Science.gov

Sample records for femtosecond pump-probe photoionization

  1. Femtosecond Pump-Probe Microspectroscopy of Single Perylene Nanoparticles.

    PubMed

    Ishibashi, Yukihide; Asahi, Tsuyoshi

    2016-08-01

    We have developed a femtosecond pump-probe light scattering microspectroscopic system in which the output of a femtosecond Ti:sapphire oscillator (1 W, 82 MHz) was used as a light source; the pump light is the second harmonics (395 nm) of the laser output, and the probe light is a femtosecond white-light continuum (490-900 nm) generated with a photonic crystal fiber. Detection of the backscattered light from single nanoparticle on a glass substrate allowed us to obtain higher gain of the transient signals by ∼20 times in comparison with the conventional transmittance-mode experiment. This high-sensitivity of the backscattering detection makes it possible to examine ultrafast relaxation dynamics of excited states in organic nanoparticles, which, in general, are lower photodurability than the inorganic one. We applied the system to single nanocrystals of α-form perylene and then succeeded in direct observation of the excimer formation dynamics on a picosecond time scale. Single nanoparticle measurements for the perylene nanocrystals having a size range of 100 to 500 nm suggested that the excimer formation time became short from 2 ps to <0.3 ps for decreasing of the size. PMID:27420175

  2. Nonlinear femtosecond pump-probe spectroscopy using a power-encoded soliton delay line.

    PubMed

    Saint-Jalm, Sarah; Andresen, Esben Ravn; Bendahmane, Abdelkrim; Kudlinski, Alexandre; Rigneault, Hervé

    2016-01-01

    We show femtosecond time-resolved nonlinear pump-probe spectroscopy using a fiber soliton as the probe pulse. Furthermore, we exploit soliton dynamics to record an entire transient trace with a power-encoded delay sweep. The power-encoded delay line takes advantage of the dependency of the soliton trajectory in the (λ,z) space upon input power; the difference in accumulated group delay between trajectories converts a fast power sweep into a fast delay sweep. We demonstrate the concept by performing transient absorption spectroscopy in a test sample and validate it against a conventional pump-probe setup.

  3. Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork

    PubMed Central

    Villafana, Tana Elizabeth; Brown, William P.; Delaney, John K.; Palmer, Michael; Warren, Warren S.; Fischer, Martin C.

    2014-01-01

    The layering structure of a painting contains a wealth of information about the artist's choice of materials and working methods, but currently, no 3D noninvasive method exists to replace the taking of small paint samples in the study of the stratigraphy. Here, we adapt femtosecond pump-probe imaging, previously shown in tissue, to the case of the color palette in paintings, where chromophores have much greater variety. We show that combining the contrasts of multispectral and multidelay pump-probe spectroscopy permits nondestructive 3D imaging of paintings with molecular and structural contrast, even for pigments with linear absorption spectra that are broad and relatively featureless. We show virtual cross-sectioning capabilities in mockup paintings, with pigment separation and nondestructive imaging on an intact 14th century painting (The Crucifixion by Puccio Capanna). Our approach makes it possible to extract microscopic information for a broad range of applications to cultural heritage. PMID:24449855

  4. Singlet fission in rubrene single crystal: direct observation by femtosecond pump-probe spectroscopy.

    PubMed

    Ma, Lin; Zhang, Keke; Kloc, Christian; Sun, Handong; Michel-Beyerle, Maria E; Gurzadyan, Gagik G

    2012-06-21

    The excited state dynamics of rubrene in solution and in the single crystal were studied by femtosecond pump-probe spectroscopy under various excitation conditions. Singlet fission was demonstrated to play a predominant role in the excited state relaxation of the rubrene crystal in contrast to rubrene in solution. Upon 500 nm excitation, triplet excitons form on the picosecond time scale via fission from the lowest excited singlet state. Upon 250 nm excitation, fission from upper excited singlet states is observed within 200 fs. PMID:22510785

  5. Femtosecond pump-probe spectroscopy of conjugated polymers: Coherent and sequential contributions

    NASA Astrophysics Data System (ADS)

    Bosma, W. B.; Mukamel, S.; Greene, B. I.; Schmitt-Rink, S.

    1992-04-01

    We report femtosecond pump-probe difference absorption experiments on polydiacetylene-para-toluene sulfonate. Theoretical analysis using a three-mode Brownian oscillator model for the nuclear dynamics reveals spectral diffusion in this conjugated polymer; this effect cannot be accounted for using the optical Bloch equations. Sequential (pump first) time ordering is dominant for resonant excitation, whereas experiments utilizing an off-resonant pump are dominated by nonsequential time orderings of the pump and the probe; the latter represent coherent (Raman-type) processes.

  6. Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics

    DOE PAGES

    Picón, A.; Lehmann, C. S.; Bostedt, C.; Rudenko, A.; Marinelli, A.; Osipov, T.; Rolles, D.; Berrah, N.; Bomme, C.; Bucher, M.; et al

    2016-05-23

    New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Specifically, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. In this paper, we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ionsmore » during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.« less

  7. Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics

    PubMed Central

    Picón, A.; Lehmann, C. S.; Bostedt, C.; Rudenko, A.; Marinelli, A.; Osipov, T.; Rolles, D.; Berrah, N.; Bomme, C.; Bucher, M.; Doumy, G.; Erk, B.; Ferguson, K. R.; Gorkhover, T.; Ho, P. J.; Kanter, E. P.; Krässig, B.; Krzywinski, J.; Lutman, A. A.; March, A. M.; Moonshiram, D.; Ray, D.; Young, L.; Pratt, S. T.; Southworth, S. H.

    2016-01-01

    New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site. PMID:27212390

  8. Investigation of electronically excited indole relaxation dynamics via photoionization and fragmentation pump-probe spectroscopy.

    PubMed

    Godfrey, T J; Yu, Hui; Ullrich, Susanne

    2014-07-28

    The studies herein investigate the involvement of the low-lying (1)La and (1)Lb states with (1)ππ(*) character and the (1)πσ(*) state in the deactivation process of indole following photoexcitation at 201 nm. Three gas-phase, pump-probe spectroscopic techniques are employed: (1) Time-resolved photoelectron spectroscopy (TR-PES), (2) hydrogen atom (H-atom) time-resolved kinetic energy release (TR-KER), and (3) time-resolved ion yield (TR-IY). Each technique provides complementary information specific to the photophysical processes in the indole molecule. In conjunction, a thorough examination of the electronically excited states in the relaxation process, with particular focus on the involvement of the (1)πσ(*) state, is afforded. Through an extensive analysis of the TR-PES data presented here, it is deduced that the initial excitation of the (1)Bb state decays to the (1)La state on a timescale beyond the resolution of the current experimental setup. Relaxation proceeds on the (1)La state with an ultrafast decay constant (<100 femtoseconds (fs)) to the lower-lying (1)Lb state, which is found to possess a relatively long lifetime of 23 ± 5 picoseconds (ps) before regressing to the ground state. These studies also manifest an additional component with a relaxation time of 405 ± 76 fs, which is correlated with activity along the (1)πσ(*) state. TR-KER and TR-IY experiments, both specifically probing (1)πσ(*) dynamics, exhibit similar decay constants, further validating these observations.

  9. Investigation of electronically excited indole relaxation dynamics via photoionization and fragmentation pump-probe spectroscopy

    SciTech Connect

    Godfrey, T. J.; Yu, Hui; Ullrich, Susanne

    2014-07-28

    The studies herein investigate the involvement of the low-lying {sup 1}L{sub a} and {sup 1}L{sub b} states with {sup 1}ππ{sup *} character and the {sup 1}πσ{sup *} state in the deactivation process of indole following photoexcitation at 201 nm. Three gas-phase, pump-probe spectroscopic techniques are employed: (1) Time-resolved photoelectron spectroscopy (TR-PES), (2) hydrogen atom (H-atom) time-resolved kinetic energy release (TR-KER), and (3) time-resolved ion yield (TR-IY). Each technique provides complementary information specific to the photophysical processes in the indole molecule. In conjunction, a thorough examination of the electronically excited states in the relaxation process, with particular focus on the involvement of the {sup 1}πσ{sup *} state, is afforded. Through an extensive analysis of the TR-PES data presented here, it is deduced that the initial excitation of the {sup 1}B{sub b} state decays to the {sup 1}L{sub a} state on a timescale beyond the resolution of the current experimental setup. Relaxation proceeds on the {sup 1}L{sub a} state with an ultrafast decay constant (<100 femtoseconds (fs)) to the lower-lying {sup 1}L{sub b} state, which is found to possess a relatively long lifetime of 23 ± 5 picoseconds (ps) before regressing to the ground state. These studies also manifest an additional component with a relaxation time of 405 ± 76 fs, which is correlated with activity along the {sup 1}πσ{sup *} state. TR-KER and TR-IY experiments, both specifically probing {sup 1}πσ{sup *} dynamics, exhibit similar decay constants, further validating these observations.

  10. 5-Femtosecond Laser-Electron Synchronization for Pump-Probe Crystallography and Diffraction

    NASA Astrophysics Data System (ADS)

    Walbran, Matthew; Gliserin, Alexander; Jung, Kwangyun; Kim, Jungwon; Baum, Peter

    2015-10-01

    For improving the temporal resolution in ultrafast pump-probe electron or x-ray diffraction, we report a laser-electron synchronization concept via direct microwave extraction from the laser frequency comb combined with phase detection by fiber-loop interferometry, in situ drift correction via electron-energy analysis, and laser-electron streaking for final timing metrology. We achieve a laser-electron jitter below 5 fs (rms) integrated between 8 min and Nyquist period (400 ns). Slower drifts are also below 5 fs (rms) after active compensation. This result helps advance femtosecond crystallography with electrons or x rays to the regime of fundamental atomic-scale dynamics and light-matter interaction.

  11. Surface pump-probe femtosecond-laser mass spectrometry: Time-, mass-, and velocity-resolved detection of surface reaction dynamics

    SciTech Connect

    Vaida, Mihai E.; Bernhardt, Thorsten M.

    2010-10-15

    A detailed account of the experimental methodology of surface pump-probe femtosecond-laser mass spectrometry is presented. This recently introduced technique enables the direct time-resolved investigation of surface reaction dynamics by monitoring the mass and the relative velocity of intermediates and products of a photoinduced surface reaction via multiphoton ionization. As a model system, the photodissociation dynamics of methyl iodide adsorbed at submonolayer coverage on magnesia ultrathin films is investigated. The magnesia surface preparation and characterization as well as the pulsed deposition of methyl iodide are described. The femtosecond-laser excitation (pump) and, in particular, the resonant multiphoton ionization surface detection (probe) schemas are discussed in detail. Results of pump-probe time-resolved methyl and iodine atom detection experiments are presented and the potential of this method for velocity-resolved photofragment analysis is evaluated.

  12. ATOMIC AND MOLECULAR PHYSICS: Analysis of femtosecond laser ionization/dissociation of polyatomic molecule C6H10O from one-colour pump-probe measurement

    NASA Astrophysics Data System (ADS)

    Hu, Fei-Fei; Zhou, Sheng-Peng; Hu, Zhan; Jin, Ming-Xing; Zhang, Dong-Dong; Wu, Di; Cheng, Xi-Hui; Jiang, Dian-Wu; Ding, Da-Jun

    2009-04-01

    This paper reports that a one-colour fs pump-probe measurement has been carried out for studying photoionization/photodissociation of cyclohexanone (C6H10O) in intense laser field. Two of the fragments from cyclohexanone, C2H3+ and C3H3+, are studied under 800 nm laser pump-probe and the results obtained show similar time evolutions. It proposes a feasible model for analysing the experimental observations of the one-colour fs pump-probe measurement. The results demonstrate that as an intermediate product, the excited molecular parent ions play a very important role in photionization/photodissociation processes in intense laser field.

  13. Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA.

    PubMed

    Yu, Yanwu; Jiang, Lan; Cao, Qiang; Xia, Bo; Wang, Qingsong; Lu, Yongfeng

    2015-12-14

    A pump-probe shadowgraph imaging technique was used to reveal the femtosecond-picosecond-nanosecond multitimescale fundamentals of high-quality, high-aspect-ratio (up to 287:1) microhole drilling in poly-methyl-meth-acrylate (PMMA) by a single-shot femtosecond laser Bessel beam. The propagation of Bessel beam in PMMA (at 1.98 × 10⁸ m/s) and it induced cylindrical pressure wave expansion (at 3000-3950 m/s in radius) were observed during drilling processes. Also, it was unexpectedly found that the expansion of the cylindrical pressure wave in PMMA showed a linear relation with time and was insensitive to the laser energy fluctuation, quite different from the case in air. It was assumed that the energy insensitivity was due to the anisotropy of wave expansion in PMMA and the ambient air.

  14. Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA.

    PubMed

    Yu, Yanwu; Jiang, Lan; Cao, Qiang; Xia, Bo; Wang, Qingsong; Lu, Yongfeng

    2015-12-14

    A pump-probe shadowgraph imaging technique was used to reveal the femtosecond-picosecond-nanosecond multitimescale fundamentals of high-quality, high-aspect-ratio (up to 287:1) microhole drilling in poly-methyl-meth-acrylate (PMMA) by a single-shot femtosecond laser Bessel beam. The propagation of Bessel beam in PMMA (at 1.98 × 10⁸ m/s) and it induced cylindrical pressure wave expansion (at 3000-3950 m/s in radius) were observed during drilling processes. Also, it was unexpectedly found that the expansion of the cylindrical pressure wave in PMMA showed a linear relation with time and was insensitive to the laser energy fluctuation, quite different from the case in air. It was assumed that the energy insensitivity was due to the anisotropy of wave expansion in PMMA and the ambient air. PMID:26699062

  15. Dual Femtosecond TITANIUM:SAPPHIRE Laser for Ultrafast Optical Sampling Two-Color Pump/probe Studies.

    NASA Astrophysics Data System (ADS)

    Luo, Ningyi Daniel

    A pair of self-synchronous Ti:Sapphire lasers have been setup for two-color pump/probe detection in the sub-picosecond time regime. The two 75 femtosecond self -mode-locked Ti:Sapphire lasers are operated asynchronously at slightly different repetition rates to provide continuously varying dynamic delay times. They are tunable at 700-890 nm. The shorter wavelength pulses from one laser are used as a pump source, while the longer wavelength pulses are used as a probe. The sum-frequency pulses generated by the cross-correlation of the two laser pulses are used to define the "time-zero" position and trigger the pump/probe process. The experiment is triggered at the difference frequency, and the signal can be averaged many times allowing a weak signal to build up. Dual-time scale is involved with the interpretation of the signal, which allows the experiment to be carried on the real time scale and the signal to be recorded on a much reduced equivalent time scale. Excited state lifetime measurement of laser HITCI has proven that this technology is practically feasible. Several advantages have been seen: (1) independent wavelength tunability of the pump and probe lasers; (2) variable femto- to nano -second pump/probe time delay; (3) fast (mu s-ms) data collection time; (4) compact optical layout, without the need for optical delay lines and modulators, and thus, simple optical alignment. This study sheds light on the development of a novel compact high speed optical instrument.

  16. Visualization of surface transformations during laser ablation of solids by femtosecond pump-probe time-resolved microscopy

    NASA Astrophysics Data System (ADS)

    Carrasco-García, Irene; Vadillo, José M.; Javier Laserna, J.

    2015-11-01

    A femtosecond time-resolved microscope (fs-TRM) based on pump-probe excitation has been used to follow the dynamic of the processes occurring during laser-matter interaction, from initial surface alterations to final solidification through transient melting. The time-resolved microscope described in the manuscript has been designed to allow a precise control of the excitation beam to cover ranges below and above the plasma formation energy, and a large temporal variation in the pump-probe delay to include the different timescales of the different processes occurring up to the plasma formation. The microscope has been demonstrated to be robust and allows the subpicosecond monitoring of laser ablation single-shot events, of importance in the analysis of ultra thin layers, or biological tissues. The fs-TRM excites (pump) the sample with 35-fs laser pulses at 800 nm and follows the processes by a second (probe) beam at 400 nm. The relative delay between both beams allows the acquisition of pictures with a temporal resolution of 200 fs up to 3 ns after the reaching of the pump pulse. In the ablative regime near the ablation threshold, transient surface reflectivity patterns (dynamic Newton fringes) are observed from a ps to ns time-scale. The timescale and number of such rings are affected by the fluence value. Significant differences between metals (Al, Cu and Sn), semiconductors (Si) and polymers (polytetrafluoroethylene and polyurethane) have been also observed in the transformation patterns.

  17. Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters.

    PubMed

    Kang, Kwangu; Koh, Yee Kan; Chiritescu, Catalin; Zheng, Xuan; Cahill, David G

    2008-11-01

    We describe a simple approach for rejecting unwanted scattered light in two types of time-resolved pump-probe measurements, time-domain thermoreflectance (TDTR) and time-resolved incoherent anti-Stokes Raman scattering (TRIARS). Sharp edged optical filters are used to create spectrally distinct pump and probe beams from the broad spectral output of a femtosecond Ti:sapphire laser oscillator. For TDTR, the diffusely scattered pump light is then blocked by a third optical filter. For TRIARS, depolarized scattering created by the pump is shifted in frequency by approximately 250 cm(-1) relative to the polarized scattering created by the probe; therefore, spectral features created by the pump and probe scattering can be easily distinguished.

  18. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography.

    PubMed

    van Thor, Jasper J; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or "probe-pump-probe") which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse. PMID:26798786

  19. Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme.

    PubMed

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru; Yabashi, Makina

    2016-02-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼10(19) W/cm(2)) XFEL pulses. An X-ray pump-probe diffraction scheme was developed in this study; tightly focused double-5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray-induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray-matter interactions. The X-ray pump-probe scheme demonstrated here would be effective for understanding ultraintense X-ray-matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities. PMID:26811449

  20. Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme.

    PubMed

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru; Yabashi, Makina

    2016-02-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼10(19) W/cm(2)) XFEL pulses. An X-ray pump-probe diffraction scheme was developed in this study; tightly focused double-5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray-induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray-matter interactions. The X-ray pump-probe scheme demonstrated here would be effective for understanding ultraintense X-ray-matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities.

  1. Reversible strain-induced electron-hole recombination in silicon nanowires observed with femtosecond pump-probe microscopy.

    PubMed

    Grumstrup, Erik M; Gabriel, Michelle M; Pinion, Christopher W; Parker, James K; Cahoon, James F; Papanikolas, John M

    2014-11-12

    Strain-induced changes to the electronic structure of nanoscale materials provide a promising avenue for expanding the optoelectronic functionality of semiconductor nanostructures in device applications. Here we use pump-probe microscopy with femtosecond temporal resolution and submicron spatial resolution to characterize charge-carrier recombination and transport dynamics in silicon nanowires (NWs) locally strained by bending deformation. The electron-hole recombination rate increases with strain for values above a threshold of ∼1% and, in highly strained (∼5%) regions of the NW, increases 6-fold. The changes in recombination rate are independent of NW diameter and reversible upon reduction of the applied strain, indicating the effect originates from alterations to the NW bulk electronic structure rather than introduction of defects. The results highlight the strong relationship between strain, electronic structure, and charge-carrier dynamics in low-dimensional semiconductor systems, and we anticipate the results will assist the development of strain-enabled optoelectronic devices with indirect-bandgap materials such as silicon.

  2. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    SciTech Connect

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.

  3. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    DOE PAGES

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less

  4. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    PubMed Central

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse. PMID:26798786

  5. Photodissociation dynamics of iodocyclohexane upon UV excitation by femtosecond pump-probe technique

    NASA Astrophysics Data System (ADS)

    Hu, Chunlong; Wang, Lian; Wang, Yanmei; Tang, Ying; Long, Jinyou; Zhang, Bing

    2016-08-01

    The photodissociation dynamics of iodocyclohexane in the A-band and C-state have been investigated by femtosecond time-resolved time-of-flight mass spectroscopy. Iodocyclohexane was pumped by 266 nm pulse to its A-band. The following dissociation dynamics is prompt and direct. The time it takes for the progression of the wave packet from the dissociative state to the dissociating asymptotic region is around 180 fs. The C-state was excited by 200 nm pump pulse and it has predissociative character with predissociation time of about 600 fs, which may have contributions from multiple vibrational modes.

  6. A femtosecond pump-probe spectrometer for dynamics in transmissive polymer films

    NASA Astrophysics Data System (ADS)

    Röttger, K.; Wang, S.; Renth, F.; Bahrenburg, J.; Temps, F.

    2015-02-01

    An experimental setup and data collection strategy for femtosecond transient absorption spectroscopy on thin (1 ) solid polymer film samples is described. The experiment allows for parallel detection of the changes in optical density via broadband supercontinuum probing in the VIS/UV range and single-color detection at an independently selected wavelength from the deep UV to the IR with a sensitivity of per laser shot (r.m.s. standard deviation) and a time resolution below 40 fs. A fast and reproducible bi-directional translation of a two-dimensional film sample of in size is used to measure fresh sample spots at each detection interval. Signal readout at a 1 kHz rate enables single-shot analysis and automated signal discrimination, as well as detailed statistics on sample homogeneity, signal evolution with increasing number of pump pulses, and reproducibility. The technique was employed to study the photoisomerization of Disperse Red 1 in films of polymethylmethacrylate after photoexcitation at nm. The results revealed excited-state dynamics characterized by time constants of and , almost identical as in solution, but evidently enhanced vibrational excitation and slower vibrational cooling (time constant ) after return to the electronic ground state due to the constraining polymer environment.

  7. Femtosecond resolution timing jitter correction on a TW scale Ti:sapphire laser system for FEL pump-probe experiments.

    PubMed

    Csatari Divall, Marta; Mutter, Patrick; Divall, Edwin J; Hauri, Christoph P

    2015-11-16

    Intense ultrashort pulse lasers are used for fs resolution pump-probe experiments more and more at large scale facilities, such as free electron lasers (FEL). Measurement of the arrival time of the laser pulses and stabilization to the machine or other sub-systems on the target, is crucial for high time-resolution measurements. In this work we report on a single shot, spectrally resolved, non-collinear cross-correlator with sub-fs resolution. With a feedback applied we keep the output of the TW class Ti:sapphire amplifier chain in time with the seed oscillator to ~3 fs RMS level for several hours. This is well below the typical pulse duration used at FELs and supports fs resolution pump-probe experiments. Short term jitter and long term timing drift measurements are presented. Applicability to other wavelengths and integration into the timing infrastructure of the FEL are also covered to show the full potential of the device. PMID:26698475

  8. Femtosecond resolution timing jitter correction on a TW scale Ti:sapphire laser system for FEL pump-probe experiments

    NASA Astrophysics Data System (ADS)

    Csatari Divall, Marta; Mutter, Patrick; Divall, Edwin J.; Hauri, Christoph P.

    2015-11-01

    Intense ultrashort pulse lasers are used for fs resolution pumpprobe experiments more and more at large scale facilities, such as free electron lasers (FEL). Measurement of the arrival time of the laser pulses and stabilization to the machine or other sub-systems on the target, is crucial for high time-resolution measurements. In this work we report on a single shot, spectrally resolved, non-collinear cross-correlator with sub-fs resolution. With a feedback applied we keep the output of the TW class Ti:sapphire amplifier chain in time with the seed oscillator to ~3 fs RMS level for several hours. This is well below the typical pulse duration used at FELs and supports fs resolution pump-probe experiments. Short term jitter and long term timing drift measurements are presented. Applicability to other wavelengths and integration into the timing infrastructure of the FEL are also covered to show the full potential of the device.

  9. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy.

    PubMed

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-01-01

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells. PMID:26679958

  10. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-12-01

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.

  11. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy.

    PubMed

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-12-18

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.

  12. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy

    PubMed Central

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-01-01

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells. PMID:26679958

  13. A Dual-Colour Architecture for Pump-Probe Spectroscopy of Ultrafast Magnetization Dynamics in the Sub-10-femtosecond Range.

    PubMed

    Gonçalves, C S; Silva, A S; Navas, D; Miranda, M; Silva, F; Crespo, H; Schmool, D S

    2016-01-01

    Current time-resolution-limited dynamic measurements clearly show the need for improved techniques to access processes on the sub-10-femtosecond timescale. To access this regime, we have designed and constructed a state-of-the-art time-resolved magneto-optic Kerr effect apparatus, based on a new dual-color scheme, for the measurement of ultrafast demagnetization and precessional dynamics in magnetic materials. This system can operate well below the current temporal ranges reported in the literature, which typically lie in the region of around 50 fs and above. We have used a dual-colour scheme, based on ultra broadband hollow-core fibre and chirped mirror pulse compression techniques, to obtain unprecedented sub-8-fs pump and probe pulse durations at the sample plane. To demonstrate the capabilities of this system for ultrafast demagnetization and precessional dynamics studies, we have performed measurements in a ferrimagnetic GdFeCo thin film. Our study has shown that the magnetization shows a sudden drop within the first picosecond after the pump pulse, a fast recovery (remagnetization) within a few picoseconds, followed by a clear oscillation or precession during a slower magnetization recovery. Moreover, we have experimentally confirmed for the first time that a sub-10-fs pulse is able to efficiently excite a magnetic system such as GdFeCo.

  14. A Dual-Colour Architecture for Pump-Probe Spectroscopy of Ultrafast Magnetization Dynamics in the Sub-10-femtosecond Range

    PubMed Central

    Gonçalves, C. S.; Silva, A. S.; Navas, D.; Miranda, M.; Silva, F.; Crespo, H.; Schmool, D. S.

    2016-01-01

    Current time-resolution-limited dynamic measurements clearly show the need for improved techniques to access processes on the sub-10-femtosecond timescale. To access this regime, we have designed and constructed a state-of-the-art time-resolved magneto-optic Kerr effect apparatus, based on a new dual-color scheme, for the measurement of ultrafast demagnetization and precessional dynamics in magnetic materials. This system can operate well below the current temporal ranges reported in the literature, which typically lie in the region of around 50 fs and above. We have used a dual-colour scheme, based on ultra broadband hollow-core fibre and chirped mirror pulse compression techniques, to obtain unprecedented sub-8-fs pump and probe pulse durations at the sample plane. To demonstrate the capabilities of this system for ultrafast demagnetization and precessional dynamics studies, we have performed measurements in a ferrimagnetic GdFeCo thin film. Our study has shown that the magnetization shows a sudden drop within the first picosecond after the pump pulse, a fast recovery (remagnetization) within a few picoseconds, followed by a clear oscillation or precession during a slower magnetization recovery. Moreover, we have experimentally confirmed for the first time that a sub-10-fs pulse is able to efficiently excite a magnetic system such as GdFeCo. PMID:26976721

  15. A Dual-Colour Architecture for Pump-Probe Spectroscopy of Ultrafast Magnetization Dynamics in the Sub-10-femtosecond Range

    NASA Astrophysics Data System (ADS)

    Gonçalves, C. S.; Silva, A. S.; Navas, D.; Miranda, M.; Silva, F.; Crespo, H.; Schmool, D. S.

    2016-03-01

    Current time-resolution-limited dynamic measurements clearly show the need for improved techniques to access processes on the sub-10-femtosecond timescale. To access this regime, we have designed and constructed a state-of-the-art time-resolved magneto-optic Kerr effect apparatus, based on a new dual-color scheme, for the measurement of ultrafast demagnetization and precessional dynamics in magnetic materials. This system can operate well below the current temporal ranges reported in the literature, which typically lie in the region of around 50 fs and above. We have used a dual-colour scheme, based on ultra broadband hollow-core fibre and chirped mirror pulse compression techniques, to obtain unprecedented sub-8-fs pump and probe pulse durations at the sample plane. To demonstrate the capabilities of this system for ultrafast demagnetization and precessional dynamics studies, we have performed measurements in a ferrimagnetic GdFeCo thin film. Our study has shown that the magnetization shows a sudden drop within the first picosecond after the pump pulse, a fast recovery (remagnetization) within a few picoseconds, followed by a clear oscillation or precession during a slower magnetization recovery. Moreover, we have experimentally confirmed for the first time that a sub-10-fs pulse is able to efficiently excite a magnetic system such as GdFeCo.

  16. A Dual-Colour Architecture for Pump-Probe Spectroscopy of Ultrafast Magnetization Dynamics in the Sub-10-femtosecond Range.

    PubMed

    Gonçalves, C S; Silva, A S; Navas, D; Miranda, M; Silva, F; Crespo, H; Schmool, D S

    2016-01-01

    Current time-resolution-limited dynamic measurements clearly show the need for improved techniques to access processes on the sub-10-femtosecond timescale. To access this regime, we have designed and constructed a state-of-the-art time-resolved magneto-optic Kerr effect apparatus, based on a new dual-color scheme, for the measurement of ultrafast demagnetization and precessional dynamics in magnetic materials. This system can operate well below the current temporal ranges reported in the literature, which typically lie in the region of around 50 fs and above. We have used a dual-colour scheme, based on ultra broadband hollow-core fibre and chirped mirror pulse compression techniques, to obtain unprecedented sub-8-fs pump and probe pulse durations at the sample plane. To demonstrate the capabilities of this system for ultrafast demagnetization and precessional dynamics studies, we have performed measurements in a ferrimagnetic GdFeCo thin film. Our study has shown that the magnetization shows a sudden drop within the first picosecond after the pump pulse, a fast recovery (remagnetization) within a few picoseconds, followed by a clear oscillation or precession during a slower magnetization recovery. Moreover, we have experimentally confirmed for the first time that a sub-10-fs pulse is able to efficiently excite a magnetic system such as GdFeCo. PMID:26976721

  17. Low frequency dynamics of the nitrogenase MoFe protein via femtosecond pump probe spectroscopy - Observation of a candidate promoting vibration.

    PubMed

    Maiuri, Margherita; Delfino, Ines; Cerullo, Giulio; Manzoni, Cristian; Pelmenschikov, Vladimir; Guo, Yisong; Wang, Hongxin; Gee, Leland B; Dapper, Christie H; Newton, William E; Cramer, Stephen P

    2015-12-01

    We have used femtosecond pump-probe spectroscopy (FPPS) to study the FeMo-cofactor within the nitrogenase (N2ase) MoFe protein from Azotobacter vinelandii. A sub-20-fs visible laser pulse was used to pump the sample to an excited electronic state, and a second sub-10-fs pulse was used to probe changes in transmission as a function of probe wavelength and delay time. The excited protein relaxes to the ground state with a ~1.2ps time constant. With the short laser pulse we coherently excited the vibrational modes associated with the FeMo-cofactor active site, which are then observed in the time domain. Superimposed on the relaxation dynamics, we distinguished a variety of oscillation frequencies with the strongest band peaks at ~84, 116, 189, and 226cm(-1). Comparison with data from nuclear resonance vibrational spectroscopy (NRVS) shows that the latter pair of signals comes predominantly from the FeMo-cofactor. The frequencies obtained from the FPPS experiment were interpreted with normal mode calculations using both an empirical force field (EFF) and density functional theory (DFT). The FPPS data were also compared with the first reported resonance Raman (RR) spectrum of the N2ase MoFe protein. This approach allows us to outline and assign vibrational modes having relevance to the catalytic activity of N2ase. In particular, the 226cm(-1) band is assigned as a potential 'promoting vibration' in the H-atom transfer (or proton-coupled electron transfer) processes that are an essential feature of N2ase catalysis. The results demonstrate that high-quality room-temperature solution data can be obtained on the MoFe protein by the FPPS technique and that these data provide added insight to the motions and possible operation of this protein and its catalytic prosthetic group. PMID:26343576

  18. Low frequency dynamics of the nitrogenase MoFe protein via femtosecond pump probe spectroscopy - Observation of a candidate promoting vibration.

    PubMed

    Maiuri, Margherita; Delfino, Ines; Cerullo, Giulio; Manzoni, Cristian; Pelmenschikov, Vladimir; Guo, Yisong; Wang, Hongxin; Gee, Leland B; Dapper, Christie H; Newton, William E; Cramer, Stephen P

    2015-12-01

    We have used femtosecond pump-probe spectroscopy (FPPS) to study the FeMo-cofactor within the nitrogenase (N2ase) MoFe protein from Azotobacter vinelandii. A sub-20-fs visible laser pulse was used to pump the sample to an excited electronic state, and a second sub-10-fs pulse was used to probe changes in transmission as a function of probe wavelength and delay time. The excited protein relaxes to the ground state with a ~1.2ps time constant. With the short laser pulse we coherently excited the vibrational modes associated with the FeMo-cofactor active site, which are then observed in the time domain. Superimposed on the relaxation dynamics, we distinguished a variety of oscillation frequencies with the strongest band peaks at ~84, 116, 189, and 226cm(-1). Comparison with data from nuclear resonance vibrational spectroscopy (NRVS) shows that the latter pair of signals comes predominantly from the FeMo-cofactor. The frequencies obtained from the FPPS experiment were interpreted with normal mode calculations using both an empirical force field (EFF) and density functional theory (DFT). The FPPS data were also compared with the first reported resonance Raman (RR) spectrum of the N2ase MoFe protein. This approach allows us to outline and assign vibrational modes having relevance to the catalytic activity of N2ase. In particular, the 226cm(-1) band is assigned as a potential 'promoting vibration' in the H-atom transfer (or proton-coupled electron transfer) processes that are an essential feature of N2ase catalysis. The results demonstrate that high-quality room-temperature solution data can be obtained on the MoFe protein by the FPPS technique and that these data provide added insight to the motions and possible operation of this protein and its catalytic prosthetic group.

  19. Communication: State-to-state photodissociation study by the two-color VUV-VUV laser pump-probe time-slice velocity-map-imaging-photoion method

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Song, Yu; Jackson, William M.; Ng, C. Y.

    2013-05-01

    We demonstrate that combining two independently tunable vacuum ultraviolet (VUV) lasers and the time-slice velocity-map-imaging-photoion (VMI-PI) method allows the rovibronically state-selected photodissociation study of CO in the VUV region along with the state-selective detection of product C(3P0,1,2) using the VUV-UV (1+1') resonance-enhanced photoionization and the VUV Rydberg autoionization methods. Both tunable VUV lasers are generated based on the two-photon resonance-enhanced four-wave mixing scheme using a pulsed rare gas jet as the nonlinear medium. The observed fine-structure distributions of product C(3PJ), J = 0, 1, and 2, are found to depend on the CO rovibronic state populated by VUV photoexcitation. The branching ratios for C(3P0) + O(3PJ): C(3P0) + O(1D2), C(3P1) + O(3PJ): C(3P1) + O(1D2), and C(3P2) + O(3PJ): C(3P2) + O(1D2), which were determined based on the time-slice VMI-PI measurements of C+ ions formed by J-state selective photoionization sampling of C(3P0,1,2), also reveal strong dependences on the spin-orbit state of C(3P0,1,2). By combining the measured branching ratios and fine-structure distributions of C(3P0,1,2), we have determined the correlated distributions of C(3P0,1,2) accompanying the formation of O(1D2) and O(3PJ) produced in the VUV photodissociation of CO. The success of this demonstration experiment shows that the VUV photodissociation pump-VUV photoionization probe method is promising for state-to-state photodissociation studies of many small molecules, which are relevant to planetary atmospheres as well as fundamental understanding of photodissociation dynamics.

  20. Communication: State-to-state photodissociation study by the two-color VUV-VUV laser pump-probe time-slice velocity-map-imaging-photoion method.

    PubMed

    Gao, Hong; Song, Yu; Jackson, William M; Ng, C Y

    2013-05-21

    We demonstrate that combining two independently tunable vacuum ultraviolet (VUV) lasers and the time-slice velocity-map-imaging-photoion (VMI-PI) method allows the rovibronically state-selected photodissociation study of CO in the VUV region along with the state-selective detection of product C((3)P(0,1,2)) using the VUV-UV (1+1') resonance-enhanced photoionization and the VUV Rydberg autoionization methods. Both tunable VUV lasers are generated based on the two-photon resonance-enhanced four-wave mixing scheme using a pulsed rare gas jet as the nonlinear medium. The observed fine-structure distributions of product C((3)P(J)), J = 0, 1, and 2, are found to depend on the CO rovibronic state populated by VUV photoexcitation. The branching ratios for C((3)P0) + O((3)P(J)): C((3)P0) + O((1)D2), C((3)P1) + O((3)P(J)): C((3)P1) + O((1)D2), and C((3)P2) + O((3)PJ): C((3)P2) + O((1)D2), which were determined based on the time-slice VMI-PI measurements of C(+) ions formed by J-state selective photoionization sampling of C((3)P(0,1,2)), also reveal strong dependences on the spin-orbit state of C((3)P(0,1,2)). By combining the measured branching ratios and fine-structure distributions of C((3)P(0,1,2)), we have determined the correlated distributions of C((3)P(0,1,2)) accompanying the formation of O((1)D2) and O((3)P(J)) produced in the VUV photodissociation of CO. The success of this demonstration experiment shows that the VUV photodissociation pump-VUV photoionization probe method is promising for state-to-state photodissociation studies of many small molecules, which are relevant to planetary atmospheres as well as fundamental understanding of photodissociation dynamics.

  1. Relaxation dynamics of the LH2 complex from a photosynthetic purple bacterium Thiorhodospira sibirica studied by the near-IR femtosecond pump-probe method

    SciTech Connect

    Razjivin, A P; Pishchal'nikov, R Yu; Kozlovskii, V S; Kompanets, V O; Chekalin, Sergei V; Moskalenko, A A; Makhneva, Z K

    2005-01-31

    Photoinduced changes in the absorption spectrum of the LH2 (B800-830-850) complex from a Thiorhodospira sibirica (Trs. sibirica) bacterium are studied by the pump-probe method. The complex has the anomalous absorption spectrum exhibiting three bands in the near-IR region at 793, 826.5, and 846.5 nm. At room temperature, the excitation energy transfer from the B800, B830, and B859 bands was detected with the time constants {tau}{sub 1{approx}}0.5 ps, {tau}{sub 2{approx}}2.5 ps, and {tau}{sub 3} of the order of a few hundreds of picoseconds, respectively. A rapid energy transfer from the B830 band compared to energy transfer from the B850 band ({tau}{sub 2}||{tau}{sub 3}) suggests that all the three bands belong to the same complex (i.e., that the LH2 complex from Trs. sibirica is homogeneous). A slower energy transfer (by three - five times) from the B830 band of the LH2 complex from Trs. sibirica compared to energy transfer from the B800 band of the LH2 complexes (B800-850 and especially B800-820) from other purple bacteria suggests that the electronic structures of ensembles of bacteriochlorophyll molecules in these complexes are substantially different. (laser applications and other topics in quantum electronics)

  2. Angular resolved photoionization of C60 by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wang, Zhenhua; Suessmann, Frederik; Zherebtsov, Sergey; Skruszewicz, Slawomir; Tiggesbaeumker, Josef; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Cocke, C.; Kling, Matthias; JRM laboratory, Kansas State University Team; University of Rostock Collaboration; Max-Planck InstitutQuantumoptik Collaboration

    2013-03-01

    Neutral C60 molecules are ionized by intense femtosecond laser pulses around the wavelength of 800 nm with pulse durations 4 fs and 30 fs. We measure photoelectrons utilizing velocity-map imaging (VMI) and analyze the photoelectron angular distributions. For particular photoelectron energies, these distributions might reflect the excitation and ionization of superatomic molecular orbitals (SAMOs) which have been theoretically predicted and only recently experimentally observed. SAMOs arise from the hollow core spherical structures of the C60 molecules and differ from Rydberg states of C60 by their potential to exhibit electron density within the C60 cage. We have recorded the carrier envelope phase (CEP) dependence of the electron emission for 4 fs pulses using single shot CEP-tagging. The CEP-dependent asymmetry in the electron emission is observed to strongly depend on the laser polarization. Furthermore, the amplitudes and phases of the CEP-dependent electron emission are analyzed and show that thermal electron emission can be avoided enabling a more direct comparison to theory.

  3. Photoelectron and photoion spectroscopy of atoms, nanoparticles, and nanoplasmas irradiated with strong femtosecond laser fields

    NASA Astrophysics Data System (ADS)

    Hickstein, Daniel D.

    Modern femtosecond lasers can produce pulses of light that are shorter than the vibrational periods in molecules and have electric fields stronger than the Coulomb field that binds electrons in atoms. These short pulse lasers enable the observation of chemical reactions, the production of attosecond bursts of high-energy photons, and the precision-machining of solid materials with minimal heat transport to the material. In this thesis, I describe three experiments that provide new insight into strong-field (1014 Watts/cm2) femtosecond laser-matter interactions in three important regimes. First, I discuss the strong-field ionization of gas-phase atoms, identify a new structure in the photoelectron angular distribution of xenon gas, and explain this structure as a result of field-driven electrons colliding with the Coulomb potential of the ion. Second, I describe a new method to perform photoelectron and photoion spectroscopy on single, isolated nanoparticles and demonstrate this technique by observing the directional ion ejection that takes place in the laser ablation of nanostructures. Finally, I present the first experimental observations of shock wave propagation in nanoscale plasmas. These findings will guide future efforts to probe the structure of atoms and molecules on the femtosecond timescale, design nanomaterials that enhance light on the subwavelength scale, and produce high-energy ions from plasmas.

  4. Imaging theory of structured pump-probe microscopy.

    PubMed

    Massaro, Eric S; Hill, Andrew H; Kennedy, Casey L; Grumstrup, Erik M

    2016-09-01

    With sub-micron spatial resolution and femtosecond temporal resolution, pump probe microscopy provides a powerful spectroscopic probe of complex electronic environments in bulk and nanoscale materials. However, the electronic structure of many materials systems are governed by compositional and morphological heterogeneities on length scales that lie below the diffraction limit. We have recently demonstrated Structured Pump Probe Microscopy (SPPM), which employs a patterned pump excitation field to provide spectroscopic interrogation of sub-diffraction limited sample volumes. Herein, we develop the imaging theory of SPPM in two dimensions to accompany the previously published experimental methodology. We show that regardless of pump and probe wavelengths, a nearly two-fold reduction in spectroscopic probe volume can be achieved. We also examine the limitations of the approach, with a detailed discussion of ringing in the point spread function that can reduce imaging performance. PMID:27607691

  5. Ultrafast pump-probe microscopy with high temporal dynamic range.

    PubMed

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P

    2012-04-23

    Ultrafast pump-probe microscopy is a common method for time and space resolved imaging of short and ultra-short pulse laser ablation. The temporal delay between the ablating pump pulse and the illuminating probe pulse is tuned either by an optical delay, resulting in several hundred femtoseconds temporal resolution for delay times up to a few ns, or by an electronic delay, resulting in several nanoseconds resolution for longer delay times. In this work we combine both delay types for temporally high resolved observations of complete ablation processes ranging from femtoseconds to microseconds, while ablation is initiated by an ultrafast 660 fs laser pump pulse. For this purpose, we also demonstrate the calibration of the delay time zero point, the synchronization of both probe sources, as well as a method for image quality enhancing. In addition, we present for the first time to our knowledge pump-probe microscopy investigations of the complete substrate side selective ablation process of molybdenum films on glass. The initiation of mechanical film deformation is observed at about 400 ps, continues until approximately 15 ns, whereupon a Mo disk is sheared off free from thermal effects due to a directly induced laser lift-off ablation process.

  6. Laser photoionization of triacetone triperoxide (TATP) by femtosecond and nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Mullen, Christopher; Huestis, David; Coggiola, Michael; Oser, Harald

    2006-05-01

    Laser ionization time-of-flight mass spectrometry has been applied to the study of triacetone triperoxide (TATP), an improvised explosive. Wavelength dependent mass spectra in two time regimes were acquired using nanosecond (5 ns) and femtosecond (130 fs) laser pulses. We find the major difference between the two time regimes to be the detection of the parent molecular ion when femtosecond laser pulses are employed.

  7. Improving Phase Measurement Procedures for Pump-Probe Experiments

    SciTech Connect

    Perkins, Cara P.; /Merrimack Coll. /SLAC

    2011-06-22

    Pump-probe experiments use a visible laser to excite an atom or molecule, while an X-ray pulse measures its shape. The phases and pulse times of each beam are used to calculate the object's positing at a given time - a moving picture of the chemical reaction. Currently, the fastest X-ray pulses can travel a time-length of five femtoseconds. However, present-day phase measurements can only be done as quickly as 50 femtoseconds. The purpose of this research is to explore ways in which phase-timing measurements can be improved. Three experiments are undergone to find the key factors in phase-timing. Different frequency mixers, the radio frequency (RF) components used for phase measurement, are tested for the highest sensitivity. These same mixers are then tested using two different power splitters for the lowest noise-to-sensitivity ratio. Lastly, the temperature dependency of phase is explored by testing each component at a range of temperatures to see how the phase is affected. This research demonstrated that certain mixers were more sensitive than others; on average, one mixer performed the best with a sensitivity of 0.0230 V/ps. The results also showed that same mixer combined with one splitter gave the best noise-to-sensitivity ratio overall with an average of 6.95E-04 fs/{radical}(Hz). All the components tested exhibited a temperature-dependent phase change (ranging from 1.69 to 81.6 fs/{sup o}C); the same mixer that performed at the highest sensitivity with the least noise had a significantly greater phase change than the other two. In conclusion, the experiments showed that a temperature-controlled environment is most appropriate for phase measurement. They also demonstrated that mixers are not significantly noisy and that certain types of mixers may perform better than others, which could be accounted for in their construction. The results of this research encourage further investigation into the study of different mixers and other RF components used in pump-probe

  8. Anomalous Coherent Oscillations in PbTe from Ultrafast Optical Pump-Probe Measurements

    NASA Astrophysics Data System (ADS)

    Jiang, Mason; Giraldo, Paula; Fisher, Ian; Reis, David

    2013-03-01

    We report on the observation of anomalous coherent oscillations in single crystals of PbTe from ultrafast optical pump-probe measurements. PbTe is a leading thermoelectric material with an unusually low thermal conductivity, which has recently been attributed to strongly anharmonic phonon interactions. In an attempt to understand in greater detail the nature of these interactions, we perform time-resolved, optical pump-probe measurements on PbTe with femtosecond resolution in a range of temperatures from 77K to room temperature. We see previously unreported, low-frequency reflectivity oscillations that decay on the timescale of a few picoseconds and remain robust through a wide range of temperature variation. This talk will discuss possible origins and explanations for the appearance of these oscillations.

  9. Femtosecond molecular dynamics studied with vacuum ultraviolet pulse pairs

    NASA Astrophysics Data System (ADS)

    Allison, Thomas K., III

    Atoms and molecules have most of their oscillator strength in the vacuum ultraviolet (VUV) and extreme ultraviolet (XUV), between the wavelengths of 200 nm and 30 nm. However, most femtosecond spectroscopy has been restricted to the visible and infrared due to a lack of sufficiently intense VUV and XUV femtosecond light sources. This thesis discusses extensions of pump/probe spectroscopy to the VUV and XUV, and its application to the dynamics of ethylene and oxygen molecules excited at 161 nm. I begin with a detailed discussion of the short wavelength light source used in this work. The source is based on the high order harmonics of a near infrared laser and can deliver > 1010 photons per shot in femtosecond pulses, corresponding to nearly 10 MW peak power in the XUV. Measurements of the harmonic yields as a function of the generation conditions reveal the roles of phase matching and ionization gating in the high order harmonic generation process. Pump/probe measurements are conducted using a unique VUV interferometer, capable of combining two different harmonics at a focus with variable delay. Measurements of VUV multiphoton ionization allows for characterization of the source and the interferometer. In molecules, time resolved measurements of fragment ion yields reveal the femtosecond dynamics of the system. The range of wavelengths available for pump and probe allows the dynamics to be followed from photo-excitation all the way to dissociation without detection window effects. The dynamics in ethylene upon pi → pi* excitation are protypical of larger molecules and have thus served as an important test case for advanced ab initio molecular dynamics theories. Femtosecond measurements to date, however, have been extremely lacking. In the present work, through a series of pump probe experiments using VUV and XUV pulses, time scales for the non-adiabatic relaxation of the electronic excitation, hydrogen migration across the double bond, and H2 molecule elimination

  10. Invited Review Article: Pump-probe microscopy.

    PubMed

    Fischer, Martin C; Wilson, Jesse W; Robles, Francisco E; Warren, Warren S

    2016-03-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  11. Invited Review Article: Pump-probe microscopy

    NASA Astrophysics Data System (ADS)

    Fischer, Martin C.; Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-03-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  12. Invited Review Article: Pump-probe microscopy.

    PubMed

    Fischer, Martin C; Wilson, Jesse W; Robles, Francisco E; Warren, Warren S

    2016-03-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications. PMID:27036751

  13. Effect of nuclear motion on molecular high order harmonic pump probe spectroscopy.

    PubMed

    Bredtmann, Timm; Chelkowski, Szczepan; Bandrauk, André D

    2012-11-26

    We study pump-probe schemes for the real time observation of electronic motion on attosecond time scale in the molecular ion H(2)(+) and its heavier isotope T(2)(+) while these molecules dissociate on femtosecond time scale by solving numerically the non-Born-Oppenheimer time-dependent Schrödinger equation. The UV pump laser pulse prepares a coherent superposition of the three lowest lying quantum states and the time-delayed mid-infrared, intense few-femtosecond probe pulse subsequently generates molecular high-order harmonics (MHOHG) from this coherent electron-nuclear wavepacket (CENWP). Varying the pump-probe time delay by a few hundreds of attoseconds, the MHOHG signal intensity is shown to vary by orders of magnitude. Due to nuclear movement, the coherence of these two upper states and the ground state is lost after a few femtoseconds and the MHOHG intensity variations as function of pump-probe delay time are shown to be equal to the period of electron oscillation in the coherent superposition of the two upper dissociative quantum states. Although this electron oscillation period and hence the periodicity of the harmonic spectra are quite constant over a wide range of internuclear distances, a strong signature of nuclear motion is seen in the actual shapes and ways in which these spectra change as a function of pump-probe delay time, which is illustrated by comparison of the MHOHG spectra generated by the two isotopes H(2)(+) and T(2)(+). Two different regimes corresponding roughly to internuclear distances R < 4a(0) and R > 4a(0) are identified: For R < 4a(0), the intensity of a whole range of frequencies in the plateau region is decreased by orders of magnitude when the delay time is changed by a few hundred attoseconds whereas in the cutoff region the peaks in the MHOHG spectra are red-shifted with increasing pump-probe time delay. For R > 4a(0), on the other hand, the peaks both in the cutoff and plateau region are red-shifted with increasing delay times

  14. Ultrafast pump-probe force microscopy with nanoscale resolution

    NASA Astrophysics Data System (ADS)

    Jahng, Junghoon; Brocious, Jordan; Fishman, Dmitry A.; Yampolsky, Steven; Nowak, Derek; Huang, Fei; Apkarian, Vartkess A.; Wickramasinghe, H. Kumar; Potma, Eric Olaf

    2015-02-01

    We perform time-resolved pump-probe microscopy measurements by recording the local force between a sharp tip and the photo-excited sample as a readout mechanism for the material's nonlinear polarization. We show that the photo-induced force is sensitive to the same excited state dynamics as measured in an optical pump-probe experiment. Ultrafast pump-probe force microscopy constitutes a non-optical detection technique with nanoscale resolution that pushes pump-probe sensitivities close to the realm of single molecule studies.

  15. Pump-Probe Noise Spectroscopy of Molecular Junctions.

    PubMed

    Ochoa, Maicol A; Selzer, Yoram; Peskin, Uri; Galperin, Michael

    2015-02-01

    The slow response of electronic components in junctions limits the direct applicability of pump-probe type spectroscopy in assessing the intramolecular dynamics. Recently the possibility of getting information on a sub-picosecond time scale from dc current measurements was proposed. We revisit the idea of picosecond resolution by pump-probe spectroscopy from dc measurements and show that any intramolecular dynamics not directly related to charge transfer in the current direction is missed by current measurements. We propose a pump-probe dc shot noise spectroscopy as a suitable alternative. Numerical examples of time-dependent and average responses of junctions are presented for generic models. PMID:26261965

  16. Pump-probe detection of surface-bound organophosphonate compounds.

    SciTech Connect

    Headrick, Jeffrey M.; Kulp, Thomas J.; Bisson, Scott E.; Reichardt, Thomas A.; Farrow, Roger L.

    2010-12-01

    We demonstrate a pump-probe approach for the detection of organophosphonate compounds on substrates, in which the pump pulse fragments the parent molecule and the released phosphorous monoxide (PO) fragment is probed using laser-induced fluorescence.

  17. Femtosecond single-electron diffraction

    PubMed Central

    Lahme, S.; Kealhofer, C.; Krausz, F.; Baum, P.

    2014-01-01

    Ultrafast electron diffraction allows the tracking of atomic motion in real time, but space charge effects within dense electron packets are a problem for temporal resolution. Here, we report on time-resolved pump-probe diffraction using femtosecond single-electron pulses that are free from intra-pulse Coulomb interactions over the entire trajectory from the source to the detector. Sufficient average electron current is achieved at repetition rates of hundreds of kHz. Thermal load on the sample is avoided by minimizing the pump-probe area and by maximizing heat diffusion. Time-resolved diffraction from fibrous graphite polycrystals reveals coherent acoustic phonons in a nanometer-thick grain ensemble with a signal-to-noise level comparable to conventional multi-electron experiments. These results demonstrate the feasibility of pump-probe diffraction in the single-electron regime, where simulations indicate compressibility of the pulses down to few-femtosecond and attosecond duration. PMID:26798778

  18. Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses

    SciTech Connect

    Polli, D.; Lanzani, G.; Brida, D.; Cerullo, G.; Mukamel, S.

    2010-11-15

    This paper introduces a general theoretical description of femtosecond pump-probe spectroscopy with chirped pulses whose joint spectral and temporal profile is expressed by Wigner spectrograms. We demonstrate that the actual experimental time resolution intimately depends on the pulse-sample interaction and that the commonly used instrumental response function needs to be replaced by a sample-dependent effective response function. We also show that, using the proper configurations in excitation and/or detection, it is possible to overcome the temporal smearing of the measured dynamics due to chirp-induced pulse broadening and recover the temporal resolution that would be afforded by the transform-limited pulses. We verify these predictions with experiments using broadband chirped pump and probe pulses. Our results allow optimization of the temporal resolution in the common case when the chirp of the pump and/or probe pulse is not corrected and may be extended to a broad range of time-resolved experiments.

  19. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene.

    PubMed

    Sentef, M A; Claassen, M; Kemper, A F; Moritz, B; Oka, T; Freericks, J K; Devereaux, T P

    2015-01-01

    Ultrafast materials science promises optical control of physical properties of solids. Continuous-wave circularly polarized laser driving was predicted to induce a light-matter coupled state with an energy gap and a quantum Hall effect, coined Floquet topological insulator. Whereas the envisioned Floquet topological insulator requires high-frequency pumping to obtain well-separated Floquet bands, a follow-up question regards the creation of Floquet-like states in graphene with realistic low-frequency laser pulses. Here we predict that short optical pulses attainable in experiments can lead to local spectral gaps and novel pseudospin textures in graphene. Pump-probe photoemission spectroscopy can track these states by measuring sizeable energy gaps and Floquet band formation on femtosecond time scales. Analysing band crossings and pseudospin textures near the Dirac points, we identify new states with optically induced nontrivial changes of sublattice mixing that leads to Berry curvature corrections of electrical transport and magnetization.

  20. Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene

    NASA Astrophysics Data System (ADS)

    Sentef, M. A.; Claassen, M.; Kemper, A. F.; Moritz, B.; Oka, T.; Freericks, J. K.; Devereaux, T. P.

    2015-05-01

    Ultrafast materials science promises optical control of physical properties of solids. Continuous-wave circularly polarized laser driving was predicted to induce a light-matter coupled state with an energy gap and a quantum Hall effect, coined Floquet topological insulator. Whereas the envisioned Floquet topological insulator requires high-frequency pumping to obtain well-separated Floquet bands, a follow-up question regards the creation of Floquet-like states in graphene with realistic low-frequency laser pulses. Here we predict that short optical pulses attainable in experiments can lead to local spectral gaps and novel pseudospin textures in graphene. Pump-probe photoemission spectroscopy can track these states by measuring sizeable energy gaps and Floquet band formation on femtosecond time scales. Analysing band crossings and pseudospin textures near the Dirac points, we identify new states with optically induced nontrivial changes of sublattice mixing that leads to Berry curvature corrections of electrical transport and magnetization.

