibrational peak magnitude and shape due to density from which bulk gas temperature may be extracted.

  6. Investigation of temporal contrast effects in femtosecond pulse laser micromachining of metals.

    SciTech Connect

    Campbell, Benjamin (Pennsylvania State University, Freeport, PA); Palmer, Jeremy Andrew

    2006-06-01

    Femtosecond pulse laser drilling has evolved to become a preferred process for selective (maskless) micromachining in a variety of materials, including metals, polymers, semiconductors, ceramics, and living tissue. Manufacturers of state-of-the-art femtosecond laser systems advertise the inherent advantage of micromachining with ultra short pulses: the absence of a heat affected zone. In the ideal case, this leads to micro and nano scale features without distortion due to melt or recast. However, recent studies have shown that this is limited to the low fluence regime in many cases. High dynamic range autocorrelation studies were performed on two commercial Ti:sapphire femtosecond laser systems to investigate the possible presence of a nanosecond pedestal in the femtosecond pulse produced by chirped pulse amplification. If confirmed, nanosecond temporal phenomena may explain many of the thermal effects witnessed in high fluence micromachining. The material removal rate was measured in addition to feature morphology observations for percussion micro drilling of metal substrates in vacuum and ambient environments. Trials were repeated with proposed corrective optics installed, including a variable aperture and a nonlinear frequency doubling crystal. Results were compared. Although the investigation of nanosecond temporal phenomena is ongoing, early results have confirmed published accounts of higher removal rates in a vacuum environment.

  7. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    SciTech Connect

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael; Mazur, Eric

    2014-10-06

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  8. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    NASA Astrophysics Data System (ADS)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael; Mazur, Eric

    2014-10-01

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  9. Femtosecond laser-assisted LASIK improves quality of life.

    PubMed

    Meidani, Alexandra; Tzavara, Chara; Dimitrakaki, Christina; Pesudovs, Konrad; Tountas, Yannis

    2012-05-01

    To investigate the quality of life (QOL) outcomes of femtosecond laser-assisted LASIK using the Quality of Life Impact of Refractive Correction (QIRC) questionnaire. Translation of the QIRC questionnaire from English to Greek followed standard international protocols. The questionnaire was completed by 190 individuals, aged 18 to 39 years with myopia (range: -0.75 to -8.50 diopters) and corrected distance visual acuity (CDVA) of logMAR 0.2 or better (Snellen equivalent 20/32) in the worse eye. Half of this sample underwent LASIK with femtosecond laser flap creation and ablation with the Visx Star S4 IR excimer laser (Abbott Medical Optics). The questionnaire was scored with Rasch analysis. Validity was tested by internal consistency reliability (Cronbach's α) and repeatability by intraclass correlation coefficient (ICC) and Bland-Altman limits of agreement, convergent validity was examined with inter-item correlations, and construct validity was evaluated by known groups comparison analysis. The total QIRC score improved with femtosecond laser-assisted LASIK from mean 38.9±5.7 preoperatively to 53.7±5.1 postoperatively (P<.001). Among the pre-treatment and control groups, QIRC score was greater for those wearing contact lenses than those wearing spectacles (P<.01). The Greek version of the QIRC had good internal consistency reliability. Inter-item correlations were all significant (P<.001), ranging from 0.32 to 0.79. Repeatability was high (Bland-Altman limits of agreement were -6.72 to +5.41 and ICC for the total score was 0.98). Femtosecond laser-assisted LASIK leads to marked improvements in refractive error-related quality of life. This study also provides evidence for the reliability and validity of the Greek version of the QIRC questionnaire. Copyright 2012, SLACK Incorporated.

  10. Laser-induced fluorescence detection of hydroxyl (OH) radical by femtosecond excitation.

    PubMed

    Stauffer, Hans U; Kulatilaka, Waruna D; Gord, James R; Roy, Sukesh

    2011-05-15

    The development of a laser-induced fluorescence detection scheme for probing combustion-relevant species using a high-repetition-rate ultrafast laser is described. A femtosecond laser system with a 1 kHz repetition rate is used to induce fluorescence, following two-photon excitation (TPE), from hydroxyl (OH) radicals that are present in premixed laminar flames. The experimental TPE and one-photon fluorescence spectra resulting from broadband excitation into the (0,0) band of the OH A(2)∑(+)-X(2)Π system are compared to simulated spectra. Additionally, the effects of non-transform-limited femtosecond pulses on TPE efficiency is investigated. © 2011 Optical Society of America

  11. Influence of femtosecond laser ablation system parameters on the characteristics of induced particles: implications for LA-ICP-MS analysis of natural monazite

    NASA Astrophysics Data System (ADS)

    D'Abzac, F.; Seydoux-Guillaume, A.; Chmeleff, J.; Datas, L.; Poitrasson, F.

    2010-12-01

    The characteristics of Infra Red femtosecond laser-induced aerosols are studied for monazite (Moacyr) ablation, in order to evaluate optimal conditions for Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) analysis. Various parameters are tested within wide ranges in order to cover near all of the usual LA-ICP-MS settings: pulse energy (E0), pulse width (τ), ablation time (t), transport length (l), nature of the carrier gas. In order to study the influence of laser wavelength on LA-ICP-MS analysis, a third harmonic generator was used to convert the fundamental λ=800nm into a λ=266nm laser emission. Acquisition protocol is the same as in d’Abzac et al. (2010)1. Data are compared with a UV-nanosecond (λ=193nm) laser ablation system using a similar ICP-MS model. Transmission Electron Microscopy (TEM) reveals that particles morphologies and chemical compositions are not affected by any parameter. Melt droplets are observed only using argon. Electronic Low Pressure Impaction (ELPI) data show that the quantity of aerosol produced is affected by all parameters. Little changes on size distribution are noted with changing settings. Detectable variations are induced during crater deepening (poor evacuation of large particles), the transport length (deposition of smallest particles) and the use of helium (shift to smaller sizes). UV-ns-LA-ICP-MS results show signal intensities similar to IR-fs-LA-ICP-MS, but a deviation of 206Pb/238U ratio with t increased by a factor of ~33. Based on recent ID-TIMS values of 206Pb/238U ratio in Moacyr2, accuracy is increased by ~22% from UV-ns to IR-fs system and repeatability is improved by 2%. Optimal LA-ICP-MS settings are given relatively to the present analytical results and the previous studies dealing with the same system1, 3. Pulse width must remain under 500fs to avoid plasma shielding and thermal diffusion, ablation time should be limited to prevent high crater depths and poor aerosols wash out, transport length must be

  12. Effects of Yb:KYW thin-disk femtosecond laser ablation on enamel surface roughness

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2014-07-01

    This study aimed to quantitatively evaluate the surface roughness of enamel following ablation with a Yb:KYW thin-disk femtosecond pulsed laser at different fluences (F), scanning speeds and scanning line spacings. Thirty human extracted teeth were sectioned into crowns and roots along the cementum-enamel junction, and then the crowns were cut longitudinally into sheets about 1.5 mm thick. The samples were randomly divided into ten groups (n=3). Samples of groups 1-8 were irradiated with a femtosecond pulsed laser. These enamel samples were fixed on a stage at focus plane, and a laser beam irradiated onto the samples through a galvanometric scanning system, with which rectangular movement could be achieved. Samples of groups 9 and 10 were prepared with grinding instruments. Following ablation and preparation, the samples were examined for surface roughness with a three-dimensional laser profile measurement microscope. The results showed that scanning speed and scanning line spacing had little influence on the surface roughness of femtosecond pulsed laser-ablated enamel, except when F=4 J/cm2. When a lower fluence was used, the enamel surface roughness was higher, and vice versa. This study showed that various laser fluences, scanning speeds and scanning line spacings can affect and alter enamel surface roughness. Therefore, adequate parameters should be chosen to achieve the proper therapeutic benefits.

  13. Impact of the Femtosecond Laser in Line with the Femtosecond Laser-Assisted Cataract Surgery (FLACS) on the Anterior Chamber Characteristics in Comparison to the Manual Phacoemulsification.

    PubMed

    Pahlitzsch, Milena; Torun, Necip; Pahlitzsch, Marie Luise; Klamann, Matthias K J; Gonnermann, Johannes; Bertelmann, Eckart; Pahlitzsch, Thomas

    2017-01-01

    To assess the alterations of the anterior chamber conditions including laser flare photometry after femtosecond laser-assisted cataract surgery (FLACS) compared to the manual phacoemulsification. Data of n=70 FLACS (mean age 67.2 ± 8.9 years) and n=40 manual phacoemulsification (mean age 69.5 ± 9.6 years) were analyzed. The procedures were performed by LenSx Alcon, USA, and Alcon Infiniti Vision System, USA. The following parameters were recorded: laser flare photometry (Kowa FM 700, Japan), anterior chamber (AC) depth, AC volume, AC angle (Pentacam, Oculus Inc., Germany), lens density, pupil diameter, endothelial cell count and pachymetry. The analysis was performed preoperatively, immediately after femtosecond laser procedure and one day postoperatively. Between FLACS and the phaco control group, there was a significant difference in the AC depth (p=0.023, 3.77 mm vs. 4.05 mm) one day postoperatively. The AC angle (p=0.016) showed a significant difference immediately after the femto laser treatment. The central and thinnest pachymetry and endothelial cell count did not show a significant difference between the two study cohorts (p=0.165, p=0.291, p=0.979). The phaco cohort (n=40) demonstrated a non-statistically significant difference in the flare photometry of 15.80 photons/ms one postoperative day compared to the FLACS group 26.62 photons/ms (p=0.322). In this study population, no evidence for an additive damage caused by the use of the femtosecond laser was demonstrated. Furthermore, no increase in the central and thinnest corneal thickness and no increased endothelial cell loss was demonstrated by the laser energy.

  14. Laser surface and subsurface modification of sapphire using femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Eberle, G.; Schmidt, M.; Pude, F.; Wegener, K.

    2016-08-01

    Two methods to process sapphire using femtosecond laser pulses are demonstrated, namely ablation (surface), and in-volume laser modification followed by wet etching (subsurface). Firstly, the single and multipulse ablation threshold is determined and compared with previous literature results. A unique application of ablation is demonstrated by modifying the entrance aperture of water jet orifices. Laser ablation exhibits advantages in terms of geometric flexibility and resolution, however, defects in the form of edge outbreaks and poor surface quality are evident. Secondly, the role of material transformation, polarisation state and formation of multi-focus structures after in-volume laser modification is investigated in order to explain their influence during the wet etching process. Laser scanning and electron microscopy as well as electron backscatter diffraction measurements supported by ion beam polishing are used to better understand quality and laser-material interactions of the two demonstrated methods of processing.

  15. Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining

    SciTech Connect

    Wolfe, Justin E.; Qiu, S. Roger; Stolz, Christopher J.

    2011-03-20

    Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.

  16. Optical cell cleaning with NIR femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-03-01

    Femtosecond laser microscopes have been used as both micro and nanosurgery tools. The optical knock-out of undesired cells in multiplex cell clusters shall be further reported on in this study. Femtosecond laser-induced cell death is beneficial due to the reduced collateral side effects and therefore can be used to selectively destroy target cells within monolayers, as well as within 3D tissues, all the while preserving cells of interest. This is an important characteristic for the application in stem cell research and cancer treatment. Non-precise damage compromises the viability of neighboring cells by inducing side effects such as stress to the cells surrounding the target due to the changes in the microenvironment, resulting from both the laser and laser-exposed cells. In this study, optimum laser parameters for optical cleaning by isolating single cells and cell colonies are exploited through the use of automated software control. Physiological equilibrium and cellular responses to the laser induced damages are also investigated. Cell death dependence on laser focus, determination and selectivity of intensity/dosage, controllable damage and cell recovery mechanisms are discussed.

  17. Single step channeling in glass interior by femtosecond laser

    SciTech Connect

    Kongsuwan, Panjawat; Wang Hongliang; Lawrence Yao, Y.

    2012-07-15

    Channeling inside a transparent material, glass, by femtosecond laser was performed by using a single step process rather than hybrid processes that combine the laser irradiation with an additional tool or step to remove the material. Tightly focusing of a single femtosecond laser pulse using proper optical and laser processing parameters could induce the micro-explosion and could create voids inside transparent materials, and the effects of these parameters on the resultant feature geometry and channel length were studied. Understanding of the channel length variation at different locations from the specimen surface could enhance prediction capability. Taking into account of the laser, material, and lens properties, numerical models were developed to predict the absorption volume shape and size at different focusing depths below the surface of a specimen. These models will also be validated with the variation in feature and channel lengths inside the specimen obtained from the experiments. Spacing between adjacent laser pulses and laser parameters was varied to investigate effects of channel overlapping and its influence on long channel formation.

  18. Rapid microfabrication of transparent materials using filamented femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Butkus, S.; Gaižauskas, E.; Paipulas, D.; Viburys, Ž.; Kaškelyė, D.; Barkauskas, M.; Alesenkov, A.; Sirutkaitis, V.

    2014-01-01

    Microfabrication of transparent materials using femtosecond laser pulses has showed good potential towards industrial application. Maintaining pulse energies exceeding the critical self-focusing threshold by more than 100-fold produced filaments that were used for micromachining purposes. This article demonstrates two different micromachining techniques using femtosecond filaments generated in different transparent media (water and glass). The stated micromachining techniques are cutting and welding of transparent samples. In addition, cutting and drilling experiments were backed by theoretical modelling giving a deeper insight into the whole process. We demonstrate cut-out holes in soda-lime glass having thickness up to 1 mm and aspect ratios close to 20, moreover, the fabrication time is of the order of tens of seconds, in addition, grooves and holes were fabricated in hardened 1.1 mm thick glass (Corning Gorilla glass). Glass welding was made possible and welded samples were achieved after several seconds of laser fabrication.

  19. High stability breakdown of noble gases with femtosecond laser pulses.

    PubMed

    Heins, A M; Guo, Chunlei

    2012-02-15

    In the past, laser-induced breakdown spectroscopy (LIBS) signals have been reported to have a stability independent of the pulse length in solids. In this Letter, we perform the first stability study of femtosecond LIBS in gases (to our best knowledge) and show a significant improvement in signal stability over those achieved with longer pulses. Our study shows that ultrashort-pulse LIBS has an intrinsically higher stability in gas compared to nanosecond-pulse LIBS because of a deterministic ionization process at work in the femtosecond pulse. Relative standard deviations below 1% are demonstrated and are likely only limited by our laser output fluctuations. This enhanced emission stability may open up possibilities for a range of applications, from monitoring rapid gas dynamics to high-quality broadband light sources.

  20. Beam wandering of femtosecond laser filament in air.

    PubMed

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-05

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc.

  1. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers.

    PubMed

    Fu, Dan; Holtom, Gary; Freudiger, Christian; Zhang, Xu; Xie, Xiaoliang Sunney

    2013-04-25

    Raman microscopy is a quantitative, label-free, and noninvasive optical imaging technique for studying inhomogeneous systems. However, the feebleness of Raman scattering significantly limits the use of Raman microscopy to low time resolutions and primarily static samples. Recent developments in narrowband stimulated Raman scattering (SRS) microscopy have significantly increased the acquisition speed of Raman based label-free imaging by a few orders of magnitude, at the expense of reduced spectroscopic information. On the basis of a spectral focusing approach, we present a fast SRS hyperspectral imaging system using chirped femtosecond lasers to achieve rapid Raman spectra acquisition while retaining the full speed and image quality of narrowband SRS imaging. We demonstrate that quantitative concentration determination of cholesterol in the presence of interfering chemical species can be achieved with sensitivity down to 4 mM. For imaging purposes, hyperspectral imaging data in the C-H stretching region is obtained within a minute. We show that mammalian cell SRS hyperspectral imaging reveals the spatially inhomogeneous distribution of saturated lipids, unsaturated lipids, cholesterol, and protein. The combination of fast spectroscopy and label-free chemical imaging will enable new applications in studying biological systems and material systems.

  2. Laser alchemy: direct writing of multifunctional components in a glass chip with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Liao, Yang; Lin, Jintian; Cheng, Ya

    2013-12-01

    Recently, hybrid integration of multifunctional micro-components for creating complex, intelligent micro/nano systems has attracted significant attention. These micro-/nano-systems have important applications in a variety of areas, such as healthcare, environment, communication, national security, and so on. However, fabrication of micro/nano systems incorporated with different functions is still a challenging task, which generally requires fabrication of discrete microcomponents beforehand followed by assembly and packaging procedures. Furthermore, current micro-/nano-fabrication techniques are mainly based on the well-established planar lithographic approach, which suffer from severe issues in producing three dimensional (3D) structures with complex geometries and arbitrary configurations. In recent years, the rapid development of femtosecond laser machining technology has enabled 3D direct fabrication and integration of multifunctional components, such as microfluidics, microoptics, micromechanics, microelectronics, etc., into single substrates. In this invited talk, we present our recent progress in this active area. Particularly, we focus on fabrication of 3D micro- and nanofluidic devices and 3D high-Q microcavities in glass substrates by femtosecond laser direct writing.

  3. A femtosecond laser inscribed biochip for stem cell therapeutic applications

    NASA Astrophysics Data System (ADS)

    Choudhury, D.; Ramsay, W. T.; Brown, G.; Psaila, N. D.; Beecher, S.; Thomson, R. R.; Kiss, R.; Pells, S.; Willoughby, N. A.; Paterson, L.; Kar, A. K.

    2011-02-01

    A continuous flow microfluidic cell separation platform has been designed and fabricated using femtosecond laser inscription. The device is a scalable and non-invasive cell separation mechanism aimed at separating human embryonic stem cells from differentiated cells based on the dissimilarities in their cytoskeletal elasticity. Successful demonstration of the device has been achieved using human leukemia cells the elasticity of which is similar to that of human embryonic stem cells.

  4. Resident surgeon efficiency in femtosecond laser-assisted cataract surgery

    PubMed Central

    Pittner, Andrew C; Sullivan, Brian R

    2017-01-01

    Purpose Comparison of resident surgeon performance efficiencies in femtosecond laser-assisted cataract surgery (FLACS) versus conventional phacoemulsification. Patients and methods A retrospective cohort study was conducted on consecutive patients undergoing phacoemulsification cataract surgery performed by senior ophthalmology residents under the supervision of 1 attending physician during a 9-month period in a large Veterans Affairs medical center. Medical records were reviewed for demographic information, preoperative nucleus grade, femtosecond laser pretreatment, operative procedure times, total operating room times, and surgical complications. Review of digital video records provided quantitative interval measurements of core steps of the procedures, including completion of incisions, anterior capsulotomy, nucleus removal, cortical removal, and intraocular lens implantation. Results Total room time, operation time, and corneal incision completion time were found to be significantly longer in the femtosecond laser group versus the traditional phacoemulsification group (each P<0.05). Mean duration for manual completion of anterior capsulotomy was shorter in the laser group (P<0.001). There were no statistically significant differences in the individual steps of nucleus removal, cortical removal, or intraocular lens placement. Surgical complication rates were not significantly different between the groups. Conclusion In early cases, resident completion of femtosecond cataract surgery is generally less efficient when trainees have more experience with traditional phacoemulsification. FLACS was found to have a significant advantage in completion of capsulotomy, but subsequent surgical steps were not shorter or longer. Resident learning curve for the FLACS technology may partially explain the disparities of performance. Educators should be cognizant of a potential for lower procedural efficiency when introducing FLACS into resident training. PMID:28203055

  5. Fiber inline Michelson interferometer fabricated by a femtosecond laser.

    PubMed

    Yuan, Lei; Wei, Tao; Han, Qun; Wang, Hanzheng; Huang, Jie; Jiang, Lan; Xiao, Hai

    2012-11-01

    A fiber inline Michelson interferometer was fabricated by micromachining a step structure at the tip of a single-mode optical fiber using a femtosecond laser. The step structure splits the fiber core into two reflection paths and produces an interference signal. A fringe visibility of 18 dB was achieved. Temperature sensing up to 1000°C was demonstrated using the fabricated assembly-free device.

  6. Comparison of efficacy and safety of laser in situ keratomileusis using 2 femtosecond laser platforms in contralateral eyes.

    PubMed

    Rosman, Mohamad; Hall, Reece C; Chan, Cordelia; Ang, Andy; Koh, Jane; Htoon, Hla Myint; Tan, Donald T H; Mehta, Jodhbir S

    2013-07-01

    To compare the efficacy, predictability, and refractive outcomes of laser in situ keratomileusis (LASIK) using 2 femtosecond platforms for flap creation. Multisurgeon single center. Clinical trial. Bilateral femtosecond LASIK was performed using the Wavelight Allegretto Eye-Q 400 Hz excimer laser system. The Visumax femtosecond platform (Group 1) was used to create the LASIK flap in 1 eye, while the Intralase femtosecond platform (Group 2) was used to create the LASIK flap in the contralateral eye. The preoperative, 1-month, and 3-month postoperative visual acuities, refraction, and contrast sensitivity in the 2 groups were compared. The study enrolled 45 patients. Three months after femtosecond LASIK, 79.5% of eyes in Group 1 and 82.1% in Group 2 achieved an uncorrected distance visual acuity of 20/20 (P=.808). The mean efficacy index was 0.97 in Group 1 and 0.98 in Group 2 at 3 months (P=.735); 89.7% of eyes in Group 1 and 84.6% of eyes in Group 2 were within ± 0.50 diopter of emmetropia at 3 months (P=.498). No eye in either group lost more than 2 lines of corrected distance visual acuity. The mean safety index at 3 months was 1.11 in Group 1 and 1.10 in Group 2 (P=.570). The results of LASIK with both femtosecond lasers were similar, and both platforms produced efficacious and predictable LASIK outcomes. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    SciTech Connect

    Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  8. Femtosecond fibre laser stabilisation to an optical frequency standard using a KTP electro-optic crystal

    SciTech Connect

    Nyushkov, B N; Pivtsov, V S; Koliada, N A; Kaplun, A B; Meshalkin, A B

    2015-05-31

    A miniature intracavity KTP-based electro-optic phase modulator has been developed which can be used for effective stabilisation of an optical frequency comb of a femtosecond erbiumdoped fibre laser to an optical frequency standard. The use of such an electro-optic modulator (EOM) has made it possible to extend the working frequency band of a phase-locked loop system for laser stabilisation to several hundred kilohertz. We demonstrate that the KTP-based EOM is sufficiently sensitive even at a small optical length, which allows it to be readily integrated into cavities of femtosecond fibre lasers with high mode frequency spacings (over 100 MHz). (extreme light fields and their applications)

  9. Generation of femtosecond UV pulses by intracavity frequency doubling in a modelocked dye laser

    NASA Astrophysics Data System (ADS)

    Laermer, F.; Dobler, J.; Elsaesser, T.

    1988-06-01

    A colliding pulse modelocked (CPM) dye laser is presented, which contains a nonlinear KDP crystal for frequency conversion inside the ring resonator. The laser system emits femtosecond light pulses simultaneously at wavelenghts of 628 nm and 314 nm with a repetition rate of 80 MHz. The output power at 628 nm and 314 nm amounts to 4 mW and 1 mW, respectively. The duration of the red and the uv pulses has a value of approximately 120 fs. The light source is used in femtosecond pump-and-probe investigations. The kinetics of excited state adsorption and ground state bleaching of laser dyes is measured. The temporal resolution of the experiments is better than 40 fs.

  10. Experimental femtosecond laser photodisruption of rabbit sclera for minimally invasive laser sclerostomy: An in vitro study

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Dai, Nengli; Long, Hua; Lu, Peixiang; Li, Wan; Jiang, Fagang

    2010-07-01

    Femtosecond laser technology, used as a minimally invasive tool in intrastromal refractive surgery, may also have potential as a useful instrument for glaucoma filtration surgery. The purpose of the present study was to evaluate the feasibility of minimally invasive laser sclerostomy by femtosecond laser photodisruption and seek the appropriate patterns of laser ablation and relevant laser parameters. A femtosecond laser (800 nm/50 fs/1 kHz), focused by a 0.1 numerical aperture (NA) objective lens, with different pulse energies and exposure times was applied to ablate hydrated rabbit sclera in vitro. The irradiated samples were examined by scanning electron microscopy (SEM). By moving a three-dimensional, computer-controlled translation stage to which the sample was attached, the femtosecond laser could produce three types of ablation patterns, including linear ablation, cylindrical aperture and rectangular cavity. With pulse energies ranging from 37.5 to 150 μJ, the linear lesions were consistently observed at the inner surface of sclera, whereas it failed to make any photodisruption if pulse energy was below the threshold value of 31.25 μJ, with the corresponding threshold intensity of 4.06×10 14 W/cm 2. The depths of the linear lesions increased linearly with both pulse energy (37.5-150 μJ) and exposure time (0.1-0.4 s). Histological examination showed the incisions produced by femtosecond laser photodisruption had precise geometry and the edges were sharp and smooth, with no evidence of collateral damage to the surrounding tissue. Our results predict the potential application of femtosecond laser pulses in minimally invasive laser sclerostomy for glaucoma treatment.

  11. Femtosecond pulsed laser ablation of thin gold film

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, K.; Tan, B.; Ngoi, B. K. A.

    2002-04-01

    Laser micromachining on 1000 nm-thick gold film using femtosecond laser has been studied. The laser pulses that are used for this study are 400 nm in central wavelength, 150 fs in pulse duration, and the repetition rate is 1 kHz. Plano-concave lens with a focal length of 19 mm focuses the laser beam into a spot of 3 μm (1/ e2 diameter). The sample was translated at a linear speed of 400 μm/ s during machining. Grooves were cut on gold thin film with laser pulses of various energies. The ablation depths were measured and plotted. There are two ablation regimes. In the first regime, the cutting is very shallow and the edges are free of molten material. While in the second regime, molten material appears and the cutting edges are contaminated. The results suggest that clean and precise microstructuring can be achieved with femtosecond pulsed laser by controlling the pulse energy in the first ablation regime.

  12. Femtosecond laser-induced modification at aluminum/diamond interface

    NASA Astrophysics Data System (ADS)

    Okada, Tatsuya; Tomita, Takuro; Ueki, Tomoyuki; Masai, Yuki; Bando, Yota; Tanaka, Yasuhiro

    2017-02-01

    We investigated femtosecond-laser-induced modification at an Al/diamond interface. The interface was irradiated from the backside through the diamond substrate, which is transparent to the laser beam. Extremely high pulse energies, i.e., 200 and 100 µJ/pulse, were used to irradiate the interface. The cross-section of the laser-irradiated line was observed with conventional and high-voltage transmission electron microscopy. The modification of the laser-irradiated interface was characterized by the formation of an amorphous phase sandwiched between the deformed Al film and the diamond substrate. The major chemical component of the amorphous phase was identified as carbon, blown from the diamond substrate. The newly formed interface between the amorphous phase and the diamond substrate was concave. In addition, a fine ripple structure with an average spacing one-quarter the wavelength of the laser light was formed only in the sample irradiated by the higher-energy pulses.

  13. Non reciprocal writing and chirality in femtosecond laser irradiated silica.

    PubMed

    Poumellec, B; Lancry, M; Poulin, J-C; Ani-Joseph, S

    2008-10-27

    We ascertain by measuring the surface topography of a cleaved sample in which damage lines have been written in volume by scanning with a femtosecond laser, that matter shearing occur along the laser track with alternating sign (scissor or chiral effect). We note that the shearing in the head of the laser tracks change its sign with the change in scanning direction (pen effect or non reciprocal writing). We also show that nanostructures in the head are nano-shearing, with all the same sign whatever the direction of writing may be. We suggest that symmetries revealed by the shearing mimic the laser induced electron plasma density structures and inform on their unusual symmetries induced by the laser beam structures.

  14. Microwave guiding in air along single femtosecond laser filament

    SciTech Connect

    Ren Yu; Alshershby, Mostafa; Qin Jiang; Hao Zuoqiang; Lin Jingquan

    2013-03-07

    Microwave guiding along single plasma filament generated through the propagation of femtosecond (fs) laser pulses in air has been demonstrated over a distance of about 6.5 cm, corresponding to a microwave signal intensity enhancement of more than 3-fold over free space propagation. The current propagation distance along the fs laser filament is in agreement with the calculations and limited by the relatively high resistance of the single plasma filament. Using a single fs laser filament to channel microwave radiation considerably alleviate requirements to the power of fs laser pulses compared to the case of the circular filaments waveguide. In addition, it can be used as a simple and non-intrusive method to obtain the basic parameters of laser-generated plasma filament.

  15. Dry eye after laser in situ keratomileusis with femtosecond laser and mechanical keratome.

    PubMed

    Golas, Liliya; Manche, Edward E

    2011-08-01

    To prospectively compare dry-eye symptoms after laser in situ keratomileusis (LASIK) with mechanical keratome-created flaps and femtosecond laser keratome-created flaps. Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, USA. Randomized clinical trial. Fellow eyes were prospectively randomized to the mechanical keratome group and femtosecond laser keratome group. Patients had wavefront-guided LASIK using a mechanical keratome in 1 eye and a femtosecond laser keratome in the fellow eye. They completed dry-eye questionnaires preoperatively and 1, 3, 6, and 12 months postoperatively. The effect of laser ablation depth, sex, age, and flap thickness on dry-eye symptoms was also analyzed. The study enrolled 51 patients. There was no statistically significant change in dry-eye symptoms except in the femtosecond group 1 month postoperatively (mean increase 1.08) (P=.03). There were no significant differences in symptoms between the 2 groups (P=.7). The dry-eye score was 1.3 points lower in women than in men (P=.01). Central ablation depth, flap thickness, and age did not significantly affect the reported dryness. There appeared to be no statistically significant difference in self-reported dry-eye symptoms between the mechanical keratome group and the femtosecond laser keratome group. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. Femtosecond laser surface structuring of molybdenum thin films

    NASA Astrophysics Data System (ADS)

    Kotsedi, L.; Mthunzi, P.; Nuru, Z. Y.; Eaton, S. M.; Sechoghela, P.; Mongwaketsi, N.; Ramponi, R.; Maaza, M.

    2015-10-01

    This contribution reports on the femtosecond surface structuring of molybdenum thin coatings deposited by electron beam evaporation onto Corning glass substrates. The 1-D type periodic grating lines created by such an ablation showed that the widths of the shallow grooves followed a logarithmic dependence with the laser energy incident on the molybdenum film. The electronic valence "x" of the created oxide surface layer MoOx was found to be incident laser power dependent via Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction investigations. Such a photo-induced MoOx-Mo nanocomposite exhibited effective selective solar absorption in the UV-vis-IR spectral range.

  17. Patterning of silica microsphere monolayers with focused femtosecond laser pulses

    SciTech Connect

    Cai Wenjian; Piestun, Rafael

    2006-03-13

    We demonstrate the patterning of monolayer silica microsphere lattices with tightly focused femtosecond laser pulses. We selectively removed microspheres from a lattice and characterized the effect on the lattice and the substrate. The proposed physical mechanism for the patterning process is laser-induced breakdown followed by ablation of material. We show that a microsphere focuses radiation in its interior and in the near field. This effect plays an important role in the patterning process by enhancing resolution and accuracy and by reducing the pulse energy threshold for damage. Microsphere patterning could create controlled defects within self-assembled opal photonic crystals.

  18. 1-kHz-repetition-rate femtosecond Raman laser

    NASA Astrophysics Data System (ADS)

    Didenko, N. V.; Konyashchenko, A. V.; Kostryukov, P. V.; Losev, L. L.; Pazyuk, V. S.; Tenyakov, S. Yu

    2016-07-01

    A femtosecond Raman laser utilising compressed hydrogen is experimentally investigated under pumping by radiation from a 1-kHz-repetition-rate Ti : sapphire laser. In the regime of double-pulse pumping, the conditions are determined, which correspond to the minimal energy dispersion of Stokes pulses. The optical scheme is realised, which is capable of ensuring the long-term stability of the average power of the first Stokes component with a variation of less than 2%. The Stokes pulses are produced with a pulse duration of 60 fs and energy of 0.26 mJ at a conversion efficiency of 14%.

  19. Nonresonant femtosecond laser vaporization of aqueous protein preserves folded structure

    PubMed Central

    Brady, John J.; Judge, Elizabeth J.; Levis, Robert J.

