Science.gov

Sample records for femtosecond thz studies

  1. Femtosecond THz Studies of Intra-Excitonic Transitions

    SciTech Connect

    Huber, Rupert; Schmid, Ben A.; Kaindl, Robert A.; Chemla, Daniel S.

    2007-10-02

    Few-cycle THz pulses are employed to resonantly access the internal fine structure of photogenerated excitons in semiconductors, on the femtosecond time scale. This technique allows us to gain novel insight into many-body effects of excitons and reveal key quantum optical processes. We discuss experiments that monitor the density-dependent re?normalization of the binding energy of a high-density exciton gas in GaAs/AlGaAs quantum wells close to the Mott transition. In a dilute ensemble of 3p excitons in Cu2O, stimulated THz emission from internal transitions to the energetically lower 2s state is observed at a photon energy of 6.6 meV, with a cross section of 10-14 cm2. Simultaneous interband excitation of both exciton levels drives quantum beats, which cause efficient THz emission at the difference frequency. By extending this principle to various other exciton resonances, we develop a novel way of mapping the fine structure by two-dimensional THz emission spectroscopy.

  2. THz Generation and Propagation Using Femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Jeon, Tae-In

    There are several methods to generate and detect THz electromagnetic radiation whose frequency lies between the microwave and infrared regions of the spectrum. For example photoconductive switching, optical rectification, photomixing, Quantum cascade lasers, and free electrons laser are widely used methods to generate THz beam.

  3. Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Komlenok, M. S.; Volodkin, B. O.; Knyazev, B. A.; Kononenko, T. V.; Kononenko, V. V.; Konov, V. I.; Soifer, V. A.; Pavel'ev, V. S.; Tukmakov, K. N.; Choporova, Yu Yu

    2015-10-01

    The possibility of fabricating a silicon diffractive fourlevel THz Fresnel lens by laser ablation is studied. For a microrelief to be formed on the sample surface, use is made of a femtosecond Yb : YAG laser with a high pulse repetition rate (f = 200 kHz). Characteristics of the diffractive optical element are investigated in the beam of a 141-mm free-electron laser. The measured diffraction efficiency of the lens is in good agreement with the theoretical estimate.

  4. High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser

    NASA Astrophysics Data System (ADS)

    Füser, Heiko; Judaschke, Rolf; Bieler, Mark

    2011-09-01

    We perform high-precision frequency measurements in the THz frequency range using an unstabilized femtosecond laser. A simple and flexible algorithm is used to correct the beating signal resulting from the THz source and one comb line of the rectified optical comb for fluctuations of the laser repetition rate. Using this technique, we demonstrate an accuracy of our measurement device as high as (9 ± 3) . 10-14 for the measurement of a 100 GHz source. This is two orders of magnitude better than previous precision measurements in this frequency range employing femtosecond lasers.

  5. Study of supported phospholipid bilayers by THz-TDS

    NASA Astrophysics Data System (ADS)

    Ionescu, Alina; Mernea, Maria; Vasile, Ionut; Brandus, Catalina Alice; Barbinta-Patrascu, Marcela Elisabeta; Tugulea, Laura; Mihailescu, Dan; Dascalu, Traian

    2012-10-01

    Terahertz Time-Domain Spectroscopy (THz-TDS) is a new technique in studying the conformational state of molecules. Cell membranes are important structures in the interaction with extra cellular entities. Their principal building blocks are lipids, amphiphilic molecules that spontaneously self-assemble when in contact with water. In this work we report the use of THz-TDS in transmission mode to examine the behavior of supported phospholipid bilayers (SPBs) within the frequency range of 0.2 THz to 3 THz. SPBs were obtained by vesicle adsorption method involving the spread of a suspension (50-100 μl) of small unilamellar vesicles (SUVs) or multilamellar vesicles (MLVs) dissolved in PBS (phosphate buffer solution) on a support of silicon wafers. Both SUVs and MLVs were obtained from dipalmitoyl phosphatidylcholine (DPPC) and lecithin by using the thin-film hydration method. Broadband THz pulses are generated and detected using photoconductive antennas optically excited by a femtosecond laser pulse emitted from a self-mode locked fiber laser at a wavelength of 780 nm with a pulse widths of 150 fs. THz-TDS was proven to be a useful method in studying SPBs and their hydration states. The absorption coefficient and refractive index of the samples were calculated from THz measurements data. The THz absorption spectra for different lipids in SPBs indicate specific absorption frequency lines. A difference in the magnitude of the refractive index was also observed due to the different structure of supported lipid bilayers. The THz spectrum of DPPC was obtained by using theoretical simulations and then the experimental and theoretical THz spectra were compared.

  6. THz pump-THz probe study of electrostatically gated graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdi; Liu, Mengkun; Wagner, Martin; Basov, D. N.; Averitt, Richard D.

    2015-03-01

    We investigate ultrafast carrier dynamics in graphene using THz-pump THz-probe spectroscopy. In contrast to recent studies using optical excitation, THz excitation exclusively initiates intra-band transitions, resulting in an increase in the carrier scattering rate. The corresponding transient peak of the transmitted probe signal scales linearly with the E-field of the incident THz pump pulse. Further, the decay time of the excited carriers is independent of the gating voltage. As the Fermi level is tuned toward the charge neutral point (CNP) by varying the electrostatic gate voltage, the induced increase in transmission is strongly suppressed. We believe that the low density of states near the CNP is responsible for this suppression. Work supported by DOE-BES. RDA and JZ also with Boston University. ML also with Stony Brook University.

  7. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X.-C.

    2015-07-01

    Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research.

  8. High-power THz to IR emission by femtosecond laser irradiation of random 2D metallic nanostructures

    PubMed Central

    Zhang, Liangliang; Mu, Kaijun; Zhou, Yunsong; Wang, Hai; Zhang, Cunlin; Zhang, X.-C.

    2015-01-01

    Terahertz (THz) spectroscopic sensing and imaging has identified its potentials in a number of areas such as standoff security screening at portals, explosive detection at battle fields, bio-medical research, and so on. With these needs, the development of an intense and broadband THz source has been a focus of THz research. In this work, we report an intense (~10 mW) and ultra-broadband (~150 THz) THz to infrared (IR) source with a Gaussian wavefront, emitted from nano-pore-structured metallic thin films with femtosecond laser pulse excitation. The underlying mechanism has been proposed as thermal radiation. In addition, an intense coherent THz signal was generated through the optical rectification process simultaneously with the strong thermal signal. This unique feature opens up new avenues in biomedical research. PMID:26205611

  9. Study on the THz spectrum of methamphetamine

    NASA Astrophysics Data System (ADS)

    Ning, Li; Shen, Jingling; Jinhai, Sun; Laishun, Liang; Xu, Xiaoyu; Lu, Meihong; Yan, Jia

    2005-09-01

    The spectral absorption features of methamphetamine (MA), one of the most widely consumed illicit drugs in the world, are studied experimentally by Terahertz (THz) time-domain spectroscopy (THz-TDS), and the characteristic absorption spectra are obtained in the range of 0.2 to 2.6 THz. The vibrational frequencies are calculated using the density functional theory (DFT). Theoretical results show significant agreement with experimental results, and identification of vibrational modes are given. The calculated results further confirm that the characteristic frequencies come from the collective vibrational modes. The results suggest that use of the THz-TDS technique can be an effective way to inspect for illicit drugs.

  10. Design of Coherent Femto-Second THz Radiation Source Using 60-MeV Electron Linac

    NASA Astrophysics Data System (ADS)

    Kang, H. S.; Lim, C. M.; Kang, T. H.; Choi, J.; Ko, I. S.

    2007-01-01

    A coherent femto-second THz radiation source using 60-MeV electron linac is under construction at PAL. The linac consists of an S-band photocathode RF-gun, two S-band accelerating structures (AC1 and AC2), two chicane bunch compressors (Chicane-1 and Chicane-2), and a 1-m long planar undulator. Chicane 1 will be located between AC1 and AC2, and Chicane-2 after AC2. Two kinds of radiation sources will be prepared: optical transition radiation (OTR) after Chicane-2, and undulator radiation at the end of linac. The PARMELA code simulation result shows that the beam with 0.2 nC charge can be compressed down to a few tens of femto-second by Chicane-2 for OTR and also by Chicane-1 for undulator radiation. Beam dynamics design was also done for higher charge of 0.5nC, and the bunch length is expected to be about one hundred femto-seconds.

  11. Wakefields in THz cylindrical dielectric lined waveguides driven by femtosecond electron bunches

    NASA Astrophysics Data System (ADS)

    Nie, Yuancun

    2015-01-01

    This paper reports the wakefield effects driven by a high-intensity relativistic electron bunch in a dielectric lined waveguide (DLW). A state-of-the-art electron bunch is employed to serve as the drive bunch, which has an rms length of 10 μm, i.e. 33 fs, and a charge of 200 pC. Such bunch parameters are comparable to those of DESY's FLASH and SLAC's LCLS and FACET facilities. It is demonstrated that coherent Cherenkov radiation (CCR) at the fundamental mode with frequency above 1 THz and accelerating gradient as high as 2 GV/m can be obtained in a single layer cylindrical diamond-DLW structure, as long as the geometrical parameters of the DLW are properly selected to match the drive bunch. Wakefield-induced energy modulations on the drive bunch itself are studied as well, which can be used to reduce its energy spread or to produce microbunches with much shorter length from it. The simulated results agree well with the theoretical predictions. Such wakefields can be used to accelerate or modulate electron bunches with ultra-high gradients, and produce high power THz radiations directly. These properties have potential applications in the fields of compact colliders and advanced radiation sources.

  12. A Study of Electron and Phonon Dynamics by Broadband Two-Dimensional THz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Zhengping

    Terahertz (THz) wave interacts with semiconductors in many ways, such as resonant excitation of lattice vibration, intraband transition and polaron formation. Different from the optical waves, THz wave has lower photon energy (1 THz = 4.14 meV) and is suitable for studying dynamics of low-energy excitations. Recently the studies of the interaction of THz wave and semiconductors have been extending from the linear regime to the nonlinear regime, owing to the advance of the high-intensity THz generation and detection methods. Two-dimensional (2D) spectroscopy, as a useful tool to unravel the nonlinearity of materials, has been well developed in nuclear magnetic resonance and infrared region. However, the counterpart in THz region has not been well developed and was only demonstrated at frequency around 20 THz due to the lack of intense broadband THz sources. Using laser-induced plasma as the THz source, we developed collinear broadband 2D THz time-domain spectroscopy covering from 0.5 THz to 20 THz. Broadband intense THz pulses emitted from laser-induced plasma provide access to a variety of nonlinear properties of materials. Ultrafast optical and THz pulses make it possible to resolve the transient change of the material properties with temporal resolution of tens of femtoseconds. This thesis focuses on the linear and nonlinear interaction of the THz wave with semiconductors. Since a great many physical processes, including vibrational motion of lattice and plasma oscillation, has resonant frequency in the THz range, rich physics can be studies in our experiment. The thesis starts from the linear interaction of the THz wave with semiconductors. In the narrow band gap semiconductor InSb, the plasma absorption edge, Restrahlen band and dispersion of polaritons are observed. The nonlinear response of InSb in high THz field is verified in the frequency-resolved THz Z-scan experiment. The third harmonic generations due to the anharmonicity of plasma oscillation and the

  13. Temporal Characterization of Femtosecond Laser-Plasma-AcceleratedElectron Bunches using THz Radiation

    SciTech Connect

    van Tilborg, J.; Schroeder, C.B.; Filip, C.V.; Toth, Cs.; Geddes,C.G.R.; Fubiani, G.; Huber, R.; Kaindl, R.A.; Esarey, E.; Leemans, W.P.

    2005-07-12

    The temporal pro le of relativistic laser-plasma-acceleratedelectron bunches has been characterized. Coherent transition radiation atTHz frequencies, emitted at the plasma-vacuum boundary, is measuredthrough electro-optic sampling. The data indicates that THz radiation isemitted by a skewed bunch with a sub-50 fs rise time and a ~; 600 fs tail(half-width-at-half-maximum), consistent with ballistic debunching of 100percent-energy-spread beams. The measurement demonstrates bothshot-to-shot stability of the laser-plasma accelerator and femtosecondsynchronization between bunch and probe beam.

  14. A Study of Tunable Metamaterial Devices for the THz Region

    NASA Astrophysics Data System (ADS)

    Chikhi, N.; Di Gennaro, E.; Esposito, E.; Andreone, A.

    In order to cope with the "THz Gap", metamaterial based devices operating at about 1 THz have been designed to have a tunable response. We studied the electromagnetic behaviour of periodic structures consisting of different "unit cells" based on the concept of Split Ring Resonator (SRR). The devices response in the required frequency region is simulated using a commercial electromagnetic code. Different modulation mechanisms have been investigated, including the use of liquid crystals, MEMS, semiconducting substrates.

  15. Single-walled carbon nanotubes as base material for THz photoconductive switching: a theoretical study from input power to output THz emission.

    PubMed

    Heshmat, Barmak; Pahlevaninezhad, Hamid; Beard, Matthew Craig; Papadopoulos, Chris; Darcie, Thomas Edward

    2011-08-01

    This paper studies the relation between photoexcitation of a single-walled carbon nanotube (SWNT) based device, and its THz output power in the context of THz photoconductive (PC) switching and THz photomixing. A detailed approach of calculating output THz power for such a device describes the effect of each parameter on the performance of the THz PC switch and highlights the design dependent achievable limits. A numerical assessment, with typical values for each parameter, shows that-subject to thermal stability of the device-SWNT based PC switch can improve the output power by almost two orders of magnitudes compared to conventional materials such as LT-GaAs.

  16. Dielectric Study of Alcohols Using Broadband Terahertz Time Domain Spectroscopy (THz-TDS).

    NASA Astrophysics Data System (ADS)

    Sarkar, Sohini; Saha, Debasis; Banerjee, Sneha; Mukherjee, Arnab; Mandal, Pankaj

    2016-06-01

    Broadband Terahertz-Time Domain Spectroscopy (THz-TDS) (1-10 THz) has been utilized to study the complex dielectric properties of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 1-octanol. Previous reports on dielectric study of alcohols were limited to 5 THz. At THz (1 THz = 33.33 wn = 4 meV) frequency range (0.1 to 15 THz), the molecular reorientation and several intermolecular vibrations (local oscillation of dipoles) may coexist and contribute to the overall liquid dynamics. We find that the Debye type relaxations barely contribute beyond 1 THz, rather three harmonic oscillators dominate the entire spectral range. To get insights on the modes responsible for the observed absorption in THz frequency range, we performed all atom molecular dynamics (MD) using OPLS force field and ab initio quantum calculations. Combined experimental and theoretical study reveal that the complex dielectric functions of alcohols have contribution from a) alkyl group oscillation within H-bonded network ( 1 THz), b) intermolecular H-bond stretching ( 5 THz) , and c) librational motions in alcohols. The present work, therefore, complements all previous studies on alcohols at lower frequencies and provides a clear picture on them in a broad spectral range from microwave to 10 THz.

  17. Femtosecond optical studies of cuprates

    NASA Astrophysics Data System (ADS)

    Schneider, Michael L.; Rast, S.; Onellion, Marshall; Demsar, Jure; Taylor, Antoinette J.; Glinka, Yu D.; Tolk, Norman H.; Ren, Yuhang; Luepke, Gunter; Klimov, A.; Xu, Ying; Sobolewski, Roman; Si, Weidong; Zeng, X. H.; Soukiassian, A.; Xi, Xiaoxing; Abrecht, M.; Ariosa, Daniel; Pavuna, Davor; Manzke, Recardo; Printz, J. O.; Parkhurst, D. K.; Downum, K. E.; Guptasarma, P.; Bozovic, Ivan

    2002-11-01

    Femtosecond optical reflectivity measurements of La2-xSrxCuO4, La2CuO4+y, Bi2Sr2CuO6+z and Bi2Sr2CaCu2O8+δ thin films and single crystal samples indicate qualitative changes with fluence. At the lowest fluencies, there is a power law divergence in the relaxation time. The divergence has an onset temperature of 55+/-15K, independent of whether the sample is in the superconducting or normal states. At slightly higher fluencies, still perturbative, the additional response does not exhibit this power law divergence. At quite high fluencies- no longer perturbative- the metallic samples exhibit oscillations in the reflectivity amplitude. The period of these oscillations varies with the probe wavelength but not with the pump wavelength. The oscillations exhibit a decay time as long as 10 nsec.

  18. Time-resolved THz studies of carrier dynamics in semiconductors, superconductors, and strongly-correlated electron materials

    SciTech Connect

    Kaindl, Robert A.; Averitt, Richard D.

    2006-11-14

    materials occur at lower energies. The terahertz (THz) regime is particularly rich in such fundamental resonances. This includes ubiquitous lattice vibrations and low-energy collective oscillations of conduction charges. In nanoscale materials, band structure quantization also yields novel infrared and THz transitions, including intersubband absorption in quantum wells. The formation of excitons in turn leads to low-energy excitations analogous to inter-level transitions in atoms. In transition-metal oxides, fundamental excitation gaps arise from charge pairing into superconducting condensates and other correlated states. This motivates the use of ultrafast THz spectroscopy as a powerful tool to study light-matter interactions and microscopic processes in nanoscale and correlated-electron materials.A distinct advantage of coherent THz pulses is that the amplitude and phase of the electric field can be measured directly, as the THz fields are coherent with the fs pulses from which they are generated. Using THz time-domain spectroscopy (THz-TDS), both the real and imaginary parts of the response functions (such as the dielectric function) are obtained directly without the need for Kramers?Kronig transforms. The THz response can also be expressed in terms of absorption and refractive index, or as the optical conductivity. The optical conductivity describes the current response of a many-body system to an electric field, an ideal tool to study conducting systems. A second important advantage is the ultrafast time resolution that results from the short temporal duration of the THz time-domain sources. In particular, optical-pump THz-probe spectroscopy enables a delicate probe of the transient THz conductivity after optical photoexcitation. These experiments can provide insight into quasiparticle interactions, phase transitions, or nonequilibrium dynamics. In this chapter we will provide many such examples. Since THz spectroscopy of solids is a quickly expanding field

  19. Femtosecond laser studies of ultrafast intramolecular processes

    SciTech Connect

    Hayden, C.

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  20. State-of-the-art exposure chamber for highly controlled and reproducible THz biological effects studies

    NASA Astrophysics Data System (ADS)

    Cerna, Cesario Z.; Elam, David P.; Echchgadda, Ibtissam; Sloan, Mark A.; Wilmink, Gerald J.

    2014-03-01

    Terahertz (THz) imaging and sensing technologies are increasingly being used at international airports for security screening purposes and at major medical centers for cancer and burn diagnosis. The emergence of new THz applications has directly resulted in an increased interest regarding the biological effects associated with this frequency range. Knowledge of THz biological effects is also desired for the safe use of THz systems, identification of health hazards, and development of empirically-based safety standards. In this study, we developed a state-of-the-art exposure chamber that allowed for highly controlled and reproducible studies of THz biological effects. This innovative system incorporated an industry grade cell incubator system that permitted a highly controlled exposure environment, where temperatures could be maintained at 37 °C +/- 0.1 °C, carbon dioxide (CO2) levels at 5% +/- 0.1%, and relative humidity (RH) levels at 95% +/- 1%. To maximize the THz power transmitted to the cell culture region inside the humid incubator, a secondary custom micro-chamber was fabricated and incorporated into the system. This micro-chamber shields the THz beam from the incubator environment and could be nitrogen-purged to eliminate water absorption effects. Additionally, a microscope that allowed for real-time visualization of the live cells before, during, and after THz exposure was integrated into the exposure system.

  1. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Study on the characteristics of linac based THz light source

    NASA Astrophysics Data System (ADS)

    Zhu, Xiong-Wei; Wang, Shu-Hong; Chen, Sen-Yu

    2009-10-01

    There are many methods based on linac for THz radiation production. As one of the options for the Beijing Advanced Light, an ERL test facility is proposed for THz radiation. In this test facility, there are 4 kinds of methods to produce THz radiation: coherent synchrotron radiation (CSR), synchrotron radiation (SR), low gain FEL oscillator, and high gain SASE FEL. In this paper, we study the characteristics of the 4 kinds of THz light sources.

  2. Quantitative study of rectangular waveguide behavior in the THz.

    SciTech Connect

    Rowen, Adam M.; Nordquist, Christopher Daniel; Wanke, Michael Clement

    2009-10-01

    This report describes our efforts to quantify the behavior of micro-fabricated THz rectangular waveguides on a configurable, robust semiconductor-based platform. These waveguides are an enabling technology for coupling THz radiation directly from or to lasers, mixers, detectors, antennas, and other devices. Traditional waveguides fabricated on semiconductor platforms such as dielectric guides in the infrared or co-planar waveguides in the microwave regions, suffer high absorption and radiative losses in the THz. The former leads to very short propagation lengths, while the latter will lead to unwanted radiation modes and/or crosstalk in integrated devices. This project exploited the initial developments of THz micro-machined rectangular waveguides developed under the THz Grand Challenge Program, but instead of focusing on THz transceiver integration, this project focused on exploring the propagation loss and far-field radiation patterns of the waveguides. During the 9 month duration of this project we were able to reproduce the waveguide loss per unit of length in the waveguides and started to explore how the loss depended on wavelength. We also explored the far-field beam patterns emitted by H-plane horn antennas attached to the waveguides. In the process we learned that the method of measuring the beam patterns has a significant impact on what is actually measured, and this may have an effect on most of the beam patterns of THz that have been reported to date. The beam pattern measurements improved significantly throughout the project, but more refinements of the measurement are required before a definitive determination of the beam-pattern can be made.