  1. Generation, temporal characterization and applications of femtosecond-/ attosecond extreme ultraviolet pulses

    NASA Astrophysics Data System (ADS)

    Thomann, Isabell

    The work of this thesis is arranged into three parts: (A) Generation and temporal characterization of extreme ultraviolet (EUV) attosecond pulses. In this work I present the generation and first temporal characterization of sub-optical cycle EUV radiation generated in a noble-gas filled hollow-core waveguide. Two regimes of EUV radiation were characterized, ranging from 200 attoseconds to ˜ 1 femtosecond in duration. The first regime that was characterized distinguishes itself from EUV radiation generated by other methods by its narrow (˜ 1 eV) spectral width, its simple energy tunability and its temporal confinement to ˜ 1 femtosecond. In the second regime, single isolated pulses of 200 attoseconds duration (and accordingly larger bandwidth) were generated. In both regimes dynamic phase-matching effects create an extremely short time window within which efficient nonlinear conversion is possible, while it is suppressed outside this window. Temporal characterization of the generated EUV pulses was approached by two-color pump-probe photoelectron spectroscopy. Therefore an efficient photoelectron spectrometer was set up, detecting electrons in a 2pi collection angle. For the interpretation of the experimental data, an analytical model as well as an iterative algorithm were developed, to allow extraction of complex EUV waveforms. The demonstrated radiation will allow for time-resolved studies of the fastest processes in molecules and condensed matter, while at the same time ensuring adequate energy resolution for addressing individual electronic states. (B) Application of a COLTRIMS reaction microscope in combination with femtosecond EUV pulses to questions in molecular physics. The combination of the sensitive detection capabilities of a COLTRIMS reaction microscope with the high time resolution of pump-probe experiments using femtosecond extreme-ultraviolet pulses makes it possible to answer very fundamental open questions in molecular physics such as the

  2. High-Precision Time Delay Control with Continuous Phase Shifter for Pump-Probe Experiments Using Synchrotron Radiation Pulses

    SciTech Connect

    Tanaka, Yoshihito; Ohshima, Takashi; Moritomo, Yutaka; Tanaka, Hitoshi; Takata, Masaki

    2010-06-23

    Brilliant pulsed x-ray synchrotron radiation (SR) is useful for pump-probe experiment such as time-resolved x-ray diffraction, x-ray absorption fine structure, and x-ray spectroscopy. For laser pump-SR x-ray probe experiments, short pulsed lasers are generally synchronized to the SR master oscillator controlling the voltage for acceleration of electron bunches in an accelerator, and the interval between the laser and the SR pulses is changed around the time scale of target phenomenon. Ideal delay control produces any time delay as keeping the time-precision and pointing-stability of optical pulses at a sample position. We constructed the time delay control module using a continuous phase shifter of radio frequency signal and a frequency divider, which can produce the delayed trigger pulses to the laser without degradation of the time precision and the pointing stability. A picoseconds time-resolved x-ray diffraction experiment was demonstrated at SPring-8 storage ring for fast lattice response by femtosecond pulsed laser irradiation, and suggested the possibility of accurate sound velocity measurement. A delay control unit operating with subpicosecond precision has also been designed for femtosecond pump-probe experiments using a free electron laser at SPring-8 campus.

  3. Phasor analysis for nonlinear pump-probe microscopy

    PubMed Central

    Robles, Francisco E.; Wilson, Jesse W.; Fischer, Martin C.; Warren, Warren S.

    2012-01-01

    Pump-probe microscopy provides molecular information by probing transient, excited state dynamic properties of pigmented samples. Analysis of the transient response is typically conducted using principal component analysis or multi-exponential fitting, however these methods are not always practical or feasible. Here, we show an adaptation of phasor analysis to provide an intuitive, robust, and efficient method for analyzing and displaying pump-probe images, thereby alleviating some of the challenges associated with differentiating multiple pigments. A theoretical treatment is given to understand how the complex transient signals map onto the phasor plot. Analyses of cutaneous and ocular pigmented tissue samples, as well as historical pigments in art demonstrate the utility of this approach.

  4. Fluorescence lifetime imaging by asynchronous pump-probe microscopy.

    PubMed Central

    Dong, C Y; So, P T; French, T; Gratton, E

    1995-01-01

    We report the development of a scanning lifetime fluorescence microscope using the asynchronous, pump-probe (stimulated emission) approach. There are two significant advantages of this technique. First, the cross-correlation signal produced by overlapping the pump and probe lasers results in i) an axial sectioning effect similar to that in confocal and two-photon excitation microscopy, and ii) improved spatial resolution compared to conventional one-photon fluorescence microscopy. Second, the low-frequency, cross-correlation signal generated allows lifetime-resolved imaging without using fast photodetectors. The data presented here include 1) determination of laser sources' threshold powers for linearity in the pump-probe signal; 2) characterization of the pump-probe intensity profile using 0.28 microns fluorescent latex spheres; 3) high frequency (up to 6.7 GHz) lifetime measurement of rhodamine B in water; and 4) lifetime-resolved images of fluorescent latex spheres, human erythrocytes and a mouse fibroblast cell stained by rhodamine DHPE, and a mouse fibroblast labeled with ethidium bromide and rhodamine DHPE. Images FIGURE 2 FIGURE 6 FIGURE 7 FIGURE 8 PMID:8599631

  5. Coherence specific signal detection via chiral pump-probe spectroscopy.

    PubMed

    Holdaway, David I H; Collini, Elisabetta; Olaya-Castro, Alexandra

    2016-05-21

    We examine transient circular dichroism (TRCD) spectroscopy as a technique to investigate signatures of exciton coherence dynamics under the influence of structured vibrational environments. We consider a pump-probe configuration with a linearly polarized pump and a circularly polarized probe, with a variable angle θ between the two directions of propagation. In our theoretical formalism the signal is decomposed in chiral and achiral doorway and window functions. Using this formalism, we show that the chiral doorway component, which beats during the population time, can be isolated by comparing signals with different values of θ. As in the majority of time-resolved pump-probe spectroscopy, the overall TRCD response shows signatures of both excited and ground state dynamics. However, we demonstrate that the chiral doorway function has only a weak ground state contribution, which can generally be neglected if an impulsive pump pulse is used. These findings suggest that the pump-probe configuration of optical TRCD in the impulsive limit has the potential to unambiguously probe quantum coherence beating in the excited state. We present numerical results for theoretical signals in an example dimer system.

  6. Coherence specific signal detection via chiral pump-probe spectroscopy.

    PubMed

    Holdaway, David I H; Collini, Elisabetta; Olaya-Castro, Alexandra

    2016-05-21

    We examine transient circular dichroism (TRCD) spectroscopy as a technique to investigate signatures of exciton coherence dynamics under the influence of structured vibrational environments. We consider a pump-probe configuration with a linearly polarized pump and a circularly polarized probe, with a variable angle θ between the two directions of propagation. In our theoretical formalism the signal is decomposed in chiral and achiral doorway and window functions. Using this formalism, we show that the chiral doorway component, which beats during the population time, can be isolated by comparing signals with different values of θ. As in the majority of time-resolved pump-probe spectroscopy, the overall TRCD response shows signatures of both excited and ground state dynamics. However, we demonstrate that the chiral doorway function has only a weak ground state contribution, which can generally be neglected if an impulsive pump pulse is used. These findings suggest that the pump-probe configuration of optical TRCD in the impulsive limit has the potential to unambiguously probe quantum coherence beating in the excited state. We present numerical results for theoretical signals in an example dimer system. PMID:27208941

  7. Time resolved EUV pump-probe microscopy of fs-LASER induced nanostructure formation

    NASA Astrophysics Data System (ADS)

    Freiberger, R.; Hauck, J.; Reininghaus, M.; Wortmann, D.; Juschkin, L.

    2011-05-01

    We report on our efforts in design and construction of a compact Extreme Ultraviolet (EUV)-pump-probe microscope. The goal is the observation of formation of nanostructures, induced by a femtosecond (fs)-laser pulse. The unique interaction processes of fs-laser radiation with matter open up new markets in laser material processing and, therefore, are actively investigated in the last decade. The resulting "sub 100 nm"-structures offer vast potential benefits in photonics, biotechnology, tribological surface design, plasmonic applications and production of nanoparticles. Focused fs-laser radiation causes a local modification resulting in nanostructures of high precision and reproducibility. However the formation dynamics is not well understood. Research in this field requires high temporal and spatial resolution. A combination of fs-laser and EUV-microscope provides a tool for "in situ"-observation of the formation dynamics. As exemplary structures to be investigated, we use nanojets on thin gold films and periodic surface structures (ripples) on dielectrics. In the future, the EUV-pump-probe microscope can become a versatile tool to observe physical or biological processes. Microscopy using EUV-light is capable of detecting structures on a scale down to several tens of nanometers. For detailed investigations a compact EUV-microscope has been realized utilizing OVI Balmer-alpha radiation at 17.3 nm coming from a discharge produced oxygen plasma. As optical elements a grazing incidence elliptical collector and a zone plate with a width of outermost zone of 50 nm and a spectral filter to avoid chromatic aberrations are used. The detector is a fast gated microchannel plate with a pore size of 2 microns contacted by a low impedance transmission line. The expected spatial resolution of the setup is better than 100 nm and the time resolution is better than 1 ns. The newly developed EUV-microscope is a powerful tool for a wide field of investigations that need high time

  8. Femtosecond dynamics of exciton bleaching in bulk GaN at room temperature

    NASA Astrophysics Data System (ADS)

    Huang, Yin-Chieh; Chern, Gia-Wei; Lin, Kung-Hsuan; Liang, Jian-Chin; Sun, Chi-Kuang; Hsu, Chia-Chen; Keller, Stacia; DenBaars, Steven P.

    2002-07-01

    Femtosecond transient transmission pump-probe technique was used to investigate exciton dynamics in a nominally undoped GaN thin film at room temperature. An exciton ionization time of 100-250 femtoseconds was observed by the time-resolved pump-probe measurement. A comparison experiment with pre-excited free carriers also confirmed the observation of the exciton ionization process in bulk GaN.

  9. Photoacoustic imaging of fluorophores using pump-probe excitation

    PubMed Central

    Märk, Julia; Schmitt, Franz-Josef; Theiss, Christoph; Dortay, Hakan; Friedrich, Thomas; Laufer, Jan

    2015-01-01

    A pump-probe technique for the detection of fluorophores in tomographic PA images is introduced. It is based on inducing stimulated emission in fluorescent molecules, which in turn modulates the amount of thermalized energy, and hence the PA signal amplitude. A theoretical model of the PA signal generation in fluorophores is presented and experimentally validated on cuvette measurements made in solutions of Rhodamine 6G, a fluorophore of known optical and molecular properties. The application of this technique to deep tissue tomographic PA imaging is demonstrated by determining the spatial distribution of a near-infrared fluorophore in a tissue phantom. PMID:26203378

  10. Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors

    SciTech Connect

    Segre, Gino P.

    2001-05-01

    Pump probe spectroscopy is used to examine the picosecond response of a BSCCO thin film, and two YBCO crystals in the near infrared. The role of pump fluence and temperature have been closely examined in an effort to clarify the mechanism by which the quasiparticles rejoin the condensate. BSCCO results suggest that the recombination behavior is consistent with the d-wave density of states in that quasiparticles appear to relax to the nodes immediately before they rejoin the condensate. The first substantial investigation of polarized pump probe response in detwinned YBCO crystals is also reported. Dramatic doping dependent anisotropies along the a and b axes are observed in time and temperature resolved studies. Among many results, we highlight the discovery of an anomalous temperature and time dependence of a- axis response in optimally doped YBCO. We also report on the first observation of the photoinduced response in a magnetic field. We find the amplitude of the response, and in some cases, the dynamics considerably changed with the application of a 6T field. Finally, we speculate on two of the many theoretical directions stimulated by our results. We find that the two-fluid model suggests a mechanism to explain how changes at very low energies are visible to a high-energy probe. Also discussed are basic recombination processes which may play a role in the observed decay.

  11. Non-degenerate pump-probe spectroscopy of single GaN nanowires

    SciTech Connect

    Upadhya, Prashanth C; Taylor, Antoinette J; Prasankumar, Rohiy P; Wang, George T; Martinez, Julio A; Li, Qiming; Swartzentruber, Brian S

    2010-01-01

    Spatially-resolved ultrafast transient absorption measurements on a single GaN nanowire give insight into carrier relaxation dynamics as a function of the probe polarization and position on the nanowire on a femtosecond timescale. The synthesis and optical characterization of semiconductor nanowires (NWs) has gained considerable attention in recent years owing to their unique electronic and optical properties that arise from their anisotropic geometry, large surface to volume ratio and two-dimensional quasiparticle confinement, Post-growth characterization of their properties is crucial in understanding the fundamental physical processes that can lead to enhanced functionality of NW-based devices, In particular, it is important to understand the carrier relaxation pathways in individual NWs, since the geometry of these nanostructures can significantly influence carrier recombination and/or trapping. In this respect, ultrafast optical techniques offer reliable and non-contact spectroscopic tools to study carrier dynamics in semiconductor nanostructures. In summary, time-resolved optical pump-probe spectroscopy was performed on single GaN NWs. These measurements give insight into the different processes that govern carrier capture, particularly at surface states, and relaxation in individual nanostructures. Our experiments thus demonstrate the value of single-particle ultrafast optical spectroscopy in understanding the physical processes that govern the properties of semiconductor NWs, while suggesting approaches to optimize NW-based devices for nanophotonic applications.

  12. Probing ultrafast electronic motions in atoms with the attosecond pump-probe

    NASA Astrophysics Data System (ADS)

    Collins, Lee; Hu, Suxing; Schneider, Barry

    2006-03-01

    Through full-dimensional numerical simulations with using our recently-developed efficient and accurate parallel solver for the time-dependent Schrödinger equation, we have demonstrated that an attosecond pulse can effectively probe the extremely fast motion of an electronic wave packet in atoms. Pumped by a broadband femtosecond UV pulse, one electron of ground-state Helium can be launched into a superposition of low-lying excited states, thus forming a wavepacket that begins to orbit the atomic core. A time-delayed attosecond EUV pulse (probe) then ionizes the atom causing three-body breakup. Measuring either the energy sharing of the ionized electrons or the total ionization probability as a function of the time delay displays the internal motion of the excited electron. Our simulation has shown that an ultrashort Kepler period of 2 fs can be followed for several cylces. This opens the prospect of a wealth of similar pump-probe experiments to examine electronic motion.

  13. Synchronized pulses generated at 20 eV and 90 eV for attosecond pump-probe experiments

    NASA Astrophysics Data System (ADS)

    Fabris, D.; Witting, T.; Okell, W. A.; Walke, D. J.; Matia-Hernando, P.; Henkel, J.; Barillot, T. R.; Lein, M.; Marangos, J. P.; Tisch, J. W. G.

    2015-06-01

    The development of attosecond pulses across different photon energies is an essential precursor to performing pump-probe attosecond experiments in complex systems, where the potential of attosecond science can be further developed. We report the generation and characterization of synchronized extreme ultraviolet (90 eV) and vacuum ultraviolet (20 eV) pulses, generated simultaneously via high-harmonic generation. The vacuum ultraviolet pulses are well suited for pump-probe experiments that exploit the high photo-ionization cross-sections of many molecules in this spectral region as well as the higher photon flux due to the higher conversion efficiency of the high harmonic generation process at these energies. We temporally characterized all pulses using the attosecond streaking technique and the FROG-CRAB retrieval method. We report 576 ± 16 as pulses at 20 eV and 257 ± 21 as pulses at 90 eV. Our demonstration of synchronized attosecond pulses at different photon energies, which are inherently jitter-free due to the common-path geometry implemented, offers unprecedented possibilities for pump-probe studies.

  14. Pump-probe reflectivity study of ultrafast dynamics of strongly correlated 5f electrons inUO2

    SciTech Connect

    Au, Yongqiang Q; Taylor, Antoinette J; Durakiewicz, Tomasz; Rodriguez, George

    2010-01-01

    5f electrons in the Mott insulator UO{sub 2} produce intriguing electronic states and dynamics, such as strong correlation and f-f excitations. We have performed femtosecond pump-probe reflectivity measurements on a single crystal UO{sub 2} at temperatures 5-300 K to study the ultrafast dynamics of photoexcited 5f electrons. The laser pulses at 400 nm pump 5 f electrons across the Mott gap, while those at 800 nm probe the pump-induced change of reflectivity. We find temperature-dependent excitation and relaxation processes and long-lived acoustic phonons, and extract picosecond risetimes and microsecond relaxation times at low temperatures. The observed slow relaxation is ascribed to the decay of Hubbard excitons formed by U{sup 3+}-U{sup 5+} pairs.

  15. Excited state dynamics of metastable phthalocyanine-tetrasulfonate tetra-anions probed by pump/probe photoelectron spectroscopy

    SciTech Connect

    Ehrler, Oli T.; Yang Jiping; Sugiharto, Albert B.; Unterreiner, Andreas N.; Kappes, Manfred M.

    2007-11-14

    Femtosecond time-resolved pump-probe photoelectron spectroscopy was used to study elementary relaxation processes occurring in isolated phthalocyanine-tetrasulfonate tetra-anions ([MPc(SO{sub 3}){sub 4}]{sup 4-}, M=Cu,Ni, and ''free-base'' [H{sub 2}Pc(SO{sub 3}){sub 4}]{sup 4-}) following Q band excitation by one-photon absorption at 775 nm. Whereas the Cu and Ni systems decay rapidly by means of internal conversion without electron loss, the free-base phthalocyanine primarily undergoes excited state tunneling electron emission. This reflects less efficient coupling to lower lying states within the corresponding spin manifold. Results are interpreted in terms of (time-dependent) density functional theory calculations of ground and electronically excited states and kinetically modeled to yield the associated rates.

  16. Quantum Dynamics Simulations for Modeling Experimental Pump-Probe Measurements

    NASA Astrophysics Data System (ADS)

    Pearson, Brett; Nayyar, Sahil; Liss, Kyle; Weinacht, Thomas

    2016-05-01

    Time-resolved studies of quantum dynamics have benefited greatly from developments in ultrafast table-top and free electron lasers. Advances in computer software and hardware have lowered the barrier for performing calculations such that relatively simple simulations allow for direct comparison with experimental results. We describe here a set of quantum dynamics calculations in low-dimensional molecular systems. The calculations incorporate coupled electronic-nuclear dynamics, including two interactions with an applied field and nuclear wave packet propagation. The simulations were written and carried out by undergraduates as part of a senior research project, with the specific goal of allowing for detailed interpretation of experimental pump-probe data (in additional to the pedagogical value).

  17. Probing calculated O2+ potential-energy curves with an XUV-IR pump-probe experiment

    NASA Astrophysics Data System (ADS)

    Cörlin, Philipp; Fischer, Andreas; Schönwald, Michael; Sperl, Alexander; Mizuno, Tomoya; Thumm, Uwe; Pfeifer, Thomas; Moshammer, Robert

    2015-04-01

    We study dissociative photoionization of molecular oxygen in a kinematically complete XUV-IR pump-probe experiment. Detecting charged fragments and photoelectrons in coincidence using a reaction microscope, we observe a pump-probe delay-dependent yield of very low energetic O+ ions which oscillates with a period of 40 fs . This feature is caused by a time-dependent vibrational wave packet in the potential of the binding O2+(a Π4u) state, which is probed by resonant absorption of a single infrared photon to the weakly repulsive O2+(f Π4g) state. By quantitative comparison of the experimental kinetic-energy-release (KER) and quantum-beat (QB) spectra with the results of a coupled-channel simulation, we are able to discriminate between the calculated adiabatic O2+ potential-energy curves (PECs) of Marian et al. [Marian, Marian, Peyerimhoff, Hess, Buenker, and Seger, Mol. Phys. 46, 779 (1982), 10.1080/00268978200101591] and Magrakvelidze et al. [Magrakvelidze, Aikens, and Thumm, Phys. Rev. A 86, 023402 (2012), 10.1103/PhysRevA.86.023402]. In general, we find a good agreement between experimental and simulated KER and QB spectra. However, we could not reproduce all features of the experimental data with these PECs. In contrast, adjusting a Morse potential to the experimental data, most features of the experimental spectra are well reproduced by our simulation. By comparing this Morse potential to theoretically predicted PECs, we demonstrate the sensitivity of our experimental method to small changes in the shape of the binding potential.

  18. Time-resolved pump-probe experiments at the LCLS.

    PubMed

    Glownia, James M; Cryan, J; Andreasson, J; Belkacem, A; Berrah, N; Blaga, C I; Bostedt, C; Bozek, J; DiMauro, L F; Fang, L; Frisch, J; Gessner, O; Gühr, M; Hajdu, J; Hertlein, M P; Hoener, M; Huang, G; Kornilov, O; Marangos, J P; March, A M; McFarland, B K; Merdji, H; Petrovic, V S; Raman, C; Ray, D; Reis, D A; Trigo, M; White, J L; White, W; Wilcox, R; Young, L; Coffee, R N; Bucksbaum, P H

    2010-08-16

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  19. Time-resolved pump-probe experiments at the LCLS

    SciTech Connect

    Glownia, James; Cryan, J.; Andreasson, J.; Belkacem, A.; Berrah, N.; Blaga, C.L.; Bostedt, C.; Bozek, J.; DiMauro, L.F.; Fang, L.; Frisch, J.; Gessner, O.; Guhr, M.; Hajdu, J.; Hertlein, M.P.; Hoener, M.; Huang, G.; Kornilov, O.; Marangos, J.P.; March, A.M.; McFarland, B.K.; /SLAC /Stanford U., Phys. Dept. /SLAC /IRAMIS, Saclay /Stanford U., Phys. Dept. /Georgia Tech /Argonne /Kansas State U. /SLAC /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC /LBNL /Argonne /SLAC /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept.

    2011-08-12

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  20. Pump-probe Kelvin-probe force microscopy: Principle of operation and resolution limits

    SciTech Connect

    Murawski, J.; Graupner, T.; Milde, P. Raupach, R.; Zerweck-Trogisch, U.; Eng, L. M.

    2015-10-21

    Knowledge on surface potential dynamics is crucial for understanding the performance of modern-type nanoscale devices. We describe an electrical pump-probe approach in Kelvin-probe force microscopy that enables a quantitative measurement of dynamic surface potentials at nanosecond-time and nanometer-length scales. Also, we investigate the performance of pump-probe Kelvin-probe force microscopy with respect to the relevant experimental parameters. We exemplify a measurement on an organic field effect transistor that verifies the undisturbed functionality of our pump-probe approach in terms of simultaneous and quantitative mapping of topographic and electronic information at a high lateral and temporal resolution.

  1. Chemical-contrast imaging with pulse-shaping based pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Flynn, Daniel C.; Bhagwat, Amar R.; Ogilvie, Jennifer P.

    2013-02-01

    Ultrafast pump-probe spectroscopy and pulse-shaping techniques are providing new modes of contrast for the field of multiphoton microscopy. Endogenous species such as heme proteins show rich nonlinear spectroscopic signatures of excited state absorption, stimulated emission and ground-state bleaching. Commercially available octave-spanning Ti:sapphire oscillators offer new opportunities for imaging based on pump-probe contrast. Spatial light modulators take advantage of this large bandwidth, shaping pulses of light to selectively excite molecular structures with similar spectral properties. We present two-color pump-probe imaging of heme proteins solutions and red blood cells.

  2. Ultrafast pump-probe dynamics of iron oxide based earth pigments for applications to ancient pottery manufacture

    NASA Astrophysics Data System (ADS)

    Villafana, Tana E.; Brown, William; Warren, Warren S.; Fischer, Martin

    2015-06-01

    We demonstrate that ultrafast pump-probe microscopy provides unique dynamics for natural iron oxide and iron hydroxide earth pigments, despite their chemical similarity. First, we conducted a pump-probe spectroscopy study on heat-treated hematite (the pure red iron oxide mineral) and found the pump-probe dynamics to be temperature dependent. Second, we investigated pottery fired under known conditions and observed firing dependent pump-probe dynamics. Finally, we imaged a New World potshard from the North Carolina Museum of Art. Our results indicate that pump-probe microscopy could be a useful tool in elucidating pottery manufacture.

  3. Rubidium pump-probe spectroscopy: Comparison between ab initio theory and experiment

    SciTech Connect

    Himsworth, M.; Freegarde, T.

    2010-02-15

    We present a simple, analytic model for pump-probe spectroscopy in dilute atomic gases. Our model treats multilevel atoms, takes several broadening mechanisms into account and, with no free parameters, shows excellent agreement with experimentally observed spectra.

  4. Imaging Microscopic Pigment Chemistry in Conjunctival Melanocytic Lesions Using Pump-Probe Laser Microscopy

    PubMed Central

    Wilson, Jesse W.; Vajzovic, Lejla; Robles, Francisco E.; Cummings, Thomas J.; Mruthyunjaya, Prithvi; Warren, Warren S.

    2013-01-01

    Purpose. To report the application of a novel imaging technique, pump-probe microscopy, to analyze patterns of pigment chemistry of conjunctival melanocytic lesion biopsies. Methods. Histopathologic specimens of eight previously excised conjunctival melanocytic lesions were analyzed with pump-probe microscopy. The technique uses a laser scanning microscope with a two-color pulsed laser source to distinguish hemoglobin, eumelanin, and pheomelanin pigment based on differences in transient excited state and ground state photodynamics. The pump-probe signatures of conjunctival melanins were compared with cutaneous melanins. The distributions of hemoglobin, eumelanin, and pheomelanin were analyzed, and pump-probe images were correlated with adjacent hematoxylin and eosin (H&E)-stained sections. Results. The pump-probe signatures of conjunctival melanins are similar, but not identical to cutaneous melanins. In addition, there are qualitative and quantitative differences in the structure and pigment chemistry of conjunctival benign nevi, primary acquired melanosis of the conjunctiva (PAM), and conjunctival melanomas. The pump-probe images correlated well with histopathologic features observed in the adjacent H&E-stained sections, and provided a label-free means of discerning conjunctival anatomic features and pathologic benign or malignant tissue. Conclusions. Pump-probe laser microscopy shows promise as an adjuvant diagnostic tool in evaluation of ocular melanocytic lesions based on morphologic correlation with the histopathology results and pigment chemistry. This initial study suggests systematic differences in pigmentation patterns among conjunctival benign nevi, primary acquired melanosis, and melanomas. In addition, pump-probe microscopy has the potential for use as a noninvasive “in vivo” optical biopsy technique to aid clinical and surgical management of conjunctival melanocytic lesions. PMID:24065811

  5. A compact versatile femtosecond spectrometer

    NASA Astrophysics Data System (ADS)

    Nagarajan, V.; Johnson, E.; Schellenberg, P.; Parson, W.; Windeler, R.

    2002-12-01

    A compact apparatus for femtosecond pump-probe experiments is described. The apparatus is based on a cavity-dumped titanium:sapphire laser. Probe pulses are generated by focusing weak (˜1 nJ) pulses into a microstructure fiber that produces broadband continuum pulses with high efficiency. With the pump pulses compressed and probe pulses uncompressed, the rise time of the pump-probe signals is <100 fs. The 830 nm pump pulses are also frequency doubled to generate light for excitation at 415 nm. The versatility of the spectrometer is demonstrated by exciting molecules at either 830 or 415 nm, and probing at wavelengths ranging from 500 to 950 nm. Some results on the green fluorescent protein are presented.

  6. Femtosecond IR pump-probe spectroscopy of nonlinear energy localization in protein models and model proteins.

    PubMed

    Hamm, Peter

    2009-02-01

    This paper reviews our experimental and theoretical efforts toward understanding vibrational self-trapping of the amide I and N-H mode of crystalline acetanilide (ACN), other similar hydrogen-bonded crystals, as well as of model peptides. In contrast to previous works, we used nonlinear IR spectroscopy as the experimental tool, which is specifically sensitive to the anharmonic contributions of the intramolecular interactions (as the nonlinear IR response of set of harmonic oscillators vanishes exactly). Our work reconfirms the previous assignment of the two bands of the amide I mode of ACN as being a self-trapped and a free exciton state, but in addition also establishes the lifetimes of these states and identifies the relevant phonons. Furthermore, we provide evidence for vibrationally self-trapped states also in model alpha-helices. However, given the short lifetime, any biological relevance in the sense of Davydov's initial proposal can probably be ruled out. PMID:19669566

  7. Probing calculated O 2 + potential curves with an XUV-IR pump-probe experiment

    NASA Astrophysics Data System (ADS)

    Coerlin, Philipp; Fischer, Andreas; Schoenwald, Michael; Sperl, Alexander; Mizuno, Tomoya; Pfeifer, Thomas; Moshammer, Robert; Thumm, Uwe

    2015-05-01

    We study dissociative photo-ionization of O2 in a kinematically complete XUV-IR pump-probe experiment, preparing a vibrational wave packet in the potential of the binding O2+(a4Πu)state by ionization with a single XUV photon. After a variable time-delay the wave packet is promoted to the repulsive O2+(f4Πg)state by a weak IR probe pulse. Comparing the results of a coupled-channel simulation with the experimental kinetic-energy-release and quantum-beat spectra, we are able to discriminate between the adiabatic O2+potential-energy curves (PECs) calculated by. The overall agreement between simulated and experimental results is good; however, not all features of the experimental spectra could be reproduced using these PECs. Using a Morse potential adjusted to the experimental data instead, most features of the experimental spectra are well reproduced by our simulation. This optimized Morse potential is remarkably similar to the theoretically predicted PECs, demonstrating the sensitivity of our experimental method to small changes in the shape of the binding potential. Supported by the DoE, NSF, and Alexander von Humboldt foundation.

  8. A photoelectron-photoion coincidence imaging apparatus for femtosecond time-resolved molecular dynamics with electron time-of-flight resolution of {sigma}=18 ps and energy resolution {delta}E/E=3.5%

    SciTech Connect

    Vredenborg, Arno; Roeterdink, Wim G.; Janssen, Maurice H. M.

    2008-06-15

    We report on the construction and performance of a novel photoelectron-photoion coincidence machine in our laboratory in Amsterdam to measure the full three-dimensional momentum distribution of correlated electrons and ions in femtosecond time-resolved molecular beam experiments. We implemented sets of open electron and ion lenses to time stretch and velocity map the charged particles. Time switched voltages are operated on the particle lenses to enable optimal electric field strengths for velocity map focusing conditions of electrons and ions separately. The position and time sensitive detectors employ microchannel plates (MCPs) in front of delay line detectors. A special effort was made to obtain the time-of-flight (TOF) of the electrons at high temporal resolution using small pore (5 {mu}m) MCPs and implementing fast timing electronics. We measured the TOF distribution of the electrons under our typical coincidence field strengths with a temporal resolution down to {sigma}=18 ps. We observed that our electron coincidence detector has a timing resolution better than {sigma}=16 ps, which is mainly determined by the residual transit time spread of the MCPs. The typical electron energy resolution appears to be nearly laser bandwidth limited with a relative resolution of {delta}E{sub FWHM}/E=3.5% for electrons with kinetic energy near 2 eV. The mass resolution of the ion detector for ions measured in coincidence with electrons is about {delta}m{sub FWHM}/m=1/4150. The velocity map focusing of our extended source volume of particles, due to the overlap of the molecular beam with the laser beams, results in a parent ion spot on our detector focused down to {sigma}=115 {mu}m.

  9. Gadolinium photoionization process

    DOEpatents

    Paisner, J.A.; Comaskey, B.J.; Haynam, C.A.; Eggert, J.H.

    1993-04-13

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  10. Gadolinium photoionization process

    DOEpatents

    Paisner, Jeffrey A.; Comaskey, Brian J.; Haynam, Christopher A.; Eggert, Jon H.

    1993-01-01

    A method is provided for selective photoionization of the odd-numbered atomic mass gadolinium isotopes 155 and 157. The selective photoionization is accomplished by circular or linear parallel polarized laser beam energy effecting a three-step photoionization pathway.

  11. Disentangling Multichannel Photodissociation Dynamics in Acetone by Time-Resolved Photoelectron-Photoion Coincidence Spectroscopy.

    PubMed

    Maierhofer, Paul; Bainschab, Markus; Thaler, Bernhard; Heim, Pascal; Ernst, Wolfgang E; Koch, Markus

    2016-08-18

    For the investigation of photoinduced dynamics in molecules with time-resolved pump-probe photoionization spectroscopy, it is essential to obtain unequivocal information about the fragmentation behavior induced by the laser pulses. We present time-resolved photoelectron-photoion coincidence (PEPICO) experiments to investigate the excited-state dynamics of isolated acetone molecules triggered by two-photon (269 nm) excitation. In the complex situation of different relaxation pathways, we unambiguously identify three distinct pump-probe ionization channels. The high selectivity of PEPICO detection allows us to observe the fragmentation behavior and to follow the time evolution of each channel separately. For channels leading to fragment ions, we quantitatively obtain the fragment-to-parent branching ratio and are able to determine experimentally whether dissociation occurs in the neutral molecule or in the parent ion. These results highlight the importance of coincidence detection for the interpretation of time-resolved photochemical relaxation and dissociation studies if multiple pathways are present.

  12. Imaging pigment chemistry in melanocytic conjunctival lesions with pump-probe microscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Vajzovic, Lejla; Robles, Francisco E.; Cummings, Thomas J.; Mruthyunjaya, Prithvi; Warren, Warren S.

    2013-03-01

    We extend nonlinear pump-probe microscopy, recently demonstrated to image the microscopic distribution of eumelanin and pheomelanin in unstained skin biopsy sections, to the case of melanocytic conjunctival lesions. The microscopic distribution of pigmentation chemistry serves as a functional indicator of melanocyte activity. In these conjunctival specimens (benign nevi, primary acquired melanoses, and conjunctival melanoma), we have observed pump-probe spectroscopic signatures of eumelanin, pheomelanin, hemoglobin, and surgical ink, in addition to important structural features that differentiate benign from malignant lesions. We will also discuss prospects for an in vivo `optical biopsy' to provide additional information before having to perform invasive procedures.

  13. Ultrafast relaxation kinetics of the dark S 1 state in all- trans-β-carotene explored by one- and two-photon pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Abe, Kenta; Karasawa, Hiroshi; Fujiwara, Masazumi; Cogdell, Richard J.; Hashimoto, Hideki; Yoshizawa, Masayuki

    2010-07-01

    Femtosecond one- and two-photon pump-probe dispersive spectroscopic measurements have been applied to the investigation of the vibrational relaxation kinetics of the dark S 1 (2 1Ag-) state in β-carotene, combining a higher sensitive detection system with tunable visible and infrared excitation pulses. The two-photon excitation measurements enable the preferential detection of the dark S 1 state. The tunable infrared excitation pulses allowed selective excitation to a different vibrational level of S 1. The S 1 dynamics at early delay times depend strongly on excitation energy. A dependence of the initial S 1 dynamics on excitation energy is discussed in term of the vibrational relaxation of S 1.

  14. Optical pump-probe microscopy for biomedicine and art conservation

    NASA Astrophysics Data System (ADS)

    Fischer, Martin

    2013-03-01

    Nonlinear optical microscopy can provide contrast in highly heterogeneous media and a wide range of applications has emerged, primarily in biology, medicine, and materials science. Compared to linear microscopy methods, the localized nature of nonlinear interactions leads to high spatial resolution, optical sectioning, and larger possible imaging depth in scattering media. However, nonlinear contrast (other than fluorescence, harmonic generation or CARS) is generally difficult to measure because it is overwhelmed by the large background of detected illumination light. This background can be suppressed by using femtosecond pulse or pulse train shaping to encode nonlinear interactions in background-free regions of the frequency spectrum. We have developed this shaping technology to study novel intrinsic structural and molecular contrast in biological tissue, generally using less power than a laser pointer. For example we have recently been able to sensitively measure detailed transient absorption dynamics of melanin sub-types in a variety of skin lesions, showing clinically relevant differences of melanin type and distribution between cancerous and benign tissue.[1] Recently we have also applied this technology to paint samples and to historic artwork in order to provide detailed, depth-resolved pigment identification. Initial studies in different inorganic and organic pigments have shown a rich and pigment-specific nonlinear absorption signature.[2] Some pigments, for example lapis lazuli (natural ultramarine), even show marked differences in signal depending on its geographic origin and on age, demonstrating the potential of this technique to determine authenticity, provenance, technology of manufacture, or state of preservation of historic works of art.

  15. Frequency domain approach for time-resolved pump-probe microscopy using intensity modulated laser diodes.

    PubMed

    Miyazaki, J; Kawasumi, K; Kobayashi, T

    2014-09-01

    We present a scheme for time-resolved pump-probe microscopy using intensity modulated laser diodes. The modulation frequencies of the pump and probe beams are varied up to 500 MHz with fixed frequency detuning typically set at 15 kHz. The frequency response of the pump-probe signal is detected using a lock-in amplifier referenced at the beat frequency. This frequency domain method is capable of characterizing the nanosecond to picosecond relaxation dynamics of sample species without the use of a high speed detector or a high frequency lock-in amplifier. Furthermore, as the pump-probe signal is based on the nonlinear interaction between the two laser beams and the sample, our scheme provides better spatial resolution than the conventional diffraction-limited optical microscopes. Time-resolved pump-probe imaging of fluorescence beads and aggregates of quantum dots demonstrates that this method is useful for the microscopic analysis of optoelectronic devices. The system is implemented using compact and low-cost laser diodes, and thus has a broad range of applications in the fields of photochemistry, optical physics, and biological imaging.

  16. Pump-probe surface photovoltage spectroscopy measurements on semiconductor epitaxial layers

    SciTech Connect

    Jana, Dipankar Porwal, S.; Sharma, T. K. Oak, S. M.; Kumar, Shailendra

    2014-04-15

    Pump-probe Surface Photovoltage Spectroscopy (SPS) measurements are performed on semiconductor epitaxial layers. Here, an additional sub-bandgap cw pump laser beam is used in a conventional chopped light geometry SPS setup under the pump-probe configuration. The main role of pump laser beam is to saturate the sub-bandgap localized states whose contribution otherwise swamp the information related to the bandgap of material. It also affects the magnitude of Dember voltage in case of semi-insulating (SI) semiconductor substrates. Pump-probe SPS technique enables an accurate determination of the bandgap of semiconductor epitaxial layers even under the strong influence of localized sub-bandgap states. The pump beam is found to be very effective in suppressing the effect of surface/interface and bulk trap states. The overall magnitude of SPV signal is decided by the dependence of charge separation mechanisms on the intensity of the pump beam. On the contrary, an above bandgap cw pump laser can be used to distinguish the signatures of sub-bandgap states by suppressing the band edge related feature. Usefulness of the pump-probe SPS technique is established by unambiguously determining the bandgap of p-GaAs epitaxial layers grown on SI-GaAs substrates, SI-InP wafers, and p-GaN epilayers grown on Sapphire substrates.

  17. Characterization of dilute optical lattices using pump-probe spectroscopy and photon correlation measurements

    NASA Astrophysics Data System (ADS)

    Clements, Ethan; Ross, Preston; Rapp, Anthony; Cai, Hong; Reigle, Alex; Schlonsky, Eli; Lee, Hoseong; Clemens, James; Bali, Samir

    2016-05-01

    We experimentally investigate optical lattices using three different methods: pump-probe spectroscopy of vibrational energy levels, photon correlation of light scattered by cold atoms, and fluorescence imaging. Photon correlations of the scattered light can be used to measure lattice dwell times and crossover times between lattice sites. From this information we can derive the diffusion constant which can then be compared to direct measurement via fluorescence imaging. Furthermore, by Fourier transforming the time delayed photon correlations we can obtain the intensity spectrum which can be compared directly to pump-probe spectroscopy of the vibrational energy levels. We plan to carefully study situations in which the atomic transport properties deviate from Boltzman Gibbs statistics.

  18. Pump-Probe Spectroscopy of Two-Body Correlations in Ultracold Gases

    SciTech Connect

    Koch, Christiane P.; Kosloff, Ronnie

    2009-12-31

    We suggest pump-probe spectroscopy to study pair correlations that determine the many-body dynamics in weakly interacting, dilute ultracold gases. A suitably chosen, short laser pulse depletes the pair density locally, creating a 'hole' in the electronic ground state. The dynamics of this nonstationary pair density is monitored by a time-delayed probe pulse. The resulting transient signal allows us to spectrally decompose the hole and to map out the pair correlation function.

  19. Microwave pump-probe spectroscopy of the dipole-dipole interaction in a cold Rydberg gas

    NASA Astrophysics Data System (ADS)

    Park, Hyunwook; Gallagher, T. F.; Pillet, P.

    2016-05-01

    Microwave pump-probe experiments starting with a cold gas of Rb 34 s atoms confirm that cusped line shapes observed in dipole-dipole broadened microwave transitions are due to atoms which are widely separated and exhibit small dipole-dipole energy shifts. When the experiments are interpreted in terms of a nearest-neighbor model, they demonstrate that it is possible to select pairs of atoms based on their separation and orientation.

  20. Polarized pump--probe spectroscopy of electronic excitation transport in photosynthetic antennas

    SciTech Connect

    Struve, W.S. )

    1990-08-01

    Polarized pump--probe spectroscopy was performed with 1.5--2 psec resolution on the bacteriochlorophyll a protein antenna complex from the green sulfur bacterium Prosthecochloris aestuarii and on native and enriched photosystem I particles from spinach. The resulting photobleaching profiles reflect the details of singlet electronic-excitation transport in these photosynthetic antennas, in which the pigments are complexed by proteins into clusters of five or more chromophores.

  1. Comparing in vivo pump-probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Degan, Simone; Gainey, Christina S.; Mitropoulos, Tanya; Simpson, Mary Jane; Zhang, Jennifer Y.; Warren, Warren S.

    2015-05-01

    We demonstrate a multimodal approach that combines a pump-probe with confocal reflectance and multiphoton autofluorescence microscopy. Pump-probe microscopy has been proven to be of great value in analyzing thin tissue sections of pigmented lesions, as it produces molecular contrast which is inaccessible by other means. However, the higher optical intensity required to overcome scattering in thick tissue leads to higher-order nonlinearities in the optical response of melanin (e.g., two-photon pump and one-photon probe) that present additional challenges for interpreting the data. We show that analysis of pigment composition in vivo must carefully account for signal terms that are nonlinear with respect to the pump and probe intensities. We find that pump-probe imaging gives useful contrast for pigmented structures over a large range of spatial scales (100 μm to 1 cm), making it a potentially useful tool for tracking the progression of pigmented lesions without the need to introduce exogenous contrast agents.

  2. Chasing charge localization and chemical reactivity following photoionization in liquid water

    SciTech Connect

    Marsalek, Ondrej; Pluharova, Eva; Jungwirth, Pavel; Elles, Christopher G.; Pieniazek, Piotr A.; Bradforth, Stephen E.; VandeVondele, Joost

    2011-12-14

    The ultrafast dynamics of the cationic hole formed in bulk liquid water following ionization is investigated by ab initio molecular dynamics simulations and an experimentally accessible signature is suggested that might be tracked by femtosecond pump-probe spectroscopy. This is one of the fastest fundamental processes occurring in radiation-induced chemistry in aqueous systems and biological tissue. However, unlike the excess electron formed in the same process, the nature and time evolution of the cationic hole has been hitherto little studied. Simulations show that an initially partially delocalized cationic hole localizes within {approx}30 fs after which proton transfer to a neighboring water molecule proceeds practically immediately, leading to the formation of the OH radical and the hydronium cation in a reaction which can be formally written as H{sub 2}O{sup +}+ H{sub 2}O {yields} OH + H{sub 3}O{sup +}. The exact amount of initial spin delocalization is, however, somewhat method dependent, being realistically described by approximate density functional theory methods corrected for the self-interaction error. Localization, and then the evolving separation of spin and charge, changes the electronic structure of the radical center. This is manifested in the spectrum of electronic excitations which is calculated for the ensemble of ab initio molecular dynamics trajectories using a quantum mechanics/molecular mechanics (QM/MM) formalism applying the equation of motion coupled-clusters method to the radical core. A clear spectroscopic signature is predicted by the theoretical model: as the hole transforms into a hydroxyl radical, a transient electronic absorption in the visible shifts to the blue, growing toward the near ultraviolet. Experimental evidence for this primary radiation-induced process is sought using femtosecond photoionization of liquid water excited with two photons at 11 eV. Transient absorption measurements carried out with {approx}40 fs time

  3. Chasing charge localization and chemical reactivity following photoionization in liquid water.

    PubMed

    Marsalek, Ondrej; Elles, Christopher G; Pieniazek, Piotr A; Pluhařová, Eva; VandeVondele, Joost; Bradforth, Stephen E; Jungwirth, Pavel

    2011-12-14

    The ultrafast dynamics of the cationic hole formed in bulk liquid water following ionization is investigated by ab initio molecular dynamics simulations and an experimentally accessible signature is suggested that might be tracked by femtosecond pump-probe spectroscopy. This is one of the fastest fundamental processes occurring in radiation-induced chemistry in aqueous systems and biological tissue. However, unlike the excess electron formed in the same process, the nature and time evolution of the cationic hole has been hitherto little studied. Simulations show that an initially partially delocalized cationic hole localizes within ~30 fs after which proton transfer to a neighboring water molecule proceeds practically immediately, leading to the formation of the OH radical and the hydronium cation in a reaction which can be formally written as H(2)O(+) + H(2)O → OH + H(3)O(+). The exact amount of initial spin delocalization is, however, somewhat method dependent, being realistically described by approximate density functional theory methods corrected for the self-interaction error. Localization, and then the evolving separation of spin and charge, changes the electronic structure of the radical center. This is manifested in the spectrum of electronic excitations which is calculated for the ensemble of ab initio molecular dynamics trajectories using a quantum mechanics/molecular mechanics (QM∕MM) formalism applying the equation of motion coupled-clusters method to the radical core. A clear spectroscopic signature is predicted by the theoretical model: as the hole transforms into a hydroxyl radical, a transient electronic absorption in the visible shifts to the blue, growing toward the near ultraviolet. Experimental evidence for this primary radiation-induced process is sought using femtosecond photoionization of liquid water excited with two photons at 11 eV. Transient absorption measurements carried out with ~40 fs time resolution and broadband spectral probing

  4. Long-lived coherent traveling acoustic pulses induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Wang, Jincheng; Guo, Chunlei

    2007-11-01

    In this paper, we systematically study the generation and propagation of coherent acoustic pulses in a metal-dielectric system using a two-color femtosecond pump-probe technique at different probe angles. A long-lived acoustic oscillation is observed in a borosilicate glass coated with gold and shows different attenuations and amplitude at different probe wavelengths. Our study demonstrates that the two-color optical pump-probe technique can be used as a noninvasive tool to study acoustic properties of dielectric materials.

  5. Femtosecond Synchronization of Laser Systems for the LCLS

    SciTech Connect

    Byrd, John; Doolittle, Lawrence; Huang, Gang; Staples, John; Wilcox, Russell; Arthur, John; Frisch, Josef; White, William; /SLAC

    2012-08-24

    The scientific potential of femtosecond x-ray pulses at linac-driven free-electron lasers such as the Linac Coherent Light Source is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. An optical timing system based on stabilized fiber links has been developed for the LCLS to provide this synchronization. Preliminary results show synchronization of the installed stabilized links at the sub-20-femtosecond level. We present details of the implementation at LCLS and potential for future development.

  6. Maximizing hole coherence in ultrafast photoionization of argon with an optimization by sequential parametrization update

    NASA Astrophysics Data System (ADS)

    Goetz, R. Esteban; Merkel, Maximilian; Karamatskou, Antonia; Santra, Robin; Koch, Christiane P.

    2016-08-01

    Photoionization with attosecond pulses populates hole states in the photoion. Superpositions of hole states represent ideal candidates for time-dependent spectroscopy, for example via pump-probe studies. The challenge consists in identifying pulses that create coherent superpositions of hole states while satisfying practical constraints. Here, we employ quantum optimal control to maximize the degree of coherence between these hole states. To this end, we introduce a derivative-free optimization method with sequential parametrization update (SPA optimization). We demonstrate the versatility and computational efficiency of SPA optimization for photoionization in argon by maximizing the coherence between the 3 s and 3 p0 hole states using shaped attosecond pulses. We show that it is possible to maximize the hole coherence while simultaneously prescribing the ratio of the final hole state populations.

  7. Diagnosis and staging of female genital tract melanocytic lesions using pump-probe microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Robles, Francisco E.; Selim, Maria A.; Warren, Warren S.

    2016-02-01

    Melanoma of the vulva is the second most common type of malignancy afflicting that organ. This disease caries poor prognosis, and shows tendencies to recur locally and develop distant metastases through hematogenous dissemination. Further, there exists significant clinical overlap between early-stage melanomas and melanotic macules, benign lesions that are believed to develop in about 10% of the general female population. In this work we apply a novel nonlinear optical method, pump-probe microscopy, to quantitatively analyze female genitalia tract melanocytic lesions. Pump-probe microscopy provides chemical information of endogenous pigments by probing their electronic excited state dynamics, with subcellular resolution. Using unstained biopsy sections from 31 patients, we find significant differences between melanin type and structure in tissue regions with invasive melanoma, melanoma in-situ and non-malignant melanocytic proliferations (e.g., nevi, melanocytic macules). The molecular images of non-malignant lesion have a well-organized structure, with relatively homogenous pigment chemistry, most often consistent with that of eumelanin with large aggregate size or void of metals, such as iron. On the other hand, pigment type and structure observed in melanomas in-situ and invasive melanomas is typically much more heterogeneous, with larger contributions from pheomelanin, melanins with larger metal content, and/or melanins with smaller aggregate size. Of most significance, clear differences can be observed between melanocytic macules and vulvar melanoma in-situ, which, as discussed above, can be difficult to clinically distinguish. This initial study demonstrates pump-probe microscopy's potential as an adjuvant diagnostic tool by revealing systematic chemical and morphological differences in melanin pigmentation among invasive melanoma, melanoma in-situ and non-malignant melanocytic lesions.

  8. Ultrafast pump-probe spectroscopy in gallium arsenide at 25 T.

    PubMed

    Curtis, Jeremy A; Tokumoto, Takahisa; Nolan, Nicholas K; McClintock, Luke M; Cherian, Judy G; McGill, Stephen A; Hilton, David J

    2014-10-01

    We have performed high-fluence, nondegenerate pump-probe spectroscopy in the Split Florida-Helix magnet at 25 T and 15 K. The electronic component of our ultrafast differential reflectivity can be described with a simplified four-level approximation to determine the scattering and recombination rates. Ultrafast oscillations are well described by a coherent acoustic phonon model. Our free-space ultrafast spectroscopic technique will permit future experimental investigations to study novel photoinduced phase transitions and complex interactions in correlated electron systems, which will require the high pulse energies of our free-space alternative.

  9. Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si

    SciTech Connect

    Murphy, Ryan D.; Torralva, Ben; Adams, David P.; Yalisove, Steven M.

    2013-09-30

    Ultrafast pump-probe microscopy has been used to investigate laser-induced periodic surface structure (LIPSS) formation on polished Si surfaces. A crater forms on the surface after irradiation by a 150 fs laser pulse, and a second, subsequent pulse forms LIPSS within the crater. Sequentially delayed images show that LIPSS with a periodicity slightly less than the fundamental laser wavelength of 780 nm appear on Si surfaces ∼50 ps after arrival of the second pump laser pulse, well after the onset of melting. LIPSS are observed on the same timescale as material removal, suggesting that their formation involves material ejection.

  10. Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump.

    PubMed

    Carroll, Lee; Friedli, Peter; Lerch, Philippe; Schneider, Jörg; Treyer, Daniel; Hunziker, Stephan; Stutz, Stefan; Sigg, Hans

    2011-06-01

    Synchrotron infrared sources have become popular mainly because of their excellent broadband brilliance, which enables spectroscopically resolved spatial-mapping of stationary objects at the diffraction limit. In this article we focus on an often-neglected further advantage of such sources - their unique time-structure - to bring such broadband spectroscopy to the time domain, for studying dynamic phenomenon down to the 100 ps limit. We describe the ultra-broadband (12.5 to 1.1 μm) Fourier transform pump-probe setup, for condensed matter transmission- and reflection-spectroscopy, installed at the X01DC infrared beam-line of the Swiss Light Source (SLS). The optical pump consists of a widely tuneable 100 ps 1 kHz laser system, covering 94% of the 16 to 1.1 μm range. A thorough description of the system is given, including (i) the vector-modulator providing purely electronic tuning of the pump-probe overlap up to 1 ms with sub-ps time resolution, (ii) the 500 MHz data acquisition system interfaced with the experimental physics and industrial control system (EPICS) based SLS control system for consecutive pulse sampling, and (iii) the step-scan time-slice Fourier transform scheme for simultaneous recording of the dual-channel pumped, un-pumped, and difference spectra. The typical signal/noise ratio of a single interferogram in a 100 ps time slice is 300 (measured during one single 140 s TopUp period). This signal/noise ratio is comparable to that of existing gated Globar pump-probe Fourier transform spectroscopy, but brings up to four orders of magnitude better time resolution. To showcase the utility of broadband pump-probe spectroscopy, we investigate a Ge-on-Si material system similar to that in which optically pumped direct-gap lasing was recently reported. We show that the mid-infrared reflection-spectra can be used to determine the optically injected carrier density, while the mid- and near-infrared transmission-spectra can be used to separate the strong pump

  11. Nonequilibrium Pump-Probe Photoexcitation as a Tool for Analyzing Unoccupied Equilibrium States of Correlated Electrons

    NASA Astrophysics Data System (ADS)

    Yamaji, Youhei; Imada, Masatoshi

    2016-09-01

    Relaxation of electrons in a Hubbard ring coupled to a dissipative bosonic bath is studied to simulate the pump-probe photoemission measurement. From this insight, we propose an experimental method of eliciting the unoccupied part of single-particle spectra at the equilibrium of doped Mott insulators. We reveal first that the effective temperatures of distribution functions and electronic spectra are different during the relaxation, which makes the frequently employed thermalization picture inappropriate. Contrary to the conventional analysis, we show that the unoccupied spectra at equilibrium can be detected as the states that relax faster.

  12. Extraction of carrier lifetime in Ge waveguides using pump probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Srinivasan, S. A.; Pantouvaki, M.; Verheyen, P.; Lepage, G.; Absil, P.; Van Campenhout, J.; Van Thourhout, D.

    2016-05-01

    Carrier lifetimes in Ge-on-Si waveguides are deduced using time-resolved infrared transmission pump-probe spectroscopy. Dynamics of pump-induced excess carriers generated in waveguides with varying Ge thickness and width is probed using a CW laser. The lifetimes of these excess carriers strongly depend on the thickness and width of the waveguide due to defect assisted surface recombination. Interface recombination velocities of 0.975 × 104 cm/s and 1.45 × 104 cm/s were extracted for the Ge/Si and the Ge/SiO2 interfaces, respectively.

  13. Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump

    SciTech Connect

    Carroll, Lee; Friedli, Peter; Stutz, Stefan; Sigg, Hans; Lerch, Philippe; Schneider, Joerg; Treyer, Daniel; Hunziker, Stephan

    2011-06-15

    Synchrotron infrared sources have become popular mainly because of their excellent broadband brilliance, which enables spectroscopically resolved spatial-mapping of stationary objects at the diffraction limit. In this article we focus on an often-neglected further advantage of such sources - their unique time-structure - to bring such broadband spectroscopy to the time domain, for studying dynamic phenomenon down to the 100 ps limit. We describe the ultra-broadband (12.5 to 1.1 {mu}m) Fourier transform pump-probe setup, for condensed matter transmission- and reflection-spectroscopy, installed at the X01DC infrared beam-line of the Swiss Light Source (SLS). The optical pump consists of a widely tuneable 100 ps 1 kHz laser system, covering 94% of the 16 to 1.1 {mu}m range. A thorough description of the system is given, including (i) the vector-modulator providing purely electronic tuning of the pump-probe overlap up to 1 ms with sub-ps time resolution, (ii) the 500 MHz data acquisition system interfaced with the experimental physics and industrial control system (EPICS) based SLS control system for consecutive pulse sampling, and (iii) the step-scan time-slice Fourier transform scheme for simultaneous recording of the dual-channel pumped, un-pumped, and difference spectra. The typical signal/noise ratio of a single interferogram in a 100 ps time slice is 300 (measured during one single 140 s TopUp period). This signal/noise ratio is comparable to that of existing gated Globar pump-probe Fourier transform spectroscopy, but brings up to four orders of magnitude better time resolution. To showcase the utility of broadband pump-probe spectroscopy, we investigate a Ge-on-Si material system similar to that in which optically pumped direct-gap lasing was recently reported. We show that the mid-infrared reflection-spectra can be used to determine the optically injected carrier density, while the mid- and near-infrared transmission-spectra can be used to separate the strong

  14. Vibrationally coherent photochemistry in the femtosecond primary event of vision.

    PubMed

    Wang, Q; Schoenlein, R W; Peteanu, L A; Mathies, R A; Shank, C V

    1994-10-21

    Femtosecond pump-probe experiments reveal the impulsive production of photoproduct in the primary event in vision. The retinal chromophore of rhodopsin was excited with a 35-femtosecond pulse at 500 nanometers, and transient changes in absorption were measured with 10-femtosecond probe pulses. At probe wavelengths within the photo-product absorption band, oscillatory features with a period of 550 femtoseconds (60 wavenumbers) were observed whose phase and amplitude demonstrate that they are the result of nonstationary vibrational motion in the ground state of the photoproduct. The observation of coherent vibrational motion of the photoproduct supports the idea that the primary step in vision is a vibrationally coherent process and that the high quantum yield of the cis-->trans isomerization in rhodopsin is a consequence of the extreme speed of the excited-state torsional motion. PMID:7939680

  15. Tunable IR/THz source for pump probe experiments at the European XFEL

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.; Krasilnikov, M.; Stephan, F.

    2013-05-01

    We present a concept of an accelerator based source of powerful, coherent IR/THz radiation for pump-probe experiments at the European XFEL. The electron accelerator is similar to that operating at the PITZ facility. It consists of an rf gun and a warm accelerating section (energy up to 30 MeV). The radiation is generated in an APPLE-II type undulator, thus providing polarization control. Radiation with wavelength below 200 micrometers is generated using the mechanism of SASE FEL. Powerful coherent radiation with wavelength above 200 micrometers is generated in the undulator by a tailored (compressed) electron beam. Properties of the radiation are: wavelength range is 10 to 1000 micrometers (30 THz - 0.3 THz), radiation pulse energy is up to a few hundred microjoule, peak power is 10 to 100 MW, spectrum bandwidth is 2 - 3 %. Pump-probe experiments involving ultrashort electron pulses can be realized as well. The time structure of the THz source and x-ray FEL are perfectly matched since the THz source is based on the same technology as the injector of the European XFEL. A similar scheme can also be realized at LCLS, SACLA, or SWISS FEL with S-band rf accelerator technology.