    2011-01-01

    Femtosecond laser vaporization-based mass spectrometry can be used to measure protein conformation in vitro at atmospheric pressure. Cytochrome c and lysozyme are vaporized from the condensed phase into the gas phase intact when exposed to an intense (1013 W/cm2), nonresonant (800 nm), ultrafast (75 fs) laser pulse. Electrospray postionization time-of-flight mass spectrometry reveals that the vaporized protein maintains the solution-phase conformation through measurement of the charge-state distribution and the collision-induced dissociation channels. PMID:21746908

  20. A new approach to fabricate pdms structures using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Selvaraj, Hamsapriya

    Polydimethylsiloxane (PDMS) is commonly used to prototype micro and nano featured components due to its beneficial properties. PDMS based devices have been used for diverse applications such as cell culturing, cell sorting and sensors. Motivated by such diverse applications possible through pure PDMS and reinforced PDMS, numerous efforts have been directed towards developing novel fabrication techniques. Prototyping 2D and 3D pure and reinforced PDMS microdevices normally require a long curing time and must go through multiple steps. This research explores the possibility of fabricating microscale and nanoscale structures directly from PDMS resin using femtosecond laser processing. This study offers an alternative fabrication route that potentially lead to a new way for prototyping of pure and reinforced PDMS devices, and the generation of hybrid nanomaterials. In depth investigation of femtosecond laser irradiation of PDMS resin reveals that the process is highly intensity-dependent. At low to intermediate intensity regime, femtosecond laser beam is able to rapidly cure the resin and create micron-sized structures directly from PDMS resin. At higher intensity regime, a total break-down of the resin material occurs and leads to the formation of PDMS nanoparticles. This work demonstrates a new way of rapid curing of PDMS resin on a microsecond timescale using femtosecond laser irradiation. The proposed technique permits maskless singlestep curing and is capable of fabricating 2D and 3D structures in micro-scale. Reinforced PDMS microstructures also have been fabricated through this method. The proposed technique permits both reinforcement and rapid curing and is ideal for fabricating reinforced structures in microscale. The strength of the nanofiber reinforced PDMS microstructures has been investigated by means of Nanoindentation test. The results showed significant improvement in strength of the material. Hybrid PDMS-Si and hybrid PDMS-Al nanoparticle aggregate

  1. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen

    2015-11-01

    We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue).

  2. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser

    PubMed Central

    Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen

    2015-01-01

    We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue). PMID:26603915

  3. Digital-holographic analysis of femtosecond laser-induced photodisruption in ocular tissue

    NASA Astrophysics Data System (ADS)

    Saerchen, Emanuel; Biessy, Kevin; Kemper, Björn; Lubatschowski, Holger

    2014-02-01

    High repetition rated femtosecond laser oscillator systems with low pulse energy are more often applied for precise and safer eye surgery. Especially, the cutting procedure in the crystalline lens is of high important for presbyopia treatment. Nevertheless, the fundamental laser tissue interaction process is not completely understood, because apparently a self-induced process takes place, were one modified region changes the focusing behavior of following laser pulses. We used a MHz repetition rate femtosecond laser system with nJ-pulse energy which were focused inside an ocular-tissue-phantom (Hydroxy-ethylmethacrylat - HEMA) to induce photodisruption. The material change, caused by the fs-pulses was measured simultaneously with a compact digital-holographic microscope. To investigate the material manipulation at different time scales, we used a continuously illuminating light source. The holographic images provide quantitative values for optical path length difference (OPL), which is equivalent to a refractive index change. This change of the optical properties may cause following pulses to obtain different focusing conditions. Time lapse measurements during the laser application were performed, which show the temporal evolution of OPL. An increase of OPL during the laser application was measured, which was followed by a decrease in OPL after laser processing. Furthermore, similar experiments were performed in distilled water and in native porcine crystalline lenses. The fs-laser cutting effects in HEMA and crystalline lens were transferable. Simultaneous measurements of the material modification during the cutting process give rise to better knowledge of treatment modalities during ocular tissue processing.

  4. Femtosecond laser bone ablation with a high repetition rate fiber laser source

    PubMed Central

    Mortensen, Luke J.; Alt, Clemens; Turcotte, Raphaël; Masek, Marissa; Liu, Tzu-Ming; Côté, Daniel C.; Xu, Chris; Intini, Giuseppe; Lin, Charles P.

    2014-01-01

    Femtosecond laser pulses can be used to perform very precise cutting of material, including biological samples from subcellular organelles to large areas of bone, through plasma-mediated ablation. The use of a kilohertz regenerative amplifier is usually needed to obtain the pulse energy required for ablation. This work investigates a 5 megahertz compact fiber laser for near-video rate imaging and ablation in bone. After optimization of ablation efficiency and reduction in autofluorescence, the system is demonstrated for the in vivo study of bone regeneration. Image-guided creation of a bone defect and longitudinal evaluation of cellular injury response in the defect provides insight into the bone regeneration process. PMID:25657872

  5. Femtosecond Cr:LiSAF and Cr:LiCAF lasers pumped by tapered diode lasers.

    PubMed

    Demirbas, Umit; Schmalz, Michael; Sumpf, Bernd; Erbert, Götz; Petrich, Gale S; Kolodziejski, Leslie A; Fujimoto, James G; Kärtner, Franz X; Leitenstorfer, Alfred

    2011-10-10

    We report compact, low-cost and efficient Cr:Colquiriite lasers that are pumped by high brightness tapered laser diodes. The tapered laser diodes provided 1 to 1.2 W of output power around 675 nm, at an electrical-to-optical conversion efficiency of about 30%. Using a single tapered diode laser as the pump source, we have demonstrated output powers of 500 mW and 410 mW together with slope efficiencies of 47% and 41% from continuous wave (cw) Cr:LiSAF and Cr:LiCAF lasers, respectively. In cw mode-locked operation, sub-100-fs pulse trains with average power between 200 mW and 250 mW were obtained at repetition rates around 100 MHz. Upon pumping the Cr:Colquiriite lasers with two tapered laser diodes (one from each side of the crystal), we have observed scaling of cw powers to 850 mW in Cr:LiSAF and to 650 mW in Cr:LiCAF. From the double side pumped Cr:LiCAF laser, we have also obtained ~220 fs long pulses with 5.4 nJ of pulse energy at 77 MHz repetition rate. These are the highest energy levels reported from Cr:Colquiriite so far at these repetition rates. Our findings indicate that tapered diodes in the red spectral region are likely to become the standard pump source for Cr:Colquiriite lasers in the near future. Moreover, the simplified pumping scheme might facilitate efficient commercialization of Cr:Colquiriite systems, bearing the potential to significantly boost applications of cw and femtosecond lasers in this spectral region (750-1000 nm).

  6. Femtosecond laser collagen cross-linking without traditional photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Wang, Chao; Celi, Nicola; Vukelic, Sinisa

    2015-03-01

    Collagen cross-linking in cornea has the capability of enhancing its mechanical properties and thereby providing an alternative treatment for eye diseases such as keratoconus. Currently, riboflavin assisted UVA light irradiation is a method of choice for cross-link induction in eyes. However, ultrafast pulsed laser interactions may be a powerful alternative enabling in-depth treatment while simultaneously diminishing harmful side effects such as, keratocyte apoptosis. In this study, femtosecond laser is utilized for treatment of bovine cornea slices. It is hypothesized that nonlinear absorption of femtosecond laser pulses plays a major role in the maturation of immature cross-links and the promotion of their growth. Targeted irradiation with tightly focused laser pulses allows for the absence of a photosensitizing agent. Inflation test was conducted on half treated porcine cornea to identify the changes of mechanical properties due to laser treatment. Raman spectroscopy was utilized to study subtle changes in the chemical composition of treated cornea. The effects of treatment are analyzed by observing shifts in Amide I and Amide III bands, which suggest deformation of the collagen structure in cornea due to presence of newly formed cross-links.

  7. Control of multiphoton molecular excitation with shaped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Xu, Bingwei

    The work presented in this dissertation describes the use of shaped femtosecond laser pulses to control the outcome of nonlinear optical process and thus to achieve the selectivity for multiphoton molecular transitions. This research could lead to applications in various fields including nonlinear optical spectroscopy, chemical identification, biological imaging, communications, photodynamic therapy, etc. In order to realize accurate pulse shaping of the femtosecond laser pulses, it is essential to measure and correct the spectral phase distortion of such pulses. A method called multiphoton intrapulse interference phase scan is used to do so throughout this dissertation. This method is highly accurate and reproducible, and has been proved in this work to be compatible with any femtosecond pulses regardless of bandwidth, intensity and repetition rate of the laser. The phase control of several quasi-octave laser sources is demonstrated in this dissertation, with the generation of 4.3 fs and 5.9 fs pulses that reach the theoretically predicted transform-limited pulse duration. The excellent phase control achieved also guarantees the reproducibility for selective multiphoton excitations by accurate phase and/or amplitude shaping. Selective two-photon excitation, stimulated Raman scattering and coherent anti-Stokes Raman scattering with a single broadband laser source are demonstrated in this dissertation. Pulse shaping is used to achieve a fast and robust approach to measure the two-photon excitation spectrum from fluorescent molecules, which provide important information for two-photon biological imaging. The selective excitation concept is also applied in the field of remote chemical identification. Detection of characteristic Raman lines for several chemicals using a single beam coherent anti-Stokes Raman scattering spectroscopy from a 12 meter standoff distance is shown, providing a promising approach to standoff detection of chemicals, hazardous contaminations

  8. PbTe quantum dots grown by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Biggemann, D.; Moya, L.; Pippo, W. A.; Moreira, R. S.; Silva, D.; Cesar, C. L.; Barbosa, L. C.; Schrank, A.; Souza Filho, C. R.; de Oliveira, E. P.

    2008-02-01

    Laser ablation (LA) is a thin film fabrication technique which has generated a lot of interest in the past few years as one of the simplest and most versatile methods for the deposition of a wide variety of materials. With the rapid development experienced in the generation of ultra short laser pulses, new possibilities were opened for the laser ablation technique, using femtosecond lasers as ablation source. It is commonly believed that when the temporal length of the laser pulse became shorter than the several picoseconds required to couple the electronic energy to the lattice of the material, thermal effects could not play a significant role. Since the pulse width is too short for thermal effects to take place, with each laser pulse a few atom layers of material are direct vaporized away from the target surface and a better control in the quantum dots (QDs) fabrication could be achieved. In this work we report the fabrication of PbTe QDs by femtosecond laser ablation of a PbTe target in argon atmosphere. Experiments were carried out using a typical LA configuration comprising a deposition chamber and an ultra short pulsed laser (100 fs; 30 mJ) at a central wavelength of 800 nm. PbTe was chosen because its QDs absorption band can be controlled by its size to fall in the spectral window of interest for optical communications (1.3-1.5 μm). This, together with the QD high optical nonlinearity, makes this material an excellent candidate for development of photonic devices. It was investigated the influence of the number of laser pulses in the formation of the nanoparticles. The structural parameters and the surface density of the nanoparticles were studied by high resolution transmission electron microscopy (HRTEM).

  9. Spectral narrowing in gases using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Karpate, Tanvi; Dharmadhikari, A. K.; Dharmadhikari, J. A.; Mathur, D.

    2017-05-01

    Filamentation in gases due to high power femtosecond pulses results from the combined action of the optical Kerr effect (giving rise to self-focusing) and plasma formation (giving rise to defocusing) that confines optical energy in a small region over a distance longer than the Rayleigh range. Since the discovery of N2 as a potential gain medium, which subsequently led to the formation of nitrogen lasers, it has held a keen interest due to its potential in achieving lasing by remote excitation. Recently, Yamanouchi and coworkers demonstrated lasing action in N2 in the forward as well the backward directions along the femtosecond pulse propagation. In the present work, we have focused on excitation of N2 + (corresponding to the 391nm spectral feature) and have measured spectral narrowing. We have investigated the influence exerted by the incident pulse power and gas pressure for incident pulses of durations 40 fs and 10 fs in forward and backward detection modes. Spectral narrowing that occurs for N2 gas at 391 nm shows a dependence on the incident pulse duration. Pressure threshold for different incident powers for lasing has been established. Increase in the signal intensity on varying the incident power is ascribed to amplified spontaneous emission (ASE). White-light-seeded lasing in N2 + is generated by a Ti:sapphire femtosecond laser for different focusing. The lasing lines peak over the trail of the incident broadband spectra.

  10. Assessing the phase retardation in corneal tissues using a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Calhoun, William; Weiblinger, Richard; Beylin, Alexander; Ilev, Ilko K.

    2013-08-01

    We developed and validated a versatile test method for precise quantification of phase retardation in corneal tissues using a femtosecond laser. It is based on an experimental system for direct measurement of corneal phase rotation due to corneal birefringence effects using a dual-polarizer, computer-controlled, femtosecond laser design. It also includes a comprehensive analytical model using Jones matrices. The test method presented is used for quantification of phase retardation in corneal tissues by employing the experimental data obtained from corneal phase rotation measurements and using analytical model assessments. The experimental and theoretical results obtained, and thus, the system's high accuracy and repeatability potential for assessing the corneal phase retardation are validated using control phase retardation evaluation.

  11. Single-pulse perforation of thin transparent dielectrics by femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Ganin, Daniil; Lapshin, Konstantin; Obidin, Alexey; Vartapetov, Sergey

    2017-05-01

    The methods of elongation of the effective interaction area (>100 microns) of single femtosecond pulses with transparent dielectrics when focusing in the bulk of material are given. Principal diagrams of transparent materials perforation with single femtosecond laser pulses are proposed. Capability to form cylindrical holes in the transparent dielectrics as a result of material photodegradation subjected to single femtosecond laser pulses was successfully demonstrated. The diameter of through holes made in the polypropylene 50 microns thick film at the energy of femtosecond laser pulses of 5 µJ was 5 µm.

  12. Interaction of femtosecond laser beam with atmospheric low temperature plasmas and electric fields

    NASA Astrophysics Data System (ADS)

    Dhingani, Keyu Rajeshkumar

    In this work, the influence of electric fields and atmospheric plasma on the behavior of an ultrafast femtosecond laser beam is being studied. A femtosecond laser pulse has an ability to self-focus in air and produce confined narrow channels of high energy density plasma, called filaments, which propagate over long distances. This technique has been employed in the remote initiation of electric discharges and has a potential to serve in lighting control, rain making, remote measurement of the electric field, microwave guidance and remote sensing of chemicals. Filamentation process requires a significant amount of energy (> GW), and the lasers used for that purpose are large and not easy to deploy and use. In this research, a possibility of using external high electric fields and low-temperature plasmas is explored to augment the laser beam operation, with the goal of lowering the power requirement on the laser. These external fields and plasmas are intended to act as stimuli to achieve filamentation of ultrashort laser pulses at a lower energy of the laser beam. Ultimately this approach may lead to a reduction of the size, weight, and power consumption of the laser system.

  13. Oxygen assisted interconnection of silver nanoparticles with femtosecond laser radiation

    SciTech Connect

    Huang, H.; Zhou, Y.; Duley, W. W.

    2015-12-14

    Ablation of silver (Ag) nanoparticles in the direction of laser polarization is achieved by utilizing femtosecond laser irradiation in air at laser fluence ranging from ∼2 mJ/cm{sup 2} to ∼14 mJ/cm{sup 2}. This directional ablation is attributed to localized surface plasmon induced localized electric field enhancement. Scanning electron microscopy observations of the irradiated particles in different gases and at different pressures indicate that the ablation is further enhanced by oxygen in the air. This may be due to the external heating via the reactions of its dissociation product, atomic oxygen, with the surface of Ag particles, while the ablated Ag is not oxidized. Further experimental observations show that the ablated material re-deposits near the irradiated particles and results in the extension of the particles in laser polarization direction, facilitating the interconnection of two well-separated nanoparticles.

  14. Microstructuring of Steel and Hard Metal using Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Manuel; Engel, Andy; Weißmantel, Steffen; Scholze, Stefan; Reisse, Guenter

    New results on three-dimensional micro-structuring of tungsten carbide hard metal and steel using femtosecond laser pulses will be presented. For the investigations, a largely automated high-precision fs-laser micromachining station was used. The fs-laser beam is focused onto the sample surface using different objectives. The investigations of the ablation behaviour of the various materials in dependence of the laser processing parameters will be presented. In the second part, complex 3D microstructures with a variety of geometries and resolutions down to a few micrometers will be presented. On of the Goal of these investigations was to create defined microstructures in tooling equipments such as cutting inserts.

  15. Femtosecond laser generated gold nanoparticles and their plasmonic properties

    NASA Astrophysics Data System (ADS)

    Das, Rupali; Navas M., P.; Soni, R. K.

    2016-05-01

    The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions were investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.

  16. Femtosecond laser generated gold nanoparticles and their plasmonic properties

    SciTech Connect

    Das, Rupali Navas, M. P.; Soni, R. K.

    2016-05-06

    The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions were investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.

  17. Femtosecond laser micromachining for the realization of fully integrated photonic and microfluidic devices

    NASA Astrophysics Data System (ADS)

    Eaton, S. M.; Osellame, R.; Ramponi, R.

    2015-02-01

    Femtosecond laser microprocessing is a direct, maskless fabrication technique that has attracted much attention in the past 10 years due to its unprecedented versatility in the 3D patterning of transparent materials. Two common modalities of femtosecond laser microfabrication include buried optical waveguide writing and surface laser ablation, which have been applied to a wide range of transparent substrates including glasses, polymers and crystals. In two photon polymerization, a third modality of femtosecond laser fabrication, focused femtosecond laser pulses drive photopolymerization in photoresists, enabling the writing of complex 3D structures with submicrometer resolution. In this paper, we discuss several microdevices realized by these diverse modalities of femtosecond laser microfabrication, for applications in microfluidics, sensing and quantum information.

  18. Comparative analysis of the performance of two different platforms for femtosecond laser-assisted cataract surgery

    PubMed Central

    Rivera, Robert P; Hoopes, Phillip C; Linn, Steven H; Hoopes, Phillip C

    2016-01-01

    Purpose To analyze and compare the intraoperative and postoperative outcomes of cataract surgery performed with two different femtosecond laser platforms. Methods Randomized controlled prospective intraindividual comparative study including 90 eyes of 45 patients aged between 61 and 86 years. All eyes underwent bilateral cataract surgery assisted with femtosecond laser technology. Eyes were randomized to one of two different femtosecond laser platforms: Catalys Precision system (Abbott Medical Optics Inc., Santa Ana, CA, USA) (Catalys group), and LenSx system (Alcon-LenSx Inc., Aliso Viejo, CA, USA) (LenSx group). Several intraoperative parameters and changes in corrected distance visual acuity and corneal endothelial density were evaluated and compared. Results The LenSx group showed a significantly higher cumulative dissipated energy and phacoemulsification power needed compared to the Catalys group (P≤0.043). Likewise, a longer patient interface preparation time, more severe perception of pressure by patient, and more cases of subconjunctival hemorrhage were found in the LenSx group (P≤0.014). A complete capsulotomy was achieved in more cases in the Catalys group compared to the LenSx group (P=0.002). Regarding corneal incisions, no statistically significant differences were found between groups (P≥0.071). The same occurred for postoperative corrected distance visual acuity (P≥0.48), endothelial cell density changes (P≥0.14), and the incidence of corneal edema or flare (P≥0.399). Conclusion Cataract surgery with the two evaluated femtosecond laser platforms is a safe procedure, with reduced phaco time and energy, and preservation of corneal endothelium integrity. However, both systems differ in the performance of capsulotomy and the procedure of docking, with an advantage of the Catalys over the LenSx system. PMID:27799734

  19. Correlation between anterior chamber characteristics and laser flare photometry immediately after femtosecond laser treatment before phacoemulsification.

    PubMed

    Pahlitzsch, M; Torun, N; Pahlitzsch, M L; Klamann, M K J; Gonnermann, J; Bertelmann, E; Pahlitzsch, T

    2016-08-01

    PurposeTo assess the anterior chamber (AC) characteristics and its correlation to laser flare photometry immediately after femtosecond laser-assisted capsulotomy and photodisruption.Patients and methodsThe study included 97 cataract eyes (n=97, mean age 68.6 years) undergoing femtosecond laser-assisted cataract surgery (FLACS). Three cohorts were analysed relating to the flare photometry directly post femtosecond laser treatment (flare <100 n=28, 69.6±7 years; flare 100-249 n=47, 67.7±8 years; flare >249 photon counts per ms cohort n=22, 68.5±10 years). Flare photometry (KOWA FM-700), corneal topography (Oculus Pentacam, Germany: AC depth, volume, angle, pachymetry), axial length, pupil diameter, and endothelial cells were assessed before FLACS, immediately after femtosecond laser treatment and 1 day postoperative (LenSx Alcon, USA). Statistical data were analysed by SPSS v19.0, Inc.ResultsThe AC depth, AC volume, AC angle, central and thinnest corneal thickness showed a significant difference between flare <100 vs flare 100-249 10 min post femtosecond laser procedure (P=0.002, P=0.023, P=0.007, P=0.003, P=0.011, respectively). The AC depth, AC volume, and AC angle were significantly larger (P=0.001, P=0.007, P=0.003, respectively) in the flare <100 vs flare >249 cohort 10 min post femtosecond laser treatment.ConclusionsA flat AC, low AC volume, and a narrow AC angle were parameters associated with higher intraocular inflammation. These criteria could be used for patient selection in FLACS to reduce postoperative intraocular inflammation.

  20. Correlation between anterior chamber characteristics and laser flare photometry immediately after femtosecond laser treatment before phacoemulsification

    PubMed Central

    Pahlitzsch, M; Torun, N; Pahlitzsch, M L; Klamann, M K J; Gonnermann, J; Bertelmann, E; Pahlitzsch, T

    2016-01-01

    Purpose To assess the anterior chamber (AC) characteristics and its correlation to laser flare photometry immediately after femtosecond laser-assisted capsulotomy and photodisruption. Patients and methods The study included 97 cataract eyes (n=97, mean age 68.6 years) undergoing femtosecond laser-assisted cataract surgery (FLACS). Three cohorts were analysed relating to the flare photometry directly post femtosecond laser treatment (flare <100 n=28, 69.6±7 years; flare 100–249 n=47, 67.7±8 years; flare >249 photon counts per ms cohort n=22, 68.5±10 years). Flare photometry (KOWA FM-700), corneal topography (Oculus Pentacam, Germany: AC depth, volume, angle, pachymetry), axial length, pupil diameter, and endothelial cells were assessed before FLACS, immediately after femtosecond laser treatment and 1 day postoperative (LenSx Alcon, USA). Statistical data were analysed by SPSS v19.0, Inc. Results The AC depth, AC volume, AC angle, central and thinnest corneal thickness showed a significant difference between flare <100 vs flare 100–249 10 min post femtosecond laser procedure (P=0.002, P=0.023, P=0.007, P=0.003, P=0.011, respectively). The AC depth, AC volume, and AC angle were significantly larger (P=0.001, P=0.007, P=0.003, respectively) in the flare <100 vs flare >249 cohort 10 min post femtosecond laser treatment. Conclusions A flat AC, low AC volume, and a narrow AC angle were parameters associated with higher intraocular inflammation. These criteria could be used for patient selection in FLACS to reduce postoperative intraocular inflammation. PMID:27229702

  1. Fiber-based 1150-nm femtosecond laser source for the minimally invasive harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Jing-Yu; Guo, Lun-Zhang; Wang, Jing-Zun; Li, Tse-Chung; Lee, Hsin-Jung; Chiu, Po-Kai; Peng, Lung-Han; Liu, Tzu-Ming

    2017-03-01

    Harmonic generation microscopy (HGM) has become one unique tool of optical virtual biopsy for the diagnosis of cancer and the in vivo cytometry of leukocytes. Without labeling, HGM can reveal the submicron features of tissues and cells in vivo. For deep imaging depth and minimal invasiveness, people commonly adopt 1100- to 1300-nm femtosecond laser sources. However, those lasers are typically based on bulky oscillators whose performances are sensitive to environmental conditions. We demonstrate a fiber-based 1150-nm femtosecond laser source, with 6.5-nJ pulse energy, 86-fs pulse width, and 11.25-MHz pulse repetition rate. It was obtained by a bismuth borate or magnesium-doped periodically poled lithium niobate (MgO:PPLN) mediated frequency doubling of the 2300-nm solitons, generated from an excitation of 1550-nm femtosecond pulses on a large mode area photonic crystal fiber. Combined with a home-built laser scanned microscope and a tailor-made frame grabber, we achieve a pulse-per-pixel HGM imaging in vivo at a 30-Hz frame rate. This integrated solution has the potential to be developed as a stable HGM system for routine clinical use.

  2. Model propagation of a femtosecond laser radiation in the vitreous of the human eye

    NASA Astrophysics Data System (ADS)

    Rogov, P. Y.; Bespalov, V. G.

    2016-04-01

    The paper presents a mathematical model of linear and nonlinear processes occurring due to propagation of femtosecond laser pulses in vitreous of the human eye. By methods of numerical simulation, we have solved a nonlinear spectral equation describing dynamics of two-dimensional TE-polarized radiation. The solution was performed in a homogeneous isotropic medium with instantaneous cubic nonlinearity without using slowly varying envelope approximation. For simulation we used medium with parameters close to the optical media of the eye. The model of femtosecond radiation takes into account the dynamics of the process of dispersion pulse broadening in time and occurrence of self-focusing of the retina when passing through vitreous body of the eye. The dependence between pulse duration on the retina and duration of the input pulse was found, as well as the values of power density at which self-focusing occurs. It was shown that the main mechanism of radiation damage caused while using Ti-sapphire laser is photoionization. The results coincide with the results obtained by other scientists. They can be used to create Russian laser safety standards for femtosecond laser systems.

  3. Femtosecond laser processing of optical fibres for novel sensor development

    NASA Astrophysics Data System (ADS)

    Kalli, Kyriacos; Theodosiou, Antreas; Ioannou, Andreas; Lacraz, Amedee

    2017-04-01

    We present results of recent research where we have utilized a femtosecond laser to micro-structure silica and polymer optical fibres in order to realize versatile optical components such as diffractive optical elements on the fibre end face, the inscription of integrated waveguide circuits in the fibre cladding and novel optical fibre sensors designs based on Bragg gratings in the core. A major hurdle in tailoring or modifying the properties of optical fibres is the development of an inscription method that can prove to be a flexible and reliable process that is generally applicable to all optical fibre types; this requires careful matching of the laser parameters and optics in order to examine the spatial limits of direct laser writing, whether the application is structuring at the surface of the optical fibre or inscription in the core and cladding of the fibre. We demonstrate a variety of optical components such as two-dimensional grating structures, Bessel, Airy and vortex beam generators; moreover, optical bridging waveguides inscribed in the cladding of single-mode fibre as a means to selectively couple light from single-core to multi-core optical fibres, and demonstrate a grating based sensor; finally, we have developed a novel femtosecond laser inscription method for the precise inscription of tailored Bragg grating sensors in silica and polymer optical fibres. We also show that this novel fibre Bragg grating inscription technique can be used to modify and add versatility to an existing, encapsulated optical fibre pressure sensor.

  4. Fabrication of optical cavities with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lin, Jintian; Song, Jiangxin; Tang, Jialei; Fang, Wei; Sugioka, Koji; Cheng, Ya

    2014-03-01

    We report on fabrication of three-dimensional (3D) high-quality (Q) whispering-gallery-mode microcavities by femtosecond laser micromachining. The main fabrication procedures include the formation of on-chip freestanding microdisk through selective material removal by femtosecond laser pulses, followed by surface smoothing processes (CO2 laser reflow for amorphous glass and focused ion beam (FIB) sidewall milling for crystalline materials) to improve the Q factors. Fused silica microcavities with 3D geometries are demonstrated with Q factors exceeding 106. A microcavity laser based on Nd:glass has been fabricated, showing a threshold as low as 69μW via free space continuous-wave optical excitation at the room temperature. CaF2 crystalline microcavities with Q factor of ~4.2×104 have also been demonstrated. This technique allows us to fabricate 3D high-Q microcavities in various transparent materials such as glass and crystals, which will benefit a broad spectrum of applications such as nonlinear optics, quantum optics, and bio-sensing.

  5. Nonlinear femtosecond laser induced scanning tunneling microscopy.

    PubMed

    Dey, Shirshendu; Mirell, Daniel; Perez, Alejandro Rodriguez; Lee, Joonhee; Apkarian, V Ara

    2013-04-21

    We demonstrate ultrafast laser driven nonlinear scanning tunneling microscopy (STM), under ambient conditions. The design is an adaptation of the recently introduced cross-polarized double beat method, whereby z-polarized phase modulated fields are tightly focused at a tunneling junction consisting of a sharp tungsten tip and an optically transparent gold film as substrate. We demonstrate the prerequisites for ultrafast time-resolved STM through an operative mechanism of nonlinear laser field-driven tunneling. The spatial resolution of the nonlinear laser driven STM is determined by the local field intensity. Resolution of 0.3 nm-10 nm is demonstrated for the intensity dependent, exponential tunneling range. The demonstration is carried out on a junction consisting of tungsten tip and gold substrate. Nano-structured gold is used for imaging purposes, to highlight junction plasmon controlled tunneling in the conductivity limit.

  6. Update and clinical utility of the LenSx femtosecond laser in cataract surgery

    PubMed Central

    Roberts, Timothy V; Lawless, Michael; Sutton, Gerard; Hodge, Chris

    2016-01-01

    The introduction of femtosecond lasers to cataract surgery has been the major disruptive technology introduced into ophthalmic surgery in the last decade. Femtosecond laser cataract surgery (FLACS) integrates high-resolution anterior segment imaging with a femtosecond laser allowing key steps of cataract surgery to be performed with computer-guided laser accuracy, precision, and reproducibility. Since the introduction of FLACS, there have been significant advances in laser software and hardware as well as surgeon experience, with over 250 articles published in the peer-reviewed literature. This review examines the published evidence relating to the LenSx platform and discusses surgical techniques, indications, safety, and clinical results. PMID:27799728

  7. Femtosecond laser heat affected zones profiled in Co/Si multilayer thin films

    SciTech Connect

    Picard, Yoosuf N.; Yalisove, Steven M.

    2008-01-07

    In this letter, we describe an approach for assessing collateral thermal damage resulting from high intensity, femtosecond laser irradiation. Polycrystalline Co thin films deposited on Si (100) substrates and buried under an amorphous Si film were prepared for plan-view transmission electron microscopy (TEM) prior to laser irradiation by femtosecond laser pulses. A heat affected zone (HAZ) resulting from single pulse irradiation at a fluence of 0.9 J/cm{sup 2} was determined by TEM imaging and point-wise selected area diffraction. The spatially Gaussian laser pulse generated a HAZ extending up to 3 {mu}m radially from the femtosecond laser irradiated region.

  8. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    PubMed

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  9. Viability evaluation of culture cells patterned by femtosecond laser-induced impulsive force

    NASA Astrophysics Data System (ADS)

    Takizawa, Noriko; Okano, Kazunori; Uwada, Takayuki; Hosokawa, Yoichiroh; Masuhara, Hiroshi

    2008-02-01

    PC12 cells, which are derived from a rat pheochromocytoma, were independently patterned utilizing an impulsive force resulting in impulsive shockwave and cavitation bubble generation by focused femtosecond laser irradiation. Since the PC12 cells respond reversibly to nerve growth factor by induction of the neuronal phenotype, we can assess an influence that the impulsive force gives to the bioactivity in term of the cell differentiation. The patterned cells were accumulated on an intact dish and cultured for 3 days. The behavior of appearance and cell differentiation was observed by multipoint time-lapse system. On bases of these results, it was proved that the biological activity of the cell is unaffected by the femtosecond laser patterning.

  10. Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector

    SciTech Connect

    Ding, Y.; Behrens, C.; Emma, P.; Frisch, J.; Huang, Z.; Loos, H.; Krejcik, P.; Wang, M-H.; /SLAC

    2011-12-13

    We propose a novel method to characterize the temporal duration and shape of femtosecond x-ray pulses in a free-electron laser (FEL) by measuring the time-resolved electron-beam energy loss and energy spread induced by the FEL process, with a transverse radio-frequency deflector located after the undulator. Its merits are simplicity, high resolution, wide diagnostic range, and non-invasive to user operation. When the system is applied to the Linac Coherent Light Source, the first hard x-ray free-electron laser in the world, it can provide single-shot measurements on the electron beam and x-ray pulses with a resolution on the order of 1-2 femtoseconds rms.