  3. Atmospheric propagation of THz radiation.

    SciTech Connect

    Wanke, Michael Clement; Mangan, Michael A.; Foltynowicz, Robert J.

    2005-11-01

    In this investigation, we conduct a literature study of the best experimental and theoretical data available for thin and thick atmospheres on THz radiation propagation from 0.1 to 10 THz. We determined that for thick atmospheres no data exists beyond 450 GHz. For thin atmospheres data exists from 0.35 to 1.2 THz. We were successful in using FASE code with the HITRAN database to simulate the THz transmission spectrum for Mauna Kea from 0.1 to 2 THz. Lastly, we successfully measured the THz transmission spectra of laboratory atmospheres at relative humidities of 18 and 27%. In general, we found that an increase in the water content of the atmosphere led to a decrease in the THz transmission. We identified two potential windows in an Albuquerque atmosphere for THz propagation which were the regions from 1.2 to 1.4 THz and 1.4 to 1.6 THz.

  4. Investigation of non-equilibrium electron-hole plasma in nanowires by THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Cirlin, G. E.; Buyskih, A. C.; Bouravlev, A. D.; Samsonenko, Yu. B.; Kaliteevski, M. A.; Gallant, A. J.; Zeze, D.

    2016-05-01

    Efficient emission of THz radiation by AlGaAs nanowires via excitation of photocurrent by femtosecond optical pulses in nanowires was observed. Dynamics of photoinduced charge carrier was studied via influence of electron-hole plasma on THz radiation by optical pump THz probe method. It was found that characteristic time of screening of contact field is about 15 ps. Recombination of non-equilibrium occurs in two stages: fast recombination of free electron and holes (with relaxation time about 700 ps), and slow recombination (with relaxation time about 15 ns), which involves a capture of electrons and holes on the defects of crystalline structure of nanowires.

  5. Pilot clinical study to investigate the human whole blood spectrum characteristics in the sub-THz region

    NASA Astrophysics Data System (ADS)

    Tseng, Tzu-Fang; You, Borwen; Gao, Hao-Cheng; Wang, Tzung-Dau; Sun, Chi-Kuang

    2015-04-01

    We have conducted a pilot clinical study to not only investigate the THz spectra of ex-vivo fresh human whole blood of 28 patients following 8-hours fasting guideline, but also to find out the critical blood ingredients of which the concentration dominantly affects those THz spectra. A great difference between the THz absorption properties of human blood among different people was observed, while the difference can be up to ~15% of the averaged absorption coefficient of the 28 samples. Our pilot clinical study indicates that triglyceride and red blood cell were two dominant factors to have significant clinically defined negative correlation to the sub-THz absorption coefficients.

  6. Femtosecond Studies of Electrons at Interfaces

    NASA Astrophysics Data System (ADS)

    Harris, Charles

    2000-03-01

    Binding energies and ultrafast relaxation dynamics of image electrons reflect the nature of the electronic interaction with both the substrate and the adsorbed layer[1,2]. We demonstrate that a positive(attractive) affinity materials, such as Xe overlayers, lead to quantum well states at the interface. Negative(repulsive) affinity materials, such a n-alkane overlayers, present a tunneling barrier that dominates the energies and lifetimes of the image electrons. With the time- and angle-resolved two-photon photoemission technique(TPPE), it is possible to directly observe the dynamics of interfacial electrons with specific energy and parallel momentum. Oscillation in the lifetime of image state electrons as a function of Xe layer thickness is attributed to a quantum size effect and the formation of quantum wells at the Xe/Ag(111) interface[3]. Binding energy measurements as a function of Xe layer thickness in combination with parallel dispersion measurements allow the mapping of the three dimensional electronic structure of bulk Xe. At the n-alkane/Ag(111) interface, image electrons become spatially localized and self-trap into a small polaron state within a few hundred femtosecond[4]. The energy dependence of the self-trapping rate has been modeled with a theory analogous to electron transfer theory. Finally, the immediate extension of this research to study other electron dynamic processes, such as two dimensional electron solvation at interfaces, will be discussed. [1] Fauster, T.; Steinmann, W. Two-Photon Photoemission Spectroscopy of Image States. In Photonic Probes of Surfaces; Halevi, P., Ed.; Elsevier: Amsterdam, 1995; pp. 346-411. [2] Harris, C.B.; Ge, N.-H.; Lingle, Jr., R.L.; McNeill, J.D.; Wong, C.M. Annu. Rev. Phys. Chem. 1997, 48, 711. [3] McNeill, J.D.; Lingle, R.L.,Jr.; Ge, N.-H.; Wong, C.M.; Jordan, R.E.; Harris, C.B. Phys. Rev. Lett. 1997, 79, 4645. [4] Ge, N.-H.; Wong, C.M.; Lingle, R.L., Jr.; McNeill, J.D.; Gaffney, K.J.; Harris, C.B. Science 1998

  7. Generation of 0.19-mJ THz pulses in LiNbO3 driven by 800-nm femtosecond laser.

    PubMed

    Zhong, Sen-Cheng; Li, Jun; Zhai, Zhao-Hui; Zhu, Li-Guo; Li, Jiang; Zhou, Ping-Wei; Zhao, Jian-Heng; Li, Ze-Ren

    2016-06-27

    A cylindrical lens telescope tilted-pulse-front pumping scheme was proposed for high energy terahertz (THz) pulse generation. This scheme allows higher pump energy to be used with lower saturation effects under high pump fluence, and higher THz generation efficiency was achieved within large range of pump energy. The optimum pump pulse duration and crystal cooling temperature for THz generation in LiNbO3 (LN) crystal were also researched systematically. Excited by 800-nm laser, up to 0.19 mJ THz pulse energy and 0.27% conversion efficiency was demonstrated under 800-nm 400-fs laser excitation with ~100-mJ pulse energy and 150-K LN cooling temperature. PMID:27410634

  8. Dielectric response of pure and doped-GaSe crystals studied by an indigenously developed broadband THz-TDS system

    NASA Astrophysics Data System (ADS)

    Das, Amit C.; Bhattacharya, S.; Mandal, K. C.; Mondal, S.; Jewariya, M.; Ozaki, T.; Bhaktha, S. N. B.; Datta, P. K.

    2016-04-01

    Publisher's Note: This paper, originally published on 12 July 2016, was replaced with a corrected/revised version on 26 July 2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. We have developed a terahertz time domain spectroscopy system (THz TDS). For THz generation, optical rectification process and for detection, electro-optic sampling processes are used. Identical < 110 > cut ZnTe crystals are used for both generation and detection of THz radiation.This spectroscopy system can be used for the noninvasive and contactless electrical and optical characterizations of various samples. In this work spectroscopic measurements of pure, Chromium and Indium doped GaSe crystals within 0.4 THz to 3 THz range are taken by the developed set-up to study the dielectric response of the samples.

  9. Studies on spectroscopy of glycerol in THz range using microfluidic chip-integrated micropump

    NASA Astrophysics Data System (ADS)

    Su, Bo; Han, Xue; Wu, Ying; Zhang, Cunlin

    2014-11-01

    Terahertz time-domain spectroscopy (THz-TDS) is a detection method of biological molecules with label-free, non-ionizing, non-intrusive, no pollution and real-time monitoring. But owing to the strong THz absorption by water, it is mainly used in the solid state detection of biological molecules. In this paper, we present a microfluidic chip technique for detecting biological liquid samples using the transmission type of THz-TDS system. The microfluidic channel of the microfluidic chip is fabricated in the quartz glass using Micro-Electro-Mechanical System (MEMS) technology and sealed with polydimethylsiloxane (PDMS) diaphragm. The length, width and depth of the microfluidic channel are 25mm, 100μm and 50μm, respectively. The diameter of THz detection zone in the microfluidic channel is 4mm. The thicknesses of quartz glass and PDMS diaphragm are 1mm and 250μm, individually. Another one of the same quartz glass is used to bond with the PDMS for the rigidity and air tightness of the microfluidic chip. In order to realize the automation of sampling and improve the control precise of fluid, a micropump, which comprises PDMS diaphragm, pump chamber, diffuser and nozzle and flat vibration motor, is integrated on the microfluidic chip. The diffuser and nozzle are fabricated on both sides of the pump chamber, which is covered with PDMS diaphragm. The flat vibration motor is stuck on the PDMS diaphragm as the actuator. We study the terahertz absorption spectroscopy characteristics of glycerol with the concentration of 98% in the microfluidic chip by the aid of the THz-TDS system, and the feasibility of the microfluidic chip for the detection of liquid samples is proved.

  10. Femtosecond transient stimulated emission pumping studies of ozone visible photodissociation

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Hunziker, L.; Ludowise, P.; Morgen, M.

    1992-08-01

    A white-light continuum and multichannel detection is used to develop a zero-background multiplex-detected femtosecond transition-state spectroscopic technique. The initial application of transient stimulated emission pumping (TSEP) to studies of ozone visible photodissociation makes possible the direct visualization of wave packet motion on complicated potential energy surfaces. It is found from the TSEP spectrum that, upon photoexcitation, the ozone molecule is trapped in the Franck-Condon regime for a time of 90 fs.

  11. Numerical study on a 0.4 THz second harmonic gyrotron with high power

    SciTech Connect

    Chaojun, Lei; Sheng, Yu; Hongfu, Li; Yinghui, Liu; Xinjian, Niu; Qixiang, Zhao

    2013-07-15

    Terahertz and sub-terahertz science and technology are promising topics today. However, it is difficult to obtain high power source of terahertz wave. In this paper, the mode competition and beam-wave interaction in a gradually tapered cavity are studied to achieve high efficiency of a 0.4THz second harmonic gyrotron in practice. In order to attain high power and stable radiation, the TE{sub 32,5} mode is selected as the operating mode of the desired gyrotron to realize single mode oscillation. The issues of studying on the high-order mode gyrotrons are solved effectively by transforming the generalized telegraphist's equations. The efficiency and output power of the gyrotron under different conditions have been calculated by the code, which is based on the transformed equations. Consequently, the results show that single mode second harmonic radiation with power of over 150 kW at frequency of 0.4 THz could be achieved.

  12. Numerical study on a 0.4 THz second harmonic gyrotron with high power

    NASA Astrophysics Data System (ADS)

    Chaojun, Lei; Sheng, Yu; Hongfu, Li; Yinghui, Liu; Xinjian, Niu; Qixiang, Zhao

    2013-07-01

    Terahertz and sub-terahertz science and technology are promising topics today. However, it is difficult to obtain high power source of terahertz wave. In this paper, the mode competition and beam-wave interaction in a gradually tapered cavity are studied to achieve high efficiency of a 0.4THz second harmonic gyrotron in practice. In order to attain high power and stable radiation, the TE32,5 mode is selected as the operating mode of the desired gyrotron to realize single mode oscillation. The issues of studying on the high-order mode gyrotrons are solved effectively by transforming the generalized telegraphist's equations. The efficiency and output power of the gyrotron under different conditions have been calculated by the code, which is based on the transformed equations. Consequently, the results show that single mode second harmonic radiation with power of over 150 kW at frequency of 0.4 THz could be achieved.

  13. Intraocular Lens Fragmentation Using Femtosecond Laser: An In Vitro Study

    PubMed Central

    Bala, Chandra; Shi, Jeffrey; Meades, Kerrie

    2015-01-01

    Purpose: To transect intraocular lenses (IOLs) using a femtosecond laser in cadaveric human eyes. To determine the optimal in vitro settings, to detect and characterize gasses or particles generated during this process. Methods: A femtosecond laser was used to transect hydrophobic and hydrophilic acrylic lenses. The settings required to enable easy separation of the lens fragment were determined. The gasses and particles generated were analysed using gas chromatography mass spectrometer (GC-MS) and total organic carbon analyzer (TOC), respectively. Results: In vitro the IOL fragments easily separated at the lowest commercially available energy setting of 1 μJ, 8-μm spot, and 2-μm line separation. No particles were detected in the 0.5- to 900-μm range. No significant gasses or other organic breakdown by products were detected at this setting. At much higher energy levels 12 μJ (4 × 6 μm spot and line separation) significant pyrolytic products were detected, which could be harmful to the eye. In cadaveric explanted IOL capsule complex the laser pulses could be applied through the capsule to the IOL and successfully fragment the IOL. Conclusion: IOL transection is feasible with femtosecond lasers. Further in vivo animal studies are required to confirm safety. Translational Relevance: In clinical practice there are a number of large intraocular lenses that can be difficult to explant. This in-vitro study examines the possibility of transecting the lasers quickly using femtosecond lasers. If in-vivo studies are successful, then this innovation could help ophthalmic surgeons in IOL explantation. PMID:26101721

  14. Theoretical study on a 0.6 THz third harmonic gyrotron

    SciTech Connect

    Yuan Xuesong; Ma Chunyan; Han Yu; Yan Yang; Lan Ying

    2011-10-15

    A theoretical study on a 0.6 THz third harmonic TE{sub 37} mode gyrotron oscillator is reported in this paper in order to develop a compact, reliable, and high power terahertz radiation source. An output power of 4 kW can be generated in the TE{sub 37} mode (0.6 THz) at a resonant magnetic field of 7.86 T by the gyrotron oscillator operating at 55 kV/2 A with an electron beam radius of 0.32 mm. A magnetron injection gun (MIG) with high compression ratio has been designed. The simulation results of MIG show that the velocity ratio {alpha} is 1.37, and the perpendicular velocity spread and parallel velocity spread are 6.1% and 8.9%, respectively.

  15. Dispersion properties of sulfur doped gallium selenide crystals studied by THz TDS.

    PubMed

    Naftaly, Mira; Molloy, John F; Andreev, Yury M; Kokh, Konstantin A; Lanskii, Grigory V; Svetlichnyi, Valery A

    2015-12-14

    High optical quality nonlinear crystals of solid solution GaSe(1-x)S(x), x=0, 0.05, 0.11, 0.22, 0.29, 0.44, 1 were grown by modified Bridgman method with heat field rotation. Ordinary and extraordinary wave dispersion was studied in detail as a function of sulfur content by terahertz time-domain spectroscopy (THz TDS) in the 0.3-4 THz range using cleaved and processed (cut and polished) crystals. Suitable dispersion equations for different parts of the entire transparency range were derived, utilizing comparative analyses of the measured data, the available published data, and approximations in the form of Sellmeier equations. A criterion was proposed for selecting measurement results of adequate quality, based on the etalon patterns in the transmission spectrum.

  16. Pilot clinical study to investigate the human whole blood spectrum characteristics in the sub-THz region.

    PubMed

    Tseng, Tzu-Fang; You, Borwen; Gao, Hao-Cheng; Wang, Tzung-Dau; Sun, Chi-Kuang

    2015-04-01

    We have conducted a pilot clinical study to not only investigate the sub-THz spectra of ex-vivo fresh human whole blood of 28 patients following 8-hours fasting guideline, but also to find out the critical blood ingredients of which the concentration dominantly affects those sub-THz spectra. A great difference between the sub-THz absorption properties of human blood among different people was observed, while the difference can be up to ~15% of the averaged absorption coefficient of the 28 samples. Our pilot clinical study indicates that triglycerides and the number of red blood cells were two dominant factors to have significant negative correlation to the sub-THz absorption coefficients. PMID:25968774

  17. Morphological study of human sweat ducts for the investigation of THz-wave interaction (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Tripathi, Saroj R.

    2016-03-01

    Recently, some studies reported that the sweat ducts act as a low-Q-factor helical antenna due to their helical structure, and resonate in the terahertz frequency range according to their structural parameters. According to the antenna theory, when the duct works as a helical antenna, the dimension of the helix plays a key role to determine the frequency of resonance. Therefore, the accurate determination of structural parameters of sweat duct is crucially important to obtain the reliable frequency of resonance and modes of operations. Therefore, here we performed the optical coherence tomography (OCT) of human subjects on their palm and foot to investigate the density, distribution and morphological features of sweat ducts. Moreover, we measured the dielectric properties of stratum corneum using terahertz time domain spectroscopy and based upon this information, we determined the frequency of resonance. We recruited 32 subjects for the measurement and the average duct diameter was 95±11μm. Based upon this information on diameter of duct and THz dielectric properties of stratum corneum (ɛ=5.1±1.3), we have calculated the frequency of resonance of sweat duct. Finally, we determined that the center frequency of resonance was 442±76 GHz. We believe that these findings will facilitate further investigation of the THz-skin interaction and provide guidelines for safety levels with respect to human exposure. We will also report on the EEG measurement while being shined by micro watt order THz waves.

  18. A comparative study of the plasmon effect in nanoelectrode THz emitters: Pulse vs. continuous-wave radiation

    NASA Astrophysics Data System (ADS)

    Moon, Kiwon; Lee, Eui Su; Choi, Jeongyong; Lee, Donghun; Lee, Il-Min; Han, Sang-Pil; Kim, Hyun-Soo; Park, Kyung Hyun

    2016-08-01

    Plasmonic field enhancement in terahertz (THz) generation is one of the recently arisen techniques in the THz field that has attracted considerable interest. However, the reported levels of enhancement of THz output power in the literature are significantly different from each other, from less than two times to about two orders of magnitude of enhancement in power, which implies the existence of other major limiting factors yet to be revealed. In this work, the contribution of the plasmonic effect to the power enhancement of THz emitters is revisited. We show that the carrier collection efficiency in a THz emitter with plasmonic nanostructures is more critical to the device performance than the plasmonic field enhancement itself. The strong reverse fields induced by the highly localized plasmonic carriers in the vicinity of the nanoelectrodes screen the carrier collections and seriously limit the power enhancement. This is supported by our experimental observations of the significantly enhanced power in a plasmonic nanoelectrode THz emitter in continuous-wave radiation mode, while the same device has limited enhancement with pulsed radiation. We hope that our study may provide an intuitive but practical guideline in adopting plasmonic nanostructures with an aim of enhancing the efficiency of optoelectronic devices.

  19. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    SciTech Connect

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko; Midorikawa, Katsumi

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changing the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.

  20. Photon transport of the superradiant TeraFERMI THz beamline at the FERMI free-electron laser.

    PubMed

    Svetina, Cristian; Mahne, Nicola; Raimondi, Lorenzo; Perucchi, Andrea; Di Pietro, Paola; Lupi, Stefano; Schmidt, Bernhard; Zangrando, Marco

    2016-01-01

    TeraFERMI is the new terahertz (THz) beamline for pump-probe studies on the femtosecond time-scale, under construction at the FERMI free-electron laser (FEL) facility in Trieste, Italy. The beamline will take advantage of the coherent radiation emitted by the spent electrons from the FEL undulators, before being dumped. This will result in short, coherent, high-power THz pulses to be used as a pump beam, in order to modulate structural properties of matter, thereby inducing phase transitions. The TeraFERMI beamline collects THz radiation in the undulator hall and guides it along a beam pipe which is approximately 30 m long, extending across the safety hutch and two shielding walls. Here the optical design, which will allow the efficient transport of the emitted THz radiation in the experimental hall, is presented. PMID:26698051

  1. Optimization study of the femtosecond laser-induced forward-transfer process with thin aluminum films

    NASA Astrophysics Data System (ADS)

    Bera, Sudipta; Sabbah, A. J.; Yarbrough, J. M.; Allen, C. G.; Winters, Beau; Durfee, Charles G.; Squier, Jeff A.

    2007-07-01

    The parameters for an effective laser-induced forward-transfer (LIFT) process of aluminum thin films using a femtosecond laser are studied. Deposited feature size as a function of laser fluence, donor film thickness, quality of focus, and the pulse duration are varied, providing a metric of the most desirable conditions for femtosecond LIFT with thin aluminum films.

  2. Quantum cascade laser THz metrology

    NASA Astrophysics Data System (ADS)

    De Natale, P.; Consolino, L.; Mazzotti, D.; Campa, A.; Ravaro, M.; Vitiello, M. S.; Bartalini, S.

    2015-01-01

    The realization and control of radiation sources is the key for proper development of THz-based metrology. Quantum Cascade Lasers (QCLs) are crucial, towards this purpose, due to their compactness and flexibility and, even more important, to their narrow quantum-limited linewidth. We recently generated an air-propagating THz comb, referenced to an optical frequency comb by nonlinear optical rectification of a mode-locked femtosecond Ti:Sa laser and used it for phase-locking a 2.5 THz QCL. We have now demonstrated that this source can achieve a record low 10 parts per trillion absolute frequency stability (in tens of seconds), enabling high precision molecular spectroscopy. As a proof-ofprinciple, we measured the frequency of a rotational transition in a gas molecule (methanol) with an unprecedented precision (4 parts in one billion). A simple, though sensitive, direct absorption spectroscopy set-up could be used thanks to the mW-level power available from the QCL. The 10 kHz uncertainty level ranks this technique among the most precise ever developed in the THz range, challenging present theoretical molecular models. Hence, we expect that this new class of THz spectrometers opens new scenarios for metrological-grade molecular physics, including novel THzbased astronomy, high-precision trace-gas sensing, cold molecules physics, also helping to improve present theoretical models.

  3. Bi-Plasma Interactions on Femtosecond Time-Scales

    SciTech Connect

    Not Available

    2011-06-22

    Ultrafast THz radiation has important applications in materials science studies, such as characterizing transport properties, studying the vibrational response of materials, and in recent years, controlling materials and elucidating their response in intense electromagnetic fields. THz fields can be generated in a lab setting using various plasma-based techniques. This study seeks to examine the interaction of two plasmas in order to better understand the fundamental physics associated with femtosecond filamentation processes and to achieve more efficient THz generation in a lab setting. The intensity of fluorescence in the region of overlap was measured as a function of polarization, power, and relative time delay of the two plasma-generating laser beams. Results of time dependent intensity studies indicate strikingly similar behaviors across polarizations and power levels; a sudden intensity spike was observed at time-zero, followed by a secondary maxima and subsequent decay to the initial plasma intensity. Dependence of the intensity on the power through either beam arm was also observed. Spectral studies of the enhanced emission were also carried out. Although this physical phenomenon is still not fully understood, future studies, including further spectral analysis of the fluorescence overlap, could yield new insight into the ultrafast processes occurring at the intersection of femtosecond filaments, and would provide a better understanding of the mechanisms for enhanced THz production.