  16. Confocal ultrafast pump-probe spectroscopy: a new technique to explore nanoscale composites

    NASA Astrophysics Data System (ADS)

    Virgili, Tersilla; Grancini, Giulia; Molotokaite, Egle; Suarez-Lopez, Inma; Rajendran, Sai Kiran; Liscio, Andrea; Palermo, Vincenzo; Lanzani, Guglielmo; Polli, Dario; Cerullo, Giulio

    2012-03-01

    This article is devoted to the exploration of the benefits of a new ultrafast confocal pump-probe technique, able to study the photophysics of different structured materials with nanoscale resolution. This tool offers many advantages over standard stationary microscopy techniques because it directly interrogates excited state dynamics in molecules, providing access to both radiative and non-radiative deactivation processes at a local scale. In this paper we present a few different examples of its application to organic semiconductor systems. The first two are focussed on the study of the photophysics of phase-separated polymer blends: (i) a blue-emitting polyfluorene (PFO) in an inert matrix of PMMA and (ii) an electron donor polythiophene (P3HT) mixed with an electron acceptor fullerene derivative (PCBM). The experimental results on these samples demonstrate the capability of the technique to unveil peculiar interfacial dynamics at the border region between phase-segregated domains, which would be otherwise averaged out using conventional pump-probe spectroscopy. The third example is the study of the photophysics of isolated mesoscopic crystals of the PCBM molecule. Our ultrafast microscope could evidence the presence of two distinctive regions within the crystals. In particular, we could pinpoint for the first time areas within the crystals showing photobleaching/stimulated emission signals from a charge-transfer state.

  17. Confocal ultrafast pump-probe spectroscopy: a new technique to explore nanoscale composites.

    PubMed

    Virgili, Tersilla; Grancini, Giulia; Molotokaite, Egle; Suarez-Lopez, Inma; Rajendran, Sai Kiran; Liscio, Andrea; Palermo, Vincenzo; Lanzani, Guglielmo; Polli, Dario; Cerullo, Giulio

    2012-04-01

    This article is devoted to the exploration of the benefits of a new ultrafast confocal pump-probe technique, able to study the photophysics of different structured materials with nanoscale resolution. This tool offers many advantages over standard stationary microscopy techniques because it directly interrogates excited state dynamics in molecules, providing access to both radiative and non-radiative deactivation processes at a local scale. In this paper we present a few different examples of its application to organic semiconductor systems. The first two are focussed on the study of the photophysics of phase-separated polymer blends: (i) a blue-emitting polyfluorene (PFO) in an inert matrix of PMMA and (ii) an electron donor polythiophene (P3HT) mixed with an electron acceptor fullerene derivative (PCBM). The experimental results on these samples demonstrate the capability of the technique to unveil peculiar interfacial dynamics at the border region between phase-segregated domains, which would be otherwise averaged out using conventional pump-probe spectroscopy. The third example is the study of the photophysics of isolated mesoscopic crystals of the PCBM molecule. Our ultrafast microscope could evidence the presence of two distinctive regions within the crystals. In particular, we could pinpoint for the first time areas within the crystals showing photobleaching/stimulated emission signals from a charge-transfer state.

  18. Quantum well intersubband lifetimes measured by mid-IR pump-probe experiments

    SciTech Connect

    Woods, G.L.; Sung, B.; Proctor, M.

    1995-12-31

    Semiconductor quantum wells exhibit quantum-confined electronic energy levels, or subbands, that are similar to one-dimensional {open_quotes}particle in a box{close_quotes} wavefunctions. The light effective mass of electrons allows large spatial extents of the wavefunctions and concomitantly large dipole overlaps between states. These large dipoles have been exploited in a variety of experiments including nonlinear frequency conversion, infrared photodetection, and lasing. A key parameter for many devices is the upper state lifetime. The decay of carriers in the upper state is believed to be dominated by optical phonon scattering and lifetimes on-the order of 1ps are expected. While Raman and saturation measurements have shown good agreement with theory, direct pump-probe measurements have reported longer lifetimes, partially due to carrier heating. In this paper, we discuss our mid-IR (5{mu}m) pump-probe measurements of intersubband lifetimes, performed at the Stanford Picosecond Free Electron Laser Center. At low excitation densities we observe lifetimes of about 1.5 ps, in good agreement with phonon theory. At high excitation densities the lifetime increases to 3.5 ps, demonstrating the transition from the low- to high-excitation agree.

  19. Pump-probe studies of fragmentation of a fast HD+ beam

    NASA Astrophysics Data System (ADS)

    Zohrabi, M.; Berry, Ben; Severt, T.; Jochim, Bethany; Feizollah, Peyman; Raju P., Kanaka; Rajput, Jyoti; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2016-05-01

    Studies of fast molecular ion beams in strong-field ultrafast lasers are of particular interest for benchmark molecules, like H2+,H3+and HeH+. However, the low target density of a typical ion beam puts severe limits on studies of the time evolution through the implementation of the pump-probe technique. We have recently conducted a first-of-its-kind NIR-pump - NIR-probe measurement on a few-keV HD+ beam target. Specifically, the first pulse initiates the dissociation of the HD+, while the second ionizes the molecule during its dissociation. We have observed enhancement in the ionization yield of the dissociating wave packet at about 24 and 200 fs, corresponding to internuclear distances estimated classically to be about 15 and 85 a.u., respectively. The unexpected enhancement at very large internuclear separation has not been previously observed in pump-probe studies of neutral hydrogen molecules. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy. BJ was also supported in part by DOE-SCGF (DE-AC05-06OR23100).

  20. CMOS lock-in optical sensor for parallel detection in pump-probe systems

    NASA Astrophysics Data System (ADS)

    Light, Roger A.; Smith, Richard J.; Johnston, Nicholas S.; Somekh, Michael G.; Pitter, Mark C.

    2011-05-01

    In pump-probe type experiments the signal of interest is often a very small fraction of the overall light intensity reaching the detector. This is beyond the capabilities of conventional cameras due to the necessarily high light intensity at the detector and its limited dynamic range. To overcome these problems, phase-sensitive or lock-in detection with a single photodiode is generally used. In phase-sensitive detection, the pump beam is modulated and the probe beam is captured with a photodiode connected to a lock-in amplifier running from the same reference. This provides very narrowband detection and moves the signal away from low frequency noise. We have developed a linear array detector that can perform shot-noise limited lock-in detection in 256 parallel channels. Each pixel has four independent wells to allow phase-sensitive detection. The depth of each well is massively increased and can be controlled on a per-pixel basis allowing the gain of the sensor to be matched to the incident light intensity, improving noise performance. The array reduces the number of dimensions that need to be sequentially scanned and so greatly speeds up acquisition. Results demonstrating spectral parallelism in pump-probe experiments are presented where the a.c. amplitude to background ratio approaches 1 part in one million.

  1. Retrieval of spectral and dynamic properties from two-dimensional infrared pump-probe experiments.

    PubMed

    Chelli, Riccardo; Volkov, Victor V; Righini, Roberto

    2008-07-15

    We have developed a fitting algorithm able to extract spectral and dynamic properties of a three level oscillator from a two-dimensional infrared spectrum (2D-IR) detected in time resolved nonlinear experiments. Such properties go from the frequencies of the ground-to-first and first-to-second vibrational transitions (and hence anharmonicity) to the frequency-fluctuation correlation function. This last is represented through a general expression that allows one to approach the various strategies of modeling proposed in the literature. The model is based on the Kubo picture of stochastic fluctuations of the transition frequency as a result of perturbations by a fluctuating surrounding. To account for the line-shape broadening due to pump pulse spectral width in double-resonance measurements, we supply the fitting algorithm with the option to perform the convolution of the spectral signal with a Lorentzian function in the pump-frequency dimension. The algorithm is tested here on 2D-IR pump-probe spectra of a Gly-Ala dipeptide recorded at various pump-probe delay times. Speedup benchmarks have been performed on a small Beowulf cluster. The program is written in FORTRAN language for both serial and parallel architectures and is available free of charge to the interested reader.

  2. Nondestructive Complete Mechanical Characterization of Zinc Blende and Wurtzite GaAs Nanowires Using Time-Resolved Pump-Probe Spectroscopy.

    PubMed

    Mante, Pierre-Adrien; Lehmann, Sebastian; Anttu, Nicklas; Dick, Kimberly A; Yartsev, Arkady

    2016-08-10

    We have developed and demonstrated an experimental method, based on the picosecond acoustics technique, to perform nondestructive complete mechanical characterization of nanowires, that is, the determination of the complete elasticity tensor. By means of femtosecond pump-probe spectroscopy, coherent acoustic phonons were generated in an ensemble of nanowires and their dynamics was resolved. Specific phonon modes were identified and the detection mechanism was addressed via wavelength dependent experiments. We calculated the exact phonon dispersion relation of the nanowires by fitting the experimentally observed frequencies, thus allowing the extraction of the complete elasticity tensor. The elasticity tensor and the nanowire diameter were determined for zinc blende GaAs nanowires and were found to be in a good agreement with literature data and independent measurements. Finally, we have applied this technique to characterize wurtzite GaAs nanowires, a metastable phase in bulk, for which no experimental values of elastic constants are currently available. Our results agree well with previous first principle calculations. The proposed approach to the complete and nondestructive mechanical characterization of nanowires will allow the efficient mechanical study of new crystal phases emerging in nanostructures, as well as size-dependent properties of nanostructured materials. PMID:27352041

  3. Nondestructive Complete Mechanical Characterization of Zinc Blende and Wurtzite GaAs Nanowires Using Time-Resolved Pump-Probe Spectroscopy.

    PubMed

    Mante, Pierre-Adrien; Lehmann, Sebastian; Anttu, Nicklas; Dick, Kimberly A; Yartsev, Arkady

    2016-08-10

    We have developed and demonstrated an experimental method, based on the picosecond acoustics technique, to perform nondestructive complete mechanical characterization of nanowires, that is, the determination of the complete elasticity tensor. By means of femtosecond pump-probe spectroscopy, coherent acoustic phonons were generated in an ensemble of nanowires and their dynamics was resolved. Specific phonon modes were identified and the detection mechanism was addressed via wavelength dependent experiments. We calculated the exact phonon dispersion relation of the nanowires by fitting the experimentally observed frequencies, thus allowing the extraction of the complete elasticity tensor. The elasticity tensor and the nanowire diameter were determined for zinc blende GaAs nanowires and were found to be in a good agreement with literature data and independent measurements. Finally, we have applied this technique to characterize wurtzite GaAs nanowires, a metastable phase in bulk, for which no experimental values of elastic constants are currently available. Our results agree well with previous first principle calculations. The proposed approach to the complete and nondestructive mechanical characterization of nanowires will allow the efficient mechanical study of new crystal phases emerging in nanostructures, as well as size-dependent properties of nanostructured materials.

  4. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yuzhu; Knopp, Gregor; Qin, Chaochao; Gerber, Thomas

    2015-01-01

    Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump-probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump-probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S2 state to the vibrationally hot S1 state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S1 state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding.

  5. Direct Detection of Pure ac Spin Current by X-Ray Pump-Probe Measurements.

    PubMed

    Li, J; Shelford, L R; Shafer, P; Tan, A; Deng, J X; Keatley, P S; Hwang, C; Arenholz, E; van der Laan, G; Hicken, R J; Qiu, Z Q

    2016-08-12

    Despite recent progress in spin-current research, the detection of spin current has mostly remained indirect. By synchronizing a microwave waveform with synchrotron x-ray pulses, we use the ferromagnetic resonance of the Py (Ni_{81}Fe_{19}) layer in a Py/Cu/Cu_{75}Mn_{25}/Cu/Co multilayer to pump a pure ac spin current into the Cu_{75}Mn_{25} and Co layers, and then directly probe the spin current within the Cu_{75}Mn_{25} layer and the spin dynamics of the Co layer by x-ray magnetic circular dichroism. This element-resolved pump-probe measurement unambiguously identifies the ac spin current in the Cu_{75}Mn_{25} layer. PMID:27563981

  6. Broadband pump-probe imaging spectroscopy applicable to ultrafast single-shot events

    NASA Astrophysics Data System (ADS)

    Minami, Yasuo; Yamaki, Hiromoto; Katayama, Ikufumi; Takeda, Jun

    2014-02-01

    We propose a scheme for frequency-resolved single-shot spectroscopy with an echelon mirror. The echelon mirror is employed to generate spatially encoded time delays for the white-light continuum probe beam; it produces a temporal step of 66 fs and an overall time delay of 33 ps. We demonstrate broadband pump-probe imaging spectroscopy and present time-frequency two-dimensional images of the transient absorption of β-carotene between 420 and 630 nm with single-shot detection. The results show that this technique is a powerful tool for observing the ultrafast, broadband transient dynamics of materials that exhibit irreversible reactions or deterioration by laser pulse irradiation.

  7. Fourier domain pump-probe optical coherence tomography imaging of Melanin

    PubMed Central

    Jacob, Desmond; Shelton, Ryan L.; Applegate, Brian E.

    2010-01-01

    We report the development of a two-color Fourier domain Pump-Probe Optical Coherence Tomography (PPOCT) system. Tissue phantom experiments to characterize the system performance demonstrated imaging depths in excess of 725 μm, nearly comparable to the base Optical Coherence Tomography system. PPOCT A-line rates were also demonstrated in excess of 1 kHz. The physical origin of the PPOCT signal was investigated with a series of experiments which revealed that the signal is a mixture of short and long lifetime component signals. The short lifetime component was attributed to transient absorption while the long lifetime component may be due to a mixture of transient absorption and thermal effects. Ex vivo images of porcine iris demonstrated the potential for imaging melanin in the eye, where cancer of the melanocytes is the most common form of eye cancer in adults. PMID:20588366

  8. Polarization sensitive ultrafast mid-IR pump probe micro-spectrometer with diffraction limited spatial resolution.

    PubMed

    Kaucikas, M; Barber, J; Van Thor, J J

    2013-04-01

    A setup of ultrafast transient infrared IR spectrometer is described in this paper that employed Schwarzschild objectives to focus the probe beam to a diffraction limited spot. Thus measurements were performed with very high spatial resolution in the mid-IR spectral region. Furthermore, modulating the polarization of the probe light enabled detecting transient dichroism of the sample. These capabilities of the setup were applied to study transient absorption of Photosystem II core complex and to image an organized film of methylene blue chloride dye. Moreover, a study of noise sources in a pump probe measurement is presented. The predicted noise level of the current setup was 8.25 μOD in 10(4) acquisitions and compared very well with the experimental observation of 9.6 μOD.

  9. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance.

    PubMed

    Schmidt, Aaron J; Chen, Xiaoyuan; Chen, Gang

    2008-11-01

    The relationship between pulse accumulation and radial heat conduction in pump-probe transient thermoreflectance (TTR) is explored. The results illustrate how pulse accumulation allows TTR to probe two thermal length scales simultaneously. In addition, the conditions under which radial transport effects are important are described. An analytical solution for anisotropic heat flow in layered structures is given, and a method for measuring both cross-plane and in-plane thermal conductivities of thermally anisotropic thin films is described. As verification, the technique is used to extract the cross-plane and in-plane thermal conductivities of highly ordered pyrolytic graphite. Results are found to be in good agreement with literature values.

  10. Coherent pump-probe spectroscopy in sodium vapor: From electromagnetically induced transparency to parametric amplification

    SciTech Connect

    Takahashi, Ken-ichi; Hayashi, Nobuhito; Kido, Hiroaki; Sugimura, Shota; Hombo, Naoya; Mitsunaga, Masaharu

    2011-06-15

    We have theoretically and experimentally investigated coherent pump-probe spectra for the 3S{sub 1/2}-3P{sub 1/2} D1 transition of sodium atomic vapor. Probe transmission spectra in the presence of a coupling beam exhibit dramatic changes depending on experimental conditions. In the weak-excitation, low-atomic-density limit, the spectra are mainly characterized by electromagnetically induced transparency (EIT) and saturated absorption, but for the strong-excitation, high-density case, parametric amplification (PA) is dominant, featuring high probe gain and Stokes-wave generation. We have developed a theory that can explain these two seemingly totally different phenomena (EIT and PA) within the same theoretical framework by manipulating a few experimentally controllable parameters, and have successfully reproduced the observed spectra. Other than the main spectral features, many other interesting physical processes have been predicted and observed.

  11. Measuring excited state lifetime of Rb atoms with pump-probe technique

    SciTech Connect

    Zeng, X.; Boiko, D. L.

    2015-08-31

    A technique for measuring the excited state lifetime τ{sub ex} of optical transitions in alkali atoms is presented. It is a form of pump-probe technique based on time-resolved optical transmission through the atomic vapor cell. This technique can serve as an alternative to the traditionally used time-resolved photofluorescence methods when measuring alkali vapor cells with heavily quenched fluorescence, where the τ{sub ex} is expected to be on the order of a few nanoseconds, and the highly sensitive fluorescence detectors with sub-nanosecond temporal resolution that are required may not be available. We use this technique to measure the τ{sub ex} of Rb atoms in vapor cells with different buffer gas pressures.

  12. Direct Detection of Pure ac Spin Current by X-Ray Pump-Probe Measurements

    NASA Astrophysics Data System (ADS)

    Li, J.; Shelford, L. R.; Shafer, P.; Tan, A.; Deng, J. X.; Keatley, P. S.; Hwang, C.; Arenholz, E.; van der Laan, G.; Hicken, R. J.; Qiu, Z. Q.

    2016-08-01

    Despite recent progress in spin-current research, the detection of spin current has mostly remained indirect. By synchronizing a microwave waveform with synchrotron x-ray pulses, we use the ferromagnetic resonance of the Py (Ni81Fe19 ) layer in a Py /Cu /Cu75Mn25/Cu /Co multilayer to pump a pure ac spin current into the Cu75Mn25 and Co layers, and then directly probe the spin current within the Cu75Mn25 layer and the spin dynamics of the Co layer by x-ray magnetic circular dichroism. This element-resolved pump-probe measurement unambiguously identifies the ac spin current in the Cu75Mn25 layer.

  13. Picosecond pump-probe using an FEL and a synchrotron source

    SciTech Connect

    Denbeaux, G.; Straub, K.D.; Madey, J.M.J.

    1995-12-31

    Two color pump-probe experiments using both the Duke Storage Ring as a synchrotron light source for visible light the Mark III FEL as a tunable, high peak power IR source are possible. The visible synchrotron source can be used as a probe of vibrational excitation from the FEL in an experiment using vibrationally-assisted fluorescence as an indicator of overlap of the IR and the visible pulses. An optical delay line in the FEL beam will allow adjustment of the arrival time of the IR pulse relative to the visible probe. The storage ring RF booster and the Mark III FEL RF sources will be both driven by the same master oscillator with a timing jitter between sources of less than 20 psec. Exploration of coupling between electronic excitation and lifetimes of vibrational excitation of fluorescent compounds in solution can be carried out with this configuration.

  14. Pulsed laser noise analysis and pump-probe signal detection with a data acquisition card.

    PubMed

    Werley, Christopher A; Teo, Stephanie M; Nelson, Keith A

    2011-12-01

    A photodiode and data acquisition card whose sampling clock is synchronized to the repetition rate of a laser are used to measure the energy of each laser pulse. Simple analysis of the data yields the noise spectrum from very low frequencies up to half the repetition rate and quantifies the pulse energy distribution. When two photodiodes for balanced detection are used in combination with an optical modulator, the technique is capable of detecting very weak pump-probe signals (ΔI/I(0) ~ 10(-5) at 1 kHz), with a sensitivity that is competitive with a lock-in amplifier. Detection with the data acquisition card is versatile and offers many advantages including full quantification of noise during each stage of signal processing, arbitrary digital filtering in silico after data collection is complete, direct readout of percent signal modulation, and easy adaptation for fast scanning of delay between pump and probe.

  15. Attosecond Electron Spectroscopy Using a Novel Interferometric Pump-Probe Technique

    SciTech Connect

    Mauritsson, J.; Remetter, T.; Swoboda, M.; Kluender, K.; L'Huillier, A.; Schafer, K. J.; Ghafur, O.; Kelkensberg, F.; Siu, W.; Johnsson, P.; Vrakking, M. J. J.; Znakovskaya, I.; Uphues, T.; Zherebtsov, S.; Kling, M. F.; Lepine, F.; Benedetti, E.; Ferrari, F.; Sansone, G.; Nisoli, M.

    2010-07-30

    We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse (AP) with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original AP. By measuring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quantum beats as well as multipath interference. Analysis of the interferogram allows us to determine the bound WP components with a spectral resolution much better than the inverse of the AP duration.

  16. High efficiency photoionization detector

    DOEpatents

    Anderson, D.F.

    1984-01-31

    A high efficiency photoionization detector is described using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36 [+-] 0.02 eV, and a vapor pressure of 0.35 torr at 20 C. 6 figs.

  17. High efficiency photoionization detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A high efficiency photoionization detector using tetraaminoethylenes in a gaseous state having a low ionization potential and a relative photoionization cross section which closely matches the emission spectrum of xenon gas. Imaging proportional counters are also disclosed using the novel photoionization detector of the invention. The compound of greatest interest is TMAE which comprises tetrakis(dimethylamino)ethylene which has a measured ionization potential of 5.36.+-.0.02 eV, and a vapor pressure of 0.35 torr at 20.degree. C.

  18. Molecular photoionization dynamics

    SciTech Connect

    Dehmer, Joseph L.

    1982-05-01

    This program seeks to develop both physical insight and quantitative characterization of molecular photoionization processes. Progress is briefly described, and some publications resulting from the research are listed. (WHK)

  19. Disentangling Multichannel Photodissociation Dynamics in Acetone by Time-Resolved Photoelectron-Photoion Coincidence Spectroscopy.

    PubMed

    Maierhofer, Paul; Bainschab, Markus; Thaler, Bernhard; Heim, Pascal; Ernst, Wolfgang E; Koch, Markus

    2016-08-18

    For the investigation of photoinduced dynamics in molecules with time-resolved pump-probe photoionization spectroscopy, it is essential to obtain unequivocal information about the fragmentation behavior induced by the laser pulses. We present time-resolved photoelectron-photoion coincidence (PEPICO) experiments to investigate the excited-state dynamics of isolated acetone molecules triggered by two-photon (269 nm) excitation. In the complex situation of different relaxation pathways, we unambiguously identify three distinct pump-probe ionization channels. The high selectivity of PEPICO detection allows us to observe the fragmentation behavior and to follow the time evolution of each channel separately. For channels leading to fragment ions, we quantitatively obtain the fragment-to-parent branching ratio and are able to determine experimentally whether dissociation occurs in the neutral molecule or in the parent ion. These results highlight the importance of coincidence detection for the interpretation of time-resolved photochemical relaxation and dissociation studies if multiple pathways are present. PMID:27459051

  20. Indirect monitoring shot-to-shot shock waves strength reproducibility during pump-probe experiments

    NASA Astrophysics Data System (ADS)

    Pikuz, T. A.; Faenov, A. Ya.; Ozaki, N.; Hartley, N. J.; Albertazzi, B.; Matsuoka, T.; Takahashi, K.; Habara, H.; Tange, Y.; Matsuyama, S.; Yamauchi, K.; Ochante, R.; Sueda, K.; Sakata, O.; Sekine, T.; Sato, T.; Umeda, Y.; Inubushi, Y.; Yabuuchi, T.; Togashi, T.; Katayama, T.; Yabashi, M.; Harmand, M.; Morard, G.; Koenig, M.; Zhakhovsky, V.; Inogamov, N.; Safronova, A. S.; Stafford, A.; Skobelev, I. Yu.; Pikuz, S. A.; Okuchi, T.; Seto, Y.; Tanaka, K. A.; Ishikawa, T.; Kodama, R.

    2016-07-01

    We present an indirect method of estimating the strength of a shock wave, allowing on line monitoring of its reproducibility in each laser shot. This method is based on a shot-to-shot measurement of the X-ray emission from the ablated plasma by a high resolution, spatially resolved focusing spectrometer. An optical pump laser with energy of 1.0 J and pulse duration of ˜660 ps was used to irradiate solid targets or foils with various thicknesses containing Oxygen, Aluminum, Iron, and Tantalum. The high sensitivity and resolving power of the X-ray spectrometer allowed spectra to be obtained on each laser shot and to control fluctuations of the spectral intensity emitted by different plasmas with an accuracy of ˜2%, implying an accuracy in the derived electron plasma temperature of 5%-10% in pump-probe high energy density science experiments. At nano- and sub-nanosecond duration of laser pulse with relatively low laser intensities and ratio Z/A ˜ 0.5, the electron temperature follows Te ˜ Ilas2/3. Thus, measurements of the electron plasma temperature allow indirect estimation of the laser flux on the target and control its shot-to-shot fluctuation. Knowing the laser flux intensity and its fluctuation gives us the possibility of monitoring shot-to-shot reproducibility of shock wave strength generation with high accuracy.

  1. Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties.

    PubMed

    Wilson, R B; Apgar, Brent A; Martin, Lane W; Cahill, David G

    2012-12-17

    We report measurements of the temperature dependence of the optical reflectivity, dR/dT of fifteen metallic elements at a wavelength of λ = 1.03 μm by time-domain thermoreflectance (TDTR); and the thermoreflectance of thin-films of Pt, Ta, Al, Au, SrRuO(3), and LaNiO(3) over the wavelength range 0.4 < λ < 1.6 μm using variable angle spectroscopic ellipsometry. At λ = 1.03 μm, Al, Ta, Re, Ru, have high values of thermoreflectance, dR/dT > 6∙10(-5) K(-1), and are good choices as optical transducers for TDTR experiments using a Yb:fiber laser oscillator. If low optical reflectivity and the associated high degree of steady-state heating are not a concern, LaNiO(3) provides an exceptionally sensitive thermometer in the infrared; (1/R)(dR/dT) > 2.5∙10(-4) K(-1) in the wavelength range 0.85 < λ < 1.3 μm. This compilation of data will assist in the design and interpretation of optical pump-probe studies of thermal properties.

  2. Ultrafast pump-probe spectroscopy of the photoreceptor stentorins from the ciliate stentor coeruleus

    SciTech Connect

    Savikhin, S.; Struve, W.S. ); Tao, N.; Song, P.S. )

    1993-11-25

    Polarized absorption difference profiles have been obtained with 3-6-ps resolution between 565 and 630 nm for the chromoproteins stentorin I and stentorin II, isolated from the protozoan ciliate Stentor coeruleus. Control experiments were performed on hypericin and on the stentorin chromophore in methanol. The isotropic decays of stentorin I and the stentorin chromophore are dominated by components with lifetimes conservatively longer than 1 ns. Stentorin I, the stentorin chromophore, and hypericin all develop, within <5 ps, an intense excited-state absorption band that is blue-shifted from and polarized essentially perpendicular to the main long-wavelength absorption band. The presence of this excited-state absorption band is signaled by the appearance of strongly wavelength-dependent initial anisotropies r(0), which assume large positive as well as negative values (>0.4 and <[minus]0.2). To our knowledge, such anisotropies have not been reported in polarized pump-probe studies of rotational diffusion in solution or of energy-transfer kinetics in photosynthetic antennae. Hypericin itself exhibits 0.4-6-ps excited-state absorption decay kinetics, which are likely associated with intramolecular excited-state proton transfer. 19 refs., 8 figs., 5 tabs.

  3. Nematicity in FeSe single crystals probed by pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, C. W.; Cheng, P. C.; Wu, K. H.; Juang, J. Y.; Wang, S.-H.; Chiang, J.-C.; Lin, J.-Y.; Chareev, D. A.; Volkova, O. S.; Vasiliev, A. N.

    The anisotropic quasiparticle dynamics in FeSe single crystals have been studied by polarized pump-probe spectroscopy. Two distinguishable relaxation components were unambiguously observed in transient reflectivity changes (ΔR / R) . The orientation-dependent fast component with the timescale of 0.1-1.5 ps associated with the electronic structure clearly shows two-fold symmetry, which further reveals the gap opening along ky below the temperature of structure phase transition (Ts) and the electronic nematicity can persist up to 200 K. For the slow component with the timescale of 8-25 ps, it is assigned to the energy relaxation through spin sub-system and also shows a two-fold symmetry below Ts. However, this two-fold symmetry is dramatically weakened above Ts and surprisingly persists up to at least 200 K. Consequently, the high-temperature nematic fluctuations in FeSe may be driven by the order parameters which associated with both charge (orbital) and spin sub-systems. This project is financially sponsored by the MOST, Taiwan, (Grants No. 103-2923-M-009-001-MY3) and the MOE-ATU plan at NCTU.

  4. Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation.

    PubMed

    Rapp, Stephan; Kaiser, Michael; Schmidt, Michael; Huber, Heinz P

    2016-08-01

    Ultrashort pulsed lasers offer a high potential in precise and efficient material processing and deep understanding of the fundamental laser-material interaction aspects is of great importance. The transient pulse reflectivity in conjunction with the transient absorption influences decisively the laser-material interaction. Direct measurements of the absorption properties by ultrafast time-resolved ellipsometry are missing to date. In this work, a unique pump-probe ellipsometry microscope is presented allowing the determination of the transient complex refractive index with a sub-ps temporal resolution. Measurements on molybdenum show ultrafast optical penetration depth changes of -6% to + 77% already within the first 10 ps after the laser pulse impact. This indicates a significant absorption variation of the pump pulse or subsequent pulses irradiating the sample on this timescale and paves the road towards a better understanding of pulse duration dependent laser ablation efficiency, double or burst mode laser ablation and lattice modifications in the first ps after the laser pulse impact. PMID:27505728

  5. Multidimensional pump-probe spectroscopy with entangled twin-photon states

    PubMed Central

    Roslyak, Oleksiy; Mukamel, Shaul

    2010-01-01

    We show that entangled photons may be used in coherent multidimensional nonlinear spectroscopy to provide information on matter by scanning photon wave function parameters (entanglement time and delay of twin photons), rather than frequencies and time delays, as is commonly done with classical pulses. Signals are expressed and interpreted intuitively in terms of products of matter and field correlation functions using a diagrammatic close time path loop formalism which reveals the entangled quantum pathways of the fields and matter. The pump-probe signal measured when the pump and the probe are in a twin entangled state shows two-photon resonant contributions which scale linearly rather than quadratically with the incident beam intensity and reveal frequencies of off-resonant transitions. Two-dimensional spectrograms obtained by double Fourier transform of the signal with respect to the entanglement time and delay of the twins could provide detailed information on correlations among states and dynamical processes with high temporal resolution. The analogy with multidimensional time-domain optical techniques which use sequences of short classical pulses and pulse shaping algorithms is pointed out. PMID:20607106

  6. Hyperfine Quantum Beat Spectroscopy of the Cs 8p level with Pulsed Pump-Probe Technique

    NASA Astrophysics Data System (ADS)

    Bayram, Burcin; Popov, Oleg; Kelly, Stephen; Boyle, Patrick; Salsman, Andrew

    2013-05-01

    Quantum beats arising from the hyperfine interaction were measured in a three-level excitation (lambda) scheme: pump for the 6s2S1 / 2 --> 8p2P3 / 2 and stimulated emission pump (probe) for the 8p2P3 / 2 --> 5d2D5 / 2 transitions of atomic cesium. In the technique, pump laser instantaneously excites the hot atomic vapor and creates anisotropy in the 8p2P3 / 2 level, and probe laser comes after some time delay. Delaying the probe time allows us to map out the motion of the polarized atoms like a stroboscope. According to the observed evolution of the hyperfine structure dependent parameters, e.g. alignment and atomic polarization, by delaying the arrival time of the stimulated emission pump laser (SEP), precise values of the magnetic dipole and electric quadrupole coefficients are obtained with an improved precision over previous results. The usefulness of the PUMP-SEP excitation scheme for the polarization hyperfine quantum beat measurements without complications from the Doppler effect will also be discussed. The financial support of the Research Corporation under the Grant number CC7133 and MiamiUniversity, College of the Arts and Sciences are acknowledged.

  7. Ellipsometric Pump-probe Experiments for High Density Plasma with Ultra-short pulse Laser

    NASA Astrophysics Data System (ADS)

    Yoneda, Hitoki; Morikami, Hidetoshi; Ueda, Ken-Ichi; More, Richard M.

    2003-10-01

    A new type of ultra-short-pulse laser pump-probe experiment has been performed. In these measurements, reflectivity of p- and s- polarization (Rp and R_s) and their phase difference are obtained. Typical detection sensitivity was 5mrad for the phase difference and 2 ˜4% for reflectivity with time resolution of 100fs. When the data are plotted as Y=frac2|r_s||r_p|sin(δ)(|r_s|^2+|r_p|^2) versus X=frac|r_p|^2|r_s|^2, the trajectories of the Au target data with I=2×10^12 ˜5×10^13W/cm^2 follow approximately the same curve in (X, Y) space while for Cu the trajectories follow various curves. The unique Au trajectory implies a unique state of expanded Au such as neutral gold atoms. Fluid simulation with non-ideal equation of state and adiabatic expansion shows rapid recombination in the expanding plasma and the unique (X, Y) trajectory is reproduced by Maxwell's equations with these density profiles. By fitting the unknown complex dielectric function of high density Au neutral gas, the atomic polarizability (-1.75 + 0.2 i)× 10-24 cm^3 is obtained for λ=745nm light. The Saha equation predicts recombination and formation of gold negative ions and a low density of free electrons in the low-density vapor.

  8. Probing ultrafast molecular dynamics in O2 using XUV/IR pump-probe studies

    NASA Astrophysics Data System (ADS)

    Ray, D.; Sturm, F. P.; Wright, T. W.; Ranitovic, P.; Shivaram, N. H.; Bocharova, I.; Belkacem, A.; Weber, Th.

    2015-05-01

    We investigate the molecular dynamics via different dissociative and autoionizing pathways in molecular oxygen using a pump-probe scheme with ultrashort extreme ultraviolet (XUV) laser pulses. Our primary focus is to study the molecular dynamics in the superexcited Rydberg states in a time-resolved manner. The O2 molecules are pumped by 20.2 eV and 23.1 eV XUV pulses (13th and 15th harmonics). Probing the relaxation dynamics with an infrared (IR) pulse at very long delays (100s of fs) enables us to measure the lifetimes of these Rydberg states. We also observe an enhancement and suppression of vibrational levels of the O2+ion due to the presence of IR. The high flux XUV pulses used for this experiment are generated in an Ar gas by IR pulses from our state-of-the-art 30 mJ, 50 Hz laser system. The pulses are overlapped with the supersonic jet in our Momentum Imaging for TimE Resolved Studies (MISTERS) setup. The cold target in our setup, combined with a very tight focussing geometry and a 3D momentum detection capability gives a high kinetic energy resolution. Molecular dynamics in other polyatomic molecules are also under investigation. Chemical Sciences Division, Lawrence Berkeley National Laboratory.

  9. Pump-probe optical coherence tomography using microencapsulated methylene blue as a contrast agent (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Wihan; Zebrowski, Erin; Lopez, Hazel C.; Applegate, Brian E.; Charoenphol, Phapanin; Jo, Javier A.

    2016-03-01

    Molecular contrast imaging can target specific molecules or receptors to provide detailed information on the local biochemistry and yield enhanced visualization of pathological and physiological processes. When paired with Optical Coherence Tomography (OCT) it can simultaneously supply the morphological context for the molecular information. We recently demonstrated in vivo molecular contrast imaging of methylene blue (MB) using a 663 nm diode laser as a pump in a Pump-Probe OCT (PPOCT) system. The simple addition of a dichroic mirror in the sample arm enabled PPOCT imaging with a typical 830-nm band spectral-domain OCT system. Here we report on the development of a microencapsulated MB contrast agent. The poly lactic-co-glycolic acid (PLGA) microspheres loaded with MB offer several advantages over bare MB. The microsphere encapsulation improves the PPOCT signal both by enhancing the scattering and preventing the reduction of MB to leucomethylene blue. The surface of the microsphere can readily be functionalized to enable active targeting of the contrast agent without modifying the excited state dynamics of MB that enable PPOCT imaging. Both MB and PLGA are used clinically. PLGA is FDA approved and used in drug delivery and tissue engineering applications. 2.5 μm diameter microspheres were synthesized with an inner core containing 0.01% (w/v) aqueous MB. As an initial demonstration the MB microspheres were imaged in a 100 μm diameter capillary tube submerged in a 1% intralipid emulsion.

  10. Transverse-electron-momentum distribution in pump-probe sequential double ionization

    NASA Astrophysics Data System (ADS)

    Kheifets, A. S.; Ivanov, I. A.

    2014-09-01

    We study the transverse-electron-momentum distribution (TEMD) of the wave packets launched in a pump-probe sequential double ionization from the valence shell of a noble gas atom. Our calculations, based on an accurate numerical solution of the time-dependent Schrödinger equation (TDSE), reproduce a characteristic cusp of the TEMD which is attributed to the Coulomb singularity. The evolution of the TEMD with the time delay between the pump and probe pulses is shown to be similar to the prediction of the standard tunneling formula (TF), as was observed experimentally for argon by Fechner et al. [Phys. Rev. Lett. 112, 213001 (2014), 10.1103/PhysRevLett.112.213001]. However, TDSE calculations show a clear deviation from the TF and predict a much more complicated structure which cannot be reproduced by the target orbital momentum profile filtered by the tunneling Gaussian. The accuracy of the TF can be improved if the target momentum profile is calculated with the Coulomb waves instead of the plane waves.

  11. Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy

    PubMed Central

    Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre

    2016-01-01

    The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air. PMID:27619546

  12. Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy.

    PubMed

    Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre

    2016-01-01

    The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air. PMID:27619546

  13. In vivo pump-probe microscopy of melanoma: characterizing shifts in excited state photodynamics with respect to invasiveness

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Degan, Simone; Gainey, Christina S.; Deb, Sanghamitra; Dall, Christopher P.; Tameze-Rivas, Yasmine; Zhang, Jennifer; Warren, Warren S.

    2015-03-01

    Pump-probe microscopy is a multiphoton technique that generates molecular contrast from absorptive pigments, such as melanin. It holds the potential to be used as a non-invasive screening tool to discern whether a given early-stage melanoma has acquired the capacity for metastasis. Here, we examined lesions in a Braf(V600E)-driven model of melanoma to assess whether loss of the tumor suppressor gene Pten in a is accompanied by a shift in pigment expression, as measured in vivo by pump-probe microscopy. The data were analyzed to determine differences in the excited-state lifetime of melanins expressed in Pten-competent and Pten-loss pigmented lesions. Loss of the tumor suppressor Pten was found to be accompanied by a statistically significant decrease in pixel-average excited state lifetime (p = 1.3e-4).

  14. Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre

    2016-09-01

    The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air.

  15. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  16. Nanosecond laser pulse heating of a platinum surface studied by pump-probe X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Shayduk, Roman; Vonk, Vedran; Arndt, Björn; Franz, Dirk; Strempfer, Jörg; Francoual, Sonia; Keller, Thomas F.; Spitzbart, Tobias; Stierle, Andreas

    2016-07-01

    We report on the quantitative determination of the transient surface temperature of Pt(110) upon nanosecond laser pulse heating. We find excellent agreement between heat transport theory and the experimentally determined transient surface temperature as obtained from time-resolved X-ray diffraction on timescales from hundred nanoseconds to milliseconds. Exact knowledge of the surface temperature's temporal evolution after laser excitation is crucial for future pump-probe experiments at synchrotron storage rings and X-ray free electron lasers.

  17. Coherence motion of photoinduced nonadiabatic charge transfer reaction in solution: A numerical study of pump-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Sheu, Sheh-Yi; Yang, Dah-Yen

    1998-10-01

    We study the photoinduced charge separation processes in solution through a pump-probe spectroscopy theory [Dah-Yen Yang and Sheh-Yi Sheu, J. Chem. Phys. 106, 9427 (1997)] numerically. We investigate the detailed mechanism of nonadiabatic transition processes via the transition differential flux analysis. For the harmonic potential surfaces, an electronic coherence motion is observed in the overdamped exothermic activationless and inverted regimes.

  18. Investigations of amplitude and phase excitation profiles in femtosecond coherence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Anand T. N.; Rosca, Florin; Widom, Allan; Champion, Paul M.

    2001-01-01

    We present an effective linear response approach to pump-probe femtosecond coherence spectroscopy in the well-separated pulse limit. The treatment presented here is based on a displaced and squeezed state representation for the nonstationary states induced by an ultrashort pump laser pulse or a chemical reaction. The subsequent response of the system to a delayed probe pulse is modeled using closed form nonstationary linear response functions, valid for a multimode vibronically coupled system at arbitrary temperature. When pump-probe signals are simulated using the linear response functions, with the mean nuclear positions and momenta obtained from a rigorous moment analysis of the pump induced (doorway) state, the signals are found to be in excellent agreement with the conventional third-order response approach. The key advantages offered by the moment analysis-based linear response approach include a clear physical interpretation of the amplitude and phase of oscillatory pump-probe signals, a dramatic improvement in computation times, a direct connection between pump-probe signals and equilibrium absorption and dispersion lineshapes, and the ability to incorporate coherence associated with rapid nonradiative surface crossing. We demonstrate these aspects using numerical simulations, and also apply the present approach to the interpretation of experimental amplitude and phase measurements on reactive and nonreactive samples of the heme protein myoglobin. The role played by inhomogeneous broadening in the observed amplitude and phase profiles is discussed in detail. We also investigate overtone signals in the context of reaction driven coherent motion.

  19. Double Photoionization Near Threshold

    NASA Technical Reports Server (NTRS)

    Wehlitz, Ralf

    2007-01-01

    The threshold region of the double-photoionization cross section is of particular interest because both ejected electrons move slowly in the Coulomb field of the residual ion. Near threshold both electrons have time to interact with each other and with the residual ion. Also, different theoretical models compete to describe the double-photoionization cross section in the threshold region. We have investigated that cross section for lithium and beryllium and have analyzed our data with respect to the latest results in the Coulomb-dipole theory. We find that our data support the idea of a Coulomb-dipole interaction.

  20. Ultrafast Multiphoton Pump-probe Photoemission Excitation Pathways in Rutile TiO2(110)

    SciTech Connect

    Argondizzo, Adam; Cui, Xuefeng; Wang, Cong; Sun, Huijuan; Shang, Honghui; Zhao, Jin; Petek, Hrvoje

    2015-04-27

    We investigate the spectroscopy and photoinduced electron dynamics within the conduction band of reduced rutile TiO2(110) surface by multiphoton photoemission (mPP) spectroscopy with wavelength tunable ultrafast (!20 fs) laser pulse excitation. Tuning the mPP photon excitation energy between 2.9 and 4.6 eV reveals a nearly degenerate pair of new unoccupied states located at 2.73 ± 0.05 and 2.85 ± 0.05 eV above the Fermi level, which can be analyzed through the polarization and sample azimuthal orientation dependence of the mPP spectra. Based on the calculated electronic structure and optical transition moments, as well as related spectroscopic evidence, we assign these resonances to transitions between Ti 3d bands of nominally t2g and eg symmetry, which are split by crystal field. The initial states for the optical transition are the reduced Ti3+ states of t2g symmetry populated by formation oxygen vacancy defects, which exist within the band gap of TiO2. Furthermore,we studied the electron dynamics within the conduction band of TiO2 by three-dimensional time-resolved pump-probe interferometric mPP measurements. The spectroscopic and time-resolved studies reveal competition between 2PP and 3PP processes where the t2g-eg transitions in the 2PP process saturate, and are overtaken by the 3PP process initiated by the band-gap excitation from the valence band of TiO2.

  1. Reduced-density-matrix description for pump-probe optical phenomena in moving atomic systems

    NASA Astrophysics Data System (ADS)

    Jacobs, V. L.

    2014-09-01

    Linear and nonlinear (especially coherent) electromagnetic interactions of moving many-electron atoms are investigated using a reduced-density-matrix description, which is applied to electromagnetically induced transparency and related resonant pump-probe optical phenomena. External magnetic fields are included on an equal footing with the electromagnetic fields and spin-Zeeman interactions are taken into account. Complimentary time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations of the reduced-density-matrix description are self-consistently developed. The general nonperturbative and non-Markovian formulations provide a fundamental framework for systematic evaluations of corrections to the standard Born (lowest-order-perturbation) and Markov (short-memory-time) approximations. The macroscopic electromagnetic response is described semiclassically, employing a perturbation expansion of the reduced-density operator in powers of the classical electromagnetic field. Our primary results are compact Liouville-space operator expressions for the linear and general (nth-order) nonlinear macroscopic electromagnetic-response tensors, which can be evaluated for nonlocal and nonstationary optical media described by multilevel atomic-system representations. Interactions among atoms and with environmental photons are treated as line-broadening effects by means of a general Liouville-space self-energy operator, for which the tetradic-matrix elements are explicitly evaluated in the diagonal, lowest-order, and Markov approximations. The compact Liouville-space operator expressions that are derived for the macroscopic electromagnetic-response tensors are introduced into the dynamical description of the electromagnetic-field propagation. It is pointed out that a quantized-electromagnetic-field approach will be required for a fully self-consistent quantum-mechanical treatment of local-field effects and radiative corrections.

  2. A novel electro-optical pump-probe system for bioelectromagnetic investigations

    NASA Astrophysics Data System (ADS)

    De Angelis, Annalisa; Couderc, Vincent; Leproux, Philippe; Labruyère, Alexis; Tonello, Alessandro; El Amari, Saad; Arnaud-Cormos, Delia; Leveque, Philippe

    2012-10-01

    In the area of bioelectromagnetic studies there is a growing interest to understand the mechanisms leading to nanosecond electric fields induced electroporation. Real-time imaging techniques at molecular level could probably bring further advances on how electric fields interact with living cells. However the investigations are limited by the present-day lack of these kinds of advanced instrumentations. In this context, we present an innovative electro-optical pump-probe system. The aim of our project is to provide a performing and compact device for electrical stimulation and multiplex Coherent anti-Stokes Raman Scattering (M-CARS) imaging of biological cells at once. The system consists of a 1064 nm sub-nanosecond laser source providing both a monochromatic pump and a polychromatic Stokes optical beam used in a CARS process, as well as the trigger beam for the optoelectronic switching-based electrical pulse generator. The polychromatic Stokes beam (from 600 to 1700 nm) results from a supercontinuum generation in a photonic crystal fiber (PCF). A detailed spectro-temporal characterization of such a broadband spectrum shows the impact of the nonlinear propagation in the fiber on the Stokes wave. Despite the temporal distortions observable on Stokes pulse profiles, their spectral synchronization with the pump pulse remains possible and efficient in the interesting region between 1100 nm and 1700 nm. The electrical stimulation device consists of a customized generator combining microstrip-line technology and laser-triggered photoconductive semiconductor switches. Our experimental characterization highlights the capability for such a generator to control the main pulse parameters (profile, amplitude and duration) and to be easily synchronized with the imaging system. We finally test and calibrate the system by means of a KDP crystal. The preliminary results suggest that this electro-optical system provides a suitable tool for real-time investigation of

  3. Femtosecond nonlinear optical properties of carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Dan; Liu, Ye; Yang, Heqing; Qian, Shixiong

    2002-09-01

    The nonlinear optical properties and ultrafast electron-relaxation dynamics of carbon nanoparticles were investigated by using the femtosecond optical Kerr effect and pump-probe techniques. The blueshift of the absorption edge with the decrease of the size of the nanoparticles reveals the opening of the gap. The magnitude of chi(3) for carbon nanoparticles is calculated to be 8.3 x10-13 esu, which arises from the contribution of delocalized feature of the pi electrons. The decay of photobleaching includes a fast and a slow component, which are assigned to the relaxation of the free carriers and trapped carriers, respectively. It is found that the lifetimes of two components of bleaching decrease as temperature of heat treatment is increased.

  4. Fragmentation dynamics of fullerenes in intense femtosecond-laser fields: Loss of small neutral fragments on a picosecond time scale

    SciTech Connect

    Boyle, M.; Laarmann, T.; Shchatsinin, I.; Schulz, C.P.; Hertel, I.V.

    2005-05-08

    The fragmentation dynamics of C{sub 60} irradiated with intense femtosecond laser pulses is studied with one-color pump-probe spectroscopy. Small neutral fragments (C, C{sub 2}, and C{sub 3}) are formed by an 800-nm pump pulse which are then postionized by a delayed probe pulse. The respective ion signals detected by the time-of-flight mass spectrometry dramatically increase on a time scale of 10-20 ps.

  5. Photoionization-photoelectron research

    SciTech Connect

    Berkowitz, J.; Ruscic, B.

    1993-12-01

    The photoionization research program is aimed at understanding the basic processes of interaction of vacuum ultraviolet (VUV) light with atoms and molecules. This research provides valuable information on both thermochemistry and dynamics. Recent studies include atoms, clusters, hydrides, sulfides and an important fluoride.

  6. Molecular photoionization studies

    SciTech Connect

    Dehmer, P.M.

    1983-01-01

    This program is concerned with the study of the electronic structure of small molecules and clusters of molecules. Of particular interest is the interaction of discrete electronic states with one another and with the various ionization and dissociation continua. Since the Second Annual Meeting of the DOE-OHER Program on The Physics and Chemistry of Energy-Related Atmospheric Pollutants in April 1981, significant progress has been made in the following areas: (1) the study of the electronic structure of dimers and small clusters of rare gas atoms using photoionization techniques; (2) similar studies on clusters of CO/sub 2/ molecules; (3) the study of electronic structure of rare gas dimers and trimers using photoelectron and photoelectron-photoion coincidence techniques; (4) the investigation of the relationship between Rydberg states in atoms, van der Waals molecules, and chemically-bonded molecules; (5) the extension of the study of photoabsorption, photoionization, and predissociation processes in H/sub 2/ to the unsymmetric isotope HD; (6) the study of photoelectron spectra of H/sub 2/ and C/sub 2/H/sub 2/; (7) a review of some of the aspects of dissociation processes in small molecules; and (8) the creation of a new program to study the spectra and dynamics of the photoionization processes in small molecules using the technique of multiphoton ionization followed by mass and electron energy analysis of the product ions and electrons. Some of the highlights of this work are reviewed.

  7. Femtosecond laser lithotripsy: feasibility and ablation mechanism

    NASA Astrophysics Data System (ADS)

    Qiu, Jinze; Teichman, Joel M. H.; Wang, Tianyi; Neev, Joseph; Glickman, Randolph D.; Chan, Kin Foong; Milner, Thomas E.

    2010-03-01

    Light emitted from a femtosecond laser is capable of plasma-induced ablation of various materials. We tested the feasibility of utilizing femtosecond-pulsed laser radiation (λ=800 nm, 140 fs, 0.9 mJ/pulse) for ablation of urinary calculi. Ablation craters were observed in human calculi of greater than 90% calcium oxalate monohydrate (COM), cystine (CYST), or magnesium ammonium phosphate hexahydrate (MAPH). Largest crater volumes were achieved on CYST stones, among the most difficult stones to fragment using Holmium:YAG (Ho:YAG) lithotripsy. Diameter of debris was characterized using optical microscopy and found to be less than 20 μm, substantially smaller than that produced by long-pulsed Ho:YAG ablation. Stone retropulsion, monitored by a high-speed camera system with a spatial resolution of 15 μm, was negligible for stones with mass as small as 0.06 g. Peak shock wave pressures were less than 2 bars, measured by a polyvinylidene fluoride (PVDF) needle hydrophone. Ablation dynamics were visualized and characterized with pump-probe imaging and fast flash photography and correlated to shock wave pressures. Because femtosecond-pulsed laser ablates urinary calculi of soft and hard compositions, with micron-sized debris, negligible stone retropulsion, and small shock wave pressures, we conclude that the approach is a promising candidate technique for lithotripsy.

  8. Pump-probe spectroscopy in degenerate two-level atoms with arbitrarily strong fields

    NASA Astrophysics Data System (ADS)

    Zigdon, T.; Wilson-Gordon, A. D.; Goren, C.; Rosenbluh, M.; Friedmann, H.

    2007-03-01

    We review our previous work on pump-probe spectroscopy in realistic degenerate two-level systems and model systems. In particular, we discuss the role of transfer of coherence (TOC) between the ground and excited hyperfine states in producing electromagnetically-induced transparency (EIA) peaks in the probe spectrum, when an F g goes to F e = F g +1 transition in an alkali-metal atom interacts with a strong pump and weak probe that have perpendicular polarizations. When the pump is rho + polarized and the probe pi polarized, this system can be modelled by an N system. We also discuss the role of transfer of population (TOP) between the Zeeman levels of the ground hyperfine state in producing EIA peaks when the pump and probe have the same polarization. This system can be modelled using a double two-level system. The role of Doppler broadening and phase-changing collisions in modifying the EIA-TOC and EIA-TOP absorption and refraction spectra is also discussed. All these spectra were calculated using MATLAB programs that both construct and solve the relevant Bloch equations. In our recent work, we consider the effect of a strong probe on the pump absorption and refraction spectra when the pump and probe polarizations are linear and perpendicular. It is difficult to solve this problem numerically due to the large number frequencies involved. In order to simplify the problem, we considered two cases: (i) rho + polarized pump and pi polarized probe, and (ii) rho + polarized pump and rho - polarized probe, and investigated a series of transitions in both Rb and Cs, using modified versions of the MATLAB programs devised for the weakprobe case. A number of interesting differences from the weak-probe case were found. For example, when the probe is sufficiently strong, we found the pump and probe spectra to show complementary behavior. In addition, as the number of Zeeman levels increase, the EIA peaks become progressively sharper, and are accompanied by steeper dispersion.

  9. Theoretical Simulations and Ultrafast Pump-probe Spectroscopy Experiments in Pigment-protein Photosynthetic Complexes

    SciTech Connect

    Buck, D.R.

    2000-09-12

    Theoretical simulations and ultrafast pump-probe laser spectroscopy experiments were used to study photosynthetic pigment-protein complexes and antennae found in green sulfur bacteria such as Prosthecochloris aestuarii, Chloroflexus aurantiacus, and Chlorobium tepidum. The work focused on understanding structure-function relationships in energy transfer processes in these complexes through experiments and trying to model that data as we tested our theoretical assumptions with calculations. Theoretical exciton calculations on tubular pigment aggregates yield electronic absorption spectra that are superimpositions of linear J-aggregate spectra. The electronic spectroscopy of BChl c/d/e antennae in light harvesting chlorosomes from Chloroflexus aurantiacus differs considerably from J-aggregate spectra. Strong symmetry breaking is needed if we hope to simulate the absorption spectra of the BChl c antenna. The theory for simulating absorption difference spectra in strongly coupled photosynthetic antenna is described, first for a relatively simple heterodimer, then for the general N-pigment system. The theory is applied to the Fenna-Matthews-Olson (FMO) BChl a protein trimers from Prosthecochloris aestuarii and then compared with experimental low-temperature absorption difference spectra of FMO trimers from Chlorobium tepidum. Circular dichroism spectra of the FMO trimer are unusually sensitive to diagonal energy disorder. Substantial differences occur between CD spectra in exciton simulations performed with and without realistic inhomogeneous distribution functions for the input pigment diagonal energies. Anisotropic absorption difference spectroscopy measurements are less consistent with 21-pigment trimer simulations than 7-pigment monomer simulations which assume that the laser-prepared states are localized within a subunit of the trimer. Experimental anisotropies from real samples likely arise from statistical averaging over states with diagonal energies shifted by

  10. Optical synchronization system for femtosecond X-ray sources

    DOEpatents

    Wilcox, Russell B.; Holzwarth, Ronald

    2011-12-13

    Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  11. Vibrational dynamics of hydrogen-bonded complexes in solutions studied with ultrafast infrared pump-probe spectroscopy.

    PubMed

    Banno, Motohiro; Ohta, Kaoru; Yamaguchi, Sayuri; Hirai, Satori; Tominaga, Keisuke

    2009-09-15

    In aqueous solution, the basis of all living processes, hydrogen bonding exerts a powerful effect on chemical reactivity. The vibrational energy relaxation (VER) process in hydrogen-bonded complexes in solution is sensitive to the microscopic environment around the oscillator and to the geometrical configuration of the hydrogen-bonded complexes. In this Account, we describe the use of time-resolved infrared (IR) pump-probe spectroscopy to study the vibrational dynamics of (i) the carbonyl CO stretching modes in protic solvents and (ii) the OH stretching modes of phenol and carboxylic acid. In these cases, the carbonyl group acts as a hydrogen-bond acceptor, whereas the hydroxyl group acts as a hydrogen-bond donor. These vibrational modes have different properties depending on their respective chemical bonds, suggesting that hydrogen bonding may have different mechanisms and effects on the VER of the CO and OH modes than previously understood. The IR pump-probe signals of the CO stretching mode of 9-fluorenone and methyl acetate in alcohol, as well as that of acetic acid in water, include several components with different time constants. Quantum chemical calculations indicate that the dynamical components are the result of various hydrogen-bonded complexes that form between solute and solvent molecules. The acceleration of the VER is due to the increasing vibrational density of states caused by the formation of hydrogen bonds. The vibrational dynamics of the OH stretching mode in hydrogen-bonded complexes were studied in several systems. For phenol-base complexes, the decay time constant of the pump-probe signal decreases as the band peak of the IR absorption spectrum shifts to lower wavenumbers (the result of changing the proton acceptor). For phenol oligomers, the decay time constant of the pump-probe signal decreases as the probe wavenumber decreases. These observations show that the VER time strongly correlates with the strength of hydrogen bonding. This

  12. Vibrational spectroscopy of water in hydrated lipid multi-bilayers. I. Infrared spectra and ultrafast pump-probe observables

    PubMed Central

    Gruenbaum, S. M.; Skinner, J. L.