  11. Surface nanostructuring by bichromatic femtosecond laser pulses through a colloidal particle array

    SciTech Connect

    Bityurin, N M; Afanasiev, A V; Bredikhin, V I; Pikulin, A V; Ilyakov, I E; Shishkin, B V; Akhmedzhanov, R A; Gorshkova, E N

    2014-06-30

    This paper considers the surface nanostructuring of polymers and glasses by femtosecond laser pulses using an array of colloidal particles as a focusing system. We demonstrate that partial conversion of the femtosecond laser pulse energy into the second harmonic considerably reduces the surface modification threshold and the size of the resulting structural elements. At intensities above 10{sup 12} W cm{sup -2}, surface modification (ablation and swelling) occurs through free carrier generation. In this process, the second harmonic is more efficient in multiphoton ionisation, whereas the fundamental is more efficient in impact ionisation. The second harmonic is better focused by colloidal particle arrays than is the fundamental. As a result, the use of bichromatic pulses ensures a decrease in both the surface modification threshold and the size of the resulting structural elements. We discuss the optical properties of colloidal particle arrays and the ways of producing such arrays on dielectric substrates. (extreme light fields and their applications)

  12. Infrared Femtosecond Laser Direct-Writing Digital Volume Gratings in Fused Silica

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Li, Yu-Hua; Lu, Pei-Xiang

    2010-04-01

    We demonstrate that digital volume gratings can be fabricated in fused silica glass conveniently by direct femtosecond laser writing. The diffraction efficiencies of volume gratings can be essentially modulated by simply stacking and offsetting the unit structure. A series of volume gratings, which have the pitches of 5 μm and the size of 1 mm × 1 mm, have been fabricated with the writing speed of 500 μm/s, with which the processing period of each grating layer could be reduced to several minutes with a 1-kHz femtosecond laser system. Results show that the power spectrum of the diffracted waves of the volume gratings are dependent on the layer gap and layer offsetting.

  13. Femtosecond-laser-written superficial cladding waveguides in Nd:CaF2 crystal

    NASA Astrophysics Data System (ADS)

    Li, Rang; Nie, Weijie; Lu, Qingming; Cheng, Chen; Shang, Zhen; Vázquez de Aldana, Javier R.; Chen, Feng

    2017-07-01

    We report on the superficial cladding waveguides fabricated by direct femtosecond laser writing in Nd: CaF2 crystal with three different groups of parameters. The lowest propagation loss of waveguides has been determined to be 0.7 dB/cm at wavelength of 632.8 nm along TE polarization. The near fundamental modal distributions have been imaged through the end-face coupling technique. The guidance of the waveguides is found to possess low sensitivity on polarization of the probe light. By using a confocal microscope system, the micro-photoluminescence mappings and micro-fluorescence spectra are also obtained, which indicates the photoluminescence features of the Nd3+ ions are well preserved in the waveguide cores after direct femtosecond laser writing.

  14. Torsion sensing characteristics of long period fiber gratings fabricated by femtosecond laser in optical fiber

    NASA Astrophysics Data System (ADS)

    Duan, Ji'an; Xie, Zheng; Wang, Cong; Zhou, Jianying; Li, Haitao; Luo, Zhi; Chu, Dongkai; Sun, Xiaoyan

    2016-09-01

    With the alignment of the fiber core systems containing dual-CCDs and high-precision electric displacement platform, twisted long period fiber gratings (T-LPFGs) were fabricated in two different twisted SMF-28 fibers by femtosecond laser. The torsion characteristics of the T-LPFGs were experimentally and theoretical investigated and demonstrated in this study. The achieved torsion sensitivity is 117.4 pm/(rad/m) in the torsion range -105-0 rad/m with a linearity of 0.9995. Experimental results show that compared with the ordinary long period fiber gratings, the resonance wavelength of the gratings presents an opposite symmetrical shift depending on the twisting direction after the applied torsion is removed. In addition, high sensitivity could be obtained, which is very suitable for the applications in the torsion sensor. These results are important for the design of new torsion sensors based on T-LPFGs fabricated by femtosecond laser.

  15. Miniaturized probe for femtosecond laser microsurgery and two-photon imaging

    PubMed Central

    Hoy, Christopher L.; Durr, Nicholas J.; Chen, Pengyuan; Piyawattanametha, Wibool; Ra, Hyejun; Solgaard, Olav; Ben-Yakar, Adela

    2011-01-01

    Combined two-photon fluorescence microscopy and femtosecond laser microsurgery has many potential biomedical applications as a powerful “seek-and-treat” tool. Towards developing such a tool, we demonstrate a miniaturized probe which combines these techniques in a compact housing. The device is 10 × 15 × 40 mm3 in size and uses an air-core photonic crystal fiber to deliver femtosecond laser pulses at 80 MHz repetition rate for imaging and 1 kHz for microsurgery. A fast two-axis microelectromechanical system scanning mirror is driven at resonance to produce Lissajous beam scanning at 10 frames per second. Field of view is 310 μm in diameter and the lateral and axial resolutions are 1.64 μm and 16.4 μm, respectively. Combined imaging and microsurgery is demonstrated using live cancer cells. PMID:18575570

  16. Characteristic of high temperature structural long period grating fabricated by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Liu, Shujing; Luo, Mingyan; Ji, Qiang

    2015-08-01

    Structural Long period gratings (LPGs) in photonic crystal fiber (PCF) were successfully fabricated using the femtosecond laser micromachining system by introducing periodic side-holes. High temperature characterizations of the fabricated gratings have been performed. The structural gratings written with the femtosecond laser micromachining technique can suffer a low shift of the resonance wavelengths with sensitivity of 23pm/oC while the temperature is increased from 20°C to 1200°C. The LPGs have been found to have negligible temperature sensitivity whilst exhibiting useful strain (-1.86pm/μɛ)and strong directional bend sensitivity with -4.40nm•m (180°) and -2.79nm•m (0°) at low temperature. The unique sensing characteristics enable many potential sensing applications in high temperature environments, such as space aircraft, nuclear power plants, and the chemical industry.

  17. Micropillar fabrication on bovine cortical bone by direct-write femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Lim, Yong C.; Altman, Katrina J.; Farson, Dave F.; Flores, Katharine M.

    2009-11-01

    We investigated fabrication of cylindrical micropillars on bovine cortical bone using direct-write femtosecond laser ablation. The ablation threshold of the material was measured by single-pulse ablation tests, and the incubation coefficient was measured from linear scanned ablation tests. A motion system was programmed to apply multiple layers of concentric rings of pulses to machine pillars of various diameters and heights. The diameter of the top surface of the pillar was found to steadily decrease due to incubation of damage from successive layers of pulses during the machining process. Pillar top diameter was predicted based on a paraxial beam fluence approximation and single-pulse ablation threshold and incubation coefficient measurements. Pillar diameters predicted as successive layers of pulses were applied were well-matched to experiments, confirming that femtosecond laser ablation of the cortical bone was well-modeled by single-pulse ablation threshold measurements and an incubation coefficient.

  18. Comparison of 2 femtosecond lasers for flap creation in myopic laser in situ keratomileusis: one-year results.

    PubMed

    Yu, Charles Q; Manche, Edward E

    2015-04-01

    To compare laser in situ keratomileusis (LASIK) outcomes between 2 femtosecond lasers for flap creation in the treatment of myopia up to 1 year. University eye clinic. Prospective randomized eye-to-eye study. Consecutive myopic patients were treated with wavefront-guided LASIK. One eye had a flap created by the Intralase FS 60 kHz femtosecond laser, and the fellow eye was treated with the Intralase iFS 150 kHz femtosecond laser. Eyes were randomized according to ocular dominance. Evaluations included measurement of uncorrected distance visual acuity (UDVA), corrected distance visual acuity, contrast sensitivity and wavefront aberrometry. The study enrolled 122 eyes of 61 patients. The mean preoperative spherical equivalent refraction was -4.62 diopters (D) ± 2.32 (SD) and -4.66 ± 2.30 D in the 150 kHz group and 60 kHz group, respectively. Patients preferred the 150 kHz laser to the 60 kHz laser intraoperatively (52.5% versus 26.2%) (P = .005). One week postoperatively, UDVA was 20/16 or better in 85.2% in the 150 kHz group and 70.5% in the 60 kHz group; the difference was statistically significant (P < .05). At 12 months, there were no significant differences in refractive outcomes or higher-order aberrations between the 2 groups. Flap creation with the 150 kHz system and the 60 kHz system resulted in excellent LASIK outcomes. Intraoperatively, patients preferred the 150 kHz system, which yielded better UDVA in the early postoperative period. There were no significant differences at 1 year between the 2 laser systems. Proprietary or commercial disclosures are listed after the references. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  19. Femtosecond laser processing of photovoltaic and transparent materials

    NASA Astrophysics Data System (ADS)

    Ahn, Sanghoon

    The photovoltaic semiconducting and transparent dielectric materials are of high interest in current industry. Femtosecond laser processing can be an effective technique to fabricate such materials since non-linear photochemical mechanisms predominantly occur. In this series of studies, femtosecond (fs) laser processing techniques that include laser drilling on Si wafer, laser scribing on CIGS thin film, laser ablation on Lithium Niobate (LN) crystal, and fabrication of 3D structures in fused silica were studied. The fs laser drilling on Si wafer was performed to fabricate via holes for wrap-through PV devices. For reduction of the number of shots in fs laser drilling process, self-action of laser light in the air was initiated. To understand physical phenomena during laser drilling, scanning electron microscopy (SEM), emission, and shadowgraph images were studied. The result indicated the presence of two mechanisms that include fabrication by self-guided beam and wall-guided beam. Based on our study, we could fabricate ~16 micrometer circular-shaped via holes with ~200 laser pulses on 160-170 micrometer thick c- and mc-Si wafer. For the fs laser scribing on ink jet printed CIGS thin film solar cell, the effect of various parameters that include pulse accumulation, wavelength, pulse energy, and overlapping were elucidated. In our processing regime, the effect of wavelength could be diminished due to compensation between beam size, pulse accumulation, energy fluence, and the absorption coefficient. On the other hand, for high PRF fs laser processing, pulse accumulation effect cannot be ignored, while it can be negligible in low PRF fs laser processing. The result indicated the presence of a critical energy fluence for initiating delamination of CIGS layer. To avoid delamination and fabricate fine isolation lines, the overlapping method can be applied. With this method, ~1 micrometer width isolation lines were fabricated. The fs laser ablation on LN wafer was studied

  20. Microstructuring of fused silica using femtosecond laser pulses of various wavelengths

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Manuel; Engel, Andy; Reisse, Guenter; Weissmantel, Steffen

    2015-11-01

    Experimental results on ablation and microstructuring of fused silica (Corning 7980 HPFS Standard Grade) using femtosecond laser pulses will be presented. In particular, the ablation behavior of the material at the laser wavelengths of 775, 387 and 258 nm was investigated. The qualities of selected microstructures produced at the different wavelengths are compared with respect to roughness, crack formation and exactness. The investigations were carried out using an automated microstructuring system equipped with a femtosecond laser Clark-MXR CPA 2010 (1 mJ maximum pulse energy, 1 kHz repetition rate and 150 fs pulse duration). Layer-by-layer ablation is realized for producing 3D microstructures, where the layer thickness depends on the ablated depth per laser pulse. Those ablation depths depend on the material and the laser parameters and were determined for the three wavelengths in preparatory investigations. Therefore, the laser fluence and the pulse-to-pulse distance were varied independently. We will present the results of our fundamental studies on fs-laser ablation at the three wavelengths and show several structures, such as pyramids, half spheres and cones. Best results were obtained at 258 nm wavelength. There, the exactness was highest and the roughness of the surfaces of the structures was lowest. In addition, absolutely no crack formation occurred.

  1. Ti : sapphire laser synchronised with femtosecond Yb pump laser via nonlinear pulse coupling in Ti : sapphire active medium

    NASA Astrophysics Data System (ADS)

    Didenko, N. V.; Konyashchenko, A. V.; Konyashchenko, D. A.; Kostryukov, P. V.; Kuritsyn, I. I.; Lutsenko, A. P.; Mavritskiy, A. O.

    2017-02-01

    A laser system utilising the method of synchronous pumping of a Ti : sapphire laser by a high-power femtosecond Yb3+-doped laser is described. The pulse repetition rate of the Ti : sapphire laser is successfully locked to the repetition rate of the Yb laser for more than 6 hours without the use of any additional electronics. The measured timing jitter is shown to be less than 1 fs. A simple qualitative model addressing the synchronisation mechanism utilising the cross-phase modulation of oscillation and pump pulses within a Ti : sapphire active medium is proposed. Output parameters of the Ti : sapphire laser as functions of its cavity length are discussed in terms of this model.

  2. Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator.

    PubMed

    Fan, Jintao; Gu, Chenglin; Wang, Chingyue; Hu, Minglie

    2016-06-13

    We experimentally demonstrate a compact tunable, high average power femtosecond laser source in the ultraviolet (UV) regime. The laser source is based on intra-cavity frequency doubling of a temperature-tuned lithium tribotate (LBO) optical parametric oscillator (OPO), synchronously pumped at 520 nm by a frequency-doubled, Yb-fiber femtosecond laser amplifier system. By adjusting crystal temperature, the OPO can provide tunable visible to near-infrared (NIR) signal pulse, which have a wide spectral tuning range from 660 to 884 nm. Using a β-barium borate (BBO) crystal for intra-cavity frequency doubling, tunable femtosecond UV pulse are generated across 330~442 nm with up to 364 mW at 402 nm.

  3. Femtosecond Laser Patterning of the Biopolymer Chitosan for Biofilm Formation

    PubMed Central

    Estevam-Alves, Regina; Ferreira, Paulo Henrique Dias; Coatrini, Andrey C.; Oliveira, Osvaldo N.; Fontana, Carla Raquel; Mendonca, Cleber Renato

    2016-01-01

    Controlling microbial growth is crucial for many biomedical, pharmaceutical and food industry applications. In this paper, we used a femtosecond laser to microstructure the surface of chitosan, a biocompatible polymer that has been explored for applications ranging from antimicrobial action to drug delivery. The influence of energy density on the features produced on chitosan was investigated by optical and atomic force microscopies. An increase in the hydrophilic character of the chitosan surface was attained upon laser micromachining. Patterned chitosan films were used to observe Staphylococcus aureus (ATCC 25923) biofilm formation, revealing an increase in the biofilm formation in the structured regions. Our results indicate that fs-laser micromachining is an attractive option to pattern biocompatible surfaces, and to investigate basic aspects of the relationship between surface topography and bacterial adhesion. PMID:27548153

  4. Measurement of acceleration in femtosecond laser-plasmas

    SciTech Connect

    Haessner, R.; Theobald, W.; Niedermeier, S.; Michelmann, K.; Feurer, T.; Schillinger, H.; Sauerbrey, R.

    1998-02-20

    Accelerations up to 4x10{sup 19} m/s{sup 2} are measured in femtosecond laser-produced plasmas at intensities of 10{sup 18} W/cm{sup 2} using the Frequency Resolved Optical Gating (FROG) technique. A high density plasma is formed by focusing an ultrashort unchirped laser pulse on a plane carbon target and part of the reflected pulse is eventually detected by a FROG autocorrelator. Radiation pressure and thermal pressure accelerate the plasma which causes a chirp in the reflected laser pulse. The retrieved phase and amplitude information reveal that the plasma motion is dominated by the large light pressure which pushes the plasma into the target. This is supported by theoretical estimates and by the results of independently measured time integrated spectra of the reflected pulse.

  5. Femtosecond laser pulse induced desorption: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Lončarić, Ivor; Alducin, Maite; Saalfrank, Peter; Juaristi, J. Iñaki

    2016-09-01

    In recent simulations of femtosecond laser induced desorption of molecular oxygen from the Ag(110) surface, it has been shown that depending on the properties (depth and electronic environment) of the well in which O2 is adsorbed, the desorption can be either induced dominantly by hot electrons or via excitations of phonons. In this work we explore whether the ratios between the desorption yields from different adsorption wells can be tuned by changing initial surface temperature and laser pulse properties. We show that the initial surface temperature is an important parameter, and that by using low initial surface temperatures the electronically mediated process can be favored. In contrast, laser properties seem to have only a modest influence on the results.

  6. Femtosecond laser micromachining of aluminum surfaces under controlled gas atmospheres

    NASA Astrophysics Data System (ADS)

    Robinson, G. M.; Jackson, M. J.

    2006-04-01

    The interaction of 180 femtosecond (fs), 775 nm laser pulses with the surface of aluminum under controlled gas atmospheres at ambient pressure has been investigated to study material redeposition, residual surface roughness, and ablation rate. The effect of using various gases to protect the surface of the material appears to interfere with the effects of the plasma and can change the resulting microstructure of the machined surface. By varying the combinations of fluence and laser-scanning speed during ultrafast ablation at high repetition rates, an optimum micromachining condition can be reached, depending on the type of gas used during machining. The debris produced under certain laser-machining conditions tends to produce pure aluminum nanoparticles that are deposited very close to the machined feature by the gas used to protect the surface of the aluminum.

  7. Nanoscale patterning of graphene through femtosecond laser ablation

    SciTech Connect

    Sahin, R.; Akturk, S.; Simsek, E.

    2014-02-03

    We report on nanometer-scale patterning of single layer graphene on SiO{sub 2}/Si substrate through femtosecond laser ablation. The pulse fluence is adjusted around the single-pulse ablation threshold of graphene. It is shown that, even though both SiO{sub 2} and Si have more absorption in the linear regime compared to graphene, the substrate can be kept intact during the process. This is achieved by scanning the sample under laser illumination at speeds yielding a few numbers of overlapping pulses at a certain point, thereby effectively shielding the substrate. By adjusting laser fluence and translation speed, 400 nm wide ablation channels could be achieved over 100 μm length. Raster scanning of the sample yields well-ordered periodic structures, provided that sufficient gap is left between channels. Nanoscale patterning of graphene without substrate damage is verified with Scanning Electron Microscope and Raman studies.

  8. Two wavelength femtosecond laser induced DNA-protein crosslinking.

    PubMed Central

    Russmann, C; Stollhof, J; Weiss, C; Beigang, R; Beato, M

    1998-01-01

    Nucleic acid-protein interactions are essential for storage, reproduction and expression of genetic information. Biochemical methods, such as dimethyl sulfate genomic footprinting, have been developed to study stable protein-DNA interactions in vivo and chemical crosslinking has been used for less stable interactions, but the chemical agents are slow, damage cells and perturb native equilibria. To avoid these perturbations, UV laser crosslinking offers an alternative, although the energies required for significant crosslinking cause extensive DNA damage. We find that a combination of femtosecond laser pulses at two different wavelengths, in the UV and the visible range, increases the crosslinking efficiency while minimizing DNA damage. This technique also allowed us to directly measure the singlet S1lifetime of native DNA (tauS1 = 3.2 +/- 0.2 ps), which is mainly determined by the lifetime of thymine [tauS1 = 2.8 +/- 0.4 ps for (dT)16], the photochemically most reactive base. Our results suggest that two wavelength femtosecond laser pulses are well suited for the identification of transcription factors interacting with defined sequences and for studying the kinetics of protein-nucleic acid interactions in intact cells. PMID:9705506

  9. Influence of SOD on THG for femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Sidorov, Pavel S.

    2017-02-01

    THG is used nowadays in many practical applications such as a substance diagnostics, and biological objects imaging, and etc. Therefore, THG features understanding are urgent problem and this problem attracts an attention of many researchers. In this paper we analyze THG efficiency of a femtosecond laser pulse. Consideration is based on computer simulation of the laser pulse propagation with taking into account a selfand cross- modulation of the interacting waves, and their SOD, and phase mismatching. Moreover, we analyze an influence of the non-homogeneous phase mismatching along laser pulse propagation coordinate. In this case, a phase matching occurs only in narrow area of longitudinal coordinate. Due to strong self- and crossmodulation of interacting waves it is possible to manage effective THG. Using the frame-work of long pulse duration approximation and plane wave approximation as well as an original approach we write the explicit solution of Schrödinger equations describing the frequency tripling of femtosecond pulse. It should be stressed, that the main feature of our approach consists in conservation laws using corresponding to wave interaction process.

  10. Femtosecond laser precipitation of non-centrosymmetric crystals in glasses

    NASA Astrophysics Data System (ADS)

    Liebig, C. M.; Goldstein, J.; McDaniel, S. A.; Glaze, E.; Krein, D.; Cook, G.

    2016-09-01

    Optical processes that rely on second-order nonlinear optical effects such as second harmonic generation and optical parametric amplification require the use of non-centrosymmetric crystals (NCCs). Recently it has been reported that femtosecond lasers can be used to precipitate NCCs within supersaturated glasses, forming waveguide structures [1]. During laser writing, a combination of thermal gradients together with the laser polarization, cause the alignment of the polar axis of the NCC along the writing direction. Femtosecond precipitation of NCCs in glass has the potential to be a lower-cost alternative to other methods of achieving NCC waveguiding structures. In this study a widely used ferroelectric NCC, Lithium Niobate, was precipitated in 33LiO2-33Nb2O5-34SiO2 (mol%) (LNS) glass, forming crystalline aligned channels within the amorphous glassy matrix. The precipitated lithium niobate was characterized and the structural orientation determined. The waveguiding characteristics were measured for several conditions to determine optimal power and writing speed. This procedure was then modified to optimize the precipitated 1-D structures for photonic and holographic applications.

  11. Penetrating Keratoplasty for Keratoconus - Excimer Versus Femtosecond Laser Trephination.

    PubMed

    Seitz, Berthold; Langenbucher, Achim; Hager, Tobias; Janunts, Edgar; El-Husseiny, Moatasem; Szentmáry, Nora

    2017-01-01

    In case of keratoconus, rigid gas-permeable contact lenses as the correction method of first choice allow for a good visual acuity for quite some time. In a severe stage of the disease with major cone-shaped protrusion of the cornea, even specially designed keratoconus contact lenses are no more tolerated. In case of existing contraindications for intrastromal ring segments, corneal transplantation typically has a very good prognosis. In case of advanced keratoconus - especially after corneal hydrops due to rupture of Descemet's membrane - penetrating keratoplasty (PKP) still is the surgical method of first choice. Noncontact excimer laser trephination seems to be especially beneficial for eyes with iatrogenic keratectasia after LASIK and those with repeat grafts in case of "keratoconus recurrences" due to small grafts with thin host cornea. For donor trephination from the epithelial side, an artificial chamber is used. Wound closure is achieved with a double running cross-stitch suture according to Hoffmann. Graft size is adapted individually depending on corneal size ("as large as possible - as small as necessary"). Limbal centration will be preferred intraoperatively due to optical displacement of the pupil. During the last 10 years femtosecond laser trephination has been introduced from the USA as a potentially advantageous approach. Prospective clinical studies have shown that the technique of non-contact excimer laser PKP improves donor and recipient centration, reduces "vertical tilt" and "horizontal torsion" of the graft in the recipient bed, thus resulting in significantly less "all-sutures-out" keratometric astigmatism (2.8 vs. 5.7 D), higher regularity of the topography (SRI 0.80 vs. 0.98) and better visual acuity (0.80 vs. 0.63) in contrast to the motor trephine. The stage of the disease does not influence functional outcome after excimer laser PKP. Refractive outcomes of femtosecond laser keratoplasty, however, resemble that of the motor trephine. In

  12. Penetrating Keratoplasty for Keratoconus – Excimer Versus Femtosecond Laser Trephination

    PubMed Central

    Seitz, Berthold; Langenbucher, Achim; Hager, Tobias; Janunts, Edgar; El-Husseiny, Moatasem; Szentmáry, Nora

    2017-01-01

    Background: In case of keratoconus, rigid gas-permeable contact lenses as the correction method of first choice allow for a good visual acuity for quite some time. In a severe stage of the disease with major cone-shaped protrusion of the cornea, even specially designed keratoconus contact lenses are no more tolerated. In case of existing contraindications for intrastromal ring segments, corneal transplantation typically has a very good prognosis. Methods: In case of advanced keratoconus – especially after corneal hydrops due to rupture of Descemet’s membrane – penetrating keratoplasty (PKP) still is the surgical method of first choice. Noncontact excimer laser trephination seems to be especially beneficial for eyes with iatrogenic keratectasia after LASIK and those with repeat grafts in case of “keratoconus recurrences” due to small grafts with thin host cornea. For donor trephination from the epithelial side, an artificial chamber is used. Wound closure is achieved with a double running cross-stitch suture according to Hoffmann. Graft size is adapted individually depending on corneal size („as large as possible – as small as necessary“). Limbal centration will be preferred intraoperatively due to optical displacement of the pupil. During the last 10 years femtosecond laser trephination has been introduced from the USA as a potentially advantageous approach. Results: Prospective clinical studies have shown that the technique of non-contact excimer laser PKP improves donor and recipient centration, reduces “vertical tilt” and “horizontal torsion” of the graft in the recipient bed, thus resulting in significantly less “all-sutures-out” keratometric astigmatism (2.8 vs. 5.7 D), higher regularity of the topography (SRI 0.80 vs. 0.98) and better visual acuity (0.80 vs. 0.63) in contrast to the motor trephine. The stage of the disease does not influence functional outcome after excimer laser PKP. Refractive outcomes of femtosecond laser

  13. Femtosecond laser fabrication of nanostructures in silica glass.

    PubMed

    Taylor, R S; Hnatovsky, C; Simova, E; Rayner, D M; Bhardwaj, V R; Corkum, P B

    2003-06-15

    A femtosecond laser beam focused inside fused silica and other glasses can modify the refractive index of the glass. Chemical etching and atomic-force microscope studies show that the modified region can have a sharp-tipped cone-shaped structure with a tip diameter as small as 100 nm. Placing the structure near the bottom surface of a silica glass sample and applying a selective chemical etch to the bottom surface produces clean, circular, submicrometer-diameter holes. Holes spaced as close to one another as 1.4 microm are demonstrated.

  14. Precision spectroscopy of hydrogen and femtosecond laser frequency combs.

    PubMed

    Hänsch, T W; Alnis, J; Fendel, P; Fischer, M; Gohle, C; Herrmann, M; Holzwarth, R; Kolachevsky, N; Udem, Th; Zimmermann, M

    2005-09-15

    Precision spectroscopy of the simple hydrogen atom has inspired dramatic advances in optical frequency metrology: femtosecond laser optical frequency comb synthesizers have revolutionized the precise measurement of optical frequencies, and they provide a reliable clock mechanism for optical atomic clocks. Precision spectroscopy of the hydrogen 1S-2S two-photon resonance has reached an accuracy of 1.4 parts in 10(14), and considerable future improvements are envisioned. Such laboratory experiments are setting new limits for possible slow variations of the fine structure constant alpha and the magnetic moment of the caesium nucleus mu(Cs) in units of the Bohr magneton mu(B).

  15. Femtosecond Laser Processing by Using Patterned Vector Optical Fields

    PubMed Central

    Lou, Kai; Qian, Sheng-Xia; Ren, Zhi-Cheng; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2013-01-01

    We present and demonstrate an approach for femtosecond laser processing by using patterned vector optical fields (PVOFs) composed of multiple individual vector optical fields. The PVOFs can be flexibly engineered due to the diversity of individual vector optical fields in spatial arrangement and distribution of states of polarization, and it is easily created with the aid of a spatial light modulator. The focused PVOFs will certainly result in various interference patterns, which are then used to fabricate multi-microholes with various patterns on silicon. The present approach can be expanded to fabricate three-dimensional microstructures based on two-photon polymerization. PMID:23884360

  16. Submicrojoule femtosecond erbium-doped fibre laser for the generation of dispersive waves at submicron wavelengths

    SciTech Connect

    Kotov, L V; Koptev, M Yu; Anashkina, E A; Muravyev, S V; Andrianov, A V; Kim, A V; Bubnov, M M; Likhachev, M E; Ignat'ev, A D; Lipatov, D S; Gur'yanov, A N

    2014-05-30

    We have demonstrated a femtosecond erbium-doped fibre laser system built in the master oscillator/power amplifier (MOPA) approach. The final amplifier stage utilises a specially designed large mode area active fibre cladding-pumped by multimode laser diodes. The system is capable of generating submicrojoule pulses at a wavelength near 1.6 μm. We have obtained 530-fs pulses with an energy of 400 nJ. The output of the system can be converted to wavelengths shorter than 1 μm through the generation of dispersive waves in passive nonlinear fibre. We have obtained ultra-short 7-nJ pulses with a spectral width of ∼100 nm and a centre wavelength of 0.9 μm, which can be used as a seed signal in parametric amplifiers in designing petawatt laser systems. (lasers)

  17. Super-hydrophobicity of PMMA and PDMS surfaces structured by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Jeong, Hong-Myeong; Lee, Woon-Young; Lee, Jin-Ho; Yang, Deok-Cho; Lim, Ki-Soo

    2013-03-01

    Surface wettability depends on both physical surface structure and chemical material. In this report, we demonstrate super-hydrophobic surface of cast polymethyl methacrylate (PMMA) sheet by femtosecond laser fabrication. Twodimensional micro-array structures of square-typed pillars with various heights, widths, and intervals were fabricated on the PMMA surface by femtosecond laser irradiation and chemical etching. The Yb:KGW femtosecond laser processing system (λ=1030 nm) delivering 250 fs pulses at a repetition rate 100 kHz was employed for fabrication. The contact angle of PMMA changed 64° (hydrophilic plane) to 150° (super-hydrophobic structure). We also improved superhydrophobicity up to 170° contact angle by spin-coating PMMA surface with PDMS and fabricating regular microstructures including irregular nano-structures. We also coated the structured PMMA surface with a car ash spray material to use another combination of surface morphology and chemistry. All the experimental results were compared with those expected values by Cassie-Baxter model.

  18. Evaluating the speed of visual recovery following thin-flap LASIK with a femtosecond laser.

    PubMed

    Durrie, Daniel S; Brinton, Jason P; Avila, Michele R; Stahl, Erin D

    2012-09-01

    To investigate the speed of visual recovery following myopic thin-flap LASIK with a femtosecond laser. This pilot study prospectively evaluated 20 eyes from 10 patients who underwent bilateral simultaneous LASIK with the Femto LDV Crystal Line femtosecond laser (Ziemer Ophthalmic Systems AG) used to create a circular flap of 9.0-mm diameter and 110-μm thickness followed by photoablation with the Allegretto Wave Eye-Q (WaveLight AG) excimer laser. Binocular and monocular uncorrected distance visual acuity (UDVA), monocular contrast sensitivity, and a patient questionnaire were evaluated during the first hours, 1 day, and 1 month postoperatively. For monocular UDVA, 100% of eyes were 20/40 at 1 hour and 100% were 20/25 at 4 hours. For binocular UDVA, all patients achieved 20/32 by 30 minutes and 20/20 by 4 hours. Low frequency contrast sensitivity returned to preoperative baseline by 1 hour (P=.73), and showed a statistically significant improvement over baseline by 4 hours (P=.01). High frequency monocular contrast sensitivity returned to preoperative baseline by 4 hours (P=.48), and showed a statistically significant improvement by 1 month (P=.04). At 2 and 4 hours, 50% and 100% of patients, respectively, indicated that they would feel comfortable driving. Visual recovery after thin-flap femtosecond LASIK is rapid, occurring within the first few hours after surgery. Copyright 2012, SLACK Incorporated.

  19. Formation of conical emission of supercontinuum during filamentation of femtosecond laser radiation in fused silica

    SciTech Connect

    Kandidov, V. P. Smetanina, E. O.; Dormidonov, A. E.; Kompanets, V. O.; Chekalin, S. V.

    2011-09-15

    The formation of conical emission of supercontinuum during filamentation of femtosecond laser pulses with central wavelengths in a wide range is studied experimentally, numerically, and analytically. The frequency-angular intensity distribution of the spectral components of conical emission is determined by the interference of supercontinuum emission in a filament of a femtosecond laser pulse. The interference of supercontinuum emission has a general character, exists at different regimes of group velocity dispersion, gives rise to the fine spectral structure after the pulse splitting into subpulses and the formation of a distributed supercontinuum source in an extended filament, and causes the decomposition of the continuous spectrum of conical emission into many high-contrast maxima after pulse refocusing in the filament. In spectroscopic studies with a tunable femtosecond radiation source based on a TOPAS parametric amplifier, we used an original scheme with a wedge fused silica sample. Numerical simulations have been performed using a system of equations of nonlinear-optical interaction of laser radiation under conditions of diffraction, wave nonstationarity, and material dispersion in fused silica. The analytic study is based on the interference model of formation of conical emission by supercontinuum sources moving in a filament.

  20. Orientation teeth in nonmechanical femtosecond laser corneal trephination for penetrating keratoplasty.

    PubMed

    Mastropasqua, Leonardo; Nubile, Mario; Lanzini, Manuela; Calienno, Roberta; Trubiani, Oriana

    2008-07-01

    To evaluate femtosecond laser-assisted corneal full-thickness trephination with orientation teeth and notches for penetrating keratoplasty (PKP). Interventional case series. Four eyes of four patients aged 34 to 55 years underwent PKP using a femtosecond laser system enabling corneal trephination with orientation teeth and notches. Patients were affected by advanced keratoconus (n = 2) or postinfectious corneal scar (n = 2). Scanning electron microscopy (SEM) was performed to evaluate the cut quality of donor and recipient cornea. All procedures were completed without any complications. In all cases, the donor and the recipient cornea were cut with the same size of 8.0-mm diameter. A complete perforating cut was achieved in all eyes, and a correct intraoperative matching of teeth and notches was obtained. SEM of donor and recipient specimens showed a full-thickness cut with smooth and regular shape of orientation teeth and notches. Orientation teeth and notches shaped PKP using the femtosecond laser technology is feasible and may offer further promising approaches toward customized trephination techniques.