  4. THz wave sensing for petroleum industrial applications

    NASA Astrophysics Data System (ADS)

    Al-Douseri, Fatemah M.; Chen, Yunqing; Zhang, X.-C.

    2006-04-01

    We present the results of terahertz (THz) sensing of gasoline products. The frequency-dependent absorption coefficients, refractive indices, and complex dielectric constants of gasoline and xylene isomers were extracted in the spectral range from 0.5 3.0 THz. The THz spectra of gasoline (#87, #89, #93) and related BTEX (benzene, toluene, ethylbenzene, and xylene) compounds were studied by using Fourier transform infrared spectroscopy (FTIR) in the 1.5 20 THz (50 660 cm-1). The xylene isomers, which are used as antiknock agent in gasoline were determined quantitatively in gasoline in the THz range. Our investigations show the potential of THz technology for the petroleum industrial applications.

  5. Thermally induced percolational transition and thermal stability of silver nanowire networks studied by THz spectroscopy.

    PubMed

    Chen, Jing-Zhi; Ahn, Hyeyoung; Yen, Shin-Chun; Tsai, Yao-Jiun

    2014-12-10

    Great demand toward flexible optoelectronic devices finds metal nanowires (NWs) the most promising flexible transparent conducting material with superior mechanical properties. However, ultrathin metal nanowires suffer from relatively poor thermal stability and sheet conductance, attributed to the poor adhesivity of the ohmic contact between nanowires. Thermal heating and annealing at 200 °C increase the conductivity of the metal network, but prolonged annealing accelerates the breakage of NWs near the NW junction and the formation of Ag droplets. In this study, the thermal stability of silver NW (AgNW) films is investigated through the in situ measurements of sheet resistance and terahertz (THz) conductivity. With the improved ohmic contact at the NW junctions by heating, a characteristic transition from the subpercolative to percolative network is observed by in situ THz spectroscopy. It is found that stamp-transferred graphene incorporated with a near-percolative AgNW network can dramatically enhance the thermal stability of the graphene-AgNW (GAgNW) hybrid film. In both in situ measurements, little variation of physical parameters in GAgNW film is observed for up to 3 h of annealing. The presented results offer the potential of graphene-incorporated metal nanowire film as a highly conductive electrode that also has high thermal stability and excellent transparency for next-generation electronics and optoelectronics on flexible substrates. PMID:25402346

  6. Structure and dynamics of aqueous 2-propanol: a THz-TDS, NMR and neutron diffraction study.

    PubMed

    McGregor, James; Li, Ruoyu; Zeitler, J Axel; D'Agostino, Carmine; Collins, James H P; Mantle, Mick D; Manyar, Haresh; Holbrey, John D; Falkowska, Marta; Youngs, Tristan G A; Hardacre, Christopher; Stitt, E Hugh; Gladden, Lynn F

    2015-11-11

    Aqueous liquid mixtures, in particular, those involving amphiphilic species, play an important role in many physical, chemical and biological processes. Of particular interest are alcohol/water mixtures; however, the structural dynamics of such systems are still not fully understood. Herein, a combination of terahertz time-domain spectroscopy (THz-TDS) and NMR relaxation time analysis has been applied to investigate 2-propanol/water mixtures across the entire composition range; while neutron diffraction studies have been carried out at two specific concentrations. Excellent agreement is seen between the techniques with a maximum in both the relative absorption coefficient and the activation energy to molecular motion occurring at ∼90 mol% H2O. Furthermore, this is the same value at which well-established excess thermodynamic functions exhibit a maximum/minimum. Additionally, both neutron diffraction and THz-TDS have been used to provide estimates of the size of the hydration shell around 2-propanol in solution. Both methods determine that between 4 and 5 H2O molecules per 2-propanol are found in the 2-propanol/water clusters at 90 mol% H2O. Based on the acquired data, a description of the structure of 2-propanol/water across the composition range is presented.

  7. THz generation from plasmonic nanoparticle arrays.

    PubMed

    Polyushkin, D K; Hendry, E; Stone, E K; Barnes, W L

    2011-11-01

    We investigate the generation of THz pulses when arrays of silver nanoparticles are irradiated by femtosecond laser pulses, providing the first reproducible experimental evidence in support of recent theoretical predictions of such an effect. We assess our results in the context of a model where photoelectrons are produced by plasmon-mediated multiphoton excitation, and THz radiation is generated via the acceleration of the ejected electrons by ponderomotive forces arising from the inhomogeneous plasmon field. By exploring the dependence of the THz emission on the femtosecond pulse intensity and as a function of metal nanoparticle morphology, and by comparing measurements to numerical modeling, we are able to verify the role of the particle plasmon mode in this process.

  8. Studying femtosecond-laser hyperdoping by controlling surface morphology

    SciTech Connect

    Winkler, Mark T.; Sher, Meng-Ju; Lin Yuting; Zhang, Haifei; Smith, Matthew J.; Gradecak, Silvija; Mazur, Eric

    2012-05-01

    We study the fundamental properties of femtosecond-laser (fs-laser) hyperdoping by developing techniques to control the surface morphology following laser irradiation. By decoupling the formation of surface roughness from the doping process, we study the structural and electronic properties of fs-laser doped silicon. These experiments are a necessary step toward developing predictive models of the doping process. We use a single fs-laser pulse to dope silicon with sulfur, enabling quantitative secondary ion mass spectrometry, transmission electron microscopy, and Hall effect measurements. These measurements indicate that at laser fluences at or above 4 kJ m{sup -2}, a single laser pulse yields a sulfur dose >(3 {+-} 1) x 10{sup 13} cm{sup -2} and results in a 45-nm thick amorphous surface layer. Based on these results, we demonstrate a method for hyperdoping large areas of silicon without producing the surface roughness.

  9. Study of the possibility of diagnostic cataract in the THz range

    NASA Astrophysics Data System (ADS)

    Ezerskaya, A.; Smolyanskaya, O.; Goncharenko, A.; Geyko, I.

    2013-03-01

    It was revealed correlation between the optical density of the lens's nucleus in terahertz range with its density, determined according to the L. Buratti classification. Consolidation of the lens fibers caused by senile cataract, increases the reflectivity of the lens in the THz range. The temporal structure of reflected THz signals allows to determine the spatial distribution of density in the lens.

  10. A New Far-IR (THz) and IR Spectrometer for the Study of Astrochemical Ices

    NASA Astrophysics Data System (ADS)

    Allodi, Marco A.; Ioppolo, Sergio; McGuire, Brett A.; Kelley, Matthew J.; Blake, Geoffrey A.

    2013-06-01

    Far-IR (THz) spectroscopy provides a powerful technique capable of identifying solid phase molecules in the interstellar medium (ISM). Thus, laboratory data of ices in the THz region of the electromagnetic spectrum have the potential to support astronomical observations in the identification of complex organic molecules in the solid phase. In addition to providing a spectral fingerprint, THz spectroscopy probes the phonon modes of a solid. As such, the absorptions of ices in the THz region give insights into the structural dynamics of species in the solid phase. This work will describe a new instrument capable of investigating ices in both the THz and Mid-IR. THz light is generated via plasma filamentation and detected via electro-optic sampling. The ability to collect spectra of ices in the Mid-IR using a commercial FTIR spectrometer allows us to compare the ices we create in the lab to the existing body of literature while building up a database of THz spectra of ices to aid in astronomical observations.

  11. Vibrational signatures in the THz spectrum of 1,3-DNB: A first-principles and experimental study

    NASA Astrophysics Data System (ADS)

    Ahmed, Towfiq; Azad, Abul K.; Chellappa, Raja; Higginbotham-Duque, Amanda; Dattelbaum, Dana M.; Zhu, Jian-Xin; Moore, David; Graf, Matthias J.

    2016-05-01

    Understanding the fundamental processes of light-matter interaction is important for detection of explosives and other energetic materials, which are active in the infrared and terahertz (THz) region. We report a comprehensive study on electronic and vibrational lattice properties of structurally similar 1,3-dinitrobenzene (1,3-DNB) crystals through first-principles electronic structure calculations and THz spectroscopy measurements on polycrystalline samples. Starting from reported x-ray crystal structures, we use density-functional theory (DFT) with periodic boundary conditions to optimize the structures and perform linear response calculations of the vibrational properties at zero phonon momentum. The theoretically identified normal modes agree qualitatively with those obtained experimentally in a frequency range up to 2.5 THz and quantitatively at much higher frequencies. The latter frequencies are set by intra-molecular forces. Our results suggest that van der Waals dispersion forces need to be included to improve the agreement between theory and experiment in the THz region, which is dominated by intermolecular modes and sensitive to details in the DFT calculation. An improved comparison is needed to assess and distinguish between intra- and intermolecular vibrational modes characteristic of energetic materials.

  12. A quantitative study for determination of sugar concentration using attenuated total reflectance terahertz (ATR-THz) spectroscopy

    NASA Astrophysics Data System (ADS)

    Suhandy, Diding; Suzuki, Tetsuhito; Ogawa, Yuichi; Kondo, Naoshi; Ishihara, Takeshi; Takemoto, Yuichiro

    2011-06-01

    The objective of our research was to use ATR-THz spectroscopy together with chemometric for quantitative study in food analysis. Glucose, fructose and sucrose are main component of sugar both in fresh and processed fruits. The use of spectroscopic-based method for sugar determination is well reported especially using visible, near infrared (NIR) and middle infrared (MIR) spectroscopy. However, the use of terahertz spectroscopy for sugar determination in fruits has not yet been reported. In this work, a quantitative study for sugars determination using attenuated total reflectance terahertz (ATR-THz) spectroscopy was conducted. Each samples of glucose, fructose and sucrose solution with different concentrations were prepared respectively and their absorbance spectra between wavenumber 20 and 450 cm-1 (between 0.6 THz and 13.5 THz) were acquired using a terahertz-based Fourier Transform spectrometer (FARIS-1S, JASCO Co., Japan). This spectrometer was equipped with a high pressure of mercury lamp as light source and a pyroelectric sensor made from deuterated L-alanine triglycine sulfate (DLTGS) as detector. Each spectrum was acquired using 16 cm-1 of resolution and 200 scans for averaging. The spectra of water and sugar solutions were compared and discussed. The results showed that increasing sugar concentration caused decreasing absorbance. The correlation between sugar concentration and its spectra was investigated using multivariate analysis. Calibration models for glucose, fructose and sucrose determination were developed using partial least squares (PLS) regression. The calibration model was evaluated using some parameters such as coefficient of determination (R2), standard error of calibration (SEC), standard error of prediction (SEP), bias between actual and predicted sugar concentration value and ratio prediction to deviation (RPD) parameter. The cross validation method was used to validate each calibration model. It is showed that the use of ATR-THz

  13. THz imaging studies of painted samples to guide cultural heritage investigations at the Enkleistra of St. Neophytos in Paphos, Cyprus

    NASA Astrophysics Data System (ADS)

    Radpour, Roxanne; Bajwa, Neha; Garritano, James; Sung, Shijun; Balonis-Sant, Magdalena; Tewari, Priyamvada; Grundfest, Warren; Kakoulli, Ioanna; Taylor, Zachary

    2014-09-01

    Terahertz (THz) imaging is a relatively new non-destructive analytical technique that is transitioning from established application research areas such as defense and biomedicine to studies of cultural heritage artifacts. Our research adopts a THz medical imaging system, originally designed for in vivo tissue hydration sensing, to acquire high contrast imagery of painted plaster samples in order to assess the ability of the system to image the Byzantine wall paintings at the Enkleistra of St. Neophytos in Paphos, Cyprus. The original 12th century paintings show evidence of later painting phases overlapping earlier iconography. A thin layer of lead white (2PbCO3·Pb(OH)2) underlies, in parts, later wall paintings, concealing the original painting scheme beneath. Traditional imaging modalities have been unable to image the underlying iconography due to a combination of absorption and scattering. We aim to use THz imaging and novel optical design to probe beyond the visible surface and perform in situ analysis of iconography beneath the lead white layer. Imaging results of painted plaster mock-ups covered with a thin layer of lead white and/or chalk, as well as of a painted wooden panel with obscured writing, are presented, and from these images sufficient contrast for feature identification is demonstrated. Preliminary results from the analysis of these mock-ups confirmed the utility of this technique and its potential to image concealed original paintings in the Enkleistra of St. Neophytos. The results encourage analysis of THz scattering within paint and plaster materials to further improve spatial resolution and penetration depth in THz imaging systems.

  14. Enhancing the low frequency THz resonances (< 1 THz) of organic molecules via electronegative atom substitution

    NASA Astrophysics Data System (ADS)

    Dash, Jyotirmayee; Ray, Shaumik; Pesala, Bala

    2015-03-01

    Terahertz (THz) technology is an active area of research with various applications in non-intrusive imaging and spectroscopy. Very few organic molecules have significant resonances below 1 THz. Understanding the origin of low frequency THz modes in these molecules and their absence in other molecules could be extremely important in design and engineering molecules with low frequency THz resonances. These engineered molecules can be used as THz tags for anti-counterfeiting applications. Studies show that low frequency THz resonances are commonly observed in molecules having higher molecular mass and weak intermolecular hydrogen bonds. In this paper, we have explored the possibility of enhancing the strength of THz resonances below 1 THz through electronegative atom substitution. Adding an electronegative atom helps in achieving higher hydrogen bond strength to enhance the resonances below 1 THz. Here acetanilide has been used as a model system. THz-Time Domain Spectroscopy (THz-TDS) results show that acetanilide has a small peak observed below 1 THz. Acetanilide can be converted to 2-fluoroacetanilide by adding an electronegative atom, fluorine, which doesn't have any prominent peak below 1 THz. However, by optimally choosing the position of the electronegative atom as in 4-fluoroacetanilide, a significant THz resonance at 0.86 THz is observed. The origin of low frequency resonances can be understood by carrying out Density Functional Theory (DFT) simulations of full crystal structure. These studies show that adding an electronegative atom to the organic molecules at an optimized position can result in significantly enhanced resonances below 1 THz.

  15. Low frequency 2D Raman-THz spectroscopy of ionic solution: A simulation study

    NASA Astrophysics Data System (ADS)

    Pan, Zhijun; Wu, Tianmin; Jin, Tan; Liu, Yong; Nagata, Yuki; Zhang, Ruiting; Zhuang, Wei

    2015-06-01

    The 2D Raman-THz spectrum of the MgCl2 solution was simulated using the molecular dynamics simulation and the stability matrix method and compared with that of the pure water. The 2D Raman-THz signal provides more information on the ion effects on the collective water motion than the conventional 1D signal. The presence of MgCl2 suppresses the cross peak of water between the hydrogen bond bending and the other intermolecular vibrational mode, which clearly illustrates that the water hydrogen bending motion is affected by the confining effect of the ions. Our theoretical work thus demonstrates that the 2D Raman-THz technique can become a valuable nonlinear vibrational probe for the molecular dynamics in the ionic solutions.

  16. Study of the dielectric function of aqueous solutions of glucose and albumin by THz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Nazarov, M. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2016-06-01

    We report a study of aqueous solutions of glucose and bovine serum albumin using THz time-domain spectroscopy. To describe the permittivity of the solutions of these substances, we use a simplified model being applicable in the frequency range of 0.05 - 2.7 THz. On the assumption that most of the water molecules become bound at high concentrations of glucose and protein in the solution, the changes in water characteristics are investigated. To improve the reliability of the results, the measurements are performed by two independent methods: the method of attenuated total internal reflection and the transmission method. Combination of the results obtained by these two methods allows expanding the spectral range towards lower frequencies.

  17. Study of the dielectric function of aqueous solutions of glucose and albumin by THz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Nazarov, M. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2016-06-01

    We report a study of aqueous solutions of glucose and bovine serum albumin using THz time-domain spectroscopy. To describe the permittivity of the solutions of these substances, we use a simplified model being applicable in the frequency range of 0.05 – 2.7 THz. On the assumption that most of the water molecules become bound at high concentrations of glucose and protein in the solution, the changes in water characteristics are investigated. To improve the reliability of the results, the measurements are performed by two independent methods: the method of attenuated total internal reflection and the transmission method. Combination of the results obtained by these two methods allows expanding the spectral range towards lower frequencies.

  18. Femtosecond molecular dynamics studied with vacuum ultraviolet pulse pairs

    NASA Astrophysics Data System (ADS)

    Allison, Thomas K., III

    Atoms and molecules have most of their oscillator strength in the vacuum ultraviolet (VUV) and extreme ultraviolet (XUV), between the wavelengths of 200 nm and 30 nm. However, most femtosecond spectroscopy has been restricted to the visible and infrared due to a lack of sufficiently intense VUV and XUV femtosecond light sources. This thesis discusses extensions of pump/probe spectroscopy to the VUV and XUV, and its application to the dynamics of ethylene and oxygen molecules excited at 161 nm. I begin with a detailed discussion of the short wavelength light source used in this work. The source is based on the high order harmonics of a near infrared laser and can deliver > 1010 photons per shot in femtosecond pulses, corresponding to nearly 10 MW peak power in the XUV. Measurements of the harmonic yields as a function of the generation conditions reveal the roles of phase matching and ionization gating in the high order harmonic generation process. Pump/probe measurements are conducted using a unique VUV interferometer, capable of combining two different harmonics at a focus with variable delay. Measurements of VUV multiphoton ionization allows for characterization of the source and the interferometer. In molecules, time resolved measurements of fragment ion yields reveal the femtosecond dynamics of the system. The range of wavelengths available for pump and probe allows the dynamics to be followed from photo-excitation all the way to dissociation without detection window effects. The dynamics in ethylene upon pi → pi* excitation are protypical of larger molecules and have thus served as an important test case for advanced ab initio molecular dynamics theories. Femtosecond measurements to date, however, have been extremely lacking. In the present work, through a series of pump probe experiments using VUV and XUV pulses, time scales for the non-adiabatic relaxation of the electronic excitation, hydrogen migration across the double bond, and H2 molecule elimination

  19. THz Sources for Space

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Ward, John; Maiwald, Frank; Mehdi, Imran

    2007-01-01

    Terahertz is the primary frequency for line and continuum radiation from cool (5-100K) gas (atoms and molecules) and dust. This viewgraph presentation reviews the reasons for the interest in Terahertz Space Applications; the Terahertz Space Missions: in the past, present and planned for the future, Terahertz source requirements and examples of some JPL instruments; and a case study for a flight deliverable: THz Local Oscillators for ESA s Herschel Space Telescope

  20. Study of THz surface waves (TSW) on bare and coated metal surface

    NASA Astrophysics Data System (ADS)

    Gong, Mufei

    Scope and Method of Study. The focus of the research was to investigate the propagation characteristics (such as field distribution, attenuation and group velocity) of terahertz surface waves on bare and dielectric coated metal surface. The experiment was carried out on a modified standard terahertz time-domain spectroscopy system. Surface waves were coupled into the metal surface using the parallel plate waveguide coupling mechanism. The picosecond terahertz pulses were generated and detected using the Grischkowsky photo-conductive transmitter and antenna driven by a femtosecond laser. Findings and Conclusions. Surface waves at microwave and terahertz frequencies are weakly guided on bare metal surface due to the high metal conductivity. Detailed wave coupling analysis and experiment has shown that on a bare metal surface, the majority of energy remains to be uncoupled freely propagating waves. The spatial extent of the terahertz surface wave collapses two orders of magnitude upon the addition of the sub-wavelength dielectric layer on the metal surface. Simple theory in terahertz range gives an accurate explanation to this effect. Direct experimental measurements of the terahertz surface wave on an aluminum surface covered with a 12.5 mum thick dielectric layer have completely characterized the wave. The measurements of the frequency-dependent exponential fall-off of the evanescent wave from the surface agree well with theory.

  1. Experimental femtosecond laser photodisruption of rabbit sclera for minimally invasive laser sclerostomy: An in vitro study

    NASA Astrophysics Data System (ADS)

    Yang, Xiaobo; Dai, Nengli; Long, Hua; Lu, Peixiang; Li, Wan; Jiang, Fagang

    2010-07-01

    Femtosecond laser technology, used as a minimally invasive tool in intrastromal refractive surgery, may also have potential as a useful instrument for glaucoma filtration surgery. The purpose of the present study was to evaluate the feasibility of minimally invasive laser sclerostomy by femtosecond laser photodisruption and seek the appropriate patterns of laser ablation and relevant laser parameters. A femtosecond laser (800 nm/50 fs/1 kHz), focused by a 0.1 numerical aperture (NA) objective lens, with different pulse energies and exposure times was applied to ablate hydrated rabbit sclera in vitro. The irradiated samples were examined by scanning electron microscopy (SEM). By moving a three-dimensional, computer-controlled translation stage to which the sample was attached, the femtosecond laser could produce three types of ablation patterns, including linear ablation, cylindrical aperture and rectangular cavity. With pulse energies ranging from 37.5 to 150 μJ, the linear lesions were consistently observed at the inner surface of sclera, whereas it failed to make any photodisruption if pulse energy was below the threshold value of 31.25 μJ, with the corresponding threshold intensity of 4.06×10 14 W/cm 2. The depths of the linear lesions increased linearly with both pulse energy (37.5-150 μJ) and exposure time (0.1-0.4 s). Histological examination showed the incisions produced by femtosecond laser photodisruption had precise geometry and the edges were sharp and smooth, with no evidence of collateral damage to the surrounding tissue. Our results predict the potential application of femtosecond laser pulses in minimally invasive laser sclerostomy for glaucoma treatment.