    2011-01-01

    The vibrational spectroscopy of hydration water in dilauroylphosphatidylcholine lipid multi-bilayers is investigated using molecular dynamics simulations and a mixed quantum∕classical model for the OD stretch spectroscopy of dilute HDO in H2O. FTIR absorption spectra, and isotropic and anisotropic pump-probe decay curves have been measured experimentally as a function of the hydration level of the lipid multi-bilayer, and our goal is to make connection with these experiments. To this end, we use third-order response functions, which allow us to include non-Gaussian frequency fluctuations, non-Condon effects, molecular rotations, and a fluctuating vibrational lifetime, all of which we believe are important for this system. We calculate the response functions using existing transition frequency and dipole maps. From the experiments it appears that there are two distinct vibrational lifetimes corresponding to HDO molecules in different molecular environments. In order to obtain these lifetimes, we consider a simple two-population model for hydration water hydrogen bonds. Assuming a different lifetime for each population, we then calculate the isotropic pump-probe decay, fitting to experiment to obtain the two lifetimes for each hydration level. With these lifetimes in hand, we then calculate FTIR spectra and pump-probe anisotropy decay as a function of hydration. This approach, therefore, permits a consistent calculation of all observables within a unified computational scheme. Our theoretical results are all in qualitative agreement with experiment. The vibrational lifetime of lipid-associated OD groups is found to be systematically shorter than that of the water-associated population, and the lifetimes of each population increase with decreasing hydration, in agreement with previous analysis. Our theoretical FTIR absorption spectra successfully reproduce the experimentally observed red-shift with decreasing lipid hydration, and we confirm a previous interpretation

  13. Pump-probe optical switching in prism-coupled Au :SiO2 nanocomposite waveguide film

    NASA Astrophysics Data System (ADS)

    Lee, Kyeong-Seok; Lee, Taek-Sung; Kim, Won-Mok; Cho, Sunghun; Lee, Soonil

    2007-10-01

    The resonance properties due to the surface plasmon excitation of metal nanoparticles make the nanocomposite films promising for various applications such as optical switching devices. In spite of the well-known ultrasensitive operation of optical switches based on a guided wave, the application of nanocomposite film has inherent limitation originating from the excessive optical loss related to the surface plasmon resonance. In this study, we address this problem and present the experimental and theoretical analyses on the pump-probe optical switching in prism-coupled Au(1vol%):SiO2 nanocomposite waveguide film.

  14. Multi-metastable states induced by the optical pump-probe process in terahertz quantum cascade lasers

    SciTech Connect

    Wang, F.; Guo, X. G. Wang, C.; Cao, J. C.

    2014-07-14

    The optical pump-probe process in terahertz quantum cascade lasers is studied theoretically by using the open system simulation method. The emitter injection is considered and the charge neutrality in the active region is broken. We find that nonequilibrium oscillations may appear in the recovery processes. In particular, the formation of different equilibrium values of the population change after the periodic pulse pumping is observed clearly. Here, the phenomenon of multi-metastable states stems from the electron regulation by the emitter injection. Finally, we discuss the important impacts of the equilibrium stabilization time and obtain an in-depth understanding of the emitter injection.

  15. Following the dynamics of matter with femtosecond precision using the X-ray streaking method

    PubMed Central

    David, C.; Karvinen, P.; Sikorski, M.; Song, S.; Vartiainen, I.; Milne, C. J.; Mozzanica, A.; Kayser, Y.; Diaz, A.; Mohacsi, I.; Carini, G. A.; Herrmann, S.; Färm, E.; Ritala, M.; Fritz, D. M.; Robert, A.

    2015-01-01

    X-ray Free Electron Lasers (FELs) can produce extremely intense and very short pulses, down to below 10 femtoseconds (fs). Among the key applications are ultrafast time-resolved studies of dynamics of matter by observing responses to fast excitation pulses in a pump-probe manner. Detectors with sufficient time resolution for observing these processes are not available. Therefore, such experiments typically measure a sample's full dynamics by repeating multiple pump-probe cycles at different delay times. This conventional method assumes that the sample returns to an identical or very similar state after each cycle. Here we describe a novel approach that can provide a time trace of responses following a single excitation pulse, jitter-free, with fs timing precision. We demonstrate, in an X-ray diffraction experiment, how it can be applied to the investigation of ultrafast irreversible processes. PMID:25561027

  16. Following the dynamics of matter with femtosecond precision using the X-ray streaking method

    DOE PAGES

    David, C.; Karvinen, P.; Sikorski, M.; Song, S.; Vartiainen, I.; Milne, C. J.; Mozzanica, A.; Kayser, Y.; Diaz, A.; Mohacsi, I.; et al

    2015-01-06

    X-ray Free Electron Lasers (FELs) can produce extremely intense and very short pulses, down to below 10 femtoseconds (fs). Among the key applications are ultrafast time-resolved studies of dynamics of matter by observing responses to fast excitation pulses in a pump-probe manner. Detectors with sufficient time resolution for observing these processes are not available. Therefore, such experiments typically measure a sample's full dynamics by repeating multiple pump-probe cycles at different delay times. This conventional method assumes that the sample returns to an identical or very similar state after each cycle. Here we describe a novel approach that can provide amore » time trace of responses following a single excitation pulse, jitter-free, with fs timing precision. We demonstrate, in an X-ray diffraction experiment, how it can be applied to the investigation of ultrafast irreversible processes.« less

  17. Following the dynamics of matter with femtosecond precision using the X-ray streaking method

    SciTech Connect

    David, C.; Karvinen, P.; Sikorski, M.; Song, S.; Vartiainen, I.; Milne, C. J.; Mozzanica, A.; Kayser, Y.; Diaz, A.; Mohacsi, I.; Carini, G. A.; Herrmann, S.; Färm, E.; Ritala, M.; Fritz, D. M.; Robert, A.

    2015-01-06

    X-ray Free Electron Lasers (FELs) can produce extremely intense and very short pulses, down to below 10 femtoseconds (fs). Among the key applications are ultrafast time-resolved studies of dynamics of matter by observing responses to fast excitation pulses in a pump-probe manner. Detectors with sufficient time resolution for observing these processes are not available. Therefore, such experiments typically measure a sample's full dynamics by repeating multiple pump-probe cycles at different delay times. This conventional method assumes that the sample returns to an identical or very similar state after each cycle. Here we describe a novel approach that can provide a time trace of responses following a single excitation pulse, jitter-free, with fs timing precision. We demonstrate, in an X-ray diffraction experiment, how it can be applied to the investigation of ultrafast irreversible processes.

  18. Following the dynamics of matter with femtosecond precision using the X-ray streaking method

    NASA Astrophysics Data System (ADS)

    David, C.; Karvinen, P.; Sikorski, M.; Song, S.; Vartiainen, I.; Milne, C. J.; Mozzanica, A.; Kayser, Y.; Diaz, A.; Mohacsi, I.; Carini, G. A.; Herrmann, S.; Färm, E.; Ritala, M.; Fritz, D. M.; Robert, A.

    2015-01-01

    X-ray Free Electron Lasers (FELs) can produce extremely intense and very short pulses, down to below 10 femtoseconds (fs). Among the key applications are ultrafast time-resolved studies of dynamics of matter by observing responses to fast excitation pulses in a pump-probe manner. Detectors with sufficient time resolution for observing these processes are not available. Therefore, such experiments typically measure a sample's full dynamics by repeating multiple pump-probe cycles at different delay times. This conventional method assumes that the sample returns to an identical or very similar state after each cycle. Here we describe a novel approach that can provide a time trace of responses following a single excitation pulse, jitter-free, with fs timing precision. We demonstrate, in an X-ray diffraction experiment, how it can be applied to the investigation of ultrafast irreversible processes.

  19. Technical brief: Pump-probe paradigm in an integrating cavity to study photodecomposition processes

    PubMed Central

    Betts-Obregon, Brandi; Tsin, Andrew T.; DeSa, Richard J.

    2016-01-01

    dark” period allowed actinic flashes to be placed between scans. Exposure of the all-trans retinol to 366 nm flashes resulted in marked reduction in absorbance and a blue shift of the λmax. A white LED, despite its higher photon output, did not support all-trans retinol photolysis. Singular value decomposition (SVD) analysis revealed three spectral intermediates with mechanism, I -> II -> III. HPLC analysis of the reactants at the beginning and the conclusion of the light exposure confirmed the retinol photodecomposition. Conclusions The highly reflecting cavity acts as a multipass cuvette that markedly increased the light path length and, thus, sensitivity. Triggering the LED during a dark period within the scan time allowed the actinic flashes to be interleafed between scans in a pump-probe paradigm. Furthermore, the entire sample was exposed to scan beam and actinic flashes, which is not possible in traditional spectrophotometers. Finally, the integrating cavity cuvette allowed use of turbid samples. SVD was useful for resolving spectral intermediates. Although the identity of the intermediates was not determined here, the ability to define molecular intermediates during photodecomposition reactions will allow future studies to isolate and identify the degradation products and determine the mechanism of light-induced retinoid degradation and that of retinoid-binding protein-mediated photoprotection. PMID:27559291

  20. Photocarrier dynamics in anatase TiO{sub 2} investigated by pump-probe absorption spectroscopy

    SciTech Connect

    Matsuzaki, H. E-mail: okamotoh@k.u-tokyo.ac.jp; Matsui, Y.; Uchida, R.; Yada, H.; Terashige, T.; Li, B.-S.; Sawa, A.; Kawasaki, M.; Tokura, Y.; Okamoto, H. E-mail: okamotoh@k.u-tokyo.ac.jp

    2014-02-07

    The dynamics of photogenerated electrons and holes in undoped anatase TiO{sub 2} were studied by femtosecond absorption spectroscopy from the visible to mid-infrared region (0.1–2.0 eV). The transient absorption spectra exhibited clear metallic responses, which were well reproduced by a simple Drude model. No mid-gap absorptions originating from photocarrier localization were observed. The reduced optical mass of the photocarriers obtained from the Drude-model analysis is comparable to theoretically expected one. These results demonstrate that both photogenerated holes and electrons act as mobile carriers in anatase TiO{sub 2}. We also discuss scattering and recombination dynamics of photogenerated electrons and holes on the basis of the time dependence of absorption changes.

  1. Ultrafast time-resolved pump-probe spectroscopy of PYP by a sub-8 fs pulse laser at 400 nm.

    PubMed

    Liu, Jun; Yabushita, Atsushi; Taniguchi, Seiji; Chosrowjan, Haik; Imamoto, Yasushi; Sueda, Keiichi; Miyanaga, Noriaki; Kobayashi, Takayoshi

    2013-05-01

    Impulsive excitation of molecular vibration is known to induce wave packets in both the ground state and excited state. Here, the ultrafast dynamics of PYP was studied by pump-probe spectroscopy using a sub-8 fs pulse laser at 400 nm. The broadband spectrum of the UV pulse allowed us to detect the pump-probe signal covering 360-440 nm. The dependence of the vibrational phase of the vibrational mode around 1155 cm(-1) on the probe photon energy was observed for the first time to our knowledge. The vibrational mode coupled to the electronic transition observed in the probe spectral ranges of 2.95-3.05 and 3.15-3.35 eV was attributed to the wave packets in the ground state and the excited state, respectively. The frequencies in the ground state and excited state were determined to be 1155 ± 1 and 1149 ± 1 cm(-1), respectively. The frequency difference is due to change after photoexcitation. This means a reduction of the bond strength associated with π-π* excitation, which is related to the molecular structure change associated with the primary isomerization process in the photocycle in PYP. Real-time vibrational modes at low frequency around 138, 179, 203, 260, and 317 cm(-1) were also observed and compared with the Raman spectrum for the assignment of the vibrational wave packet.

  2. Calculating time-resolved differential absorbance spectra for ultrafast pump-probe experiments with surface hopping trajectories

    SciTech Connect

    Petit, Andrew S.; Subotnik, Joseph E.

    2014-10-21

    We report a surface hopping approach for modeling the full time- and frequency-resolved differential absorbance spectra (beyond the inhomogenous limit) obtained in ultrafast pump-probe experiments. In our approach, we combine dynamical information obtained from ensembles of classical trajectories propagated on the ground and on the excited potential energy surfaces to directly calculate optical response functions and hence spectral lineshapes. We demonstrate that our method is exact for the model problem of two shifted harmonic potentials with identical harmonic frequencies in the absence of electronic relaxation. We then consider a model three state system with electronic relaxation and show that our method is able to capture the effects of nonadiabatic excited state dynamics on the time-dependent differential absorbance spectra. Furthermore, by comparing our spectra against those spectra calculated with either an (1) inhomogenous expression, (2) ground-state Kubo theory, or (3) excited-state Kubo theory, we show that including dynamical information from both the ground and excited potential energy surfaces significantly improves the reliability of the semiclassical approximations. As such, our surface hopping method should find immediate use in modeling the time-dependent differential abosrbance spectra of ultrafast pump-probe experiments.

  3. State-To Spectroscopy and Dynamics of Ions and Neutrals by Photoionization and Photoelectron Methods

    NASA Astrophysics Data System (ADS)

    Ng, Cheuk-Yiu

    2014-06-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (VIS)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. We show that VUV laser photoionization coupled with velocity-map-imaging (VMI)-threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolutions, but higher detection sensitivities than those observed in VUV laser pulsed field ionization-photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and VIS-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE and VIS-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI-photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

  4. State-to-state spectroscopy and dynamics of ions and neutrals by photoionization and photoelectron methods.

    PubMed

    Ng, Cheuk-Yiu

    2014-01-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics. PMID:24328445

  5. State-to-State Spectroscopy and Dynamics of Ions and Neutrals by Photoionization and Photoelectron Methods

    NASA Astrophysics Data System (ADS)

    Ng, Cheuk-Yiu

    2014-04-01

    Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.

  6. Dual echelon femtosecond single-shot spectroscopy

    SciTech Connect

    Shin, Taeho; Wolfson, Johanna W.; Teitelbaum, Samuel W.; Kandyla, Maria; Nelson, Keith A.

    2014-08-15

    We have developed a femtosecond single-shot spectroscopic technique to measure irreversible changes in condensed phase materials in real time. Crossed echelons generate a two-dimensional array of time-delayed pulses with one femtosecond probe pulse. This yields 9 ps of time-resolved data from a single laser shot, filling a gap in currently employed measurement methods. We can now monitor ultrafast irreversible dynamics in solid-state materials or other samples that cannot be flowed or replenished between laser shots, circumventing limitations of conventional pump-probe methods due to sample damage or product buildup. Despite the absence of signal-averaging in the single-shot measurement, an acceptable signal-to-noise level has been achieved via background and reference calibration procedures. Pump-induced changes in relative reflectivity as small as 0.2%−0.5% are demonstrated in semimetals, with both electronic and coherent phonon dynamics revealed by the data. The optical arrangement and the space-to-time conversion and calibration procedures necessary to achieve this level of operation are described. Sources of noise and approaches for dealing with them are discussed.

  7. Photoionization of FE3+ Ions

    SciTech Connect

    Ovchinnikov, O.; Schlachter, F.

    2003-01-01

    Photoionization of Fe3+ ions was studied for the first time using synchrotron radiation from the Advanced Light Source (ALS) and the merged-beams technique. Fe3+ ions were successfully produced using ferrocene in an electron cyclotron resonance ion source (ECR). The measured yield of Fe4+ photoions as a function of photon energy revealed the presence of resonances that correspond to excitation of autoionizing states. These resonances are superimposed upon the photoion yield produced by direct photoionization, which is a smooth, slowly decreasing function of energy. The spectra for the photoionization of Fe3+ will be analyzed and compared with theory. The data collected will also serve to test models for the propagation of light through ionized matter.

  8. Clean sub-8-fs pulses at 400 nm generated by a hollow fiber compressor for ultraviolet ultrafast pump-probe spectroscopy.

    PubMed

    Liu, Jun; Okamura, Kotaro; Kida, Yuichiro; Teramoto, Takahiro; Kobayashi, Takayoshi

    2010-09-27

    Clean 7.5 fs pulses at 400 nm with less than 3% energy in tiny satellite pulses were obtained by spectral broadening in a hollow fiber and dispersive compensating using a prism pair together with a deformable mirror system. As an example, this stable and clean pulse was used to study the ultrafast pump-probe spectroscopy of photoactive yellow protein. Moreover, the self-diffraction signal shows a smoothed and broadened laser spectrum and is expected to have a further clean laser pulse, which makes it more useful in the ultrafast pump-probe spectroscopy in the future.

  9. Ultrafast dynamics of VO2 thin films measured in pump-probe configuration

    NASA Astrophysics Data System (ADS)

    Radue, Elizabeth; Kittiwatanakul, Salinporn; Lu, Jiwei; Wolf, S. A.; Fu, Zhengping; Yamaguchi, Masashi; Rossi, Enrico; Lukaszew, R. A.; Novikova, Irina

    The semiconductor-metal transition of VO2 continues to be a vigorously studied phenomenon due to complicated interplay between the structural change and the electronic bands. It is also potentially a very useful material, particularly because of its ultrafast transition to the metallic state excited with a femtosecond pulse. We have been exploring the effects of polarization of the pump in relation to the probe affects the sub-picosecond response of VO2 thin films, which will be important in designing ultrafast switches. We have also been looking at pumping our VO2 films with a THz source that directly pumps the lattice, and have found the film responds optically on a slower scale than when pumped with 800 nm, suggesting that there is an electronic response from disturbing the lattice. This project was sponsored by the NSF, DMR-1006013: Plasmon Resonances and Metal Insulator Transitions in Highly Correlated Thin Film Systems, and the NASA Virginia Space Grant Consortium. We also acknowledge support from the NRI/SRC sponsored ViNC center.

  10. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    SciTech Connect

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  11. Ultrafast Pump-Probe Studies of the Light-Induced MIT and Recovery of Niobium Dioxide Thin Films

    NASA Astrophysics Data System (ADS)

    Beebe, Melissa; Klopf, J. Michael; Kittiwatanakul, Salinporn; Lu, Jiwei; Wolf, Stuart A.; Lukaszew, R. Alejandra

    Niobium dioxide (NbO2) is a highly correlated binary oxide that, like vanadium dioxide (VO2) , exhibits a first-order insulator-to-metal transition (IMT) at a material-dependent critical temperature, accompanied by a structural transformation from monoclinic to rutile. The nature of the IMT in VO2 has been discussed at length, while fewer studies have been carried out on NbO2. Previous studies show that the IMT can also be optically induced in VO2 on a sub-picosecond timescale; here, we present the first ultrafast pump-probe studies showing this optically-induced transition in NbO2 thin films and compare these results to similar ones carried out on VO2 thin films.

  12. Optical spectroscopy and ultrafast pump-probe studies on the heavy-fermion compound CePt2In7

    NASA Astrophysics Data System (ADS)

    Chen, R. Y.; Zhang, S. J.; Bauer, E. D.; Thompson, J. D.; Wang, N. L.

    2016-07-01

    We report optical spectroscopy and ultrafast pump-probe measurements on the antiferromagnetic heavy-fermion compound CePt2In7 , a member showing stronger two dimensionality than other compounds in the CeIn3-derived heavy-fermion family. We identify clear and typical hybridization spectral structures at low temperature from the two different spectroscopy probes. However, the strength and related energy scale of the hybridization are much weaker and smaller than that in the superconducting compounds CeCoIn5 and CeIrIn5. The features are more similar to observations on the antiferromagnetic compounds CeIn3 and CeRhIn5 in the same family. The results clearly indicate that the Kondo interaction and hybridizations exist in the antiferromagnetic compounds but with weaker strength.

  13. Time-integrated photoluminescence and pump-probe reflection spectroscopy of Si doped InN thin films

    SciTech Connect

    Mohanta, Antaryami; Jang, Der-Jun Wang, Ming-Sung; Tu, L. W.

    2014-01-28

    Temperature and excitation power dependent time-integrated photoluminescence of Si doped InN thin films are investigated. Photoluminescence (PL) spectra at low temperatures are described by single emission peak ensued due to “free-to-bound” recombination; whereas PL spectra at higher temperatures above 150 K are characterized by both “band-to-band” and “free-to-bound” transition. Carrier dynamics of Si doped InN thin films is studied using pump-probe reflection spectroscopy at room temperature. The hot electron cooling process is well described by electron-electron scattering. The dependence of the hot electron cooling rate on total electron density shows sublinear to linear behavior with increase of background electron density. The variation of the carrier recombination lifetime with total electron density implicates the dominance of the defect-related nonradiative recombination channel over other recombination processes.

  14. Probing nonlinear magnetization dynamics in Fe/MgO(001) film by all optical pump-probe technique

    SciTech Connect

    He, Wei; Hu, Bo; Zhang, Xiang-Qun; Cheng, Zhao-Hua; Zhan, Qing-Feng

    2014-04-07

    An all-optical pump-probe technique has been employed to investigate the nonlinear magnetization dynamics of a 10 nm Fe/MgO(001) thin film in time domain. The magnetization precession was excited by pump-laser pulses and modulated by laser fluence variations. With increasing the laser fluence up to 7.1 mJ/cm{sup 2}, in addition to the uniform precession mode, a second harmonic signal was detected. The time evolution of the second harmonic signal was obtained in time-frequency domain. Based on the Landau-Lifshitz-Gilbert equation, the numerical simulation was performed to reproduce the observed the frequency doubling behaviors in Fe/MgO(001) film.

  15. Ultrafast spin-state photoswitching in a crystal and slower consecutive processes investigated by femtosecond optical spectroscopy and picosecond X-ray diffraction

    SciTech Connect

    Collet, Eric; Moisan, Nicolas; Baldé, Chérif; Bertoni, Roman; Trzop, Elzbieta; Laulhé, Claire; Lorenc, Maciej; Servol, Marina; Cailleau, Hervé; Tissot, Antoine; Boillot, Marie-Laure; Graber, Timothy; Henning, Robert; Coppens, Philip; Buron-Le Cointe, Marylise

    2013-02-20

    We report the spin state photo-switching dynamics in two polymorphs of a spin-crossover molecular complex triggered by a femtosecond laser flash, as determined by combining femtosecond optical pump-probe spectroscopy and picosecond X-ray diffraction techniques. The light-driven transformations in the two polymorphs are compared. Combining both techniques and tracking how the X-ray data correlate with optical signals allow understanding of how electronic and structural degrees of freedom couple and play their role when the switchable molecules interact in the active crystalline medium. The study sheds light on crossing the border between femtochemistry at the molecular scale and femtoswitching at the material scale.

  16. Photoelectron photoion molecular beam spectroscopy

    SciTech Connect

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  17. Generation of microJ-level multicolored femtosecond laser pulses using cascaded four-wave mixing.

    PubMed

    Liu, Jun; Kobayashi, Takayoshi

    2009-03-30

    Multicolor femtosecond pulses were simultaneously obtained by a cascaded FWM process in fused silica glass. The sideband spectra were tunable by changing the crossing angle of the two input beams. Frequency up-shift and down-shift pulses with energies as high as 1 microJ, durations of 45 fs, nearly diffraction limited Gaussian spatial profiles, and power stability smaller than 2% RMS of the generated sidebands were obtained. These multicolor sidebands can be used in various experiments, such as multicolor pump-probe experiment.

  18. Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica

    SciTech Connect

    Hoehm, S.; Rosenfeld, A.; Krueger, J.; Bonse, J.

    2013-02-04

    The formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a transillumination femtosecond time-resolved (0.1 ps-1 ns) pump-probe diffraction approach. This allows to reveal the generation dynamics of near-wavelength-sized LIPSS showing a transient diffraction at specific spatial frequencies even before a corresponding permanent surface relief was observed. The results confirm that the ultrafast energy deposition to the materials surface plays a key role and triggers subsequent physical mechanisms such as carrier scattering into self-trapped excitons.

  19. Photoionization-photoelectron research.

    SciTech Connect

    Ruscic, B.

    1998-03-06

    In the broad sense of a general definition, the fundamental goal of this research program is to explore, understand, and utilize the basic processes of interaction of vacuum UV light with atoms and molecules. In practical terms, this program uses photoionization mass spectrometry and other related techniques to study chemically relevant transient and metastable species that are intimately connected to energy-producing processes, such as combustion, or play-prominent roles in the associated environmental issues. Some recent examples of species that have been studied are: CH{sub 3}, CH{sub 2}, CH{sub 3}O, CH{sub 2}OH, CH{sub 3}S, CH{sub 2}SH, HCS, HNCO, NCO, HNCS, NCS, the isomers of C{sub 2}H{sub 5}O, HOBr, CF{sub 3} and CF{sub 3}OH. The ephemeral species of interest are produced in situ using various suitable techniques, such as sublimation, pyrolysis, microwave discharge, chemical abstraction reactions with H or F atoms, laser photodissociation, on-line synthesis, and others. The desired information is obtained by applying a variety of suitable photoionization methods, which use both conventional and coherent light sources in the vacuum W region. The spiritus movens of our studies is the need to provide the chemical community with essential information on the species of interest, such as accurate and reliable thermochemical, spectroscopic and structural data, and thus contribute to the global comprehension of the underlying chemical processes. The scientific motivation is also fueled by the necessity to unveil useful generalities, such as bonding patterns within a class of related compounds, or systematic behavior in the ubiquitous autoionization processes. In addition, the nature of the results obtained in this program is such that it generates a significant impetus for further theoretical work. The experimental work of this program is coordinated with other related experimental and theoretical efforts of the Chemical Dynamics Group to provide a broad perspective

  20. A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics.

    PubMed

    Boschini, F; Hedayat, H; Piovera, C; Dallera, C; Gupta, A; Carpene, E

    2015-01-01

    A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO2 single crystals as a benchmark.

  1. A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics

    NASA Astrophysics Data System (ADS)

    Boschini, F.; Hedayat, H.; Piovera, C.; Dallera, C.; Gupta, A.; Carpene, E.

    2015-01-01

    A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO2 single crystals as a benchmark.

  2. A flexible experimental setup for femtosecond time-resolved broad-band ellipsometry and magneto-optics

    SciTech Connect

    Boschini, F.; Hedayat, H.; Piovera, C.; Dallera, C.; Gupta, A.; Carpene, E.

    2015-01-15

    A versatile experimental setup for femtosecond time-resolved ellipsometry and magneto-optical Kerr effect measurements in the visible light range is described. The apparatus is based on the pump-probe technique and combines a broad-band probing beam with an intense near-infrared pump. According to Fresnel scattering matrix formalism, the analysis of the reflected beam at different polarization states of the incident probe light allows one to determine the diagonal and the off-diagonal elements of the dielectric tensor in the investigated sample. Moreover, the pump-probe method permits to study the dynamics of the dielectric response after a short and intense optical excitation. The performance of the experimental apparatus is tested on CrO{sub 2} single crystals as a benchmark.

  3. Validity Using Pump-Probe Pulses to Determine the Optical Response of Niobate Crystals

    NASA Technical Reports Server (NTRS)

    Liu, Huimin; Jia, Weiyi

    1997-01-01

    A variety of niobate crystals have found their places in nonlinear optical applications as well as in laser devices. In recent years much attention has been paid to study the ultrafast optical response in a variety of photorefractive crystals such as KTa(1-x)Nb(x)O3 and KNbO3 crystals, glasses, semiconductors and polymers for applications in optical switching, information processing, optical computing, and all-optical device systems. Third-order optical nonlinearity is the most important property for realization of all-optical switching. Therefore experiments have been performed on the third order susceptibility using a variety of techniques such as the third-order harmonic generation, EFISH and degenerate four-wave mixing(DFWM). The latter has been conducted with a variety of pump wavelengths and with nanosecond, picosecond and femtosecond pulses. Niobate crystals, such as potassium niobate KNbO3, potassium tantalate niobate KTN family (KTa(1-x)Nb(x)O3), strontium barium niobate SBN (Sr(x)Ba(1-x)Nb2O6) and potassium-sodium niobate SBN (KNSBN) are attractive due to their photorefractive properties for application in optical storage and processing. The pulsed probe experiments performed on theses materials have suggested two types of time responses. These responses have been associated with an coherent response due to Chi(sup 3), and a long lived component due to excited state population. Recent study of DFWM on KNbO3 and KTN family reveals that the long lived component of those crystals depends on the crystal orientation. A slowly decaying signal is observable when the grating vector K(sub g) is not perpendicular to the C-axis of those photorefractive crystals', otherwise the optical response signal would be only a narrow coherent peak with FWHM equal to the cross-correlation width of the write beam pulses. Based on this understanding, we study the photodynamical process of a variety of niobate crystals using DFWM in a Kg perpindicular to C geometry with a ps

  4. Femtosecond Isomerization Dynamics in the Ethylene Molecule

    NASA Astrophysics Data System (ADS)

    Belkacem, Ali

    2009-05-01

    The ethylene molecule plays a fundamental and prototypical role for the understanding of photo-isomerizaton processes and particularly for ultrafast energy conversion through nonadiabatic transitions and state crossing via conical intersections. We have developed a high power femtosecond laser based pump-probe system to study femtosecond isomerization dynamics in various model molecules. By focusing 25-mJ laser pulses into a 5-cm-long xenon-filled gas cell, we can deliver about 10^9 photons per harmonic per pulse onto a target gas, with the photons ranging in energy from 8 to 40 eV. In this talk I will present the results of our studies of the dynamics in the excited ethylene cation (C2H4^+) using a high intensity high harmonic source. The dynamics in the excited ethylene cation leads, among other channels, to isomerization to the ethyledene configuration (CH3CH^+), which is predicted to be a transient configuration for electronic relaxation. With an intense femtosecond EUV pulse as pump, and a NIR (near infra-red) pulse as probe, we measure a time scale of 45±10 fs for formation of the transient ethylidene configuration (lifetime of 60±15 fs ) through detection of the NIR-induced fragmentation to CH3^+ and CH^+. Also, a H2-stretch transient configuration (believed to succeed ethylidene), yielding H2^+, is found to be populated after 100±10 fs. These studies were also extended to excited state dynamics in the neutral ethylene using a recently developed split mirror technique enabling XUV pump - XUV probe capability. In order to achieve this we optimized our high harmonic system for high power in order to produce a very intense source of high harmonics that allows multiphoton (XUV) absorption by a single molecule. In particular, we were able to measure two-photon double-ionization of Ethelyne and argon and three-photon double ionization of neon.

  5. Ultrafast Electronic And Nuclear Dynamics In Dissociative Photoionization Of Molecular Hydrogen and Deuterium

    NASA Astrophysics Data System (ADS)

    Billaud, P.; Picard, Y. J.; Géléoc, M.; Hergott, J.-F.; Carré, B.; Breger, P.; Ruchon, T.; Veyrinas, K.; Roulliay, M.; Delmotte, F.; Böttcher, M.; Huetz, A.; Dowek, D.

    2012-11-01

    Single-photon dissociative photoionization of H2/D2 in the Q1, Q2 doubly excited states resonance regions, where ultrafast electronic and nuclear dynamics are coupled, is studied using the vector-correlation method with single selected femtosecond high-order harmonic and synchrotron radiation in the VUV. Results are compared at the level of electron-ion kinetic energy correlation diagrams, asymmetry parameters, and the molecular frame photoelectron angular distributions.

  6. Two-color photoionization in xuv free-electron and visible laser fields

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Cubaynes, D.; O'Keeffe, P.; Luna, H.; Yeates, P.; Kennedy, E. T.; Costello, J. T.; Orr, P.; Taïeb, R.; Maquet, A.; Düsterer, S.; Radcliffe, P.; Redlin, H.; Azima, A.; Plönjes, E.; Feldhaus, J.

    2006-07-01

    Two-photon ionization of atomic helium has been measured by combining femtosecond extreme-ultraviolet pulses from the free-electron laser in Hamburg (FLASH at DESY) with intense light pulses from a synchronized neodymium-doped yttrium lithium fluoride laser. Sidebands appear in the photoelectron spectra when the two laser pulses overlap in both space and time. Their intensity exhibits a characteristic dependence on the relative time delay between the ionizing and the dressing pulses and provides an inherent time marker for time-resolved pump-probe experiments. The measurements of the sidebands are in good agreement with theoretical predictions and allow for a direct analysis of two-photon ionization, free from processes related to interference between multiple quantum paths.

  7. Nodal Quasiparticle Meltdown in Ultra-High Resolution Pump-Probe Angle-Resolved Photoemission

    SciTech Connect

    Graf, Jeff; Jozwiak, Chris; Smallwood, Chris L.; Eisaki, H.; Kaindl, Robert A.; Lee, Dung-Hai; Lanzara, Alessandra

    2011-06-03

    , finding any strong dependencies of the nodal QPs will alter the conventional view and enrich our understanding of high temperature superconductivity. Time resolution through pump-and-probe techniques adds a new dimension to ARPES by directly measuring how the electronic structure of a material responds to perturbations on femtosecond time scales. Here we report a unique ultrafast time-resolved ARPES study of a high-T{sub c} cuprate superconductor. Compared to previous time-resolved studies, the primary advantage of this work is an unprecedented momentum (angular) resolution ({Delta} k~ 0.003 vs. 0.05 { Angstrom}{sup -1}), on par with that of state-of-the-art ARPES. This has allowed the time-resolved measurement of signi cantly sharper QP spectral peaks with strikingly larger peak-to-background ratios than previously reported.16 Additionally, a lower pump fluence is used (<40{micro} J/cm{sup 2} vs. 100 {micro}J/cm{sup 2}), which reduces pump-induced sample temperature increase and related thermal smearing of spectral features. This allows us to uncover a surprising meltdown of nodal QP spectral weight following pump laser excitation. This meltdown is only observed in the superconducting state and for QPs with binding energy less than the kink energy,19 revealing a link between nodal QPs and superconductivity.

  8. Atmospheric measurements of total OH reactivity: Intercomparison of the pump-probe technique and the comparative reactivity method

    NASA Astrophysics Data System (ADS)

    Dusanter, Sebastien; Hansen, Robert; Leonardis, Thierry; Schoemaecker, Coralie; Blocquet, Marion; Fittschen, Christa; Hanoune, Benjamin; Sinha, Vinayak; Stevens, Philip; Locoge, Nadine

    2013-04-01

    The hydroxyl radical (OH) drives the oxidation of organic trace gases that can lead to the production of ozone and secondary organic aerosols in the atmosphere. A complete understanding of the sources and sinks of OH is therefore important to address issues related to both air quality and climate change. However, recent measurements of total OH reactivity [1-2], which is the inverse of the OH lifetime, have pointed out that our understanding of OH sinks is still incomplete and important reactive trace gases have not yet been identified. These measurements of total OH reactivity are of particular interest since they provide a critical test of our understanding of the OH budget. Three techniques are available to measure the total OH reactivity, including the total OH loss rate method [3], the pump-probe method [4], and the comparative reactivity method (CRM) [5]. While the first two methods are based on direct measurements of OH decays using laser-induced fluorescence instruments, the CRM is based on a different approach in which a tracer molecule is detected instead of OH to determine the ambient OH loss rate. As these instruments were deployed in different field campaigns, intercomparison exercises would be useful to ensure the accuracy of the measurements. However, such intercomparisons have not yet been published. An informal intercomparison involving a CRM instrument from the Ecole des Mines de Douai (EMD) and a pump-probe instrument from the laboratory Physicochimie des Processus de Combustion et de l'Atmosphere (PC2A) took place in an urban environment at the university of Lille (France). The two OH reactivity instruments measured continuously side by side for a duration of two weeks. Collocated measurements of trace gases were also performed using O3, NOx and SO2 monitors, as well as two automated chromatographic instruments capable of measuring more than 50 volatile organic compounds (VOC). We will present cross calibrations of the two OH reactivity

  9. Temperature Dependence in Femtosecond Desorption at Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Misewich, James

    1998-03-01

    Femtosecond laser induced desorption at metal surfaces is distinguished by two salient observations: the high yield of the reaction and the short correlation time in pump-probe measurements. This has led to the proposal of a model for desorption induced by multiple electronic transitions (DIMET). (J.A. Misewich, T.F. Heinz, and D.M. Newns, Phys. Rev. Lett. v.68 (1992) 3737.) The effect of the adsorbate temperature in DIMET has been studied using stochastic trajectory calculations with initial adsorbate vibrational quantum state occupation. We find that initial vibrational excitation substantially increases the desorption yield. These findings are related to two experimental observations. The long time-scale wings found in femtosecond time-resolved correlation measurements are thought to reflect the residual vibrational excitation left in the undesorbed adlayer following the first laser pulse. (J.A. Misewich, A. Kalamarides, T.F. Heinz, U. Hoefer, and M.M.T. Loy, J. Chem. Phys. v.100 (1994) 736.) Also, the wavelength dependence of femtosecond desorption experiments (S. Deliwala, R.J. Finlay, J.R. Goldman, T.H. Her, W.D. Mieher, and E. Mazur, Chem. Phys. Lett. v.242 (1995) 617 and D.G. Busch and W. Ho, Phys. Rev. Lett. v.77 (1996) 1338.) suggests a role for nonthermalized electrons which is interpreted in terms of the vibrational excitation left in the adlayer from unsuccessful DIET (single excitation) events as a result of the wavelength dependent nonthermalized electron distribution.

  10. Application of network identification by deconvolution method to the thermal analysis of the pump-probe transient thermoreflectance signal.

    PubMed

    Ezzahri, Y; Shakouri, A

    2009-07-01

    The paper discusses the possibility to apply network identification by deconvolution (NID) method to the analysis of the thermal transient behavior due to a laser delta pulse excitation in a pump-probe transient thermoreflectance experiment. NID is a method based on linear RC network theory using Fourier's law of heat conduction. This approach allows the extraction of the thermal time constant spectrum of the sample under study after excitation by either a step or pulse function. Furthermore, using some mathematical transformations, the method allows analyzing the detail of the heat flux path through the sample, starting from the excited top free surface, by introducing two characteristic functions: the cumulative structure function and the differential structure function. We start by a review of the theoretical background of the NID method in the case of a step function excitation and then show how this method can be adjusted to be used in the case of a delta pulse function excitation. We show how the NID method can be extended to analyze the thermal transients of many optical experiments in which the excitation function is a laser pulse. The effect of the semi-infinite substrate as well as extraction of the interface and thin film thermal resistances will be discussed.

  11. Probing with randomly interleaved pulse train bridges the gap between ultrafast pump-probe and nanosecond flash photolysis.

    PubMed

    Nakagawa, Tatsuo; Okamoto, Kido; Hanada, Hiroaki; Katoh, Ryuzi

    2016-04-01

    Despite the long-standing importance of transient absorption (TA) spectroscopy, many researchers remain frustrated by the difficulty of measuring the nanosecond range in a wide spectral range. To address this shortcoming, we propose a TA spectrophotometer in which there is no synchronization between a pump pulse and a train of multiple probe pulses from a picosecond supercontinuum light source, termed the randomly-interleaved-pulse-train (RIPT) method. For each pump pulse, many monochromatized probe pulses impinge upon the sample, and the associated pump-probe time delays are determined passively shot by shot with subnanosecond accuracy. By repeatedly pumping with automatically varying time delays, a TA temporal profile that covers a wide dynamic range from subnanosecond to milliseconds is simultaneously obtained. By scanning wavelength, this single, simple apparatus acquires not only wide time range TA profiles, but also broadband TA spectra from the visible through the near-infrared regions. Furthermore, we present a typical result to demonstrate how the RIPT method may be used to correct for fluorescence, which often pollutes TA curves. PMID:27192271

  12. Laser-driven phase transitions in aqueous colloidal gold nanoparticles under high pressure: picosecond pump-probe study.

    PubMed

    Hashimoto, Shuichi; Katayama, Tetsuro; Setoura, Kenji; Strasser, Michael; Uwada, Takayuki; Miyasaka, Hiroshi

    2016-02-14

    Pump-probe transient extinction spectroscopy was used to analyze 355 nm picosecond laser heating-induced phenomena in 60 nm-diameter aqueous gold nanoparticles (AuNPs) under a high pressure of 60 MPa. Kinetic spectroscopy revealed that a supercritical layer surrounding the AuNP nucleated with a lifetime of approximately 1 ns during its dynamic expansion and decay for a fluence of 19.6 mJ cm(-2). Moreover, in the post-mortem transmission electron micrographs we observed a number of fragments, a small percentage of size-reduced cores, and erupted particles among the intact particles after 60 shots, suggesting that evaporation occurred under laser illumination. The particle temperature calculation indicated that evaporation begins with a liquid droplet AuNP surrounded by a supercritical layer at temperatures below the boiling point of gold. By applying high pressure, we obtained a clear picture of the evaporation event, which was not possible at ambient pressure because bubble formation caused particle temperatures to rise uncontrollably. In this study, we shed light on the critical role of the supercritical layer formed around the AuNP under high pressure during laser-induced evaporation. PMID:26812175

  13. Picosecond-to-nanosecond dynamics of plasmonic nanobubbles from pump-probe spectral measurements of aqueous colloidal gold nanoparticles.

    PubMed

    Katayama, Tetsuro; Setoura, Kenji; Werner, Daniel; Miyasaka, Hiroshi; Hashimoto, Shuichi

    2014-08-12

    The photothermal generation of nanoscale vapor bubbles around noble metal nanoparticles is of significant interest, not only in understanding the underlying mechanisms responsible for photothermal effects, but also to optimize photothermal effects in applications such as photothermal cancer therapies. Here, we describe the dynamics in the 400-900 nm regime of the formation and evolution of nanobubbles around colloidal gold nanoparticles using picosecond pump-probe optical measurements. From excitations of 20-150 nm colloidal gold nanoparticles with a 355 nm, 15 ps laser, time-dependent optical extinction signals corresponding to nanobubble formation were recorded. The extinction spectra associated with nanobubbles of different diameters were simulated by considering a concentric spherical core-shell model within the Mie theory framework. In the simulations, we assumed an increase in particle temperature. From temporal changes in the experimental data of transient extinctions, we estimated the temporal evolution of the nanobubble diameter. Corrections to bubble-free temperature effects on the transient extinction decays were applied in these experiments by suppressing bubble formation using pressures as high as 60 MPa. The results of this study suggest that the nanobubbles generated around a 60 nm-diameter gold nanoparticle using a fluence of 5.2 mJ cm(-2) had a maximum diameter of 260 ± 40 nm, and a lifetime of approximately 10 ns. The combination of fast transient extinction spectral measurements and spectral simulations provides insights into plasmonic nanobubble dynamics.

  14. Photodissociation of Small Molecules and Photoionization of Free Radicals Using the VUV Velocity-Map Imaging Photoion and Photoelectron Method

    NASA Astrophysics Data System (ADS)

    Gao, Hong

    (2012). (Chapter 2) 2. Hong Gao, Yu Song, Lei Yang, Xiaoyu Shi, Qing-Zhu Yin, C. Y. Ng and William M. Jackson. "Branching ratio measurements of the predissociation of 12C16O by time-slice velocity-map ion imaging in the energy region from 108,000 to 110,500 cm-1", the Journal of Chemical Physics, 137, 034305 (2012). (Chapter 3) 3. Hong Gao, Yu Song, Yih-Chung Chang, Xiaoyu Shi, Qing-Zhu Yin, Roger C. Wiens, William M. Jackson, C. Y. Ng, "Branching Ratio Measurements for Vacuum Ultraviolet Photodissociation of 12C16O", the Journal of Physical Chemistry A. (article online ASAP). (Chapter 4) 4. Hong Gao, Yu Song, C. Y. Ng, William M. Jackson, " Communication: State-to-state photodissociation study by the two-color VUV-VUV laser pump-probe time-slice velocity-map-imaging-photoion method", the Journal of Chemical Physics, 138, 191102(2013). (Chapter 5) 5. Hong Gao, Zhou Lu, Lei Yang, Jingang Zhou, C. Y. Ng, "Communication: A vibrational study of propargyl cation using the vacuum ultraviolet laser velocity-map imaging photoelectron method", the Journal of Chemical Physics, 137, 161101(2012). (Chapter 6)

  15. Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons

    NASA Astrophysics Data System (ADS)

    Bossini, D.; Dal Conte, S.; Hashimoto, Y.; Secchi, A.; Pisarev, R. V.; Rasing, Th.; Cerullo, G.; Kimel, A. V.

    2016-02-01

    The understanding of how the sub-nanoscale exchange interaction evolves in macroscale correlations and ordered phases of matter, such as magnetism and superconductivity, requires to bridging the quantum and classical worlds. This monumental challenge has so far only been achieved for systems close to their thermodynamical equilibrium. Here we follow in real time the ultrafast dynamics of the macroscale magnetic order parameter in the Heisenberg antiferromagnet KNiF3 triggered by the impulsive optical generation of spin excitations with the shortest possible nanometre wavelength and femtosecond period. Our magneto-optical pump-probe experiments also demonstrate the coherent manipulation of the phase and amplitude of these femtosecond nanomagnons, whose frequencies are defined by the exchange energy. These findings open up opportunities for fundamental research on the role of short-wavelength spin excitations in magnetism and strongly correlated materials; they also suggest that nanospintronics and nanomagnonics can employ coherently controllable spin waves with frequencies in the 20 THz domain.

  16. Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials

    NASA Astrophysics Data System (ADS)

    Matsubara, E.; Okada, S.; Ichitsubo, T.; Kawaguchi, T.; Hirata, A.; Guan, P. F.; Tokuda, K.; Tanimura, K.; Matsunaga, T.; Chen, M. W.; Yamada, N.

    2016-09-01

    Despite the fact that phase-change materials are widely used for data storage, no consensus exists on the unique mechanism of their ultrafast phase change and its accompanied large and rapid optical change. By using the pump-probe observation method combining a femtosecond optical laser and an x-ray free-electron laser, we substantiate experimentally that, in both GeTe and Ge2 Sb2 Te5 crystals, rattling motion of mainly Ge atoms takes place with keeping the off-center position just after femtosecond-optical-laser irradiation, which eventually leads to a higher symmetry or disordered state. This very initial rattling motion in the undistorted lattice can be related to instantaneous optical change due to the loss of resonant bonding that characterizes GeTe-based phase change materials. Based on the amorphous structure derived by first-principles molecular dynamics simulation, we infer a plausible ultrafast amorphization mechanism via nonmelting.

  17. Photoionization Dynamics of Small Molecules

    SciTech Connect

    Dehmer, Joseph L.; Dill, Dan; Parr, Albert C.

    1985-01-01

    The last decade has witnessed remarkable progress in characterizing dynamical aspects of the molecular photoionization process. The general challenge is to gain physical insight into those processes occuring during photo excitation and eventual escape of the photoelectron through the anisotropic molecular field, in terms of various observables such as photoionization cross-sections and branching ratios, photoelectron angular distributions and even newer probes mentioned below. Much of the progress in this field has mirrored earlier work in atomic photoionization dynamics where many key ideas were developed (e.g., channel interaction, quantum defect analysis, potential barrier phenomena and experimental techniques). However, additional concepts and techniques were required to deal with the strictly molecular aspects of the problem, particularly the anisotropy of the multicenter molecular field and the interaction among rovibronic modes.

  18. Femtosecond excitation transfer processes in biliprotein trimers

    NASA Astrophysics Data System (ADS)

    Sharkov, A. V.; Khoroshilov, E. V.; Kryukov, I. V.; Palsson, Lars-Olof; Kryukov, P. G.; Fischer, R.; Scheer, Hella-Christin; Gillbro, Tomas

    1993-06-01

    Femtosecond processes in allophycocyanin, C-phycocyanin and phycoerythrocyanin trimers and monomers have been examined by means of polarization pump-probe technique. No femtosecond kinetics were observed in monomeric preparations. The isotropic absorption recovery kinetics with (tau) equals 440 +/- 50 fs which is not accompanied by anisotropy decay kinetics was obtained in allophycocyanin trimers at 612 nm. The conclusion about energy transfer between neighboring (alpha) 84 and (beta) 84 chromophores with different absorption spectra was made. The proposed model takes into account a stabilizing role of the linker peptide. Spectral and kinetic measurements were made in the 635 - 690 nm spectral region where the proposed acceptor should absorb. The bleaching of the 650-nm band occurs with a delay relative to the bleaching at 615 nm. Only a rise term was observed at 658 nm in consistence with the proposed model. Anisotropy values calculated around 650 nm at 3 ps after excitation are in the range 0.1 - 0.25 corresponding to an angle of 30 degree(s) - 45 degree(s) between the donor and acceptor transition dipole moments. A 500-fs absorption recovery and anisotropy decay process was obtained for C-phycocyanin trimers and explained by Forster energy transfer over 20.8 angstroms between neighboring (alpha) 84 and (beta) 84 chromophores of different monomeric subunits having similar absorption spectra and with a 65 degree(s) angle between their orientations. Energy transfer between violobilin ((alpha) 84) and phycocyanobilin ((beta) 84) chromophores was examined in donor and acceptor spectral regions of phycoerythrocyanin trimers, and was found to take 400 fs.

  19. Resonant soft x-ray scattering endstation for time-resolved pump-probe measurements at LCLS

    NASA Astrophysics Data System (ADS)

    Chuang, Yi-De; Doering, Dionisio; Cruz, Alejandro G.; Tahir, Nadeem; Andresen, Nord C.; Chow, Ken P.; Contarato, Devis; Cummings, Curtis L.; Domning, Edward E.; Joseph, John; Pepper, John S.; Smith, Brian V.; Zizka, G.; Ford, Christopher; Lee, Wei-Sheng; Weaver, Matt; Patthey, Luc; Weizeowick, John; Denes, Peter; Hussain, Zahid

    2012-10-01

    Localized charge, spin and orbital degrees of freedom can compete with electronic itinerancy and such competition lies at the heart of emergent material properties. To study these electronic orderings, resonant soft X-ray scattering (RSXS) spectroscopy has been demonstrated as one of the most powerful direct probes, and its time-resolved capability can be implemented through pump-probe technique. The ultrafast/ultra-intense X-ray pulses from LCLS can be used as the probe in the time-resolved RSXS experiments, but the inherent fluctuations in intensity and timing between pulses can degrade the superior temporal resolution. To overcome such fluctuations, a compact fast CCD (cFCCD) was developed to enable shot-by-shot data acquisitions and a dedicated RSXS endstation, constructed to house this cFCCD and other single-channel photon detectors, has been extensively used at both ALS and LCLS. Time-resolved RSXS experiments on La1.75Sr0.25 NiO4 nickelate have revealed an unexpected transient behavior of charge and spin ordering (CO/SO) states. After 800nm laser excitation, the CO can be fully suppressed at higher pump fluence while SO remains detectable, creating a transient state that is not accessible by tuning thermodynamic variables. Furthermore, two distinct time scales are identified in the recovery of CO and can be attributed to the amplitude (fast) and phase (slow) dynamics of order parameter. A new version of cFCCD, with eight times the detection area and the readout electronics moved into vacuum side to minimize the pickup noise, has been developed and will be incorporated into the RSXS endstation.

  20. Mass-Selective Laser Photoionization.

    ERIC Educational Resources Information Center

    Smalley, R. E.

    1982-01-01

    Discusses the nature and applications of mass-selective laser photoionization. The ionization can be done with a single intense laser pulse lasting a few billionths of a second with no molecular fragmentation. Applications focus on: (1) benzene clusters, excimers, and exciplexes; (2) metal clusters; and (3) triplet formation and decay. (Author/JN)

  1. PHOTOIONIZATION IN THE SOLAR WIND

    SciTech Connect

    Landi, E.; Lepri, S. T.

    2015-10-20

    In this work we investigate the effects of photoionization on the charge state composition of the solar wind. Using measured solar EUV and X-ray irradiance, the Michigan Ionization Code and a model for the fast and slow solar wind, we calculate the evolution of the charge state distribution of He, C, N, O, Ne, Mg, Si, S, and Fe with and without including photoionization for both types of wind. We find that the solar radiation has significant effects on the charge state distribution of C, N, and O, causing the ionization levels of these elements to be higher than without photoionization; differences are largest for oxygen. The ions commonly observed for elements heavier than O are much less affected, except in ICMEs where Fe ions more ionized than 16+ can also be affected by the solar radiation. We also show that the commonly used O{sup 7+}/O{sup 6+} density ratio is the most sensitive to photoionization; this sensitivity also causes the value of this ratio to depend on the phase of the solar cycle. We show that the O{sup 7+}/O{sup 6+} ratio needs to be used with caution for solar wind classification and coronal temperature estimates, and recommend the C{sup 6+}/C{sup 4+} ratio for these purposes.

  2. Dissociative Photoionization of Diethyl Ether.

    PubMed

    Voronova, Krisztina; Mozaffari Easter, Chrissa M; Covert, Kyle J; Bodi, Andras; Hemberger, Patrick; Sztáray, Bálint

    2015-10-29

    The dissociative photoionization of internal energy selected diethyl ether ions was investigated by imaging photoelectron photoion coincidence spectroscopy. In a large, 5 eV energy range Et2O(+) cations decay by two parallel and three sequential dissociative photoionization channels, which can be modeled well using statistical theory. The 0 K appearance energies of the CH3CHOCH2CH3(+) (H-loss, m/z = 73) and CH3CH2O═CH2(+) (methyl-loss, m/z = 59) fragment ions were determined to be 10.419 ± 0.015 and 10.484 ± 0.008 eV, respectively. The reemergence of the hydrogen-loss ion above 11 eV is attributed to transition-state (TS) switching, in which the second, outer TS is rate-determining at high internal energies. At 11.81 ± 0.05 eV, a secondary fragment of the CH3CHOCH2CH3(+) (m/z = 73) ion, protonated acetaldehyde, CH3CH═OH(+) (m/z = 45) appears. On the basis of the known thermochemical onset of this fragment, a reverse barrier of 325 meV was found. Two more sequential dissociation reactions were examined, namely, ethylene and formaldehyde losses from the methyl-loss daughter ion. The 0 K appearance energies of 11.85 ± 0.07 and 12.20 ± 0.08 eV, respectively, indicate no reverse barrier in these processes. The statistical model of the dissociative photoionization can also be used to predict the fractional ion abundances in threshold photoionization at large temperatures, which could be of use in, for example, combustion diagnostics. PMID:26444101

  3. Polyatomic molecules under intense femtosecond laser irradiation.

    PubMed

    Konar, Arkaprabha; Shu, Yinan; Lozovoy, Vadim V; Jackson, James E; Levine, Benjamin G; Dantus, Marcos

    2014-12-11

    Interaction of intense laser pulses with atoms and molecules is at the forefront of atomic, molecular, and optical physics. It is the gateway to powerful new tools that include above threshold ionization, high harmonic generation, electron diffraction, molecular tomography, and attosecond pulse generation. Intense laser pulses are ideal for probing and manipulating chemical bonding. Though the behavior of atoms in strong fields has been well studied, molecules under intense fields are not as well understood and current models have failed in certain important aspects. Molecules, as opposed to atoms, present confounding possibilities of nuclear and electronic motion upon excitation. The dynamics and fragmentation patterns in response to the laser field are structure sensitive; therefore, a molecule cannot simply be treated as a "bag of atoms" during field induced ionization. In this article we present a set of experiments and theoretical calculations exploring the behavior of a large collection of aryl alkyl ketones when irradiated with intense femtosecond pulses. Specifically, we consider to what extent molecules retain their molecular identity and properties under strong laser fields. Using time-of-flight mass spectrometry in conjunction with pump-probe techniques we study the dynamical behavior of these molecules, monitoring ion yield modulation caused by intramolecular motions post ionization. The set of molecules studied is further divided into smaller sets, sorted by type and position of functional groups. The pump-probe time-delay scans show that among positional isomers the variations in relative energies, which amount to only a few hundred millielectronvolts, influence the dynamical behavior of the molecules despite their having experienced such high fields (V/Å). High level ab initio quantum chemical calculations were performed to predict molecular dynamics along with single and multiphoton resonances in the neutral and ionic states. We propose the

  4. Flexible attosecond beamline for high harmonic spectroscopy and XUV/near-IR pump probe experiments requiring long acquisition times

    SciTech Connect

    Weber, S. J. Manschwetus, B.; Billon, M.; Bougeard, M.; Breger, P.; Géléoc, M.; Gruson, V.; Lin, N.; Ruchon, T.; Salières, P.; Carré, B.

    2015-03-15

    We describe the versatile features of the attosecond beamline recently installed at CEA-Saclay on the PLFA kHz laser. It combines a fine and very complete set of diagnostics enabling high harmonic spectroscopy (HHS) through the advanced characterization of the amplitude, phase, and polarization of the harmonic emission. It also allows a variety of photo-ionization experiments using magnetic bottle and COLTRIMS (COLd Target Recoil Ion Momentum Microscopy) electron spectrometers that may be used simultaneously, thanks to a two-foci configuration. Using both passive and active stabilization, special care was paid to the long term stability of the system to allow, using both experimental approaches, time resolved studies with attosecond precision, typically over several hours of acquisition times. As an illustration, applications to multi-orbital HHS and electron-ion coincidence time resolved spectroscopy are presented.

  5. Optical Synchronization Systems for Femtosecond X-raySources

    SciTech Connect

    Wilcox, Russell; Staples, John W.; Holzwarth, Ronald

    2004-05-09

    In femtosecond pump/probe experiments using short X-Ray and optical pulses, precise synchronization must be maintained between widely separated lasers in a synchrotron or FEL facility. We are developing synchronization systems using optical signals for applications requiring different ranges of timing error over 100 meter of glass fiber. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1 10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with a piezoelectric phase modulator. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range we will lock two single-frequency lasers separated by several tera Hertz to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  6. Attosecond Delays in Molecular Photoionization

    NASA Astrophysics Data System (ADS)

    Huppert, Martin; Jordan, Inga; Baykusheva, Denitsa; von Conta, Aaron; Wörner, Hans Jakob

    2016-08-01

    We report measurements of energy-dependent photoionization delays between the two outermost valence shells of N2O and H2O . The combination of single-shot signal referencing with the use of different metal foils to filter the attosecond pulse train enables us to extract delays from congested spectra. Remarkably large delays up to 160 as are observed in N2O , whereas the delays in H2O are all smaller than 50 as in the photon-energy range of 20-40 eV. These results are interpreted by developing a theory of molecular photoionization delays. The long delays measured in N2O are shown to reflect the population of molecular shape resonances that trap the photoelectron for a duration of up to ˜110 as. The unstructured continua of H2O result in much smaller delays at the same photon energies. Our experimental and theoretical methods make the study of molecular attosecond photoionization dynamics accessible.