  1. Effects on Organic Photovoltaics Using Femtosecond-Laser-Treated Indium Tin Oxides.

    PubMed

    Chen, Mei-Hsin; Tseng, Ya-Hsin; Chao, Yi-Ping; Tseng, Sheng-Yang; Lin, Zong-Rong; Chu, Hui-Hsin; Chang, Jan-Kai; Luo, Chih-Wei

    2016-09-28

    The effects of femtosecond-laser-induced periodic surface structures (LIPSS) on an indium tin oxide (ITO) surface applied to an organic photovoltaic (OPV) system were investigated. The modifications of ITO induced by LIPPS in OPV devices result in more than 14% increase in power conversion efficiency (PCE) and short-circuit current density relative to those of the standard device. The basic mechanisms for the enhanced short-circuit current density are attributed to better light harvesting, increased scattering effects, and more efficient charge collection between the ITO and photoactive layers. Results show that higher PCEs would be achieved by laser-pulse-treated electrodes.

  2. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    NASA Astrophysics Data System (ADS)

    He, Li; Chen, Jun-Yang; Wang, Jian-Ping; Li, Mo

    2015-09-01

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.

  3. All-optical switching of magnetoresistive devices using telecom-band femtosecond laser

    SciTech Connect

    He, Li; Chen, Jun-Yang; Wang, Jian-Ping E-mail: moli@umn.edu; Li, Mo E-mail: moli@umn.edu

    2015-09-07

    Ultrafast all-optical switching of the magnetization of various magnetic systems is an intriguing phenomenon that can have tremendous impact on information storage and processing. Here, we demonstrate all-optical switching of GdFeCo alloy films using a telecom-band femtosecond fiber laser. We further fabricate Hall cross devices and electrically readout all-optical switching by measuring anomalous Hall voltage changes. The use of a telecom laser and the demonstrated all-optical switching of magnetoresistive devices represent the first step toward integration of opto-magnetic devices with mainstream photonic devices to enable novel optical and spintronic functionalities.

  4. Quantification of phase retardation in corneal tissues using a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Calhoun, William R.; Beylin, Alexander; Weiblinger, Richard; Ilev, Ilko

    2013-03-01

    The use of femtosecond lasers (FSL) in ophthalmic procedures, such as LASIK, lens replacement (cataract surgery), as well as several other treatments, is growing rapidly. The treatment effect is based on photo ablation of ocular tissues by a series of ultra-short laser pulses. However, the laser beam characteristics change dynamically due to interactions with birefringent corneal tissue, which may affect the outcome of the laser treatment. To better understand the effect the cornea has on the laser characteristics, we developed a system for measuring retardation and validated it with precise, standard phase retarders. Then we measured the phase retardation of FSLs through bovine corneas and found that there is a considerable, location dependent, variation in retardation values. This information can potentially help optimize FSL parameters to make their application in ophthalmic procedures safer and more effective.

  5. Thermal poling induced second-order nonlinearity in femtosecond- laser-modified fused silica

    SciTech Connect

    An Honglin; Fleming, Simon; McMillen, Benjamin W.; Chen, Kevin P.; Snoke, David

    2008-08-11

    Thermal poling was utilized to induce second-order nonlinearity in regions of fused silica modified by 771 nm femtosecond laser pulses. With second-harmonic microscopy, it was found that the nonlinearity in the laser-modified region was much lower than that in nonmodified regions. This is attributed to a more rigid glass network after irradiation by the femtosecond laser pulses and/or lack of mobile alkali ions. Measurement of the distribution of chemical elements in the femtosecond-laser-modified region in a soda lime glass revealed a lower level of sodium ions.

  6. Femtosecond-laser-induced shockwaves in water generated at an air-water interface.

    PubMed

    Strycker, B D; Springer, M M; Traverso, A J; Kolomenskii, A A; Kattawar, G W; Sokolov, A V

    2013-10-07

    We report generation of femtosecond-laser-induced shockwaves at an air-water interface by millijoule femtosecond laser pulses. We document and discuss the main processes accompanying this phenomenon, including light emission, development of the ablation plume in the air, formation of an ablation cavity, and, subsequently, a bubble developing in water. We also discuss the possibility of remotely controlling the characteristics of laser-induced sound waves in water through linear acoustic superposition of sound waves that results from millijoule femtosecond laser-pulse interaction with an air-water interface, thus opening up the possibility of remote acoustic applications in oceanic and riverine environments.

  7. Femtosecond Laser Micro- and Nanopatterning of the Fused Silica Tube to Enhance Capillary Effect

    NASA Astrophysics Data System (ADS)

    Kim, Youngseop; Sohn, Ik-Bu; Noh, Young-Chul

    2012-10-01

    Femtosecond lasers have considerable advantages over conventional lasers for micromachining of transparent materials, and here we use these advantages to fabricate a new type of glass capillary tube with micro- and nanopatterns on the inner surface of the tube. In terms of femtosecond laser patterning, we focused on the polarization state of the femtosecond laser and found that the variation of polarization affected the performance of capillary tubes, especially capillary rise and contact angle. We subsequently confirmed that the number of micropatterns and the direction of nanoripples most greatly affected the capillary rise.

  8. Femtosecond laser nano-fabrication and its biomedical applications

    NASA Astrophysics Data System (ADS)

    Tavangar, Amirhossein

    This dissertation aims to develop a new technique for fabrication of three-dimensional (3-D) interwoven nanofibrous platforms using femtosecond laser ablation of solids in ambient conditions. In the first part, the mechanism of ablation of solids by multiple femtosecond laser pulses in ambient air is described in an explicit analytical form. The formulas for evaporation rates and the number of ablated particles for laser ablation by multiple pulses as a function of laser parameters, background gas, and material properties are predicted and compared to experimental results. Later, the formation mechanism of the nanofibrous structures during laser ablation of targets in the presence of air is discussed. The results indicate that femtosecond laser ablation of solids at air background yields crystalline nanostructures. It's also shown that this technique allows synthesis of 3-D nanostructures on a wide range of materials including synthetic and natural materials. Later, potential practice of the proposed technique for integration of nanostructures on transparent platforms as well as inside microstructures toward device fabrication is investigated. Presented studies show that integrated nanostructure inside microchannels can be fabricated in one single step using this technique. Finally, to address the potential use of the nanostructures for biomedical application, several studies are performed to evaluate the bioactivity and biocompatibility of the nanostructures. The fabricated nanostructures incorporate the functions of 3-D nano-scaled topography and modified chemical properties to improve osseointegration, while at the same time leaving space for delivering other functional agents. In vitro experiments reveal that the titania nanofibrous platforms possess an excellent bioactivity and can induce rapid, uniform, and controllable bone-like apatite precipitation once immersed in simulated body fluid (SBF). Furthermore, the influence of synthesized titanium platforms on

  9. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers.

    PubMed

    Wan, Peng; Yang, Lih-Mei; Liu, Jian

    2013-12-02

    Two all fiber-based laser systems are demonstrated to achieve high energy and high average power femtosecond pulsed outputs at wavelength of 1 µm. In the high energy laser system, a pulse energy of 1.05 mJ (0.85 mJ after pulse compressor) at 100 kHz repetition rate has been realized by a Yb-doped ultra large-core single-mode photonic crystal fiber (PCF) rod amplifier, seeded with a 50 µJ fiber laser. The pulse duration is 705 fs. In the high average power experiment, a large mode area (LMA) fiber has been used in the final stage amplifier, seeded with a 50 W mode locked fiber laser. The system is running at a repetition rate of 69 MHz producing 1052 W of average power before compressor. After pulse compression, a pulse duration of 800 fs was measured.

  10. Effects of femtosecond and excimer lasers on implanted KAMRA corneal inlay in animal models.

    PubMed

    Sammouh, F K; Baban, T A; Dandan, W N; Warrak, E L

    2017-05-01

    To evaluate the effect of femtosecond laser and excimer laser on an intracorneal inlay (KAMRA(®)) implanted in animal models. Femtosecond laser was used to create corneal intrastromal pockets at 250μm depth in five porcine eyes. Four intact KAMRA inlays, examined by slit-lamp biomicroscopy and light microscopy, were implanted in the pocket of four eyes. A standard LASIK flap was created above each implanted inlay in the four eyes using a femtosecond laser with flap thicknesses of 150μm, 130μm, 110μm and 90μm. In the fifth porcine eye, a LASIK flap was created using femtosecond laser at 110μm depth, and a fifth inlay was then implanted in the 250μm pocket. Excimer laser ablation was performed under the flap targeting a -3.00 refraction. The inlay was then explanted, examined and reimplanted in the same pocket followed by a second similar excimer laser ablation. Significant burn, shrinkage and distortion of microholes were noted in all the first four inlays following the femtosecond laser flap creation at all the various flap thicknesses. The damage was noted to be more prominent as the distance between the flap and inlay decreased. No apparent effect was noted on the fifth inlay following repeated excimer laser ablations. Unlike excimer laser, femtosecond laser appears to be hazardous and damaging to the intracorneal KAMRA inlay when applied above it. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. A New Femtosecond Laser-Based Three-Dimensional Tomography Technique

    NASA Astrophysics Data System (ADS)

    Echlin, McLean P.

    2011-12-01

    Tomographic imaging has dramatically changed science, most notably in the fields of medicine and biology, by producing 3D views of structures which are too complex to understand in any other way. Current tomographic techniques require extensive time both for post-processing and data collection. Femtosecond laser based tomographic techniques have been developed in both standard atmosphere (femtosecond laser-based serial sectioning technique - FSLSS) and in vacuum (Tri-Beam System) for the fast collection (10 5mum3/s) of mm3 sized 3D datasets. Both techniques use femtosecond laser pulses to selectively remove layer-by-layer areas of material with low collateral damage and a negligible heat affected zone. To the authors knowledge, femtosecond lasers have never been used to serial section and these techniques have been entirely and uniquely developed by the author and his collaborators at the University of Michigan and University of California Santa Barbara. The FSLSS was applied to measure the 3D distribution of TiN particles in a 4330 steel. Single pulse ablation morphologies and rates were measured and collected from literature. Simultaneous two-phase ablation of TiN and steel matrix was shown to occur at fluences of 0.9-2 J/cm2. Laser scanning protocols were developed minimizing surface roughness to 0.1-0.4 mum for laser-based sectioning. The FSLSS technique was used to section and 3D reconstruct titanium nitride (TiN) containing 4330 steel. Statistical analysis of 3D TiN particle sizes, distribution parameters, and particle density were measured. A methodology was developed to use the 3D datasets to produce statistical volume elements (SVEs) for toughness modeling. Six FSLSS TiN datasets were sub-sampled into 48 SVEs for statistical analysis and toughness modeling using the Rice-Tracey and Garrison-Moody models. A two-parameter Weibull analysis was performed and variability in the toughness data agreed well with Ruggieri et al. bulk toughness measurements. The Tri

  12. Dry eye associated with laser in situ keratomileusis: Mechanical microkeratome versus femtosecond laser.

    PubMed

    Salomão, Marcella Q; Ambrósio, Renato; Wilson, Steven E

    2009-10-01

    To compare the incidence of laser in situ keratomileusis (LASIK)-associated dry eye and the need for postoperative cyclosporine A treatment after flap creation with a femtosecond laser and a mechanical microkeratome. Cole Eye Institute, Cleveland, Ohio, USA. Eyes were randomized to flap creation with an IntraLase femtosecond laser (30 or 60 kHz) or a Hansatome microkeratome. No patient had signs, symptoms, or treatment of dry eye preoperatively. Flap thickness was determined by intraoperative ultrasonic pachymetry. Slitlamp assessments of the cornea and need for postoperative dry-eye treatment were evaluated preoperatively and 1 month postoperatively. The flap was created with the femtosecond laser in 113 eyes and with the microkeratome in 70 eyes. The difference in mean central flap thickness between the femtosecond group (111 mum +/- 14 [SD]) and the microkeratome group (131 +/- 25 mum) was statistically significant (P<.001). The incidence of LASIK-associated dry eye was statistically significantly higher in the microkeratome group (46%) than in the femtosecond group (8%) (P<.0001), as was the need for postoperative cyclosporine A treatment (24% and 7%, respectively) (P<.01). In the microkeratome group, there was no correlation between thick flaps and a higher incidence of LASIK-induced dry eye. Eyes with femtosecond flaps had a lower incidence of LASIK-associated dry eye and required less treatment for the disorder. In addition to neurotrophic effects from corneal nerve cutting, other factors may be important because no correlation was found between flap thickness (or ablation depth) and the incidence of LASIK-induced dry eye.

  13. Determination of the temporal structure of femtosecond laser pulses by means of laser-induced air plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Bao, Wen-Xia; Yang, Jing-Hui; Zhu, Xiao-Nong

    2013-05-01

    A new approach is presented to reveal the temporal structure of femtosecond laser pulses by recording the corresponding time-resolved shadowgraphs of the laser-induced air plasma. It is shown that the temporal structures of femtosecond laser pulses, normally not observable by the ordinary intensity autocorrelator, can be detected through intuitively analyzing the ultrafast evolution process of the air plasma induced by the femtosecond laser pulses under examination. With this method, existence of pre- and post-pulses has been clearly unveiled within the time window of ±150 fs in reference with the main 50-fs laser pulses output from a commercial 1-kHz femtosecond laser amplifier. The unique advantage of the proposed method is that it can directly provide valuable information about the pulse temporal structures' effect on the laser-induced ionization or material ablation.

  14. Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol

    PubMed Central

    Nee, Chen-Hon; Yap, Seong-Ling; Tou, Teck-Yong; Chang, Huan-Cheng; Yap, Seong- Shan

    2016-01-01

    Carbon nanomaterials exhibit novel characteristics including enhanced thermal, electrical, mechanical, and biological properties. Nanodiamonds; first discovered in meteorites are found to be biocompatible, non-toxic and have distinct optical properties. Here we show that nanodiamonds with the size of <5 nm are formed directly from ethanol via 1025 nm femtosecond laser irradiation. The absorption of laser energy by ethanol increased non-linearly above 100 μJ accompanied by a white light continuum arises from fs laser filamentation. At laser energy higher than 300 μJ, emission spectra of C, O and H in the plasma were detected, indicating the dissociation of C2H5OH. Nucleation of the carbon species in the confined plasma within the laser filaments leads to the formation of nanodiamonds. The energy dependence and the roles of the nonlinear phenomenon to the formation of homogeneous nanodiamonds are discussed. This work brings new possibility for bottom-up nanomaterials synthesis based on nano and ultrafast laser physics. PMID:27659184

  15. Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Hong, M. H.; Lu, Y. F.; Wu, D. J.; Lan, B.; Chong, T. C.

    2003-05-01

    Teflon, polytetrafluorethylene (PTFE), is an important material in bioscience and medical application due to its special characteristics (bio-compatible, nonflammable, antiadhesive, and heat resistant). The advantages of ultrashort laser processing of Teflon include a minimal thermal penetration region and low processing temperatures, precision removal of material, and good-quality feature definition. In this paper, laser processing of PTFE in ambient air by a Ti:sapphire femtosecond laser (780 nm, 110 fs) is investigated. It is found that the pulse number on each irradiated surface area must be large enough for a clear edge definition and the ablated depth increases with the pulse number. The air ionization effect at high laser fluences not only degrades the ablated structures quality but also reduces the ablation efficiency. High quality microstructures are demonstrated with controlling laser fluence below a critical fluence to exclude the air ionization effect. The ablated microstructures show strong adhesion property to liquids and clear edges that are suitable for bio-implantation applications. Theoretical calculation is used to analyze the evolution of the ablated width and depth at various laser fluences.

  16. Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol

    NASA Astrophysics Data System (ADS)

    Nee, Chen-Hon; Yap, Seong-Ling; Tou, Teck-Yong; Chang, Huan-Cheng; Yap, Seong-Shan

    2016-09-01

    Carbon nanomaterials exhibit novel characteristics including enhanced thermal, electrical, mechanical, and biological properties. Nanodiamonds; first discovered in meteorites are found to be biocompatible, non-toxic and have distinct optical properties. Here we show that nanodiamonds with the size of <5 nm are formed directly from ethanol via 1025 nm femtosecond laser irradiation. The absorption of laser energy by ethanol increased non-linearly above 100 μJ accompanied by a white light continuum arises from fs laser filamentation. At laser energy higher than 300 μJ, emission spectra of C, O and H in the plasma were detected, indicating the dissociation of C2H5OH. Nucleation of the carbon species in the confined plasma within the laser filaments leads to the formation of nanodiamonds. The energy dependence and the roles of the nonlinear phenomenon to the formation of homogeneous nanodiamonds are discussed. This work brings new possibility for bottom-up nanomaterials synthesis based on nano and ultrafast laser physics.

  17. Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol.

    PubMed

    Nee, Chen-Hon; Yap, Seong-Ling; Tou, Teck-Yong; Chang, Huan-Cheng; Yap, Seong-Shan

    2016-09-23

    Carbon nanomaterials exhibit novel characteristics including enhanced thermal, electrical, mechanical, and biological properties. Nanodiamonds; first discovered in meteorites are found to be biocompatible, non-toxic and have distinct optical properties. Here we show that nanodiamonds with the size of <5 nm are formed directly from ethanol via 1025 nm femtosecond laser irradiation. The absorption of laser energy by ethanol increased non-linearly above 100 μJ accompanied by a white light continuum arises from fs laser filamentation. At laser energy higher than 300 μJ, emission spectra of C, O and H in the plasma were detected, indicating the dissociation of C2H5OH. Nucleation of the carbon species in the confined plasma within the laser filaments leads to the formation of nanodiamonds. The energy dependence and the roles of the nonlinear phenomenon to the formation of homogeneous nanodiamonds are discussed. This work brings new possibility for bottom-up nanomaterials synthesis based on nano and ultrafast laser physics.

  18. Picosecond and femtosecond laser ablation of hard tissues

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexander A.; Makropoulou, Mersini I.; Kar, Ajoy K.; Khabbaz, Marouan

    1996-12-01

    In this study, the interaction of picosecond and femtosecond pulsed laser radiation with human dental tissue was investigated experimentally, as this unexplored field is expected to be a potential alternative in powerful laser processing of biomedical structures. Dentin ablation rate experiments were performed by using teeth sections of different thickness. Dental tissue samples were irradiated in air with i) a regenerative amplifier laser at 1064 nm, pulse duration 110 ps, ii) the second harmonic laser at 532 nm, pulse duration 100 ps, and iii) a picosecond tunable dye amplifier at 595 nm, pulse width 800 fs. In all the experiments the pulse repetition rate was 10 Hz. The ablation rate per pulse at different energy fluence settings was calculated by measuring the time needed for the perforation of the whole dental sample thickness. Short laser pulses can confine thermal energy within the optical zone, which maximizes photothermal and photomechanical mechanisms of interaction. Tissue ablation rates were found to be comparable to or better than other nanosecond lasers, and left smooth surfaces, free of thermal damage.

  19. Femtosecond laser-induced surface wettability modification of polystyrene surface

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  20. Improvement of aluminum drilling efficiency and precision by shaped femtosecond laser

    NASA Astrophysics Data System (ADS)

    Qi, Ying; Qi, Hongxia; Chen, Anmin; Hu, Zhan

    2014-10-01

    Shaped femtosecond laser pulses with the plain phase (transform-limited pulse) and sine phase (A = 1.2566, T = 30, T = 10, and T = 5) were used to drill Al sheet in vacuum. Using different phase, the number of pulses required to drill through the sheet was different. With lower laser pulse energy, the ablation rate was the highest when plain phase (corresponding to transform limited pulse) was used. With higher laser energy, the optimized ablation rate can be achieved by increasing the time separation between the subpulses of pulse train produced from the sine phase function. And, with the shaped femtosecond laser, the diameter of ablation holes produced was smaller, the ablation precision was also improved. The results showed that shaped femtosecond laser pulse has great advantages in the context of femtosecond laser drilling.

  1. Wavefront autocorrelation of femtosecond laser beams

    NASA Astrophysics Data System (ADS)

    Grunwald, Ruediger; Neumann, Uwe J.; Griebner, Uwe; Reimann, Klaus; Steinmeyer, Guenter; Kebbel, Volker

    2004-06-01

    Spatially resolved wavefront sensing and time-resolved autocorrelation measurement of ultrashort pulses are usually separated procedures. For few-cycle pulses with significant spatial inhomogeneities and poor beam quality, a fully spatio-temporal beam characterization is necessary. Here we report on a new concept for a joint two-dimensional mapping of local temporal coherence and local wavefront tilt based on the combination of collinear autocorrelation and Shack-Hartmann wavefront sensing. Essentially for this "wavefront autocorrelation" is a splitting of the beam into a matrix of Bessel-like sub-beams by an array of thin-film microaxicons. The sub-beams are further processed by a two-dimensional collinear autocorrelation setup. The second harmonic distribution of sub-beams at a defined distance is imaged onto a CCD camera. The nondiffractive sub-beams ensure an extended depth of focus and a low sensitivity towards angular misalignment or axial displacement. With low-dispersion small-angle refractive-reflective shapers, wavefront-sensing of Ti:sapphire laser wavepackets was demonstrated experimentally for the first time.

  2. Micro-hole drilling and cutting using femtosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Yang, Lih-Mei; Liu, Jian

    2014-05-01

    Micro-hole drilling and cutting in ambient air are presented by using a femtosecond fiber laser. At first, the micro-hole drilling was investigated in both transparent (glasses) and nontransparent (metals and tissues) materials. The shape and morphology of the holes were characterized and evaluated with optical and scanning electron microscopy. Debris-free micro-holes with good roundness and no thermal damage were demonstrated with the aspect ratio of 8∶1. Micro-hole drilling in hard and soft tissues with no crack or collateral thermal damage is also demonstrated. Then, trench micromachining and cutting were studied for different materials and the effect of the laser parameters on the trench properties was investigated. Straight and clean trench edges were obtained with no thermal damage.

  3. Ion acceleration by femtosecond laser pulses in small multispecies targets

    NASA Astrophysics Data System (ADS)

    Psikal, J.; Tikhonchuk, V. T.; Limpouch, J.; Andreev, A. A.; Brantov, A. V.

    2008-05-01

    Ion acceleration by ultrashort intense femtosecond laser pulses (˜4×1019W/cm2, ˜30fs) in small targets of uniform chemical composition of two ion species (protons and carbon C4+ ions) is studied theoretically via a particle-in-cell code with two spatial and three velocity components. Energy spectra of accelerated ions, the number and divergence of fast protons, are compared for various target shapes (cylinder, flat foil, curved foil) and density profiles. Dips and peaks are observed in proton energy spectra due to mutual interaction between two ion species. The simulations demonstrate that maximum energy of fast protons depends on the efficiency of laser absorption and the cross section of the hot electron cloud behind the target. A rear-side plasma density ramp can substantially decrease the energy of fast ions and simultaneously enhance their number. These results are compared with analytical estimates and with previously published experiments.

  4. Ablation and nanostructuring of metals by femtosecond laser pulses

    SciTech Connect

    Ashitkov, S I; Komarov, P S; Ovchinnikov, A V; Struleva, E V; Agranat, M B; Zhakhovskii, V V; Inogamov, N A

    2014-06-30

    Using an interferometric continuous monitoring technique, we have investigated the motion of the surface of an aluminium target in the case of femtosecond laser ablation at picosecond time delays relative to the instant of laser exposure. Measurements of the temporal target dispersion dynamics, molecular dynamics simulation results and the morphology of the ablation crater have demonstrated a thermomechanical (spall) nature of the disruption of the condensed phase due to the cavitation-driven formation and growth of vapour phase nuclei upon melt expansion, followed by the formation of surface nanostructures upon melt solidification. The tensile strength of heated aluminium in a condensed state has been determined experimentally at an expansion rate of ∼10{sup 9} s{sup -1}. (extreme light fields and their applications)

  5. Self assembled nanoparticle aggregates from line focused femtosecond laser ablation.

    PubMed

    Zuhlke, Craig A; Alexander, Dennis R; Bruce, John C; Ianno, Natale J; Kamler, Chad A; Yang, Weiqing

    2010-03-01

    In this paper we present the use of a line focused femtosecond laser beam that is rastered across a 2024 T3 aluminum surface to produce nanoparticles that self assemble into 5-60 micron diameter domed and in some cases sphere-shaped aggregate structures. Each time the laser is rastered over initial aggregates their diameter increases as new layers of nanoparticles self assemble on the surface. The aggregates are thus composed of layers of particles forming discrete layered shells inside of them. When micron size aggregates are removed, using an ultrasonic bath, rings are revealed that have been permanently formed in the sample surface. These rings appear underneath, and extend beyond the physical boundary of the aggregates. The surface is blackened by the formation of these structures and exhibits high light absorption.

  6. Measuring the Frequency of Light with Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Udem, Thomas

    2001-04-01

    We have shown that the modes of a femtosecond mode-locked laser are distributed uniformly in frequency space and can be used like a ruler to measure large optical frequency differences. To measure absolute optical frequencies we created a frequency comb that contained a full optical octave to measure the gap that is spanned by this octave. Unlike the complex harmonic frequency chains used in the past this new approach uses only one laser sources and is nevertheless capable of measuring almost any optical frequency with the same set up. We applied the new technique to determine the absolute frequencies of the cesium D1, of several components in Iodine around 563 THz, a sharp "clock" transition in a single trapped Indium ion and the hydrogen 1S-2S transition. We also tested its performance by comparing two similar set-ups.

  7. Dynamics of femtosecond laser produced tungsten nanoparticle plumes

    SciTech Connect

    Harilal, S. S.; Hassanein, A.; Farid, N.; Kozhevin, V. M.

    2013-11-28

    We investigated the expansion features of femtosecond laser generated tungsten nanoparticle plumes in vacuum. Fast gated images showed distinct two components expansion features, viz., plasma and nanoparticle plumes, separated by time of appearance. The persistence of plasma and nanoparticle plumes are ∼500 ns and ∼100 μs, respectively, and propagating with velocities differed by 25 times. The estimated temperature of the nanoparticles showed a decreasing trend with increasing time and space. Compared to low-Z materials (e.g., Si), ultrafast laser ablation of high-Z materials like W provides significantly higher nanoparticle yield. A comparison between the nanoparticle plumes generated by W and Si is also discussed along with other metals.

  8. Selective cell adhesion on femtosecond laser-microstructured polydimethylsiloxane.

    PubMed

    Alshehri, A M; Hadjiantoniou, S; Hickey, R J; Al-Rekabi, Z; Harden, J L; Pelling, A E; Bhardwaj, V R

    2016-02-19

    We show that femtosecond laser irradiation of polydimethylsiloxane (PDMS) enables selective and patterned cell growth by altering the wetting properties of the surface associated with chemical and/or topographical changes. In the low pulse energy regime, the surface becomes less hydrophobic and exhibits a low water contact angle compared to the pristine material. X-ray photoelectron spectroscopy (XPS) also reveals an increased oxygen content in the irradiated regions, to which the C2C12 cells and rabbit anti-mouse protein were found to attach preferentially. In the high pulse energy regime, the laser-modified regions exhibit superhydrophobicity and were found to inhibit cell adhesion, whereas cells were found to attach to the surrounding regions due to the presence of nanoscale debris generated by the ablation process.

  9. In situ multiphoton microscopy for monitoring femtosecond laser eye surgery in the human cornea and sclera

    NASA Astrophysics Data System (ADS)

    Plamann, Karsten; Albert, Olivier; Giulieri, Damien; Donate, David; May, Frank; Giraud, Jean-Marie; Legeais, Jean-Marc

    2005-08-01

    We present a multiphoton imaging system mounted on a microsurgery experimental set-up using a Nd:glass femtosecond laser. The system permits to induce laser incisions in human cornea and sclera and to perform nonlinear imaging during the intervention. The laser is a chirped pulse amplification (CPA) system with a regenerative amplifier delivering pulses at a wavelength of 1.06 μm, pulse durations of 400 fs and a maximum energy of 60 μJ at repetition rates up to 10 kHz. The delivery system provides spot sizes down to the micron range. The samples are human corneas retracted from the transplant circuit mounted on a moveable anterior chamber system. Photons generated by non-linear processes in the cornea travel backwards through the beam delivery optics and are captured by a photomultiplier tube behind a dichroic mirror. The signal is filtered by a lock-in amplifier tuned to the laser repetition rate. Scanning the sample permits the acquisition of three-dimensional microscopic images. Above the incision threshold the set-up permits to induce laser cuts in human cornea following complex geometries. Below the threshold the laser pulses create secondary photons by the stimulation of non-linear optical processes in the samples which could be identified as being predominantly second harmonic generation (SHG). The in situ images obtained from the multi-photon module permit to control and optimise the surgical intervention. The combination of multiphoton imaging and corneal surgery necessitates only minimal modifications of the optical system of a femtosecond surgical laser system. A combined system significantly improves parameter control and permits the monitoring of the surgical procedure.

  10. Dynamics of space-time self-focusing of a femtosecond relativistic laser pulse in an underdense plasma.

    PubMed

    Lontano, Maurizio; Murusidze, Ivane

    2003-02-10

    The propagation of femtosecond, multiterawatt, relativistic laser pulses in a transparent plasma is studied. The spatio-temporal dynamics of ultrashort, high-power laser pulses in underdense plasmas differs dramatically from that of long laser beams. We present the results of numerical studies of these dynamics within a model which systematically incorporates finite pulse length effects (i.e., dispersion) along with diffraction and nonlinear refraction in a strongly nonlinear, relativistic regime. New space-time patterns of self-compression, self-focusing and self-phase-modulation, typical of ultrashort, high-intensity laser pulses, are analyzed. The parameters of our numerical simulations correspond to a new class of high-peak-power (> 100 TW), ultrashort-pulsed laser systems, producing pulses with a duration in the 10 - 20 femtosecond range. Spatiotemporal dynamics of these self-effects and underlying physical mechanisms are discussed.

  11. Permanent computer-generated holograms embedded in silica glass by femtosecond laser pulses.

    PubMed

    Li, Yan; Dou, Yanping; An, Ran; Yang, Hong; Gong, Qihuang

    2005-04-04

    We present a novel technique to directly fabricate permanent computer-generated holograms inside silica glass with femtosecond laser pulses. The Fourier transform of an object is performed using a computer and the complex amplitude distribution is encoded by the detour phase method. The resulted cell-oriented hologram is directly written inside a bulk of silica glass by femtosecond laser-induced microexplosion. The image is then reconstructed with a collimated He-Ne laser beam.

  12. Femtosecond laser ablation with single and two-photon excitation for MEMS

    NASA Astrophysics Data System (ADS)

    Elbandrawy, Mohamed Abdelfattah Kottb Ahmad

    There is an increasing interest in femtosecond laser micromachining of materials because of the femtosecond laser's unique high peak power, ultrashort pulse width, negligible heat conductivity process during the laser pulse, and the minimal heat affected zone, which is in the same order of magnitude of the ablated submicron spot. There are some obstacles in reaching optimal and reliable micromachining parameters. One of these obstacles is the lack of understanding of the nature of the interaction and related physical processes. These processes include amorphization, melting, re-crystallization, nucleated-vaporization, and ablation. The focus of this Dissertation was to study the laser-matter interaction with single and two-photon excitation for optical micro-electro-mechanical system (OMEMS) applications. The laser pulse interaction mechanism was studied by performing a series of experiments including self-imaging experiments, two-photon absorption measurements, and micromachining processes characterizations. As a result of the self-imaging experiment, it was found for both Si and GaP that the material surface reflectivity increased twice as much during the action of the laser pulse. The generation of electron-hole plasma of 10 22cm-3 density was assigned to be responsible for the reflectivity jump. The Drude damping time of the generated plasma was determined to be 0.35 fs for silicon and 0.27 fs for gallium phosphate. Additionally, a precise measurement of the two-photon absorption (TPA) coefficient (beta) was done. The TPA coefficient was found to be 0.2 cm/GW. Experimental results were in good agreement with the theoretical expectations up to a point at which the ablation started kicking off and the plasma absorption took place. In case of a single pulse interaction with silicon, self-assembled nano-filaments of a few tens of microns' length and about 100 nm width were observed for the first time with the femtosecond single pulse interaction. The filaments were

  13. Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription.

    PubMed

    Zhang, Chao; Dong, Ningning; Yang, Jin; Chen, Feng; Vázquez de Aldana, Javier R; Lu, Qingming

    2011-06-20

    Buried channel waveguides have been fabricated in Nd:GGG crystals by using the femtosecond laser inscription. The waveguides are confined between two filaments with propagation losses of 2.0 dB/cm. Stable continuous wave laser oscillation at ~1061 nm has been demonstrated at room temperature. Under 808 nm optical excitation, a pump threshold of 29 mW and a slope efficiency of 25% have been obtained.