  2. Efficient power combiner for THz radiation

    NASA Astrophysics Data System (ADS)

    Seidfaraji, Hamide; Fuks, Mikhail I.; Christodoulou, Christos; Schamiloglu, Edl

    2016-08-01

    Most dangerous explosive materials, both toxic and radioactive, contain nitrogen salts with resonant absorption lines in the frequency range 0.3-10 THz. Therefore, there has been growing interest in remotely detecting such materials by observing the spectrum of reflected signals when the suspicious material is interrogated by THz radiation. Practical portable THz sources available today generate only 20-40 mW output power. This power level is too low to interrogate suspicious material from a safe distance, especially if the material is concealed. Hence, there is a need for sources that can provide greater power in the THz spectrum. Generating and extracting high output power from THz sources is complicated and inefficient. The efficiency of vacuum electronic microwave sources is very low when scaled to the THz range and THz sources based on scaling down semiconductor laser sources have low efficiency as well, resulting in the well known "THz gap." The reason for such low efficiencies for both source types is material losses in the THz band. In this article an efficient power combiner is described that is based on scaling to higher frequencies a microwave combiner that increases the output power in the THz range of interest in simulation studies. The proposed power combiner not only combines the THz power output from several sources, but can also form a Gaussian wavebeam output. A minimum conversion efficiency of 89% with cophased inputs in a lossy copper power combiner and maximum efficiency of 100% in a Perfect Electric Conductor (PEC)-made power combiner were achieved in simulations. Also, it is shown that the TE01 output mode is a reasonable option for THz applications due to the fact that conductive loss decreases for this mode as frequency increases.

  3. Laser optoacoustic tomography for the study of femtosecond laser filaments in air

    NASA Astrophysics Data System (ADS)

    Bychkov, A. S.; Cherepetskaya, E. B.; Karabutov, A. A.; Makarov, V. A.

    2016-08-01

    We propose to use optoacoustic tomography to study the characteristics of femtosecond laser filamentation in air and condensed matter. The high spatial resolution of the proposed system, which consists of an array of broadband megahertz piezoelectric elements, ensures its effectiveness, despite the attenuation of ultrasonic waves in air.

  4. Molecular vibrational dynamics in water studied by femtosecond coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Sheng; Zhou, Boyang; Dong, Zhiwei; Chen, Deying; Zhang, Zhonghua; Xia, Yuanqin

    2014-10-01

    We utilized femtosecond time-resolved coherent anti-Stokes Raman spectroscopy (CARS) to study the ultrafast vibrational dynamics in distilled water at room temperature. The CARS signals from the broad OH-stretching modes between 3100 cm-1 and 3700 cm-1 were obtained and analyzed. The dephasing times of four Raman modes in water were detected and compared.

  5. Terahertz (THz) Wireless Systems for Space Applications

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; deSilva, Kanishka B.; Jih, Cindy T.

    2013-01-01

    NASA has been leading the Terahertz (THz) technology development for the sensors and instruments in astronomy in the past 20 years. THz technologies are expanding into much broader applications in recent years. Due to the vast available multiple gigahertz (GHz) broad bandwidths, THz radios offer the possibility for wireless transmission of high data rates. Multi-Gigabits per second (MGbps) broadband wireless access based on THz waves are closer to reality. The THz signal high atmosphere attenuation could significantly decrease the communication ranges and transmittable data rates for the ground systems. Contrary to the THz applications on the ground, the space applications in the atmosphere free environment do not suffer the atmosphere attenuation. The manufacturing technologies for the THz electronic components are advancing and maturing. There is great potential for the NASA future high data wireless applications in environments with difficult cabling and size/weight constraints. In this study, the THz wireless systems for potential space applications were investigated. The applicability of THz systems for space applications was analyzed. The link analysis indicates that MGbps data rates are achievable with compact sized high gain antennas.

  6. Spoof plasmon waveguide enabled ultrathin room temperature THz GaN quantum cascade laser: a feasibility study.

    PubMed

    Sun, Greg; Khurgin, Jacob B; Tsai, Din Ping

    2013-11-18

    We propose and study the feasibility of a THz GaN/AlGaN quantum cascade laser (QCL) consisting of only five periods with confinement provided by a spoof surface plasmon (SSP) waveguide for room temperature operation. The QCL design takes advantages of the large optical phonon energy and the ultrafast phonon scattering in GaN that allow for engineering favorable laser state lifetimes. Our analysis has shown that the waveguide loss is sufficiently low for the QCL to reach its threshold at the injection current density around 6 kA/cm2 at room temperature.

  7. THz radiation as a bunch diagnostic forlaser-wakefield-accelerated electron bunches

    SciTech Connect

    van Tilborg, J.; Schroeder, C.B.; Filip, C.V.; Toth, Cs.; Geddes,C.G.R.; Fubiani, G.; Esarey, E.; Leemans, W.P.

    2006-02-15

    Experimental results are reported from two measurementtechniques (semiconductor switching and electro-optic sampling) thatallow temporal characterization of electron bunches produced by alaser-driven plasma-based accelerator. As femtosecond electron bunchesexit the plasma-vacuum interface, coherent transition radiation (at THzfrequencies) is emitted. Measuring the properties of this radiationallows characterization of the electron bunches. Theoretical work on theemission mechanism is represented, including a model that calculates theTHz waveform from a given bunch profile. It is found that the spectrum ofthe THz pulse is coherent up to the 200 mu m thick crystal (ZnTe)detection limit of 4 THz, which corresponds to the production of sub-50fs (root-mean-square) electron bunch structure. The measurementsdemonstrate both the shot-to-shot stability of bunch parameters that arecritical to THz emission (such as total charge and bunch length), as wellas femtosecond synchrotron between bunch, THz pulse, and laserbeam.

  8. Monte Carlo study of the operation of GaN planar nanodiodes as sub-THz emitters in resonant circuits

    NASA Astrophysics Data System (ADS)

    Vasallo, B. G.; Millithaler, J. F.; Íñiguez-de-la-Torre, I.; González, T.; Ducournau, G.; Gaquière, C.; Mateos, J.

    2014-11-01

    A study of the high-frequency performance of GaN-based asymmetric self-switching diodes (SSDs) designed for a room-temperature sub-THz Gunn emission, and connected to a resonant RLC parallel circuit, is reported. With the aim of facilitating the achievement and control of Gunn oscillations, which can potentially allow the emission of THz radiation by GaN SSDs, a time-domain Monte Carlo (MC) theoretical study is provided. The simulator has been validated by comparison with the I-V curves of similar fabricated structures, including the possibility of heating effects. A V-shaped SSD has been found to be more efficient than the square one in terms of the DC to AC conversion efficiency η. Indeed, according to our MC results, a value of η of at least 0.35% @ 270 GHz can be achieved for the V-shaped SSD at room temperature by using an adequate resonant circuit. This value can be increased up to 0.80%, even when considering the heating effects, with appropriate RLC elements. Furthermore, simulations show that when several diodes are fabricated in parallel in order to enhance the emitted power, there is no synchronization between the oscillations of all the SSDs; however, the phase-shift effects can be solved using a synchronized current injection by the attachment of a resonant circuit.

  9. Optical characteristic of cotton in the THz frequency region

    NASA Astrophysics Data System (ADS)

    Li, Jianrui; Li, Jiusheng

    2009-11-01

    In this letter, the spectral characteristics of cotton in the range of 0.2 ~ 2.5THz have been measured with THz timedomain spectroscopy. Its absorption and refraction spectra are obtained at room temperature in nitrogen atmosphere. It is found that cotton has the spectral response to THz waves in this frequency region. The results provided in this paper will help us to study the THz application to cotton commercial transaction inspection further.

  10. Femtosecond spectroscopic study of carminic acid DNA interactions

    NASA Astrophysics Data System (ADS)

    Comanici, Radu; Gabel, Bianca; Gustavsson, Thomas; Markovitsi, Dimitra; Cornaggia, Christian; Pommeret, Stanislas; Rusu, Catalin; Kryschi, Carola

    2006-06-01

    Photo-excited carminic acid and carminic acid-DNA complexes in a buffer solution at pH 7 have been examined using a variety of spectroscopy techniques, that are in particular, the femtosecond resolved fluorescence upconversion and transient absorption spectroscopy. The observation of dual fluorescence emission, one peaks at 470 nm and the other at 570 nm, indicates to an excited-state (S 1) intramolecular proton transfer (ESIPT). A detailed analysis of the transient absorption measurements of an aqueous carminic-acid solution at pH 7 yielded four lifetimes for the excited-state (S 1): 8, 15, 33 and 46 ps. On the other hand, only two lifetimes, 34 and 47 ps, were observed by fluorescence upconversion spectroscopy because of the detection limitation to the long wavelength edge of the carminic-acid spectrum. The four S 1 lifetimes were ascribed to the coexistence of respectively two tautomer (normal and tautomer) forms of carminic acid, in the non-dissociated state (CAH) and in the deprotonated state (CA -). The fluorescence upconversion measurements of carminic acid-DNA complexes exhibited a prolongation of the fluorescence lifetimes. This effect was accepted as evidence for the formation of intercalation complexes between the carminic acid and the DNA. The intercalative binding of the carminic acid to DNA was confirmed by the fluorescence titration experiments resulting to a binding constant of 2 × 10 5 M -1 that is typical for anthracycline-DNA complexes.

  11. Theoretical and Experimental studies on CH3OH THz Laser Pumped by Pulse Carbon Dioxide Laser

    NASA Astrophysics Data System (ADS)

    Fei, Fei; Jing, Wang; Zhaoshuo, Tian; Yanchao, Zhang; Shiyou, Fu; Qi, Wang

    2011-02-01

    In this paper, according to the molecular structure and vibration mode of micro-asymmetric gyroscope CH3OH molecule, dynamic process of optically pumped Terahertz laser is analyzed theoretically. The rate equation models based on three level systems are given according to the theory of typical laser rate equation. The output THz pulsed laser waveform is obtained by solving the rate equation model. An all-metal Terahertz laser pumped by RF waveguide carbon dioxide laser is designed with CH3OH as its working gas. The pulsed Terahertz laser output is obtained. The waveform and repetition frequency of the optically pumped laser are measured in the experiments. The Terahertz laser designed does not need water cooling system. It also has the advantages of simple structure and small size.

  12. Study of metallic fibrous nanoparticle aggregate produced using femtosecond laser radiation under ambient conditions

    NASA Astrophysics Data System (ADS)

    Sivakumar, M.; Venkatakrishnan, Krishnan; Tan, B.

    2010-06-01

    In this study, we report formation of weblike fibrous nanoparticle aggregate due to irradiation of bulk iron, aluminium and titanium samples using femtosecond laser radiation at MHz pulse repetition frequency in air at atmospheric pressure. Electron microscopy analysis revealed that the nanostructure is formed due to aggregation of polycrystalline nanoparticles of the respective constituent materials. The nanoparticle diameter varies between 5 and 40 nm and they are covered with an oxide layer of a few nanometres thick. X-ray diffraction and micro-Raman analysis revealed metallic and oxide phases in the nanostructure. The formation of a nanoparticle aggregate is explained by nucleation and condensation of vapour in the plasma plume and by phase explosion. Moreover the laser interaction time plays a significant role in the generation of nanostructure from bulk metals. This study provides evidence that femtosecond laser irradiation can be an ambient condition physical method for metallic fibrous nanoparticle aggregate generation.

  13. Magnetic Field Assisted sub-THz Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Wade, A.; Kim, Y.; Smirnov, D.; Kumar, S.; Hu, Q.; Williams, B. S.; Reno, J.

    2009-03-01

    In THz QCLs radiative transitions take place between closely-spaced 2D electronic subbands (1THz ˜ 4meV) of a multi-QW semiconductor system. THz quantum cascade lasers now cover the frequency range from 1.2 THz to 5 THz, though cryogenic cooling is still required. Further progress towards the realization of devices emitting at longer wavelengths (sub-THz QCLs) and higher temperatures may be realized in a system with additional lateral confinement. Here we use strong magnetic fields to achieve quasi-0D confinement in THz QCL based on the resonance phonon design. We studied two designs: (a) 2-well injector/2 well active region, emitting at 3 THz at B=0; and (b) 1-well injector/3-well active region, emitting at 2 THz at B=0 T. By applying the appropriate electrical bias and strong magnetic fields, we achieved laser emission at 0.8-0.9 THz at B>16 T [1], and 0.6 THz at B˜17 T, from devices a and b respectively. The ability to achieve sub-THz lasing is due to magnetic field enhanced population inversion in a quasi-0D QCL. [1] Wade, A et. al., Magnetic field assisted Terahertz quantum cascade laser operating up to 225K, Accepted for publication Nature Photonics (2009)

  14. Experimental study and numerical simulation of the propulsion of microbeads by femtosecond laser filament

    SciTech Connect

    Zhang Nan; Liu Weiwei; Xu Zhijun; Wang Mingwei; Zhu Xiaonong

    2008-08-01

    The light filament formed by intense femtosecond laser pulses in air can be used to generate the effective impulse to propel a micro glass bead. In this report, through both experimental studies and the corresponding numerical simulations that involve the dynamics of the nonlinear propagation of light and the laser ablation mechanism, we confirm that this propulsion scheme is based on the laser ablation of the target material. The fundamental characteristics of laser propulsion using a single ultrafast laser filament is also revealed.

  15. A study of ionisation of free and clustered molecules under the action of femtosecond laser radiation

    SciTech Connect

    Apatin, V M; Kompanets, V O; Lokhman, V N; Ogurok, N-D D; Poydashev, D G; Ryabov, E A; Chekalin, S V

    2014-05-30

    We have investigated the processes of excitation and ionisation of monomers and clusters of CF{sub 3}I, IF{sub 2}CCOF and Fe(CO){sub 5} molecules under the action of femtosecond laser radiation at the wavelengths of 266, 400 and 800 nm. It is concluded that the nature of the excitation of free molecules and clustered molecules by femtosecond pulses is different. The simulation of the ionisation yield of the objects under study has shown that the multiphoton ionisation is the key mechanism in the case of free molecules, while the field ionisation may play a significant role for clusters, in particular, in the case of ionisation at the wavelength of λ = 800 nm. (interaction of radiation with matter)

  16. Two-photon fluorescence imaging and femtosecond laser microsurgery to study drosophila dorsal closure

    NASA Astrophysics Data System (ADS)

    Thayil K. N., Anisha; Pereira, Andrea; Mathew, Manoj; Artigas, David; Martín Blanco, Enrique; Loza-Alvarez, Pablo

    2008-02-01

    Dorsal closure is a key morphogenic process that occurs at the last stages of Drosophila melanogaster embryogenesis. It involves a well coordinated rearrangement and movement of tissues that resemble epithelial wound healing in mammals. The cell dynamics and intracellular signaling pathways that accompany hole closure are expected to be similar during would healing providing a model system to study epithelial healing. Here we demonstrate the use of two-photon fluorescence microscope together with femtosecond laser ablation to examine the epithelial wound healing during embryonic dorsal closure. By using tightly focused NIR femtosecond pulses of subnanojoule energy we are able to produce highly confined microsurgery on the epithelial cells of a developing embryo. We observed that drosophila epidermis heals from the laser wounds with increased activity of actin near the wound edges.

  17. Solid-state Raman spectra of non-centrosymmetric crystals - Theoretical vs. experimental study towards an application in THz-regime

    NASA Astrophysics Data System (ADS)

    Ivanova, Bojidarka B.

    2012-05-01

    Experimental and theoretical solid-state Raman spectroscopic study of five model derivatives of amino acids (AAs), crystallizing in the non-centrosymmetric space groups, with the number molecules per unit cell Z = 1-8 were studied. The self-assembly association effects within the frame of crystals with P21, Pca21, and P212121, space groups and their effect on the Raman frequencies, within 10-0.3 THz were discussed. The assignment of the spectroscopic properties and the hydrogen bond interactions, depending of the crystal packing of the model tyramine hemihydrate was performed. The paper aims to make a bridge between the methods for analysis of the optical phenomena within the THz-region, such as far-IR, Raman and THz-spectroscopy. The observed individual characteristic excitations of materials within THz-region, provided unique opportunity for chemical identification in solid-state. The specific advantages of each of the methods provided unique combination allowing both qualitative and quantitative analysis, especially of macro-components, and achievement of the analytical information at an extremely high degree of certainty towards the individual characteristics of each of the studied chemicals as properties of evidence, and would contributed in varying degrees to the evidence in the field of forensic chemical analysis.

  18. Substrate independence of THz vibrational modes of polycrystalline thin films of molecular solids in waveguide THz-TDS

    NASA Astrophysics Data System (ADS)

    Harsha, S. Sree; Melinger, Joseph. S.; Qadri, S. B.; Grischkowsky, D.

    2012-01-01

    The influence of the metal substrate on the measurement of high resolution THz vibrational modes of molecular solids with the waveguide THz-TDS technique is investigated. The sample film of salicylic acid is studied using waveguide THz-TDS on three different metal substrates and two-surface passivated substrates. The independence of the observed THz vibrational modes to the metal substrate is demonstrated. Independently, surface passivation is presented as a viable experimental addition to the waveguide THz-TDS technique to aid the characterization of samples with known reactivity to metal surfaces.

  19. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air.

    PubMed

    Zhao, Jiayu; Chu, Wei; Guo, Lanjun; Wang, Zhi; Yang, Jing; Liu, Weiwei; Cheng, Ya; Xu, Zhizhan

    2014-01-24

    Terahertz (THz) imaging provides cutting edge technique in biology, medical sciences and non-destructive evaluation. However, due to the long wavelength of the THz wave, the obtained resolution of THz imaging is normally a few hundred microns and is much lower than that of the traditional optical imaging. We introduce a sub-wavelength resolution THz imaging technique which uses the THz radiation generated by a femtosecond laser filament in air as the probe. This method is based on the fact that the femtosecond laser filament forms a waveguide for the THz wave in air. The diameter of the THz beam, which propagates inside the filament, varies from 20 μm to 50 μm, which is significantly smaller than the wavelength of the THz wave. Using this highly spatially confined THz beam as the probe, THz imaging with resolution as high as 20 μm (~λ/38 at 0.4 THz) can be realized.

  20. Experimental and numerical study of surface alloying by femtosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Gurevich, E. L.; Kittel, S.; Hergenröder, R.

    2012-01-01

    Here we report on experimental studies of femtosecond laser induced surface metal alloying. We demonstrate that layers of different metals can be mixed in a certain range of laser pulse energies. Numeric simulations demonstrate that the sub-surface melting and mixing is advantaged through the difference in the electron-phonon coupling constants of the metals in the multi-layer system. Dependence of the depth of the mixed layer on the number of laser pulses per unit area is studied. Numeric simulations illustrate physical picture of the laser alloying process.

  1. Improved lenticule shape for hyperopic femtosecond lenticule extraction (ReLEx FLEx): a pilot study.

    PubMed

    Sekundo, Walter; Reinstein, Dan Z; Blum, Marcus

    2016-05-01

    The aim of this study is to establish and to prove a new lenticule shape for the treatment of hyperopia using a 500 kHz femtosecond laser and the femtosecond lenticule extraction (ReLEx FLEx) technique. Improved lenticule shapes with a large transition zone of at least 2 mm adjusted to the 5.75 mm optical zone were designed. A prospective pilot study on nine eyes of five patients who underwent an uncomplicated FLEx using VisuMax femtosecond laser (Carl Zeiss Meditec AG) for spherical hyperopia was performed. Patients' mean age was 55.5 years, and the preoperative manifest spherical equivalent (SE) was +1.82 D (range +1.25 to +3.00 D). Because of the presbyopic age and in order to compensate for a possible regression, the treatment was aimed at low myopia (mean target SE was -0.88 D with a mean treatment refraction of +2.69 D). At the last follow-up, after 9 months, 33% were within ±0.50 D and 78% within ±1.00 D of intended correction. Thirty-three percent lost one line, and 11% gained one line corrected distance visual acuity (CDVA). On average, the centre of the optical zone was 0.34 ± 0.17 mm from the corneal vertex. No adverse effects were observed. This pilot study confirms that the improved lenticule's design with a large optical and transition zone can achieve good centration and acceptable results for spherical hyperopia using FLEx. The next steps are to extend the study to spherocylindrical hyperopic treatments and to increase the number of eyes for better assessment of refractive outcome. PMID:26868029

  2. Femtosecond study of ultrafast fluorescence resonance energy transfer in a catanionic vesicle

    NASA Astrophysics Data System (ADS)

    Kumar Das, Atanu; Mondal, Tridib; Kumar Sasmal, Dibyendu; Bhattacharyya, Kankan

    2011-08-01

    Ultrafast fluorescence resonance energy transfer (FRET) in a catanionic [sodium dodecyl sulfate (SDS)-dodecyltrimethyl ammonium bromide (DTAB)] vesicle is studied by femtosecond up-conversion. The vesicles (diameter ˜400 nm for SDS-rich and ˜250 nm for DTAB-rich vesicles) are much larger than the SDS and DTAB micelles (diameter ˜4 nm). In both micelle and vesicles, FRET occurs in multiple time scales and the time scales of FRET correspond to a donor-acceptor distance varying between 12 and 36 Å.

  3. Optical-to-THz radiation conversion on a semi-metal surface

    NASA Astrophysics Data System (ADS)

    Mironov, V. A.; Oladyshkin, I. V.; Fadeev, D. A.