  7. Attosecond Delays in Molecular Photoionization.

    PubMed

    Huppert, Martin; Jordan, Inga; Baykusheva, Denitsa; von Conta, Aaron; Wörner, Hans Jakob

    2016-08-26

    We report measurements of energy-dependent photoionization delays between the two outermost valence shells of N_{2}O and H_{2}O. The combination of single-shot signal referencing with the use of different metal foils to filter the attosecond pulse train enables us to extract delays from congested spectra. Remarkably large delays up to 160 as are observed in N_{2}O, whereas the delays in H_{2}O are all smaller than 50 as in the photon-energy range of 20-40 eV. These results are interpreted by developing a theory of molecular photoionization delays. The long delays measured in N_{2}O are shown to reflect the population of molecular shape resonances that trap the photoelectron for a duration of up to ∼110 as. The unstructured continua of H_{2}O result in much smaller delays at the same photon energies. Our experimental and theoretical methods make the study of molecular attosecond photoionization dynamics accessible. PMID:27610849

  8. Effects of hydriding and ageing of Pd nanoparticles to contact between nanoparticles and quartz and contacts among nanoparticles investigated by the pump-probe technique

    NASA Astrophysics Data System (ADS)

    Fan, Guanghua; Jiao, Weiyan; Yang, Linpo; Wu, Xingzhi; Chen, Minrui; Gao, Renxi; Li, Yan; Xie, Bo; Liu, Jiaqi; Han, Min; Song, Yinglin; Qu, Shiliang

    2016-09-01

    Closely contacted Pd nanoparticles with average size of 8 nm are uniformly deposited on quartz. The ageing, hydriding, hydriding and then ageing of the nanoparticles are characterized by the transmission electron microscopy, optical extinction spectrum, and X-ray photoelectron spectroscopy, which show little chemical and crystallographic change. The contact between the nanoparticles and quartz and contacts among the nanoparticles are investigated by the pump-probe technique. The contact between nanoparticles and quartz looses with the ageing, hydriding, hydriding and then ageing of the nanoparticles, and the contacts among nanoparticles loose with the ageing whereas compresses with the hydriding.

  9. Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser.

    PubMed

    Zhao, Xin; Zheng, Zheng; Liu, Lei; Wang, Qi; Chen, Haiwei; Liu, Jiansheng

    2012-11-01

    A simple, fast and long-scan-range pump-probe scheme is experimentally demonstrated using a dual-wavelength passively mode-locked fiber laser. The pulse trains from the dual-wavelength laser have a small difference in their repetition frequencies inherently determined by the intracavity dispersion. This enables the realization of the asynchronous sampling scheme with a tens-of-nanosecond-long delay range and a picosecond scan step at a millisecond scan speed. Instead of two synchronized ultrafast lasers in the traditional asynchronous sampling scheme, just one fiber laser is needed in our scheme, which could significantly simplify the system setup.

  10. Dynamics of femtosecond laser-induced periodic surface structures on silicon by high spatial and temporal resolution imaging

    SciTech Connect

    Jia, X.; Jia, T. Q. Peng, N. N.; Feng, D. H.; Zhang, S. A.; Sun, Z. R.

    2014-04-14

    The formation dynamics of periodic ripples induced by femtosecond laser pulses (pulse duration τ = 50 fs and central wavelength λ = 800 nm) are studied by a collinear pump-probe imaging technique with a temporal resolution of 1 ps and a spatial resolution of 440 nm. The ripples with periods close to the laser wavelength begin to appear upon irradiation of two pump pulses at surface defects produced by the prior one. The rudiments of periodic ripples emerge in the initial tens of picoseconds after fs laser irradiation, and the ripple positions keep unmoved until the formation processes complete mainly in a temporal span of 1500 ps. The results suggest that the periodic deposition of laser energy during the interaction between femtosecond laser pulses and sample surface plays a dominant role in the formation of periodic ripples.

  11. Ultrafast electronic and structural dynamics in solids using femtosecond laser techniques

    NASA Astrophysics Data System (ADS)

    Wang, Jincheng

    generated in bulk dielectrics and are detected by using a two-color femtosecond laser pump-probe technique. Acoustic attenuation of the dielectric material for sound frequency from 20 GHz to 50 GHz is also directly measured through pump-probe experiments.

  12. Non-degenerate fs pump-probe study on InGaN with multi-wavelength second-harmonic generation.

    PubMed

    Wang, Hsiang-Chen; Lu, Yen-Cheng; Chen, Cheng-Yen; Chi, Chun-Yung; Chin, Shu-Cheng; Yang, C C

    2005-07-11

    Non-degenerate fs pump-probe experiments in the UV-visible range for ultrafast carrier dynamics study of InGaN with adjustable pump and probe photon energies are implemented with simultaneously multiwavelength second-harmonic generation (SHG) of a 10 fs Ti:sapphire laser. The multi-wavelength SHG is realized with two beta-barium borate crystals of different cutting angles. The full-widths at half-maximum of the SHG pulses are around 150 fs, which are obtained from the cross-correlation measurement with a reverse-biased 280-nm light-emitting diode as the twophoton absorption photo-detector. Such pulses are used to perform nondegenerate pump-probe experiments on an InGaN thin film, in which indium-rich nano-clusters and compositional fluctuations have been identified. Relaxation of carriers from the pump level to the probe one through the scattering-induced local thermalization (<1 ps) and then the carrier-transport-dominating global thermalization (in several ps) processes is observed.

  13. Indirect versus direct photoionization with ultrashort pulses: interferences and time-resolved bond-length changes

    NASA Astrophysics Data System (ADS)

    Gräfe, S.; Engel, V.

    2004-02-01

    The photoionization of NaI molecules with femtosecond laser pulses leads to photoelectron distributions which vary with the delay between a pump- and a probe-pulse. If the vibrational wave packet as prepared in the pump-transition is located in a region where the bonding character is ionic, the photoelectron, due to its localization on the iodine atom, may be ejected directly or be scattered from the Na + ion. This leads to structures in the photoelectron spectrum which, in turn, reflect temporal bond-length changes.

  14. Biomedical applications of laser photoionization

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Moore, Larry J.; Fassett, John R.; O'Haver, Thomas C.

    1991-07-01

    Trace elements are important for many essential metabolic functions. Zinc is a structural/functional component in more than 200 enzymes active in the biochemistry of cell division and tissue growth, neurology and endocrine control. Calcium is involved in intracellular control mechanisms and in skeletal bone building and resorption processes related to osteoporosis. Sensitive and selective laser photoionization is being developed to understand mechanisms in smaller samples and biological units approaching the cellular domain. Zinc has an ionization potential of 9.4 eV, or 75766.8 cm-1. Several processes are being explored, including two-photon resonant, three- photon ionization utilizing sequential UV transitions, e.g., 4s2 1S0 yields 4s4p 3P1 and 4s4p 3P1 yields 4s5d 3D1. Preliminary zinc stable isotope ratio data obtained by thermal atomization and laser photoionization agree with accepted values within 2 to 5%, except for anomalous 67Zn. Photoionization of calcium is being studied for isotope enrichment and ratio measurement using narrow and medium bandwidth lasers. Several ionization pathways, e.g., 4s2 1S0 - 2hv1 yields 4s10s - hv2 yields Ca+ (4s2S), are being investigated for isotopically selective ionization. Auto-ionization pathways are explored for greater efficiency in isotopic analysis. All studies have utilized a Nd:YAG- pumped laser system with one or two frequency-doubled tunable dye lasers coupled either to a magnetic sector or time-of-flight mass spectrometer.

  15. IONIS: Approximate atomic photoionization intensities

    NASA Astrophysics Data System (ADS)

    Heinäsmäki, Sami

    2012-02-01

    A program to compute relative atomic photoionization cross sections is presented. The code applies the output of the multiconfiguration Dirac-Fock method for atoms in the single active electron scheme, by computing the overlap of the bound electron states in the initial and final states. The contribution from the single-particle ionization matrix elements is assumed to be the same for each final state. This method gives rather accurate relative ionization probabilities provided the single-electron ionization matrix elements do not depend strongly on energy in the region considered. The method is especially suited for open shell atoms where electronic correlation in the ionic states is large. Program summaryProgram title: IONIS Catalogue identifier: AEKK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1149 No. of bytes in distributed program, including test data, etc.: 12 877 Distribution format: tar.gz Programming language: Fortran 95 Computer: Workstations Operating system: GNU/Linux, Unix Classification: 2.2, 2.5 Nature of problem: Photoionization intensities for atoms. Solution method: The code applies the output of the multiconfiguration Dirac-Fock codes Grasp92 [1] or Grasp2K [2], to compute approximate photoionization intensities. The intensity is computed within the one-electron transition approximation and by assuming that the sum of the single-particle ionization probabilities is the same for all final ionic states. Restrictions: The program gives nonzero intensities for those transitions where only one electron is removed from the initial configuration(s). Shake-type many-electron transitions are not computed. The ionized shell must be closed in the initial state. Running time: Few seconds for a

  16. Attosecond Delays in Resonant Photoionization

    NASA Astrophysics Data System (ADS)

    Maquet, Alfred

    2015-05-01

    Attosecond delays in the photoionization of atomic states have been evidenced in recent experiments performed in the 2010's. The delays were associated to the emission of photoelectron wave packets ejected from different atomic states, in the combined presence of attosecond pulses of XUV radiation and of a synchronized IR laser pulse, the latter being used as a reference ``clock''. These experiments were performed at XUV frequencies connecting the ground state to a ``flat'' continuum. Theoretical treatments were able to relate the measured delays to Wigner's definition of time delays in terms of the energy derivative of the phase-shift attached to the continuum wave functions of the photoelectrons. Attention has recently shifted towards the case of resonant photoionization in the course of which the XUV frequency is tuned close to a resonance of the target system. The case of a transition towards an autoionizing states of the target is particularly interesting as it makes evident the role of electronic correlations. Here, we shall present recent advances realized in the theoretical interpretation of this new class of experiments.

  17. Double photoionization of SO 2 and fragmentation spectroscopy of SO 2++ studied by a photoion-photoion coincidence method

    NASA Astrophysics Data System (ADS)

    Dujardin, Gérald; Leach, Sydney; Dutuit, Odile; Guyon, Paul-Marie; Richard-Viard, Martine

    1984-08-01

    Doubly charged sulphur dioxide cations (SO 2++) are produced by photoionization with synchrotron radiation from ACO in the excitation-energy range 34-54 eV. A new photoion-photoion coincidence (PIPICO) experiment is described in which coincidences between photoion fragments originating from the dissociation of the doubly charged parent cation are counted. This PIPICO method enables us to study the fragmentation of individual electronically excited states of SO 2++ and to determine the corresponding absolute double-photoionization partial cross sections as a function of the excitation energy. A tentative assignment of the three observed α, β and γ SO 2++ states is given. The dissociation processes of the α and β states into the products SO + + O + are found to be non-statistical in nature; the γ state dissociates completely into three atomic fragments S + + O + + O. Three main observed features of the double-photoionization cross-section curves are discussed in the text: appearance potentials, linear threshold laws, and constant double-photoionization cross sections relative to the total ionization cross section at high energies.

  18. Intercomparison of the comparative reactivity method (CRM) and pump-probe technique for measuring total OH reactivity in an urban environment

    NASA Astrophysics Data System (ADS)

    Hansen, R. F.; Blocquet, M.; Schoemaecker, C.; Léonardis, T.; Locoge, N.; Fittschen, C.; Hanoune, B.; Stevens, P. S.; Sinha, V.; Dusanter, S.

    2015-06-01

    The investigation of hydroxyl radical (OH) chemistry during intensive field campaigns has led to the development of several techniques dedicated to ambient measurements of total OH reactivity, which is the inverse of the OH lifetime. Three techniques are currently used during field campaigns, including the total OH loss rate method, the pump-probe method, and the comparative reactivity method. However, no formal intercomparison of these techniques has been published so far, and there is a need to ensure that measurements of total OH reactivity are consistent among the different techniques. An intercomparison of two OH reactivity instruments, one based on the Comparative Reactivity Method (CRM) and the other based on the pump-probe method, was performed in October 2012 in a NOx-rich environment, which is known to be challenging for the CRM technique. This study presents an extensive description of the two instruments, the CRM instrument from Mines Douai (MD-CRM) and the pump-probe instrument from the University of Lille (UL-FAGE), and highlights instrumental issues associated with the two techniques. It was found that the CRM instrument used in this study underestimates ambient OH reactivity by approximately 20 % due to the photolysis of Volatile Organic Compounds (VOCs) inside the sampling reactor; this value is dependent on the position of the lamp within the reactor. However, this issue can easily be fixed, and the photolysis of VOCs was successfully reduced to a negligible level after this intercomparison campaign. The UL-FAGE instrument may also underestimate ambient OH reactivity due to the difficulty to accurately measure the instrumental zero. It was found that the measurements are likely biased by approximately 2 s-1, due to impurities in humid zero air. Two weeks of ambient sampling indicate that the measurements performed by the two OH reactivity instruments are in agreement, within the measurement uncertainties for each instrument, for NOx mixing ratios

  19. Intercomparison of the comparative reactivity method (CRM) and pump-probe technique for measuring total OH reactivity in an urban environment

    NASA Astrophysics Data System (ADS)

    Hansen, R. F.; Blocquet, M.; Schoemaecker, C.; Léonardis, T.; Locoge, N.; Fittschen, C.; Hanoune, B.; Stevens, P. S.; Sinha, V.; Dusanter, S.

    2015-10-01

    The investigation of hydroxyl radical (OH) chemistry during intensive field campaigns has led to the development of several techniques dedicated to ambient measurements of total OH reactivity, which is the inverse of the OH lifetime. Three techniques are currently used during field campaigns, including the total OH loss rate method, the pump-probe method, and the comparative reactivity method. However, no formal intercomparison of these techniques has been published so far, and there is a need to ensure that measurements of total OH reactivity are consistent among the different techniques. An intercomparison of two OH reactivity instruments, one based on the comparative reactivity method (CRM) and the other based on the pump-probe method, was performed in October 2012 in a NOx-rich environment, which is known to be challenging for the CRM technique. This study presents an extensive description of the two instruments, the CRM instrument from Mines Douai (MD-CRM) and the pump-probe instrument from the University of Lille (UL-FAGE), and highlights instrumental issues associated with the two techniques. It was found that the CRM instrument used in this study underestimates ambient OH reactivity by approximately 20 % due to the photolysis of volatile organic compounds (VOCs) inside the sampling reactor; this value is dependent on the position of the lamp within the reactor. However, this issue can easily be fixed, and the photolysis of VOCs was successfully reduced to a negligible level after this intercomparison campaign. The UL-FAGE instrument may also underestimate ambient OH reactivity due to the difficulty to accurately measure the instrumental zero. It was found that the measurements are likely biased by approximately 2 s-1, due to impurities in humid zero air. Two weeks of ambient sampling indicate that the measurements performed by the two OH reactivity instruments are in agreement, within the measurement uncertainties for each instrument, for NOx mixing ratios

  20. Investigating vibrational relaxation in cyanide-bridged transition metal mixed-valence complexes using two-dimensional infrared and infrared pump-probe spectroscopies

    PubMed Central

    Slenkamp, Karla M.; Lynch, Michael S.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2016-01-01

    Using polarization-selective two-dimensional infrared (2D IR) and infrared pump-probe spectroscopies, we study vibrational relaxation of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]− (FeRu) dissolved in D2O or formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4− (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as models for understanding the role high frequency vibrational modes play in metal-to-metal charge transfers over a bridging ligand. However, there is currently little information about vibrational relaxation and dephasing dynamics of the anharmonically coupled νCN modes in the electronic ground state of these complexes. IR pump-probe experiments reveal that the vibrational lifetimes of the νCN modes are ∼2 times faster when FeRu is dissolved in D2O versus formamide. They also reveal that the vibrational lifetimes of the νCN modes of FePtFe in D2O are almost four times as long as for FeRu in D2O. Combined with mode-specific relaxation dynamics measured from the 2D IR experiments, the IR pump-probe experiments also reveal that intramolecular vibrational relaxation is occurring in all three systems on ∼1 ps timescale. Center line slope dynamics, which have been shown to be a measure of the frequency-frequency correlation function, reveal that the radial, axial, and trans νCN modes exhibit a ∼3 ps timescale for frequency fluctuations. This timescale is attributed to the forming and breaking of hydrogen bonds between each mode and the solvent. The results presented here along with our previous work on FeRu and FePtFe reveal a picture of coupled anharmonic νCN modes where the spectral diffusion and vibrational relaxation dynamics depend on the spatial localization of the mode on the molecular complex and its specific interaction with the solvent. PMID:27158634

  1. Optical nonlinear dynamics in ZnS from femtosecond laser pulses

    SciTech Connect

    Wu, Yu-E; Ren, Mengxin Wang, Zhenhua; Li, Wenhua; Wu, Qiang; Zhang, Xinzheng Xu, Jingjun; Yi, Sanming

    2014-05-15

    A wavelength swapping nondegenerate pump-probe technique to measure the magnitudes of the nonlinear optical dynamics as well as the relaxation time of electrons in high energy levels is presented using a ZnS single crystal wafer as an example. By pumping the sample with 800 nm femtosecond pulses and probing at 400 nm, nondegenerate two-photon absorption (N-2PA) happens exclusively, and the measured curves only show instantaneous features without relaxation tails. The N-2PA coefficient was derived explicitly as 7.52 cm/GW. Additionally, when the wavelengths of the pump and probe beams are swapped, extra information about the relaxation time of the hot electrons excited in the conduction band is obtained. The combined results above are helpful for evaluating the characteristics of an optical switches based on ZnS or other materials with respect to its nonlinear optical dynamic aspect.

  2. Femtosecond crystallography with ultrabright electrons and x-rays: capturing chemistry in action.

    PubMed

    Miller, R J Dwayne

    2014-03-01

    With the recent advances in ultrabright electron and x-ray sources, it is now possible to extend crystallography to the femtosecond time domain to literally light up atomic motions involved in the primary processes governing structural transitions. This review chronicles the development of brighter and brighter electron and x-ray sources that have enabled atomic resolution to structural dynamics for increasingly complex systems. The primary focus is on achieving sufficient brightness using pump-probe protocols to resolve the far-from-equilibrium motions directing chemical processes that in general lead to irreversible changes in samples. Given the central importance of structural transitions to conceptualizing chemistry, this emerging field has the potential to significantly improve our understanding of chemistry and its connection to driving biological processes. PMID:24604195

  3. Imaging molecular structure through femtosecond photoelectron diffraction on aligned and oriented gas-phase molecules.

    PubMed

    Boll, Rebecca; Rouzée, Arnaud; Adolph, Marcus; Anielski, Denis; Aquila, Andrew; Bari, Sadia; Bomme, Cédric; Bostedt, Christoph; Bozek, John D; Chapman, Henry N; Christensen, Lauge; Coffee, Ryan; Coppola, Niccola; De, Sankar; Decleva, Piero; Epp, Sascha W; Erk, Benjamin; Filsinger, Frank; Foucar, Lutz; Gorkhover, Tais; Gumprecht, Lars; Hömke, André; Holmegaard, Lotte; Johnsson, Per; Kienitz, Jens S; Kierspel, Thomas; Krasniqi, Faton; Kühnel, Kai-Uwe; Maurer, Jochen; Messerschmidt, Marc; Moshammer, Robert; Müller, Nele L M; Rudek, Benedikt; Savelyev, Evgeny; Schlichting, Ilme; Schmidt, Carlo; Scholz, Frank; Schorb, Sebastian; Schulz, Joachim; Seltmann, Jörn; Stener, Mauro; Stern, Stephan; Techert, Simone; Thøgersen, Jan; Trippel, Sebastian; Viefhaus, Jens; Vrakking, Marc; Stapelfeldt, Henrik; Küpper, Jochen; Ullrich, Joachim; Rudenko, Artem; Rolles, Daniel

    2014-01-01

    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C(8)H(5)F) and dissociating, laser-aligned 1,4-dibromobenzene (C(6)H(4)Br(2)) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.

  4. Femtosecond wave-packet dynamics in cesium dimers studied through controlled stimulated emission

    SciTech Connect

    Yuan Luqi; Wang Xi; Patnaik, Anil K.; Sokolov, Alexei V.; Ariunbold, Gombojav O.; Murawski, Robert K.; Pestov, Dmitry; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Scully, Marlan O.

    2010-05-15

    We study the dynamics of wave packets in cesium dimers using a femtosecond-controlled pump-probe technique. We implement configurations with one pulse (pump) or two pulses (pump and control) to produce vibrational wave packets on the electronic excited state. The transmission of an additional, variable-delay probe pulse is measured to monitor the time evolution of the wave packets. In the case of the pump-control-probe configuration, a superposition of two independent wave packets is observed. In order to elucidate the observed experimental data, we develop a theory based on the Liouville equation for the density matrix associated with the Franck-Condon factors. Both the numerical and analytical calculations are in good agreement with our experimental results.

  5. Ultrafast pump-probe and 2DIR anisotropy and temperature-dependent dynamics of liquid water within the E3B model.

    PubMed

    Ni, Yicun; Skinner, J L

    2014-07-14

    Recently, Tainter et al. [J. Chem. Phys. 134, 184501 (2011)] reparameterized a new rigid water model (E3B) that explicitly includes three-body interactions in its Hamiltonian. Compared to commonly used water models such as SPC/E and TIP4P, the new model shows better agreement with experiment for many physical properties including liquid density, melting temperature, virial coefficients, etc. However, the dynamics of the E3B model, especially as a function of temperature, has not been systematically evaluated. Experimental nonlinear vibrational spectroscopy is an ideal tool to study the dynamics of matter in condensed phases. In the present study, we calculate linear and nonlinear vibrational spectroscopy observables for liquid water using the E3B model at five temperatures: 10, 30, 50, 70 and 90 °C. Specifically, we calculate absorption and Raman spectra and pump-probe anisotropy for HOD in H2O at all temperatures, frequency-resolved pump-probe anisotropy for HOD in both H2O and D2O at 30 °C, and 2DIR anisotropy for HOD in D2O at 30 °C. In all cases, we find reasonable agreement with experiment, and for the ultrafast spectroscopy our results are a significant improvement over those of the SPC/E model. A likely reason for this improvement is that the three-body interaction terms in the E3B model are able to model cooperative hydrogen bonding. We also calculate rotational and frequency relaxation times at all temperatures, and fit the results to the Arrhenius equation. We find that the activation energy for hydrogen-bond switching in liquid water is 3.8 kcal/mol, which agrees well with the experimental value of 3.7 kcal/mol obtained from anisotropy decay experiments.

  6. Indirect double photoionization of water

    NASA Astrophysics Data System (ADS)

    Resccigno, T. N.; Sann, H.; Orel, A. E.; Dörner, R.

    2011-05-01

    The vertical double ionization thresholds of small molecules generally lie above the dissociation limits corresponding to formation of two singly charged fragments. This gives the possibility of populating singly charged molecular ions by photoionization in the Franck-Condon region at energies below the lowest dication state, but above the dissociation limit into two singly charged fragment ions. This process can produce a superexcited neutral fragment that autoionizes at large internuclear separation. We study this process in water, where absorption of a photon produces an inner-shell excited state of H2O+ that fragments to H++OH*. The angular distribution of secondary electrons produced by OH* when it autoionizes produces a characteristic asymmetric pattern that reveals the distance, and therefore the time, at which the decay takes place. LBNL, Berkeley, CA, J. W. Goethe Universität, Frankfurt, Germany. Work performed under auspices of US DOE and supported by OBES, Div. of Chemical Sciences.

  7. Parallelizing the XSTAR Photoionization Code

    NASA Astrophysics Data System (ADS)

    Noble, M. S.; Ji, L.; Young, A.; Lee, J. C.

    2009-09-01

    We describe two means by which XSTAR, a code which computes physical conditions and emission spectra of photoionized gases, has been parallelized. The first is pvmxstar, a wrapper which can be used in place of the serial xstar2xspec script to foster concurrent execution of the XSTAR command line application on independent sets of parameters. The second is pmodel, a plugin for the Interactive Spectral Interpretation System (ISIS) which allows arbitrary components of a broad range of astrophysical models to be distributed across processors during fitting and confidence limits calculations, by scientists with little training in parallel programming. Plugging the XSTAR family of analytic models into pmodel enables multiple ionization states (e.g., of a complex absorber/emitter) to be computed simultaneously, alleviating the often prohibitive expense of the traditional serial approach. Initial performance results indicate that these methods substantially enlarge the problem space to which XSTAR may be applied within practical timeframes.

  8. 2006 Photoions, Photoionization & Photodetachment held on January 29-February 3, 2006

    SciTech Connect

    Robert Continetti Nancy Ryan Gray

    2006-09-06

    The 4th Gordon Conference on Photoions, Photoionization and Photodetachment will be held January 29-February 3, 2006 at the Santa Ynez Valley Marriott in Buellton, California. This meeting will continue to cover fundamentals and applications of photoionization and photodetachment, including valence and core-level phenomena and applications to reaction dynamics, ultrashort laser pulses and the study of exotic molecules and anions. Further information will be available soon at the Gordon Conference Website, and will be announced.

  9. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization. PMID:27475368

  10. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  11. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    NASA Astrophysics Data System (ADS)

    Germann, Matthias; Willitsch, Stefan

    2016-07-01

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  12. Ultraviolet photoionization in CO2 TEA lasers

    NASA Astrophysics Data System (ADS)

    Scott, S. J.; Smith, A. L. S.

    1988-07-01

    The effects of gas composition and spark parameters on the UV emission in CO2 TEA laser gas mixtures were investigated together with the nature of photoionization process and the photoelectron-loss mechanism. A linear relationship was found between N2 concentration and photoionization (with no such dependence on C concentration, from CO and CO2), but the increases in photoionization that could be effected by optimizing the spark discharge circuit parameters were much higher than those produced by changes in gas composition. UV emission was directly proportional to the amount of stored electrical energy in the spark-discharge circuit and to the cube of the peak current produced in the spark by the discharge of this energy. Photoionization was also found to be proportional to the spark electrode gap. It was found that free-space sparks gave a considerably broader emission pattern than a surface-guided notched spark.

  13. Spin-resolved photoionization studies

    NASA Astrophysics Data System (ADS)

    Snell, G.; Berrah, N.; Langer, B.; Bozek, J. D.

    2000-06-01

    We performed spin-polarization measurements of the Xe N_45O_23O_23, Kr M_45N_23N_23 and Ar L_23M_23M_23 Auger electron with circularly polarized light from the ALS fom threshold up to 540 eV photon energy. The spin-resolved electron spectra were recorded by a new spectrometer system that combines our time-of flight spectrometers with a retarding field Mott polarimeter of the Burnett et al. design.footnote C. Burnett, T. J. Monroe, and F. B. Dunning, Rev. Sci. Instrum. 65,1893 (1994). From our measurements, the orientation parameter A_10 of the Xe 4d-1, Kr 3d-1 and Ar 2p-1 hole states were obtained over a broad photon energy range covering the shape resonance (≈ 100 eV) and the Cooper minimum (≈ 175 eV) of the photoionization cross section. Our measurements are the first direct experimental proof that in the Cooper minimum of a d-subshell photoionziation the outgoing electrons have a purely p character. This work was funded by DOE/BES/Chem.Sci.

  14. 2001 Gordon Research Conference on Photoions, Photoionization and Photodetachment. Final progress report [agenda and attendees list

    SciTech Connect

    Johnson, Mark

    2001-07-13

    The Gordon Research Conference on Photoions, Photoionization and Photodetachment was held at Williams College, Williamstown, Massachusetts, July 8-13, 2001. The 72 conference attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and including US and foreign scientists, senior researchers, young investigators, and students. Emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate discussion about the key issues in the field today. Time for formal presentations was limited. Sessions included the following topics: Vibrational structure, Time resolved studies: nuclear wavepackets, Valence photoionization, Clusters and networks, Resonance structures and decay mechanisms, Ultrafast photoionization, Threshold photoionization, Molecule fixed properties, and Collisional phenomena.

  15. Ultrafast dynamics of a near-solid-density layer in an intense femtosecond laser-excited plasma

    SciTech Connect

    Adak, Amitava; Chatterjee, Gourab; Kumar Singh, Prashant; Lad, Amit D.; Brijesh, P.; Kumar, G. Ravindra; Blackman, David R.; Robinson, A. P. L.; Pasley, John

    2014-06-15

    We report on the picosecond dynamics of a near-solid-density plasma generated by an intense, infrared (λ = 800 nm) femtosecond laser using time-resolved pump-probe Doppler spectrometry. An initial red-shift is observed in the reflected third harmonic (λ = 266 nm) probe pulse, which gets blue-shifted at longer probe-delays. A combination of particle-in-cell and radiation-hydrodynamics modelling is performed to model the pump laser interaction with the solid target. The results are post-processed to predict the Doppler shift. An excellent agreement is found between the results of such modelling and the experiment. The modelling suggests that the initial inward motion of the critical surface observed in the experiment is due to the passage of a shock-wave-like disturbance, launched by the pump interaction, propagating into the target. Furthermore, in order to achieve the best possible fit to the experimental data, it was necessary to incorporate the effects of bulk ion-acceleration resulting from the electrostatic field set up by the expulsion of electrons from the laser envelope. We also present results of time-resolved pump-probe reflectometry, which are corroborated with the spectrometry results using a 1-D reflectivity model.

  16. EUV optics in photoionization experiments

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Wachulak, Przemysław; Fiedorowicz, Henryk; Fok, Tomasz; Jarocki, Roman; Kostecki, Jerzy; Szczurek, Anna; Szczurek, Mirosław; Pina, Ladislav; Sveda, Libor

    2013-05-01

    In this work photoionized plasmas were created by irradiation of He, Ne and Ar gases with a focused EUV beam from one of two laser-plasma sources employing Nd:YAG laser systems of different parameters. First of them was a 10-Hz laser-plasma EUV source, based on a double-stream gas-puff target, irradiated with the 3-ns/0.8J laser pulse. EUV radiation in this case was focused using a gold-plated grazing incidence ellipsoidal collector in the wavelength range λ = 9÷70 nm. The most intense emission was in the relatively narrow spectral region centred at λ = 11 +/- 1 nm. The second source was based on a 10 ns/10 J/10 Hz laser system. In this case EUV radiation was focused using a gold-plated grazing incidence multifoil collector or a Mo-coated ellipsoidal collector. The most intense emission in this case was in the 5 ÷ 15 nm spectral region. Radiation fluence ranged from 60 mJ/cm2 to 400 mJ/cm2. Different gases were injected into the interaction region, perpendicularly to an optical axis of the irradiation system, using an auxiliary gas puff valve. Irradiation of the gases resulted in ionization and excitation of atoms and ions. Spectra in EUV range were measured using a grazing incidence, flat-field spectrometer (McPherson Model 251), equipped with a 450 lines/mm toroidal grating. In all cases the most intense emission lines were assigned to singly charged ions. The other emission lines belong to atoms or doubly charged ions. The spectra were excited in low density gases of the order of 1 ÷ 10% atmospheric density.

  17. A 1 kHz A-scan rate pump-probe laser-ultrasound system for robust inspection of composites.

    PubMed

    Pelivanov, Ivan; Shtokolov, Alex; Wei, Chen-Wei; O'Donnell, Matthew

    2015-09-01

    We recently built a fiber-optic laser-ultrasound (LU) scanner for nondestructive evaluation (NDE) of aircraft composites and demonstrated its greatly improved sensitivity and stability compared with current noncontact systems. It is also very attractive in terms of cost, stability to environmental noise and surface roughness, simplicity in adjustment, footprint, and flexibility. A new type of a balanced fiber-optic Sagnac interferometer is a key component of this all-optical LU pump-probe system. Very high A-scan rates can be achieved because no reference arm or stabilization feedback are needed. Here, we demonstrate LU system performance at 1000 A-scans/s combined with a fast 2-D translator operating at a scanning speed of 100 mm/s with a peak acceleration of 10 m/s(2) in both lateral directions to produce parallel B-scans at high rates. The fast scanning strategy is described in detail. The sensitivity of this system, in terms of noise equivalent pressure, was further improved to be only 8.3 dB above the Nyquist thermal noise limit. To our knowledge, this is the best reported sensitivity for a noncontact ultrasonic detector of this dimension used to inspect aircraft composites. PMID:26415130

  18. Discrimination of the effects of saturation and optical pumping in velocity-dependent pump-probe spectroscopy of rubidium: A simple analytical study

    SciTech Connect

    Noh, Heung-Ryoul; Moon, Geol; Jhe, Wonho

    2010-12-15

    This paper presents a simple analytical theory for the velocity-dependent pump-probe laser spectroscopy of {sup 87}Rb and {sup 85}Rb atoms where the pump and the probe beams are circularly or linearly polarized. The analytical solutions of the line shapes of the velocity-selective optical pumping spectroscopy [G. Moon and H. R. Noh, Phys. Rev. A 78, 032506 (2008)] and saturated absorption spectroscopy [G. Moon and H. R. Noh, J. Opt. Soc. Am. B 25, 701 (2008); 27, 1741 (2010)] obtained in the previous reports, expressed as a sum of several Lorentzian functions, could be approximated as one (or in some cases, two) Lorentzian function(s). In particular, the contributions of the saturation and optical pumping effects could be discriminated explicitly in these simple analytical solutions, which is not possible in existing theories such as Nakayama's model. The simple analytical results for the saturation spectroscopy were compared with experimental results, and good agreement between them was observed.

  19. A 1 kHz A-scan rate pump-probe laser-ultrasound system for robust inspection of composites.

    PubMed

    Pelivanov, Ivan; Shtokolov, Alex; Wei, Chen-Wei; O'Donnell, Matthew

    2015-09-01

    We recently built a fiber-optic laser-ultrasound (LU) scanner for nondestructive evaluation (NDE) of aircraft composites and demonstrated its greatly improved sensitivity and stability compared with current noncontact systems. It is also very attractive in terms of cost, stability to environmental noise and surface roughness, simplicity in adjustment, footprint, and flexibility. A new type of a balanced fiber-optic Sagnac interferometer is a key component of this all-optical LU pump-probe system. Very high A-scan rates can be achieved because no reference arm or stabilization feedback are needed. Here, we demonstrate LU system performance at 1000 A-scans/s combined with a fast 2-D translator operating at a scanning speed of 100 mm/s with a peak acceleration of 10 m/s(2) in both lateral directions to produce parallel B-scans at high rates. The fast scanning strategy is described in detail. The sensitivity of this system, in terms of noise equivalent pressure, was further improved to be only 8.3 dB above the Nyquist thermal noise limit. To our knowledge, this is the best reported sensitivity for a noncontact ultrasonic detector of this dimension used to inspect aircraft composites.

  20. Optical pump-probe processes in Nd 3+ doped KPb2Br5, RbPb2Br5, and KPb2CI5

    SciTech Connect

    Rademaker, K; Huber, G; Payne, S A; Osiac, E; Isaenko, L I

    2004-10-28

    Recently, laser activity has been achieved in the low phonon energy, moisture-resistant bromide host crystals, neodymium-doped potassium lead bromide (Nd{sup 3+}:KPb{sub 2}Br{sub 5}) and rubidium lead bromide (Nd{sup 3+}:RbPb{sub 2}Br{sub 5}). Laser activity at 1.07 {micro}m was observed for both crystalline materials. Laser operation at the new wavelengths 1.18 {micro}m and 0.97 {micro}m resulting from the {sup 4}F{sub 5/2}+{sup 2}H{sub 9/2} {yields} {sup 4}I{sub J} transitions (J=13/2 and 11/2) in Nd:RPB was achieved for the first time in a solid state laser material. In this paper we present cw pump-probe spectra in order to discuss excited state absorption, reabsorption processes due to the long lived lower laser levels as well as possible depopulation mechanisms feasible for more efficient laser operation in these crystals. The bromides will be compared with potassium lead chloride (Nd{sup 3+}:KPb{sub 2}Cl{sub 5}).

  1. Ultrafast pump-probe spectroscopy studies of CeO2 thin film deposited on Ni-W substrate by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Singh, Preetam; Srivatsa, K. M. K.; Jewariya, Mukesh

    2016-08-01

    This study presents the first investigation of rapid dynamical processes that occur in pure CeO2 thin film, using ultra fast pump-probe spectroscopy at room temperature. For this purpose we have used a single (200) oriented CeO2 film deposited on biaxially textured Ni-W substrate by RF magnetron sputtering technique. The ultrafast transient spectra show initial sharp rise transition followed by an exponential photon decay. This rise time is about 10 ps irrespective of the probe wavelengths range 500-800 nm. The initial decay constant (τ) at 500 nm probe wavelength is found to be 171 ps, while at 800 nm probe wavelength it is 107.5 ps. The ultrafast absorption spectra show two absorption peaks at 745 and 800 nm, and are attributed to the electronic transitions from 2F7/2-2F5/2 and 1S0-1F3 respectively. The relatively high intensity absorption peak at 745 nm indicates dominant f-f electronic transition. Further, the absorption peak at 745 nm splits into two distinct peaks with respect to delay time, and is attributed to the charge transfer in between Ce4+ and Ce3+ ions. These results indicate that CeO2 itself is a potential candidate and can be used for optical applications.

  2. Study on vibrational relaxation dynamics of phenol-water complex by picosecond time-resolved IR-UV pump-probe spectroscopy in a supersonic molecular beam

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yasunori; Inokuchi, Yoshiya; Ebata, Takayuki; Petković, Milena

    2013-06-01

    A comparative study of vibrational energy relaxation (VER) between the monohydrated complexes of phenol-d0 and phenol-d1 is investigated in a supersonic molecular beam. The direct time-resolved measurement of energy redistribution from the phenolic OH/OD stretching mode of the phenol-d0-H2O/phenol-d1-D2O is performed by picosecond IR-UV pump-probe spectroscopy. Two complexes follow the same relaxation process that begins with the intramolecular vibrational energy redistribution (IVR) and the intermolecular vibrational energy redistribution (IVR), which is followed by the vibrational predissociation (VP). The difference in the relaxation lifetimes between them is discussed by anharmonic force field and RRKM calculations. Anharmonic analysis implies that intra- (IVR) and intermolecular (IVR) relaxations occur in parallel in the complexes. The RRKM-predicted dissociation (VP) lifetimes show qualitative agreement with the observed results, suggesting that VP takes place after the statistical energy distribution in the complexes.

  3. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    SciTech Connect

    Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Ishino, M.; Kawachi, T.

    2015-11-15

    To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IR laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.

  4. Development of a pump-probe facility combining a far-infrared source with laser-like characteristics and a VUV free electron laser

    NASA Astrophysics Data System (ADS)

    Faatz, B.; Fateev, A. A.; Feldhaus, J.; Krzywinski, J.; Pflueger, J.; Rossbach, J.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2001-12-01

    The TESLA Test Facility (TTF) at DESY is a facility producing sub-picosecond electron pulses for the generation of VUV or soft X-ray radiation in a free electron laser (FEL). The same electron pulses would also allow the direct production of high-power coherent radiation by passing the electron beam through an undulator. Intense, coherent far-infrared (FIR) undulator radiation can be produced from electron bunches at wavelengths longer than or equal to the bunch length. The source described in this paper provides, in the wavelength range 50- 300 μm, a train of about 1- 10 ps long radiation pulses, with about 1 mJ of optical energy per pulse radiated into the central cone. The average output power can exceed 50 W. In this conceptual design, we intend to use a conventional electromagnetic undulator with a 60 cm period length and a maximum field of 1.5 T. The FIR source will use the spent electron beam coming from the VUV FEL which allows one to significantly extend the scientific potential of the TTF without interfering with the main option of the TTF FEL operation. The pulses of the coherent FIR radiation are naturally synchronized with the VUV pulses from the main TTF FEL, enabling pump-probe techniques using either the FEL pulse as a pump or the FIR pulse as a probe, or vice versa.

  5. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    NASA Astrophysics Data System (ADS)

    Namba, S.; Hasegawa, N.; Kishimoto, M.; Nishikino, M.; Ishino, M.; Kawachi, T.

    2015-11-01

    To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IR laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.

  6. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-01

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  7. Single and double photoionizations of methanal (formaldehyde)

    NASA Astrophysics Data System (ADS)

    Hochlaf, M.; Eland, J. H. D.

    2005-10-01

    Single and double photoionization spectra of formaldehyde have been measured at 40.81 and 48.37 eV photon energy and the spectrum of the doubly charged cation has been interpreted using high-level electronic structure calculations. The adiabatic double-ionization energy is determined as 31.7±0.25eV and the vertical ionization energy is 33 eV. The five lowest excited electronic states are identified and located. The potential-energy surfaces of the accessible states explain the lack of stable H2CO2+ dications and the lack of vibrational structure. The experimental double-ionization spectrum can be decomposed into two distinct contributions, one from direct photoionization and the second from indirect double photoionization by an inner-valence shell Auger effect.

  8. Vacuum Ultraviolet Photoionization of Complex Chemical Systems.

    PubMed

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-27

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed. PMID:26980311

  9. Vacuum Ultraviolet Photoionization of Complex Chemical Systems.

    PubMed

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-27

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  10. Total quadruple photoionization cross section of beryllium

    SciTech Connect

    Emmanouilidou, Agapi

    2007-11-15

    In a quasiclassical framework, we formulate the quadruple ionization by single-photon absorption of the Coulomb five-body problem. We present the quadruple photoionization total cross section of the ground state of beryllium for energies up to 620 eV. Our results for energies close to threshold are in agreement with the Wannier threshold law for four-electron escape. In addition, the agreement of our results with a shape formula provides support for the overall shape of our total quadruple cross section. Finally, we find that the photon energy where the maximum of the total photoionization cross section occurs for single, double, triple, and quadruple photoionization of H, He, Li, and Be, respectively, seems to follow a linear relation with the threshold energy for complete breakup of the respective element.

  11. Comparative analysis of theories of relativistic photoionization

    NASA Astrophysics Data System (ADS)

    Hafizi, Bahman; Gordon, Daniel; Palastro, John

    2015-11-01

    Laser-plasma experiments routinely rely on photoionization for plasma formation. For large laser intensities or for high-Z atoms relativistic effects become important. We investigate a unique regime of relativistic photoionization from high-Z atoms where relativistic effects modify both the bound and continuum electronic states. Theories of photoionization are based on the imaginary time method and the S-matrix method, amongst others. We compare the results of these approaches for both the Dirac and the Klein-Gordon equations. Analytical results for the momentum distribution of ejected electrons and ionization rate are presented and compared with those from numerical solutions. Work supported by the Department of Energy and the NRL Base Program.

  12. Photoion mass spectroscopy and valence photoionization of hypoxanthine, xanthine and caffeine

    NASA Astrophysics Data System (ADS)

    Feyer, Vitaliy; Plekan, Oksana; Richter, Robert; Coreno, Marcello; Prince, Kevin C.

    2009-03-01

    Photoionization mass spectra of hypoxanthine, xanthine and caffeine were measured using the photoelectron-photoion coincidence technique and noble gas resonance radiation at energies from 8.4 to 21.2 eV for ionization. The fragmentation patterns for these compounds show that hydrogen cyanide is the main neutral loss species at higher photon energies, while photoionization below 16.67 eV led predominantly to the parent ion. The valence photoelectron spectra of this family of molecules were measured over an extended energy range, including the inner C, N and O 2s valence orbitals. The observed ion fragments were related to ionization of the valence orbitals.

  13. Specific features of propagation of femtosecond laser pulses through a molecular gaseous medium under conditions of efficient alignment of molecules

    SciTech Connect

    Gulyaev, A V; Tikhonova, O V

    2013-07-31

    The propagation of femtosecond laser pulses in a molecular gaseous medium is studied with the rotational dynamics of molecules under the action of these pulses taken into account. Based on the simultaneous numerical solution of the wave equation describing the laser pulse evolution and the Schroedinger equation that determines the quantum state evolution of the medium molecules, the rotational dynamics of molecules in the laser field and the laser pulse evolution are analysed with their mutual influence taken into account. Efficient dynamic alignment of molecules along the direction of laser radiation polarisation is observed, which causes variation in the spatiotemporal pulse profile, as well as significant broadening and deformation of its spectrum in the course of propagation through the medium. The physical mechanisms of the observed phenomena are analysed by using the approximate analytical solution of the problem, derived for the case of preliminary excitation of the medium by a pump pulse (the pump-probe scheme). (nonlinear optical phenomena)

  14. Femtosecond multichannel photodissociation dynamics of CH{sub 3}I from the A band by velocity map imaging

    SciTech Connect

    Nalda, R. de; Izquierdo, J. G.; Dura, J.; Banares, L.

    2007-01-14

    The reaction times of several well-defined channels of the C-I bond rupture of methyl iodide from the A band, which involves nonadiabatic dynamics yielding ground state I({sup 2}P{sub 3/2}) and spin-orbit excited I*({sup 2}P{sub 1/2}) and ground and vibrationally excited CH{sub 3} fragments, have been measured by a combination of a femtosecond laser pump-probe scheme and velocity map imaging techniques using resonant detection of ground state CH{sub 3} fragments. The reaction times found for the different channels studied are directly related with the nonadiabatic nature of this multidimensional photodissociation reaction.

  15. High power multi-color OPCPA source with simultaneous femtosecond deep-UV to mid-IR outputs.

    PubMed

    Baudisch, M; Wolter, B; Pullen, M; Hemmer, M; Biegert, J

    2016-08-01

    Many experimental investigations demand synchronized pulses at various wavelengths, ideally with very short pulse duration and high repetition rate. Here we describe a femtosecond multi-color optical parametric chirped pulse amplifier (OPCPA) with simultaneous outputs from the deep-UV to the mid-IR with optical synchronization. The high repetition rate of 160 kHz is well suited to compensate for low interaction probability or low cross section in strong-field interactions. Our source features high peak powers in the tens to hundreds of MW regime with pulse durations below 110 fs, which is ideal for pump-probe experiments of nonlinear and strong-field physics. We demonstrate its utility by strong-field ionization experiments of xenon in the near- to mid-IR. PMID:27472624

  16. Nonlinear intersubband absorption of a hot quasi-two-dimensional electron plasma studied by femtosecond infrared spectroscopy

    SciTech Connect

    Lutgen, S.; Kaindl, R.A.; Woerner, M.; Elsaesser, T.; Hase, A.; Kuenzel, H.

    1996-12-01

    The transient ({ital n}=1) to ({ital n}=2) intersubband absorption of a pure electron plasma in {ital n}-type Ga{sub 0.48}In{sub 0.53}As/Al{sub 0.48}In{sub 0.52}As quantum wells is studied in femtosecond pump-probe experiments. The ultrafast dynamics of nonlinear absorption shows strong changes when tuning the midinfrared pulses over the intersubband absorption line. The nonlinear optical response is determined by both intersubband relaxation with a time constant of 1.3 ps and the intraband dynamics of ({ital n}=1) electrons, which are monitored in an independent experiment. {copyright} {ital 1996 The American Physical Society.}

  17. Photoassociation and coherent transient dynamics in the interaction of ultracold rubidium atoms with shaped femtosecond pulses. I. Experiment

    NASA Astrophysics Data System (ADS)

    Mullins, Terry; Salzmann, Wenzel; Götz, Simone; Albert, Magnus; Eng, Judith; Wester, Roland; Weidemüller, Matthias; Weise, Fabian; Merli, Andrea; Weber, Stefan M.; Sauer, Franziska; Wöste, Ludger; Lindinger, Albrecht

    2009-12-01

    We experimentally investigate various processes present in the photoassociative interaction of an ultracold atomic sample with shaped femtosecond laser pulses as an detailed extension of previous work [W. Salzmann , Phys. Rev. Lett. 100, 233003 (2008)]. We demonstrate the photoassociation of pairs of rubidium atoms into electronically excited, bound molecular states using spectrally cut femtosecond laser pulses tuned below the rubidium D1 or D2 asymptote. Time-resolved pump-probe spectra reveal oscillations of the molecular formation rate, which are due to coherent transient dynamics in the electronic excitation. The oscillation frequency corresponds to the detuning of the spectral cut position to the asymptotic transition frequency of the rubidium D1 or D2 lines, respectively. Measurements of the molecular photoassociation signal as a function of the pulse energy reveal a nonlinear dependence and indicate a nonperturbative excitation process. Chirping the association laser pulse allowed us to change the phase of the coherent transients. Furthermore, a signature for molecules in the electronic ground state is found, which is attributed to molecule formation by femtosecond photoassociation followed by spontaneous decay. In a subsequent article [A. Merli , Phys. Rev. A 80, 063417 (2009)] quantum mechanical calculations are presented, which compare well with the experimental data and reveal further details about the observed coherent transient dynamics.

  18. Photoassociation and coherent transient dynamics in the interaction of ultracold rubidium atoms with shaped femtosecond pulses. I. Experiment

    SciTech Connect

    Mullins, Terry; Salzmann, Wenzel; Goetz, Simone; Albert, Magnus; Eng, Judith; Wester, Roland; Weidemueller, Matthias; Weise, Fabian; Merli, Andrea; Weber, Stefan M.; Sauer, Franziska; Woeste, Ludger; Lindinger, Albrecht

    2009-12-15

    We experimentally investigate various processes present in the photoassociative interaction of an ultracold atomic sample with shaped femtosecond laser pulses as an detailed extension of previous work [W. Salzmann et al., Phys. Rev. Lett. 100, 233003 (2008)]. We demonstrate the photoassociation of pairs of rubidium atoms into electronically excited, bound molecular states using spectrally cut femtosecond laser pulses tuned below the rubidium D{sub 1} or D{sub 2} asymptote. Time-resolved pump-probe spectra reveal oscillations of the molecular formation rate, which are due to coherent transient dynamics in the electronic excitation. The oscillation frequency corresponds to the detuning of the spectral cut position to the asymptotic transition frequency of the rubidium D{sub 1} or D{sub 2} lines, respectively. Measurements of the molecular photoassociation signal as a function of the pulse energy reveal a nonlinear dependence and indicate a nonperturbative excitation process. Chirping the association laser pulse allowed us to change the phase of the coherent transients. Furthermore, a signature for molecules in the electronic ground state is found, which is attributed to molecule formation by femtosecond photoassociation followed by spontaneous decay. In a subsequent article [A. Merli et al., Phys. Rev. A 80, 063417 (2009)] quantum mechanical calculations are presented, which compare well with the experimental data and reveal further details about the observed coherent transient dynamics.

  19. Femtosecond electron diffraction: Preparation and characterization of (110)-oriented bismuth films

    NASA Astrophysics Data System (ADS)

    Moriena, Gustavo; Hada, Masaki; Sciaini, Germán; Matsuo, Jiro; Dwayne Miller, R. J.

    2012-02-01

    Here, we present a new approach to synthesize (110)-oriented ultrathin membranes of bismuth (Bi). This rather exotic orientation was achieved by directing the growth through rationale control of lattice matching. Bi films were hetero-epitaxially grown on the (100)-surface of freshly cleaved potassium chloride crystals. The sample orientation was characterized by x-ray and electron diffraction. In addition, high quality free-standing films were obtained after dissolution of the substrate in water and controlled evaporation. Femtosecond electron diffraction (FED) was, therefore, used to monitor the coherent shear acoustic phonons in (110)-oriented free-standing Bi films produced by impulsive femtosecond optical excitation. The small de Broglie wavelength (flat Ewald sphere) of keV-electrons combined with an off-Bragg detection scheme provided a magnified view of shear atomic motions, i.e., lattice distortions in the transverse direction. All-optical pump-probe experiments are usually insensitive to shear displacements, a fact that makes FED a unique non-contact method to achieve the complete characterization of elastic properties of nanoscale materials.

  20. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    SciTech Connect

    Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; Lemke, Henrik T.; Alonso-Mori, Roberto; Coey, Aaron; Larsen, Kevin; Baxter, Elizabeth L.; Cohen, Aina E.; Soltis, S. Michael; DeMirci, Hasan

    2015-04-30

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecond X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.

  1. Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons.

    PubMed

    Bossini, D; Dal Conte, S; Hashimoto, Y; Secchi, A; Pisarev, R V; Rasing, Th; Cerullo, G; Kimel, A V

    2016-02-05

    The understanding of how the sub-nanoscale exchange interaction evolves in macroscale correlations and ordered phases of matter, such as magnetism and superconductivity, requires to bridging the quantum and classical worlds. This monumental challenge has so far only been achieved for systems close to their thermodynamical equilibrium. Here we follow in real time the ultrafast dynamics of the macroscale magnetic order parameter in the Heisenberg antiferromagnet KNiF3 triggered by the impulsive optical generation of spin excitations with the shortest possible nanometre wavelength and femtosecond period. Our magneto-optical pump-probe experiments also demonstrate the coherent manipulation of the phase and amplitude of these femtosecond nanomagnons, whose frequencies are defined by the exchange energy. These findings open up opportunities for fundamental research on the role of short-wavelength spin excitations in magnetism and strongly correlated materials; they also suggest that nanospintronics and nanomagnonics can employ coherently controllable spin waves with frequencies in the 20 THz domain.

  2. A versatile femtosecond stimulated Raman spectroscopy setup with tunable pulses in the visible to near infrared

    SciTech Connect

    Zhu, Liangdong; Liu, Weimin; Fang, Chong

    2014-07-28

    We demonstrate a versatile and efficient setup to perform femtosecond stimulated Raman spectroscopy (FSRS). Technical innovations are implemented to achieve the wavelength tunability for both the picosecond narrowband Raman pump pulse and femtosecond broadband Raman probe pulse. Using a simplified one-grating scheme in a home-built second harmonic bandwidth compressor followed by a two-stage noncollinear optical parametric amplifier, we tune the Raman pump pulse from ca. 480 to 750 nm. To generate the suitable Raman probe pulse in tandem, we rely on our recently demonstrated broadband up-converted multicolor array technique that readily provides tunable broadband laser sidebands across the visible to near-infrared range. This unique setup has unparalleled flexibility for conducting FSRS. We measure the ground-state Raman spectra of a cyclohexane standard using tunable pump-probe pairs at various wavelengths across the visible region. The best spectral resolution is ∼12 cm{sup −1}. By tuning the pump wavelength closer to the electronic absorption band of a photoacid pyranine in water, we observe the pre-resonantly enhanced Raman signal. The stimulated Raman gain of the 1627 cm{sup −1} mode is increased by over 15 times.

  3. Femtosecond midinfrared study of aggregation behavior in aqueous solutions of amphiphilic molecules

    NASA Astrophysics Data System (ADS)

    Petersen, Christian; Bakulin, Artem A.; Pavelyev, Vlad G.; Pshenichnikov, Maxim S.; Bakker, Huib J.

    2010-10-01

    We study the spectral and orientational dynamics of HDO molecules in aqueous solutions of different concentrations of tertiary butyl alcohol (TBA) and trimethylamine-N-oxide (TMAO). The spectral dynamics is investigated with femtosecond two-dimensional infrared spectroscopy of the O-H stretch vibration of HDO:D2O, and the orientational dynamics is studied with femtosecond polarization-resolved pump-probe spectroscopy of the O-D stretch vibration of HDO:H2O. Both the spectral and orientational dynamics are observed to show bimodal behavior: part of the water molecules shows spectral and orientational dynamics similar to bulk liquid water and part of the water molecules displays a much slower dynamics. For low solute concentrations, the latter fraction of slow water increases linearly as a function of solute molality, indicating that the slow water is contained in the solvation shells of TBA and TMAO. At higher concentrations, the fraction of slow water saturates. The saturation behavior is much stronger for TBA solutions than for TMAO solutions, indicating the aggregation of the TBA molecules.

  4. Ultrafast pump-probe spectroscopy in the UV-blue range with an extremely broad probe spectrum for the carrier relaxation study in an InGaN thin film with indium-rich nano-clusters.

    PubMed

    Wang, Hsiang-Chen; Lu, Yen-Cheng; Chen, Cheng-Yen; Yang, C C

    2007-03-19

    We implement an extremely broad second-harmonic spectrum of about 90 nm in width based on a 7-fs mode-locked Ti:sapphire laser. This broadband second-harmonic signal is used as the probe in a non-degenerate pump-probe experiment to investigate the ultrafast carrier dynamics in wide band-gap semiconductors. To properly calibrate the pump-probe data, the time delays between the pump of a particular wavelength and the probes of various spectral portions are determined through the interferometry measurement and the dispersion calculation. To demonstrate the pump-probe experiment operation, we measure the carrier relaxation process from the excitation levels down to the free-carrier and the localized states in an InGaN thin-film sample, in which indium-rich nano-clusters exist to form the localized states. From the time-resolved differential transmission profiles at various spectral positions of an infinitesimal spectral width and the temporal evolution of probe spectrum, one can observe the following relaxation process: First, once carriers are excited, only a small portion of carriers relaxes into the free-carrier and localized states independently within 1 ps. Then, the major part of carriers starts to relax into the two groups of states not until several ps after excitation. Such a relaxation process does not seem to be cascading, i.e., relaxation into the localized states through the free-carrier states.

  5. Correlation between photoeletron and photoion in ultrafast multichannel photoionization of Ar

    SciTech Connect

    Itakura, R.; Fushitani, M.; Hishikawa, A.; Sako, T.

    2015-12-31

    We theoretically investigate coherent dynamics of ions created through ultrafast multichannel photoionization from a viewpoint of photoelectron-photoion correlation. The model calculation on single-photon ionization of Ar reveals that the coherent hole dynamics in Ar{sup +} associated with a superposition of the spin-orbit states {sup 2}PJ (J = 3/2 and 1/2) can be identified by monitoring only the photoion created by a Fourier-transform limited extreme ultraviolet (EUV) pulse with the fs pulse duration, while the coherence is lost by a chirped EUV pulse. It is demonstrated that by coincidence detection of the photoelectron and photoion the coherent hole dynamics can be extracted even in the case of ionization by a chirped EUV pulse with the sufficiently wide bandwidth.