  14. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses

    SciTech Connect

    Watanabe, Wataru; Onda, Satoshi; Tamaki, Takayuki; Itoh, Kazuyoshi; Nishii, Junji

    2006-07-10

    We report on the joining of dissimilar transparent materials based on localized melting and resolidification of the materials only around the focal volume due to nonlinear absorption of focused femtosecond laser pulses. We demonstrate the joining of borosilicate glass and fused silica, whose coefficients of thermal expansion are different. The joint strength and the transmittance through joint volume were investigated by varying the translation velocity of the sample and the pulse energy of the irradiated laser pulses.

  15. Femtosecond laser micromachining of dielectric materials for biomedical applications

    NASA Astrophysics Data System (ADS)

    Farson, Dave F.; Choi, Hae Woon; Zimmerman, Burr; Steach, Jeremy K.; Chalmers, Jeffery J.; Olesik, Susan V.; Lee, L. James

    2008-03-01

    Techniques for microfluidic channel fabrication in soda-lime glass and fused quartz using femtosecond laser ablation and ablation in conjunction with polymer coating for surface roughness improvement were tested. Systematic experiments were done to characterize how process variables (laser fluence, scanning speed and focus spot overlap, and material properties) affect the machining feature size and quality. Laser fluence and focus spot overlap showed the strongest influence on channel depth and roughness. At high fluence, the surface roughness was measured to be between 395 nm and 731 nm RMS. At low fluence, roughness decreased to 100 nm-350 nm RMS and showed a greater dependence on overlap. The surface roughness of laser ablation was also dependent on the material properties. For the same laser ablation parameters, soda-lime glass surfaces were smoother than fused quartz. For some applications, especially those using quartz, smoother channels are desired. A hydroxyethyl methacrylate (HEMA) polymer coating was applied and the roughness of the coated channels was improved to 10-50 nm RMS.

  16. Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture

    NASA Astrophysics Data System (ADS)

    Muhammad, Noorhafiza; Li, Lin

    2012-06-01

    Microprofiling of medical coronary stents has been dominated by the use of Nd:YAG lasers with pulse lengths in the range of a few milliseconds, and material removal is based on the melt ejection with a high-pressure gas. As a result, recast and heat-affected zones are produced, and various post-processing procedures are required to remove these defects. This paper reports a new approach of machining stents in submerged conditions using a 100-fs pulsed laser. A comparison is given of dry and underwater femtosecond laser micromachining techniques of nickel-titanium alloy (nitinol) typically used as the material for coronary stents. The characteristics of laser interactions with the material have been studied. A femtosecond Ti:sapphire laser system (wavelength of 800 nm, pulse duration of 100 fs, repetition rate of 1 kHz) was used to perform the cutting process. It is observed that machining under a thin water film resulted in no presence of heat-affected zone, debris, spatter or recast with fine-cut surface quality. At the optimum parameters, the results obtained with dry cutting showed nearly the same cut surface quality as with cutting under water. However, debris and recast formation still appeared on the dry cut, which is based on material vaporization. Physical processes involved during the cutting process in a thin water film, i.e. bubble formation and shock waves, are discussed.

  17. Evaluation of ablation efficiency and surface morphology of human teeth upon irradiation with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Shaheen, M. E.; Gagnon, J. E.; Fryer, B. J.

    2014-11-01

    This study investigates changes in ablation efficiency and surface morphology induced in human dental enamel and dentin upon interaction with femtosecond laser pulses at variable energies and number of laser pulses. Craters were created using a Ti:sapphire femtosecond laser ablation system operating at a wavelength of 785 nm, pulse width of 130 fs, and repetition rate of 20 Hz. Various techniques, such as optical and scanning electron microscopy and inductively coupled plasma mass spectrometry (ICP-MS), were used to evaluate ablation depth, amount of material ablated, and surface morphology of the craters. Ablation rate (ablation depth per pulse) was found to be lower in enamel than dentin with the maximum rate occurring at fluence of 12.4 J cm-2 in both materials. A drop in ablation rate was observed for fluence greater than 12.4 J cm-2 and was attributed to attenuation of laser energy due to interaction with the laser-generated particles. Above this fluence, signs of thermal effects, such as melting and formation of droplets of molten material at the sample surface, were observed. The response of the ICP-MS indicated that the amount of ablated material removed from dentin is greater than that removed from enamel by a factor of 1.5 or more at all investigated fluence.

  18. Fabrication of through-wafer 3D microfluidics in silicon carbide using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Huang, Yinggang; Wu, Xiudong; Liu, Hewei; Jiang, Hongrui

    2017-06-01

    We demonstrate a prototype through-wafer microfluidic structure in bulk silicon carbide (SiC) fabricated by femtosecond laser micromachining. The effects of laser fluence and scanning speed on the laser-affected zone are also investigated. Furthermore, the wettability of the laser-affected surface for the target liquid, mineral oil, is examined. Microchannels of various cross-sectional shapes are fabricated by the femtosecond laser and their effects on the liquid flow are simulated and compared. This fabrication approach offers a fast and efficient route to implement SiC-based through-wafer micro-structures, which are not able to be realized using other methods such as chemical etching. The flexibility of manufacturing 3D structures based on this fabrication method enables more complex structures as well. Smooth liquid flow in the microchannels of the bulk SiC substrate is presented. The work shown here paves a new way for various applications such as reliable microfluidic systems in a high-temperature, high radioactivity, and corrosive environment, and could be combined with SiC wafer-to-wafer bonding to realize a plethora of novel microelectromechanical (MEMS) structures.

  19. Submicrojoule femtosecond erbium-doped fibre laser for the generation of dispersive waves at submicron wavelengths

    NASA Astrophysics Data System (ADS)

    Kotov, L. V.; Koptev, M. Yu; Anashkina, E. A.; Muravyev, S. V.; Andrianov, A. V.; Bubnov, M. M.; Ignat'ev, A. D.; Lipatov, D. S.; Gur'yanov, A. N.; Likhachev, M. E.; Kim, A. V.

    2014-05-01

    We have demonstrated a femtosecond erbium-doped fibre laser system built in the master oscillator/power amplifier (MOPA) approach. The final amplifier stage utilises a specially designed large mode area active fibre cladding-pumped by multimode laser diodes. The system is capable of generating submicrojoule pulses at a wavelength near 1.6 μm. We have obtained 530-fs pulses with an energy of 400 nJ. The output of the system can be converted to wavelengths shorter than 1 μm through the generation of dispersive waves in passive nonlinear fibre. We have obtained ultra-short 7-nJ pulses with a spectral width of ~100 nm and a centre wavelength of 0.9 μm, which can be used as a seed signal in parametric amplifiers in designing petawatt laser systems.

  20. Femtosecond cataract laser capsulotomy enabling optic capture and secondary sulcus iol insertion in an eye with traumatic aniridia and aphakia.

    PubMed

    Grewal, Dilraj S; Basti, Surendra

    2014-06-01

    To describe a surgical technique and intraoperative modifications to create a secondary capsulotomy using the femtosecond cataract laser in an eye with traumatic aphakia and aniridia. The expanded use of the femtosecond cataract laser (Catalys Precision Laser System; Optimedica, Sunnyvale, CA) for creation of a well-centered and circular secondary capsulotomy in the capsular remnants of an eye with traumatic aphakia and aniridia. Using software modifications based on intraoperative anterior segment spectral-domain optical coherence tomography imaging, and customizing the capsulotomy settings, the femtosecond cataract laser was able to penetrate through most of the fused anterior and posterior capsular leaflets and a circular capsulotomy was achieved. The latter permitted optic capture and excellent centration of a three-piece intraocular lens placed in the sulcus with good postoperative visual rehabilitation. The femtosecond cataract laser can be customized to create a well-centered and circular secondary capsulotomy in aniridic and aphakic eyes where optic capture is critical for long-term intraocular lens stability. Copyright 2014, SLACK Incorporated.

  1. The fluence threshold of femtosecond laser blackening of metals: The effect of laser-induced ripples

    NASA Astrophysics Data System (ADS)

    Ou, Zhigui; Huang, Min; Zhao, Fuli

    2016-05-01

    With the primary controlling factor of the laser fluence, we have investigated femtosecond laser blackening of stainless steel, brass, and aluminum in visible light range. In general, low reflectance about 5% can be achieved in appropriate ranges of laser fluences for all the treated metal surfaces. Significantly, towards stainless steel and brass a fluence threshold of blackening emerges unusually: a dramatic reflectance decline occurs in a specific, narrow fluence range. In contrast, towards aluminum the reflectance declines steadily over a wide fluence range instead of the threshold-like behavior from steel and brass. The morphological characteristics and corresponding reflectance spectra of the treated surfaces indicates that the blackening threshold of stainless steel and brass corresponds to the fluence threshold of laser-induced subwavelength ripples. Such periodic ripples growing rapidly near ablation threshold absorb visible light efficiently through grating coupling and cavity trapping promoted by surface plasmon polaritons. Whereas, for aluminum, with fluence increasing the looming ripples are greatly suppressed by re-deposited nanoparticle aggregates that present intrinsic colors other than black, and until the formation of large scale "ravines" provided with strong light-trapping, sufficient blackening is achieved. In short, there are different fluence dependencies for femtosecond laser blackening of metals, and the specific blackening fluence threshold for certain metals in the visible range originates in the definite fluence threshold of femtosecond laser-induced ripples.

  2. Laser damage resistant pits in dielectric coatings created by femtosecond laser machining

    SciTech Connect

    Wolfe, J; Roger Qiu, ,; Stolz, C; Thomas, M; Martinez, C; Ozkan, A

    2009-11-03

    Replacing growing damage sites with benign, laser damage resistant features in multilayer dielectric films may enable large mirrors to be operated at significantly higher fluences. Laser damage resistant features have been created in high reflecting coatings on glass substrates using femtosecond laser machining. These prototype features have been damage tested to over 40 J/cm{sup 2} (1064nm, 3ns pulselength) and have been shown not to damage upon repeated irradiation at 40J/cm{sup 2}. Further work to optimize feature shape and laser machining parameters is ongoing.

  3. Elongation of plasma channel generated by temporally shaped femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Chen, Anmin; Li, Suyu; Qi, Hongxia; Jiang, Yuanfei; Hu, Zhan; Huang, Xuri; Jin, Mingxing

    2017-01-01

    Temporally shaped femtosecond laser pulse is used to generate the air plasma channel. The length of plasma channel is optimized by a genetic algorithm. Compared with the transform-limited pulse, the temporally shaped femtosecond laser produced by the spatial light modulator with the genetic algorithm can lead to a significant increase in length and brightness of plasma channel in atmosphere. In particular, the length of the plasma channel produced by the optimized shaped pulse can be extended by 50%. This method can be especially advantageous in the context of femtosecond laser-induced plasma channel.

  4. Measurement of ablation threshold of oxide-film-coated aluminium nanoparticles irradiated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Chefonov, O. V.; Ovchinnikov, A. V.; Il'ina, I. V.; Agranat, M. B.

    2016-03-01

    We report the results of experiments on estimation of femtosecond laser threshold intensity at which nanoparticles are removed from the substrate surface. The studies are performed with nanoparticles obtained by femtosecond laser ablation of pure aluminium in distilled water. The attenuation (or extinction, i.e. absorption and scattering) spectra of nanoparticles are measured at room temperature in the UV and optical wavelength ranges. The size of nanoparticles is determined using atomic force microscopy. A new method of scanning photoluminescence is proposed to evaluate the threshold of nanoparticle removal from the surface of a glass substrate exposed to IR femtosecond laser pulses with intensities 1011 - 1013 W cm-2.

  5. Excitation of silicon microspheres resonances with femtosecond laser fabricated glass waveguides

    NASA Astrophysics Data System (ADS)

    Ćirkinoǧlu, Hüseyin Ozan; Gökay, Ulaş Sabahattin; Serpengüzel, Ali; Sotillo, Belén.; Bharadwaj, Vibhav; Eaton, Shane M.; Ramponi, Roberta

    2016-09-01

    Optical waveguides were fabricated with femtosecond pulsed lasers on glass and characterized by transmission measurements. Glass waveguides were later used for excitation of the whispering gallery modes in a silicon microsphere. The coupling between the silicon microsphere and the femtosecond laser inscribed optical waveguide was simulated in both 90° elastic scattering and 0° transmission spectra. The silicon microsphere whispering gallery modes are available for both in the transverse electric and transverse magnetic polarizations with a spectral mode spacing of 0.25 nm. Optical resonances on silicon microsphere integrated with femtosecond laser written optical waveguides may lead to future quantum optical communication devices.

  6. Metallic nanoparticles grown in the core of femtosecond laser micromachined waveguides

    SciTech Connect

    Almeida, J. M. P.; Ferreira, P. H. D.; Mendonça, C. R.; Manzani, D.; Napoli, M.; Ribeiro, S. J. L.

    2014-05-21

    3D-waveguides containing silver nanoparticles have been fabricated in tungsten lead–pyrophosphate glass by femtosecond laser micromachining. Nucleation and growth of nanoparticles occur in a single step process when high repetition rate laser (MHz) is employed, while an additional annealing is required for the irradiation using kHz laser system. The presence of nanoparticles locally changes the refractive index, and, therefore, the elliptical structures produced by direct laser writing were able to guide light. By increasing the pulse energy applied during the micromachining, the waveguide size increased from 2 to 30 μm, while their propagation loss decrease from 1.4 to 0.5 dB/mm at 632.8 nm.

  7. Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser.

    PubMed

    Kim, K; Washburn, B R; Wilpers, G; Oates, C W; Hollberg, L; Newbury, N R; Diddams, S A; Nicholson, J W; Yan, M F

    2005-04-15

    A frequency comb is generated with a Cr:forsterite femtosecond laser, spectrally broadened through a highly nonlinear optical fiber to span from 1.0 to 2.2 ,m, and stabilized using the f-to-2f self-referencing technique. The repetition rate and the carrier-envelope offset frequency are stabilized to a hydrogen maser, calibrated by a cesium atomic fountain clock. Simultaneous frequency measurement of a 657-nm cw laser by use of the stabilized frequency combs from this Cr:forsterite system and a Ti:sapphire laser agree at the 10(-13) level. The frequency noise of the comb components is observed at 1064, 1314, and 1550 nm by comparing the measured beat frequencies between cw lasers and the supercontinuum frequency combs.

  8. Optical synchronization system for femtosecond X-ray sources

    DOEpatents

    Wilcox, Russell B [El Cerrito, CA; Holzwarth, Ronald [Munich, DE

    2011-12-13

    Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  9. Industrial femtosecond lasers for machining of heat-sensitive polymers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hendricks, Frank; Bernard, Benjamin; Matylitsky, Victor V.

    2017-03-01

    Heat-sensitive materials, such as polymers, are used increasingly in various industrial sectors such as medical device manufacturing and organic electronics. Medical applications include implantable devices like stents, catheters and wires, which need to be structured and cut with minimum heat damage. Also the flat panel display market moves from LCD displays to organic LED (OLED) solutions, which utilize heat-sensitive polymer substrates. In both areas, the substrates often consist of multilayer stacks with different types of materials, such as metals, dielectric layers and polymers with different physical characteristic. The different thermal behavior and laser absorption properties of the materials used makes these stacks difficult to machine using conventional laser sources. Femtosecond lasers are an enabling technology for micromachining of these materials since it is possible to machine ultrafine structures with minimum thermal impact and very precise control over material removed. An industrial femtosecond Spirit HE laser system from Spectra-Physics with pulse duration <400 fs, pulse energies of >120 μJ and average output powers of >16 W is an ideal tool for industrial micromachining of a wide range of materials with highest quality and efficiency. The laser offers process flexibility with programmable pulse energy, repetition rate, and pulse width. In this paper, we provide an overview of machining heat-sensitive materials using Spirit HE laser. In particular, we show how the laser parameters (e.g. laser wavelength, pulse duration, applied energy and repetition rate) and the processing strategy (gas assisted single pass cut vs. multi-scan process) influence the efficiency and quality of laser processing.

  10. Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel.

    PubMed

    Qi, Litao; Nishii, Kazuhiro; Namba, Yoshiharu

    2009-06-15

    In this research, we studied the formation of laser-induced periodic surface structures on the stainless steel surface using femtosecond laser pulses. A 780 nm wavelength femtosecond laser, through a 0.2 mm pinhole aperture for truncating fluence distribution, was focused onto the stainless steel surface. Under different experimental condition, low-spatial-frequency laser-induced periodic surface structures with a period of 526 nm and high-spatial-frequency laser-induced periodic surface structures with a period of 310 nm were obtained. The mechanism of the formation of laser-induced periodic surface structures on the stainless steel surface is discussed.

  11. Combining femtosecond laser ablation and diode laser welding in lamellar and endothelial corneal transplants

    NASA Astrophysics Data System (ADS)

    Pini, Roberto; Rossi, Francesca; Matteini, Paolo; Ratto, Fulvio; Menabuoni, Luca; Lenzetti, Ivo; Yoo, Sonia H.; Parel, Jean-Marie

    2008-02-01

    Based on our previous clinical experiences in minimally invasive diode laser-induced welding of corneal tissue in penetrating keratoplasty (PK), i.e. full-thickness transplant of the cornea, we combined this technique with the use of a femtosecond laser for applications in lamellar (LK) and endothelial (EK) keratoplasty. In LK, the femtosecond laser was used to prepare donor button and recipient corneal bed; the wound edges were stained with a water solution of Indocyanine Green (ICG) and then irradiated with a diode laser emitting in CW mode to induce stromal welding. Intraoperatory observations and follow-up results up to 6 months indicated the formation of a smooth stromal interface, total absence of edema as well as inflammation, and reduction of post-operative astigmatism, as compared with conventional suturing procedures. In EK the femtosecond laser was used for the preparation of a 100 μm thick, 8.5mm diameter donor corneal endothelium flap. The flap stromal side was stained with ICG. After stripping the recipient Descemet's membrane and endothelium, the donor flap was positioned in the anterior chamber on the inner face of the cornea by an air bubble and secured to the recipient cornea by diode laser pulses delivered by means of a fiberoptic contact probe introduced in the anterior chamber, which produced welding spots of 200 μm diameter. Femtosecond laser sculpturing of the donor cornea provided lamellar and endothelial flaps of preset and constant thickness. Diode laserinduced welding showed a unique potential to permanently secure the donor flap in place, avoiding postoperative displacement and inflammation reaction.

  12. Phototransfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Thobakgale, Lebogang; Manoto, Sello Lebohang; Ombinda Lemboumba, Saturnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    Cellular manipulation by delivery of molecules into cells has been applied extensively in tissue engineering research for medical applications . The different molecular delivery techniques used range from viral and chemical agents to physical and electrical methods. Although successful in most studies, these techniques have inherent difficulties such as toxicity, unwanted genetic mutations and low reproducibility respectively. Literature recognizes pulsed lasers at femtosecond level to be most efficient in photonic interactions with biological material. As of late, laser pulses have been used for drug and DNA delivery into cells via transient optical perforation of the cellular membrane. Thus in this study, we design and construct an optical system coupled to a femtosecond laser for the purpose of phototransfection or insertion of plasmid DNA (pDNA) into cells using lasers. We used fluorescent green protein (pGFP) to transfect mouse embryonic stem cells as our model. Secondly, we applied fluorescence imaging to view the extent of DNA delivery using this method. We also assessed the biocompatibility of our system by performing molecular assays of the cells post irradiation using adenosine triphosphate (ATP) and lactate dehydrogenase (LDH).

  13. Determining the nonlinear refractive index of fused quartz by femtosecond laser Z-scan technology

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Ren, Huan; Ma, Hua; Shi, Zhendong; Yang, Yi; Yuan, Quan; Feng, Xiaoxuan; Ma, Yurong; Chen, Bo

    2016-10-01

    Z-scan technology is an experimental technique for determining the nonlinear refractive index based on the principle of transformation of phase distortion to amplitude distortion when a laser beam propagates through a nonlinear material. For most of the Z-scan system based on the nanosecond or picosecond laser, the accumulation of thermal effects becomes a big problem in nonlinear refractive index measurement especially for the nonlinear materials such as fused quartz and neodymium glass which have a weak nonlinear refractive effect. To overcome this problem, a system for determining the nonlinear refractive index of optical materials based on the femtosecond laser Z-scan technology is presented. Using this system, the nonlinear refractive index of the fused quartz is investigated.

  14. Femtosecond laser-induced microstructures in glasses and applications in micro-optics.

    PubMed

    Qiu, Jianrong

    2004-01-01

    Femtosecond laser has been widely used in microscopic modifications to materials due to its ultra-short laser pulse and ultrahigh light intensity. When a transparent material e.g. glass is irradiated by a tightly focused femtosecond laser, the photo-induced reaction is expected to occur only near the focused part of the laser beam inside the glass due to the multiphoton processes. We observed various induced structures e.g. color center defects, refractive index change, micro-void and micro-crack, in glasses after the femtosecond laser irradiation. In this paper, we review the femtosecond laser induced phenomena and discuss the mechanisms of the observed phenomena. We also introduce the fabrication of various micro-optical components, e.g. optical waveguide, micro-grating, micro-lens, fiber attenuator, 3-dimensional optical memory by using the femtosecond laser-induced structures. The femtosecond laser will open new possibilities in the fabrication of micro-optical components with various optical functions. Copyright 2004 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 4: 50-58; 2004: Published online in Wiley InterScience (www.interscience.wiley.com ) DOI 10.1002/tcr.20006

  15. Robust Non-Wetting PTFE Surfaces by Femtosecond Laser Machining

    PubMed Central

    Liang, Fang; Lehr, Jorge; Danielczak, Lisa; Leask, Richard; Kietzig, Anne-Marie

    2014-01-01

    Nature shows many examples of surfaces with extraordinary wettability, which can often be associated with particular air-trapping surface patterns. Here, robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE). The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters, both of which make it a strong candidate for industrial applications. PMID:25110862

  16. Optical spectroscopy using gas-phase femtosecond laser filamentation.

    PubMed

    Odhner, Johanan; Levis, Robert

    2014-01-01

    Femtosecond laser filamentation occurs as a dynamic balance between the self-focusing and plasma defocusing of a laser pulse to produce ultrashort radiation as brief as a few optical cycles. This unique source has many properties that make it attractive as a nonlinear optical tool for spectroscopy, such as propagation at high intensities over extended distances, self-shortening, white-light generation, and the formation of an underdense plasma. The plasma channel that constitutes a single filament and whose position in space can be controlled by its input parameters can span meters-long distances, whereas multifilamentation of a laser beam can be sustained up to hundreds of meters in the atmosphere. In this review, we briefly summarize the current understanding and use of laser filaments for spectroscopic investigations of molecules. A theoretical framework of filamentation is presented, along with recent experimental evidence supporting the established understanding of filamentation. Investigations carried out on vibrational and rotational spectroscopy, filament-induced breakdown, fluorescence spectroscopy, and backward lasing are discussed.

  17. Robust non-wetting PTFE surfaces by femtosecond laser machining.

    PubMed

    Liang, Fang; Lehr, Jorge; Danielczak, Lisa; Leask, Richard; Kietzig, Anne-Marie

    2014-08-08

    Nature shows many examples of surfaces with extraordinary wettability,which can often be associated with particular air-trapping surface patterns. Here,robust non-wetting surfaces have been created by femtosecond laser ablation of polytetrafluoroethylene (PTFE). The laser-created surface structure resembles a forest of entangled fibers, which support structural superhydrophobicity even when the surface chemistry is changed by gold coating. SEM analysis showed that the degree of entanglement of hairs and the depth of the forest pattern correlates positively with accumulated laser fluence and can thus be influenced by altering various laser process parameters. The resulting fibrous surfaces exhibit a tremendous decrease in wettability compared to smooth PTFE surfaces; droplets impacting the virgin or gold coated PTFE forest do not wet the surface but bounce off. Exploratory bioadhesion experiments showed that the surfaces are truly air-trapping and do not support cell adhesion. Therewith, the created surfaces successfully mimic biological surfaces such as insect wings with robust anti-wetting behavior and potential for antiadhesive applications. In addition, the fabrication can be carried out in one process step, and our results clearly show the insensitivity of the resulting non-wetting behavior to variations in the process parameters,both of which make it a strong candidate for industrial applications.

  18. Using femtosecond lasers to modify sizes of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    da Silva Cordeiro, Thiago; Almeida de Matos, Ricardo; Silva, Flávia Rodrigues de Oliveira; Vieira, Nilson D.; Courrol, Lilia C.; Samad, Ricardo E.

    2016-04-01

    Metallic nanoparticles are important on several scientific, medical and industrial areas. The control of nanoparticles characteristics has fundamental importance to increase the efficiency on the processes and applications in which they are employed. The metallic nanoparticles present specific surface plasmon resonances (SPR). These resonances are related with the collective oscillations of the electrons presents on the metallic nanoparticle. The SPR is determined by the potential defined by the nanoparticle size and geometry. There are several methods of producing gold nanoparticles, including the use of toxic chemical polymers. We already reported the use of natural polymers, as for example, the agar-agar, to produce metallic nanoparticles under xenon lamp irradiation. This technique is characterized as a "green" synthesis because the natural polymers are inoffensive to the environment. We report a technique to produce metallic nanoparticles and change its geometrical and dimensional characteristics using a femtosecond laser. The 1 ml initial solution was irradiate using a laser beam with 380 mW, 1 kHz and 40 nm of bandwidth centered at 800 nm. The setup uses an Acousto-optic modulator, Dazzler, to change the pulses spectral profiles by introduction of several orders of phase, resulting in different temporal energy distributions. The use of Dazzler has the objective of change the gold nanoparticles average size by the changing of temporal energy distributions of the laser pulses incident in the sample. After the laser irradiation, the gold nanoparticles average diameter were less than 15 nm.

  19. A 1 μm laser output based on an Er-doped fiber femtosecond laser

    NASA Astrophysics Data System (ADS)

    Liu, H.; Cao, S.; Wang, W.; Lin, B.; Lu, W.; Fang, Z.

    2017-08-01

    The spectral intensity near 1 μm in a supercontinuum (SC) generated from an Er-doped fiber femtosecond optical frequency comb is enhanced effectively by cascading an Yb-doped fiber amplifier after spectral broadening. A 1 μm laser output with a dechirped pulse width of 72 fs and a spectral width of 25 nm is achieved. Through further power amplification, the output power of 1 μm laser can be up to 750 mW and the pulse width after compression is 85 fs. The spectral enhancement technology provides an effective optical source for a 1 μm optical frequency comb based on an Er-doped fiber femtosecond laser.

  20. CONTROL OF LASER RADIATION PARAMETERS: Synchronisation of a femtosecond laser and a Q-switched laser to within 50 ps

    NASA Astrophysics Data System (ADS)

    Katin, E. V.; Lozhkarev, V. V.; Palashov, O. V.; Khazanov, E. A.

    2003-09-01

    A Nd:YLF laser emitting 2-ns pulses synchronised with a femtosecond Cr:forsterite laser is built. The pulse duration and synchronisation are ensured by two Pockels cells, in which voltage pulses are synchronised with the femtosecond laser by fast emitter-coupled logic elements. One of the Pockels cells ensures Q-switching, while the other cuts a short pulse from a 15-ns Q-switched pulse. The experimental results show that the two-step scheme proposed for synchronisation of a Q-switched laser and a passively mode-locked laser provides quite simple and reliable synchronisation of these lasers with a jitter of a few tens of picoseconds.

  1. Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts

    PubMed Central

    Tomlins, Peter H; Smith, Graham N; Woolliams, Peter D; Rasakanthan, Janarthanan; Sugden, Kate

    2011-01-01

    Optical coherence tomography (OCT) systems are becoming more commonly used in biomedical imaging and, to enable continued uptake, a reliable method of characterizing their performance and validating their operation is required. This paper outlines the use of femtosecond laser subsurface micro-inscription techniques to fabricate an OCT test artifact for validating the resolution performance of a commercial OCT system. The key advantage of this approach is that by utilizing the nonlinear absorption a three dimensional grid of highly localized point and line defects can be written in clear fused silica substrates. PMID:21559143

  2. Theoretical modeling and experiments on a DBR waveguide laser fabricated by the femtosecond laser direct-write technique.

    PubMed

    Duan, Yuwen; McKay, Aaron; Jovanovic, Nemanja; Ams, Martin; Marshall, Graham D; Steel, M J; Withford, Michael J

    2013-07-29

    We present a model for a Yb-doped distributed Bragg reflector (DBR) waveguide laser fabricated in phosphate glass using the femtosecond laser direct-write technique. The model gives emphasis to transverse integrals to investigate the energy distribution in a homogenously doped glass, which is an important feature of femtosecond laser inscribed waveguide lasers (WGLs). The model was validated with experiments comparing a DBR WGL and a fiber laser, and then used to study the influence of distributed rare earth dopants on the performance of such lasers. Approximately 15% of the pump power was absorbed by the doped "cladding" in the femtosecond laser inscribed Yb doped WGL case with the length of 9.8 mm. Finally, we used the model to determine the parameters that optimize the laser output such as the waveguide length, output coupler reflectivity and refractive index contrast.

  3. Mechanism and experimental study on three-dimensional facula shaping in femtosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Pan, Xuetao; Tu, Dawei; Cai, Jianwen

    2015-10-01

    Because of the laser beam waist and diffraction effect of the lens, the focal spot light field in femtosecond laser microprocessing has an ellipsoidal spatial distribution. This leads to the gap between two processing layers increasing along the axial direction, and the distribution density of processing points decreasing along the horizontal direction. This directly reduces the resolution of the microprocessing, and badly affects the machining accuracy and surface quality. We established a mathematical model for three-dimensional (3-D) laser beam shaping based on the Fresnel diffraction theory and designed a kind of four-ring complex amplitude transmittance phase plate by using a global optimization algorithm and genetic algorithm to simultaneously realize transverse and axial 3-D shaping. We numerically showed that the transverse and axial gains of the focal facula after 3-D shaping are 0.77 and 0.68, respectively, where the corresponding peak energy ratio is 0.36, the transverse and axial sidelobe energies are 0.28 and 0.62, respectively, and the defocusing amount is -0.08. We also constructed a confocal/two-photon microscope system to experimentally achieve a better shaping effect in the case of femtosecond laser fabrication at a point on the thin film of a photochromic material.

  4. Reflectance of thin silver film on the glass substrate at the interaction with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Petrov, Yu V.; Khokhlov, V. A.; Inogamov, N. A.; Khishchenko, K. V.; Anisimov, S. I.

    2016-11-01

    The optical response of thin silver film (of 60 nm thickness) coated on a glass prism (Kretschmann configuration) and heated by the femtosecond laser pulse of small intensity is investigated by the computational modeling. We have calculated the reflectance of p-polarized probe laser beam when it is incident onto the metal film from the glass side. Reflectance is calculated at incidence angles close to the surface plasmon resonance angle. We have considered first 100 ps after the action of femtosecond laser pulse onto the film surface. Changes in thermodynamic state and hydrodynamic motion of film material are described by the system of hydrodynamic equations taking into account different temperatures of electrons and ions (two- temperature state) and consequently two-temperature thermodynamics and kinetics at such early times. These changes define the changes in electron-ion and electron-electron collision frequencies. The collision frequencies of conduction electrons, being calculated in dependence on the density and electron and ion temperatures, allow us to find the Drude part of dielectric permittivity. Together with the interband contribution it gives possibility to calculate reflectance depending on the state of metal surface. It is shown a great importance of electron-electron interactions in the temporal behavior of reflectance at early times of laser-film interaction.

  5. Sub-micron period metal lattices fabricated by interfering ultraviolet femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Nakata, Yoshiki; Matsuba, Yoshiki; Miyanaga, Noriaki

    2016-05-01

    The interference pattern of a femtosecond laser has been utilized to fabricate nanostructures in the lattice. In this paper, SH (second-harmonic) waves (λ = 392.5 {{nm}}) of a femtosecond laser were applied to four beams interfering laser processing using a demagnification system as a beam correlator. The lattice constant of the resultant matrix was shortened to 760 nm. The unit structures fabricated on gold thin films were nanoholes, nanobumps, nanodrops or nanowhiskers, and their unit size was minimized compared to the case with a greater lattice constant formed by fundamental wavelengths. The radius of a nanoball on top of a nanodrop was between 42 and 76 nm, and the radius of metallic hole arrays (MHA) was 220 nm. The energy efficiency of the laser increased by 4.79 times due to better absorption coefficient of gold at ultraviolet wavelengths. In addition, the smallest lattice constant was estimated with the use of a commercial plano-convex fused-silica lens and a NIR (near-infrared) achromatic lens.