    2016-08-01

    We consider the possibility of generation of broadband terahertz (THz) radiation upon reflection of a p-polarised femtosecond laser pulse from the surface of a semi-metal. The hydrodynamic model of an instantaneous quadratic response of metals is generalised, and analytical results and numerical simulation data are presented. It is shown that transition from highly conductive metals to semi-metals is accompanied by a significant increase in the efficiency of the THz signal generation due to the reduction of the effective charge carrier mass and attenuation of the shielding of optical and THz fields.

  4. Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.; Domke, M.; Huber, Heinz P.

    2016-03-01

    Laser processing of optically transparent or semi-transparent, brittle materials is finding wide use in various manufacturing sectors. For example, in consumer electronic devices such as smartphones or tablets, cover glass needs to be cut precisely in various shapes. The unique advantage of material processing with femtosecond lasers is efficient, fast and localized energy deposition in nearly all types of solid materials. When an ultra-short laser pulse is focused inside glass, only the localized region in the neighborhood of the focal volume absorbs laser energy by nonlinear optical absorption. Therefore, the processing volume is strongly defined, while the rest of the target stays unaffected. Thus ultra-short pulse lasers allow cutting of the chemically strengthened glasses such as Corning Gorilla glass without cracking. Non-ablative cutting of transparent, brittle materials, using the newly developed femtosecond process ClearShapeTM from Spectra-Physics, is based on producing a micron-sized material modification track with well-defined geometry inside. The key point for development of the process is to understand the induced modification by a single femtosecond laser shot. In this paper, pump-probe microscopy techniques have been applied to study the defect formation inside of transparent materials, namely soda-lime glass samples, on a time scale between one nanosecond to several tens of microseconds. The observed effects include acoustic wave propagation as well as mechanical stress formation in the bulk of the glass. Besides better understanding of underlying physical mechanisms, our experimental observations have enabled us to find optimal process parameters for the glass cutting application and lead to better quality and speed for the ClearShapeTM process.

  5. Terahertz radiation from bismuth surface induced by femtosecond laser pulses.

    PubMed

    Ilyakov, I E; Shishkin, B V; Fadeev, D A; Oladyshkin, I V; Chernov, V V; Okhapkin, A I; Yunin, P A; Mironov, V A; Akhmedzhanov, R A

    2016-09-15

    We report on the first experimental observation of terahertz (THz) wave generation from bismuth mono- and polycrystalline samples irradiated by femtosecond laser pulses. Dependencies of the THz signal on the crystal orientation, optical pulse energy, incidence angle, and polarization are presented and discussed together with features of the sample surfaces. The optical-to-THz conversion efficiency was up to two orders of magnitude higher than for metal at a moderate fluence of ∼1  mJ/cm2. We also found nonlinear effects not previously observed using other metal and semiconductor materials: (a) asymmetry of THz response with respect to a half-turn of a sample around its normal, (b) THz polarization control by orientation of the sample surface, and PMID:27628379

  6. THz Plasma Diagnostics: an evolution from FIR and Millimeter waves historical applications

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Doria, A.; Galatola Teka, G.; Giovenale, E.; Zerbini, M.

    2016-08-01

    Extremely broadband (100 GHz-30 THz) single cycle THz pulses are routinely generated with femtosecond laser for Time Domain Spectroscopy applications (TDS). The wide frequency range has an unquestionable diagnostic potential for Tokamak plasmas and not surprisingly THz TDS finds a natural field of application in this area, which is an evolution of the FIR and millimeter waves diagnostics, where ENEA Frascati holds historical expertise. By illuminating the plasma with a THz beam, phase, intensity and polarization of both reflected and transmitted beams can be detected, devising a single diagnostic instrument capable of measuring multiple plasma parameters. We will describe and discuss the laboratory work now in progress to realise a tailored THz-TDS spectrometer with design parameters optimised for the requirements of Tokamak plasmas and the tests of optical fibers and quasioptical couplers to optimise access to plasma. ENEA Frascati and the Photonics group of Physics Dept. of Oxford University are collaborating on this subject [1].

  7. THz Plasma Diagnostics: an evolution from FIR and Millimeter waves historical applications

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Doria, A.; Galatola Teka, G.; Giovenale, E.; Zerbini, M.

    2016-08-01

    Extremely broadband (100 GHz–30 THz) single cycle THz pulses are routinely generated with femtosecond laser for Time Domain Spectroscopy applications (TDS). The wide frequency range has an unquestionable diagnostic potential for Tokamak plasmas and not surprisingly THz TDS finds a natural field of application in this area, which is an evolution of the FIR and millimeter waves diagnostics, where ENEA Frascati holds historical expertise. By illuminating the plasma with a THz beam, phase, intensity and polarization of both reflected and transmitted beams can be detected, devising a single diagnostic instrument capable of measuring multiple plasma parameters. We will describe and discuss the laboratory work now in progress to realise a tailored THz-TDS spectrometer with design parameters optimised for the requirements of Tokamak plasmas and the tests of optical fibers and quasioptical couplers to optimise access to plasma. ENEA Frascati and the Photonics group of Physics Dept. of Oxford University are collaborating on this subject [1].

  8. Ultrafast electronic dynamics in Helium nanodroplets studied by femtosecond time-resolved EUV photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Gessner, Oliver; Kornilov, Oleg; Wang, Chia; Leonard, Mathew; Healy, Andrew; Leone, Stephen; Neumark, Daniel

    2009-05-01

    Helium nanodroplets constitute a unique cryogenic matrix for the creation, isolation and spectroscopy of regular and exotic species, such as free radicals and molecules in high-spin states. The droplets readily pick up atoms and molecules but interact only very weakly with the respective dopants due to their superfluid nature. Despite the remarkable number of experimental and theoretical studies that have been performed on this new type of matter, neither the electronic structure nor the electron dynamics after EUV excitation are even remotely understood. We have performed the first femtosecond EUV-pump, IR-probe experiment to study the photoionization dynamics of pure Helium nanodroplets below the atomic Helium IP (24.6 eV) in real-time. Using Velocity-Map Imaging (VMI) photoelectron spectroscopy we were able to discern processes with associated timescales ranging from tens of femtoseconds to tens of picoseconds. The results will be discussed in the light of complementary energy-domain studies and theoretical models of the droplet's electronic and nuclear dynamics.

  9. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers

    PubMed Central

    Yasui, Takeshi; Ichikawa, Ryuji; Hsieh, Yi-Da; Hayashi, Kenta; Cahyadi, Harsono; Hindle, Francis; Sakaguchi, Yoshiyuki; Iwata, Tetsuo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Minoshima, Kaoru; Inaba, Hajime

    2015-01-01

    Terahertz (THz) dual comb spectroscopy (DCS) is a promising method for high-accuracy, high-resolution, broadband THz spectroscopy because the mode-resolved THz comb spectrum includes both broadband THz radiation and narrow-line CW-THz radiation characteristics. In addition, all frequency modes of a THz comb can be phase-locked to a microwave frequency standard, providing excellent traceability. However, the need for stabilization of dual femtosecond lasers has often hindered its wide use. To overcome this limitation, here we have demonstrated adaptive-sampling THz-DCS, allowing the use of free-running femtosecond lasers. To correct the fluctuation of the time and frequency scales caused by the laser timing jitter, an adaptive sampling clock is generated by dual THz-comb-referenced spectrum analysers and is used for a timing clock signal in a data acquisition board. The results not only indicated the successful implementation of THz-DCS with free-running lasers but also showed that this configuration outperforms standard THz-DCS with stabilized lasers due to the slight jitter remained in the stabilized lasers. PMID:26035687

  10. Femtosecond midinfrared study of aggregation behavior in aqueous solutions of amphiphilic molecules

    NASA Astrophysics Data System (ADS)

    Petersen, Christian; Bakulin, Artem A.; Pavelyev, Vlad G.; Pshenichnikov, Maxim S.; Bakker, Huib J.

    2010-10-01

    We study the spectral and orientational dynamics of HDO molecules in aqueous solutions of different concentrations of tertiary butyl alcohol (TBA) and trimethylamine-N-oxide (TMAO). The spectral dynamics is investigated with femtosecond two-dimensional infrared spectroscopy of the O-H stretch vibration of HDO:D2O, and the orientational dynamics is studied with femtosecond polarization-resolved pump-probe spectroscopy of the O-D stretch vibration of HDO:H2O. Both the spectral and orientational dynamics are observed to show bimodal behavior: part of the water molecules shows spectral and orientational dynamics similar to bulk liquid water and part of the water molecules displays a much slower dynamics. For low solute concentrations, the latter fraction of slow water increases linearly as a function of solute molality, indicating that the slow water is contained in the solvation shells of TBA and TMAO. At higher concentrations, the fraction of slow water saturates. The saturation behavior is much stronger for TBA solutions than for TMAO solutions, indicating the aggregation of the TBA molecules.

  11. THz Detection and Imaging using Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Wade, Christopher; Sibalic, Nikola; Kondo, Jorge; de Melo, Natalia; Adams, Charles; Weatherill, Kevin

    2016-05-01

    Atoms make excellent electromagnetic field sensors because each atom of the same isotope is identical and has well-studied, permanent properties allowing calibration to SI units. Thus far, atoms have not generally been exploited for terahertz detection because transitions from the atomic ground state are constrained to a limited selection of microwave and optical frequencies. In contrast, highly excited `Rydberg' states allow us access to many strong, electric dipole transitions from the RF to THz regimes. Recent advances in the coherent optical detection of Rydberg atoms have been exploited by a number of groups for precision microwave electrometry Here we report the demonstration of a room-temperature, cesium Rydberg gas as a THz to optical interface. We present two configurations: First, THz-induced fluorescence offers non-destructive and direct imaging of the THz field, providing real-time, single shot images. Second, we convert narrowband terahertz photons to infrared photons with 6% quantum efficiency allowing us to use nano-Watts of THz power to control micro-Watts of laser power on microsecond timescales. Exploiting hysteresis and a room-temperature phase transition in the response of the medium, we demonstrate a latching optical memory for sub pico-Joule THz pulses.

  12. Reflective THz and MR imaging of burn wounds: a potential clinical validation of THz contrast mechanisms

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Nowroozi, Bryan; Sung, Shijun; Garritano, James; Maccabi, Ashkan; Tewari, Priyamvada; Culjat, Martin; Singh, Rahul; Alger, Jeffry; Grundfest, Warren; Taylor, Zachary

    2012-10-01

    Terahertz (THz) imaging is an expanding area of research in the field of medical imaging due to its high sensitivity to changes in tissue water content. Previously reported in vivo rat studies demonstrate that spatially resolved hydration mapping with THz illumination can be used to rapidly and accurately detect fluid shifts following induction of burns and provide highly resolved spatial and temporal characterization of edematous tissue. THz imagery of partial and full thickness burn wounds acquired by our group correlate well with burn severity and suggest that hydration gradients are responsible for the observed contrast. This research aims to confirm the dominant contrast mechanism of THz burn imaging using a clinically accepted diagnostic method that relies on tissue water content for contrast generation to support the translation of this technology to clinical application. The hydration contrast sensing capabilities of magnetic resonance imaging (MRI), specifically T2 relaxation times and proton density values N(H), are well established and provide measures of mobile water content, lending MRI as a suitable method to validate hydration states of skin burns. This paper presents correlational studies performed with MR imaging of ex vivo porcine skin that confirm tissue hydration as the principal sensing mechanism in THz burn imaging. Insights from this preliminary research will be used to lay the groundwork for future, parallel MRI and THz imaging of in vivo rat models to further substantiate the clinical efficacy of reflective THz imaging in burn wound care.

  13. Femtosecond probe-probe transmission studies of LT-grown GaAs near the band edge

    SciTech Connect

    Radousky, H.B.; Bello, A.F.; Erskine, D.J.; Dinh, L.N.; Bennahmias, M.J.; Perry, M.D.; Ditmire, T.R.; Mariella, R.P. Jr.

    1993-12-01

    We have studied the near-edge optical response of a LT-grown GaAs sample which was deposited at 300{degrees}C on a Si substrate, and then annealed at 600{degrees}C. The Si was etched away to leave a 1 micron free standing GaAs film. Femtosecond transmission measurements were made using an equal pulse technique at four wavelengths between 825 and 870 nm. For each wavelength we observe both a multipicosecond relaxation time, as well as a shorter relaxation time which is less than 100 femtoseconds.

  14. Femtosecond laser-fabricated biochip for studying symbiosis between Phormidium and seedling root

    NASA Astrophysics Data System (ADS)

    Ishikawa, Nobuaki; Hanada, Yasutaka; Ishikawa, Ikuko; Sugioka, Koji; Midorikawa, Katsumi

    2015-06-01

    We present the fabrication of a waveguide-like structure in a polydimethylsiloxane (PDMS) polymer substrate using a femtosecond laser to study the mechanism of symbiosis between filamentous cyanobacteria, Phormidium, and a seedling root. While symbiosis occurring underground promotes the growth of vegetable seedlings, the details of the mechanism remain unclear. Understanding the mechanisms of Phormidium gliding to the seedling root will facilitate improving the mat formation of Phormidium, which will lead to increased vegetable production. We assumed a symbiosis mechanism in which sunlight propagates through the seedling root and is scattered underground to guide the Phormidium gliding. Once attached to the root, Phormidium uses the scattered light for photosynthesis. Photosynthetic products, in turn, promote an increase in Phormidium mat formation and vegetable growth. To verify this assumption, the optical characteristics of the seedling root were investigated. A waveguide-like structure with the same optical characteristics of the root was subsequently fabricated by femtosecond laser in PDMS polymer to assess the light illumination effect on Phormidium behavior.

  15. Dynamics of Femtosecond Laser Ablation Plume Studied With Ultrafast X-ray Absorption Fine Structure Imaging

    SciTech Connect

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi; Nakano, Hidetoshi

    2010-10-08

    We investigated the dynamic process of an expanding femtosecond laser ablation plume of aluminum generated in an irradiation intensity range of 10{sup 13}-10{sup 15} W/cm{sup 2} with the ultrafast x-ray absorption fine structure (XAFS) imaging technique. The XAFS spectra of the aluminum L{sub II,III} edge of the plume revealed that the plume consists of doubly and singly charged ions, neutral atoms, liquid particles, and possible atomic clusters. Scanning electron microscopy of deposited ablation particles confirmed that the liquid particles corresponds to the spherical nanoparticles with a size ranging from several tens nanometers to approximately 200 nm. The spatiotemporal evolution of the XAFS image of the plume shows the sequential appearance of each ablation particle from aluminum surface according to its ejection velocity. The result suggests that the photomechanical fragmentation process, which was theoretically proposed, is dominant mechanism for the nanoparticle ejection under the irradiation intensity far from the ablation threshold of aluminum. This study clearly demonstrates the potential of our technique for measuring the ultrafast dynamics of femtosecond laser ablation process.

  16. Case study of concealed weapons detection at stand-off distances using a compact, large field-of-view THz camera

    NASA Astrophysics Data System (ADS)

    Marchese, Linda E.; Terroux, Marc; Dufour, Denis; Bolduc, Martin; Chevalier, Claude; Généreux, Francis; Jerominek, Hubert; Bergeron, Alain

    2014-06-01

    The detection of concealed weapons in crowd situations is a critical need and solutions are being sought after by security agencies at the federal, state and municipal levels. Millimeter waves have been evaluated for these kinds of applications, but the currently available technologies are typically too large and bulky to allow for widespread deployment. Alternatively soft X-rays have been considered but safety issues hinder their acceptance. Terahertz technology is ideally suited for such an application as it has the ability to see through clothing, and offers higher resolution than in the millimeter band, also being more compact. THz photons have lower energy than infrared and do not show the ionizing properties of X-ray radiation. The longer Terahertz waves penetrate deeper into various materials then their visible and infrared counterparts. Though the wavelength is longer it has been shown that high resolution in a small form factor can be obtained in the THz wavebands thanks to the use of small pixel pitch detectors. In this paper, a case study for the use of a compact THz camera for active see-through imaging at stand-off distances is presented. More specifically, the cases of seeing through packages and clothing are analyzed in the perspective of concealed weapons detection. The paper starts with a review of the characteristics of a high resolution THz camera exhibiting small pixel size and large field-of-view. Some laboratory results of concealed object imaging along with details of a concept for live surveillance using a compact see-through imaging system are reviewed.

  17. Organic-inorganic composites for THz device fabrication

    NASA Astrophysics Data System (ADS)

    Cai, B.; Ye, T. M.; Bo, G.; Wang, X. C.; Li, Y. Z.; Zhu, Y. M.; Sugihara, O.

    2016-02-01

    In this paper, several organic-inorganic composites were prepared for Terahertz (THz) devices fabrication. First, a two-layer structure was designed for femtosecond (fs) laser/THz radiation separation. The top layer was made by sintered 20-40 nm hollow quartz particles which can diffuse the incident fs laser thus decrease the power intensity. The bottom layer comprised of silicon 100 nm particles and cycle-olefine polymer (COP), by which the fs laser light can be greatly scattered and absorbed but THz radiation can propagate insusceptibly. With this two-layer structure a high efficient fs-laser/THz filter was fabricated successfully. Second, titania-polymer composites with a very high refractiveindex tunability and high transparency in the THz region were prepared. By controlling the blending ratio of the titania particle, a broad refractive-index tuning range from 1.5 to 3.1 was realized. Then, the composites were used to fabricate antireflective (AR) layers on a high-resistivity silicon (HR-Si) substrate. By utilizing the thermoplasticity of the titania- polymer composite, a graded-index structure was fabricated via a hot-embossing method. Because of the good refractive-index matching between the composite and the HR-Si substrate, a broadband AR layer was fabricated.

  18. Cytogenetic observations in human peripheral blood leukocytes following in vitro exposure to THz radiation: a pilot study.

    PubMed

    Zeni, O; Gallerano, G P; Perrotta, A; Romanò, M; Sannino, A; Sarti, M; D'Arienzo, M; Doria, A; Giovenale, E; Lai, A; Messina, G; Scarfì, M R

    2007-04-01

    Emerging technologies are considering the possible use of Terahertz radiation in different fields ranging from telecommunications to biology and biomedicine. The study of the potential effects of Terahertz radiation on biological systems is therefore an important issue in order to safely develop a variety of applications. This paper describes a pilot study devoted to determine if Terahertz radiation could induce genotoxic effects in human peripheral blood leukocytes. For this purpose, human whole blood samples from healthy donors were exposed for 20 min to Terahertz radiation. Since, to our knowledge, this is the first study devoted to the evaluation of possible genotoxic effects of such radiation, different electromagnetic conditions were considered. In particular, the frequencies of 120 and 130 GHz were chosen: the first one was tested at a specific absorption rate (SAR) of 0.4 mW g-1, while the second one was tested at SAR levels of 0.24, 1.4, and 2 mW g-1. Chromosomal damage was evaluated by means of the cytokinesis block micronucleus technique, which also gives information on cell cycle kinetics. Moreover, human whole blood samples exposed to 130 GHz at SAR levels of 1.4 and 2 mW g-1 were also tested for primary DNA damage by applying the alkaline comet assay immediately after exposure. The results obtained indicate that THz exposure, in the explored electromagnetic conditions, is not able to induce either genotoxicity or alteration of cell cycle kinetics in human blood cells from healthy subjects. PMID:17351499

  19. Femtosecond electron diffraction and spectroscopic studies of a solid state organic chemical reaction

    NASA Astrophysics Data System (ADS)

    Jean-Ruel, Hubert

    Photochromic diarylethene molecules are excellent model systems for studying electrocyclic reactions, in addition to having important technological applications in optoelectronics. The photoinduced ring-closing reaction in a crystalline photochromic diarylethene derivative was fully resolved using the complementary techniques of transient absorption spectroscopy and femtosecond electron crystallography. These studies are detailed in this thesis, together with the associated technical developments which enabled them. Importantly, the time-resolved crystallographic investigation reported here represents a highly significant proof-of-principle experiment. It constitutes the first study directly probing the molecular structural changes associated with an organic chemical reaction with sub-picosecond temporal and atomic spatial resolution---to follow the primary motions directing chemistry. In terms of technological development, the most important advance reported is the implementation of a radio frequency rebunching system capable of producing femtosecond electron pulses of exceptional brightness. The temporal resolution of this newly developed electron source was fully characterized using laser ponderomotive scattering, confirming a 435 +/- 75 fs instrument response time with 0.20 pC bunches. The ultrafast spectroscopic and crystallographic measurements were both achieved by exploiting the photoreversibility of diarylethene. The transient absorption study was first performed, after developing a novel robust acquisition scheme for thermally irreversible reactions in the solid state. It revealed the formation of an open-ring excited state intermediate, following photoexcitation of the open-ring isomer with an ultraviolet laser pulse, with a time constant of approximately 200 fs. The actual ring closing was found to occur from this intermediate with a time constant of 5.3 +/- 0.3 ps. The femtosecond diffraction measurements were then performed using multiple crystal

  20. THz Local Oscillator Technology

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran

    2004-01-01

    The last decade has seen a number of technological advancements that have now made it possible to implement fully solid state local oscillator chains up to 2 THz. These chains are composed of cascaded planar multiplier stages that are pumped with W-band high power sources. The high power W-band sources are achieved by power combining MMIC amplifiers and can provide in access of 150 mW with about 10% bandwidth. Planar diode technology has also enabled novel circuit topologies that can take advantage of the high input power and demonstrate significant efficiencies well into the THz range. Cascaded chains to 1.9 THz have now been demonstrated with enough output power to successfully pump hot-electron bolometer mixers in this frequency range. An overview of the current State-of-the-Art of the local oscillator technology will be presented along with highlighting future trends and challenges.