  6. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B.C.

    1997-02-01

    The use femtosecond pulses for materials processing results in very precise cutting and drilling with high efficiency. Energy deposited in the electrons is not coupled into the bulk during the pulse, resulting in negligible shock or thermal loading to adjacent areas.

  7. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  8. Photoionization of Atomic Oxygen and Nitrogen

    NASA Technical Reports Server (NTRS)

    Dalgarno, Alexander

    1960-01-01

    A knowledge of the photoionization cross sections of atomic oxygen and atomic nitrogen from the spectral heads down to the x-ray region is necessary for the interpretaton of the behavior of the ionized layers. In this note we examine the available theoretical and experimental data and obtain sets of recommended values.

  9. Density-matrix formalism for the photoion-electron entanglement in atomic photoionization

    SciTech Connect

    Radtke, T.; Fritzsche, S.; Surzhykov, A.

    2006-09-15

    The density-matrix theory, based on Dirac's relativistic equation, is applied for studying the entanglement between the photoelectron and residual ion in the course of the photoionization of atoms and ions. In particular, emphasis is placed on deriving the final-state density matrix of the overall system 'photoion+electron', including interelectronic effects and the higher multipoles of the radiation field. This final-state density matrix enables one immediately to analyze the change of entanglement as a function of the energy, angle and the polarization of the incoming light. Detailed computations have been carried out for the 5s photoionization of neutral strontium, leading to a photoion in a 5s {sup 2}S J{sub f}=1/2 level. It is found that the photoion-electron entanglement decreases significantly near the ionization threshold and that, in general, it depends on both the photon energy and angle. The possibility to extract photoion-electron pairs with a well-defined degree of entanglement may have far-reaching consequences for quantum information and elsewhere.

  10. Monitoring the formation and decay of transient photosensitized intermediates using pump-probe UV resonance Raman spectroscopy. I: Self-modeling curve resolution.

    PubMed

    Kleimeyer, James A; Harris, Joel M

    2003-04-01

    Resolution of transient excited-state Raman scattering from ground-state and solvent bands is a challenging spectroscopic measurement since excited-state spectral features are often of low intensity, overlapping the dominant ground-state and solvent bands. The Raman spectra of these intermediates can be resolved, however, by acquiring time-resolved data and using multidimensional data analysis methods. In the absence of a physical model describing the kinetic behavior of a reaction, resolution of the pure-component spectra from these data can be accomplished using self-modeling curve resolution, a factor analysis technique that relies on the correlation in the data along a changing composition dimension to resolve the component spectra. A two-laser UV pump-probe resonance-enhanced Raman instrument was utilized to monitor the kinetics of amine quenching of excited-triplet states of benzophenone. The formation and decay of transient intermediates were monitored over time, from 15 ns to 100 micros. Factor analysis of the time-resolved spectral data identified three significant components in the data. The time-resolved intensities at each Raman wavenumber shift were projected onto the three significant eigenvectors, and least-squares criteria were developed to find the common plane in the space of the eigenvectors that includes the observed data. Within that plane, the three pure-component spectra were resolved using geometric criteria of convex hull analysis. The resolved spectra were found to arise from benzophenone excited-triplet states, diphenylketyl radicals, and the solvent and ground-state benzophenone.

  11. Comparison of vibrational dynamics between non-ionic and ionic vibrational probes in water: Experimental study with two-dimensional infrared and infrared pump-probe spectroscopies

    NASA Astrophysics Data System (ADS)

    Okuda, Masaki; Ohta, Kaoru; Tominaga, Keisuke

    2016-09-01

    Dynamics of the hydration structure around small vibrational probes have been extensively studied over the past few decades. However, we need to gain insight into how vibrational dynamics is affected by the molecular nature of the probe molecules in water. In this study, 2-nitro-5-thiocyanate benzoic acid (NTBA), which has an SCN group attached to an aromatic ring, and thiocyanate ion (SCN-) were used to investigate the vibrational dynamics of two vibrational probes, including vibrational frequency fluctuations and rotational relaxation. By performing two-dimensional infrared spectroscopic measurements, the vibrational frequency fluctuations of the SCN anti-stretching modes of these solutes were compared. The frequency-frequency time correlation function (FFTCF) of these solutes can be modeled by a delta function plus an exponential function and a constant. The FFTCF of NTBA was characterized by a time constant of 1.1 ps, which is similar to that of SCN-. Moreover, no component was longer than this constant. Consequently, the loss of the correlation in frequency fluctuations of the SCN anti-stretching mode of NTBA may be controlled by a mechanism similar to that of the ionic probe, which involves the hydrogen bonding dynamics of water. Polarization-controlled IR pump-probe measurements were performed for these vibrational probes in water to study the vibrational energy relaxation (VER) and reorientational relaxation processes. The VER rate of NTBA is much smaller than that of SCN-, which indicates that the intramolecular relaxation process is significant for VER of NTBA. Based on the rotational relaxation time of NTBA being shorter than that of SCN-, the internal rotational motion of the SCN group around the Cphenyl-S bond axis, where Cphenyl denotes a carbon atom of the aromatic ring to which the SCN group is attached, may play an important role in the anisotropic decay of NTBA in H2O.

  12. Ionic Liquid Dynamics Measured with 2D IR and IR Pump-Probe Experiments on a Linear Anion and the Influence of Potassium Cations.

    PubMed

    Tamimi, Amr; Fayer, Michael D

    2016-07-01

    The room-temperature ionic liquid EmimNTf2 (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) was studied with two-dimensional infrared (2D IR) spectroscopy and polarization selective pump-probe (PSPP) experiments using low-concentration selenocyanate (SeCN(-)) as the vibrational probe. SeCN(-) was added as EmimSeCN, which keeps the cation the same. KSeCN was also used, so K(+) was added. Two 2D IR polarization configurations were employed: ⟨XXXX⟩ (all pulses have the same polarization) and ⟨XXYY⟩ (the first two pulse polarizations are perpendicular to that of the third pulse and the echo). The spectral diffusion differs for the two configurations, demonstrating that reorientation-induced spectral diffusion, in addition to structural spectral diffusion (SSD), plays a role in the observed dynamics. The SSD was extracted from the 2D IR time-dependent data. The samples with EmimSeCN have dynamics on several fast time scales; however, when KSeCN is used, both the PPSP anisotropy decay and the 2D IR decays have low amplitude offsets (nondecaying values at long times). The size of the offsets increased with increased K(+) concentration. These results are explained in terms of a two-ensemble model. A small fraction of the SeCN(-) is located in the regions modified by the presence of K(+), causing a substantial slowing of the SeCN(-) orientational relaxation and spectral diffusion. Having a small ensemble of SeCN(-) that undergoes very slow dynamics is sufficient to explain the offsets. For the major ensemble, the dynamics with and without K(+) are the same. PMID:26872207

  13. Toward Femtosecond X-ray Spectroscopy at the Advanced Light Source

    SciTech Connect

    Chong, Henry Herng Wei

    2004-01-01

    The realization of tunable, ultrashort pulse x-ray sources promises to open new venues of science and to shed new light on long-standing problems in condensed matter physics and chemistry. Fundamentally new information can now be accessed. Used in a pump-probe spectroscopy, ultrashort x-ray pulses provide a means to monitor atomic rearrangement and changes in electronic structure in condensed-matter and chemical systems on the physically-limiting time-scales of atomic motion. This opens the way for the study of fast structural dynamics and the role they play in phase transitions, chemical reactions and the emergence of exotic properties in materials with strongly interacting degrees of freedom. The ultrashort pulse x-ray source developed at the Advanced Light Source at the Lawrence Berkeley Laboratory is based on electron slicing in storage rings, and generates ~100 femtosecond pulses of synchrotron radiation spanning wavelengths from the far-infrared to the hard x-ray region of the electromagnetic spectrum. The tunability of the source allows for the adaptation of a broad range of static x-ray spectroscopies to useful pump-probe measurements. Initial experiments are attempted on transition metal complexes that exhibit relatively large structural changes upon photo-excitation and which have excited-state evolution determined by strongly interacting structural, electronic and magnetic degrees of freedom. Specifically, iron(II) complexes undergo a spin-crossover transition upon optical irradiation. The dynamics of the transition involve a metal-to-ligand charge transfer, a ΔS=2 change in magnetic moment and 10% bond dilation in the first coordination shell of the iron. Studies of the electronic dynamics are studied with time-resolved optical absorption measurements. The current progress of time-resolved structural studies to complete the picture of the spin-crossover transition is presented.

  14. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  15. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B

    1998-08-05

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area. Applications ranging from drilling teeth to cutting explosives to precision cuts in composites are possible by using this technology. For material removal at reasonable rates, we have developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  16. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  17. Double Photoionization of He and H2

    NASA Astrophysics Data System (ADS)

    Colgan, J.; Pindzola, M. S.; Robicheaux, F.

    2006-01-01

    Photoionization cross sections for both atomic helium and molecular hydrogen have recently been calculated using a time-dependent close-coupling method. The total electronic wavefunction for the two electron system is expanded in six dimensions, where four dimensions are represented on a radial and angular lattice and a coupled channels expansion is used to represent the other two dimensions. The double photoionization cross sections obtained for both He and H2 for a range of photon energies above the complete fragmentation threshold were compared with absolute experimental measurements. Very good agreement is found with experiment. Our method is also capable of being extended to calculations of single and triple differential cross sections of H2.

  18. Photoionization from excited states of helium

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.

    1973-01-01

    The cross sections for photoionization from the 2 1S, 2 3S, 2 1P and 2 3P excited states of helium are calculated for photoelectron energies below the n = 2 threshold of He(+) using Hylleraas bound state wave functions and 1s-2s-2p close coupling final state wave functions. The resonant structures associated with the lowest-lying 1S, 1P, 3P, and 1D autoionizing states of helium are found to be characterized by large values of the line profile parameter q. The cross sections and the photoelectron angular distribution asymmetry parameters for the P-states are calculated for various polarization states of the target atom and the incident photon. Experiments which would lead to the separate determinations of the S- and D- wave partial photoionization cross sections are discussed.

  19. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  20. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  1. Photoionization models of the CALIFA HII regions

    NASA Astrophysics Data System (ADS)

    Morisset, C.; Delgado-Inglada, G.; Sánchez, S. F.

    2016-06-01

    We present here a short summary of a forthcoming paper on photoionization models based on CALIFA observations of HII regions. For each of the ˜ 20,000 sources of the CALIFA H ii regions catalog, a grid of photoionization models is computed assuming the ionizing SED being described by the underlying stellar population obtained from spectral synthesis modeling. The nebular metallicity (associated to O/H) is defined using the classical strong line method O3N2. The remaining free parameters are the abundance ratio N/O and the ionization parameter U, which are determined by looking for the model fitting [N II]/Hα and [O III]/Hβ. The models are also selected to fit [O II]/Hβ. This process leads to a set of ˜ 3,200 models that reproduce simultaneously the three observations. We determine new relations between the nebular parameters, like the ionization parameter U and the [O II]/[O III] or [S II]/[S III] line ratios. A new relation between N/O and O/H is obtained, mostly compatible with previous empirical determinations (and not with previous results obtained using photoionization models). A new relation between U and O/H is also determined. All the models are publicly available on the Mexican Millions Models database 3MdB.

  2. Analysis of Femtosecond Timing Noise and Stability in Microwave Components

    SciTech Connect

    Whalen, Michael R.; /Stevens Tech. /SLAC

    2011-06-22

    To probe chemical dynamics, X-ray pump-probe experiments trigger a change in a sample with an optical laser pulse, followed by an X-ray probe. At the Linac Coherent Light Source, LCLS, timing differences between the optical pulse and x-ray probe have been observed with an accuracy as low as 50 femtoseconds. This sets a lower bound on the number of frames one can arrange over a time scale to recreate a 'movie' of the chemical reaction. The timing system is based on phase measurements from signals corresponding to the two laser pulses; these measurements are done by using a double-balanced mixer for detection. To increase the accuracy of the system, this paper studies parameters affecting phase detection systems based on mixers, such as signal input power, noise levels, temperature drift, and the effect these parameters have on components such as the mixers, splitters, amplifiers, and phase shifters. Noise data taken with a spectrum analyzer show that splitters based on ferrite cores perform with less noise than strip-line splitters. The data also shows that noise in specific mixers does not correspond with the changes in sensitivity per input power level. Temperature drift is seen to exist on a scale between 1 and 27 fs/{sup o}C for all of the components tested. Results show that any components using more metallic conductor tend to exhibit more noise as well as more temperature drift. The scale of these effects is large enough that specific care should be given when choosing components and designing the housing of high precision microwave mixing systems for use in detection systems such as the LCLS. With these improvements, the timing accuracy can be improved to lower than currently possible.

  3. Quadrupole photoionization of hydrogen atoms in Debye plasmas

    SciTech Connect

    Lin, C. Y.; Ho, Y. K.

    2010-09-15

    Although a great deal of effort has been devoted to investigating dipole photoionization of plasma-embedded atoms, far less is known about the corresponding quadrupole transitions. In the present work, quadrupole photoionization processes for the ground and excited states of hydrogen atoms in Debye plasma are explored using the method of complex coordinate rotation. The plasma shielding effects on the quadrupole photoionization cross sections are reported for a variety of Debye screening lengths and compared to the dipole results accordingly. Under the perturbation of plasma screening, shape resonances and Cooper-type minima occurring in both dipole and quadrupole photoionization cross sections are presented and discussed. Comparisons are made to other theoretical calculations for the dipole photoionization with good agreement. The present quadrupole results are the first predictions for hydrogen photoionization in Debye plasmas.

  4. Theoretical Studies on Photoionization Cross Sections of Solid Gold

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-Guang; Sun, Wei-Guo; Cheng, Yan-Song

    2005-01-01

    Accurate expression for photoabsorption (photoionization) cross sections of high density system proposed recently is used to study the photoionization of solid gold. The results show that the present theoretical photoionization cross sections have good agreement both in structure and in magnitude with the experimental results of gold crystal. The studies also indicate that both the real part ε' and the imaginary part ε'' of the complex dielectric constant ε, and the dielectric influence function of a nonideal system have rich structures in low energy side with a range about 50 eV, and suggest that the influence of particle interactions of surrounding particles with the photoionized particle on the photoionization cross sections can be easily investigated using the dielectric influence function. The electron overlap effects are suggested to be implemented in the future studies to improve the accuracy of theoretical photoionization cross sections of a solid system.

  5. Transformation of silver nanospheres embedded in glass to nanodisks using circularly polarized femtosecond pulses

    SciTech Connect

    Stalmashonak, A.; Graener, H.; Seifert, G.

    2009-05-11

    We prove by help of optical microspectroscopy that spherical Ag nanoparticles embedded in glass can be transformed to oblate (disklike) shapes by irradiation with circularly polarized femtosecond laser pulses. The symmetry axis (short axis) of the oblate spheroids produced by this method is oriented along the laser propagation direction. This observation also confirms the assumption that the mechanism of shape transformation starts with directed photoionization of nanoparticles induced by laser irradiation in combination with the electric field enhancement at the particle-glass interface.

  6. Advances in femtosecond laser technology

    PubMed Central

    Callou, Thais Pinheiro; Garcia, Renato; Mukai, Adriana; Giacomin, Natalia T; de Souza, Rodrigo Guimarães; Bechara, Samir J

    2016-01-01

    Femtosecond laser technology has become widely adopted by ophthalmic surgeons. The purpose of this study is to discuss applications and advantages of femtosecond lasers over traditional manual techniques, and related unique complications in cataract surgery and corneal refractive surgical procedures, including: LASIK flap creation, intracorneal ring segment implantation, presbyopic treatments, keratoplasty, astigmatic keratotomy, and intrastromal lenticule procedures. PMID:27143847

  7. Advances in femtosecond laser technology.

    PubMed

    Callou, Thais Pinheiro; Garcia, Renato; Mukai, Adriana; Giacomin, Natalia T; de Souza, Rodrigo Guimarães; Bechara, Samir J

    2016-01-01

    Femtosecond laser technology has become widely adopted by ophthalmic surgeons. The purpose of this study is to discuss applications and advantages of femtosecond lasers over traditional manual techniques, and related unique complications in cataract surgery and corneal refractive surgical procedures, including: LASIK flap creation, intracorneal ring segment implantation, presbyopic treatments, keratoplasty, astigmatic keratotomy, and intrastromal lenticule procedures.

  8. Double and triple photoionization of Li and Be

    SciTech Connect

    Colgan, J.; Pindzola, M.S.; Robicheaux, F.

    2005-08-15

    We present calculations for the double photoionization (with excitation) and the triple photoionization of Li and Be. We extend and more fully discuss the previous calculations made for Li by Colgan et al. [Phys. Rev. Lett. 93, 053201 (2004)] and present calculations for Be. The Be triple photoionization cross sections are compared with previous double shake-off model calculations of Kheifets and Bray [J. Phys. B 36, L211 (2003)], and our calculations are found to be significantly lower.

  9. Photoionization of atoms and molecules. [of hydrogen, helium, and xenon

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1976-01-01

    A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed.

  10. The role of photoionization in negative corona discharge

    NASA Astrophysics Data System (ADS)

    Lu, B. X.; Sun, H. Y.

    2016-09-01

    The effect of photoionization on the negative corona discharge was simulated based on the needle to plane air gaps. The Trichel pulse, pulse train, electron density and the distribution of electric field will be discussed in this manuscript. Effect of photoionization on the magnitude and interval of the first pulse will be discussed for different applied voltages. It is demonstrated that the peak of the first pulse current could be weakened by photoionization and a critical voltage of the first pulse interval influenced by photoionization was given.

  11. Femtosecond polarization pulse shaping.

    PubMed

    Brixner, T; Gerber, G

    2001-04-15

    We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control.

  12. Femtosecond polarization pulse shaping.

    PubMed

    Brixner, T; Gerber, G

    2001-04-15

    We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control. PMID:18040384

  13. Femtosecond real-time probing of transition state dynamics in a surface photoreaction: Methyl desorption from CH{sub 3}I on MgO(100)

    SciTech Connect

    Vaida, Mihai E.; Hindelang, Peter E.; Bernhardt, Thorsten M.

    2008-07-07

    A novel experimental approach to the investigation of surface adsorbate reaction dynamics is presented. The direct time-resolved monitoring of the surface reaction transition state and product formation dynamics were accomplished via pump-probe mass spectrometry. As an example, methyl iodide molecules adsorbed at submonolayer coverage on an ultrathin magnesia film on Mo(100) were photoexcited to the A-band by ultrafast laser pulse irradiation. Employing time-delayed multiphoton ionization the dynamics of the dissociative methyl iodide transition state and of the emerging methyl photoproduct could be detected with femtosecond resolution. The reaction times deduced from the temporal evolution of the methyl ion mass signal indicate a strong interaction of the methyl fragment with the substrate surface prior to desorption.

  14. Temperature and magnetic field dependence of rare -earth ↔iron exchange resonance mode in a magnetic oxide studied with femtosecond magneto-optical Kerr effect

    NASA Astrophysics Data System (ADS)

    Deb, Marwan; Molho, Pierre; Barbara, Bernard; Bigot, Jean-Yves

    2016-08-01

    In magnetic materials, the exchange is the strongest quantum interaction due to the Pauli exclusion principle. For that reason it can induce high-frequency modes fexch of the magnetization precession. In this work we investigate these modes over a wide range of temperatures (50 -300 K ) and magnetic fields up to 10 T in a bismuth-doped garnet with perpendicular magnetic anisotropy by performing femtosecond magneto-optical pump-probe experiments. Near the compensation temperature TM the divergence of 1 /fexch(T ) allows identifying unambiguously fexch with the rare-earth ↔ iron exchange mode. In addition, at low temperature fexch is independent of the field as usually observed. In contrast, we find that near TM,fexch decreases linearly with an increasing magnetic field. This behavior is explained in the context of the ferromagnetic resonance theory by including the perturbation term linear in the external applied field Hext.

  15. Femtosecond time-resolved study of the dissociation of small molecules using a two-color vacuum ultraviolet pump and x-ray probe technique.

    NASA Astrophysics Data System (ADS)

    Belkacem, A.; Allison, T.; Khurmi, C.; Wright, T.; Stooke, A.

    2010-03-01

    We developed a unique two-color ultraviolet (UV) pump and extreme ultraviolet (EUV) probe capability to study molecular dissociation and non-adiabatic molecular dynamics of small to complex molecules excited in the UV regime. This capability revolves around the development of a very high intensity high harmonics source in combination with a split-mirror technique. The pump-probe delay has an interferometric stability of better than 100 attoseconds. We used this system to probe the femtosecond internal conversion of excited ethylene, water and oxygen molecules pumped with the 5th harmonic (˜7.75 eV) and probed with the 19th harmonic (˜29.45 eV). The results of these measurements will be presented.

  16. 2008 Photoions, Photoionization & Photodetachment Gordon Research Conference January 27-February 1, 2008

    SciTech Connect

    Klaus Muller-Dethefs Nancy Ryan GRay

    2009-03-31

    This conference brings together scientists interested in a range of basic phenomena linked to the ejection and scattering of electrons from atoms, molecules, clusters, liquids and solids by absorption of light. Photoionization, a highly sensitive probe of both structure and dynamics, can range from perturbative single-photon processes to strong-field highly non-perturbative interactions. It is responsible for the formation and destruction of molecules in astrophysical and plasma environments and successfully used in advanced analytical techniques. Positive ions, which can be produced and studied most effectively using photoionization, are the major components of all plasmas, vital constituents of flames and important intermediates in many chemical reactions. Negative ions are significant as transient species and, when photodetached, the corresponding neutral species often undergoes remarkable, otherwise non-observable, dynamics. The scope of the meeting spans from novel observations in atomic and molecular physics, such as Coulomb Crystals, highly excited states and cold Rydberg plasmas, to novel energy resolved or ultrafast time-resolved experiments, photoionization in strong laser fields, theoretical method development for electron scattering, photoionization and photodetachment and more complex phenomena such as charge transfer and DNA and protein conductivity, important for biological and analytical applications.

  17. Femtosecond wave-packet propagation in spin-orbit-coupled electronic states of 39,39K2 and 39,41K2

    NASA Astrophysics Data System (ADS)

    Rutz, Soeren; de Vivie-Riedle, Regina; Schreiber, Elmar

    1996-07-01

    Applying femtosecond pump-probe spectroscopy, we investigated via three-photon ionization (3PI) and high mass selection the vibrational dynamics of the potassium dimer's electronic A1Σ+u state separately for two of its isotopoes, 39,39K2 and 39,41K2. The fast oscillation with TA=500 fs, observed for both isotopes, reflects the wave-packet propagation prepared on the potential-energy surface of the A state. The long-time dynamics, however, of the isotopes is totally different. While for 39,39K2 a beat structure with TBS=10 ps is superimposed, for 39,41K2 a rather fast decay and revivals at 38 ps, 60 ps, and 82 ps could be resolved. A detailed Fourier analysis of the 200-ps scans with a resolution of 0.1 cm-1 enables the identification of the excited vibrational levels of the A state in detail, including their energetic shifts due to spin-orbit coupling with the crossing b3Πu state. Theoretical simulations of the pump-probe spectra on the basis of fully quantum-dynamical calculations reproduce well the experimental data. The reason for the slight differences can be identified as deviations between the real potential-energy surfaces and the ab initio data, used for the simulations and demonstrates the very high sensitivity of the femtosecond spectroscopy to investigate vibrational states and their perturbation. Furthermore, the theoretical investigations reveal the details of the ultrafast intersystem crossing process in real time.

  18. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation.

    PubMed

    Plötzing, M; Adam, R; Weier, C; Plucinski, L; Eich, S; Emmerich, S; Rollinger, M; Aeschlimann, M; Mathias, S; Schneider, C M

    2016-04-01

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  19. Angle-resolved photoemission spectroscopy with a femtosecond high harmonic light source using a two-dimensional imaging electron analyzer

    NASA Astrophysics Data System (ADS)

    Mathias, S.; Miaja-Avila, L.; Murnane, M. M.; Kapteyn, H.; Aeschlimann, M.; Bauer, M.

    2007-08-01

    An experimental setup for time- and angle-resolved photoemission spectroscopy using a femtosecond 1kHz high harmonic light source and a two-dimensional electron analyzer for parallel energy and momentum detection is presented. A selection of the 27th harmonic (41.85eV) from the harmonic spectrum of the light source is achieved with a multilayer Mo /Si double mirror monochromator. The extinction efficiency of the monochromator in selecting this harmonic is shown to be better than 7:1, while the transmitted bandwidth of the selected harmonic is capable of supporting temporal pulse widths as short as 3fs. The recorded E(k ) photoelectron spectrum from a Cu(111) surface demonstrates an angular resolution of better than 0.6° (=0.03Å-1 at Ekin ,e=36eV). Used in a pump-probe configuration, the described experimental setup represents a powerful experimental tool for studying the femtosecond dynamics of ultrafast surface processes in real time.

  20. Double Photoionization of Aligned Molecular Hydrogen

    SciTech Connect

    Vanroose, Wim; Horner, Daniel A.; Martin, Fernando; Rescigno,Thomas N.; McCurdy, C. William

    2006-07-21

    We present converged, completely ab initio calculations ofthe triple differential cross sections for double photoionization ofaligned H2 molecules for a photon energy of 75.0 eV. The method ofexterior complex scaling, implemented with both the discrete variablerepresentation and B-splines, is used to solve the Schroedinger equationfor a correlated continuum wave function corresponding to a single photonhaving been absorbed by a correlated initial state. Results for a fixedinternuclear distance are compared with recent experiments and show thatintegration over experimental angular and energy resolutions is necessaryto produce good qualitative agreement, but does not eliminate somediscrepancies. Limitations of current experimental resolution are shownto sometimes obscure interesting details of the crosssection.

  1. Spin effects in double photoionization of lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Hines, C. W.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2010-02-15

    We apply the nonperturbative convergent close-coupling (CCC) and time-dependent close coupling (TDCC) formalisms to calculate fully differential energy and angular resolved cross sections of double photoionization (DPI) of lithium. The equal energy sharing case is considered in which dynamics of the DPI process can be adequately described by two symmetrized singlet and triplet amplitudes. The angular width of these amplitudes serves as a measure of the strength of the angular correlation between the two ejected electrons. This width is interpreted in terms of the spin of the photoelectron pair.

  2. Femtosecond damage resistance of femtosecond multilayer and hybrid mirrors.

    PubMed

    Csajbók, Viktória; Szikszai, Lőrinc; Nagy, Benedek J; Dombi, Péter

    2016-08-01

    Improving the laser-induced damage threshold of optical components is a basic endeavor in femtosecond technology. By testing more than 30 different femtosecond mirrors with 42 fs laser pulses at 1 kHz repetition rate, we found that a combination of high-bandgap dielectric materials and improved design and coating techniques enable femtosecond multilayer damage thresholds exceeding 2  J/cm2 in some cases. A significant ×2.5 improvement in damage resistance can also be achieved for hybrid Ag-multilayer mirrors exhibiting more than 1  J/cm2 threshold with a clear anticorrelation between damage resistance and peak field strength in the stack. Slight dependence on femtosecond pulse length and substantial decrease for high (megahertz) repetition rates are also observed.

  3. Double photoionization of helium with synchrotron x-rays: Proceedings

    SciTech Connect

    Not Available

    1994-01-01

    This report contains papers on the following topics: Overview and comparison of photoionization with charged particle impact; The ratio of double to single ionization of helium: the relationship of photon and bare charged particle impact ionization; Double photoionization of helium at high energies; Compton scattering of photons from electrons bound in light elements; Electron ionization and the Compton effect in double ionization of helium; Elimination of two atomic electrons by a single energy photon; Double photoionization of helium at intermediate energies; Double Photoionization: Gauge Dependence, Coulomb Explosion; Single and Double Ionization by high energy photon impact; The effect of Compton Scattering on the double to single ionization ratio in helium; and Double ionization of He by photoionization and Compton scattering. These papers have been cataloged separately for the database.

  4. Studies of x-ray emission properties of photoionized plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Feilu; Han, Bo; Jin, Rui; Salzmann, David; Liang, Guiyun; Wei, Huigang; Zhong, Jiayong; Zhao, Gang; Li, Jia-ming

    2016-03-01

    In this paper three aspects of photoionized plasmas are discussed in both laboratory and astrophysical contexts. First, the importance of accurate atomic/ionic data for the analysis of photoionized plasmas is shown. Second, an overview of present computer codes for the analysis of photoionized plasmas is given. We introduce our computer model, radiative-collisional code based on the flexible atomic code (RCF), for calculations of the properties of such plasmas. RCF uses database generated by the flexible atomic code. Using RCF it is shown that incorporating the satellite lines from doubly excited Li-like ions into the He{}α triplet lines is necessary for reliable analysis of observational spectra from astrophysical objects. Finally, we introduce a proposal to generate photoionized plasmas by x-ray free electron laser, which may facilitate the simulation in lab of astrophysical plasmas in photoionization equilibrium.

  5. Femtosecond photoelectron point projection microscope

    SciTech Connect

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett

    2013-10-15

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect.

  6. State-Resolved and State-To Photodissociation Study of CO_2 by Two-Color Vuv-Vuv Laser Pump-Probe Method

    NASA Astrophysics Data System (ADS)

    Lu, Zhou; Chang, Yih-Chung; Jackson, William M.; Ng, Cheuk-Yiu

    2014-06-01

    CO_2 is known as a strong contributor to the greenhouse effect, and its concentration in the atmosphere increases annually. Photodissociation of CO_2 is considered an important photochemical sink of CO_2 molecules which could ultimately limit the increase of CO_2 concentration in the atmosphere. Since CO_2 molecules have negligibly small absorption from the visible region down to about 200 nm, photodissociation studies of CO_2 in the vacuum ultraviolet (VUV) region below 200 nm are of great importance in understanding the photochemical decomposition processes of CO_2 molecules. State-to-state photodissociation of CO_2 has been investigated by employing two independent VUV lasers and the time-slice velocity-map-imaging-photoion (VMI-PI) method. The spin-allowed photoproduct channels, CO(X1Σ+) + O(1D), CO(X1Σ+) + O(1S), CO(a3Π) + O(3PJ), and C(3PJ) + O2(X3Σg-), and the spin-forbidden photoproduct channel, CO(X1Σ+) + O(3PJ), were directly observed from the time-slice VMI-PI images. The angular anisotropic parameters were evaluated, allowing us to estimate the lifetimes for the formations of these dissociation channels. To the authors' knowledge, the current CO_2 photodissociation studies show for the first time that all of the energetically available photodissociation channels are formed in the CO_2 photoexcitation energy of interest.

  7. Two-electron photoionization of endohedral atoms

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Liverts, E. Z.; Mandelzweig, V. B.

    2006-10-01

    Using He@C60 as an example, we demonstrate that the static potential of the fullerene core essentially alters the cross section of the two-electron ionization differential in one-electron energy dσ++(ω)/dɛ . We found that at high photon energy prominent oscillations appear in it due to reflection of the second slow electron wave on the C60 shell, which “dies out” at relatively high ɛ values, of about 2-3 two-electron ionization potentials. The results were presented for ratios RC60(ω,ɛ)≡dσ++(ω,ɛ)/dσa++(ω,ɛ) , where dσa++(ω,ɛ)/dɛ is the two-electron differential photoionization cross section. We have calculated the ratio Ri,ful=σi++(ω)/σia++(ω) , that accounts for reflection of both photoelectrons by the C60 shell. We have also calculated the value of two-electron photoionization cross section σ++(ω) and found that this value is close to that of an isolated He atom. Results similar to He@C60 are presented for He@C70 and He@C76 .

  8. Two-electron photoionization of endohedral atoms

    NASA Astrophysics Data System (ADS)

    Amusia, Miron; Liverts, Evgeny; Mandelzweig, Victor

    2006-05-01

    Using He@C60 as an example, we demonstrate that static potential of the fullerene core essentially alters the differential in one-electron energy cross section of the two-electron ionization dσ^++(,)/dɛ. We found that at high photon energy prominent oscillations appear in it due to reflection of the second, slow electron wave on the C60 shell, which dies out at relatively high ɛ values, of about 23 two-electron ionization potentials. The results were presented for ratios RC60(φ,ɛ)≡dσ^++(φ,ɛ)/dσ^a++(,), where d&a++circ;(,) /dɛ is the two-electron differential photoionization cross-section. We have calculated also the ratio Ri,ful=σi^++(φ)/σi^a++(φ), that accounts reflection of both photoelectrons by the C60 shell. We have calculated also the value of two-electron photoionization cross section σ^++(φ) and found that this value is close to that of an isolated He atom.

  9. Rotationally resolved photoionization with coherent VUV radiation

    SciTech Connect

    Wiedmann, R.T.; Tonkyn, R.G.; White, M.G.

    1992-09-01

    Pulsed field ionization (PFI) has been used in conjunction with coherent VUV radiation to investigate the rotational state distributions of molecular cations following single photon ionization. The rotational state distributions for several linear cations (O{sub 2}, NO, OH(OD), HCl and N{sub 2}0) can be interpreted predominately on the basis of the near-threshold, one-electron photoionization dynamics; however, field-induced autoionization is often the dominate ionization pathway for rotational branches involving negative changes in core angular momentum. For photoionization of the H{sub 2}X (X = 0, S) non-linear triatomic molecules, transitions between asymmetric top levels involving the rotational angular momentum projections, K{sub a} and K{sub c} permit resolution of the photoelectron continua according to symmetry. The observed spectra clearly demonstrate the importance of the non-spherical nature of the molecular ion potential which leads to photoelectron final states which are unexpected from atomic-like analogies.

  10. Rotationally resolved photoionization with coherent VUV radiation

    SciTech Connect

    Wiedmann, R.T.; Tonkyn, R.G.; White, M.G.

    1992-01-01

    Pulsed field ionization (PFI) has been used in conjunction with coherent VUV radiation to investigate the rotational state distributions of molecular cations following single photon ionization. The rotational state distributions for several linear cations (O{sub 2}, NO, OH(OD), HCl and N{sub 2}0) can be interpreted predominately on the basis of the near-threshold, one-electron photoionization dynamics; however, field-induced autoionization is often the dominate ionization pathway for rotational branches involving negative changes in core angular momentum. For photoionization of the H{sub 2}X (X = 0, S) non-linear triatomic molecules, transitions between asymmetric top levels involving the rotational angular momentum projections, K{sub a} and K{sub c} permit resolution of the photoelectron continua according to symmetry. The observed spectra clearly demonstrate the importance of the non-spherical nature of the molecular ion potential which leads to photoelectron final states which are unexpected from atomic-like analogies.

  11. Double photoionization of doubly-excited lithium

    NASA Astrophysics Data System (ADS)

    Armstrong, G.; Pindzola, M. S.; Kheifets, A.; Schuricke, M.; Veeravalli, G.; Dornes, Ch.; Zhu, G.; Joachimsmeyer, K.; Treusch, R.; Dorn, A.; Colgan, J.

    2012-06-01

    We present triple differential cross sections and recoil ion momentum distributions for double photoionization of the 1s2s2p state of lithium. Double ionization of lithium may be treated as a two-active-electron process, where the ``active'' 2s and 2p electrons move in the field of the ``frozen-core'' Li^2+ 1s state.The time-dependent close-coupling (TDCC) method is used to solve the two-electron time-dependent Schr"odinger equation in full dimensionality. This work is motivated by recent FLASH experiments, which have obtained recoil-ion momentum distributions at a photon energy of 59 eV, where the 1s2s2p state is first reached via a 1s-2p photoexcitation from the initial ground state, and may then be doubly-ionized after the absorption of a second photon. The TDCC calculations in this work treat the subsequent photoionization of this doubly-excited state. The results are compared to those obtained by the convergent close-coupling method and to measurement, and provide a first comparison between theory and experiment in this fundamental few-photon few-body problem.

  12. Photoionization Dynamics in Pure Helium Droplets

    SciTech Connect

    Peterka, Darcy S.; Kim, Jeong Hyun; Wang, Chia C.; Poisson,Lionel; Neumark, Daniel M.

    2007-02-04

    The photoionization and photoelectron spectroscopy of pure He droplets are investigated at photon energies between 24.6 eV (the ionization energy of He) and 28 eV. Time-of-flight mass spectra and photoelectron images were obtained at a series of molecular beam source temperatures and pressures to assess the effect of droplet size on the photoionization dynamics. At source temperatures below 16 K, the photoelectron images are dominated by fast electrons produced via direct ionization of He atoms, with a small contribution from very slow electrons with kinetic energies below 1 meV arising from an indirect mechanism. The fast photoelectrons have as much as 0.5 eV more kinetic energy than those from atomic He at the same photon energy. This result is interpreted and simulated within the context of a 'dimer model', in which one assumes vertical ionization from two nearest neighbor He atoms to the attractive region of the He2+ potential energy curve. Possible mechanism for the slow electrons, which were also seen at energies below IE(He), are discussed, including vibrational autoionizaton of Rydberg states comprising an electron weakly bound to the surface of a large HeN+ core.

  13. Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses.

    PubMed

    Klini, A; Loukakos, P A; Gray, D; Manousaki, A; Fotakis, C

    2008-07-21

    Temporally shaped, femtosecond laser pulses have been used for controlling the size and the morphology of micron-sized metallic structures obtained by using the Laser Induced Forward Transfer (LIFT) technique. We report the effect of pulse shaping on the size and morphology of the deposited structures of Au, Zn, Cr on a function of the pulse separation time ??t (from 0 to 10 ps) of double pulses of variable intensities generated by using a liquid crystal spatial light modulator (SLM). The observed differences in size and morphology are correlated with the outcome of pump-probe experiments for the study of electron-phonon scattering dynamics and subsequent energy transfer processes to the bulk in the different metals employed. We propose that in metals with weak electron-lattice coupling, the electron ballistic motion and the resulting fast electron scattering at the film surface, as well as the internal electron thermalization process are crucial to the morphology and size of the transferred material. Therefore, temporal shaping within the corresponding time scales of these processes may be used for tailoring the features of the metallic structures obtained by LIFT.

  14. Ultrafast dynamics in helium nanodroplets probed by femtosecond time-resolved EUV photoelectron imaging

    SciTech Connect

    Kornilov, Oleg; Wang, Chia C.; Buenermann, Oliver; Healy, Andrew T.; Leonard, Mathew; Peng, Chunte; Leone, Stephen R.; Neumark, Daniel M.; Gessner, Oliver

    2010-07-09

    The dynamics of electronically excited helium nanodroplets are studied by femtosecond time-resolved photoelectron imaging. EUV excitation into a broad absorption band centered around 23.8 eV leads to an indirect photoemission process that generates ultraslow photoelectrons. A 1.58 eV probe pulse transiently depletes the indirect photoemission signal for pump-probe time delays <200 fs and enhances the signal beyond this delay. The depletion is due to suppression of the indirect ionization process by the probe photon, which generates a broad, isotropically emitted photoelectron band. Similar time scales in the decay of the high energy photoelectron signal and the enhancement of the indirect photoemission signal suggest an internal relaxation process that populates states in the range of a lower energy droplet absorption band located just below the droplet ionization potential (IP {approx} 23.0 eV). A nearly 70% enhancement of the ultraslow photoelectron signal indicates that interband relaxation plays a more dominant role for the droplet de-excitation mechanism than photoemission.

  15. Dynamics of femtosecond laser absorption of fused silica in the ablation regime

    SciTech Connect

    Lebugle, M. Sanner, N.; Varkentina, N.; Sentis, M.; Utéza, O.

    2014-08-14

    We investigate the ultrafast absorption dynamics of fused silica irradiated by a single 500 fs laser pulse in the context of micromachining applications. A 60-fs-resolution pump-probe experiment that measures the reflectivity and transmissivity of the target under excitation is developed to reveal the evolution of plasma absorption. Above the ablation threshold, an overcritical plasma with highly non-equilibrium conditions is evidenced in a thin layer at the surface. The maximum electron density is reached at a delay of 0.5 ps after the peak of the pump pulse, which is a strong indication of the occurrence of electronic avalanche. The results are further analyzed to determine the actual feedback of the evolution of the optical properties of the material on the pump pulse. We introduce an important new quantity, namely, the duration of absorption of the laser by the created plasma, corresponding to the actual timespan of laser absorption by inverse Bremsstrahlung. Our results indicate an increasing contribution of plasma absorption to the total material absorption upon raising the excitation fluence above the ablation threshold. The role of transient optical properties during the energy deposition stage is characterized and our results emphasize the necessity to take it into account for better understanding and control of femtosecond laser-dielectrics interaction.

  16. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses

    SciTech Connect

    Couairon, A.; Sudrie, L.; Franco, M.; Prade, B.; Mysyrowicz, A.

    2005-03-15

    We investigate experimentally and numerically the damage tracks induced by tightly focused (NA=0.5) infrared femtosecond laser pulses in the bulk of a fused silica sample. Two types of irreversible damage are observed. The first damage corresponds to a permanent change of refractive index without structural modifications (type I). It appears for input pulse energies beyond 0.1 {mu}J. It takes the form of a narrow track extending over more than 100 {mu}m at higher input powers. It is attributed to a change of the polarizability of the medium, following a filamentary propagation which generates an electron-hole plasma through optical field ionization. A second type of damage occurs for input pulse energies beyond 0.3 {mu}J (type II). It takes the form of a pear-shaped structural damage associated with an electron-ion plasma triggered by avalanche. The temporal evolution of plasma absorption is studied by pump-probe experiments. For type I damage, a fast electron-hole recombination is observed. Type II damage is linked with a longer absorption.

  17. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    DOE PAGES

    Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; Lemke, Henrik T.; Alonso-Mori, Roberto; Coey, Aaron; Larsen, Kevin; Baxter, Elizabeth L.; Cohen, Aina E.; Soltis, S. Michael; et al

    2015-04-30

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecondmore » X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.« less

  18. Femtosecond OH bending dynamics of water nanopools confined in reverse micelles.

    PubMed

    Costard, Rene; Elsaesser, Thomas

    2013-12-12

    The relaxation of OH bend excitations of H2O confined in reverse micelles is studied by femtosecond broadband pump-probe spectroscopy for the two ionic systems dioctyl sodium sulfosuccinate (AOT) and dioleoylphosphatidylcholine (DOPC) and for the nonionic tetraethylene glycol dodecyl ether (Brij-30). In the ionic AOT/DOPC reverse micelles, the OH bending lifetime T1 decreases from T1 > 615 fs for a 3:1 ratio of water and AOT/DOPC molecules (w0 = 3) to T1 = 345 fs for a 16:1 ratio (w0 = 16). In contrast, H2O in Brij-30 reverse micelles shows a much shorter T1 = 400 fs at w0 = 2 which decreases to T1 = 250 fs at w0 = 8. OH bend relaxation proceeds mainly via librational overtones of the bend-excited water molecules with a rate correlating with the energy mismatch between the v = 1 OH bend state and the librational overtone. In the ionic systems, the lower librational frequencies at small w0 result in a larger mismatch and longer T1 times. In the nonionic case, the w0-independent librational frequencies with a small energy mismatch lead to shorter T1 times. For w0 ≥ 8, the energy flow into the first hydration shell of the bend-excited molecules makes an additional contribution to the relaxation rate in all systems. PMID:23721432

  19. Initial Reaction Dynamics of Proteorhodopsin Observed by Femtosecond Infrared and Visible Spectroscopy

    PubMed Central

    Neumann, Karsten; Verhoefen, Mirka-Kristin; Weber, Ingrid; Glaubitz, Clemens; Wachtveitl, Josef

    2008-01-01

    We present a comparative study using femtosecond pump/probe spectroscopy in the visible and infrared of the early photodynamics of solubilized proteorhodopsin (green absorbing variant) in D2O with deprotonated (pD 9.2) and protonated (pD 6.4) primary proton acceptor Asp-97. The vis-pump/vis-probe experiments show a kinetic isotope effect that is more pronounced for alkaline conditions, thus decreasing the previously reported pH-dependence of the primary reaction of proteorhodopsin in H2O. This points to a pH dependent H-bonding network in the binding pocket of proteorhodopsin, that directly influences the primary photo-induced dynamics. The vis-pump/IR-probe experiments were carried out in two different spectral regions and allowed to monitor the retinal C=C (1500 cm−1–1580 cm−1) and C=N stretching vibration as well as the amide I mode of the protein (1590 cm−1–1680 cm−1). Like the FTIR spectra of the K intermediate (PRK–PR difference spectra) in this spectral range, the kinetic parameters and also the quantum efficiency of photo-intermediate formation are found to be virtually independent of the pD value. PMID:18326639

  20. Photoionization research on atomic beams. 2: The photoionization cross section of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Comes, F. J.; Speier, F.; Elzer, A.

    1982-01-01

    An experiment to determine the absolute value of the photo-ionization cross section of atomic oxygen is described. The atoms are produced in an electrical discharge in oxygen gas with 1% hydrogen added. In order to prevent recombination a crossed beam technique is employed. The ions formed are detected by a time-of-flight mass spectrometer. The concentration of oxygen atoms in the beam is 57%. The measured photoionization cross section of atomic oxygen is compared with theoretical data. The results show the participation of autoionization processes in ionization. The cross section at the autoionizing levels detected is considerably higher than the absorption due to the unperturbed continuum. Except for wavelengths where autoionization occurs, the measured ionization cross section is in fair agreement with theory. This holds up to 550 A whereas for shorter wavelengths the theoretical values are much higher.

  1. Synchrotron photoionization measurements of combustion intermediates: the photoionization efficiency of HONO

    NASA Astrophysics Data System (ADS)

    Taatjes, Craig A.; Osborn, David L.; Cool, Terrill A.; Nakajima, Koichi

    2004-08-01

    The HONO radical has recently been observed by photoionization mass spectrometry in low-pressure hydrogen-oxygen flames doped with NO 2. The photoionization efficiency (PIE) spectrum has been measured between 10.83 and 11.63 eV. A Franck-Condon simulation using calculated geometries and force constants of the cation and neutral, and including the effects of Duschinsky rotation, is presented to describe the PIE as a function of photon energy. The simulated PIE is used as a fitting function to estimate the adiabatic ionization potential from the experimental data. The apparent ionization threshold of (10.97 ± 0.03) eV is in excellent agreement with calculated values and is consistent with published bracketing determinations of the proton affinity of NO 2.

  2. Vacuum ultraviolet photoionization and photodissociation of polyatomic molecules and radicals

    SciTech Connect

    Ng, C.Y.

    1993-12-01

    In the past decade, tremendous progress has been made in understanding the photodissociation (PD) dynamics of triatomic molecules. However, the PD study of radicals, especially polyatomic radicals, has remained essentially an unexplored research area. Detailed state-to-state PD cross sections for radicals in the UV and VUV provide challenges not only for dynamical calculations, but also for ab initio quantum chemical studies. The authors have developed a laser based pump-probe apparatus for the measurement of absolute PD cross sections for CH{sub 3}S and HS is summarized.

  3. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  4. Photoionization in negative streamers: Fast computations and two propagation modes

    SciTech Connect

    Luque, Alejandro; Ebert, Ute; Montijn, Carolynne; Hundsdorfer, Willem

    2007-02-19

    Streamer discharges play a central role in electric breakdown of matter in pulsed electric fields, both in nature and in technology. Reliable and fast computations of the minimal model for negative streamers in simple gases such as nitrogen have recently been developed. However, photoionization was not included; it is important in air and poses a major numerical challenge. The authors here introduce a fast and reliable method to include photoionization into our numerical scheme with adaptive grids, and they discuss its importance for negative streamers. In particular, they identify different propagation regimes where photoionization does or does not play a role.0.

  5. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution.

    PubMed

    Henn, T; Kiessling, T; Ossau, W; Molenkamp, L W; Biermann, K; Santos, P V

    2013-12-01

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast "white light" supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  6. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution

    SciTech Connect

    Henn, T.; Kiessling, T. Ossau, W.; Molenkamp, L. W.; Biermann, K.; Santos, P. V.

    2013-12-15

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast “white light” supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  7. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    NASA Astrophysics Data System (ADS)

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-06-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

  8. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects.

    PubMed

    González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  9. Communication: Ultrafast time-resolved ion photofragmentation spectroscopy of photoionization-induced proton transfer in phenol-ammonia complex

    SciTech Connect

    Shen, Ching-Chi; Tsai, Tsung-Ting; Ho, Jr-Wei; Chen, Yi-Wei; Cheng, Po-Yuan

    2014-11-07

    Photoionization-induced proton transfer (PT) in phenol-ammonia (PhOH-NH{sub 3}) complex has been studied using ultrafast time-resolved ion photofragmentation spectroscopy. Neutral PhOH-NH{sub 3} complexes prepared in a free jet are photoionized by femtosecond [1+1] resonance-enhanced multiphoton ionization via the S{sub 1} state, and the subsequent dynamics occurring in the cations is probed by delayed pulses that result in ion fragmentation. The observed temporal evolutions of the photofragmentation spectra are consistent with an intracomplex PT reaction. The experiments revealed that PT in [PhOH-NH{sub 3}]{sup +} cation proceeds in two distinct steps: an initial impulsive wave-packet motion in ∼70 fs followed by a slower relaxation of about 1 ps that stabilizes the system into the final PT configuration. These results indicate that for a barrierless PT system, even though the initial PT motions are impulsive and ultrafast, the reaction may take a much longer time scale to complete.

  10. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    PubMed Central

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  11. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects.

    PubMed

    González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L

    2016-06-03

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

  12. Pulse train dependence of electron dynamics during resonant femtosecond laser nonlinear ionization of a Na4 cluster

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Wang, Cong; Luo, Zhi; Yin, Kai; Dong, Xinran; Song, Yuxin; Duan, Ji'an

    2016-11-01

    In this study, a real-time and real-space time-dependent density functional theory (TDDFT) is applied to describe nonlinear electron-photon interactions during a resonant femtosecond laser pulse train photoionization of a Na4 cluster. The effects of key pulse train parameters, such as the spatial/temporal pulse energy distribution, pulse number per train, pulse separation and pulse phase on resonant absorption, are discussed. The calculations show that the resonant effect and the nonlinear electron dynamics, including energy absorption, electron emission, dipole response and ionization probability, can be controlled by shaping the ultrafast laser pulse train.

  13. A mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon tetrachloride mixtures III: nonequilibrium hydrogen-bond dynamics and infrared pump-probe spectra.

    PubMed

    Kwac, Kijeong; Geva, Eitan

    2013-06-27

    We present a mixed quantum-classical molecular dynamics study of the nonequilibrium hydrogen-bond dynamics following vibrational energy relaxation of the hydroxyl stretch in a 10 mol % methanol/carbon tetrachloride mixture and pure methanol. The ground and first-excited energy levels and wave functions are identified with the eigenvalues and eigenfunctions of the hydroxyl's adiabatic Hamiltonian and as such depend parametrically on the configuration of the remaining, classically treated, degrees of freedom. The dynamics of the classical degrees of freedom are in turn governed by forces obtained by taking the expectation value of the force with respect to the ground or excited vibrational wave functions. Polarizable force fields and nonlinear mapping relations between the hydroxyl transition frequencies and dipole moments and the electric field along the hydroxyl bond are used, which were previously shown to quantitatively reproduce the experimental infrared steady-state absorption spectra and excited state lifetime [Kwac, K.; Geva, E. J. Phys. Chem. B 2011, 115, 9184; 2012, 116, 2856]. The relaxation from the first-excited state to the ground state is treated as a nonadiabatic transition. Within the mixed quantum-classical treatment, relaxation from the excited state to the ground state is accompanied by a momentum-jump in the classical degrees of freedom, which is in turn dictated by the nonadiabatic coupling vector. We find that the momentum jump leads to breaking of hydrogen bonds involving the relaxing hydroxyl, thereby blue-shifting the transition frequency by more than the Stokes shift between the steady-state emission and absorption spectra. The subsequent nonequilibrium relaxation toward equilibrium on the ground state potential energy surface is thereby accompanied by red shifting of the transition frequency. The signature of this nonequilibrium relaxation process on the pump-probe spectrum is analyzed in detail. The calculated pump-probe spectrum is found

  14. Femtosecond photography lessons

    NASA Astrophysics Data System (ADS)

    Fanchenko, S. D.

    1999-06-01

    Antic scientists, sailors, warriors, physician, etc. were perceiving the space by means of their eye vision system. Nowadays the same people use eyeglasses, telescopes, microscopes, image converters. All these devices fit the necessary magnification, intensification gain and image spectrum to the eyes. The human brain is processing the image data offered to him in a format pertaining to eyes. Hence, the cognition of images can be regarded as a direct measurement. As to the time scale converters, they turned out to be harder done as compared with the spatial scale converters. Hence, the development of the high-speed photography (HSP) continues for more than a hundred and fifty years. The recent pico- femtosecond HSP branch sprang up in 1949 at the Kurchatov Institute -- its cradle. All about the HSP had been advertised. Instead of reprinting what is already well known, it makes sense to emphasize some instructive lessons drawn from past experience. Also it is tempting to look a bit into the high-speed photography future.

  15. Early events in radiation chemistry and in photoionization

    SciTech Connect

    Trifunac, A.D.; Loffredo, D.M.; Liu, A.-D.

    1992-01-01

    Real-time studies of aliphatic and aromatic hydrocarbons by pulse radiolysis and laser photoionization reveal the chemistry of the ionic species in the condensed phase. The occurrence of radical cation reactions with solvent molecules provides the core mechanism capable of explaining a wide range of observations in photoionization and radiation chemistry. The study of products and transients in photoionization of aromatic solutes in hydrocarbon and alcohol solvent illustrates several details of this high-energy'' chemistry. A reaction pathway involving ion-molecule reaction of excited ions is indicated for a series of polycyclic aromatic hydrocarbons photoionized using intense excimer laser (248 and 308 nm) pulses in hydrocarbon and alcohol solutions. We have found that condensed-phase ion-molecule reactions in radiolysis are ubiquitous and we speculate on their overall role in hydrocarbon radiolysis.

  16. Early events in radiation chemistry and in photoionization

    SciTech Connect

    Trifunac, A.D.; Loffredo, D.M.; Liu, A.-D.

    1992-12-31

    Real-time studies of aliphatic and aromatic hydrocarbons by pulse radiolysis and laser photoionization reveal the chemistry of the ionic species in the condensed phase. The occurrence of radical cation reactions with solvent molecules provides the core mechanism capable of explaining a wide range of observations in photoionization and radiation chemistry. The study of products and transients in photoionization of aromatic solutes in hydrocarbon and alcohol solvent illustrates several details of this ``high-energy`` chemistry. A reaction pathway involving ion-molecule reaction of excited ions is indicated for a series of polycyclic aromatic hydrocarbons photoionized using intense excimer laser (248 and 308 nm) pulses in hydrocarbon and alcohol solutions. We have found that condensed-phase ion-molecule reactions in radiolysis are ubiquitous and we speculate on their overall role in hydrocarbon radiolysis.

  17. Photoionization of potassium atoms from the ground and excited states

    SciTech Connect

    Zatsarinny, O.; Tayal, S. S.

    2010-04-15

    The Dirac-based B-spline R-matrix method is used to investigate the photoionization of atomic potassium from the 4s ground and 4p, 5s-7s, 3d-5d excited states. The effect of the core polarization by the outer electron is included through the polarized pseudostates. Besides the dipole core polarization, we also found a noticeable influence of the quadrupole core polarization. We obtained excellent agreement with experiment for cross sections of the 4s photoionization, including accurate description of the near-threshold Cooper-Seaton minimum. We also obtained close agreement with experiment for the 4p photoionization, but there are unexpectedly large discrepancies with available experimental data for photoionization of the 5d and 7s excited states.

  18. Shape resonant features in the photoionization spectra of NO

    SciTech Connect

    Wallace, Scott; Dill, Dan; Dehmer, Joseph L.

    1982-01-01

    Calculations of core and valence level photoionization spectra of NO are presented and compared with available experimental data. A low-lying continuum shape resonance is identified in the sigma photoionization channel, which is the analog of similar states found in other first-row diatomic molecules. Both partial cross sections and photoelectron angular distributions are discussed, and the effect of nuclear motion on these observables is treated.

  19. Molecular alignment dependent electron interference in attosecond ultraviolet photoionization

    PubMed Central

    Yuan, Kai-Jun; Bandrauk, André D.

    2015-01-01

    We present molecular photoionization processes by intense attosecond ultraviolet laser pulses from numerical solutions of time-dependent Schrödinger equations. Simulations preformed on a single electron diatomic H2+ show minima in molecular photoelectron energy spectra resulting from two center interference effects which depend strongly on molecular alignment. We attribute such sensitivity to the spatial orientation asymmetry of the photoionization process from the two nuclei. A similar influence on photoelectron kinetic energies is also presented. PMID:26798785

  20. Photoionization of noble-gas atoms by ultrashort electromagnetic pulses

    SciTech Connect

    Astapenko, V. A. Svita, S. Yu.

    2014-11-15

    The photoionization of atoms of noble gases (Ar, Kr, and Xe) by ultrashort electromagnetic pulses of a corrected Gaussian shape is studied theoretically. Computations are performed in the context of perturbation theory using a simple expression for the total probability of photoionization of an atom by electromagnetic pulses. The features of this process are revealed and analyzed for various ranges of the parameters of the problem.

  1. Single and double photoionization of Be and Mg

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Ballance, C. P.; Abdel-Naby, Sh A.; Robicheaux, F.; Armstrong, G. S. J.; Colgan, J.