  6. Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers

    NASA Astrophysics Data System (ADS)

    Amer, M. S.; El-Ashry, M. A.; Dosser, L. R.; Hix, K. E.; Maguire, J. F.; Irwin, Bryan

    2005-03-01

    Laser micromachining has proven to be a very successful tool for precision machining and microfabrication with applications in microelectronics, MEMS, medical device, aerospace, biomedical, and defense applications. Femtosecond (FS) laser micromachining is usually thought to be of minimal heat-affected zone (HAZ) local to the micromachined feature. The assumption of reduced HAZ is attributed to the absence of direct coupling of the laser energy into the thermal modes of the material during irradiation. However, a substantial HAZ is thought to exist when machining with lasers having pulse durations in the nanosecond (NS) regime. In this paper, we compare the results of micromachining a single crystal silicon wafer using a 150-femtosecond and a 30-nanosecond lasers. Induced stress and amorphization of the silicon single crystal were monitored using micro-Raman spectroscopy as a function of the fluence and pulse duration of the incident laser. The onset of average induced stress occurs at lower fluence when machining with the femtosecond pulse laser. Induced stresses were found to maximize at fluence of 44 J cm -2 and 8 J cm -2 for nanosecond and femtosecond pulsed lasers, respectively. In both laser pulse regimes, a maximum induced stress is observed at which point the induced stress begins to decrease as the fluence is increased. The maximum induced stress was comparable at 2.0 GPa and 1.5 GPa for the two lasers. For the nanosecond pulse laser, the induced amorphization reached a plateau of approximately 20% for fluence exceeding 22 J cm -2. For the femtosecond pulse laser, however, induced amorphization was approximately 17% independent of the laser fluence within the experimental range. These two values can be considered nominally the same within experimental error. For femtosecond laser machining, some effect of the laser polarization on the amount of induced stress and amorphization was also observed.

  7. Composition analysis by scanning femtosecond laser ultraprobing (CASFLU).

    DOEpatents

    Ishikawa, Muriel Y.; Wood, Lowell L.; Campbell, E. Michael; Stuart, Brent C.; Perry, Michael D.

    2002-01-01

    The composition analysis by scanning femtosecond ultraprobing (CASFLU) technology scans a focused train of extremely short-duration, very intense laser pulses across a sample. The partially-ionized plasma ablated by each pulse is spectrometrically analyzed in real time, determining the ablated material's composition. The steering of the scanned beam thus is computer directed to either continue ablative material-removal at the same site or to successively remove nearby material for the same type of composition analysis. This invention has utility in high-speed chemical-elemental, molecular-fragment and isotopic analyses of the microstructure composition of complex objects, e.g., the oxygen isotopic compositions of large populations of single osteons in bone.

  8. Bistable mode of THG for femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Sidorov, Pavel S.; Kuchik, Igor E.

    2016-09-01

    We develop an analytical solution for the THG problem with taking into account self- and cross- modulation of interacting waves. Consideration is made in the framework of long pulse duration approximation and plane wave approximation. Using the original approach, we obtain the explicit solution of Schrödinger equations describing the THG in the framework under consideration both for zero-value amplitude of a wave with triple frequency and for its non-zero value. It should be stressed that the main feature of our approach consists in conservation laws using, which correspond to wave interaction process. We found various regimes of frequency trebling and showed that the THG process possesses a bistable feature under certain condition. We found out also the THG mode, at which the intensities of interacting waves do not change along their propagation coordinate. This leads to existence of soliton solution for THG of femtosecond laser pulses.

  9. Optofluidic integrated cell sorter fabricated by femtosecond lasers.

    PubMed

    Bragheri, F; Minzioni, P; Martinez Vazquez, R; Bellini, N; Paiè, P; Mondello, C; Ramponi, R; Cristiani, I; Osellame, R

    2012-10-07

    The main trend in optofluidics is currently towards full integration of the devices, thus improving automation, compactness and portability. In this respect femtosecond laser microfabrication is a very powerful technology given its capability of producing both optical waveguides and microfluidic channels. The current challenge in biology is the possibility to perform bioassays at the single cell level to unravel the hidden complexity in nominally homogeneous populations. Here we report on a new device implementing a fully integrated fluorescence-activated cell sorter. This non-invasive device is specifically designed to operate with a limited amount of cells but with a very high selectivity in the sorting process. Characterization of the device with beads and validation with human cells are presented.

  10. Polarization maintaining linear cavity Er-doped fiber femtosecond laser

    NASA Astrophysics Data System (ADS)

    Jang, Heesuk; Jang, Yoon-Soo; Kim, Seungman; Lee, Keunwoo; Han, Seongheum; Kim, Young-Jin; Kim, Seung-Woo

    2015-10-01

    We present a polarization-maintaining (PM) type of Er-doped fiber linear oscillator designed to produce femtosecond laser pulses with high operational stability. Mode locking is activated using a semiconductor saturable absorber mirror (SESAM) attached to one end of the linear PM oscillator. To avoid heat damage, the SESAM is mounted on a copper-silicon-layered heat sink and connected to the linear oscillator through a fiber buffer dissipating the residual pump power. A long-term stability test is performed to prove that the proposed oscillator design maintains a soliton-mode single-pulse operation without breakdown of mode locking over a week period. With addition of an Er-doped fiber amplifier, the output power is raised to 180 mW with 60 fs pulse duration, from which an octave-spanning supercontinuum is produced.

  11. Computer-generated volume holograms fabricated by femtosecond laser micromachining.

    PubMed

    Cai, Wenjian; Reber, Theodore J; Piestun, Rafael

    2006-06-15

    We define computer-generated volume holograms (CGVHs) as arbitrary 3D refractive index modulations designed to perform optical functions based on diffraction, scattering, and interference phenomena. CGVHs can differ dramatically from classical volume holograms in terms of coding possibilities, and from thin computer-generated holograms in terms of efficiency and selectivity. We propose an encoding technique for designing such holograms and demonstrate the concept by scanning focused femtosecond laser pulses to produce localized refractive index modifications in glass. These CGVHs show a significant increase in efficiency with thickness. Consequently, they are attractive for photonic integration with free-space and guided-wave devices, as well as for encoding spatial and temporal information.

  12. Femtosecond laser fabrication of microfluidic channels for organic photonic devices.

    PubMed

    Chaitanya Vishnubhatla, Krishna; Clark, Jenny; Lanzani, Guglielmo; Ramponi, Roberta; Osellame, Roberto; Virgili, Tersilla

    2009-11-01

    We report on innovative application of microchannels with access holes fabricated by femtosecond laser irradiation followed by chemical etching. This technique allows us to demonstrate a novel approach to the achievement of organic photonic devices in which the properties of a conjugated polymer in solution are exploited in a microfluidic configuration to produce an easy-to-integrate photonic device. Filling the microchannel with a diluted polyfluorene solution, we exploit the unique properties of isolated polymeric chains such as ultrafast gain switching (switching response time of 150 fs) with a 100% on-off ratio. In addition, by dispersing nanoparticles in the polymeric solution we are able to achieve random lasing in the microchannel.

  13. Femtosecond laser-induced breakdown spectroscopy of sea water

    NASA Astrophysics Data System (ADS)

    Ilyin, Alexey A.; Golik, Sergey S.

    2013-09-01

    The composition of the line and band spectra of the plasma induced by a femtosecond laser pulse on the surface of sea water is determined. The temporal behaviors of the intensity of the continuum and the Ca II, Mg II and Na I lines are investigated. It is shown that the time dependence of the intensity of the Na I line is described by a monoexponential function. The characteristic decay times of the line intensities of Mg II and Na I were used to estimate the three-body recombination times. Using these values, we estimate the electron number density and the feasibility of Local Thermodynamic Equilibrium (LTE) criterion. A method involving excitation rate constants is proposed for the comparison of detection limits. For a plasma generated on a liquid surface, the following relation among detection limits will be obtained: LOD(Na) < LOD(K) < LOD(Ca) < LOD(Al) < LOD(Mg) < LOD(Zn).

  14. Nonlinear Raman-Nath diffraction of femtosecond laser pulses.

    PubMed

    Vyunishev, A M; Slabko, V V; Baturin, I S; Akhmatkhanov, A R; Shur, V Ya

    2014-07-15

    We study the nonlinear Raman-Nath diffraction (NRND) of femtosecond laser pulses in a 1D periodic nonlinear photonic structure. The calculated second-harmonic spectra represent frequency combs for different orders of transverse phase matching. These frequency combs are in close analogy with the well-known spectral Maker fringes observed in single crystals. The spectral intensity of the second harmonic experiences a redshift with a propagation angle, which is opposite the case of Čerenkov nonlinear diffraction. We analyze how NRND is affected by the group-velocity mismatch between fundamental and second-harmonic pulses and by the parameters of the structure. Our experimental results prove the theoretical predictions.

  15. Human cadaver retina model for retinal heating during corneal surgery with a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Fan, Zhongwei; Yun, Jin; Zhao, Tianzhuo; Yan, Ying; Kurtz, Ron M.; Juhasz, Tibor

    2014-02-01

    Femtosecond lasers are widely used in everyday clinical procedures to perform minimally invasive corneal refractive surgery. The intralase femtosecond laser (AMO Corp. Santa Ana, CA) is a common example of such a laser. In the present study a numerical simulation was developed to quantify the temperature rise in the retina during femtosecond intracorneal surgery. Also, ex-vivo retinal heating due to laser irradiation was measured with an infrared thermal camera (Fluke Corp. Everett, WA) as a validation of the simulation. A computer simulation was developed using Comsol Multiphysics to calculate the temperature rise in the cadaver retina during femtosecond laser corneal surgery. The simulation showed a temperature rise of less than 0.3 degrees for realistic pulse energies for the various repetition rates. Human cadaver retinas were irradiated with a 150 kHz Intralase femtosecond laser and the temperature rise was measured withan infrared thermal camera. Thermal camera measurements are in agreement with the simulation. During routine femtosecond laser corneal surgery with normal clinical parameters, the temperature rise is well beneath the threshold for retina damage. The simulation predictions are in agreement with thermal measurements providing a level of experimental validation.

  16. Fast femtosecond laser ablation for efficient cutting of sintered alumina substrates

    NASA Astrophysics Data System (ADS)

    Oosterbeek, Reece N.; Ward, Thomas; Ashforth, Simon; Bodley, Owen; Rodda, Andrew E.; Simpson, M. Cather

    2016-09-01

    Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,∞=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 μm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 μm/s - more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.

  17. Optical microdevices fabricated using femtosecond laser processing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Otuka, Adriano J. G.; Tomázio, Nathália B.; Tribuzi, Vinicius; Ferreira, Paulo Henrique D.; De Boni, Leonardo; Mendonça, Cleber R.

    2017-02-01

    Femtosecond laser processing techniques have been widely employed to produce micro or nanodevices with special features. These devices can be selectively doped with organic dyes, biological agents, nanoparticles or carbon nanotubes, increasing the range of applications. Acrylate polymers can be easily doped with various compounds, and therefore, they are interesting materials for laser fabrication techniques. In this work, we use multiphoton absorption polymerization (MAP) and laser ablation to fabricate polymeric microdevices for optical applications. The polymeric sample used in this work is composed in equal proportions of two three-acrylate monomers; while tris(2-hydroxyethyl)isocyanurate triacrylate gives hardness to the structure, the ethoxylated(6) trimethyl-lolpropane triacrylate reduces the shrinkage tensions upon polymerization. These monomers are mixed with a photoinitiator, the 2,4,6-trimetilbenzoiletoxifenil phosphine oxide, enabling the sample polymerization after laser irradiation. Using MAP, we fabricate three-dimensional structures doped with fluorescent dyes. These structures can be used in several optical applications, such as, RGB fluorescent microdevices or microresonators. Using azo compounds like dopant in the host resin, we can apply these structures in optical data storage devices. Using laser ablation technique, we can fabricate periodic microstructures inside polymeric bulks doped with xanthene dyes and single-walled carbon nanotubes, aiming applications in random laser experiments. In structured bulks we observed multi-narrow emission peaks over the xanthene fluorescence emission. Furthermore, in comparison with non-structured bulks, we observed that the periodic structure decreased the degree of randomness, reducing the number of peaks, but defining their position.

  18. Femtosecond laser-assisted keratoplasty combined with cataract extraction in a patient with keratoconus and oculocutaneous albinism

    PubMed Central

    Pásztor, Dorottya; Kolozsvári, Bence Lajos; Losonczy, Gergely; Fodor, Mariann

    2016-01-01

    In this study, we present a case of a 58-year-old male patient with oculocutaneous albinism, keratoconus, total cataract, and glaucoma originating from father-daughter incest. He underwent femtosecond laser-assisted keratoplasty with “open-sky” cataract extraction and posterior chamber intraocular lens implantation. One week after surgery his uncorrected visual acuity improved from hand motion to 20/200. Six months later corneal K values were 49.1 D in the flat and 50.0 D in the steep meridian. The graft had a central corneal thickness of 488 µm and was well fitted. The patient's quality of life improved substantially due to the surgery. To the best of our knowledge, this is the first report on the association of albinism with advanced keratoconus, total cataract, and glaucoma. Moreover, no previous report on femtosecond laser-assisted keratoplasty using VisuMax femtosecond laser system with “open-sky” cataract extraction is available in the literature. The VisuMax femtosecond laser-assisted keratoplasty ensures fast patient rehabilitation in such challenging cases. PMID:27146942

  19. Nanosurgery with near-infrared 12-femtosecond and picosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Zhang, Huijing; Lemke, Cornelius; König, Karsten

    2011-03-01

    Laser-assisted surgery based on multiphoton absorption of NIR laser light has great potential for high precision surgery at various depths within the cells and tissues. Clinical applications include refractive surgery (fs-LASIK). The non-contact laser method also supports contamination-free cell nanosurgery. Here we apply femtosecond laser scanning microscopes for sub-100 nm surgery of human cells and metaphase chromosomes. A mode-locked 85 MHz Ti:Sapphire laser with an M-shaped ultrabroad band spectrum (maxima: 770 nm/830 nm) with an in situ pulse duration at the target ranging from 12 femtoseconds up to 3 picoseconds was employed. The effects of laser nanoprocessing in cells and chromosomes have been quantified by atomic force microscopy (AFM) and electron microscopy. These studies demonstrate the potential of extreme ultrashort femtosecond laser pulses at low mean milliwatt powers for sub-100 nm surgery.

  20. Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing.

    PubMed

    Xu, Jian; Wu, Dong; Hanada, Yasutaka; Chen, Chi; Wu, Sizhu; Cheng, Ya; Sugioka, Koji; Midorikawa, Katsumi

    2013-12-07

    Space-selective metallization of the inside of glass microfluidic structures using femtosecond laser direct-write ablation followed by electroless plating is demonstrated. Femtosecond laser direct writing followed by thermal treatment and successive chemical etching allows us to fabricate three-dimensional microfluidic structures inside photosensitive glass. Then, femtosecond laser ablation followed by electroless metal plating enables flexible deposition of patterned metal films on desired locations of not only the top and bottom walls but also the sidewalls of fabricated microfluidic structures. A volume writing scheme for femtosecond laser irradiation inducing homogeneous ablation on the sidewalls of microfluidic structures is proposed for sidewall metallization. The developed technique is used to fabricate electrofluidics in which microelectric components are integrated into glass microchannels. The fabricated electrofluidics are applied to control the temperature of liquid samples in the microchannels for the enhancement of chemical reactions and to manipulate the movement of biological samples in the microscale space.

  1. Femtosecond laser fabrication of linear graphitized microstructures in a bulk of polycarbonate samples

    NASA Astrophysics Data System (ADS)

    Ganin, D. V.; Lapshin, K. E.; Obidin, A. Z.; Vartapetov, S. K.

    2016-08-01

    We have fabricated high aspect ratio straight and curved graphitized lines inside of polycarbonate samples by using a femtosecond laser. Use of a spherical lens with high NA to focusing femtosecond pulse in the bulk of material leads to self-diffraction of laser beam and formation a filamentary structure. We fabricated two kinds of graphitized lines. The first type is a straight line extended in the direction of the laser beam. This type of lines was created by femtosecond laser scanning without pulse overlapping. The second type of graphitized lines is curved lines, which was created by scanning with a significant overlapping of focal spot. We determined conditions of the formation of straight graphitized lines by one femtosecond pulse with diameter about 2 pm and length greater than 1 mm in polycarbonate samples. Mechanism of formation and potential applications of these structures are also discussed.

  2. Optical emission of silicon plasma induced by femtosecond double-pulse laser

    NASA Astrophysics Data System (ADS)

    Chen, Anmin; Wang, Xiaowei; Zhang, Dan; Wang, Ying; Li, Suyu; Jiang, Yuanfei; Jin, Mingxing

    2017-05-01

    In this paper, we present a study on the influence of interpulse delay in laser-induced silicon plasma with femtosecond double-pulse, and two subpulses have different laser energies. The meansured optical emission line collected by a lens is the Si (I) at 390.55 nm. The range of double-pulse interpulse delay is from -150 ps to 150 ps. Unlike the femtosecond double pulses with two same energies, the combination of low + high energies can enhance the spectral emission intensity, while the combination of high + low energies probably reduces the spectral line intensity compared with single-pulse femtosecond laser. The results indicate that the interpulse delay is very important for laser-induced breakdown spectroscopy with femtosecond double-pulse to improve the optical emission intensity.

  3. Continuous intracorneal ring implantation for keratoconus using a femtosecond laser.

    PubMed

    Jabbarvand, Mahmoud; Salamatrad, Ahmad; Hashemian, Hesam; Mazloumi, Mehdi; Khodaparast, Mehdi

    2013-07-01

    To assess the clinical outcomes after continuous intracorneal ring (ICR) implantation for the management of keratoconus using femtosecond laser technology. Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran. Prospective nonrandomized consecutive case series. All patients presented with reduced visual acuity, contact lens intolerance, and a central corneal thickness of more than 360 μm. A Myoring ICR was inserted in an intrastromal pocket created by a femtosecond laser. The visual, refractive, aberrometric, and corneal biomechanical outcomes were measured preoperatively as well as 1, 3, and 6 months and 1 year postoperatively. The study comprised 98 keratoconic eyes of 98 patients with a mean age of 30.7 years ± 9.01 (SD). Fifteen eyes (15.3%) had grade I keratoconus, 37 eyes (37.7%) had grade II keratoconus, 24 eyes (24.5%) had grade III keratoconus, and 22 eyes (22.4%) had grade IV keratoconus. The uncorrected and corrected distance visual acuities and spherical and cylindrical errors improved 1 month after surgery (P<.001); however, no changes were detected thereafter (P>.05). The mean keratometry and corneal astigmatism decreased 1 month after surgery (P<.001); however, no significant change was observed at the 3-month or 1-year visits compared with the 1-month values (P>.05). Primary coma decreased significantly (P=.03), and spherical aberrations increased significantly (P<.001) postoperatively. Continuous ICR implantation in keratoconus appears to be an acceptable substitute for keratoplasty in advanced keratoconus. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Investigation of femtosecond laser assisted nano and microscale modifications in lithium niobate

    NASA Astrophysics Data System (ADS)

    Deshpande, Devesh C.; Malshe, Ajay P.; Stach, Eric A.; Radmilovic, Velimir; Alexander, Dennis; Doerr, David; Hirt, Drew

    2005-04-01

    A study of the physicochemical modifications at micro and nano scales as a result of femtosecond laser processing is essential to explore the viability of this process to write surface and subsurface structures in transparent media. To this end, scanning probe and transmission electron microscopy and spectroscopy techniques were used to study these modifications in lithium niobate. A variable power Ti:Sapphire system (800nm,300fs) was used to determine the ablation threshold of (110) lithium niobate, and to write these structures in the substrate for subsequent analysis. Higher processing energies were used to amplify the laser-induced effects for a clear understanding. Evidences of a number of simultaneously occurring mechanisms such as melting, ablation, and shockwave propagation are observed in the scanning electron microscope (SEM) micrographs. X-ray diffraction (XRD), Auger and electron dispersive spectroscopy (EDS) studies indicate loss of lithium and oxygen from the immediate surface of the processed region. Raman spectroscopy analysis indicates an unchanged chemical composition in the bulk, though at a loss of crystallinity. The surface and subsurface damage structures display a different nature of the amorphous and damaged material subregions, as observed in the respective transmission electron microscopy micrographs. A variation in oxygen counts is observed in the amorphous subregions, indicative of oxygen liberation and elemental segregation during the process. The oblate subsurface structure contains a void at the top, indicative of localized explosive melting and rapid quenching of the affected material. Thus, femtosecond laser writing produces different structures on the surface and the subsurface of the material. These results provide physicochemical insight towards writing chemically and spatially precise structures using femtosecond lasers, and will have direct implications in optical memory and waveguide writing and related applications.

  5. Femtosecond laser-induced periodic surface structure on the Ti-based nanolayered thin films

    SciTech Connect

    Petrović, Suzana M.; Gaković, B.; Peruško, D.; Stratakis, E.; Bogdanović-Radović, I.; Čekada, M.; Fotakis, C.; Jelenković, B.

    2013-12-21

    Laser-induced periodic surface structures (LIPSSs) and chemical composition changes of Ti-based nanolayered thin films (Al/Ti, Ni/Ti) after femtosecond (fs) laser pulses action were studied. Irradiation is performed using linearly polarized Ti:Sapphire fs laser pulses of 40 fs pulse duration and 800 nm wavelength. The low spatial frequency LIPSS (LSFL), oriented perpendicular to the laser polarization with periods slightly lower than the irradiation wavelength, was typically formed at elevated laser fluences. On the contrary, high spatial frequency LIPSS (HSFL) with uniform period of 155 nm, parallel to the laser light polarization, appeared at low laser fluences, as well as in the wings of the Gaussian laser beam distribution for higher used fluence. LSFL formation was associated with the material ablation process and accompanied by the intense formation of nanoparticles, especially in the Ni/Ti system. The composition changes at the surface of both multilayer systems in the LSFL area indicated the intermixing between layers and the substrate. Concentration and distribution of all constitutive elements in the irradiated area with formed HSFLs were almost unchanged.

  6. Opto-injection into single living cells by femtosecond near-infrared laser

    NASA Astrophysics Data System (ADS)

    Peng, Cheng

    This dissertation presents a novel technique to deliver membrane impermeable molecules into single living cells with the assistance of femtosecond (fs) near-infrared (NIR) laser pulses. This approach merges ultrafast laser technology with key biological, biomedical, and medical applications, such as gene transfection, gene therapy and drug delivery. This technique promises several major advantages, namely, very high transfection efficiency, high cell survival rate (≈100%) and fully preserved cell viabilities. It is also a promising method to deliver molecules into cells that are difficult or even completely resistant to established physical methods, such as microinjection by glass pipettes, electroporation, and biolistics. In this work, the system for fs NIR opto-injection was designed and built. Successful fs NIR opto-injection has been performed on several cell systems including single mammalian cells (bovine aortic endothelial cells), marine animal eggs (Spisula solidissima oocytes), and human cancer cells (fibrosarcoma HT1080) cultured in a tissue-like environment. The connections between laser parameters and cell responses were explored through further experiments and in-depth analyses, especially the relationship between dye uptake rate and incident laser intensity, and the relationship between pore size created on cell membranes and incident laser intensity. Dye uptake rate of the target cells was observed to depend on incident laser intensity. Pore size was found dependent on incident laser intensity. The conclusion was made that laser-induced breakdown and plasma-induced ablation in cell membrane are the physical principles that govern the process of fs NIR opto-injection.

  7. K(alpha) x-ray emission characterization of 100 Hz, 15 mJ femtosecond laser system with high contrast ratio.

    PubMed

    Fourmaux, S; Serbanescu, C; Kincaid, R E; Krol, A; Kieffer, J C

    2008-12-12

    We report K(alpha) x-ray production with a high energy (110 mJ per pulse at 800 nm before compression/15 mJ at 400 nm after compression), high repetition rate (100 Hz), and high pulse contrast (better than 10(-9) at 400 nm) laser system. To develop laser-based x-ray sources for biomedical imaging requires to use high-energy and high-power ultra-fast laser system where compression is achieved under vacuum. Using this type of laser system, we demonstrate long-term stability of the x-ray yield, conversion efficiency higher than 1.5 x 10(-5) with a Mo target, and the x-ray spot size close to the optical focal spot. This high-repetition K(alpha) x-ray source can be very useful for x-ray phase-contrast imaging.

  8. Femtosecond pulses generated from a synchronously pumped chromium-doped forsterite laser

    NASA Technical Reports Server (NTRS)

    Seas, A.; Petricevic, V.; Alfano, R. R.

    1993-01-01

    Kerr lens mode-locking (KLM) has become a standard method to produce femtosecond pulses from tunable solid state lasers. High power inside the laser resonator propagating through the laser-medium with nonlinear index of refraction, coupled with the stability conditions of the laser modes in the resonator, result in a passive amplitude modulation which explains the mechanism for pulse shortening. Recently, chromium doped forsterite was shown to exhibit similar pulse behavior. A successful attempt to generate femtosecond pulses from a synchronously pumped chromium-doped forsterite laser with intracavity dispersion compensation is reported. Stable, transform limited pulses with duration of 105 fs were routinely generated, tunable between 1240 to 1270 nm.

  9. Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing.

    PubMed

    Ku, Jin-Feng; Chen, Qi-Dai; Zhang, Ran; Sun, Hong-Bo

    2011-08-01

    We report in this Letter fabrication of whispering-gallery-mode microdisk lasers by femtosecond laser direct writing of dye-doped resins. Not only is well-defined disk shape upheld on an inverted cone-shaped supporter, but the disk also exhibits significant lasing actions characteristic of an abrupt increase of light output and the significant narrowing of the spectral lines when the threshold is approached. This work shows that the laser micronanofabrication technology is not only applicable to passive micro-optical components, but also it may play an important role in fabrication of active optoelectronic devices and their integrated photonic circuits.

  10. Impulsive rotational Raman scattering of N2 by a remote "air laser" in femtosecond laser filament.

    PubMed

    Ni, Jielei; Chu, Wei; Zhang, Haisu; Zeng, Bin; Yao, Jinping; Qiao, Lingling; Li, Guihua; Jing, Chenrui; Xie, Hongqiang; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-04-15

    We report on experimental realization of impulsive rotational Raman scattering from neutral nitrogen molecules in a femtosecond laser filament using an intense self-induced white-light seeding "air laser" generated during the filamentation of an 800 nm Ti:sapphire laser in nitrogen gas. The impulsive rotational Raman fingerprint signals are observed with a maximum conversion efficiency of ∼0.8%. Our observation provides a promising way of remote identification and location of chemical species in the atmosphere by a rotational Raman scattering of molecules.

  11. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation

    SciTech Connect

    Hu, A.; Rybachuk, M.; Lu, Q.-B.; Duley, W. W.

    2007-09-24

    Microscopic phase transformation from graphite to sp-bonded carbon chains (carbyne) and nanodiamond has been induced by femtosecond laser pulses on graphite surface. UV/surface enhanced Raman scattering spectra and x-ray photoelectron spectra displayed the local synthesis of carbyne in the melt zone while nanocrystalline diamond and trans-polyacetylene chains form in the edge area of gentle ablation. These results evidence possible direct 'writing' of variable chemical bonded carbons by femtosecond laser pulses for carbon-based applications.

  12. Comparative study of femtosecond and nanosecond laser-induced breakdown spectroscopy of depleted uranium

    SciTech Connect

    Emmert, Luke A.; Chinni, Rosemarie C.; Cremers, David A.; Jones, C. Randy; Rudolph, Wolfgang

    2011-01-20

    We present spectra of depleted uranium metal from laser plasmas generated by nanosecond Nd:YAG (1064 nm) and femtosecond Ti:sapphire (800 nm) laser pulses. The latter pulses produce short-lived and relatively cool plasmas in comparison to the longer pulses, and the spectra of neutral uranium atoms appear immediately after excitation. Evidence for nonequilibrium excitation with femtosecond pulses is found in the dependence of spectral line intensities on the pulse chirp.

  13. An alternative approach for femtosecond laser induced black silicon in ambient air

    NASA Astrophysics Data System (ADS)

    Ma, Yuncan; Ren, Hai; Si, Jinhai; Sun, Xuehui; Shi, Haitao; Chen, Tao; Chen, Feng; Hou, Xun

    2012-11-01

    An alternative approach for femtosecond laser induced black silicon in ambient air is proposed, in which, black silicon is fabricated on a tellurium coated silicon substrate via femtosecond laser irradiation in ambient air, and selectively etching with hydrofluoric acid is employed to remove the incorporated oxygen. Results of energy dispersive X-ray spectroscopy analysis and absorption measurement show that oxygen is effectively eliminated via etching, and the optical absorption of the black silicon is enhanced.

  14. Ultrasound measurements of cavitation bubble radius for femtosecond laser-induced breakdown in water.

    PubMed

    Aglyamov, Salavat R; Karpiouk, Andrei B; Bourgeois, Frederic; Ben-Yakar, Adela; Emelianov, Stanislav Y

    2008-06-15

    A recently developed ultrasound technique is evaluated by measuring the behavior of a cavitation bubble that is induced in water by a femtosecond laser pulse. The passive acoustic emission during optical breakdown is used to estimate the location of the cavitation bubble's origin. In turn, the position of the bubble wall is defined based on the active ultrasonic pulse-echo signal. The results suggest that the developed ultrasound technique can be used for quantitative measurements of femtosecond laser-induced microbubbles.

  15. Nanodissection of human chromosomes and ultraprecise eye surgery with nanojoule near-infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Riemann, Iris; Krauss, Oliver; Fritzsche, Wolfgang

    2002-04-01

    Nanojoule and sub-nanojoule 80 MHz femtosecond laser pulses at 750-850 nm of a compact titanium:sapphire laser have been used for highly precise nanoprocessing of DNA as well as of intracellular and intratissue compartments. In particular, a mean power between 15 mW and 100 mW, 170 fs pulse width, submicron distance of illumination spots and microsecond beam dwell times on spots have been used for multiphoton- mediated nanoprocessing of human chromosomes, brain and ocular intrastromal tissue. By focusing the laser beam with high numerical aperture focusing optics of the laser scan system femt-O-cut and of modified multiphoton scanning microscopes to diffraction-limited spots and TW/cm2 light intensities, precise submicron holes and cuts have been processed by single spot exposure and line scans. A minimum FWHM cut size below 70 nm during the partial dissection of the human chromosome 3 was achieved. Complete chromosome dissection could be performed with FWHM cut sizes below 200 nm. Intracellular chromosome dissection was possible. Intratissue processing in depths of 50 - 100micrometers and deeper with a precision of about 1micrometers including cuts through a nuclei of a single intratissue cell without destructive photo-disruption effects to surrounding tissue layers have been demonstrated in brain and eye tissues. The femt-O-cut system includes a diagnostic system for optical tomography with submicron resolution based on multiphoton- excited autofluorescence imaging (MAI) and second harmonic generation. This system was used to localize the intracellular and intratissue targets and to control the effects of nanoprocessing. These studies show, that in contrast to conventional approaches of material processing with amplified femtosecond laser systems and (mu) J pulse energies, nanoprocessing of materials including biotissues can be performed with nJ and sub-nJ high repetition femtosecond laser pulses of turn-key compact lasers without collateral damage. Potential

  16. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    NASA Astrophysics Data System (ADS)

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-03-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  17. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    PubMed Central

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-01-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications. PMID:28327611

  18. Diffusion-assisted high-resolution direct femtosecond laser writing.

    PubMed

    Sakellari, Ioanna; Kabouraki, Elmina; Gray, David; Purlys, Vytautas; Fotakis, Costas; Pikulin, Alexander; Bityurin, Nikita; Vamvakaki, Maria; Farsari, Maria

    2012-03-27

    We present a new method for increasing the resolution of direct femtosecond laser writing by multiphoton polymerization, based on quencher diffusion. This method relies on the combination of a mobile quenching molecule with a slow laser scanning speed, allowing the diffusion of the quencher in the scanned area and the depletion of the multiphoton-generated radicals. The material we use is an organic-inorganic hybrid, while the quencher is a photopolymerizable amine-based monomer which is bound on the polymer backbone upon fabrication of the structures. We use this method to fabricate woodpile structures with a 400 nm intralayer period. This is comparable to the results produced by direct laser writing based on stimulated-emission-depletion microscopy, the method considered today as state-of-the-art in 3D structure fabrication. We optically characterize these woodpiles to show that they exhibit well-ordered diffraction patterns and stopgaps down to near-infrared wavelengths. Finally, we model the quencher diffusion, and we show that radical inhibition is responsible for the increased resolution. © 2012 American Chemical Society

  19. Biomimetic surface structuring using cylindrical vector femtosecond laser beams.

    PubMed

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-03-22

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark's skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus' leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  20. Microscopic and macroscopic modeling of femtosecond laser ablation of metals

    NASA Astrophysics Data System (ADS)

    Povarnitsyn, Mikhail E.; Fokin, Vladimir B.; Levashov, Pavel R.