  1. Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Dang; Qing, Liao; Peng-Cheng, Mao; Hong-Bing, Fu; Yu-Xiang, Weng

    2016-05-01

    Femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS) is a versatile technique with advantages of high sensitivity, broad detection bandwidth, and intrinsic spectrum correction function. These advantages should benefit the study of coherent emission, such as measurement of lasing dynamics. In this letter, the FNOPAS was used to trace the lasing process in Rhodamine 6G (R6G) solution and organic semiconductor nano-wires. High-quality transient emission spectra and lasing dynamic traces were acquired, which demonstrates the applicability of FNOPAS in the study of lasing dynamics. Our work extends the application scope of the FNOPAS technique. Project supported by the National Natural Science Foundation of China (Grant Nos. 20925313 and 21503066), the Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-YW-W25), the Postdoctoral Project of Hebei University, China, and the Project of Science and Technology Bureau of Baoding City, China (Grant No. 15ZG029).

  2. Using Femtosecond Laser Subcellular Surgery as a Tool to Study Cell Biology

    SciTech Connect

    Shen, N; Colvin, M E; Huser, T

    2007-02-27

    Research on cellular function and regulation would be greatly advanced by new instrumentation using methods to alter cellular processes with spatial discrimination on the nanometer-scale. We present a novel technique for targeting submicrometer sized organelles or other biologically important regions in living cells using femtosecond laser pulses. By tightly focusing these pulses beneath the cell membrane, we can vaporize cellular material inside the cell through nonlinear optical processes. This technique enables non-invasive manipulation of the physical structure of a cell with sub-micrometer resolution. We propose to study the role mitochondria play in cell proliferation and apoptosis. Our technique provides a unique tool for the study of cell biology.

  3. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    SciTech Connect

    Zanni, Martin T.

    1999-12-17

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  4. Femtosecond laser microstructuring of titanium surfaces for middle ear ossicular replacement prosthesis: results of preliminary studies

    NASA Astrophysics Data System (ADS)

    Biedron, S.; Ilgner, J. F. R.; Fadeeva, E.; Chichkov, B.; Prescher, A.; Bovi, M.; Westhofen, M.

    2009-07-01

    The objective of this study was to optimize titanium surfaces by means of Ti:Sapphire femtosecond laser to improve the attachment of human cartilage cells on titanium prosthesis in middle ear surgery. The application of microstructures on titanium samples was evaluated and the influence of these microstructures on human auricular chondrocytes was studied in-vitro. After establishing the ear chondrocyte cell culture, cells were seeded on titanium platelets with selected microstructure patterns. Whereas the phenotype of cells seeded on unstructured titanium was similar to cells grown on standard tissue culture surfaces, the morphology of chondrocytes grown on structured titanium samples was influenced by the pattern. For future titanium middle ear prosthesis structural optimizations will be developed to promote chondrocyte growth and adhesion while impeding fibrocyte proliferation to avoid scarring on implant interfaces.

  5. The effects of laser repetition rate on femtosecond laser ablation of dry bone: a thermal and LIBS study.

    PubMed

    Gill, Ruby K; Smith, Zachary J; Lee, Changwon; Wachsmann-Hogiu, Sebastian

    2016-01-01

    The aim of this study is to understand the effect of varying laser repetition rate on thermal energy accumulation and dissipation as well as femtosecond Laser Induced Breakdown Spectroscopy (fsLIBS) signals, which may help create the framework for clinical translation of femtosecond lasers for surgical procedures. We study the effect of repetition rates on ablation widths, sample temperature, and LIBS signal of bone. SEM images were acquired to quantify the morphology of the ablated volume and fsLIBS was performed to characterize changes in signal intensity and background. We also report for the first time experimentally measured temperature distributions of bone irradiated with femtosecond lasers at repetition rates below and above carbonization conditions. While high repetition rates would allow for faster cutting, heat accumulation exceeds heat dissipation and results in carbonization of the sample. At repetition rates where carbonization occurs, the sample temperature increases to a level that is well above the threshold for irreversible cellular damage. These results highlight the importance of the need for careful selection of the repetition rate for a femtosecond laser surgery procedure to minimize the extent of thermal damage to surrounding tissues and prevent misclassification of tissue by fsLIBS analysis.

  6. Traceable terahertz power measurement from 1 THz to 5 THz.

    PubMed

    Steiger, Andreas; Kehrt, Mathias; Monte, Christian; Müller, Ralf

    2013-06-17

    The metrology institute in Germany, the Physikalisch-Technische Bundesanstalt (PTB), calibrates the spectral responsivity of THz detectors at 2.52 THz traceable to International System of Units. The Terahertz detector calibration facility is equipped with a standard detector calibrated against a cryogenic radiometer at this frequency. In order to extend this service to a broader spectral range in the THz region a new standard detector was developed. This detector is based on a commercial thermopile detector. Its absorber was modified and characterized by spectroscopic methods with respect to its absorptance and reflectance from 1 THz to 5 THz and at the wavelength of a helium-neon laser in the visible spectral range. This offers the possibility of tracing back the THz power responsivity scale to the more accurate responsivity scale in the visible spectral range and thereby to reduce the uncertainty of detector calibrations in the THz range significantly. PMID:23787634

  7. 268 nm photodissociation of ClN3: a femtosecond velocity-map imaging study.

    PubMed

    Staedter, D; Thiré, N; Baynard, E; Samartzis, Peter C; Blanchet, V

    2014-01-14

    We report the first time-resolved study of the photochemistry of chlorine azide (ClN3) by femtosecond velocity-map imaging (fs-VMI). The dissociation dynamics are initiated at 4.6 eV and the photofragments are detected by multiphoton ionization using an intense laser field centered at 803 nm. A dissociation time of 262 ± 38 fs was measured from the rising time of the co-fragments N3 and Cl. The time dependency of the angular distribution of N3, which converges from β2 ~ 2 to β2 = 1.61 ± 0.07 in 170 ± 45 fs, reveals the parallel nature of the transition dipole moment. PMID:24145666

  8. Photodarkening study of gratings written into rare-earth doped optical fibres using a femtosecond laser

    NASA Astrophysics Data System (ADS)

    Åslund, Mattias L.; Jovanovic, Nemanja; Groothoff, Nathaniel; Canning, John; Marshall, Graham D.; Jackson, Stuart D.; Fuerbach, Alex; Withford, Michael J.

    2007-12-01

    A well-known side-effect from fibre Bragg grating UV-fabrication is short wavelength attenuation, where irradiation with laser light, usually in the UV, generates both defect-induced absorption and scattering. These losses are especially problematic for high power optical fibre lasers operating at shorter wavelengths where resonant assisted coupling into the glass matrix through the rare earth ions can take place (e.g. Yb 3+). In this, work we present a study of the relative magnitude of short wavelength attenuation in gratings written by the point-by-point method using a Ti-sapphire femtosecond laser operating at 800 nm. Such gratings are very stable and have been used as the feedback elements in fibre lasers with powers exceeding 100 W. We show that the scattering properties responsible for the attenuation are analogous to those associated with type II gratings written with UV lasers.

  9. Study of nanostructure growth with nanoscale apex induced by femtosecond laser irradiation at megahertz repetition rate

    PubMed Central

    2013-01-01

    Leaf-like nanostructures with nanoscale apex are induced on dielectric target surfaces by high-repetition-rate femtosecond laser irradiation in ambient conditions. We have recently developed this unique technique to grow leaf-like nanostructures with such interesting geometry without the use of any catalyst. It was found to be possible only in the presence of background nitrogen gas flow. In this synthesis method, the target serves as the source for building material as well as the substrate upon which these nanostructures can grow. In our investigation, it was found that there are three possible kinds of nanotips that can grow on target surfaces. In this report, we have presented the study of the growth mechanisms of such leaf-like nanostructures under various conditions such as different laser pulse widths, pulse repetition rates, dwell times, and laser polarizations. We observed a clear transformation in the kind of nanotips that grew for the given laser conditions. PMID:23607832

  10. Femtosecond wave-packet dynamics in cesium dimers studied through controlled stimulated emission

    SciTech Connect

    Yuan Luqi; Wang Xi; Patnaik, Anil K.; Sokolov, Alexei V.; Ariunbold, Gombojav O.; Murawski, Robert K.; Pestov, Dmitry; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Scully, Marlan O.

    2010-05-15

    We study the dynamics of wave packets in cesium dimers using a femtosecond-controlled pump-probe technique. We implement configurations with one pulse (pump) or two pulses (pump and control) to produce vibrational wave packets on the electronic excited state. The transmission of an additional, variable-delay probe pulse is measured to monitor the time evolution of the wave packets. In the case of the pump-control-probe configuration, a superposition of two independent wave packets is observed. In order to elucidate the observed experimental data, we develop a theory based on the Liouville equation for the density matrix associated with the Franck-Condon factors. Both the numerical and analytical calculations are in good agreement with our experimental results.

  11. Study of nanostructure growth with nanoscale apex induced by femtosecond laser irradiation at megahertz repetition rate

    NASA Astrophysics Data System (ADS)

    Patel, Nikunj B.; Tan, Bo; Venkatakrishnan, Krishnan

    2013-04-01

    Leaf-like nanostructures with nanoscale apex are induced on dielectric target surfaces by high-repetition-rate femtosecond laser irradiation in ambient conditions. We have recently developed this unique technique to grow leaf-like nanostructures with such interesting geometry without the use of any catalyst. It was found to be possible only in the presence of background nitrogen gas flow. In this synthesis method, the target serves as the source for building material as well as the substrate upon which these nanostructures can grow. In our investigation, it was found that there are three possible kinds of nanotips that can grow on target surfaces. In this report, we have presented the study of the growth mechanisms of such leaf-like nanostructures under various conditions such as different laser pulse widths, pulse repetition rates, dwell times, and laser polarizations. We observed a clear transformation in the kind of nanotips that grew for the given laser conditions.

  12. Study of nanostructure growth with nanoscale apex induced by femtosecond laser irradiation at megahertz repetition rate.

    PubMed

    Patel, Nikunj B; Tan, Bo; Venkatakrishnan, Krishnan

    2013-01-01

    Leaf-like nanostructures with nanoscale apex are induced on dielectric target surfaces by high-repetition-rate femtosecond laser irradiation in ambient conditions. We have recently developed this unique technique to grow leaf-like nanostructures with such interesting geometry without the use of any catalyst. It was found to be possible only in the presence of background nitrogen gas flow. In this synthesis method, the target serves as the source for building material as well as the substrate upon which these nanostructures can grow. In our investigation, it was found that there are three possible kinds of nanotips that can grow on target surfaces. In this report, we have presented the study of the growth mechanisms of such leaf-like nanostructures under various conditions such as different laser pulse widths, pulse repetition rates, dwell times, and laser polarizations. We observed a clear transformation in the kind of nanotips that grew for the given laser conditions. PMID:23607832

  13. Advances in femtosecond laser technology

    PubMed Central

    Callou, Thais Pinheiro; Garcia, Renato; Mukai, Adriana; Giacomin, Natalia T; de Souza, Rodrigo Guimarães; Bechara, Samir J

    2016-01-01

    Femtosecond laser technology has become widely adopted by ophthalmic surgeons. The purpose of this study is to discuss applications and advantages of femtosecond lasers over traditional manual techniques, and related unique complications in cataract surgery and corneal refractive surgical procedures, including: LASIK flap creation, intracorneal ring segment implantation, presbyopic treatments, keratoplasty, astigmatic keratotomy, and intrastromal lenticule procedures. PMID:27143847

  14. Advances in femtosecond laser technology.

    PubMed

    Callou, Thais Pinheiro; Garcia, Renato; Mukai, Adriana; Giacomin, Natalia T; de Souza, Rodrigo Guimarães; Bechara, Samir J

    2016-01-01

    Femtosecond laser technology has become widely adopted by ophthalmic surgeons. The purpose of this study is to discuss applications and advantages of femtosecond lasers over traditional manual techniques, and related unique complications in cataract surgery and corneal refractive surgical procedures, including: LASIK flap creation, intracorneal ring segment implantation, presbyopic treatments, keratoplasty, astigmatic keratotomy, and intrastromal lenticule procedures.

  15. Model of THz Magnetization Dynamics

    PubMed Central

    Bocklage, Lars

    2016-01-01

    Magnetization dynamics can be coherently controlled by THz laser excitation, which can be applied in ultrafast magnetization control and switching. Here, transient magnetization dynamics are calculated for excitation with THz magnetic field pulses. We use the ansatz of Smit and Beljers, to formulate dynamic properties of the magnetization via partial derivatives of the samples free energy density, and extend it to solve the Landau-Lifshitz-equation to obtain the THz transients of the magnetization. The model is used to determine the magnetization response to ultrafast multi- and single-cycle THz pulses. Control of the magnetization trajectory by utilizing the THz pulse shape and polarization is demonstrated. PMID:26956997

  16. Windowing of THz time-domain spectroscopy signals: A study based on lactose

    NASA Astrophysics Data System (ADS)

    Vázquez-Cabo, José; Chamorro-Posada, Pedro; Fraile-Peláez, Francisco Javier; Rubiños-López, Óscar; López-Santos, José María; Martín-Ramos, Pablo

    2016-05-01

    Time-domain spectroscopy has established itself as a reference method for determining material parameters in the terahertz spectral range. This procedure requires the processing of the measured time-domain signals in order to estimate the spectral data. In this work, we present a thorough study of the properties of the signal windowing, a step previous to the parameter extraction algorithm, that permits to improve the accuracy of the results. Lactose has been used as sample material in the study.

  17. Perspective: Ultrafast magnetism and THz spintronics

    NASA Astrophysics Data System (ADS)

    Walowski, Jakob; Münzenberg, Markus

    2016-10-01

    This year the discovery of femtosecond demagnetization by laser pulses is 20 years old. For the first time, this milestone work by Bigot and coworkers gave insight directly into the time scales of microscopic interactions that connect the spin and electron system. While intense discussions in the field were fueled by the complexity of the processes in the past, it now became evident that it is a puzzle of many different parts. Rather than providing an overview that has been presented in previous reviews on ultrafast processes in ferromagnets, this perspective will show that with our current depth of knowledge the first applications are developed: THz spintronics and all-optical spin manipulation are becoming more and more feasible. The aim of this perspective is to point out where we can connect the different puzzle pieces of understanding gathered over 20 years to develop novel applications. Based on many observations in a large number of experiments. Differences in the theoretical models arise from the localized and delocalized nature of ferromagnetism. Transport effects are intrinsically non-local in spintronic devices and at interfaces. We review the need for multiscale modeling to address the processes starting from electronic excitation of the spin system on the picometer length scale and sub-femtosecond time scale, to spin wave generation, and towards the modeling of ultrafast phase transitions that altogether determine the response time of the ferromagnetic system. Today, our current understanding gives rise to the first usage of ultrafast spin physics for ultrafast magnetism control: THz spintronic devices. This makes the field of ultrafast spin-dynamics an emerging topic open for many researchers right now.

  18. THz Exposure of Whole Blood for the Study of Biological Effects on Human Lymphocytes.

    PubMed

    Scarfì, M R; Romanò, M; Di Pietro, R; Zeni, O; Doria, A; Gallerano, G P; Giovenale, E; Messina, G; Lai, A; Campurra, G; Coniglio, D; D'Arienzo, M

    2003-06-01

    The aim of the present study is toinvestigate the genotoxic effect of THzradiation in human peripheral bloodlymphocytes following 20 minutes exposureto 1 mW average power Free Electron Laserradiation in the frequency range 120-140GHz. For this purpose 9 healthy donors wereemployed and cytokinesis block techniquewas applied to study micronucleusfrequency and cell proliferation. Theresults obtained indicate that all theelectromagnetic conditions adopted so far do not alter the investigated parameters,suggesting absence of direct chromosomaldamage and alteration of cell cyclekinetics (two tailed paired Student's test:p> 0.05 in all cases). PMID:23345833

  19. Experimental study of the interaction of THz radiation FEL with the atmosphere and water droplet aerosol

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Lisenko, A. A.; Babchenko, S. V.; Kargin, B. A.; Kablukova, E. G.; Kubarev, V. V.

    2015-11-01

    The interaction of radiation of the Novosibirsk Free Electron Laser (FEL) at a wavelength of 130 μm in the atmospheric transmission window with a model aerosol cloud having the known droplet size distribution function has been studied experimentally. The experimental findings are compared with theoretical calculations obtained from solution of the lidar equation for the conditions of the experiment.

  20. Generation of ultra-short THz pulses in new optical nonlinear materials based on organic polymers

    NASA Astrophysics Data System (ADS)

    Mikerin, S. L.; Plekhanov, A. I.; Simanchuk, A. E.; Yakimanskii, A. V.

    2016-07-01

    Using the method of optical rectification of femtosecond laser pulses, we report the generation of short (a few field cycles) terahertz pulses in the samples of films based on polyimides with covalently bound chromophore molecules of DR type. The spectral width of the produced pulses is limited by the pump pulse duration. The quadratic nonlinear optical properties are imparted to the films in the process of their fabrication by orienting the chromophore molecules in the external electric field of the applied electrodes having an original configuration. The samples are compared with the ZnTe crystal. Using the methods of coherent spectroscopy, their transmission and refractive index dispersion spectra are investigated in the frequency range 0.5 – 2.6 THz. The studied polymer composition is promising for the application in coherent spectrometers both for increasing the working spectral range without dips and for improving the spatial resolution in the near-field terahertz spectroscopy.

  1. Antenna Enhanced Graphene THz Emitter and Detector.

    PubMed

    Tong, Jiayue; Muthee, Martin; Chen, Shao-Yu; Yngvesson, Sigfrid K; Yan, Jun

    2015-08-12

    Recent intense electrical and optical studies of graphene have pushed the material to the forefront of optoelectronic research. Of particular interest is the few terahertz (THz) frequency regime where efficient light sources and highly sensitive detectors are very challenging to make. Here we present THz sources and detectors made with graphene field effect transistors (GFETs) enhanced by a double-patch antenna and an on-chip silicon lens. We report the first experimental observation of 1-3 THz radiation from graphene, as well as more than 3 orders of magnitude performance improvements in a half-edge-contacted GFET thermoelectric detector operating at ∼2 THz. The quantitative analysis of the emitting power and its unusual charge density dependence indicate significant nonthermal noise contribution from the GFET. The polarization resolved detection measurements with different illumination geometries allow for detailed and quantitative analysis of various factors that contribute to the overall detector performance. Our experimental results represent a significant advance toward practically useful graphene THz devices. PMID:26218887

  2. THz optics and metamaterials: Design, fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Turaga, Shuvan Prashant

    In the past decade, terahertz(THz) based optics and metamaterials have been extensively researched to create components and devices in the frequency range of 0.1 to 5 THz also known as 'THz gap'. Metamaterials, in particular, have realized concepts such as negative refraction, slow light and superlensing through artificially engineered media. The naturally available materials have very weak interaction of terahertz light. Therefore, the design of THz metamaterials to manipulate THz radiation is an important task towards furthering the usage of terahertz light for practical applications. The thesis involved the development of two lab facilities for fabrication and characterization. A state-of-the-art two photon lithography( TPL) system was developed which enables us to manufacture 3D structures with sub-diffraction limit resolution(280nm at 800 nm wavelength). The software was written to enable easy fabrication of multiple structures with different algorithms. For characterizing our metamaterial structures in the terahertz regime, a THz time-domain spectroscopy(THz-TDS) and imaging system was built. This transmission based spectrometer has a dynamic range of 50 dB at 0.5 THz and a bandwidth of about 2.5 THz. To demonstrate the application of these home-built facilities, the metamaterials in the THz regime were fabricated using TPL and UV lithography. To investigate conductive coupling effects in meta-atoms, a new design was proposed, fabricated and characterized. As an application of TPL, free standing polymer helices were fabricated and coated with silver electroless plating. These silver helical metamaterials have potential application as circular polarizers in the MIR and THz regimes. The aspect ratio effects of these helical metamaterials were also studied in order to improve their polarizing performance.

  3. Identifying the distinct phases of THz waves from K-valley electrons in graphite

    SciTech Connect

    Irfan, Muhammad; Yim, Jong-Hyuk Jho, Young-Dahl; Kim, Changyoung

    2013-12-04

    The polarity change of THz electromagnetic waves radiated from single-crystalline graphite and polycrystalline graphite films has been studied to identify the main generation mechanism in conventional reflective THz time-domain spectroscopy scheme. The excitation wavelength variation around the K-valley produces no significant changes in THz field strength. We further found that THz waves become fully dispersed without polarity change in lateral detection geometry.

  4. Single-shot measurement of the spectral envelope of broad-bandwidth terahertz pulses from femtosecond electron bunches

    SciTech Connect

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    We present a new approach (demonstrated experimentally and through modeling) to characterize the spectral envelope of a terahertz (THz) pulse in a single shot. The coherent THz pulse is produced by a femtosecond electron bunch and contains information on the bunch duration. The technique, involving a single low-power laser probe pulse, is an extension of the conventional spectral encoding method (limited in time resolution to hundreds of femtoseconds) into a regime only limited in resolution by the laser pulse length (tens of femtoseconds). While only the bunch duration is retrieved (and not the exact charge profile), such a measurement provides a useful and critical parameter for optimization of the electron accelerator.