    2013-02-01

    A new version of the time-dependent close-coupling method is used to calculate the single and double photoionization of the Be and Mg atoms. Total cross sections are calculated using an implicit time propagator with a core orthogonalization method on a variable radial mesh. The double to single photoionization cross section ratios are found to be in good agreement with experiment for both Be and Mg.

  2. Dynamics of photoprocesses induced by femtosecond infrared radiation in free molecules and clusters of iron pentacarbonyl

    NASA Astrophysics Data System (ADS)

    Kompanets, V. O.; Lokhman, V. N.; Poydashev, D. G.; Chekalin, S. V.; Ryabov, E. A.

    2016-04-01

    The dynamics of photoprocesses induced by femtosecond infrared radiation in free Fe(CO)5 molecules and their clusters owing to the resonant excitation of vibrations of CO bonds in the 5-μm range has been studied. The technique of infrared excitation and photoionization probing (λ = 400 nm) by femtosecond pulses has been used in combination with time-of-flight mass spectrometry. It has been found that an infrared pulse selectively excites vibrations of CO bonds in free molecules, which results in a decrease in the yield of the Fe(CO)5 + molecular ion. Subsequent relaxation processes have been analyzed and the results have been interpreted. The time of the energy transfer from excited vibrations to other vibrations of the molecule owing to intramolecular relaxation has been measured. The dynamics of dissociation of [Fe(CO)5] n clusters irradiated by femtosecond infrared radiation has been studied. The time dependence of the yield of free molecules has been measured under different infrared laser excitation conditions. We have proposed a model that well describes the results of the experiment and makes it possible, in particular, to calculate the profile of variation of the temperature of clusters within the "evaporation ensemble" concept. The intramolecular and intracluster vibrational relaxation rates in [Fe(CO)5] n clusters have been estimated.

  3. Model propagation of a femtosecond laser radiation in the vitreous of the human eye

    NASA Astrophysics Data System (ADS)

    Rogov, P. Y.; Bespalov, V. G.

    2016-04-01

    The paper presents a mathematical model of linear and nonlinear processes occurring due to propagation of femtosecond laser pulses in vitreous of the human eye. By methods of numerical simulation, we have solved a nonlinear spectral equation describing dynamics of two-dimensional TE-polarized radiation. The solution was performed in a homogeneous isotropic medium with instantaneous cubic nonlinearity without using slowly varying envelope approximation. For simulation we used medium with parameters close to the optical media of the eye. The model of femtosecond radiation takes into account the dynamics of the process of dispersion pulse broadening in time and occurrence of self-focusing of the retina when passing through vitreous body of the eye. The dependence between pulse duration on the retina and duration of the input pulse was found, as well as the values of power density at which self-focusing occurs. It was shown that the main mechanism of radiation damage caused while using Ti-sapphire laser is photoionization. The results coincide with the results obtained by other scientists. They can be used to create Russian laser safety standards for femtosecond laser systems.

  4. Femtosecond Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  5. CdS and Cd-Free Buffer Layers on Solution Phase Grown Cu2ZnSn(SxSe1- x)4 :Band Alignments and Electronic Structure Determined with Femtosecond Ultraviolet Photoemission Spectroscopy

    SciTech Connect

    Haight, Richard; Barkhouse, Aaron; Wang, Wei; Yu, Luo; Shao, Xiaoyan; Mitzi, David; Hiroi, Homare; Sugimoto, Hiroki

    2013-12-02

    The heterojunctions formed between solution phase grown Cu2ZnSn(SxSe1- x)4(CZTS,Se) and a number of important buffer materials including CdS, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission spectroscopy (fs-UPS) and photovoltage spectroscopy. With this approach we extract the magnitude and direction of the CZTS,Se band bending, locate the Fermi level within the band gaps of absorber and buffer and measure the absorber/buffer band offsets under flatband conditions. We will also discuss two-color pump/probe experiments in which the band bending in the buffer layer can be independently determined. Finally, studies of the bare CZTS,Se surface will be discussed including our observation of mid-gap Fermi level pinning and its relation to Voc limitations and bulk defects.

  6. Holographic vector-wave femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio; Hasegawa, Satoshi

    2016-03-01

    Arbitrary and variable beam shaping of femtosecond pulses by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM) have been applied to femtosecond laser processing. The holographic femtosecond laser processing has been widely used in many applications such as two-photon polymerization, optical waveguide fabrication, fabrication of volume phase gratings in polymers, and surface nanostructuring. A vector wave that has a spatial distribution of polarization states control of femtosecond pulses gives good performances for the femtosecond laser processing. In this paper, an in- system optimization of a CGH for massively-parallel femtosecond laser processing, a dynamic control of spatial spectral dispersion to improve the focal spot shape, and the holographic vector-wave femtosecond laser processing are demonstrated.

  7. Absolute photoionization cross-section of the methyl radical.

    SciTech Connect

    Taatjes, C. A.; Osborn, D. L.; Selby, T.; Meloni, G.; Fan, H.; Pratt, S. T.; Chemical Sciences and Engineering Division; SNL

    2008-01-01

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH{sub 3} photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; {sigma}{sub CH}(10.2 eV) = (5.7 {+-} 0.9) x 10{sup -18} cm{sup 2} and {sigma}{sub CH{sub 3}}(11.0 eV) = (6.0 {+-} 2.0) x 10{sup -18} cm{sup 2}. The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH{sub 3} and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.460 eV, (5.5 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.466 eV, and (4.9 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  8. Femtosecond carrier dynamics in graphite

    NASA Astrophysics Data System (ADS)

    Seibert, K.; Cho, G. C.; Kütt, W.; Kurz, H.; Reitze, D. H.; Dadap, J. I.; Ahn, H.; Downer, M. C.; Malvezzi, A. M.

    1990-08-01

    We present a comprehensive report of pump-probe reflectivity and transmission measurements on highly oriented pyrolytic graphite with 50 fs time resolution. The experiments trace the generation, relaxation, and recombination of nonequilibrium carriers in a quasi-two-dimensional semimetallic solid over a wide range of experimental parameters. The fluence of excitation at hν=2.0 eV was varied between 10-6 and 10-2 J/cm2, below the threshold for optical damage, while probe pulses in the photon energy range 1.5

  9. Intergalactic magnetogenesis at Cosmic Dawn by photoionization

    NASA Astrophysics Data System (ADS)

    Durrive, J.-B.; Langer, M.

    2015-10-01

    We present a detailed analysis of an astrophysical mechanism that generates cosmological magnetic fields during the Epoch of Reionization. It is based on the photoionization of the intergalactic medium by the first sources formed in the Universe. First the induction equation is derived, then the characteristic length and time-scales of the mechanism are identified, and finally numerical applications are carried out for first stars, primordial galaxies and distant powerful quasars. In these simple examples, the strength of the generated magnetic fields varies between the order of 10-23 G on hundreds of kiloparsecs and 10-19 G on hundreds of parsecs in the neutral intergalactic medium between the Strömgren spheres of the sources. Thus, this mechanism contributes to the premagnetization of the whole Universe before large-scale structures are in place. It operates with any ionizing source, at any time during the Epoch of Reionization. Finally, the generated fields possess a characteristic spatial configuration which may help discriminate these seeds from those produced by different mechanisms.

  10. Vacuum ultraviolet photoionization of carbohydrates and nucleotides.

    PubMed

    Shin, Joong-Won; Bernstein, Elliot R

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5(')-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results. PMID:25669546

  11. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    SciTech Connect

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  12. Vacuum ultraviolet photoionization of carbohydrates and nucleotides.

    PubMed

    Shin, Joong-Won; Bernstein, Elliot R

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5(')-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  13. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    NASA Astrophysics Data System (ADS)

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-01

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5'-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C-C and C-O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  14. Coherent control of photoionization of atomic barium

    NASA Astrophysics Data System (ADS)

    Yamazaki, Rekishu

    We present the results of our study on coherent control of photoionization of atomic barium. Our study focused on the understanding of the controllability, especially due to the effect of the coherent interaction between the atomic system and the laser field. The first half of the study investigates the mechanisms of the control behind the previously observed laser phase-insensitive product state control. The controllability of this excitation scheme, two-color two-photon resonantly enhanced excitation, was analyzed from two aspects, the role of ac Stark shift introduced by the strong laser field and the multi-pathway quantum mechanical interferences. We have analyzed the excitation scheme from the analysis of the photoelectron angular distribution measured using the excitation scheme and the monitoring of the intermediate state population. Analysis of the data as well as the numerical simulation showed clear understanding of the role of two mechanisms in the product state control reported. We also investigated the control of the phase lag during the product state control. We conducted the control of the phase lag in the study of asymmetric photoelectron angular distribution, which arises from the concurrent even-odd parity outgoing electron wave excitation. The phase lag was controlled in full range, 2pi, and the results were analyzed in terms of the role of autoionizing resonance structures as well as the nature of outgoing electron waves at different locations of the autoionizing resonances.

  15. Extreme ultraviolet-induced photoionized plasmas

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Wachulak, Przemyslaw; Fiedorowicz, Henryk; Fok, Tomasz; Jarocki, Roman; Szczurek, Miroslaw

    2014-05-01

    In this work photoionized plasmas were created by irradiation of He or Ne gases with a focused extreme ultraviolet (EUV) beam from one of two laser-plasma sources employing Nd:YAG laser systems. The first of them was a 10 Hz laser-plasma EUV source, based on a double-stream gas-puff target, irradiated with a 3 ns per 0.8 J laser pulse. EUV radiation in this case was focused using a gold-plated grazing incidence ellipsoidal collector. The second source was based on a 10 ns per 10 J per 10 Hz laser system. In this case EUV radiation was focused using a gold-plated grazing incidence multifoil collector. Gases were injected into the interaction region, perpendicularly to an optical axis of the irradiation system, using an auxiliary gas puff valve. Spectral measurements in the EUV range were performed. In all cases the most intense emission lines were assigned to singly charged ions. The other emission lines belong to atoms or doubly charged ions.

  16. Cooling and Heating Functions of Photoionized Gas

    NASA Astrophysics Data System (ADS)

    Gnedin, Nickolay Y.; Hollon, Nicholas

    2012-10-01

    Cooling and heating functions of cosmic gas are crucial ingredients for any study of gas dynamics and thermodynamics in the interstellar and intergalactic media. As such, they have been studied extensively in the past under the assumption of collisional ionization equilibrium. However, for a wide range of applications, the local radiation field introduces a non-negligible, often dominant, modification to the cooling and heating functions. In the most general case, these modifications cannot be described in simple terms and would require a detailed calculation with a large set of chemical species using a radiative transfer code (the well-known code Cloudy, for example). We show, however, that for a sufficiently general variation in the spectral shape and intensity of the incident radiation field, the cooling and heating functions can be approximated as depending only on several photoionization rates, which can be thought of as representative samples of the overall radiation field. This dependence is easy to tabulate and implement in cosmological or galactic-scale simulations, thus economically accounting for an important but rarely included factor in the evolution of cosmic gas. We also show a few examples where the radiation environment has a large effect, the most spectacular of which is a quasar that suppresses gas cooling in its host halo without any mechanical or non-radiative thermal feedback.

  17. VUV photoionization and dissociative photoionization spectroscopy of the interstellar molecule aminoacetonitrile: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Bellili, A.; Schwell, M.; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Mogren Al-Mogren, M.; Guillemin, J.-C.; Poisson, L.; Hochlaf, M.

    2015-09-01

    Aminoacetonitrile (AAN) is a key compound in astrochemistry and astrobiology. We present a combined theoretical and experimental investigation concerning the single photoionization of gas-phase AAN and the fragmentation pathways of the resulting cation. At present, we measured photoelectron photoion coincidence (PEPICO) spectra in the 9.8-13.6 eV energy regime using synchrotron radiation as exciting light source. In order to interpret the VUV experimental data obtained, we explored the ground potential energy surface (PES) of AAN and of its cation using standard and explicitly correlated quantum chemical methodologies. This allowed us to deduce accurate thermochemical data for this molecule. We also determined, for the first time, the adiabatic ionization energy of AAN to lie at AIE = (10.085 ± 0.03) eV. The unimolecular decomposition pathways of the resulting AAN+ parent cation are also investigated. The appearance energies of five fragments are determined for the first time, with 30 meV accuracy. Interestingly, our work shows the possibility of the formation of both HCN and HNC isomeric forms. The implications for the evolution of prebiotic molecules under VUV irradiation are briefly discussed.

  18. Femtosecond Beam Sources and Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru

    2004-12-01

    Short particle beam science has been promoted by electron linac and radiation chemistry up to picoseconds. Recently, table-top TW laser enables several kinds of short particle beams and pump-and-probe analyses. 4th generation SR sources aim to generation and application of about 100 fs X-ray. Thus, femtosecond beam science has become one of the important field in advanced accelerator concepts. By using electron linac with photoinjector, about 200 fs single bunch and 3 fs multi-bunches are available. Tens femtoseconds monoenergetic electron bunch is expected by laser plasma cathode. Concerning the electron bunch diagnosis, we have seen remarkable progress in streak camera, coherent radiation spectroscopy, fluctuation method and E/O crystal method. Picosecond time-resolved pump-and-probe analysis by synchronizing electron linac and laser is now possible, but the timing jitter and drift due to several fluctuations in electronic devices and environment are still in picoseconds. On the other hand, the synchronization between laser and secondary beam is done passively by an optical beam-splitter in the system based on one TW laser. Therefore, the timing jitter and drift do not intrinsically exist there. The author believes that the femtosecond time-resolved pump-and-probe analysis must be initiated by the laser plasma beam sources. As to the applications, picosecond time-resolved system by electron photoinjector/linac and femtosecond laser are operating in more than 5 facilities for radiation chemistry in the world. Ti:Sapphire-laser-based repetitive pump-and-probe analysis started by time-resolved X-ray diffraction to visualize the atomic motion. Nd:Glass-laser-based single-shot analysis was performed to visualize the laser ablation via the single-shot ion imaging. The author expects that protein dynamics and ultrafast nuclear physics would be the next interesting targets. Monograph titled "Femtosecond Beam Science" is published by Imperial College Press

  19. Development and demonstration of table-top synchronized fast-scan femtosecond time-resolved spectroscopy system by single-shot scan photo detector array

    NASA Astrophysics Data System (ADS)

    Yabushita, Atsushi; Kao, Chih-Hsien; Lee, Yu-Hsien; Kobayashi, Takayoshi

    2015-07-01

    Ultrafast dynamics is generally studied by pump-probe method with laser pulse, which scans optical delay by motorized stage step by step. Using ultrashort laser pulse shorter than typical molecular vibration periods, the pump-probe measurement can study both of electronic dynamics and vibration dynamics simultaneously. The probe wavelength dependence of the ultrafast electronic and vibration dynamics (UEVD) helps us to distinguish the signal contributions from the dynamics of the electronic ground state and that of the electronic excited states, which elucidates primary reaction mechanism after photoexcitation. Meanwhile, the measurement time of UEVD spectroscopy takes too long time to be used in realistic application. In our previous work, we have developed multi-channel lock-in amplifying (MLA) detectors to study UEVD at all probe wavelengths simultaneously, and synchronized it with laser and fast-scan delay stage to scan the data in five seconds. It enabled us to study UEVD spectroscopy even for photo-fragile materials. However, the home-made MLA detectors required for the measurement is expensive and massive in size and weight, thus not suitable for general researchers in the field of ultrafast time-resolved spectroscopy. In the present work, we have developed a table-top synchronized fast-scan femtosecond time-resolved spectroscopy system using single shot scan line CCD. This system measures time-resolved trace at all probe wavelengths simultaneously in five seconds. The CCD-based fast-scan time-resolved spectroscopy system enables us to study ultrafast dynamics of various materials even biomaterials, which have been thought to be hard or even impossible to be studied in previous methods.

  20. Near-Threshold, Vibrationally-Resolved Photoionization of Molecular Nitrogen

    NASA Astrophysics Data System (ADS)

    Vangyseghem, Gaetan; Gorczyca, Thomas; Ballance, Connor

    2016-05-01

    Photoionization of molecular nitrogen N2 is investigated near the first ionization threshold using an R-matrix, multi-channel quantum defect theory (MQDT) approach. Building on an existing fixed-nuclei R-matrix photoionization model, which, in turn, is built on the UKRmol suite of codes, photoionization cross sections, as well as scattering and dipole matrices, are computed in the Born-Oppenheimer approximation. By varying the internuclear separation, potential energy curves have been constructed for the N2 and N 2 + states and compared to quantum chemistry calculations. Using these fixed-nuclei potential energy curves, and corresponding vibronic eigenenergies and eigenfunctions, a frame transformation is enacted on the fixed-nuclei scattering and dipole matrices, allowing for the calculation of vibrationally-resolved photoionization cross sections. The resultant photoionization cross sections are compared to high-resolution experimental data near threshold, a region complicated by multiple vibrationally-resolved, interacting Rydberg series.

  1. Photoionization of Highly Charged Argon Ions and Their Diagnostic Lines

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2012-06-01

    %TEXT OF YOUR ABSTRACT Lines of highly charged He-like and Li-like ions in the ultraviolet and X-ray regions provide useful diagnostics for the physical and chemical conditions of the astrophysical as well as fusion plasmas. For example, Ar XVII lines in a Syfert galaxy have been measured by the X-ray space observatory Chandra. Results on photoionization of Ar XVI and Ar XVII obtained from relativistic Breit-Pauli R-matrix method and close-coupling approximation will be presented. Important features for level-specific photoionization for the diagnostic w, x, y, z lines of He-like Ar XVII in the ultraviolet region will be illustrated. Although monotonous decay dominates the low energy photoionization for these ions, strong resonances appear in the high energy region indicating higher recombination, inverse process of photoionization, at high temperature. The spectra of the well known 22 diagnostics dielectronic satellite lines of Li-like Ar XVI will be shown produced from the the KLL resonances in photoionization. Acknowledgement: Partially supported by DOE, NSF; Computational work was carried out at the Ohio Supercomputer Center

  2. Mid-infrared ultrafast laser pulses induced third harmonic generation in nitrogen molecules on an excited state

    PubMed Central

    Xie, Hongqiang; Li, Guihua; Yao, Jinping; Chu, Wei; Li, Ziting; Zeng, Bin; Wang, Zhanshan; Cheng, Ya

    2015-01-01

    We report on generation of third harmonic from nitrogen molecules on the excited state with a weak driver laser pulse at a mid-infrared wavelength. The excited nitrogen molecules are generated using a circularly polarized intense femtosecond pulse which produces energetic electrons by photoionization to realize collisional excitation of nitrogen molecules. Furthermore, since the third harmonic is generated using a pump-probe scheme, it enables investigation of the excited-state dynamics of nitrogen molecules produced under different conditions. We also perform a comparative investigation in excited argon atoms, revealing different decay dynamics of the molecules and atoms from the excited states in femtosecond laser induced filaments. PMID:26522886

  3. Mid-infrared ultrafast laser pulses induced third harmonic generation in nitrogen molecules on an excited state.

    PubMed

    Xie, Hongqiang; Li, Guihua; Yao, Jinping; Chu, Wei; Li, Ziting; Zeng, Bin; Wang, Zhanshan; Cheng, Ya

    2015-11-02

    We report on generation of third harmonic from nitrogen molecules on the excited state with a weak driver laser pulse at a mid-infrared wavelength. The excited nitrogen molecules are generated using a circularly polarized intense femtosecond pulse which produces energetic electrons by photoionization to realize collisional excitation of nitrogen molecules. Furthermore, since the third harmonic is generated using a pump-probe scheme, it enables investigation of the excited-state dynamics of nitrogen molecules produced under different conditions. We also perform a comparative investigation in excited argon atoms, revealing different decay dynamics of the molecules and atoms from the excited states in femtosecond laser induced filaments.

  4. Femtosecond lasers for machining of transparent, brittle materials: ablative vs. non-ablative femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.

    2016-03-01

    This paper focuses on precision machining of transparent materials by means of ablative and non-ablative femtosecond laser processing. Ablation technology will be compared with a newly developed patent pending non-ablative femtosecond process, ClearShapeTM, using the Spectra-Physics Spirit industrial femtosecond laser.

  5. Rotational Doppler effect in x-ray photoionization

    SciTech Connect

    Sun Yuping; Wang Chuankui; Gel'mukhanov, Faris

    2010-11-15

    The energy of the photoelectron experiences a red or blue Doppler shift when the molecule recedes from the detector or approaches him. This results in a broadening of the photoelectron line due to the translational thermal motion. However, the molecules also have rotational degrees of freedom and we show that the translational Doppler effect has its rotational counterpart. This rotational Doppler effect leads to an additional broadening of the spectral line of the same magnitude as the Doppler broadening caused by translational thermal motion. The rotational Doppler broadening as well as the rotational recoil broadening is sensitive to the molecular orbital from which the photoelectron is ejected. This broadening should be taken into account in analysis of x-ray photoemission spectra of super-high resolution and it can be directly observed using x-ray pump-probe spectroscopy.

  6. Femtosecond spectroscopy with vacuum ultraviolet pulse pairs

    SciTech Connect

    Allison, Tom; Wright, Travis; Stooke, Adam; Khurmi, Champak; van Tilborg, Jeroen; Liu, Yanwei; Falcone, Roger; Belkacem, Ali

    2011-06-17

    We combine different wavelengths from an intense high-order harmonics source with variable delay at the focus of a split-mirror interferometer to conduct pump-probe experiments on gas-phase molecules. We report measurements of the time resolution (< 44fs) and spatial profiles (4 {micro}m x 12 {micro}m) at the focus of the apparatus. We demonstrate the utility of this two-color, high-order-harmonic technique by time resolving molecular hydrogen elimination from C{sub 2} H{sub 4} excited into its absorption band at 161nm.

  7. Femtosecond Electron Diffraction and Shadow Imaging

    NASA Astrophysics Data System (ADS)

    McPherson, David

    2009-10-01

    Using femtosecond electron pulses as an imaging tool, we can probe ultrafast dynamics by taking snapshots at different time delays. By using femtosecond electron diffraction (FED), we can examine structural dynamics at the atomic level in real time, and study the structure-function correlation. Additionally, femtosecond electron shadow imaging (FESI) can explore the dynamics of laser induced plasmas off the surfaces of conductors, semiconductors, and insulators.

  8. Interchannel coupling effects in the valence photoionization of SF6

    NASA Astrophysics Data System (ADS)

    Jose, Jobin; Lucchese, Robert; Rescigno, Tom

    2014-05-01

    The complex Kohn and polyatomic Schwinger variational techniques have been employed to illustrate the interchannel coupling correlation effects in the valence photoionization dynamics of SF6. Partial photoionization cross sections and asymmetry parameters of six valence subshells (1t1 g, 5t1 u, 1t2 u, 3eg, 1t2 g, 4t1 u) are discussed in the framework of several theoretical and experimental studies. The complex Kohn results are in rather good agreement with experimental results, indicative of the fact that the interchannel coupling effects alter the photoionization dynamics significantly. We find that the dominant effect of interchannel coupling is to reduce the magnitude of shape resonant cross sections near threshold and to induce resonant features in other channels to which resonances are coupled.

  9. Triggering Excimer Lasers by Photoionization from Corona Discharges

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  10. Photoionization of ground and excited states of Ti I

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2015-07-01

    Detailed photoionization of ground and many excited states with autoionizing resonances of neutral Ti are presented. Ti I with 22 electrons forms a large number of bound states, the present work finds a total of 908 bound states with n ⩽ 10 and l ⩽ 8 . Photoionization cross sections (σPI) for all these bound states have been obtained. Calculations were carried out in the close-coupling R-matrix method using a wave function expansion that included 36 states of core ion Ti II. It is found that the resonances enhance the low energy region of photoionization of the ground and low lying excited states. The resonant features will increase the opacity, as expected of astrophysical observation, and hence play important role in determination of abundances in the elements in the astronomical objects. The excited states also show prominent structures of Seaton or photo-excitation-of-core resonances.

  11. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing

    NASA Astrophysics Data System (ADS)

    Lingos, P. C.; Wang, J.; Perakis, I. E.

    2015-05-01

    Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.

  12. Two-photon resonances in femtosecond time-resolved four-wave mixing spectroscopy: β-carotene

    NASA Astrophysics Data System (ADS)

    Namboodiri, V.; Namboodiri, M.; Flachenecker, G.; Materny, A.

    2010-08-01

    Femtosecond time-resolved pump-degenerate four-wave mixing (pump-DFWM) spectroscopy has been used to study the ultrafast dynamics of β-carotene involving several electronic and vibrational states. An initial pump pulse, resonant with the S0-to-S2 transition, excites the molecular system and a DFWM process, resonant with the S1-to-Sn transition, is used to probe the relaxation pathways. The transient shows a peculiar decay behavior, which is due to the contributions of resonant DFWM signal of the excited S1 state, nonresonant DFWM signal of the ground S0 state and vibrational hot S0∗ state, and the two-photon resonant DFWM signal of the ground S0 state. We have used a kinetic model including all the signal contributions to successfully fit the transient. The time constants extracted are in very good agreement with the known values for β-carotene. For comparison, a two-pulse pump-probe experiment was performed measuring the transient absorption at the wavelength of the DFWM experiment.

  13. Femtosecond laser-driven intense Cu K α X-ray source with a novel film target driver

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Choi, Il Woo; Sohn, Ik-Bu; Lee, Kitae; Shim, Gyu Il; Jeong, Young Uk; Han, Byung Heon; Ryu, Woo Je; Kim, Ha-Na; Cha, Hyungki

    2015-09-01

    A laser-induced intense Ka hard X-ray source was developed by using a novel copper film target and a 27-TW femtosecond laser system. A specially designed pinhole camera was employed to measure the X-ray photon flux, X-ray energy spectrum, and X-ray source image. By adapting a single photon counting method, we estimated the photon number in the full width at half maximum (FWHM) spectral region to be 1.74 × 109 photons/sr for 8.05-keV Cu Ka X-rays. The shape of the X-ray source was matched well with that of the focused laser beam on the target. By provision of a lengthy copper film of 50 m with a thickness of 50 µm, the novel copper film target is capable of long time operation of more than 27 hours at a repetition rate of 10 Hz. The hard X-ray source is suitable for applications in single-shot X-ray contrast imaging or in ultrafast pump-probe analyses of material structures.

  14. Photoionization and electron-ion recombination of Ti I

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2016-07-01

    Study of the inverse processes of photoionization and electron-ion recombination of (Ti I + h ν ⇋ Ti II + e) using the unified method is reported. The method, based on close coupling (CC) approximation and R-matrix method, subsumes both the radiative recombination (RR) and dielectronic recombination (DR) in a unified manner and provides state-specific and total electron-ion recombination rate coefficients which are self-consistent with the state-specific photoionization cross sections. The present results include state-specific electron-ion recombination rates (αRC(i))and partial photoionization cross sections (σPI(i)) leaving the ion in the ground state of 813 bound states with n ≤ 10 and l ≤ 9 of Ti I. Various features of state-specific and total electron-ion recombination with temperature, and the corresponding photoionization cross sections with energies are discussed with illustrations. Due to closely lying excited states near the ground state of the core, photoionization cross sections show presence of narrow Rydberg resonances in low energy region near the ionization threshold. Many excited states also show broad and enhanced Seaton resonances due to PEC (photo-excitation-of-core) which contribute to the high temperature recombination. The total recombination rate coefficient is found to show a low hump around temperature 280 K and a high dielectronic recombination peak at temperature 25,000 K. Total spectrum of recombination cross sections and rates with photoelectron energy are also presented for experimental observation. Calculations were carried out using a CC wave function expansion of 36 states of the core ion Ti II. The large set of data for recombination rates and partial photoionization cross sections with resonances should provide a complete and accurate modelings of plasmas.

  15. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  16. Nanoflow electrospinning serial femtosecond crystallography

    SciTech Connect

    Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan; Tran, Rosalie; Hattne, Johan; Alonso-Mori, Roberto; Lassalle-Kaiser, Benedikt; Glöckner, Carina; Hellmich, Julia; Schafer, Donald W.; Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W.; Sellberg, Jonas; McQueen, Trevor A.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Glatzel, Pieter; Milathianaki, Despina; White, William E.; Adams, Paul D.; Williams, Garth J.; Boutet, Sébastien; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.; Bogan, Michael J.

    2012-11-01

    A low flow rate liquid microjet method for delivery of hydrated protein crystals to X-ray lasers is presented. Linac Coherent Light Source data demonstrates serial femtosecond protein crystallography with micrograms, a reduction of sample consumption by orders of magnitude. An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min{sup −1} to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min{sup −1} and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption.

  17. Two-electron photoionization of ground-state lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Bray, I.

    2009-12-15

    We apply the convergent close-coupling (CCC) formalism to single-photon two-electron ionization of the lithium atom in its ground state. We treat this reaction as single-electron photon absorption followed by inelastic scattering of the photoelectron on a heliumlike Li{sup +} ion. The latter scattering process can be described accurately within the CCC formalism. We obtain integrated cross sections of single photoionization leading to the ground and various excited states of the Li{sup +} ion as well as double photoionization extending continuously from the threshold to the asymptotic limit of infinite photon energy. Comparison with available experimental and theoretical data validates the CCC model.

  18. Photoionization of sodium atoms and electron scattering from ionized sodium

    NASA Technical Reports Server (NTRS)

    Dasgupta, A.; Bhatia, A. K.

    1985-01-01

    The polarized-orbital method of Temkin (1957) is applied using polarized orbitals determined from Sternheimer's equation to compute the photoionization cross sections of Na atoms from threshold to about 60 eV. The approximations involved in the analysis are explained in detail; the explicit forms of the integrals and matrix expressions are given in appendices; and the results are presented in tables and graphs. Good agreement is found with the results of Chang and Kelly (1975), and the possibility that small amounts of molecular vapor in Na-photoionization experiments are responsible for the discrepancies between calculated and measured cross sections is considered.

  19. Strong-Field Photoionization as Excited-State Tunneling.

    PubMed

    Serebryannikov, E E; Zheltikov, A M

    2016-03-25

    We show that, in an intense laser field, ultrafast photoionization can occur through quantum pathways that cannot be categorized as multiphoton ionization or ground-state tunneling. In this regime, the subcycle electron-wave-packet dynamics leading to photoionization occurs via electron excited states, from where the electrons tunnel to the continuum within a tiny fraction of the field cycle. For high field intensities, this ionization pathway is shown to drastically enhance the dynamic leakage of the electron wave packet into the continuum, opening an ionization channel that dominates over ground-state electron tunneling. PMID:27058079

  20. Photoelectron angular distributions in bichromatic atomic ionization induced by circularly polarized VUV femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Douguet, Nicolas; Grum-Grzhimailo, Alexei N.; Gryzlova, Elena V.; Staroselskaya, Ekaterina I.; Venzke, Joel; Bartschat, Klaus

    2016-03-01

    We investigate two-pathway interferences between nonresonant one-photon and resonant two-photon ionization of atomic hydrogen. In particular, we analyze in detail the photoionization mediated by the fundamental frequency and the second harmonic of a femtosecond VUV pulse when the fundamental is tuned near an intermediate atomic state. Following our recent study [Phys. Rev. A 91, 063418 (2015), 10.1103/PhysRevA.91.063418] of such effects with linearly polarized light, we analyze a similar situation with circularly polarized radiation. As a consequence of the richer structure in circularly polarized light, characterized by its right-handed or left-handed helicity, we present and discuss various important features associated with the photoelectron angular distribution.

  1. The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface

    NASA Astrophysics Data System (ADS)

    Schrider, Keegan J.; Torralva, Ben; Yalisove, Steven M.

    2015-09-01

    The dynamics of femtosecond laser removal of 20 nm Ni films on glass substrates was studied using time-resolved pump-probe microscopy. 20 nm thin films exhibit removal at two distinct threshold fluences, removal of the top 7 nm of Ni above 0.14 J/cm2, and removal of the entire 20 nm film above 0.36 J/cm2. Previous work shows the top 7 nm is removed through liquid spallation, after irradiation the Ni melts and rapidly expands leading to tensile stress and cavitation within the Ni film. This work shows that above 0.36 J/cm2 the 20 nm film is removed in two distinct layers, 7 nm and 13 nm thick. The top 7 nm layer reaches a speed 500% faster than the bottom 13 nm layer at the same absorbed fluence, 500-2000 m/s and 300-700 m/s in the fluence ranges studied. Significantly different velocities for the top 7 nm layer and bottom 13 nm layer indicate removal from an interface occurs by a different physical mechanism. The method of measuring film displacement from the development of Newton's rings was refined so it could be shown that the 13 nm layer separates from the substrate within 70 ps and accelerates to its final velocity within several hundred picoseconds. We propose that removal of the bottom 13 nm is consistent with heterogeneous nucleation and growth of vapor at the Ni-glass interface, but that the rapid separation and acceleration of the 13 nm layer from the Ni-glass interface requires consideration of exotic phases of Ni after excitation.

  2. Molecular photoionization processes of astrophysical and aeronomical interest

    NASA Technical Reports Server (NTRS)

    Langhoff, P. W.

    1985-01-01

    An account is given of aspects of photoionization processes in molecules, with particular reference to recent theoretical and experimental studies of partial cross sections for production of specific final electronic states and of parent and fragment ions. Such cross sections help provide a basis for specifying the state of excitation of the ionized medium, are useful for estimating the kinetic energy distributions of photoejected electrons and fragment ions, provide parent-and fragment-ion yields, and clarify the possible origins of neutral fragments in highly excited rovibronic states. A descriptive account is given of photoionization phenomena, including tabulation of valence- and inner-shell potentials for some molecules of astrophysical and aeronomical interest. Cross sectional expressions are given. Various approximations currently employed in computational studies are described briefly, threshold laws and high-energy limits are indicated, and distinction is drawn between resonant and direct photoionization phenomena. Recent experimental and theoretical studies of partial photoionization cross sections in selected compounds of astrophysical and aeronomical relevance are described and discussed.

  3. Photoionization of furan from the ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nada; Decleva, Piero

    2016-02-01

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

  4. Photoionization of furan from the ground and excited electronic states.

    PubMed

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy. PMID:26931702

  5. Radiative properties measurements of photoionized plasmas on Z

    NASA Astrophysics Data System (ADS)

    Loisel, Guillaume; Bailey, Jim; Nagayama, Taisuke; Hansen, Stephanie; Rochau, Greg; Liedahl, Duane; Fontes, Chris; Flaugh, Matt; Koepke, Mark; Lane, Ted; Mancini, Roberto

    2015-11-01

    Physical descriptions of accretion-powered objects such as black holes, x-ray binaries, or AGN are informed through the interpretation of emergent spectra from the photoionized plasmas that surround them. Line formation in photoionized plasmas is dependent on the details of the radiation transport treatment and the so-called Resonant Auger Destruction hypothesis typically required to interpret the relativistically broadened Fe K α emitted from near the black hole event horizon. The Z facility at Sandia National Laboratories can produced such photoionized plasmas producing 1.6MJ of x-rays from the z-pinch dynamic hohlraum. The extended suite of diagnostics allows for a detailed characterization of plasmas conditions through absorption spectroscopy. present accurate and high-resolution emergent intensity observed from a photoionized silicon plasma for a discrete set of column densities that will help us evaluate understanding for radiation transport in accretion powered objects. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  6. Improved design for the atmospheric pressure photoionization source.

    PubMed

    Tabrizchi, Mahmoud; Bahrami, Hamed

    2011-12-01

    A different design for the atmospheric pressure photoionization (APPI) source, other than commercially available sources, such as PhotoSpray and PhotoMate, has been proposed. Unlike PhotoSpray, this design applies an electric field to separate photoions and electrons. In addition, the UV radiation is parallel to the gas stream toward the mass spectrometer sampling aperture. The total ion current obtained using this geometry, for dopant only, could be an order of magnitude larger than that obtained using the PhotoSpray design. Additionally, to prevent the negative effect of solvent on the photoionization yield, a curtain electrode was mounted in front of the UV lamp to divide the ionization zone into two distinct regions: the dopant and the solvent regions. Dopant was introduced in the vicinity of the lamp, and vaporized solvent was introduced into the solvent region. The curtain electrode prevented the solvent from entering the dopant region where dopant was directly photoionized. This design consumes much less dopant (approximately 1/10 less) than the conventional source, which minimizes the presence of photofragmented radicals and dopant trace contaminants in the ionization region. As a result, unlike PhotoSpray, the mass spectra contained mainly the analyte and solvent peaks. Additionally, the source was tested using an ion mobility spectrometer (IMS). The effect of the curtain electrode on signal intensity and performance of the source using IMS was also proved to be positive. PMID:22017507

  7. Photoionization cross sections and oscillator strengths of neutral cesium

    NASA Astrophysics Data System (ADS)

    Haq, S. U.; Nadeem, Ali; Nawaz, M.

    2012-11-01

    The absolute photoionization cross sections from the 6p 2P1/2 excited state of cesium at threshold and above the threshold region have been measured using the saturation absorption technique. The photoionization cross section at the ionization threshold is determined as 22.6±3.6 Mb, whereas in the region above threshold its value ranges from 22 to 20 Mb for photoelectron energies up to 0.1 eV. A comparison of the photoionization cross sections with earlier reported theoretical and experimental data have been presented and are in good agreement within the uncertainty. In addition, the oscillator strengths of the 6p 2P1/2→n d 2D3/2 (21≤n≤60) Rydberg transitions of cesium have been calibrated using the threshold value of the photoionization cross section. A complete picture of the oscillator strengths from the present work and previously reported data from n=5-60 is presented.

  8. Photodissociation and photoionization of organosulfur radicals

    SciTech Connect

    Hsu, Chia-Wei

    1994-05-27

    The dynamics of S({sup 3}P{sub 2,1,0}, {sup 1}D{sub 2}) production from the 193 nm photodissociation of CH{sub 3}SCH{sub 3}, H{sub 2}S and CH{sub 3}SH have been studied using 2 + 1 resonance-enhanced multiphoton ionization (REMPI) techniques. The 193 nm photodissociation cross sections for the formation of S from CH{sub 3}S and HS initially prepared in the photodissociation of CH{sub 3}SCH{sub 3} and H{sub 2}S are estimated to be 1 {times} 10{sup {minus}18} and 1.1 {times} 10{sup {minus}18} cm{sup 2}, respectively. The dominant product from CH{sub 3}S is S({sup 1}D), while that from SH is S({sup 3}P). Possible potential energy surfaces involved in the 193 nm photodissociation of CH{sub 3}S({tilde X}) and SH(X) have been also examined. Threshold photoelectron (PE) spectra for SH and CH{sub 3}S formed in the ultraviolet photodissociation of H{sub 2}S and CH{sub 3}SH, respectively, have been measured using the nonresonant two-photon pulsed field ionization (N2P-PFI) technique. The rotationally resolved N2P-PFI-PE spectrum obtained for SH indicates that photoionization dynamics favors the rotational angular momentum change {Delta}N < 0 with the {Delta}N value up to {minus}3, an observation similar to that found in the PFI-PE spectra of OH (OD) and NO. The ionization energies for SH(X{sup 2}{product}{sub 3,2}) and CH{sub 3}S({tilde X}{sup 2}E{sub 3/2}) are determined to be 84,057.5 {plus_minus} 3 cm{sup {minus}1} and 74,726 {plus_minus} 8 cm{sup {minus}1} respectively. The spin-orbit splittings for SH(X{sup 2}{product}{sub 3/2,1/2}) and CH{sub 3}S({tilde X}{sup 2}E{sub 3/2,1/2}) are found to be 377 {plus_minus} 2 and 257 {plus_minus} 5 cm{sup {minus}1}, respectively, in agreement with previous measurements. The C-S stretching frequency for CH{sub 3}S{sup +}({tilde X}{sup 3}A{sub 2}) is 733 {plus_minus} 5 cm{sup {minus}1}. This study illustrates that the PFI-PE detection method can be a sensitive probe for the nascent internal energy distribution of photoproducts.

  9. Photoionization of Fe7+ from the ground and metastable states

    NASA Astrophysics Data System (ADS)

    Tayal, S. S.; Zatsarinny, O.

    2015-01-01

    The B -spline Breit-Pauli R -matrix method is used to investigate the photoionization of Fe7 + from the ground and metastable states in the energy region from ionization thresholds to 172 eV. The present calculations were designed to resolve the large discrepancies between recent measurements and available theoretical results. The multiconfiguration Hartree-Fock method in connection with B -spline expansions is employed for an accurate representation of the initial- and final-state wave functions. The close-coupling expansion includes 99 fine-structure levels of the residual Fe8 + ion in the energy region up to 3 s23 p54 s states. It includes levels of the 3 s23 p6,3 s23 p53 d ,3 s23 p54 s , and 3 s 3 p63 d configurations and some levels of the 3 s23 p43 d2 configuration which lie in the energy region under investigation. The present photoionization cross sections in the length and velocity formulations exhibit excellent agreement. The present photoionization cross sections agree well with the Breit-Pauli R -matrix calculation by Sossah et al. and the TOPbase data in the magnitude of the background nonresonant cross sections but show somewhat richer resonance structures, which qualitatively agree with the measurements. The calculated cross sections, however, are several times lower than the measured cross sections, depending upon the photon energy. The cross sections for photoionization of metastable states were found to have approximately the same magnitude as the cross sections for photoionization of the ground state, thereby the presence of metastable states in the ion beam may not be the reason for the enhancement of the measured cross sections.

  10. Development of the femtosecond energy diffusion sensor for use in the manufacture of amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    McLeskey, James Thomas, Jr.

    Before photovoltaics can compete with traditional sources of grid-connected power, the cost per Watt must come down. Toward this end, the Femtosecond Energy Diffusion (FED) sensor has been developed to improve the manufacturing process for thin film hydrogenated amorphous silicon (a-Si:H) solar cells. This may lead to both lower fabrication costs and increased cell efficiencies. The FED sensor is a non-contact, non-destructive device based on the pump-probe technique that can measure many important properties of amorphous silicon. It is used in conjunction with two newly developed computer models to measure the properties of the individual layers of an a-Si:H solar cell. These properties include the bandgap, the doping level, the alloying level, optical absorption, and a simplified density of states. In developing the sensor, a number of novel transient transmission experiments have been conducted. These experiments are among the first reported where the photon energies of both the pump and probe lasers fall within the bandtail energy region of a-Si:H. In addition to intrinsic a-Si:H, pump-probe experiments have been conducted on samples alloyed with germanium and carbon as well as samples doped with phosphorus and boron. Tests have been performed on samples with differing levels of hydrogenation created in two ways. Experiments performed on three samples comprising the build up of an a-Si:H p-i-n diode solar cell demonstrate the ability of the sensor to determine the properties of each new layer as it is deposited. This makes the FED sensor a potentially powerful tool for use in the manufacturing of a-Si:H solar cells. Two new models have been developed in order to explain the experimental results. The absorption model calculates absorptivity by combining thermally-induced bandgap reduction due to carrier thermalization and recombination with carrier trapping in order to fit the data obtained by the FED sensor. A second model, the multi-layer model, combines

  11. Determination of photoionization branching ratios and total photoionization cross sections at 304 A from experimental ionospheric photoelectron fluxes

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Torr, D. G.; Espy, P. J.

    1982-01-01

    High-resolution measurements of the ionospheric photoelectron spectrum are used to derive photoionization cross sections and branching ratios for N2 and O at 304 A, the wavelength of the intense He II solar radiation. Based on a theory in which the measured fluxes at energies 22.5, 24.5, 25.5 and 27.5 eV are determined by the ratio of the production rate and the loss rate coefficient, values are obtained for the ratio of molecular nitrogen density to atomic oxygen density as a function of altitude, the sum of the total photoionization cross sections, the 2P/4S and 2D/4S branching ratios for O and the B/X and A/X branching ratios for N2 photoionization and the ratios and the interspecies cross section ratios 2D/A, 4S/X and 2P/B. The values obtained are in accord with the photoionization cross sections of Kirby et al. (1979).

  12. Mapping nanoscale absorption of femtosecond laser pulses using plasma explosion imaging.

    PubMed

    Hickstein, Daniel D; Dollar, Franklin; Ellis, Jennifer L; Schnitzenbaumer, Kyle J; Keister, K Ellen; Petrov, George M; Ding, Chengyuan; Palm, Brett B; Gaffney, Jim A; Foord, Mark E; Libby, Stephen B; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M; Xiong, Wei

    2014-09-23

    We make direct observations of localized light absorption in a single nanostructure irradiated by a strong femtosecond laser field, by developing and applying a technique that we refer to as plasma explosion imaging. By imaging the photoion momentum distribution resulting from plasma formation in a laser-irradiated nanostructure, we map the spatial location of the highly localized plasma and thereby image the nanoscale light absorption. Our method probes individual, isolated nanoparticles in vacuum, which allows us to observe how small variations in the composition, shape, and orientation of the nanostructures lead to vastly different light absorption. Here, we study four different nanoparticle samples with overall dimensions of ∼100 nm and find that each sample exhibits distinct light absorption mechanisms despite their similar size. Specifically, we observe subwavelength focusing in single NaCl crystals, symmetric absorption in TiO2 aggregates, surface enhancement in dielectric particles containing a single gold nanoparticle, and interparticle hot spots in dielectric particles containing multiple smaller gold nanoparticles. These observations demonstrate how plasma explosion imaging directly reveals the diverse ways in which nanoparticles respond to strong laser fields, a process that is notoriously challenging to model because of the rapid evolution of materials properties that takes place on the femtosecond time scale as a solid nanostructure is transformed into a dense plasma.

  13. Ultrafast electronic dynamics in Helium nanodroplets studied by femtosecond time-resolved EUV photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Gessner, Oliver; Kornilov, Oleg; Wang, Chia; Leonard, Mathew; Healy, Andrew; Leone, Stephen; Neumark, Daniel

    2009-05-01

    Helium nanodroplets constitute a unique cryogenic matrix for the creation, isolation and spectroscopy of regular and exotic species, such as free radicals and molecules in high-spin states. The droplets readily pick up atoms and molecules but interact only very weakly with the respective dopants due to their superfluid nature. Despite the remarkable number of experimental and theoretical studies that have been performed on this new type of matter, neither the electronic structure nor the electron dynamics after EUV excitation are even remotely understood. We have performed the first femtosecond EUV-pump, IR-probe experiment to study the photoionization dynamics of pure Helium nanodroplets below the atomic Helium IP (24.6 eV) in real-time. Using Velocity-Map Imaging (VMI) photoelectron spectroscopy we were able to discern processes with associated timescales ranging from tens of femtoseconds to tens of picoseconds. The results will be discussed in the light of complementary energy-domain studies and theoretical models of the droplet's electronic and nuclear dynamics.

  14. Pump-probe photoelectron velocity-map imaging of autoionizing singly excited 4s14p6np1(n=7,8) and doubly excited 4s24p45s16p1 resonances in atomic krypton

    NASA Astrophysics Data System (ADS)

    Doughty, Benjamin; Haber, Louis H.; Leone, Stephen R.

    2011-10-01

    Pump-probe photoelectron velocity-map imaging, using 27-eV high-harmonic excitation and 786-nm ionization, is used to resolve overlapping autoionizing resonances in atomic krypton, obtaining two-photon photoelectron angular distributions (PADs) for singly and doubly excited states. Two features in the photoelectron spectrum are assigned to singly excited 4s14p6np1 (n = 7,8) configurations and four features provide information about double excitation configurations. The anisotropy parameters for the singly excited 7p configuration are measured to be β2 = 1.61 ± 0.06 and β4 = 1.54 ± 0.16 while the 8p configuration gives β2 = 1.23 ± 0.19 and β4 = 0.60 ± 0.15. These anisotropies most likely represent the sum of overlapping PADs from states of singlet and triplet spin multiplicities. Of the four bands corresponding to ionization of doubly excited states, two are assigned to 4s24p45s16p1 configurations that are probed to different J-split ion states. The two remaining doubly excited states are attributed to a previously observed, but unassigned, resonance in the vacuum-ultraviolet photoabsorption spectrum. The PADs from each of the double excitation states are also influenced by overlap from neighboring states that are not completely spectrally resolved. The anisotropies of the observed double excitation states are reported, anticipating future theoretical and experimental work to separate the overlapping PADs into the state resolved PADs. The results can be used to test theories of excited state ionization.

  15. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: theory and experiment.

    PubMed

    Bellili, A; Schwell, M; Bénilan, Y; Fray, N; Gazeau, M-C; Mogren Al-Mogren, M; Guillemin, J-C; Poisson, L; Hochlaf, M

    2014-10-01

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  16. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Bellili, A.; Schwell, M.; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Mogren Al-Mogren, M.; Guillemin, J.-C.; Poisson, L.; Hochlaf, M.

    2014-10-01

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  17. VUV photoionization and dissociative photoionization of the prebiotic molecule acetyl cyanide: Theory and experiment

    SciTech Connect

    Bellili, A.; Hochlaf, M. E-mail: martin.schwell@lisa.u-pec.fr; Schwell, M. E-mail: martin.schwell@lisa.u-pec.fr; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Mogren Al-Mogren, M.; Guillemin, J.-C.; Poisson, L.

    2014-10-07

    The present combined theoretical and experimental investigation concerns the single photoionization of gas-phase acetyl cyanide and the fragmentation pathways of the resulting cation. Acetyl cyanide (AC) is inspired from both the chemistry of cyanoacetylene and the Strecker reaction which are thought to be at the origin of medium sized prebiotic molecules in the interstellar medium. AC can be formed by reaction from cyanoacetylene and water but also from acetaldehyde and HCN or the corresponding radicals. In view of the interpretation of vacuum ultraviolet (VUV) experimental data obtained using synchrotron radiation, we explored the ground potential energy surface (PES) of acetyl cyanide and of its cation using standard and recently implemented explicitly correlated methodologies. Our PES covers the regions of tautomerism (between keto and enol forms) and of the lowest fragmentation channels. This allowed us to deduce accurate thermochemical data for this astrobiologically relevant molecule. Unimolecular decomposition of the AC cation turns out to be very complex. The implications for the evolution of prebiotic molecules under VUV irradiation are discussed.

  18. Photoionized plasmas induced in neon with extreme ultraviolet and soft X-ray pulses produced using low and high energy laser systems

    SciTech Connect

    Bartnik, A.; Wachulak, P.; Fok, T.; Węgrzyński, Ł.; Fiedorowicz, H.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Dudzak, R.; Dostal, J.; Krousky, E.; Skala, J.; Ullschmied, J.; Hrebicek, J.; Medrik, T.

    2015-04-15

    A comparative study of photoionized plasmas created by two soft X-ray and extreme ultraviolet (SXR/EUV) laser plasma sources with different parameters is presented. The two sources are based on double-stream Xe/He gas-puff targets irradiated with high (500 J/0.3 ns) and low energy (10 J/1 ns) laser pulses. In both cases, the SXR/EUV beam irradiated the gas stream, injected into a vacuum chamber synchronously with the radiation pulse. Irradiation of gases resulted in formation of photoionized plasmas emitting radiation in the SXR/EUV range. The measured Ne plasma radiation spectra are dominated by emission lines corresponding to radiative transitions in singly charged ions. A significant difference concerns origin of the lines: K-shell or L-shell emissions occur in case of the high and low energy irradiating system, respectively. In high energy system, the electron density measurements were also performed by laser interferometry, employing a femtosecond laser system. A maximum electron density for Ne plasma reached the value of 2·10{sup 18 }cm{sup −3}. For the low energy system, a detection limit was too high for the interferometric measurements, thus only an upper estimation for electron density could be made.

  19. Towards sub-femtosecond emission

    NASA Astrophysics Data System (ADS)

    Bach, Roger; Hansen, Peter; Batelaan, Herman; Hilbert, Shawn

    2010-03-01

    To manipulate femtosecond pulses of electrons new electron optical elements are needed. For example, if a source has a lower limit in the duration of the electron pulses that it generates, then aan electron optical element that can reduce the pulse duration could be useful. An example of this is the proposed ``temporal lens '' [1]. To detect the short electron pulses one also needs new elements. Attempts to use the ponderomotive interaction between the electron pulse and a second laser pulse will be presented [2]. Alternatively, we have started to explore a plasmonics structure provided by the Capasso group to make a fast electron switch. This has the potential to be useful both for switching, shaping and detecting the electron pulse. Finally, the experimental parameters and detection ideas for quantum degeneracy will be discussed. [1] S. Hilbert, B. Barwick, K. Uiterwaal, H. Batelaan, A. Zewail, ``Temporal lenses for attosecond and femtosecond electron pulses'', Proceedings of the National Academy of Sciences, p. 10558, vol. 106, (2009). [2] L. Kreminskaya, C. Corder, V. Engquist, O. Golovin, P. Hansen, H. Batelaan, A. I. Khizhnyak, G. A. Swartzlander, Jr., ``Laser Beam Shaping: Donut Mode Formation by Interference.'' Laser Beam Shaping X (Proceedings Volume) Proceedings of SPIE Volume: 7430.

  20. Femtosecond Electron Diffraction and Shadow Imaging

    NASA Astrophysics Data System (ADS)

    McPherson, David

    2010-03-01

    Using femtosecond electron pulses as an imaging tool, we can probe ultrafast dynamics by taking snapshots at different time delays. By using femtosecond electron diffraction (FED), we can examine structural dynamics at the atomic level in real time, and study the structure-function correlation. Additionally, femtosecond electron shadow imaging (FESI) can explore the dynamics of laser induced plasmas off the surfaces of conductors, semiconductors, and insulators. Project as part of a Research Experience for Undergraduates program funded by the National High Magnetic Field Laboratory, Florida State University and the National Science Foundation under supervision of Jianming Cao, PhD., Florida State University.

  1. Materials micro-processing using femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Dabu, R.; Zamfirescu, M.; Anghel, I.; Jipa, F.

    2013-06-01

    Nonlinear optical phenomena which dominate the interaction of tightly focused femtosecond laser beams with materials are discussed. Different femtosecond laser based techniques for material processing such as laser ablation, two-photon photo-polymerization, and material surface nano-structuring are described. For the computer controlled micro-processing of materials, near-infrared Ti:sapphire femtosecond lasers, with nano-Joule/micro-Joule pulse energy, were coupled with direct laser writing workstations. Laser fabricated micro-nanostructures and their applications are presented.

  2. Photoion Auger-electron coincidence measurements near threshold

    SciTech Connect

    Levin, J.C.; Biedermann, C.; Keller, N.; Liljeby, L.; Short, R.T.; Sellin, I.A. . Dept. of Physics Oak Ridge National Lab., TN ); Lindle, D.W. , Gaithersburg, MD )

    1990-01-01

    The vacancy cascade which fills an atomic inner-shell hole is a complex process which can proceed by a variety of paths, often resulting in a broad distribution of photoion charge states. We have measured simplified argon photoion charge distributions by requiring a coincidence with a K-LL or K-LM Auger electron, following K excitation with synchrotron radiation, as a function of photon energy, and report here in detail the argon charge distributions coincident with K-L{sub 1}L{sub 23} Auger electrons. The distributions exhibit a much more pronounced photon-energy dependence than do the more complicated non-coincident spectra. Resonant excitation of the K electron to np levels, shakeoff of these np electrons by subsequent decay processes, double-Auger decay, and recapture of the K photoelectron through postcollision interaction occur with significant probability. 17 refs.

  3. Double-photoionization of helium including quadrupole radiation effects

    SciTech Connect

    Colgan, James; Ludlow, J A; Lee, Teck - Ghee; Pindzola, M S; Robicheaux, F

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  4. A non-invasive online photoionization spectrometer for FLASH2

    PubMed Central

    Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai

    2016-01-01

    The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon–matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer. PMID:26698040

  5. A non-invasive online photoionization spectrometer for FLASH2.

    PubMed

    Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai

    2016-01-01

    The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon-matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer. PMID:26698040

  6. Communication: The influence of vibrational parity in chiral photoionization dynamics

    SciTech Connect

    Powis, Ivan

    2014-03-21

    A pronounced vibrational state dependence of photoelectron angular distributions observed in chiral photoionization experiments is explored using a simple, yet realistic, theoretical model based upon the transiently chiral molecule H{sub 2}O{sub 2}. The adiabatic approximation is used to separate vibrational and electronic wavefunctions. The full ionization matrix elements are obtained as an average of the electronic dipole matrix elements over the vibrational coordinate, weighted by the product of neutral and ion state vibrational wavefunctions. It is found that the parity of the vibrational Hermite polynomials influences not just the amplitude, but also the phase of the transition matrix elements, and the latter is sufficient, even in the absence of resonant enhancements, to account for enhanced vibrational dependencies in the chiral photoionization dynamics.

  7. Spatially resolved photoionization of ultracold atoms on an atom chip

    SciTech Connect

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-06-15

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 {mu}K in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 {mu}m, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip.

  8. Effect of core polarizability on photoionization cross-section calculations.

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, R. C.

    1972-01-01

    Demonstration of the importance of core polarizability in a case where cancellation is only moderate, with suggestion of an improvement to the scaled Thomas-Fermi (STF) wave functions of Stewart and Rotenberg (1965). The inclusion of dipole polarizability of the core for argon is shown to substantially improve the agreement between the theoretical and experimental photoionization cross sections for the ground-state configuration.

  9. Precision measurements on the photoionization of neutral atomic species

    NASA Astrophysics Data System (ADS)

    Stolte, Wayne

    2016-05-01

    In contrast to studies on rare gas atoms, experimental studies of open-shell atoms offers very challenging problems, such as creation of the atom, low signal, purity and stability. Because of this, studies of inner-shell excitations for open shell atoms are limited. In this talk I will discuss precision experimental measurements for photoionization of atomic oxygen, nitrogen, and chlorine over the last two decades on various beamlines at Lawrence Berkeley National Laboratories, Advanced Light Source.

  10. Differential cross sections of double photoionization of lithium

    SciTech Connect

    Kheifets, A. S.; Fursa, D. V.; Bray, I.; Colgan, J.; Pindzola, M. S.