    2015-12-01

    Simulation of femtosecond laser ablation of a bulk aluminum target is performed using two complementary approaches. The first method is single-fluid two-temperature hydrodynamics (HD) completed with a two-temperature equation of state (EOS). The second approach is a combination of classical molecular dynamics (MD) and a continuum model of a free electron subsystem. In both methods, an identical and accurate description of optical and transport properties of the electron subsystem is based on wide-range models reproducing effects of electron heat wave propagation, electron-phonon/ion coupling and laser energy absorption on a time-dependent profile of the dielectric function. For simulation of homogeneous nucleation in a metastable liquid phase, a kinetic model of nucleation is implemented in the HD approach. The phase diagrams of the EOS and MD potential are in good agreement that gives opportunity to compare the dynamics of laser ablation obtained by both methods directly. Results of simulation are presented in the range of incident fluences 0.1-20 J/cm2 and match well with experimental findings for an ablation crater depth. The MD accurately reproduces nonequilibrium phase transitions and takes into account surface effects on nanoscale. The HD approach demonstrates good qualitative agreement with the MD method in the dynamics of phase explosion and spallation. Other advantages and disadvantages of both approaches are examined and discussed.

  1. Femtosecond laser induced nanostructuring for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Messaoudi, H.; Das, S. K.; Lange, J.; Heinrich, F.; Schrader, S.; Frohme, M.; Grunwald, R.

    2014-03-01

    The formation of periodical nanostructures with femtosecond laser pulses was used to create highly efficient substrates for surface-enhanced Raman spectroscopy (SERS). We report about the structuring of silver and copper substrates and their application to the SERS of DNA (herring sperm) and protein molecules (egg albumen). The maximum enhancement factors were found on Ag substrates processed with the second harmonic generation (SHG) of a 1-kHz Ti:sapphire laser and structure periods near the SHG wavelength. In the case of copper, however, the highest enhancement was obtained with long-period ripples induced with at fundamental wavelength. This is explained by an additional significant influence of nanoparticles on the surface. Nanostructured areas in the range of 1.25 mm2 were obtained in 10 s. The surfaces were characterized by scanning electron microscopy, Fast Fourier Transform and Raman spectroscopy. Moreover, the role of the chemical modification of the metal structures is addressed. Thin oxide layers resulting from working in atmosphere which improve the biocompatibility were indicated by vibration spectra. It is expected that the detailed study of the mechanisms of laser-induced nanostructure formation will stimulate further applications of functionalized surfaces like photocatalysis, selective chemistry and nano-biology.

  2. Nonlinear femtosecond near infrared laser structuring in oxide glasses

    NASA Astrophysics Data System (ADS)

    Royon, Arnaud

    Three-dimensional femtosecond laser structuring has a growing interest because of its ease of implementation and the numerous possible applications in the domain of photonic components. Structures such as waveguides, diffraction gratings, optical memories or photonic crystals can be fabricated thanks to this technique. Its use with oxide glasses is promising because of several advantages; they are resistant to flux and ageing, their chemical composition can easily be changed to fit the well-defined requirements of an application. They can already be found in Raman amplifiers, optical fibers, fiber lasers, and other devices. This thesis is based on two axes. The first axis consists in characterizing the linear and nonlinear optical properties of bulk vitreous materials in order to optimize their composition with a particular application in view. Within this context, the nonlinear optical properties, their physical origins (electronic and nuclear) as well as their characteristic response times (from a few femtoseconds to a few hundreds of picoseconds) are described within the Born-Oppenheimer approximation. Fused silica and several sodium-borophosphate glasses containing different concentrations in niobium oxide have been studied. Results show that the nonlinear optical properties of fused silica are mainly from electronic origin, whereas in the sodium-borophosphate glasses, the contribution from nuclear origin becomes predominant when the concentration of niobium oxide exceeds 30%. The second axis is based on the structuring of materials. Three commercially available fused silica samples presenting different fabrication conditions (therefore distinct impurity levels) and irradiated with a near infrared femtosecond laser have been studied. The laser induced defects have been identified by means of several spectroscopic techniques. They show the formation of color centers as well as a densification inside the irradiated area. Their linear refractive index and

  3. Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser.

    PubMed

    Han, D D; Liu, X M; Cui, Y D; Wang, G X; Zeng, C; Yun, L

    2014-03-15

    We propose a compact nanotube-mode-locked all-fiber laser that can simultaneously generate picosecond and femtosecond solitons at different wavelengths. The pulse durations of picosecond and femtosecond solitons are measured to be ∼10.6  ps and ∼466  fs, respectively. Numerical results agree well with the experimental observations and clearly reveal that the dynamic evolutions of the picosecond and femtosecond solitons are qualitatively distinct in the intracavity. Our study presents a simple, stable, low-cost, and dual-scale ultrafast-pulsed laser source suitable for practical applications in optical communications.

  4. Controlling the femtosecond laser-driven transformation of dicyclopentadiene into cyclopentadiene

    PubMed Central

    Goswami, Tapas; Das, Dipak K.; Goswami, Debabrata

    2013-01-01

    Dynamics of the chemical transformation of dicyclopentadiene into cyclopentadiene in a supersonic molecular beam is elucidated using femtosecond time-resolved degenerate pump–probe mass spectrometry. Control of this ultrafast chemical reaction is achieved by using linearly chirped frequency modulated pulses. We show that negatively chirped femtosecond laser pulses enhance the cyclopentadiene photoproduct yield by an order of magnitude as compared to that of the unmodulated or the positively chirped pulses. This demonstrates that the phase structure of femtosecond laser pulse plays an important role in determining the outcome of a chemical reaction. PMID:24098059

  5. Control of femtosecond laser interference ejection with angle and polarisation

    NASA Astrophysics Data System (ADS)

    Roper, David M.; Ho, Stephen; Haque, Moez; Herman, Peter R.

    2017-03-01

    The nonlinear interactions of femtosecond lasers are driving multiple new application directions for nanopatterning and structuring of thin transparent dielectric films that serve in range of technological fields. Fresnel reflections generated by film interfaces were recently shown to confine strong nonlinear interactions at the Fabry-Perot fringe maxima to generate thin nanoscale plasma disks of 20 to 40 nm thickness stacked on half wavelength spacing, λ/2nfilm, inside a film (refractive index, nfilm). The following phase-explosion and ablation dynamics have resulted in a novel means for intrafilm processing that includes `quantized' half-wavelength machining steps and formation of blisters with embedded nanocavities. This paper presents an extension in the control of interferometric laser processing around our past study of Si3N4 and SiOx thin films at 515 nm, 800 nm, and 1044 nm laser wavelengths. The role of laser polarization and incident angle is explored on fringe visibility and improving interferometric processing inside the film to dominate over interface and / or surface ablation. SiOx thin films of 1 μm thickness on silicon substrates were irradiated with a 515 nm wavelength, 280 fs duration laser pulses at 0° to 65° incident angles. A significant transition in ablation region from complete film removal to structured quantized ejection is reported for p- and s-polarised light that is promising to improve control and expand the versatility of the technique to a wider range of applications and materials. The research is aimed at creating novel bio-engineered surfaces for cell culture, bacterial studies and regenerative medicine, and nanofluidic structures that underpin lab-in-a-film. Similarly, the formation of intrafilm blisters and nanocavities offers new opportunities in structuring existing thin film devices, such as CMOS microelectronics, LED, lab-on-chips, and MEMS.

  6. First international comparison of femtosecond laser combs at the International Bureau of Weights and Measures.

    PubMed

    Ma, Long-Sheng; Robertsson, Lennart; Picard, Susanne; Zucco, Massimo; Bi, Zhiyi; Wu, Shenghai; Windeler, Robert S

    2004-03-15

    The first international comparison of femtosecond laser combs has been carried out at the International Bureau of Weights and Measures (BIPM). Three comb systems were involved: BIPM-C1 and BIPM-C2 from the BIPM and ECNU-C1 from the East China Normal University (ECNU). The agreement among the three combs was found to be on the subhertz level in the vicinity of 563 THz. A frequency difference measurement scheme was demonstrated that is suitable for general comb comparisons.

  7. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing.

    PubMed

    Liao, Yang; Song, Jiangxin; Li, En; Luo, Yong; Shen, Yinglong; Chen, Danping; Cheng, Ya; Xu, Zhizhan; Sugioka, Koji; Midorikawa, Katsumi

    2012-02-21

    The creation of complex three-dimensional (3D) microfluidic systems has attracted significant attention from both scientific and applied research communities. However, it is still a formidable challenge to build 3D microfluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. Here, we demonstrate rapid fabrication of high-aspect-ratio microfluidic channels with various 3D configurations in glass substrates by femtosecond laser direct writing. Based on this approach, we demonstrate a 3D passive microfluidic mixer and characterize its functionalities. This technology will enable rapid construction of complex 3D microfluidic devices for a wide array of lab-on-a-chip applications.

  8. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers.

    PubMed

    Ancona, A; Döring, S; Jauregui, C; Röser, F; Limpert, J; Nolte, S; Tünnermann, A

    2009-11-01

    The influence of pulse duration on the laser drilling of metals at repetition rates of up to 1 MHz and average powers of up to 70 W has been experimentally investigated using an ytterbium-doped-fiber chirped-pulse amplification system with pulses from 800 fs to 19 ps. At a few hundred kilohertz particle shielding causes an increase in the number of pulses for breakthrough, depending on the pulse energy and duration. At higher repetition rates, the heat accumulation effect overbalances particle shielding, but significant melt ejection affects the hole quality. Using femtosecond pulses, heat accumulation starts at higher repetition rates, and the ablation efficiency is higher compared with picosecond pulses.

  9. Femtosecond laser pulse control of multidimensional vibrational dynamics: Computational studies on the pyrazine molecule

    NASA Astrophysics Data System (ADS)

    Wang, Luxia; Meyer, Hans-Dieter; May, Volkhard

    2006-07-01

    The multiconfiguration time-dependent Hartree (MCTDH) method is combined with the optimal control theory (OCT) to study femtosecond laser pulse control of multidimensional vibrational dynamics. Simulations are presented for the widely discussed three-electronic-level vibronic coupling model of pyrazine either in a three or four vibrational coordinate version. Thus, for the first time OCT is applied to a four-coordinate system. Different control tasks are investigated and also some general aspects of the OCT-MCTDH method combination are analyzed.

  10. Ferrofluid-based optical fiber magnetic field sensor fabricated by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Song, Yang; Yuan, Lei; Hua, Liwei; Zhang, Qi; Lei, Jincheng; Huang, Jie; Xiao, Hai

    2016-02-01

    Optofluid system has been more and more attractive in optical sensing applications such as chemical and biological analysis as it incorporates the unique features from both integrated optics and microfluidics. In recent years, various optofluid based structures have been investigated in/on an optical fiber platform which is referred to as "lab in/on a fiber". Among those integrated structures, femto-second laser micromaching technique plays an important role due to its high precision fabrication, flexible design, 3D capability, and compatible with other methods. Here we present a ferrofluid based optical fiber magnetic field sensor fabricated by femtosecond (fs) laser irradiation .With the help of fs laser micromaching technique, a micro-reservoir made by capillary tube assembled in a single mode optical fiber could be fabricated. The micro-reservoir functions as a fiber inline Fabry-Perot (FP) cavity which is filled by ferrofluid liquid. The refractive index of the ferrofluid varies as the surrounding magnetic field strength changes, which can be optically probed by the FP interferometer. A fringe visibility of up to 30 dB can be achieved with a detection limit of around 0.4 Gausses. Due to the fabrication, micro-reservoirs can be assembled with optical fiber and distinguished through a microwave-photonic interrogation system. A quasi-distributed magnetic field sensing application has been demonstrated with a high spatial resolution of around 10 cm.

  11. Femtosecond laser fabrication of fiber based optofluidic platform for flow cytometry applications

    NASA Astrophysics Data System (ADS)

    Serhatlioglu, Murat; Elbuken, Caglar; Ortac, Bulend; Solmaz, Mehmet E.

    2017-02-01

    Miniaturized optofluidic platforms play an important role in bio-analysis, detection and diagnostic applications. The advantages of such miniaturized devices are extremely low sample requirement, low cost development and rapid analysis capabilities. Fused silica is advantageous for optofluidic systems due to properties such as being chemically inert, mechanically stable, and optically transparent to a wide spectrum of light. As a three dimensional manufacturing method, femtosecond laser scanning followed by chemical etching shows great potential to fabricate glass based optofluidic chips. In this study, we demonstrate fabrication of all-fiber based, optofluidic flow cytometer in fused silica glass by femtosecond laser machining. 3D particle focusing was achieved through a straightforward planar chip design with two separately fabricated fused silica glass slides thermally bonded together. Bioparticles in a fluid stream encounter with optical interrogation region specifically designed to allocate 405nm single mode fiber laser source and two multi-mode collection fibers for forward scattering (FSC) and side scattering (SSC) signals detection. Detected signal data collected with oscilloscope and post processed with MATLAB script file. We were able to count number of events over 4000events/sec, and achieve size distribution for 5.95μm monodisperse polystyrene beads using FSC and SSC signals. Our platform shows promise for optical and fluidic miniaturization of flow cytometry systems.

  12. Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Doster, J.; Baraldi, G.; Gonzalo, J.; Solis, J.; Hernandez-Rueda, J.; Siegel, J.

    2014-04-01

    We demonstrate that the broad surface plasmon resonance (SPR) of a single layer of near-coalescence silver nanoparticles (NPs), embedded in a dielectric matrix can be tailored by irradiation with a single nanosecond laser pulse into a distribution featuring a sharp resonance at 435 nm. Scanning electron microscopy studies reveal the underlying mechanism to be a transformation into a distribution of well-separated spherical particles. Additional exposure to multiple femtosecond laser pulses at 400 nm or 800 nm wavelength induces polarization anisotropy of the SPR, with a peak shift that increases with laser wavelength. The spectral changes are measured in-situ, employing reflection and transmission micro-spectroscopy with a lateral resolution of 4 μm. Spectral maps as a continuous function of local fluence can be readily produced from a single spot. The results open exciting perspectives for dynamically tuning and switching the optical response of NP systems, paving the way for next-generation applications.

  13. Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Krauss, Oliver; Riemann, Iris

    2002-02-01

    The use of 1 nanojoule near infrared 80 MHz femtosecond laser pulses for highly precise intratissue processing, in particular for intraocular refractive surgery, was evaluated. Destructive optical breakdown at TW/cm2 light intensities in a subfemtoliter intrastromal volume was obtained by diffraction-limited focussing with an 40x objective (N.A. 1.3) and beam scanning 50 to 140 µm below the epithelial surface. Using the same system at GW/cm2 intensities two-photon excited autofluorescence imaging was used to determine the target of interest and to visualize intraocular laser effects. Histological examination of laser-exposed porcine eyes reveal a minimum cut size below 1 µm without destructive effects to surrounding tissues.

  14. Mode-coupling enhancement by pump astigmatism correction in a Ti:Sapphire femtosecond laser.

    PubMed

    Ramírez-Guerra, Catalina; Moreno-Larios, José Agustín; Rosete-Aguilar, Martha; Garduño-Mejía, Jesús

    2016-12-01

    To pump a solid-state femtosecond laser cavity, a beam from a CW laser is focused by a single lens into the laser crystal. To increase the output power of the laser, the overlap of the laser mode with the pump mode should be maximized. This is particularly important in the so-called mode coupling and the Kerr-lens mode locking (KLM) operation, where the change in beam waist at the position of the gain medium is exploited to enhance the mode overlap with the pump laser in the crystal. In this paper, the astigmatism in the pump beam is reduced by tilting the pump lens. A Gaussian beam is propagated through the complete focusing system-pump lens, tilted spherical mirror, and crystal cut at Brewster's angle-to show the astigmatism inside the crystal as a function of the tilt of the pump lens. A genetic algorithm is presented to optimize the mode coupling between the pump and laser beam inside the crystal by tilting the pump lens. Experimental results are presented to verify the design, showing an increase in the output power of the laser cavity of about 20%.

  15. Mode coupling enhancement by astigmatism compensation in a femtosecond laser cavity

    NASA Astrophysics Data System (ADS)

    Castro-Olvera, Gustavo; Garduño-Mejía, Jesus; Rosete-Aguilar, Martha; Roman-Moreno, Carlos J.

    2016-09-01

    In this work we present a numerical analysis of the mode coupling between the pump-beam and the laser-beam in a Ti:Sapphire crystal used as a gain medium of a femtosecond laser. Using the Matrix ABCD and propagation gaussian beam models, we obtained an optimal configuration for compensate the astigmatism in the output beam laser. Also we analysed pump-beam propagation and got the settings to fix the astigmatism in the crystal. Furthermore we apply this configuration to a homemade femtosecond laser, accomplishing an overall efficiency of laser to 20% in continuum wave (CW) and 16% in mode looking (ML) operation. The femtosecond laser have 30 nm bandwidth to FWHM at 810 nm corresponding 30fs.

  16. Fabrication of 3D embedded hollow structures inside polymer dielectric PMMA with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Zheng, Chong; Chen, Tao; Hu, Anming; Liu, Shibing; Li, Junwei

    2016-11-01

    Recent progresses in femtosecond laser (fs) manufacturing have already proved that fs laser is a powerful tool in three dimensional internal structure fabrications. However, most studies are mainly focused on realize such structures in inorganic transparent dielectric, such as photosensitive glass and fused silica, etc. In this study, we present two methods to fabricate embedded internal 3D structures in a polymer dielectric material polymethyl methacrylate (PMMA). Both continuous hollow structure such as microfluidic channels and discrete hollow structures such as single microcavities are successfully fabricated with the help of femtosecond lasers. Among them, complicated 3D microchannel with a total length longer than 10mm and diameters around 80μm to 200μm are fabricated with a low repetition rate Ti: sapphire femtosecond laser by direct laser writing at a speed ranging from 25μm/s to 2000μm/s microcavities which function as concave microball lenses (CMBLs) and can be applied in super-wide-angle imaging are fabricated with a high repetition rate femtosecond fiber laser due to the distinct heat accumulation effect after 5s irradiation with the tightly focused fs laser beam. These new approaches proved that femtosecond laser direct writing technology has great application potential in 3D integrated devices manufacturing in the future.

  17. Transverse writing of three-dimensional tubular optical waveguides in glass with a slit-shaped femtosecond laser beam

    PubMed Central

    Liao, Yang; Qi, Jia; Wang, Peng; Chu, Wei; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of tubular optical waveguides buried in ZBLAN glass based on transverse femtosecond laser direct writing. Irradiation in ZBLAN with focused femtosecond laser pulses leads to decrease of refractive index in the modified region. Tubular optical waveguides of variable mode areas are fabricated by forming the four sides of the cladding with slit-shaped femtosecond laser pulses, ensuring single mode waveguiding with a mode field dimension as small as ~4 μm. PMID:27346285

  18. Effect of ambient pressure on a femtosecond laser induced titanium plasma

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Chuansong; Gao, Xun; Lin, Jingquan; Man, Baoyuan; Sun, Yanna; Li, Feifei

    2016-11-01

    Femtosecond laser induced Ti plasma has been characterized as a function of pressure by means of femtosecond laser induced breakdown spectroscopy (fs-LIBS). Experiments were performed with a Ti: sapphire laser system (100 fs, 800 nm), in an air pressure from 10 Pa to 104 Pa. The time-resolved spectrum has been acquired and the spectral intensities of different plasma species have been investigated with a changing ambient pressure. The Ti atomic lines decay while the ionic ones grow with an increasing pressure. The enhancement of nitrogen ionic line has also been observed. The time of flight spectroscopy is adopted to measure the expanding velocity of the plasma plume. The increasing pressure slows the plasma expansion along both axial and radial directions. The electron density and temperature are measured by means of Boltzmann plot method and Stark width method, respectively. It is concluded that higher pressure will increase the energy absorption and retard the plasma expansion, leading to larger electron density and temperature.

  19. Towards high-throughput automated targeted femtosecond laser-based transfection of adherent cells

    NASA Astrophysics Data System (ADS)

    Antkowiak, Maciej; Torres-Mapa, Maria Leilani; Gunn-Moore, Frank; Dholakia, Kishan

    2011-03-01

    Femtosecond laser induced cell membrane poration has proven to be an attractive alternative to the classical methods of drug and gene delivery. It is a selective, sterile, non-contact technique that offers a highly localized operation, low toxicity and consistent performance. However, its broader application still requires the development of robust, high-throughput and user-friendly systems. We present a system capable of unassisted enhanced targeted optoinjection and phototransfection of adherent mammalian cells with a femtosecond laser. We demonstrate the advantages of a dynamic diffractive optical element, namely a spatial light modulator (SLM) for precise three dimensional positioning of the beam. It enables the implementation of a "point-and-shoot" system in which using the software interface a user simply points at the cell and a predefined sequence of precisely positioned doses can be applied. We show that irradiation in three axial positions alleviates the problem of exact beam positioning on the cell membrane and doubles the number of viably optoinjected cells when compared with a single dose. The presented system enables untargeted raster scan irradiation which provides transfection of adherent cells at the throughput of 1 cell per second.

  20. Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence

    PubMed Central

    Lu, Xin; Chen, Shi-You; Ma, Jing-Long; Hou, Lei; Liao, Guo-Qian; Wang, Jin-Guang; Han, Yu-Jing; Liu, Xiao-Long; Teng, Hao; Han, Hai-Nian; Li, Yu-Tong; Chen, Li-Ming; Wei, Zhi-Yi; Zhang, Jie

    2015-01-01

    A long air plasma channel can be formed by filamentation of intense femtosecond laser pulses. However, the lifetime of the plasma channel produced by a single femtosecond laser pulse is too short (only a few nanoseconds) for many potential applications based on the conductivity of the plasma channel. Therefore, prolonging the lifetime of the plasma channel is one of the key challenges in the research of femtosecond laser filamentation. In this study, a unique femtosecond laser source was developed to produce a high-quality femtosecond laser pulse sequence with an interval of 2.9 ns and a uniformly distributed single-pulse energy. The metre scale quasi-steady-state plasma channel with a 60–80 ns lifetime was formed by such pulse sequences in air. The simulation study for filamentation of dual femtosecond pulses indicated that the plasma channel left by the previous pulse was weakly affected the filamentation of the next pulse in sequence under our experimental conditions. PMID:26493279

  1. Understanding Femtosecond-Pulse Laser Damage through Fundamental Physics Simulations

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert A., III

    It did not take long after the invention of the laser for the field of laser damage to appear. For several decades researchers have been studying how lasers damage materials, both for the basic scientific understanding of highly nonequilibrium processes as well as for industrial applications. Femtosecond pulse lasers create little collateral damage and a readily reproducible damage pattern. They are easily tailored to desired specifications and are particularly powerful and versatile tools, contributing even more industrial interest in the field. As with most long-standing fields of research, many theoretical tools have been developed to model the laser damage process, covering a wide range of complexities and regimes of applicability. However, most of the modeling methods developed are either too limited in spatial extent to model the full morphology of the damage crater, or incorporate only a small subset of the important physics and require numerous fitting parameters and assumptions in order to match values interpolated from experimental data. Demonstrated in this work is the first simulation method capable of fundamentally modeling the full laser damage process, from the laser interaction all the way through to the resolidification of the target, on a large enough scale that can capture the full morphology of the laser damage crater so as to be compared directly to experimental measurements instead of extrapolated values, and all without any fitting parameters. The design, implementation, and testing of this simulation technique, based on a modified version of the particle-in-cell (PIC) method, is presented. For a 60 fs, 1 mum wavelength laser pulse with fluences of 0.5 J/cm 2, 1.0 J/cm2, and 2.0 J/cm2 the resulting laser damage craters in copper are shown and, using the same technique applied to experimental crater morphologies, a laser damage fluence threshold is calculated of 0.15 J/cm2, consistent with current experiments performed under conditions similar

  2. Semiconductors Investigated by Time Resolved Raman Absorption and Photoluminescence Spectroscopy Using Femtosecond and Picosecond Laser Techniques.

    DTIC Science & Technology

    1983-05-05

    if necessary and identify by block number) Picosecond Lasers, Femtosecond Lasers, Ring Cavity, Mode Locked Dye and Glass Lasers, Time-resolved...conductor processes. In addition, we have improved the stabil ity and shortened the pulse duration emitted from a mode - locked glass laser by at...pulse duration emitted from a mode -locked glass laser by at least a factor of two, by using heptamethine pyrylium #5 - a new saturable absorber. In the

  3. Efficacy of femtosecond lasers for application of acupuncture therapy.

    PubMed

    Ohta, Mika; Hosokawa, Yoichiroh; Hatano, Naoya; Sugano, Aki; Ito, Akihiko; Takaoka, Yutaka

    2016-12-10

    Acupuncture treatment utilizes the stimulation of metal acupuncture needles that are manually inserted into a living body. In the last decades, laser light has been used as an alternative to needles to stimulate acupuncture points. We previously reported suppression of myostatin (Mstn) gene expression in skeletal muscle by means of femtosecond laser (FL) irradiation, after electroacupuncture, in which acupuncture needles are stimulated with a low-frequency microcurrent. The purpose of the study here was to investigate the efficacy of FL irradiation in mouse skeletal muscle with regard to protein synthesis. After irradiation of the hindlimbs, we first analyzed Mstn gene expression and Mstn protein level in the skeletal muscle. We then evaluated phosphorylation of the mammalian target of rapamycin (mTOR) and its downstream target 70-kDa ribosomal protein S6 kinase (p70S6K). The results showed that FL irradiation significantly reduced the amount of Mstn protein and enhanced the phosphorylation of p70S6K in of the mTOR/S6K signaling pathway. We suggest that FL irradiation activated the protein synthetic pathway in the skeletal muscle. In conclusion, we determined that FL irradiation can serve as an alternative for acupuncture needles and has the potential of being a new non-invasive acupuncture treatment of skeletal muscle.

  4. Angular resolved photoionization of C60 by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wang, Zhenhua; Suessmann, Frederik; Zherebtsov, Sergey; Skruszewicz, Slawomir; Tiggesbaeumker, Josef; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Cocke, C.; Kling, Matthias; JRM laboratory, Kansas State University Team; University of Rostock Collaboration; Max-Planck InstitutQuantumoptik Collaboration

    2013-03-01

    Neutral C60 molecules are ionized by intense femtosecond laser pulses around the wavelength of 800 nm with pulse durations 4 fs and 30 fs. We measure photoelectrons utilizing velocity-map imaging (VMI) and analyze the photoelectron angular distributions. For particular photoelectron energies, these distributions might reflect the excitation and ionization of superatomic molecular orbitals (SAMOs) which have been theoretically predicted and only recently experimentally observed. SAMOs arise from the hollow core spherical structures of the C60 molecules and differ from Rydberg states of C60 by their potential to exhibit electron density within the C60 cage. We have recorded the carrier envelope phase (CEP) dependence of the electron emission for 4 fs pulses using single shot CEP-tagging. The CEP-dependent asymmetry in the electron emission is observed to strongly depend on the laser polarization. Furthermore, the amplitudes and phases of the CEP-dependent electron emission are analyzed and show that thermal electron emission can be avoided enabling a more direct comparison to theory.

  5. High intensity 30 femtosecond laser pulse interaction with thin foils

    SciTech Connect

    Giulietti, A.; Barbini, A.; Gizzi, L. A.; Chessa, P.; Giulietti, D.; Teychenne, D.

    1998-02-20

    An experimental investigation on the interaction of 30 femtosecond laser pulses with 0.1 and 1.0 {mu}m thick plastic foils has been performed at intensities from 5x10{sup 16} to 5x10{sup 18} W/cm{sup 2}. The interaction physics was found to be definitely different whether the nanosecond low intensity prepulses led to an early plasma formation or not. In the first case high reflectivity and very low transmittivity were observed, together with second and three-half harmonic generation. In absence of precursor plasma, with increasing intensity, reflectivity dropped to low values, while transmittivity increased up to an almost complete transparency. No harmonic generation was observed in this latter condition, while ultra-fast ionisation was inferred by the blue-shift of the transmitted pulse. Finally, intense hard X-ray emission was detected at the maximum laser intensity level. Current theories or numerical simulations cannot explain the observed transparency. A new model of magnetically induced optical transparency (MIOT) is briefly introduced.

  6. Pulse energy dependence of subcellular dissection by femtosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Heisterkamp, A.; Maxwell, I. Z.; Mazur, E.; Underwood, J. M.; Nickerson, J. A.; Kumar, S.; Ingber, D. E.

    2005-01-01

    Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 micrometer away. c2005 Optical Society of America.

  7. Analytical application of femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Melikechi, Noureddine; Markushin, Yuri

    2015-05-01

    We report on significant advantages provided by femtosecond laser-induced breakdown spectroscopy (LIBS) for analytical applications in fields as diverse as protein characterization and material science. We compare the results of a femto- and nanosecond-laser-induced breakdown spectroscopy analysis of dual-elemental pellets in terms of the shot-to-shot variations of the neutral/ionic emission line intensities. This study is complemented by a numerical model based on two-dimensional random close packing of disks in an enclosed geometry. In addition, we show that LIBS can be used to obtain quantitative identification of the hydrogen composition of bio-macromolecules in a heavy water solution. Finally, we show that simultaneous multi-elemental particle assay analysis combined with LIBS can significantly improve macromolecule detectability up to near single molecule per particle efficiency. Research was supported by grants from the National Science Foundation Centers of Research Excellence in Science and Technology (0630388), National Aeronautics and Space Administration (NX09AU90A). Our gratitude to Dr. D. Connolly, Fox Chase Cancer Center.

  8. Thermal melting and ablation of silicon by femtosecond laser radiation

    SciTech Connect

    Ionin, A. A.; Kudryashov, S. I. Seleznev, L. V.; Sinitsyn, D. V.; Bunkin, A. F.; Lednev, V. N.; Pershin, S. M.

    2013-03-15

    The space-time dynamics of thermal melting, subsurface cavitation, spallative ablation, and fragmentation ablation of the silicon surface excited by single IR femtosecond laser pulses is studied by timeresolved optical reflection microscopy. This dynamics is revealed by monitoring picosecond and (sub)nanosecond oscillations of probe pulse reflection, which is modulated by picosecond acoustic reverberations in the dynamically growing surface melt subjected to ablation and having another acoustic impedance, and by optical interference between the probe pulse replicas reflected by the spalled layer surface and the layer retained on the target surface. The acoustic reverberation periods change during the growth and ablation of the surface melt film, which makes it possible to quantitatively estimate the contributions of these processes to the thermal dynamics of the material surface. The results on the thermal dynamics of laser excitation are supported by dynamic measurements of the ablation parameters using noncontact ultrasonic diagnostics, scanning electron microscopy, atomic force microscopy, and optical interference microscopy of the modified regions appearing on the silicon surface after ablation.

  9. Influence of substrate heating on hole geometry and spatter area in femtosecond laser drilling of silicon

    NASA Astrophysics Data System (ADS)

    Jiao, L. S.; Moon, S. K.; Ng, E. Y. K.; Zheng, H. Y.; Son, H. S.

    2014-05-01

    The objective of this research is to evaluate the effects of the hole geometry and the spatter area around the drilled hole by femtosecond laser deep drilling on silicon with various temperatures. Deep through holes were produced on single crystal silicon wafer femtosecond laser at elevated temperatures ranging from 300 K to 873 K in a step of 100 K. The laser drilling efficiency is increased by 56% when the temperature is elevated from 300 K to 873 K. The spatter area is found to continuously decrease with increasing substrate temperature. The reason for such changes is discussed based on the enhanced laser energy absorption at the elevated temperature.

  10. FAST TRACK COMMUNICATION: Inactivation of viruses with a very low power visible femtosecond laser

    NASA Astrophysics Data System (ADS)

    Tsen, K. T.; Tsen, Shaw-Wei D.; Chang, Chih-Long; Hung, Chien-Fu; Wu, T.-C.; Kiang, Juliann G.

    2007-08-01

    We demonstrate for the first time that, by using a visible femtosecond laser, it is effective to inactivate viruses such as bacteriophage M13 through impulsive stimulated Raman scattering. By using a very low power visible femtosecond laser having a wavelength of 425 nm and a pulse width of 100 fs, we show that M13 phages were inactivated when the laser power density was greater than or equal to 50 MW cm-2. The inactivation of M13 phages was determined by plaque counts and depended on the pulse width as well as power density of the excitation laser.

  11. Fabrication of High-effective Silicon Diffractive Optics for the Terahertz Range by Femtosecond Laser Ablation

    NASA Astrophysics Data System (ADS)

    Pavelyev, V. S.; Komlenok, M. S.; Volodkin, B. O.; Knyazev, B. A.; Kononenko, T. V.; Konov, V. I.; Soifer, V. A.; Choporova, Yu. Yu.