  5. Efficient THz emission from a topological insulator surface

    NASA Astrophysics Data System (ADS)

    Zhu, Li-Guo; Kubera, Brian; Mak, Kin Fai; Shan, Jie

    2012-02-01

    Bi2Se3 is a 3D topological insulator (TI) recently confirmed by the ARPES.ootnotetextHsieh et al. Nature 460, 1101 (2009). Direct optical probe of its metallic surface states is, however, hindered by the remnant Drude response of the bulk material. Second-order nonlinear optical techniques with their surface specificity provide unique opportunities for studying surface electronic transitions in TIs such as Bi2Se3 with bulk inversion symmetry.ootnotetextHsieh et al. Phys. Rev. Lett. 106, 057401 (2011). Here we demonstrate efficient THz emission from the surface of Bi2Se3 under the excitation of a femtosecond optical pulse. The emission arises from optical rectification of the optical pulse at the TI surface and the transient current within the surface depletion region. By spectrally resolving the emission under different pump and emission polarizations, we separate the different contributions. Effects arising from just a few atomic layers of the sample surface due to resonance enhancement of the quasi-real optical transitions between the surface electronic states will be discussed.

  6. All fiber-coupled THz-TDS system with kHz measurement rate based on electronically controlled optical sampling.

    PubMed

    Dietz, Roman J B; Vieweg, Nico; Puppe, Thomas; Zach, Armin; Globisch, Björn; Göbel, Thorsten; Leisching, Patrick; Schell, Martin

    2014-11-15

    We demonstrate a completely fiber-coupled terahertz (THz) time-domain spectrometer (TDS) system based on electronically controlled optical sampling with two erbium-doped femtosecond fiber lasers at a central wavelength of 1560 nm. The system employs optimized InGaAs/InAlAs photoconductive antennas for THz generation and detection. With this system, we achieve measurement rates of up to 8 kHz and up to 180 ps scan range. We further achieve 2 THz spectral bandwidth and a dynamic range of 76 dB at only 500 ms measurement time. PMID:25490499

  7. THz time-domain spectroscopy for tokamak plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Causa, F.; Zerbini, M.; Johnston, M.; Buratti, P.; Doria, A.; Gabellieri, L.; Gallerano, G. P.; Giovenale, E.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O.

    2014-08-01

    The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.

  8. Simulation of FEL pulse length calculation with THz streaking method.

    PubMed

    Gorgisyan, I; Ischebeck, R; Prat, E; Reiche, S; Rivkin, L; Juranić, P

    2016-05-01

    Having accurate and comprehensive photon diagnostics for the X-ray pulses delivered by free-electron laser (FEL) facilities is of utmost importance. Along with various parameters of the photon beam (such as photon energy, beam intensity, etc.), the pulse length measurements are particularly useful both for the machine operators to measure the beam parameters and monitor the stability of the machine performance, and for the users carrying out pump-probe experiments at such facilities to better understand their measurement results. One of the most promising pulse length measurement techniques used for photon diagnostics is the THz streak camera which is capable of simultaneously measuring the lengths of the photon pulses and their arrival times with respect to the pump laser. This work presents simulations of a THz streak camera performance. The simulation procedure utilizes FEL pulses with two different photon energies in hard and soft X-ray regions, respectively. It recreates the energy spectra of the photoelectrons produced by the photon pulses and streaks them by a single-cycle THz pulse. Following the pulse-retrieval procedure of the THz streak camera, the lengths were calculated from the streaked spectra. To validate the pulse length calculation procedure, the precision and the accuracy of the method were estimated for streaking configuration corresponding to previously performed experiments. The obtained results show that for the discussed setup the method is capable of measuring FEL pulses with about a femtosecond accuracy and precision. PMID:27140142

  9. THz time-domain spectroscopy for tokamak plasma diagnostics

    SciTech Connect

    Causa, F.; Zerbini, M.; Buratti, P.; Gabellieri, L.; Pacella, D.; Romano, A.; Tuccillo, A. A.; Tudisco, O.; Johnston, M.; Doria, A.; Gallerano, G. P.; Giovenale, E.

    2014-08-21

    The technology is now becoming mature for diagnostics using large portions of the electromagnetic spectrum simultaneously, in the form of THz pulses. THz radiation-based techniques have become feasible for a variety of applications, e.g., spectroscopy, imaging for security, medicine and pharmaceutical industry. In particular, time-domain spectroscopy (TDS) is now being used also for plasma diagnostics in various fields of application. This technique is promising also for plasmas for fusion applications, where plasma characteristics are non-uniform and/or evolve during the discharge This is because THz pulses produced with femtosecond mode-locked lasers conveniently span the spectrum above and below the plasma frequency and, thus, can be used as very sensitive and versatile probes of widely varying plasma parameters. The short pulse duration permits time resolving plasma characteristics while the large frequency span permits a large dynamic range. The focus of this work is to present preliminary experimental and simulation results demonstrating that THz TDS can be realistically adapted as a versatile tokamak plasma diagnostic technique.

  10. Simulation of FEL pulse length calculation with THz streaking method

    PubMed Central

    Gorgisyan, I.; Ischebeck, R.; Prat, E.; Reiche, S.; Rivkin, L.; Juranić, P.

    2016-01-01

    Having accurate and comprehensive photon diagnostics for the X-ray pulses delivered by free-electron laser (FEL) facilities is of utmost importance. Along with various parameters of the photon beam (such as photon energy, beam intensity, etc.), the pulse length measurements are particularly useful both for the machine operators to measure the beam parameters and monitor the stability of the machine performance, and for the users carrying out pump–probe experiments at such facilities to better understand their measurement results. One of the most promising pulse length measurement techniques used for photon diagnostics is the THz streak camera which is capable of simultaneously measuring the lengths of the photon pulses and their arrival times with respect to the pump laser. This work presents simulations of a THz streak camera performance. The simulation procedure utilizes FEL pulses with two different photon energies in hard and soft X-ray regions, respectively. It recreates the energy spectra of the photoelectrons produced by the photon pulses and streaks them by a single-cycle THz pulse. Following the pulse-retrieval procedure of the THz streak camera, the lengths were calculated from the streaked spectra. To validate the pulse length calculation procedure, the precision and the accuracy of the method were estimated for streaking configuration corresponding to previously performed experiments. The obtained results show that for the discussed setup the method is capable of measuring FEL pulses with about a femtosecond accuracy and precision. PMID:27140142

  11. Experimental study on GaP surface damage threshold induced by a high repetition rate femtosecond laser

    SciTech Connect

    Li Yi; Liu Feng; Li Yanfeng; Chai Lu; Xing Qirong; Hu Minglie; Wang Chingyue

    2011-05-01

    The surface damage threshold of undoped bulk <110> GaP induced by a high repetition rate femtosecond pulse at 1040 nm with a duration of 61 fs was studied. The threshold value was obtained by a linear fit of the incident single pulse fluence and was confirmed with a breakdown test around the threshold level. The result will be useful in high intensity, high repetition rate laser applications and ultrafast processes.

  12. Comparison of two photosensitizers in photodynamic therapy using light pulses in femtosecond regime: an animal study

    NASA Astrophysics Data System (ADS)

    Grecco, Clóvis; Pratavieira, Sebastião.; Bagnato, Vanderlei; Kurachi, Cristina

    2016-03-01

    Photodynamic therapy is a therapeutic modality for cancer treatment based on the interaction of light with a sensitizer agent and molecular oxygen present into the target cells. The aim of this study is the evaluation of photodynamic therapy using pulsed light source in the femtosecond regime through necrosis induced in healthy rat liver. The induced necrosis profile with CW laser and pulsed laser were evaluated in animal model, which received Photodithazine (chlorine e6 derivative). The light sources used in these studies were a 660 nm CW diode laser and a Ti:Sapphire Regenerative Amplifier laser (1 kHz repetition rate and 100 fs pulse width) associated with an optical parametric amplifier (OPA) to convert to 660 nm. The results were compared with a previous study when was used a hematoporphyrin derivative (Photogem) as a sensitizer. The induced necrosis with Photogen was greater with pulsed laser (2.0 +/- 0.2 mm) in comparison with CW laser (1.0 ± 0.2 mm), while in Photodithazine the induced necrosis with was greater with CW laser (2.9 +/- 0.2 mm) comparing the pulsed laser (2.0 +/- 0.2 mm). These results indicate dependence of PDT mechanisms with photosensitizer and the light regime applied.

  13. Transient grating studies of femtosecond processes in ultra-thin layers of PTCDA.

    PubMed

    Karki, Khadga; Helms, Gesa; Namboodiri, Mahesh; Wagner, Veit; Fritz, Jürgen; Materny, Arnulf

    2012-02-01

    Elementary processes like energy transfer, charge transport, and exciton diffusion in thin films occur on time scales of femtoseconds. Time-resolved photo-electron spectroscopy, a technique limited to ultra-high vacuum environment and the proper choice of a substrate, has been used to study ultrafast processes in sub-nanometer thin films so far. Herein we show that a transient (population) grating created by the interference of laser pulses can be used to study ultrafast processes in such films under ambient conditions. Our investigations of exciton dynamics in 1.4±0.2 nm and 0.4±0.2 nm thin films, formed by nanocrystals of 3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) on glass and mica, show that the dynamics differ with the crystal size, possibly due to the confinement induced changes in the electronic structure. The technique is sensitive enough to investigate the dynamics in systems, where only 20 % of the surface is covered by nano-crystals. We expect such an optical technique that is sensitive enough to study dynamics in few to sub-nanometer thin layers under ambient conditions to become important in investigating ultrafast dynamics on surfaces, interfaces, functionalized materials, organic semiconductors, and quantum phenomena in ordered structures of reduced dimensions, such as quantum dots and graphene sheets.

  14. Systematic study of spatiotemporal dynamics of intense femtosecond laser pulses in BK-7 glass

    NASA Astrophysics Data System (ADS)

    Gopal, Ram; Deepak, V.; Sivaramakrishnan, S.

    2007-04-01

    In this paper we present a systematic study of the spatial and temporal effects of intense femtosecond laser pulses in BK-7 over a broad range of input powers, 1-1000 times the critical power for self-focusing (P_{cr}) by numerically solving the nonlinear Schrödinger equation (NLS). Most numerical studies have not been extended to such high powers. A clear-cut classification of spatio-temporal dynamics up to very high powers into three regimes - the group-velocity dispersion (GVD) regime, the ionization regime and the dominant plasma regime - as done here, is a significant step towards a better understanding. Further, we examine in detail the role of GVD in channel formation by comparing BK-7 to an `artificial' medium. Our investigations bring forth the important observation that diffraction plays a minimal role in the formation of multiple cones and that plasma plays a diffraction-like role at very high powers. A detailed study of the spatio-temporal dynamics in any condensed medium over this range of powers has not been reported hitherto, to the best of our knowledge. We also suggest appropriate operational powers for various applications employing BK-7 on the basis of our results.

  15. Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions

    SciTech Connect

    Amaran, Saieswari; Kosloff, Ronnie; Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert; Rybak, Leonid; Levin, Liat; Amitay, Zohar; Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P.

    2013-10-28

    Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.

  16. Study of beam transverse properties of a thermionic electron gun for application to a compact THz free electron laser.

    PubMed

    Hu, Tongning; Pei, Yuanji; Qin, Bin; Tan, Ping; Chen, Qushan; Yang, Lei; Li, Ji

    2014-10-01

    A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables the injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented.

  17. Study of beam transverse properties of a thermionic electron gun for application to a compact THz free electron laser

    SciTech Connect

    Hu, Tongning E-mail: yjpei@ustc.edu.cn; Qin, Bin; Tan, Ping; Chen, Qushan; Yang, Lei; Pei, Yuanji E-mail: yjpei@ustc.edu.cn; Li, Ji

    2014-10-15

    A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables the injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented.

  18. The Study of 0.34 THz Monolithically Integrated Fourth Subharmonic Mixer Using Planar Schottky Barrier Diode

    NASA Astrophysics Data System (ADS)

    Tong, Xiaodong; Li, Qian; An, Ning; Wang, Wenjie; Deng, Xiaodong; Zhang, Liang; Liu, Haitao; Zeng, Jianping; Li, Zhiqiang; Tang, Hailing; Xiong, Yong-Zhong

    2015-11-01

    A planar Schottky barrier diode with the designed Schottky contact area of approximately 3 μm2 is developed on gallium arsenide (GaAs) material. The measurements of the developed planar Schottky barrier diode indicate that the zero-biased junction capacitance Cj0 is 11.0 fF, the parasitic series resistance RS is 3.0 Ω, and the cut off frequency fT is 4.8 THz. A monolithically integrated fourth subharmonic mixer with this diode operating at the radio frequency (RF) signal frequency of 0.34 THz with the chip area of 0.6 mm2 is implemented. The intermediate frequency (IF) bandwidth is from DC to 40 GHz. The local oscillator (LO) bandwidth is 37 GHz from 60 to 97 GHz. The RF bandwidth is determined by the bandwidth of the on chip antenna, which is 28 GHz from 322 to 350 GHz. The measurements of the mixer demonstrated a conversion loss of approximately 51 dB.

  19. Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Dang; Qing, Liao; Peng-Cheng, Mao; Hong-Bing, Fu; Yu-Xiang, Weng

    2016-05-01

    Femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy (FNOPAS) is a versatile technique with advantages of high sensitivity, broad detection bandwidth, and intrinsic spectrum correction function. These advantages should benefit the study of coherent emission, such as measurement of lasing dynamics. In this letter, the FNOPAS was used to trace the lasing process in Rhodamine 6G (R6G) solution and organic semiconductor nano-wires. High-quality transient emission spectra and lasing dynamic traces were acquired, which demonstrates the applicability of FNOPAS in the study of lasing dynamics. Our work extends the application scope of the FNOPAS technique. Project supported by the National Natural Science Foundation of China (Grant Nos. 20925313 and 21503066), the Innovation Program of Chinese Academy of Sciences (Grant No. KJCX2-YW-W25), the Postdoctoral Project of Hebei University, China, and the Project of Science and Technology Bureau of Baoding City, China (Grant No. 15ZG029).

  20. Sutureless femtosecond anterior lamellar keratoplasty: A 1-year follow-up study

    PubMed Central

    Shetty, Rohit; Nagaraja, Harsha; Veluri, Himabindu; Shivanna, Yathish; Kugar, Thungappa; Nujits, Rudy; Shetty, Bhujang

    2014-01-01

    Aim: To study the safety and efficacy of sutureless femtosecond anterior lamellar keratoplasty (FALK) in patients with corneal stromal opacities. Materials and Methods: Eleven eyes of 11 consecutive patients with corneal stromal opacities involving < 250 μ due to various pathologies were included in the study. Preoperatively, all underwent anterior segment imaging with spectral domain optical coherence tomography (SD-OCT) (Bioptigen Inc., Durham, North Carolina, USA) to measure the depth of the stromal opacity. All patients underwent FALK, and bandage contact lens was placed for a period of 2 weeks. Postoperatively, uncorrected visual acuity, best corrected visual acuity (BCVA), and SD-OCT evaluation were performed. Results: All patients showed significant improvement in BCVA. The mean postoperative BCVA (in decimals) improved from 0.11 ± 0.06 preoperatively to 0.59 ± 0.08. There were no intraoperative or significant postoperative complications that were noticed. Conclusion: FALK is a safe and effective alternative to deep anterior lamellar keratoplasty or penetrating keratoplasty in the treatment of anterior stromal opacities. PMID:25370393

  1. Photosensitivity study of GeS2 chalcogenide glass under femtosecond laser pulses irradiation

    NASA Astrophysics Data System (ADS)

    Ayiriveetil, Arunbabu; Sabapathy, Tamilarasan; Kar, Ajoy K.; Asokan, Sundarrajan

    2015-07-01

    The present study discusses the photosensitivity of GeS2 chalcogenide glass in response to irradiation with femtosecond pulses at 1047 nm. Bulk GeS2 glasses are prepared by conventional melt quenching technique and the amorphous nature of the glass is confirmed using X-ray diffraction. Ultrafast laser inscription technique is used to fabricate the straight channel waveguides in the glass. Single scan and multi scan waveguides are inscribed in GeS2 glasses of length 0.65 cm using a master oscillator power amplifier Yb doped fiber laser (IMRA μjewel D400) with different pulse energy and translation speed. Diameters of the inscribed waveguides are measured and its dependence on the inscription parameters such as translation speed and pulse energy is studied. Butt coupling method is used to characterize the loss measurement of the inscribed optical waveguides. The mode field image of the waveguides is captured using CCD camera and compared with the mode field image of a standard SMF-28 fibers.

  2. Study of the formation of 3-D titania nanofibrous structure by MHz femtosecond laser in ambient air

    NASA Astrophysics Data System (ADS)

    Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, K.

    2013-01-01

    In this study, we describe the formation mechanism of web-like three-dimensional (3-D) titania nanofibrous structures during femtosecond laser ablation of titanium (Ti) targets in the presence of background air. First, we demonstrate the mechanism of ablation of Ti targets by multiple femtosecond laser pulses at ambient air in an explicit analytical form. The formulas for evaporation rates and the number of ablated particles, which is analogous to the deposition rate of the synthesized nanofibers, for the ablation by a single pulse and multiple pulses as a function of laser parameters, background gas, and material properties are predicted and compared to experimental results. Afterwards, the formation of nanofibrous structures is demonstrated by applying an existing simplified kinetic model to Ti targets and ambient conditions. The predicted theory provides nanofiber diameter dependency with the combination of laser parameters, target properties, and ambient gas characteristics. Experimental studies are then performed on titania nanofibrous structures synthesized by laser ablation of Ti targets using MHz repletion-rate femtosecond laser at ambient air. The models' predictions are then compared with the experimental results, where nanostructures with different morphologies are manufactured by altering laser parameters. Our results indicate that femtosecond laser ablation of Ti targets at air background yields crystalline titania nanostructures. The formation of crystalline titania nanostructures is preceded by thermal mechanism of nucleation and growth. The results point out that laser pulse repetition and dwell time can control the density, size, and pore size of the engineered nanofibrous structure. As the deposition rate of nanostructures is analogous to the ablation rate of the target, higher density of nanofibrous structure is seen at greater laser fluences. The predicted theory can be applied to predict ablation mechanism and nanofiber formation of different

  3. Study of the formation of 3-D titania nanofibrous structure by MHz femtosecond laser in ambient air

    SciTech Connect

    Tavangar, Amirhossein; Venkatakrishnan, K.; Tan Bo

    2013-01-14

    In this study, we describe the formation mechanism of web-like three-dimensional (3-D) titania nanofibrous structures during femtosecond laser ablation of titanium (Ti) targets in the presence of background air. First, we demonstrate the mechanism of ablation of Ti targets by multiple femtosecond laser pulses at ambient air in an explicit analytical form. The formulas for evaporation rates and the number of ablated particles, which is analogous to the deposition rate of the synthesized nanofibers, for the ablation by a single pulse and multiple pulses as a function of laser parameters, background gas, and material properties are predicted and compared to experimental results. Afterwards, the formation of nanofibrous structures is demonstrated by applying an existing simplified kinetic model to Ti targets and ambient conditions. The predicted theory provides nanofiber diameter dependency with the combination of laser parameters, target properties, and ambient gas characteristics. Experimental studies are then performed on titania nanofibrous structures synthesized by laser ablation of Ti targets using MHz repletion-rate femtosecond laser at ambient air. The models' predictions are then compared with the experimental results, where nanostructures with different morphologies are manufactured by altering laser parameters. Our results indicate that femtosecond laser ablation of Ti targets at air background yields crystalline titania nanostructures. The formation of crystalline titania nanostructures is preceded by thermal mechanism of nucleation and growth. The results point out that laser pulse repetition and dwell time can control the density, size, and pore size of the engineered nanofibrous structure. As the deposition rate of nanostructures is analogous to the ablation rate of the target, higher density of nanofibrous structure is seen at greater laser fluences. The predicted theory can be applied to predict ablation mechanism and nanofiber formation of different

  4. Corrugated capillary as THz Cherenkov Smith-Purcell radiator

    NASA Astrophysics Data System (ADS)

    Lekomtsev, K. V.; Aryshev, A. S.; Tishchenko, A. A.; Ponomarenko, A. A.; Sukharev, V. M.; Terunuma, N.; Urakawa, J.; Strikhanov, M. N.

    2016-07-01

    In this article we discussed Particle In Cell electromagnetic simulations and mechanical design of dielectric capillaries that produce THz Cherenkov Smith-Purcell radiation (ChSPR), arising when a femtosecond electron multi-bunch beam propagates through corrugated and non-corrugated dielectric capillaries with metallic radiation reflectors. We investigated the influence of the four-bunch beam on the SPR field spectrum and on the ChSPR power spectrum, and the influence of the non-central beam propagation on the ChSPR power spectrum. We also discussed the design and assembly of the capillaries, constructed as sets of cylindrical rings.

  5. Real-Time Determination of Absolute Frequency in Continuous-Wave Terahertz Radiation with a Photocarrier Terahertz Frequency Comb Induced by an Unstabilized Femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Minamikawa, Takeo; Hayashi, Kenta; Mizuguchi, Tatsuya; Hsieh, Yi-Da; Abdelsalam, Dahi Ghareab; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Yasui, Takeshi

    2016-05-01

    A practical method for the absolute frequency measurement of continuous-wave terahertz (CW-THz) radiation uses a photocarrier terahertz frequency comb (PC-THz comb) because of its ability to realize real-time, precise measurement without the need for cryogenic cooling. However, the requirement for precise stabilization of the repetition frequency ( f rep) and/or use of dual femtosecond lasers hinders its practical use. In this article, based on the fact that an equal interval between PC-THz comb modes is always maintained regardless of the fluctuation in f rep, the PC-THz comb induced by an unstabilized laser was used to determine the absolute frequency f THz of CW-THz radiation. Using an f rep-free-running PC-THz comb, the f THz of the frequency-fixed or frequency-fluctuated active frequency multiplier chain CW-THz source was determined at a measurement rate of 10 Hz with a relative accuracy of 8.2 × 10-13 and a relative precision of 8.8 × 10-12 to a rubidium frequency standard. Furthermore, f THz was correctly determined even when fluctuating over a range of 20 GHz. The proposed method enables the use of any commercial femtosecond laser for the absolute frequency measurement of CW-THz radiation.