    2010-08-15

    We extend our previous application of the convergent close-coupling (CCC) and time-dependent close-coupling (TDCC) methods [Phys. Rev. A 81, 023418 (2010)] to describe energy and angular resolved double photoionization (DPI) of lithium at arbitrary energy sharing. By doing so, we are able to evaluate the recoil ion momentum distribution of DPI of Li and make a comparison with recent measurements of Zhu et al. [Phys. Rev. Lett. 103, 103008 (2009)].

  11. Solvent jet desorption capillary photoionization-mass spectrometry.

    PubMed

    Haapala, Markus; Teppo, Jaakko; Ollikainen, Elisa; Kiiski, Iiro; Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2015-03-17

    A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 μm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper. PMID:25715054

  12. Interchannel coupling effects in the valence photoionization of SF6

    NASA Astrophysics Data System (ADS)

    Jose, J.; Lucchese, R. R.; Rescigno, T. N.

    2014-05-01

    The complex Kohn and polyatomic Schwinger variational techniques have been employed to illustrate the interchannel coupling correlation effects in the valence photoionization dynamics of SF6. Partial photoionization cross sections and asymmetry parameters of six valence subshells (1t1g, 5t1u, 1t2u, 3eg, 1t2g, 4t1u) are discussed in the framework of several theoretical and experimental studies. The complex Kohn results are in rather good agreement with experimental results, indicative of the fact that the interchannel coupling effects alter the photoionization dynamics significantly. We find that the dominant effect of interchannel coupling is to reduce the magnitude of shape resonant cross sections near the threshold and to induce resonant features in other channels to which resonances are coupled. The long-standing issue concerning ordering of the valence orbitals is addressed and confirmed 4t1u61t2g63eg4(5t1u6+1t2u6) 1t1g6 as the most likely ordering.

  13. Absolute photoionization cross-section of the propargyl radical

    SciTech Connect

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L.; Soorkia, Satchin; Selby, Talitha M.

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  14. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  15. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428

  16. Photoionization Modeling and the K Lines of Iron

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; Palmeri, P.; Bautista, M. A.; Mendoza, C.; Krolik, J. H.

    2004-01-01

    We calculate the efficiency of iron K line emission and iron K absorption in photoionized models using a new set of atomic data. These data are more comprehensive than those previously applied to the modeling of iron K lines from photoionized gases, and allow us to systematically examine the behavior of the properties of line emission and absorption as a function of the ionization parameter, density and column density of model constant density clouds. We show that, for example, the net fluorescence yield for the highly charged ions is sensitive to the level population distribution produced by photoionization, and these yields are generally smaller than those predicted assuming the population is according to statistical weight. We demonstrate that the effects of the many strongly damped resonances below the K ionization thresholds conspire to smear the edge, thereby potentially affecting the astrophysical interpretation of absorption features in the 7-9 keV energy band. We show that the centroid of the ensemble of K(alpha) lines, the K(beta) energy, and the ratio of the K(alpha(sub 1)) to K(alpha(sub 2)) components are all diagnostics of the ionization parameter of our model slabs.

  17. Programmable femtosecond laser pulses in the ultraviolet

    SciTech Connect

    Hacker, M.; Feurer, T.; Sauerbrey, R.; Lucza, T.; Szabo, G.

    2001-06-01

    Using a combination of a zero-dispersion compressor and spectrally compensated sum-frequency generation, we have produced amplitude-modulated femtosecond pulses in the UV at 200 nm. {copyright} 2001 Optical Society of America

  18. Femtosecond laser tuning of silicon microring resonators.

    PubMed

    Bachman, Daniel; Chen, Zhijiang; Prabhu, Ashok M; Fedosejevs, Robert; Tsui, Ying Y; Van, Vien

    2011-12-01

    Femtosecond laser modification is demonstrated as a possible method for postfabrication tuning of silicon microring resonators. Single 400 nm femtosecond laser pulses were used to modify the effective index of crystalline silicon microring waveguides by either amorphization or surface nanomilling depending on the laser fluence. Both blue- and redshifts in the microring resonance could be achieved without imparting significant degradation to the device quality factor.

  19. Femtosecond optical studies of cuprates

    NASA Astrophysics Data System (ADS)

    Schneider, Michael L.; Rast, S.; Onellion, Marshall; Demsar, Jure; Taylor, Antoinette J.; Glinka, Yu D.; Tolk, Norman H.; Ren, Yuhang; Luepke, Gunter; Klimov, A.; Xu, Ying; Sobolewski, Roman; Si, Weidong; Zeng, X. H.; Soukiassian, A.; Xi, Xiaoxing; Abrecht, M.; Ariosa, Daniel; Pavuna, Davor; Manzke, Recardo; Printz, J. O.; Parkhurst, D. K.; Downum, K. E.; Guptasarma, P.; Bozovic, Ivan

    2002-11-01

    Femtosecond optical reflectivity measurements of La2-xSrxCuO4, La2CuO4+y, Bi2Sr2CuO6+z and Bi2Sr2CaCu2O8+δ thin films and single crystal samples indicate qualitative changes with fluence. At the lowest fluencies, there is a power law divergence in the relaxation time. The divergence has an onset temperature of 55+/-15K, independent of whether the sample is in the superconducting or normal states. At slightly higher fluencies, still perturbative, the additional response does not exhibit this power law divergence. At quite high fluencies- no longer perturbative- the metallic samples exhibit oscillations in the reflectivity amplitude. The period of these oscillations varies with the probe wavelength but not with the pump wavelength. The oscillations exhibit a decay time as long as 10 nsec.

  20. High energy femtosecond pulse compression

    NASA Astrophysics Data System (ADS)

    Lassonde, Philippe; Mironov, Sergey; Fourmaux, Sylvain; Payeur, Stéphane; Khazanov, Efim; Sergeev, Alexander; Kieffer, Jean-Claude; Mourou, Gerard

    2016-07-01

    An original method for retrieving the Kerr nonlinear index was proposed and implemented for TF12 heavy flint glass. Then, a defocusing lens made of this highly nonlinear glass was used to generate an almost constant spectral broadening across a Gaussian beam profile. The lens was designed with spherical curvatures chosen in order to match the laser beam profile, such that the product of the thickness with intensity is constant. This solid-state optics in combination with chirped mirrors was used to decrease the pulse duration at the output of a terawatt-class femtosecond laser. We demonstrated compression of a 33 fs pulse to 16 fs with 170 mJ energy.

  1. Hybrid high power femtosecond lasers

    NASA Astrophysics Data System (ADS)

    Resan, Bojan

    2016-03-01

    There is a growing demand for ultrafast laser systems with high average power and repetition rate. We present two hybrid master oscillator power amplifier (MOPA) architectures employing variety of available technologies to achieve 100 W average power femtosecond pulses. We achieved 120 W 820 fs pulses using solid-state oscillator and fiber amplifiers and chirped pulse amplification (CPA) technique (10 μJ pulse energy at 10 MHz and 100 μJ at 400 kHz). In the second experiment, we achieved 160 W 800 fs pulses in a compact system without the standard CPA using solidstate oscillator and single crystal fiber amplifiers. As currently every component experiences some limitations, it is a challenge to choose the optimal architecture with associated components to achieve a desired combination of laser output parameters.

  2. 2 micron femtosecond fiber laser

    DOEpatents

    Liu, Jian; Wan, Peng; Yang, Lihmei

    2014-07-29

    Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.

  3. Stark-assisted population control of coherent CS(2) 4f and 5p Rydberg wave packets studied by femtosecond time-resolved photoelectron spectroscopy.

    PubMed

    Knappenberger, Kenneth L; Lerch, Eliza-Beth W; Wen, Patrick; Leone, Stephen R

    2007-09-28

    A two-color (3+1(')) pump-probe scheme is employed to investigate Rydberg wave packet dynamics in carbon disulfide (CS(2) (*)). The state superpositions are created within the 4f and 5p Rydberg manifolds by three photons of the 400 nm pump pulse, and their temporal evolution is monitored with femtosecond time-resolved photoelectron spectroscopy using an 800 nm ionizing probe pulse. The coherent behavior of the non-stationary superpositions are observed through wavepacket revivals upon ionization to either the upper (12) or lower (32) spin-orbit components of CS(2) (+). The results show clearly that the composition of the wavepacket can be efficiently controlled by the power density of the excitation pulse over a range from 500 GWcm(2) to 10 TWcm(2). The results are consistent with the anticipated ac-Stark shift for 400 nm light and demonstrate an effective method for population control in molecular systems. Moreover, it is shown that Rydberg wavepackets can be formed in CS(2) with excitation power densities up to 10 TWcm(2) without significant fragmentation. The exponential 1e population decay (T(1)) of specific excited Rydberg states are recovered by analysis of the coherent part of the signal. The dissociation lifetimes of these states are typically 1.5 ps. However, a region exhibiting a more rapid decay ( approximately 800 fs) is observed for states residing in the energy range of 74 450-74 550 cm(-1), suggestive of an enhanced surface crossing in this region.

  4. Explosions of xenon clusters in ultraintense femtosecond x-ray pulses from the LCLS free electron laser.

    PubMed

    Thomas, H; Helal, A; Hoffmann, K; Kandadai, N; Keto, J; Andreasson, J; Iwan, B; Seibert, M; Timneanu, N; Hajdu, J; Adolph, M; Gorkhover, T; Rupp, D; Schorb, S; Möller, T; Doumy, G; DiMauro, L F; Hoener, M; Murphy, B; Berrah, N; Messerschmidt, M; Bozek, J; Bostedt, C; Ditmire, T

    2012-03-30

    Explosions of large Xe clusters ( ~ 11,000) irradiated by femtosecond pulses of 850 eV x-ray photons focused to an intensity of up to 10(17) W/cm(2) from the Linac Coherent Light Source were investigated experimentally. Measurements of ion charge-state distributions and energy spectra exhibit strong evidence for the formation of a Xe nanoplasma in the intense x-ray pulse. This x-ray produced Xe nanoplasma is accompanied by a three-body recombination and hydrodynamic expansion. These experimental results appear to be consistent with a model in which a spherically exploding nanoplasma is formed inside the Xe cluster and where the plasma temperature is determined by photoionization heating.

  5. THE PHOTOIONIZED ACCRETION DISK IN HER X-1

    SciTech Connect

    Ji, L.; Schulz, N.; Nowak, M.; Marshall, H. L.; Kallman, T.

    2009-08-01

    We present an analysis of several high-resolution Chandra grating observations of the X-ray binary pulsar Her X-1. With a total exposure of 170 ks, the observations are separated by years and cover three combinations of orbital and superorbital phases. Our goal is to determine distinct properties of the photoionized emission and its dependence on phase-dependent variations of the continuum. We find that the continua can be described by a partial covering model which above 2 keV is consistent with recent results from Rossi X-Ray Timing Explorer studies and at low energies is consistent with recent XMM-Newton and BeppoSAX studies. Besides a power law with fixed index, an additional thermal blackbody of 114 eV is required to fit wavelengths above 12 A ({approx}1 keV). We find that likely all the variability is caused by highly variable absorption columns in the range (1-3) x 10{sup 23} cm{sup -2}. Strong Fe K line fluorescence in almost all observations reveals that dense, cool material is present not only in the outer regions of the disk but interspersed throughout the disk. Most spectra show strong line emission stemming from a photoionized accretion disk corona (ADC). We model the line emission with generic thermal plasma models as well as with the photoionization code XSTAR and investigate changes of the ionization balance with orbital and superorbital phases. Most accretion disk coronal properties such as disk radii, temperatures, and plasma densities are consistent with previous findings for the low state. We find that these properties change negligibly with respect to orbital and superorbital phases. A couple of the higher energy lines exhibit emissivities that are significantly in excess of expectations from a static ADC.

  6. The dynamics of femtosecond pulsed laser removal of 20 nm Ni films from an interface

    SciTech Connect

    Schrider, Keegan J.; Yalisove, Steven M.; Torralva, Ben

    2015-09-21

    The dynamics of femtosecond laser removal of 20 nm Ni films on glass substrates was studied using time-resolved pump-probe microscopy. 20 nm thin films exhibit removal at two distinct threshold fluences, removal of the top 7 nm of Ni above 0.14 J/cm{sup 2}, and removal of the entire 20 nm film above 0.36 J/cm{sup 2}. Previous work shows the top 7 nm is removed through liquid spallation, after irradiation the Ni melts and rapidly expands leading to tensile stress and cavitation within the Ni film. This work shows that above 0.36 J/cm{sup 2} the 20 nm film is removed in two distinct layers, 7 nm and 13 nm thick. The top 7 nm layer reaches a speed 500% faster than the bottom 13 nm layer at the same absorbed fluence, 500–2000 m/s and 300–700 m/s in the fluence ranges studied. Significantly different velocities for the top 7 nm layer and bottom 13 nm layer indicate removal from an interface occurs by a different physical mechanism. The method of measuring film displacement from the development of Newton's rings was refined so it could be shown that the 13 nm layer separates from the substrate within 70 ps and accelerates to its final velocity within several hundred picoseconds. We propose that removal of the bottom 13 nm is consistent with heterogeneous nucleation and growth of vapor at the Ni-glass interface, but that the rapid separation and acceleration of the 13 nm layer from the Ni-glass interface requires consideration of exotic phases of Ni after excitation.

  7. Photoionization of Phosphorus cation induced by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Juárez, Antonio; Aguilar, Alejandro; González, Olmo; Macaluso, David; Antillón, Armando; Morales, Alejandro; Hanstorp, Dag; Covington, Aaron; Chartkunchand, Kiattichart; Hinojosa, Guillermo; Nahar, Sultana; Hernández, Edgar

    2013-09-01

    The photoionization of Phosphorus cation has been measured in the photon energy range of 18 eV to 50 eV with 40 meV resolution. A theoretical investigation is being conducted while more experimentation is being planned. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE Contract No. DE-AC02-05CH11231. AMC acknowledges financial support from the US DOE NNSA through Cooperative Agreement DE-FC52-06NA27616. DGAPA IN 113010, IN106813 and CONACYT CB-2011/167631. GH thanks technical support of ALS staff.

  8. Experimental observation of guanine tautomers with VUV photoionization

    SciTech Connect

    Zhou, Jia; Kostko, Oleg; Nicolas, Christophe; Tang, Xiaonan; Belau, Leonid; de Vries, Mattanjah S.; Ahmed, Musahid

    2008-12-01

    Two methods of preparing guanine in the gas phase, thermal vaporization and laser desorption, have been investigated. The guanine generated by each method is entrained in a molecular beam, single photon ionized with tunable VUV synchrotron radiation, and analyzed using reflectron mass spectrometry. The recorded photoionization efficiency (PIE) curves show a dramatic difference for experiments performed via thermal vaporization compared to laser desorption. The calculated vertical and adiabatic ionization energies for the eight lowest lying tautomers of guanine suggest the experimental observations arise from different tautomers being populated in the two different experimental methods.

  9. Molecular photoionization studies of nucleobases and correlated systems

    SciTech Connect

    Poliakoff, Erwin D.

    2015-03-11

    We proposed molecular photoionization studies in order to probe correlated events in fundamental scattering phenomena. In particular, we suggested that joint theoretical-experimental studies would provide a window into the microscopic aspects that are of central importance in AMO and chemical physics generally, and would generate useful data for wide array of important DOE topics, such as ultrafast dynamics, high harmonic generation, and probes of nonadiabatic processes. The unifying theme is that correlations between electron scattering dynamics and molecular geometry highlight inherently molecular aspects of the photoelectron behavior.

  10. A simple photoionization scheme for characterizing electron and ion spectrometers

    NASA Astrophysics Data System (ADS)

    Wituschek, A.; von Vangerow, J.; Grzesiak, J.; Stienkemeier, F.; Mudrich, M.

    2016-08-01

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ˜1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education.

  11. The photoionization spectrum of neutral aluminium, Al I

    NASA Technical Reports Server (NTRS)

    Roig, R. A.

    1975-01-01

    The absorption spectrum of Al I has been studied for the wavelength range 1160 to 2000 A by the flash pyrolysis technique. Wavelengths and derived energy levels are reported for 70 new lines converging on the 3s3p(3)P(0) limits of Al II. The autoionization parameters of the 3p(2)P(0)-3p(2)(2)S doublet have been measured. Good agreement is obtained with the experiment of Kohl and Parkinson and the recent calculation of Le Dourneuf et al. The relative photoionization cross section has been measured in the wavelength region 1200 A to 2000 A.

  12. Ab initio calculations of the photoionization of diatomic molecules

    NASA Astrophysics Data System (ADS)

    Lefebvre-Brion, Helene; Raşeev, Georges

    2003-01-01

    A review is presented of the calculation of photoionization spectra, particularly in the spectral range where electron autoionization of diatomic molecules takes place. In addition to some interesting results obtained over years that compare favourably with experiment, the emphasis here is put on the relation between the methods developed for the calculation of observables associated with the continuum energy spectrum of the electrons and the Alchemy system of programs. This system of programs serves as a basis for initial and intermediate calculations. The examples presented show that diatomic molecules not only in gas phase but also oriented in space or physisorbed at surfaces may be studied readily.

  13. Photo-ionization and residual electron effects in guided streamers

    NASA Astrophysics Data System (ADS)

    Wu, S.; Lu, X.; Liu, D.; Yang, Y.; Pan, Y.; Ostrikov, K.

    2014-10-01

    Complementary experiments and numerical modeling reveal the important role of photo-ionization in the guided streamer propagation in helium-air gas mixtures. It is shown that the minimum electron concentration ˜108 cm-3 is required for the regular, repeated propagation of the plasma bullets, while the streamers propagate in the stochastic mode below this threshold. The stochastic-to-regular mode transition is related to the higher background electron density in front of the propagating streamers. These findings help improving control of guided streamer propagation in applications from health care to nanotechnology and improve understanding of generic pre-breakdown phenomena.

  14. A simple photoionization scheme for characterizing electron and ion spectrometers.

    PubMed

    Wituschek, A; von Vangerow, J; Grzesiak, J; Stienkemeier, F; Mudrich, M

    2016-08-01

    We present a simple diode laser-based photoionization scheme for generating electrons and ions with well-defined spatial and energetic (≲2 eV) structures. This scheme can easily be implemented in ion or electron imaging spectrometers for the purpose of off-line characterization and calibration. The low laser power ∼1 mW needed from a passively stabilized diode laser and the low flux of potassium atoms in an effusive beam make our scheme a versatile source of ions and electrons for applications in research and education. PMID:27587098

  15. Double K-shell photoionization of atomic beryllium

    SciTech Connect

    Yip, F. L.; Martin, F.; McCurdy, C. W.; Rescigno, T. N.

    2011-11-15

    Double photoionization of the core 1s electrons in atomic beryllium is theoretically studied using a hybrid approach that combines orbital and grid-based representations of the Hamiltonian. The {sup 1} S ground state and {sup 1} P final state contain a double occupancy of the 2s valence shell in all configurations used to represent the correlated wave function. Triply differential cross sections are evaluated, with particular attention focused on a comparison of the effects of scattering the ejected electrons through the spherically symmetric valence shell with similar cross sections for helium, representing a purely two-electron target with an analogous initial-state configuration.

  16. Short-time Chebyshev wave packet method for molecular photoionization

    NASA Astrophysics Data System (ADS)

    Sun, Zhaopeng; Zheng, Yujun

    2016-08-01

    In this letter we present the extended usage of short-time Chebyshev wave packet method in the laser induced molecular photoionization dynamics. In our extension, the polynomial expansion of the exponential in the time evolution operator, the Hamiltonian operator can act on the wave packet directly which neatly avoids the matrix diagonalization. This propagation scheme is of obvious advantages when the dynamical system has large Hamiltonian matrix. Computational simulations are performed for the calculation of photoelectronic distributions from intense short pulse ionization of K2 and NaI which represent the Born-Oppenheimer (BO) model and Non-BO one, respectively.

  17. Photoionization and fragmentaton of (N2O)n clusters

    NASA Astrophysics Data System (ADS)

    Kamke, W.; Kamke, B.; Kiefl, H. U.; Hertel, I. V.

    1986-02-01

    A supersonic molecular beam and monochromatized synchrotron radiation are presently used to measure photoionization efficiency curves for (N2O)n, at n = 1-6, in the 55-110 nm wavelength region. By measuring the energy loss of cluster ions which fragment in a field free drift region of the ion source, it becomes possible to detect delayed unimolecular and collision-induced fragmentations of the cluster ions. From a study of the dependence of the 'metastable' signals on background pressure, it appears that only the removal of a single N2O molecule at a time can occur by unimolecular decay.

  18. Photo-ionization and residual electron effects in guided streamers

    SciTech Connect

    Wu, S.; Lu, X. Liu, D.; Yang, Y.; Pan, Y.; Ostrikov, K.

    2014-10-15

    Complementary experiments and numerical modeling reveal the important role of photo-ionization in the guided streamer propagation in helium-air gas mixtures. It is shown that the minimum electron concentration ∼10{sup 8 }cm{sup −3} is required for the regular, repeated propagation of the plasma bullets, while the streamers propagate in the stochastic mode below this threshold. The stochastic-to-regular mode transition is related to the higher background electron density in front of the propagating streamers. These findings help improving control of guided streamer propagation in applications from health care to nanotechnology and improve understanding of generic pre-breakdown phenomena.

  19. Femtosecond lasers for microsurgery of cornea

    SciTech Connect

    Vartapetov, Sergei K; Khudyakov, D V; Lapshin, Konstantin E; Obidin, Aleksei Z; Shcherbakov, Ivan A

    2012-03-31

    The review of femtosecond laser installations for medical applications is given and a new femtosecond ophthalmologic system for creation of a flap of corneal tissue during the LASIK operation is described. An all-fibre femtosecond laser emitting {approx}400-fs pulses at 1067 nm is used. The pulse repetition rate can vary from 200 kHz up to 1 MHz. The output energy of the femtosecond system does not exceed 1 {mu}J. A specially developed objective with small spherical and chromatic aberrations is applied to focus laser radiation to an area of an eye cornea. The size of the focusing spot does not exceed 3 {mu}m. To process the required area, scanning by a laser beam is applied with a speed no less than 5 m s{sup -1}. At a stage of preliminary tests of the system, the {Kappa}8 glass, organic PMMA glass and specially prepared agarose gels are used as a phantom of an eye. The femtosecond system is successfully clinically tested on a plenty of eyes of a pig and on several human eyes. The duration of the procedure of creation of a corneal flap does not exceed 20 s.

  20. Sequential femtosecond X-ray imaging

    NASA Astrophysics Data System (ADS)

    Günther, C. M.; Pfau, B.; Mitzner, R.; Siemer, B.; Roling, S.; Zacharias, H.; Kutz, O.; Rudolph, I.; Schondelmaier, D.; Treusch, R.; Eisebitt, S.

    2011-02-01

    Recording a `molecular movie' with atomic spatial resolution on the femtosecond timescale set by atomic motion can be considered the ultimate goal of dynamic real-space imaging. Free-electron X-ray lasers, with their (sub)nanometre wavelength, femtosecond pulse duration and high brilliance, fuel the hope that this may ultimately become possible. Single-shot still pictures with sub-100 nm resolution achieved during femtosecond exposures have recently been demonstrated. A femtosecond time-lapse movie requires a sequence of independent images taken with a controllable time delay. As a key step towards achieving a molecular movie, we demonstrate a holographic imaging approach capable of recording two fully independent images with a variable time delay over the entire femtosecond regime. The concept overcomes the fundamental readout time limitations of two-dimensional area detectors, as two subsequent X-ray holograms of a sample can be superimposed within one detector exposure and yet be unambiguously disentangled to reconstruct two independent images.

  1. Application of a VMI spectrometer to near-threshold photoionization with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    O'Keeffe, P.; Bolognesi, P.; Mihelic, A.; Richter, R.; Moise, A.; Ovcharenko, E.; King, G. C.; Avaldi, L.

    2011-04-01

    A new developed velocity map imaging spectrometer has been used to study the photoionization of atoms near threshold. The application of the spectrometer to the measurement of the angular distributions of the photoelectrons emitted in the photoionization of the Ne 2p3/2 state between the 2p spin orbit thresholds and of polarised Ne atoms are presented.

  2. Research on fluorescence from photoionization, photodissociation, and vacuum, along with bending quantrum study

    NASA Technical Reports Server (NTRS)

    Judge, D. L.

    1975-01-01

    Reports of research concerning the fluorescence of CS2 are presented. Fluorescence from fragments of CS2 vapor produced by vacuum ultraviolet radiation, and fluorescence from photoionization of CS2 vapor are discussed along with fluorescence produced by photodissociation of CS2, and fluorescence from photoionization of OCS.

  3. A femtosecond electron diffraction system

    NASA Astrophysics Data System (ADS)

    Zhao, Baosheng; Zhang, Jie; Tian, Jinshou; Wang, Junfeng; Wu, Jianjun; Liu, Yunquan; Liu, Hulin

    2007-01-01

    The femtosecond electron diffraction (FED) is a unique method for the study of the changes of complex molecular structures, and has been specifically applied in the investigations of transient-optics, opto-physics, crystallography, and other fields. The FED system designed by the present group, consists of a 35nm Ag photocathode evaporated on an ultraviolet glass, an anode with a 0.1mm aperture, two pairs of deflection plate for the deflection of electron beams in X and Y directions, and the Y deflection plate can be used as a scanning plate while measuring the pulse width of electron beams, the double MCPs detector for the enhancing and detecting of electron image. The magnetic lens was used for the focusing of the electron beams, and the focal length is 125mm. The distance between the object(the photocathode) and the image(the sample) is 503mm, and the size of electron beams is smaller than 17microns after focusing, the convergence angle is of -0.075~0.075°, and the temporal resolution is better than 350fs.

  4. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  5. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  6. Massively parallel femtosecond laser processing.

    PubMed

    Hasegawa, Satoshi; Ito, Haruyasu; Toyoda, Haruyoshi; Hayasaki, Yoshio

    2016-08-01

    Massively parallel femtosecond laser processing with more than 1000 beams was demonstrated. Parallel beams were generated by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The key to this technique is to optimize the CGH in the laser processing system using a scheme called in-system optimization. It was analytically demonstrated that the number of beams is determined by the horizontal number of pixels in the SLM NSLM that is imaged at the pupil plane of an objective lens and a distance parameter pd obtained by dividing the distance between adjacent beams by the diffraction-limited beam diameter. A performance limitation of parallel laser processing in our system was estimated at NSLM of 250 and pd of 7.0. Based on these parameters, the maximum number of beams in a hexagonal close-packed structure was calculated to be 1189 by using an analytical equation. PMID:27505815

  7. Femtosecond dynamics of cluster expansion

    NASA Astrophysics Data System (ADS)

    Gao, Xiaohui; Wang, Xiaoming; Shim, Bonggu; Arefiev, Alexey; Tushentsov, Mikhail; Breizman, Boris; Downer, Mike

    2010-03-01

    Noble gas clusters irradiated by intense ultrafast laser expand quickly and become typical plasma in picosecond time scale. During the expansion, the clustered plasma demonstrates unique optical properties such as strong absorption and positive contribution to the refractive index. Here we studied cluster expansion dynamics by fs-time-resolved refractive index and absorption measurements in cluster gas jets after ionization and heating by an intense pump pulse. The refractive index measured by frequency domain interferometry (FDI) shows the transient positive peak of refractive index due to clustered plasma. By separating it from the negative contribution of the monomer plasma, we are able to determine the cluster fraction. The absorption measured by a delayed probe shows the contribution from clusters of various sizes. The plasma resonances in the cluster explain the enhancement of the absorption in our isothermal expanding cluster model. The cluster size distribution can be determined. A complete understanding of the femtosecond dynamics of cluster expansion is essential in the accurate interpretation and control of laser-cluster experiments such as phase-matched harmonic generation in cluster medium.

  8. Clocking Femtosecond X-Rays

    SciTech Connect

    Cavalieri, A L; Fritz, D M; Lee, S H; Bucksbaum, P H; Reis, D A; Mills, D M; Pahl, R; Rudati, J; Fuoss, P H; Stephenson, G B; Lowney, D P; MacPhee, A G; Weinstein, D; Falcone, R W; Als-Nielsen, J; Blome, C; Ischebeck, R; Schlarb, H; Tschentscher, T; Schneider, J; Sokolowski-Tinten, K; Chapman, H N; Lee, R W; Hansen, T N; Synnergren, O; Larsson, J; Techert, S; Sheppard, J; Wark, J S; Bergh, M; Calleman, C; Huldt, G; der Spoel, D v; Timneanu, N; Hajdu, J; Bong, E; Emma, P; Krejcik, P; Arthur, J; Brennan, S; Gaffney, K J; Lindenberg, A M; Hastings, J B

    2004-10-08

    The Sub-Picosecond Pulse Source (SPPS) at the Stanford Linear Accelerator Center (SLAC) produces the brightest ultrafast x-ray pulses in the world, and is the first to employ compressed femtosecond electron bunches for the x-ray source. Both SPPS and future X-ray Free Electron Lasers (XFEL's) will use precise measurements of individual electron bunches to time the arrival of x-ray pulses for time-resolved experiments. At SPPS we use electro-optic sampling (EOS) to perform these measurements. Here we present the first results using this method. An ultrafast laser pulse (135 fs) passes through an electro-optic crystal adjacent to the electron beam. The refractive index of the crystal is distorted by the strong electromagnetic fields of the ultra-relativistic electrons, and this transient birefringence is imprinted on the laser polarization. A polarizer decodes this signal, producing a time-dependent image of the compressed electron bunch. Our measurements yield the relative timing between an ultrafast optical laser and an ultrafast x-ray pulse to within 60 fs, making it possible to use the SPPS to observe atomic-scale ultrafast dynamics initiated by laser-matter interaction.

  9. Toward nanostructuring with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Koch, Juergen; Tanabe, Takasumi; Korte, Frank; Fallnich, Carsten; Ostendorf, Andreas; Chichkov, Boris N.

    2004-10-01

    Micro- and nanostructuring are very important for the fabrication of new materials and multifunctional devices. Existing photo-lithographic technologies can only be applied to a limited number of materials and used on plane surfaces. Whereas, microstructuring with femtosecond laser pulses has established itself as an excellent and universal tool for micro-processing, it is still unclear what are the limits of this technology. It is of great interest to use this technique also for nanostructuring. With tightly focused femtosecond laser pulses one can produce sub-micrometer holes and structures whose quality depends on the material. We present new results on nanostructuring of different materials with femtosecond laser pulses in an attempt to make this an universal technology, and discuss its reproducibility, and further prospects for quality control.

  10. Femtosecond Laser Filamentation for Atmospheric Sensing

    PubMed Central

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  11. Femtosecond fabricated surfaces for cell biology

    NASA Astrophysics Data System (ADS)

    Day, Daniel; Gu, Min

    2010-08-01

    Microfabrication using femtosecond pulse lasers is enabling access to a range of structures, surfaces and materials that was not previously available for scientific and engineering applications. The ability to produce micrometre sized features directly in polymer and metal substrates is demonstrated with applications in cell biology. The size, shape and aspect ratio of the etched features can be precisely controlled through the manipulation of the fluence of the laser etching process with respect to the properties of the target material. Femtosecond laser etching of poly(methyl methacrylate) and aluminium substrates has enabled the production of micrometre resolution moulds that can be accurately replicated using soft lithography. The moulded surfaces are used in the imaging of T cells and demonstrate the improved ability to observe biological events over time periods greater than 10 h. These results indicate the great potential femtosecond pulse lasers may have in the future manufacturing of microstructured surfaces and devices.

  12. Femtosecond laser filamentation for atmospheric sensing.

    PubMed

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  13. Construction of a femtosecond laser microsurgery system

    PubMed Central

    Steinmeyer, Joseph D; Gilleland, Cody L; Pardo-Martin, Carlos; Angel, Matthew; Rohde, Christopher B; Scott, Mark A; Yanik, Mehmet Fatih

    2014-01-01

    Femtosecond laser microsurgery is a powerful method for studying cellular function, neural circuits, neuronal injury and neuronal regeneration because of its capability to selectively ablate sub-micron targets in vitro and in vivo with minimal damage to the surrounding tissue. Here, we present a step-by-step protocol for constructing a femtosecond laser microsurgery setup for use with a widely available compound fluorescence microscope. The protocol begins with the assembly and alignment of beam-conditioning optics at the output of a femtosecond laser. Then a dichroic mount is assembled and installed to direct the laser beam into the objective lens of a standard inverted microscope. Finally, the laser is focused on the image plane of the microscope to allow simultaneous surgery and fluorescence imaging. We illustrate the use of this setup by presenting axotomy in Caenorhabditis elegans as an example. This protocol can be completed in 2 d. PMID:20203659

  14. Inner-shell Photoionization Studies of Neutral Atomic Nitrogen

    NASA Astrophysics Data System (ADS)

    Stolte, W. C.; Jonauskas, V.; Lindle, D. W.; Sant'Anna, M. M.; Savin, D. W.

    2016-02-01

    Inner-shell ionization of a 1s electron by either photons or electrons is important for X-ray photoionized objects such as active galactic nuclei and electron-ionized sources such as supernova remnants. Modeling and interpreting observations of such objects requires accurate predictions for the charge state distribution (CSD), which results as the 1s-hole system stabilizes. Due to the complexity of the complete stabilization process, few modern calculations exist and the community currently relies on 40-year-old atomic data. Here, we present a combined experimental and theoretical study for inner-shell photoionization of neutral atomic nitrogen for photon energies of 403-475 eV. Results are reported for the total ion yield cross section, for the branching ratios for formation of N+, {{{N}}}2+, and {{{N}}}3+, and for the average charge state. We find significant differences when comparing to the data currently available to the astrophysics community. For example, while the branching ratio to {{{N}}}2+ is somewhat reduced, that for N+ is greatly increased, and that to {{{N}}}3+, which was predicted to be zero, grows to ≈ 10% at the higher photon energies studied. This work demonstrates some of the shortcomings in the theoretical CSD data base for inner-shell ionization and points the way for the improvements needed to more reliably model the role of inner-shell ionization of cosmic plasmas.

  15. Resonance behavior of atomic and molecular photoionization amplitudes

    SciTech Connect

    Cherepkov, N. A.; Kuznetsov, V. V.; Semenov, S. K.

    2007-07-15

    The behavior of the partial photoionization amplitudes with a given orbital angular momentum l in the complex plane in resonances is studied. In the autoionization resonances the trajectory of the amplitude in the complex plane corresponds to a circle. With increasing photoelectron energy the amplitude moves about a circle in the counterclockwise direction. The new expressions for the partial amplitudes in the resonance are proposed which are similar to the Fano form but contain the 'partial' profile parameters which are connected with the Fano parameter q by a simple relation. In the giant dipole resonances the amplitudes in the complex plane also move about a circle in the counterclockwise direction provided the Coulomb phase is excluded from the amplitude. In the correlational resonances created by channel interactions with the giant dipole resonance the trajectories of the amplitudes acquire a loop about which the amplitudes move in the counterclockwise direction. Very similar behavior of partial photoionization amplitudes in the complex plane is demonstrated also for the dipole transitions from the K shells of the N{sub 2} molecule in the {sigma}* shape resonance.

  16. Relativistic Effects in the Photoionization of Very Heavy Atoms

    NASA Astrophysics Data System (ADS)

    Keating, David A.; Manson, Steven T.; Deshmukh, Pranawa C.

    2015-05-01

    At very high Z relativistic interactions become important contributors to even the qualitative nature of atomic properties. To explore the extent of relativistic interactions in the photoionization of a very heavy atom, a theoretical study of nobelium (Z = 102) has been performed using the relativistic random phase approximation (RRPA) methodology. In order to determine which features in the photoionization cross section are due to relativity, calculations using the (nonrelativistic) random phase approximation with exchange method (RPAE) are performed for comparison. With the inclusion of inter-channel coupling some relativistic effects are amplified or diminished. To distinguish which relativistic effects are native to the orbital of interest or a product of inter-channel coupling, calculations have been performed with and without coupling for comparison. Aside from significant splitting and shifts of threshold, induced effects on subshells not strongly affected by relativity directly, e.g. outer shells, by inner subshells that are strongly affected, occur via changes in screening and inter-channel coupling.

  17. Kr photoionized plasma induced by intense extreme ultraviolet pulses

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.

    2016-04-01

    Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Kr plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.

  18. Photoionization mass spectrometry of combustion radicals. Final technical report

    SciTech Connect

    Cool, T.A.

    1998-12-31

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated organic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and control of hazardous chemical wastes. Selective laser ionization techniques are used in the laboratory for the measurement of concentration profiles of radical intermediates in chlorinated hydrocarbon flames. A novel flame-sampling VUV laser photoionization mass spectrometer, constructed with DOE funding, is in use for these studies. Progress is reported here on the use of this new facility in the development, refinement, and verification of chemical kinetic models describing the thermal destruction of toxic chlorocarbons commonly found in chemical wastes. In the past two years the author has used the flame sampling VUV laser ionization mass spectrometer system for studies of chlorocarbon-doped methane/oxygen flames. Relative concentration profiles and photoionization efficiency curves have been measured for over two-dozen key reaction intermediates. Preliminary kinetic models have been developed that promise an improved understanding of chlorocarbon chemistry under laboratory flame conditions.

  19. Attosecond delays in photoionization: time and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard

    2014-10-01

    This article addresses topics regarding time measurements performed on quantum systems. The motivation is linked to the advent of ‘attophysics’ which makes feasible to follow the motion of electrons in atoms and molecules, with time resolution at the attosecond (1 as = 10-18 s) level, i.e. at the natural scale for electronic processes in these systems. In this context, attosecond ‘time-delays’ have been recently measured in experiments on photoionization and the question arises if such advances could cast a new light on the still active discussion on the status of the time variable in quantum mechanics. One issue still debatable is how to decide whether one can define a quantum time operator with eigenvalues associated to measurable ‘time-delays’, or time is a parameter, as it is implicit in the Newtonian classical mechanics. One objective of this paper is to investigate if the recent attophysics-based measurements could shed light on this parameter-operator conundrum. To this end, we present here the main features of the theory background, followed by an analysis of the experimental schemes that have been used to evidence attosecond ‘time-delays’ in photoionization. Our conclusion is that these results reinforce the view that time is a parameter which cannot be defined without reference to classical mechanics.

  20. Efficient photoheating algorithms in time-dependent photoionization simulations

    NASA Astrophysics Data System (ADS)

    Lee, Kai-Yan; Mellema, Garrelt; Lundqvist, Peter

    2016-02-01

    We present an extension to the time-dependent photoionization code C2-RAY to calculate photoheating in an efficient and accurate way. In C2-RAY, the thermal calculation demands relatively small time-steps for accurate results. We describe two novel methods to reduce the computational cost associated with small time-steps, namely, an adaptive time-step algorithm and an asynchronous evolution approach. The adaptive time-step algorithm determines an optimal time-step for the next computational step. It uses a fast ray-tracing scheme to quickly locate the relevant cells for this determination and only use these cells for the calculation of the time-step. Asynchronous evolution allows different cells to evolve with different time-steps. The asynchronized clocks of the cells are synchronized at the times where outputs are produced. By only evolving cells which may require short time-steps with these short time-steps instead of imposing them to the whole grid, the computational cost of the calculation can be substantially reduced. We show that our methods work well for several cosmologically relevant test problems and validate our results by comparing to the results of another time-dependent photoionization code.

  1. Photoionization of He above the n =2 threshold

    SciTech Connect

    Sanchez, I.; Martriaan, F. )

    1991-12-01

    We report a theoretical study of He(1{ital s}{sup 2})+{ital h}{nu}{r arrow}He{sup +}(1{ital s},2{ital s},2{ital p})+{ital e}{sup {minus}} photoionization processes, for photon energies greater than 65.4 eV. We pay special attention to the energy region 69.0--73.0 eV, where recent synchrotron experiments exhibit clearly resonant structure associated to 3{ital lnl}{prime} doubly excited states of He. Our method is based on a Feshbach partitioning of the total wave function that includes explicitly resonant structure. Total and partial cross sections do not depend on parametrization, although an obvious one can be obtained in a straightforward manner in the vicinity of isolated resonances; this is very useful for the analysis of most of the resonance peaks observed experimentally. An appealing feature of our approach is the use of {ital L}{sup 2}-integrable basis sets to describe the scattering wave functions. Our discretization method provides coupled continuum states with the proper {delta}-function normalization and with the correct asymptotic behavior. With this method, we have calculated partial photoionization cross sections for leaving the ion in the 1{ital s}, 2{ital s}, and 2{ital p} levels, and the results are in good agreement with recently published experimental data. A complete set of parameters describing the first twelve resonances in partial cross sections is also provided.

  2. Photoionization and photofragmentation of the C60+ molecular ion

    NASA Astrophysics Data System (ADS)

    Baral, K. K.; Aryal, N. B.; Esteves-Macaluso, D. A.; Thomas, C. M.; Hellhund, J.; Lomsadze, R.; Kilcoyne, A. L. D.; Müller, A.; Schippers, S.; Phaneuf, R. A.

    2016-03-01

    Cross-section measurements are reported for single and double photoionization of C60+ ions in the photon energy range 18-150 eV accompanied by the loss of zero to seven pairs of carbon atoms, as well as for fragmentation without ionization resulting in loss of two to eight pairs of C atoms in the photon energy range 18-65 eV. Absolute measurements were performed by merging a beam of C60+ molecular ions with a beam of monochromatized synchrotron radiation. Product channels involving dissociation yielding smaller fullerene fragment ions account for nearly half of the total measured oscillator strength in this energy range. The sum of cross sections for the measured product channels is compared to a published calculation of the total photoabsorption cross section of neutral C60 based on time-dependent density-functional theory. This comparison and an accounting of oscillator strengths indicate that with the exception of C58+, the most important product channels resulting from photoabsorption were accounted for in the experiment. Threshold energies for the successive removal of carbon atom pairs accompanying photoionization are also determined from the measurements.

  3. Predissociation dynamics of lithium iodide

    SciTech Connect

    Schmidt, H.; Vangerow, J. von; Stienkemeier, F.; Mudrich, M.; Bogomolov, A. S.; Baklanov, A. V.; Reich, D. M.; Skomorowski, W.; Koch, C. P.

    2015-01-28

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li{sup +} and LiI{sup +} ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V{sub XA} = 650(20) cm{sup −1}. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  4. Femtosecond pulse mode-locked VECSELs

    NASA Astrophysics Data System (ADS)

    Quarterman, A. H.; Wilcox, K. G.

    2014-03-01

    Femtosecond pulse mode-locked VECSELs have become a significant focus of research in the VECSEL community, with recent progress being made in several directions including power scaling. Power scaling advances in femtosecond VECSELs have included increasing the average power to over 5W [1], producing 3.3W average power with 400 fs pulses [2]. Here I report our recent work reducing the pulse duration of Watt-level VECSELs to 355 fs, and also developing approaches to reach sub-250-fs pulse durations using coherent broadening in photonic crystal fiber in the normal dispersion regime and a grating pulse compressor.

  5. Synthesis aperture femtosecond-pulsed digital holography

    NASA Astrophysics Data System (ADS)

    Zhu, Linwei; Sun, Meiyu; Chen, Jiannong; Yu, Yongjiang; Zhou, Changhe

    2013-09-01

    A new aperture-synthesis approach in femtosecond-pulse digital holography for obtaining a high-resolution and a whole field of view of the reconstructed image is proposed. The subholograms are recorded only by delay scanning holograms that have different delay times between the object and reference beams. In addition, by using image processing techniques, the synthesis aperture digital hologram can be superposed accurately. Analysis and experimental results show that the walk-off in femtosecond off-axis digital holography caused by low coherent can be well eliminated. The resolution and the field of view of the reconstructed image can be improved effectively.

  6. Modeling of cluster organization in metal-doped oxide glasses irradiated by a train of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Smetanina, Evgeniya; Chimier, Benoit; Petit, Yannick; Varkentina, Nadezda; Fargin, Evelyne; Hirsch, Lionel; Cardinal, Thierry; Canioni, Lionel; Duchateau, Guillaume

    2016-01-01

    The formation of silver cluster structures at submicrometer spatial scales under the irradiation by high-power femtosecond laser pulses with high repetition rate was observed in various glasses containing silver ions. In order to account for the formation of these structures in metal-doped glasses, we present a theoretical model for the organization of noble metallic clusters induced by a train of femtosecond laser pulses. The model includes photoionization and laser heating of the sample, diffusion, kinetic reactions, and dissociation of metallic species. This model was applied to reproduce the formation of cluster structures in silver-doped phosphate glass. The parameters of the silver structures were obtained numerically under various incident pulse intensities and number of pulses. Numerical modeling shows that the involved microscopic physical and chemical processes naturally lead to the emergence of a silver cluster organization, together with charge migration and subsequent trapping giving rise to a strong static electric field buried in the irradiated area as experimentally observed. Based on this modeling, a theoretical basis is provided for the design of new metallic cluster structures with nanoscale size.

  7. Generation of femtosecond to sub-femtosecond x-ray pulses in free-electron lasers

    NASA Astrophysics Data System (ADS)

    Ding, Yuantao

    2015-05-01

    Generation of high power, femtosecond to sub-femtosecond x-ray pulses is attracting much attention within the x-ray free-electron laser (FEL) user community. At the existing FEL facilities, such as the Linac Coherent Light Source at SLAC, several methods have been developed to produce such short x-rays. Low-charge operation mode and emittance-spoiling scheme have successfully delivered short pulses for user experiments with duration less than 10 fs. A nonlinear compression mode has been recently developed and the pulse duration could be about 200 as. We will review the recent experimental progress at the LCLS for achieving few-femtosecond x-rays, and also discuss other short pulse schemes for reaching sub-femtosecond regime.

  8. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials

    SciTech Connect

    Gallais, L. Douti, D.-B.; Commandré, M.; Batavičiūtė, G.; Pupka, E.; Ščiuka, M.; Smalakys, L.; Sirutkaitis, V.; Melninkaitis, A.

    2015-06-14

    An experimental and numerical study of the laser-induced damage of the surface of optical material in the femtosecond regime is presented. The objective of this work is to investigate the different processes involved as a function of the ratio of photon to bandgap energies and compare the results to models based on nonlinear ionization processes. Experimentally, the laser-induced damage threshold of optical materials has been studied in a range of wavelengths from 1030 nm (1.2 eV) to 310 nm (4 eV) with pulse durations of 100 fs with the use of an optical parametric amplifier system. Semi-conductors and dielectrics materials, in bulk or thin film forms, in a range of bandgap from 1 to 10 eV have been tested in order to investigate the scaling of the femtosecond laser damage threshold with the bandgap and photon energy. A model based on the Keldysh photo-ionization theory and the description of impact ionization by a multiple-rate-equation system is used to explain the dependence of laser-breakdown with the photon energy. The calculated damage fluence threshold is found to be consistent with experimental results. From these results, the relative importance of the ionization processes can be derived depending on material properties and irradiation conditions. Moreover, the observed damage morphologies can be described within the framework of the model by taking into account the dynamics of energy deposition with one dimensional propagation simulations in the excited material and thermodynamical considerations.

  9. Electron correlation effects on photoionization time delay in atomic Ar and Xe

    NASA Astrophysics Data System (ADS)

    Ganesan, A.; Saha, S.; Decshmukh, P. C.; Manson, S. T.; Kheifets, A. S.

    2016-05-01

    Time delay studies in photoionization processes have stimulated much interest as they provide valuable dynamical information about electron correlation and relativistic effects. In a recent work on Wigner time delay in the photoionization of noble gas atoms, it was found that correlations resulting from interchannel coupling involving shells with different principal quantum numbers have significant effects on 2s and 2p photoionization of Ne, 3s photoionization of Ar, and 3d photoionization of Kr. In the present work, photoionization time delay in inner and outer subshells of the noble gases Ar and Xe are examined by including electron correlations using different many body techniques: (i) the relativistic-random-phase approximation (RRPA), (ii) RRPA with relaxation, to include relaxation effects of the residual ion and (iii) the relativistic multiconfiguration Tamm-Dancoff (RMCTD) approximation. The (sometimes substantial) effects of the inclusion of non-RPA correlations on the photoionization Wigner time delay are reported. Work supported by DOE, Office of Chemical Sciences and DST (India).

  10. Photoionization and Recombination of ne IV and Excitation of NeV in Nebular Plasmas

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Palay, Ethan; Pradhan, Anil K.

    2013-06-01

    %TEXT OF YOUR ABSTRACT The inverse processes of photoionization and electron-ion recombination are dominant in photoionized astrophysical plasmas. They determine the ionization fractions in photoionization equilibrium, physical conditions, and chemical abundances. We employ the unified theory of electron-ion recombination to study photoionization of Ne IV in photoionized nebulae. That leads to the production of Ne V and spectral emission of forbidden optical and mid-infrared [Ne V] lines via collisional excitation. These lines are prominent in the observations made by infrared space observatories SPITZER, SOFIA, and HERSCHEL. The unified method for electronic recombination provides self-consistent data for photoionization and recombination that is necessary to eliminate uncertainties in the determination of ionization fractions. To wit: Precise abundance of neon in the Sun is unknown owing to lack of accurate atomic data. A 20-level wave function expansion is used for the calculations of photoionization, recombination, and collisional excitation employing the relativistic Breit-Pauli R-matrix method in the close coupling approximation. We find and delineate extensive resonance structures at low energies that considerably enhance the effective cross sections and rates in astrophysical sources. Acknowledgement: Partially supported by DOE and NSF. Computational work was carried out at the Ohio Supercomputer Center

  11. Molecular Photoionization Calculations Using the Complex Basis Function Method.

    NASA Astrophysics Data System (ADS)

    Yu, Chin-Hui

    The complex basis function method (CBF) using both real and complex basis functions has been applied to the calculation of photoionization cross sections. The CBF method requires less computational resources than rigorous full-scattering methods and is effective for the evaluation of shape-resonance features. Neither the number of electrons in the system nor the molecular geometry is restricted. Moreover, the cross section obtained by the CBF method satisfies a variational principle and provides a practical diagnostic tool for the calculation of cross sections. The photoionization cross sections of H _sp{2}{+}, H _2, N_2, CO _2, and SF_6 have been computed using the CBF method. The computed partial cross sections for linear molecules agreed fairly well with other theoretical and experimental values. Particularly encouraging is the nearly perfect agreement of the CBF results with the results by rigorous full-scattering methods in the regions of sharp resonance features such as the K-shell ionization of N_2 and the 4sigma_{rm g} --> ksigma_ {rm u} transition of CO _2. The effect of averaging over all vibrational modes on the ionization cross sections for the 4 sigma_{rm g} orbital in CO_2 has also been studied for the first time. The resonance peak in the totally vibrationally averaged cross sections was reduced by 20%, but still represents a feature which has not yet been detected experimentally. The photoionization of SF_6 valence shells, 1t_{1rm g} , 5t_{1rm u}, 1t_{2rm u}, 3e _{rm g}, 1t_ {2rm g}, 4t_{1 rm u}, and 5a_{1 rm g}, has also been studied for the continuum symmetries a_{1rm g }, t_{1rm u} , e_{rm g}, and t_{2rm g}. The CBF results of SF_6 are numerically stable and essentially approach the static-exchange limit. These static-exchange partial cross sections, however, do not compare well with the experimental measurements. The discrepancy may be attributed to the physical approximations made in the theoretical model and to the quality of the ground -state

  12. Superresolved femtosecond laser nanosurgery of cells

    PubMed Central

    Pospiech, Matthias; Emons, Moritz; Kuetemeyer, Kai; Heisterkamp, Alexander; Morgner, Uwe

    2011-01-01

    We report on femtosecond nanosurgery of fluorescently labeled structures in cells with a spatially superresolved laser beam. The focal spot width is reduced using phase filtering applied with a programmable phase modulator. A comprehensive statistical analysis of the resulting cuts demonstrates an achievable average resolution enhancement of 30 %. PMID:21339872

  13. Toward nanostructuring with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Korte, Frank; Koch, Juergen; Fallnich, Carsten; Ostendorf, Andreas; Chichkov, Boris N.

    2003-04-01

    The development of a simple laser-based technology for the fabrication of two-dimensional nanostructures with a structure size down to one hundred nanometers is reported. The ability to micro- and nano-structure is very important for the fabrication of new materials and multifunctional microdevices. Photolithographic technologies can be applied only for plane surfaces. Using femtosecond laser pulses one can fabricate 100 nm structures on arbitrary 3D-surfaces of metals and dielectrics. In principle, the minimum achievable structure size is determined by the diffraction limit of the optical system and is of the order of the radiation wavelength. However, this is different for material processing with ultrashort laser pulses. Due to a well-defined threshold character of material processing with femtosecond lasers one can beat the diffraction limit by using tightly focused femtosecond laser pulses and by adjusting laser parameters slightly above the processing threshold. In this case only the central part of the beam can modify the material and it becomes possible to produce sub-wavelength structures. In this presentation, sub-wavelength microstructuring of metals and fabrication of periodic nanostructures in transparent materials are demonstrated as promising femtosecond laser-based nanofabrication technologies.

  14. Atmospheric pressure femtosecond laser imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  15. Energy Correlation among Three Photoelectrons Emitted in Core-Valence-Valence Triple Photoionization of Ne

    SciTech Connect

    Hikosaka, Y.; Soejima, K.; Lablanquie, P.; Penent, F.; Palaudoux, J.; Andric, L.; Shigemasa, E.; Suzuki, I. H.; Nakano, M.; Ito, K.

    2011-09-09

    The direct observation of triple photoionization involving one inner shell and two valence electrons is reported. The energy distribution of the three photoelectrons emitted from Ne is obtained using a very efficient multielectron coincidence method using the magnetic bottle electron spectroscopic technique. A predominance of the direct path to triple photoionization for the formation of Ne{sup 3+} in the 1s2s{sup 2}2p{sup 4} configuration is observed. It is demonstrated that the energy distribution evolves with photon energy and indicates a significant difference with triple photoionization involving only valence electrons.

  16. Photoionization and photoabsorption cross sections for the aluminum iso-nuclear sequence

    SciTech Connect

    Witthoeft, M.C.; García, J.; Kallman, T.R.; Palmeri, P.; Quinet, P.

    2013-01-15

    K-shell photoionization and photoabsorption cross sections are presented for Li-like to Na-like Al. The calculations are performed using the Breit–Pauli R-matrix method where the effects of radiation and Auger dampings are included. We provide electronic data files for the raw cross sections as well as those convolved with a Gaussian of width ΔE/E=10{sup −4}. In addition to total cross sections for photoabsorption and photoionization, partial cross sections are available for photoionization.

  17. ATOMIC AND MOLECULAR PHYSICS: An alternative view of condensed-phase photoionization

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-Guang; Yang, Chuan-Lu; Gong, Yu-Bing; Wang, Mei-Shan

    2009-12-01

    This paper proposes an accurate valuable interpretation scheme to study the evolvement of the photoionization processes from the isolated to the condensed atoms by a unique ab initio method. The variations of the photoionization cross sections of the atomic sodium with the photoelectron energy and the boundary radius of the atomic configuration space are studied in this new scheme by the R-matrix method. The discrepancy in the photoionization spectra of the isolated and the condensed sodium has been explained quantitatively and understood successfully by this alternative view in detail for the first time.

  18. Dissociative and double photoionization of CO2 from threshold to 90 A

    NASA Technical Reports Server (NTRS)

    Masuoka, T.; Samson, J. A. R.

    1979-01-01

    The molecular photoionization, dissociative photoionization and double photoionization cross sections for CO2 were measured from their onsets down to 90 A by using various combinations of mass spectrometers (a coincidence time-of-flight mass spectrometer and a magnetic mass spectrometer) and light sources (synchrotron radiation, and glow and spark discharge). It is concluded that the one broad peak and the three shoulders in the total adsorption cross section curve between 640 and 90 A are caused completely by dissociative ionization processes. Several peaks observed in the cross section curve for the total fragmentation CO(+)3, O(+) and C(+) are compared with those in the photoelectron spectrum reported for CO2.

  19. Laser resonance photoionization spectroscopy of Rydberg levels in Fr

    SciTech Connect

    Andreev, S.V.; Letokhov, V.S.; Mishin, V.I.

    1987-09-21

    We investigated for the first time the high-lying Rydberg levels in the rare radioactive element francium (Fr). The investigations were conducted by the highly sensitive laser resonance atomic photoionization technique with Fr atoms produced at a rate of about 10/sup 3/ atoms/s in a hot cavity. We measured the wave numbers of the 7p/sup 2/P/sub 3/2/..-->..nd/sup 2/D (n = 22--33) and 7p/sup 2/P/sub 3/2/..-->..ns/sup 2/S (n = 23, 25--27,29--31) transitions and found the binding energy of the 7p/sup 2/P/sub 3/2/ state to be T = -18 924.8(3) cm/sup -1/, which made it possible to establish accurately the ionization potential of Fr.

  20. Double Photoionization of H2: Double Slit Interference?

    NASA Astrophysics Data System (ADS)

    Horner, Daniel; Miyabe, Shungo; Morales, Felipe; Martin, Fernando; Rescigno, Thomas; McCurdy, C. William

    2008-10-01

    Using the method of exterior complex scaling and the finite element discrete variable representation, we are able to compute accurate time-independent wave functions for the double photoionization of H2. Together with integral amplitude methods, these accurate wave function solutions allow us to calculate converged differential cross sections. We present the double differential cross section at photon energies between 130 eV and 240 eV. At these energies, recent experiments have observed angular distributions that were interpreted as double slit interference of the electrons ejected from near the two nuclei. With our theoretical methods, we are able to examine this question further and will offer an alternate interpretation based on the coherent mixture of parallel and perpendicular polarization in the circularly polarized light.