    Comparison of the two laser sources (UV nanosecond and IR femtosecond) used for the formation of micro-relief at the silicon surface showed the advantage of the second one. A four-level silicon diffractive THz Fresnel lens has been fabricated by laser ablation at high repetition rate (f = 200 kHz) of femtosecond Yb:YAG laser. Features of the lens were investigated in the beam of the Novosibirsk free electron laser at the wavelength of 141 μm. Detailed results of investigation of fabricated lens micro-relief are presented. The measured diffractive efficiency of the lens is in good agreement with the theoretical prediction.

  12. Modeling crater formation in femtosecond-pulse laser damage from basic principles.

    PubMed

    Mitchell, Robert A; Schumacher, Douglass W; Chowdhury, Enam A

    2015-05-15

    We present the first fundamental simulation method for the determination of crater morphology due to femtosecond-pulse laser damage. To this end we have adapted the particle-in-cell (PIC) method commonly used in plasma physics for use in the study of laser damage and developed the first implementation of a pair potential for PIC codes. We find that the PIC method is a complementary approach to modeling laser damage, bridging the gap between fully ab-initio molecular dynamics approaches and empirical models. We demonstrate our method by modeling a femtosecond-pulse laser incident on a flat copper slab for a range of intensities.

  13. Photofragmentation of colloidal solutions of gold nanoparticles under femtosecond laser pulses in IR and visible ranges

    SciTech Connect

    Danilov, P A; Zayarnyi, D A; Ionin, A A; Kudryashov, S I; Makarov, S V; Rudenko, A A; Saraeva, I N; Yurovskikh, V I; Lednev, V N; Pershin, S M

    2015-05-31

    The specific features of photofragmentation of sols of gold nanoparticles under focused femtosecond laser pulses in IR (1030 nm) and visible (515 nm) ranges is experimentally investigated. A high photofragmentation efficiency of nanoparticles in the waist of a pulsed laser beam in the visible range (at moderate radiation scattering) is demonstrated; this efficiency is related to the excitation of plasmon resonance in nanoparticles on the blue shoulder of its spectrum, in contrast to the regime of very weak photofragmentation in an IR-laser field of comparable intensity. Possible mechanisms of femtosecond laser photofragmentation of gold nanoparticles are discussed. (extreme light fields and their applications)

  14. Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing.

    PubMed

    Okhrimchuk, A G; Shestakov, A V; Khrushchev, I; Mitchell, J

    2005-09-01

    Depressed cladding waveguides have been formed in laser crystals by a tightly focused beam of a femtosecond laser. A laser based on a depressed cladding waveguide in a neodymium-doped YAG crystal has been demonstrated for what is believed to be the first time.

  15. Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique

    SciTech Connect

    Moon, H. S.; Kim, E. B.; Park, S. E.; Park, C. Y.

    2006-10-30

    The authors have demonstrated the selection and the amplification of the components of an optical frequency comb using a femtosecond laser injectionlocking technique. The author used a mode-locked femtosecond Ti:sapphire laser as the master laser and a single-mode diode laser as the slave laser. The femtosecond laser injection-locking technique was applied to a filter for mode selection of the optical frequency comb and an amplifier for amplification of the selected mode. The authors could obtain the laser source selected only the desired mode of the optical frequency comb and amplified the power of the selected modes several thousand times.

  16. Influence of external cooling on the femtosecond laser ablation of dentin.

    PubMed

    Le, Q T; Vilar, R; Bertrand, C

    2017-07-11

    In the present work, the influence of external cooling on the temperature rise in the tooth pulpal chamber during femtosecond laser ablation was investigated. The influence of the cooling method on the morphology and constitution of the laser-treated surfaces was studied as well. The ablation experiments were performed on dentin specimens using an Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs, 1030 nm). Cavities were created by scanning the specimens at a velocity of 5 mm/s while pulsing the stationary laser beam at 1 kHz and with fluences in the range of 2-14 J/cm(2). The experiments were performed in air and with surface cooling by a lateral air jet and by a combination of an air jet and water irrigation. The temperature in the pulpal chamber of the tooth was measured during the laser experiments. The ablation surfaces were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The temperature rise reached 17.5 °C for the treatments performed with 14 J/cm(2) and without cooling, which was reduced to 10.8 ± 1.0 and 6.6 ± 2.3 °C with forced air cooling and water cooling, respectively, without significant reduction of the ablation rate. The ablation surfaces were covered by ablation debris and resolidified droplets containing mainly amorphous calcium phosphate, but the amount of redeposited debris was much lower for the water-cooled specimens. The redeposited debris could be removed by ultrasonication, revealing that the structure and constitution of the tissue remained essentially unaltered. The present results show that water cooling is mandatory for the femtosecond laser treatment of dentin, in particular, when high fluences and high pulse repetition rates are used to achieve high material removal rates.

  17. A precise length etalon generator controlled by femtosecond mode-locked laser

    NASA Astrophysics Data System (ADS)

    Šmid, Radek; Čip, Ondřej; Lazar, Josef

    2007-09-01

    The progress in the field of optical frequency standards is oriented to femtosecond mode-locked lasers stabilized by technique of the optical frequency synthesis. Such a laser produces a supercontinuum light, which is composed of a cluster of coherent frequency components in certain interval of wavelengths. A value of the repetition rate of femtosecond pulses determines (in the frequency domain) spacing of these coherent components. If we control the mode-locked laser by means of i.e. atomic clocks we ensure frequency of these components very stable. With respect to definition of SI unit "one meter" on basis of speed of light the stabilized mode-locked laser can be used for implementation of this definition by non-traditional way. In the work we present our proposal of a system, which converts excellent frequency stability of components generated by the mode-locked laser to a net of discrete absolute lengths represented by a distance of two mirrors of an optical resonator. On basis of theory, the optical resonator with a cavity length has a periodic frequency spectrum Similarly the frequency of i-th comb component could be written as: f i = f ceo + i f rep, where f ceo is the comb offset frequency and f rep is the repetition rate. For the simplicity we presume the offset frequency f ceo equals to zero. If the supercontinuum beam of the mode-locked laser illuminates the resonator and at the same time the cavity length L is adjusted to length L p = c / (2 p f rep ) then both spectra fit. The symbol 'p' is an integer value. It produces intensity maximum in the output of the cavity, which is detected by a photodetector and locked in the servo-loop. For absolute discrete values of cavity lengths L p that well satisfy the condition above we obtain precise etalons of length.

  18. Two-photon excitation of dyes in a polymer matrix by femtosecond pulses from a Ti:sapphire laser

    SciTech Connect

    Meshalkin, Yu P; Myachin, A Yu; Bakhareva, S S; Svetlichnyi, Valerii A; Kopylova, T N; Reznichenko, A V; Dolotov, S M; Ponomarenko, E P

    2003-09-30

    Two-photon fluorescence was observed for 18 organic dyes in a polymethyl methacrylate (PMMA) matrix excited by a femtosecond Ti:sapphire laser. The product of the cross section for two-photon absorption by the quantum yield of fluorescence (two-photon fluorescence cross section) is estimated by comparing it with fluorescence of Rhodamine 6G in ethanol. Using this parameter, dyes are selected that exhibit the most intense fluorescence in PMMA and their concentrations in PMMA are optimised. Coumarin and rhodamine dyes in polymer matrices are proposed for using as visualisers of femtosecond radiation of a Ti:sapphire laser and as detectors in self-triggering systems. (active media. lasers)

  19. High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells.

    PubMed

    Yang, Liang; Ji, Shengyun; Xie, Kenan; Du, Wenqiang; Liu, Bingjie; Hu, Yanlei; Li, Jiawen; Zhao, Gang; Wu, Dong; Huang, Wenhao; Liu, Suling; Jiang, Hongyuan; Chu, Jiaru

    2017-04-03

    In this paper, we present a focused femtosecond laser Bessel beam scanning technique for the rapid fabrication of large-area 3D complex microtube arrays. The femtosecond laser beam is converted into several Bessel beams by two-dimensional phase modulation using a spatial light modulator. By scanning the focused Bessel beam along a designed route, microtubes with variable size and flexible geometry are rapidly fabricated by two-photon polymerization. The fabrication time is reduced by two orders of magnitude in comparison with conventional point-to-point scanning. Moreover, we construct an effective microoperating system for single cell manipulation using microtube arrays, and demonstrate its use in the capture, transfer, and release of embryonic fibroblast mouse cells as well as human breast cancer cells. The new fabrication strategy provides a novel method for the rapid fabrication of functional devices using a flexibly tailored laser beam.

  20. Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Goswami, Tapas; Karthick Kumar, S. K.; Dutta, Aveek; Goswami, Debabrata

    2009-06-01

    We present the effect of chirping a femtosecond laser pulse on the fragmentation of n-propyl benzene. An enhancement of an order of magnitude for the relative yields of C3H 3 + and C5H 5 + in the case of negatively chirped pulses and C6H 5 + in the case of positively chirped pulses with respect to the transform-limited pulse indicates that in some fragmentation channel, coherence of the laser field plays an important role. For the relative yield of all other heavier fragment ions, resulting from the interaction of the intense laser field with the molecule, there is no such enhancement effect with the sign of chirp, within experimental errors. The importance of the laser phase is further reinforced through a direct comparison of the fragmentation results with the second harmonic of the chirped laser pulse with identical bandwidth.

  1. Control of laser induced molecular fragmentation of n-propyl benzene using chirped femtosecond laser pulses.

    PubMed

    Goswami, Tapas; Karthick Kumar, S K; Dutta, Aveek; Goswami, Debabrata

    2009-06-12

    We present the effect of chirping a femtosecond laser pulse on the fragmentation of n-propyl benzene. An enhancement of an order of magnitude for the relative yields of C3H3+ and C5H5+ in the case of negatively chirped pulses and C6H5+ in the case of positively chirped pulses with respect to the transform-limited pulse indicates that in some fragmentation channel, coherence of the laser field plays an important role. For the relative yield of all other heavier fragment ions, resulting from the interaction of the intense laser field with the molecule, there is no such enhancement effect with the sign of chirp, within experimental errors. The importance of the laser phase is further reinforced through a direct comparison of the fragmentation results with the second harmonic of the chirped laser pulse with identical bandwidth.

  2. Diffraction efficiency enhancement of femtosecond laser-engraved diffraction gratings due to CO2 laser polishing

    NASA Astrophysics Data System (ADS)

    Choi, Hun-Kook; Jung, Deok; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Yong-Tak; Kim, Jin-Tae; Ahsan, Md. Shamim

    2014-11-01

    This research demonstrates laser-assisted fabrication of high-efficiency diffraction gratings in fused-silica glass samples. Initially, femtosecond laser pulses are used to engrave diffraction gratings on the glass surfaces. Then, these micro-patterned glass samples undergo CO2 laser polishing process. unpolished diffraction gratings encoded in the glass samples show an overall diffraction efficiency of 18.1%. diffraction gratings imprinted on the glass samples and then polished four times by using a CO2 laser beam attain a diffraction efficiency of 32.7%. We also investigate the diffraction patterns of the diffraction gratings encoded on fused-silica glass surfaces. The proposed CO2 laser polishing technique shows great potential in patterning high-efficiency diffraction gratings on the surfaces of various transparent materials.

  3. Femtosecond and excimer laser-assisted endothelial keratoplasty (FELEK): a new technique of endothelial transplantation.

    PubMed

    Trinh, L; Saubaméa, B; Auclin, F; Denoyer, A; Lai-Kuen, R; El Hamdaoui, M; Labbé, A; Despiau, M-C; Brignole-Baudouin, F; Baudouin, C

    2014-03-01

    To describe a new technique of endothelial keratoplasty (EK) that improves the quality of lamellar dissection of donor cornea. We compared four techniques of donor cornea preparation for lamellar dissection on 8 donor corneas: mechanical dissection with a microkeratome, a single femtosecond laser lamellar cut, a double femtosecond laser lamellar cut and combined femtosecond laser lamellar dissection with excimer laser surface photoablation. The quality of the donor cornea interface was assessed and compared using scanning electron microscopy (SEM), and the most satisfactory technique was employed for EK on three patients. The postoperative anatomic results were analyzed with anterior segment spectral-domain optical coherence tomography (SD-OCT) and in vivo confocal microscopy (IVCM). The smoothest stromal interface was observed on SEM with the combined use of femtosecond laser dissection and excimer photoablation. The surgical procedures performed with donor cornea prepared by a combination of femtosecond and excimer lasers resulted in clear corneas after 1 month. SD-OCT showed good attachment of the endothelial graft and a hyperreflective interface. On IVCM, subepithelial haze, honeycomb-like activated keratocytes and needle-shaped particles were visible in the recipient corneal stroma as well as numerous hyperreflective particles on the donor-recipient interface. A new technique, femtosecond and excimer laser-assisted endothelial keratoplasty (FELEK), which refines the current limitations observed in Descemet-stripping automated endothelial keratoplasty (DSAEK), is described. Femtosecond laser dissection provides a thin and reproducible endothelial graft cut with a high level of safety and accuracy, while excimer photoablation yields a smooth, high-quality interface. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Nanoscale helium ion microscopic analysis of collagen fibrillar changes following femtosecond laser dissection of human cornea.

    PubMed

    Riau, Andri K; Poh, Rebekah; Pickard, Daniel S; Park, Chris H J; Chaurasia, Shyam S; Mehta, Jodhbir S

    2014-08-01

    Over the last decade, femtosecond lasers have emerged as an important tool to perform accurate and fine dissections with minimal collateral damage in biological tissue. The most common surgical procedure in medicine utilizing femtosecond laser is LASIK. During the femtosecond laser dissection process, the corneal collagen fibers inevitably undergo biomechanical and thermal changes on a sub-micro- or even a nanoscale level, which can potentially lead to post-surgical complications. In this study, we utilized helium ion microscopy, complemented with transmission electron microscopy to examine the femtosecond laser-induced collagen fibrillar damage in ex vivo human corneas. We found that the biomechanical damage induced by laser etching, generation of tissue bridges, and expansion of cavitation bubble and its subsequent collapse, created distortion to the surrounding collagen lamellae. Femtosecond laser-induced thermal damage was characterized by collapsed collagen lamellae, loss of collagen banding, collagen coiling, and presence of spherical debris. Our findings have shown the ability of helium ion microscopy to provide high resolution images with unprecedented detail of nanoscale fibrillar morphological changes in order to assess a tissue damage, which could not be resolved by conventional scanning electron microscopy previously. This imaging technology has also given us a better understanding of the tissue-laser interactions in a nano-structural manner and their possible effects on post-operative wound recovery.

  5. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Implantation of high-energy ions produced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Volkov, Roman V.; Golishnikov, D. M.; Gordienko, Vyacheslav M.; Savel'ev, Andrei B.; Chernysh, V. S.

    2005-01-01

    Germanium ions of an expanding plasma were implanted in a silicon collector. The plasma was produced by a femtosecond laser pulse with an intensity of ~1015 W cm-2 at the surface of the solid-state target. A technique was proposed for determining the energy characteristics of the ion component of the laser plasma from the density profile of the ions implanted in the substrate.

  6. Femtosecond laser 3D nanofabrication in glass: enabling direct write of integrated micro/nanofluidic chips

    NASA Astrophysics Data System (ADS)

    Cheng, Ya; Liao, Yang; Sugioka, Koji

    2014-03-01

    The creation of complex three-dimensional (3D) fluidic systems composed of hollow micro- and nanostructures embedded in transparent substrates has attracted significant attention from both scientific and applied research communities. However, it is by now still a formidable challenge to build 3D micro- and nanofluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. As a direct and maskless fabrication technique, femtosecond laser micromachining provides a straightforward approach for high-precision spatial-selective modification inside transparent materials through nonlinear optical absorption. Here, we demonstrate rapid fabrication of high-aspect-ratio micro- and/or nanofluidic structures with various 3D configurations in glass substrates by femtosecond laser direct writing. Based on this approach, we demonstrate several functional micro- and nanofluidic devices including a 3D passive microfluidic mixer, a capillary electrophoresis (CE) analysis chip, and an integrated micro-nanofluidic system for single DNA analysis. This technology offers new opportunities to develop novel 3D micro-nanofluidic systems for a variety of lab-on-a-chip applications.

  7. Photomechanical ablation of biological tissue induced by focused femtosecond laser and its application for acupuncture

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh; Ohta, Mika; Ito, Akihiko; Takaoka, Yutaka

    2013-03-01

    Photomechanical laser ablation due to focused femtosecond laser irradiation was induced on the hind legs of living mice, and its clinical influence on muscle cell proliferation was investigated via histological examination and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis to examine the expression of the gene encoding myostatin, which is a growth repressor in muscle satellite cells. The histological examination suggested that damage of the tissue due to the femtosecond laser irradiation was localized on epidermis and dermis and hardly induced in the muscle tissue below. On the other hand, gene expression of the myostatin of muscle tissue after laser irradiation was suppressed. The suppression of myostatin expression facilitates the proliferation of muscle cells, because myostatin is a growth repressor in muscle satellite cells. On the basis of these results, we recognize the potential of the femtosecond laser as a tool for noncontact, high-throughput acupuncture in the treatment of muscle disease.

  8. On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing.

    PubMed

    Lin, Jintian; Yu, Shangjie; Ma, Yaoguang; Fang, Wei; He, Fei; Qiao, Lingling; Tong, Limin; Cheng, Ya; Xu, Zhizhan

    2012-04-23

    We report on the fabrication of three-dimensional (3D) high-Q whispering gallery microcavities on a fused silica chip by femtosecond laser microfabriction, enabled by the 3D nature of femtosecond laser direct writing. The processing mainly consists of formation of freestanding microdisks by femtosecond laser direct writing and subsequent wet chemical etching. CO(2) laser annealing is followed to smooth the microcavity surface. Microcavities with arbitrary tilting angle, lateral and vertical positioning are demonstrated, and the quality (Q)-factor of a typical microcavity is measured to be up to 1.07 × 10(6), which is currently limited by the low spatial resolution of the motion stage used during the laser patterning and can be improved with motion stages of higher resolutions.

  9. Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing

    PubMed Central

    Peng, Ya-Pei; Zou, Xiao; Bai, Zhengyuan; Leng, Yuxin; Jiang, Benxue; Jiang, Xiongwei; Zhang, Long

    2015-01-01

    The operation of a mid-infrared laser at 2244 nm in a Cr:ZnS polycrystalline channel waveguide fabricated using direct femtosecond laser writing with a helical movement technique is demonstrated. A maximum power output of 78 mW and an optical-to-optical slope efficiency of 8.6% are achieved. The compact waveguide structure with 2 mm length was obtained through direct femtosecond laser writing, which was moved on a helical trajectory along the laser medium axis and parallel to the writing direction. PMID:26692268

  10. Graphene for improved femtosecond laser based pluripotent stem cell transfection.

    PubMed

    Mthunzi, Patience; He, Kuang; Ngcobo, Sandile; Khanyile, Thulile; Warner, Jamie H

    2014-05-01

    Pluripotent stem cells are hugely attractive in the tissue engineering research field as they can self-renew and be selectively differentiated into various cell types. For stem cell and tissue engineering research it is important to develop new, biocompatible scaffold materials and graphene has emerged as a promising material in this area as it does not compromise cell proliferation and accelerates specific cell differentiation. Previous studies have shown a non-invasive optical technique for mouse embryonic stem (mES) cell differentiation and transfection using femtosecond (fs) laser pulses. To investigate cellular responses to the influence of graphene and laser irradiation, here we present for the first time a study of mES cell fs laser transfection on graphene coated substrates. First we studied the impact of graphene on Chinese Hamster Ovary (CHO-K1) cell viability and cell cytotoxicity in the absence of laser exposure. These were tested via evaluating the mitochondrial activity through adenosine triphosphates (ATP) luminescence and breakages on the cell plasma membrane assessed using cytosolic lactate dehydrogenase (LDH) screening. Secondly, the effects of fs laser irradiation on cell viability and cytotoxicity at 1064 and 532 nm for cells plated and grown on graphene and pure glass were assessed. Finally, optical transfection of CHO-K1 and mES cells was performed on graphene coated versus plain glass substrates. Our results show graphene stimulated cell viability whilst triggering a mild release of intracellular LDH. We also observed that compared to pure glass substrates; laser irradiation at 1064 nm on graphene plates was less cytotoxic. Finally, in mES cells efficient optical transfection at 1064 (82%) and 532 (25%) nm was obtained due to the presence of a graphene support as compared to pristine glass. Here we hypothesize an up-regulation of cell adhesion promoting peptides or laminin-related receptors of the extracellular matrix (ECM) in cell samples

  11. Tissue Imaging and Multidimensional Spectroscopy Using Shaped Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Warren, Warren

    2007-03-01

    We use rapidly updatable, femtosecond pulse shaping and multidimensional spectroscopy to make new targets accessible by nonlinear optical imaging. For example, we observe two-photon absorption (TPA), sum frequency absorption (SFA) and self phase modulation (SPM)). Detection of TPA and related effects, such as the local quantum yield (fluorescence/absorption) permits direct observation of important endogenous molecular markers which are invisible in multiphoton fluorescence microscopy; it also permits excitation in the long-wavelength water windows which have significantly reduced scattering, but little endogenous two-photon fluorescence. The fundamental problem is that at the powers one might reasonably apply to tissue (e.g. 5 mW from a modelocked laser) typically 10-6of the light is removed by TPA, with the rest lost to scattering and linear absorption; and SPM does not broaden the spectrum in the dramatic way associated with (for example) continuum generation. A variety of solutions to these problems using femtosecond pulse shaping will be presented. The simplest solution, which uses amplitude modulation of a fs pulse train, has led to high quality microscopic images of the melanin distribution in melanotic lesions, and has led to discrimination between the different types of melanin in melanosomes. Shaping individual pulses instead of the envelope permits high sensitivity detection of both SPM and TPA via spectral hole refilling combined with heterodyne detection. We manufacture laser pulses with a narrow (ca. 3 nm) spectral hole, which can only be refilled by nonlinear processes; TPA causes refilling 180 degrees out of phase with the wings of the pulse, SPM is 90 degrees out of phase. By inserting a phase-coherent pedestal in the hole, then repeating the experiment with a different phase on a timescale rapid compared to any physiological processes, we can extract the phase of the refilling, hence the relative contributions of SPM and TPA. This method can

  12. All-laser bladeless cataract surgery, combining femtosecond and nanosecond lasers: a novel surgical technique

    PubMed Central

    Kanellopoulos, Anastasios John

    2013-01-01

    Purpose To report the safety and efficacy of a novel surgical technique using two lasers in cataract surgery. Methods In this contralateral eye report, a 57-year-old female underwent cataract extraction. Two laser devices and a standard phacoemulsification, platform were used to conduct the procedures. First, a femtosecond laser was used to perform the corneal incision, capsulorhexis, and initial lens fragmentation in each eye. Following this, a nanosecond laser was used to enter the 2.8 mm incision, uni-axially, and complete the viscoelastic-divided nucleus fragment emulsification and removal in one eye. Standard phacoemulsification was used in the completion of the other eye. Posterior chamber foldable acrylic intraocular lenses were implanted in both cases. We evaluated perioperative acuity, refraction, keratometry, Scheimpflug tomography, intraocular pressure, endothelial cell counts, and total energy used with each laser in each case. Results Corrected distance visual acuity improved from preoperative 20/60 and 20/70 to postoperative 20/20 in both eyes, with 6-month follow-up. In the right eye, the total intraocular energy used was 2 J by the femtosecond laser and 6 J by the phacoemulsification device. In the left eye, the nanosecond laser utilized the same energy of 2 J and the nanosecond laser 2.4 J (80 pulses of 30 mJ each). There were no other differences noted in intraocular pressure or endothelial cell counts. Conclusion In this report, we introduce a bladeless all-laser cataract surgery extraction alternative technique, with several potential novel advantages: enhanced incision and capsulorhexis reproducibility, reduction in intraocular energy used, and elimination of the potential of thermal corneal injury. PMID:24049439

  13. All-laser bladeless cataract surgery, combining femtosecond and nanosecond lasers: a novel surgical technique.

    PubMed

    Kanellopoulos, Anastasios John

    2013-01-01

    To report the safety and efficacy of a novel surgical technique using two lasers in cataract surgery. In this contralateral eye report, a 57-year-old female underwent cataract extraction. Two laser devices and a standard phacoemulsification, platform were used to conduct the procedures. First, a femtosecond laser was used to perform the corneal incision, capsulorhexis, and initial lens fragmentation in each eye. Following this, a nanosecond laser was used to enter the 2.8 mm incision, uni-axially, and complete the viscoelastic-divided nucleus fragment emulsification and removal in one eye. Standard phacoemulsification was used in the completion of the other eye. Posterior chamber foldable acrylic intraocular lenses were implanted in both cases. We evaluated perioperative acuity, refraction, keratometry, Scheimpflug tomography, intraocular pressure, endothelial cell counts, and total energy used with each laser in each case. Corrected distance visual acuity improved from preoperative 20/60 and 20/70 to postoperative 20/20 in both eyes, with 6-month follow-up. In the right eye, the total intraocular energy used was 2 J by the femtosecond laser and 6 J by the phacoemulsification device. In the left eye, the nanosecond laser utilized the same energy of 2 J and the nanosecond laser 2.4 J (80 pulses of 30 mJ each). There were no other differences noted in intraocular pressure or endothelial cell counts. In this report, we introduce a bladeless all-laser cataract surgery extraction alternative technique, with several potential novel advantages: enhanced incision and capsulorhexis reproducibility, reduction in intraocular energy used, and elimination of the potential of thermal corneal injury.

  14. Inhibition of Escherichia coli respiratory enzymes by short visible femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Lu, Chieh-Han; Lin, Kung-Hsuan; Hsu, Yung-Yuan; Tsen, Kong-Thon; Kuan, Yung-Shu

    2014-08-01

    A visible femtosecond laser is shown to be capable of selectively inactivating a wide spectrum of microorganisms in a wavelength and pulse width dependent manner. However, the mechanism of how a visible femtosecond laser affects the viability of different microorganisms is still elusive. In this paper, the cellular surface properties, membrane integrity and metabolic rate of Escherichia coli (E. coli) irradiated by a visible femtosecond laser (λ = 415 nm, pulse width = 100 fs) with different exposure times were investigated. Our results showed that femtosecond laser treatment for 60 min led to cytoplasmic leakage, protein aggregation and alternation of the physical properties of the E. coli cell membrane. In comparison, a 10 min exposure of bacteria to femtosecond laser irradiation induced an immediate reduction of 75% in the glucose-dependent respiratory rate, while the cytoplasmic leakage was not detected. Results from enzymatic assays showed that oxidases and dehydrogenases involved in the E. coli respiratory chain exhibited divergent susceptibility after laser irradiation. This early commencement of respiratory inhibition after a short irradiation is presumed to have a dominant effect on the early stage of bacteria inactivation.

  15. Evaluation of the analytical capability of NIR femtosecond laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Hirata, Takafumi; Kon, Yoshiaki

    2008-03-01

    A laser ablation-inductively coupled plasma-mass spectrometric (LA-ICPMS) technique utilizing a titanium-sapphire (TiS) femtosecond laser (fs-laser) has been developed for elemental and isotopic analysis. The signal intensity profile, depth of the ablation pit and level of elemental fractionation were investigated in order to evaluate the analytical capability of the present fs-laser ablation-ICPMS technique. The signal intensity profile of (57)Fe, obtained from iron sulfide (FeS(2)), demonstrated that the resulting signal intensity of (57)Fe achieved by the fs-laser ablation was almost 4-times higher than that obtained by ArF excimer laser ablation under a similar energy fluence (5 J/cm(2)). In fs-laser ablation, there is no significant difference in a depth of the ablation pit between glass and zircon material, while in ArF laser ablation, the resulting crater depth on the zircon crystal was almost half the level than that obtained for glass material. Both the thermal-induced and particle size-related elemental fractionations, which have been thought to be main sources of analytical error in the LA-ICPMS analysis, were measured on a Harvard 91500 zircon crystal. The resulting fractionation indexes on the (206)Pb/(238)U (f(Pb/U)) and (238)U/(232)Th (f(U/Th)) ratios obtained by the present fs-laser ablation system were significantly smaller than those obtained by a conventional ArF excimer laser ablation system, demonstrative of smaller elemental fractionation. Using the present fs-laser ablation technique, the time profile of the signal intensity of (56)Fe and the isotopic ratios ((57)Fe/(54)Fe and (56)Fe/(54)Fe) have been measured on a natural pyrite (FeS(2)) sample. Repeatability in signal intensity of (56)Fe achieved by the fs-laser ablation system was significantly better than that obtained by ArF excimer laser ablation. Moreover, the resulting precision in (57)Fe/(54)Fe and (56)Fe/(54)Fe ratio measurements could be improved by the fs-laser ablation system

  16. Guiding of Long-Distance Electric Discharges by Combined Femtosecond and Nanosecond Pulses Emitted by Hybrid KrF Laser System

    DTIC Science & Technology

    2014-01-30

    66 8.1. Pilot experiments on UV laser-induced air discharge in DC electric field 66 8.2. Application of plasma...up to 300 mm in diameter, a wavefront correction system is developed and tested. The system consists of two basic elements – the wavefront sensor ...with a matching telescope and the unimorph deformable mirror with high UV reflectivity. The sensor is developed according to Shack-Hartmann scheme and

  17. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: fabrication, fluorescence imaging and laser performance.

    PubMed

    Liu, Hongliang; Jia, Yuechen; Vázquez de Aldana, Javier Rodríguez; Jaque, Daniel; Chen, Feng

    2012-08-13

    We report on the fabrication of depressed cladding waveguide lasers in Nd:YAG (neodymium doped yttrium aluminum garnet, Nd:Y3Al5O12) ceramics microstructured by femtosecond laser pulses. Full control over the confined light spatial distribution is demonstrated by the fabrication of high contrast waveguides with hexagonal, circular and trapezoidal configurations. The confocal fluorescence measurements of the waveguides reveal that the original luminescence features of Nd3+ ions are well-preserved in the waveguide regions. Under optical pump at 808 nm, cladding waveguides showed continuous wave efficient laser oscillation. The maximum output power obtained at 1064.5 nm is ~181 mW with a slope efficiency as high as 44%, which suggests that the fabricated Nd:YAG ceramic waveguides are promising candidates for efficient integrated laser sources.

  18. Ordered horizontal Sb2Te3 nanowires induced by femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Li, Yuwei; Stoica, Vladimir A.; Sun, Kai; Liu, Wei; Endicott, Lynn; Walrath, Jenna C.; Chang, Alex S.; Lin, Yen-Hsiang; Pipe, Kevin P.; Goldman, Rachel S.; Uher, Ctirad; Clarke, Roy

    2014-11-01

    Nanowires are of intense interest on account of their ability to confine electronic and phononic excitations in narrow channels, leading to unique vibronic and optoelectronic properties. Most systems reported to date exhibit nanowire axes perpendicular to the substrate surface, while for many applications (e.g., photodetectors and sensors), a parallel orientation may be advantageous. Here, we report the formation of in-plane Sb2Te3 nanowires using femtosecond laser irradiation. High-resolution scanning transmission electron microscopy imaging and element mapping reveal that an interesting laser-driven anion exchange mechanism is responsible for the nanowire formation. This development points the way to the scalable production of a distinct class of nanowire materials with in-plane geometry.

  19. Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation

    SciTech Connect

    Komlenok, M S; Kononenko, T V; Kononenko, V V; Konov, V I; Volodkin, B O; Tukmakov, K N; Knyazev, B A; Choporova, Yu Yu; Soifer, V A; Pavel'ev, V S

    2015-10-31

    The possibility of fabricating a silicon diffractive fourlevel THz Fresnel lens by laser ablation is studied. For a microrelief to be formed on the sample surface, use is made of a femtosecond Yb : YAG laser with a high pulse repetition rate (f = 200 kHz). Characteristics of the diffractive optical element are investigated in the beam of a 141-mm free-electron laser. The measured diffraction efficiency of the lens is in good agreement with the theoretical estimate. (laser technologies)

  20. Femtosecond laser field induced modifications of electron-transfer processes in Ne{sup +}-He collisions

    SciTech Connect

    Lu Zhenzhong; Chen Deying; Fan Rongwei; Xia Yuanqin

    2012-01-02

    We demonstrate the presence of femtosecond laser induced charge transfer in Ne{sup +}-He collisions. Electron transfer in ion-atom collisions is considerably modified when the collision is embedded in a strong laser field with the laser intensity of {approx}10{sup 15} W/cm{sup 2}. The observed anisotropy of the He{sup +} angular distribution confirms the prediction of early work that the capture probability varies significantly with the laser polarization angle.