  6. [Study on the Supercontinuum Generation with Femtosecond Pulse in Photonic Crystal Fiber].

    PubMed

    Wei, Yuan-fei; Zhao, Fu-li; Shen, Peng-gao; Wu, Shi-qiang

    2015-12-01

    Physical mechanism of supercontinuum generation in photonic crystal fiber by femtosecond laser pulse has been investigated experimentally. In this study, we used the tunable output wavelength Ti: sapphire optical parametric amplifier as the pump source and the fiber spectrometer acquired the spectrogram of supercontinuum generation in photonic crystal fiber under different power and wavelength conditions, then we normalized the spectrograms and make a comparison of them. PCF supercontinuum differences affected by physical mechanisms were analyzed. We found that when increasing the incident pump pulse power, the spectral width will be gradually widened, there are more peaks, part of the energy will transfer in to the short-wave- length region; as long as it reaches a certain intensity, width of supercontinuum finally saturated, the shape of supercontinuum was also stabilized. As the incident power was settled at 300 milliwatt and the length of PCF was settled at 105 millimeter, experimental results show that width and shape of supercontinuum are affected by the wavelength of pump pulse, in the range of 760 to 840 nm, there appears more and more peaks with the increase of incident wavelength; at anomalous dispersion the spectrogram of supercontinuum generation will be more flat and more wider as the wavelength of pump pulse closer to zero point. PMID:26964194

  7. Experimental study on 800 nm femtosecond laser ablation of fused silica in air and vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Shi-zhen; Yao, Cai-zhen; Liao, Wei; Yuan, Xiao-dong; Wang, Tao; Zu, Xiao-tao

    2016-10-01

    Ablation rates of fused silica were studied as a function of femtosecond laser pulse fluences (0.7-41 J/cm2) in air and vacuum. The experiment was conducted by using a Ti:sapphire laser that emits radiation at 800 nm with a pulse width of 35 fs and a repetition rate of 10 Hz. The morphology and ablation depth of laser-induced damage crater were evaluated by using optical microscopy and scanning electron microscopy (SEM). Ablation rates were calculated from the depth of craters induced by multiple laser pulses. Results showed that two ablation regimes, i.e. non-thermal and thermal ablation co-existed in air and vacuum at low and moderate fluences. A drop of ablation rate was observed at high fluence (higher than 9.5 J/cm2) in air. While in vacuum, the ablation rate increased continuously with the increasing of laser fluence and much higher than that in air. The drop of ablation rate observed at high fluence in air was due to the strong defocusing effects associated with the non-equilibrium ionization of air. Furthermore, the laser-induced damage threshold (LIDT), which was determined from the relationship between crater area and the logarithm of laser energy, was found to depend on the number of incident pulses on the same spot, and similar phenomenon was observed in air and vacuum.

  8. A review on the sub-THz/THz gyrotrons

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Singh, Udaybir; Bera, Anirban; Sinha, A. K.

    2016-05-01

    A review on the sub-THz/THz gyrotrons is performed in this manuscript. The present development status of gyrotrons can be divided into three streams for the sake of better understanding: 1. low frequency (<35 GHz), medium power (<100 kW), small size and easy to handle gyrotrons for industrial applications, 2. very high power (1 MW or more), medium frequency (100-200 GHz) gyrotrons for plasma fusion applications, 3. low power (few tens of watt to kW), high frequency (>200 GHz) gyrotrons for various innovative applications. In this manuscript, the third stream of gyrotron development is reviewed. In last few decades several innovative applications are searched in sub-THz/THz band where the gyrotrons could be used as an efficient source of RF radiation. The applications of sub-THz/THz gyrotrons including the futuristic scope of the device are also discussed in this article. Further, several criticalities arise in the design and development when the gyrotron operation shifts toward the high frequency band. Various such design and technological challenges are also discussed here. Finally the development status of sub-THz/THz gyrotrons as per the use in various scientific and technological applications is also discussed.

  9. Comparative Study of the Dissociative Ionization of 1,1,1-Trichloroethane Using Nanosecond and Femtosecond Laser Pulses

    PubMed Central

    du Plessis, Anton; Strydom, Christien; Botha, Lourens

    2010-01-01

    Changes in the laser induced molecular dissociation of 1,1,1-trichloroethane (TCE) were studied using a range of intensities and standard laser wavelengths with nanosecond and femtosecond pulse durations. TCE contains C-H, C-C and C-Cl bonds and selective bond breakage of one or more of these bonds is of scientific interest. Using laser ionization time of flight mass spectrometry, it was found that considerable variation of fragment ion peak heights as well as changes in relative peak ratios is possible by varying the laser intensity (by attenuation), wavelength and pulse duration using standard laser sources. The nanosecond laser dissociation seems to occur via C-Cl bond breakage, with significant fragmentation and only a few large mass ion peaks observed. In contrast, femtosecond laser dissociative ionization results in many large mass ion peaks. Evidence is found for various competing dissociation and ionization pathways. Variation of the nanosecond laser intensity does not change the fragmentation pattern, while at high femtosecond intensities large changes are observed in relative ion peak sizes. The total ionization yield and fragmentation ratios are presented for a range of wavelengths and intensities, and compared to the changes observed due to a linear chirp variation. PMID:20480004

  10. Calorimetric detection of the conical terahertz radiation from femtosecond laser filaments in air

    NASA Astrophysics Data System (ADS)

    Houard, Aurélien; Liu, Yi; Mysyrowicz, André; Leriche, Bernadette

    2007-12-01

    The spectral distribution of the conical terahertz emission from a femtosecond laser filament in air is measured with a bolometric detector and a set of filters, confirming that the main part of the emission lies between 0.5 and 3THz. The efficiency of this terahertz emission is compared with that obtained in air via four wave mixing of femtosecond laser pulses at ω and 2ω in the presence of a plasma.

  11. Multi-frequency THz Heterodyne Spectroscopy using Electro-Optic Sampling

    NASA Astrophysics Data System (ADS)

    Jones, David

    2010-03-01

    Multi-frequency heterodyne spectroscopy, developed by two groups (Schiller as well as van der Weide, Keilmann and co-workers) uses one optical femtosecond frequency comb (FFC) to probe a sample. A second FFC with a slightly detuned spacing is used as a multi frequency local oscillator to uniquely map the broadband optical spectroscopic information to the RF domain where it can be easily analyzed. Researchers at NIST (Coddington et al) have realized the full potential of this technique by tightly locking the detuned combs together using optical locking techniques. It is of considerable interest to extend such capabilities to access the so-called molecular vibrational ``fingerprint'' range of approximately 10 to 100 THz (300 to 3000 cm-1). A transfer of the direct heterodyne detection approach used in the optical regime down to this frequency range is fraught with difficulties including significantly lower power of the probe THz frequency comb. In addition, a low noise detector with a relatively fast RF response (>100 MHz at a minimum) is required. An alternative, indirect detection technique for detecting THz signals is electro-optic sampling (EOS). It has employed for time domain THz spectroscopic applications for a number of years with a demonstrated spectral detection ranging from 0.5 THz range to over 100 THz. Through careful analysis of the EOS we show how electro-optic sampling of THz frequency comb by a detuned optical FFC followed by direct optical detection of the optical sampling beam enables conversion of the THz spectroscopic data directly to the RF domain. In particular, we show there is a one-to-one correspondence between a detected RF heterodyne beat and THz comb element. Numerical simulations predict excellent signal to noise ratio of the RF beats (20 dB) with modest acquisition times (10 μs). We will also summarize our progress toward experimental realization of such a system.

  12. Ultrafast properties of femtosecond-laser-ablated GaAs and its application to terahertz optoelectronics.

    PubMed

    Madéo, Julien; Margiolakis, Athanasios; Zhao, Zhen-Yu; Hale, Peter J; Man, Michael K L; Zhao, Quan-Zhong; Peng, Wei; Shi, Wang-Zhou; Dani, Keshav M

    2015-07-15

    We report on the first terahertz (THz) emitter based on femtosecond-laser-ablated gallium arsenide (GaAs), demonstrating a 65% enhancement in THz emission at high optical power compared to the nonablated device. Counter-intuitively, the ablated device shows significantly lower photocurrent and carrier mobility. We understand this behavior in terms of n-doping, shorter carrier lifetime, and enhanced photoabsorption arising from the ablation process. Our results show that laser ablation allows for efficient and cost-effective optoelectronic THz devices via the manipulation of fundamental properties of materials.

  13. A Fully Automated Microfluidic Femtosecond Laser Axotomy Platform for Nerve Regeneration Studies in C. elegans

    PubMed Central

    Gokce, Sertan Kutal; Guo, Samuel X.; Ghorashian, Navid; Everett, W. Neil; Jarrell, Travis; Kottek, Aubri; Bovik, Alan C.; Ben-Yakar, Adela

    2014-01-01

    Femtosecond laser nanosurgery has been widely accepted as an axonal injury model, enabling nerve regeneration studies in the small model organism, Caenorhabditis elegans. To overcome the time limitations of manual worm handling techniques, automation and new immobilization technologies must be adopted to improve throughput in these studies. While new microfluidic immobilization techniques have been developed that promise to reduce the time required for axotomies, there is a need for automated procedures to minimize the required amount of human intervention and accelerate the axotomy processes crucial for high-throughput. Here, we report a fully automated microfluidic platform for performing laser axotomies of fluorescently tagged neurons in living Caenorhabditis elegans. The presented automation process reduces the time required to perform axotomies within individual worms to ∼17 s/worm, at least one order of magnitude faster than manual approaches. The full automation is achieved with a unique chip design and an operation sequence that is fully computer controlled and synchronized with efficient and accurate image processing algorithms. The microfluidic device includes a T-shaped architecture and three-dimensional microfluidic interconnects to serially transport, position, and immobilize worms. The image processing algorithms can identify and precisely position axons targeted for ablation. There were no statistically significant differences observed in reconnection probabilities between axotomies carried out with the automated system and those performed manually with anesthetics. The overall success rate of automated axotomies was 67.4±3.2% of the cases (236/350) at an average processing rate of 17.0±2.4 s. This fully automated platform establishes a promising methodology for prospective genome-wide screening of nerve regeneration in C. elegans in a truly high-throughput manner. PMID:25470130

  14. Ultrafast FRET in a room temperature ionic liquid microemulsion: a femtosecond excitation wavelength dependence study.

    PubMed

    Adhikari, Aniruddha; Das, Dibyendu Kumar; Sasmal, Dibyendu Kumar; Bhattacharyya, Kankan

    2009-04-23

    Fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to rhodamine 6G (R6G) is studied in a room temperature ionic liquid (RTIL) microemulsion by picosecond and femtosecond emission spectroscopy. The microemulsion is comprised of the RTIL 1-pentyl-3-methylimidazolium tetraflouroborate, [pmim][BF4], in TX-100/ benzene. We have studied the microemulsion with and without water. The time constants of FRET were obtained from the risetime of the acceptor (R6G) emission. In the RTIL microemulsion, FRET occurs on multiple time scales: 1, 250, and 3900 ps. In water containing RTIL microemulsion, the rise components are 1.5, 250, and 3900 ps. The 1 and 1.5 ps components are assigned to FRET at a close contact of donor and acceptor (RDA approximately 12 A). This occurs within the highly polar (RTIL/water) pool of the microemulsion. With increase in the excitation wavelength (lambdaex) from 375 to 435 nm, the relative contribution of the ultrafast component of FRET (1 ps) increases from 4% to 100% in the RTIL microemulsion and 12% to 100% in the water containing RTIL microemulsion. It is suggested that at lambdaex = 435 nm, mainly the highly polar RTIL pool is probed where FRET is very fast due to the close proximity of the donor and the acceptor. The very long 3900 ps (RDA approximately 45 A) component may arise from FRET from a donor in the outer periphery of the microemulsion to an acceptor in the polar RTIL pool. The 250 ps component (RDA approximately 29 A) is assigned to FRET from a donor inside the surfactant chains. PMID:19127996

  15. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p < .01) ranging between 0.0209 - 0.038% (reflectivity: %hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  16. Femtosecond study of exciton dynamics in polyfluorene statistical copolymers in solutions and thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Jin Z.; Kreger, Melissa A.; Klaerner, Gerrit; Kreyenschmidt, M.; Miller, Robert D.; Scott, J. Campbell

    1997-12-01

    The formation and decay dynamics of photogenerated excitons in polyfluorene statistical co-polymers in solutions and in thin films have been studied using femtosecond transient absorption spectroscopy. In solution photoexcitation of the polymer generates primarily intrachain singlet excitons which are initially hot and then relax quickly (< 200 fs) towards the equilibrium position in the excited state. The exciton subsequently decays following a double exponential with time constants of 30 ps and 330 ps in toluene. The fast decay is attributable to vibrational relaxation, spectral diffusion, or internal conversion (recombination) of the exciton from the excited to the ground electronic state through tunneling or thermal-activated barrier crossing before thermalization. The slow decay is assigned to conversion of the thermalized exciton to the ground state through both radiative and non-radiative pathways. In films the exciton dynamics are found to depend strongly on excitation intensity. At low intensity, the dynamics are similar to that in solutions, with a double exponential decay with time constants of 15 ps and 300 ps. At high intensities, a fast decay component with a time constant of 0.8 ps appears, which becomes more dominant at higher intensities. This fast decay is attributed to exciton- exciton annihilation due to high density of excitons created. The signal in films at both low and high excitation intensities is attributable to intrachain singlet excitons, as in solution. There is no evidence for formation of interchain bound polaron pairs in films at low intensities. At high intensities, the possibility cannot be ruled out completely, especially in relation to the fast decay. If bound polaron pairs are formed as indicated by the fast decay, they must be generated as a result of interaction between excitons on different chains since they are absent at low power, an they must be created and then decay within about 1 ps.

  17. Photodissociation of thioglycolic acid studied by femtosecond time-resolved transient absorption spectroscopy

    SciTech Connect

    Attar, Andrew R.; Blumling, Daniel E.; Knappenberger, Kenneth L. Jr.

    2011-01-14

    Steady-state and time-resolved spectroscopies were employed to study the photodissociation of both the neutral (HS-CH{sub 2}-COOH) and doubly deprotonated ({sup -}S-CH{sub 2}-COO{sup -}) forms of thioglycolic acid (TGA), a common surface-passivating ligand used in the aqueous synthesis and organization of semiconducting nanostructures. Room temperature UV-Vis absorption spectroscopy indicated strong absorption by the S{sub 1} and S{sub 2} excited states at 250 nm and 185 nm, respectively. The spectrum also contained a weaker absorption band that extended to approximately 550 nm, which was assigned to the {pi}{sub CO}{sup *}(leftarrow)n{sub O} transition. Femtosecond time-resolved transient absorption spectroscopy was performed on TGA using 400 nm excitation and a white-light continuum probe to provide the temporally and spectrally resolved data. Both forms of TGA underwent a photoinduced dissociation from the excited state to form an {alpha}-thiol-substituted acyl radical ({alpha}-TAR, S-CH{sub 2}-CO). For the acidic form of TGA, radical formation occurred with an apparent time constant of 60 {+-} 5 fs; subsequent unimolecular decay took 400 {+-} 60 fs. Similar kinetics were observed for the deprotonated form of TGA (70 {+-} 10 fs radical formation; 420 {+-} 40 fs decay). The production of the {alpha}-TAR was corroborated by the observation of its characteristic optical absorption. Time-resolved data indicated that the photoinduced dissociation of TGA via cleavage of the C-OH bond occurred rapidly ({<=}100 fs). The prevalence of TGA in aqueous semiconducting nanoparticles makes its absorption in the visible spectral region and subsequent dissociation key to understanding the behavior of nanoscale systems.

  18. Femtosecond study of light-induced fluorescence increase of the dark chromoprotein asFP595

    NASA Astrophysics Data System (ADS)

    Schüttrigkeit, Tanja A.; Feilitzsch, Till von; Kompa, Christian K.; Lukyanov, Konstantin A.; Savitsky, Alexander P.; Voityuk, Alexander A.; Michel-Beyerle, Maria E.

    2006-04-01

    Femtosecond time-resolved spectroscopy is applied to study the mechanism of the light-induced increase of fluorescence quantum yield of the initially non-fluorescent (dark) chromoprotein asFP595. Spectroscopic and kinetic characteristics of this unique fluorescence "kindling" phenomenon are: (i) the small Stokes shift of the dark chromophore consistent with either the zwitterion or the anion; (ii) the singlet excited state of the dark chromophore decaying predominantly with a time constant of ˜320 fs corresponding to a fluorescence quantum yield ΦFl ⩽ 10 -4. Since ground state recovery occurs on the same time scale, this radiationless channel is assigned to internal conversion; (iii) the formation of the fluorescent species depending on the sequential absorption of two photons with a delay significantly exceeding the excitation pulse duration of 150 fs; (iv) the fluorescent species showing a red-shift of ˜20 nm in absorption and emission, and an excited state lifetime of 2.2 ns. The ultrafast internal conversion of the excited dark state is attributed to the proximity of the S 0 and S 1 potential energy surfaces favored by the non-planarity of the chromophore as revealed in recent X-ray structures. Competing with internal conversion two different transformations of the chromophore structure are suggested which may be identified in a future X-ray structural analysis of the the photoconverted fluorescent state. The predominant kindling mechanism may be either (i) trans- cis isomerization or (ii) proton transfer between an excited zwitterion and the protein cleft. For mechanism (ii) the large dipole moment change of about 11 D upon S 0-S 1 excitation of the chromophore would be crucial in order to initiate protein relaxation and deprotonation of a zwitterion. Both mechanisms are assumed to lead to a metastable planar structure responsible for the long-lived fluorescence of the chromophore "kindled" at high light intensities.

  19. Ultrafast Excited-State Dynamics of 6-Azauracil Studied by Femtosecond Transient Absorption Spectroscopy.

    PubMed

    Hua, XinZhong; Hua, LinQiang; Liu, XiaoJun

    2015-12-31

    The excited-state dynamics of 6-azauracil in different solvents have been studied using femtosecond transient absorption spectroscopy. The molecule is populated to the S2 state with a pump pulse at 264 nm. Broad-band white light continuum which covers from 320 to 600 nm is used as the probe. With a global fitting analysis of the measured transient spectra, three decay time constants, i.e., <0.3, 5.2 ± 0.1, and >1000 ps, are directly obtained in the solvent of acetonitrile. These newly observed lifetime constants are important in clarifying its decay dynamics as well as in providing a criterion for the ultrafast dynamics simulations in 6-azauracil using quantum chemical theories. In combination with previous theoretical works, the main decay channel is proposed: the initially populated S2 decays to S1 through internal conversion in <0.3 ps, followed by an intersystem crossing from S1 to T1 in 5.2 ± 0.1 ps. The >1000 ps component is due to the decay of the T1 state. A comparison of the excited-state dynamics in different solvents reveals that the decay from S1 to T1 shows a clear dependence on the polarity of the solvents. With higher polarity, the S1 excited state decays faster. This observation is in line with the prediction by Etinski et al. [ Phys. Chem. Chem. Phys. 2010 , 12 , 15665 - 15671 ], where a blue-shift of the T1 state potential energy surface leading to an increase of the intersystem crossing rate was proposed. With the new information obtained in the present measurement, a clearer picture of the decay dynamics of 6-azauracil on the S2 excited state is provided.

  20. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    PubMed Central

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-01-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo. PMID:23907528

  1. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-08-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo.

  2. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    SciTech Connect

    Aquila, Andrew Lee

    2009-05-21

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes the design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs

  3. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    NASA Astrophysics Data System (ADS)

    Aquila, Andrew Lee

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses. This thesis describes the design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig-Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs

  4. Femtosecond Electron Diffraction and Shadow Imaging

    NASA Astrophysics Data System (ADS)

    McPherson, David

    2009-10-01

    Using femtosecond electron pulses as an imaging tool, we can probe ultrafast dynamics by taking snapshots at different time delays. By using femtosecond electron diffraction (FED), we can examine structural dynamics at the atomic level in real time, and study the structure-function correlation. Additionally, femtosecond electron shadow imaging (FESI) can explore the dynamics of laser induced plasmas off the surfaces of conductors, semiconductors, and insulators.

  5. Industrial applications of THz systems

    NASA Astrophysics Data System (ADS)

    Wietzke, S.; Jansen, C.; Jördens, C.; Krumbholz, N.; Vieweg, N.; Scheller, M.; Shakfa, M. K.; Romeike, D.; Hochrein, T.; Mikulics, M.; Koch, M.

    2009-07-01

    Terahertz time-domain spectroscopy (THz TDS) holds high potential as a non-destructive, non-contact testing tool. We have identified a plethora of emerging industrial applications such as quality control of industrial processes and products in the plastics industry. Polymers are transparent to THz waves while additives show a significantly higher permittivity. This dielectric contrast allows for detecting the additive concentration and the degree of dispersion. We present a first inline configuration of a THz TDS spectrometer for monitoring polymeric compounding processes. To evaluate plastic components, non-destructive testing is strongly recommended. For instance, THz imaging is capable of inspecting plastic weld joints or revealing the orientation of fiber reinforcements. Water strongly absorbs THz radiation. However, this sensitivity to water can be employed in order to investigate the moisture absorption in plastics and the water content in plants. Furthermore, applications in food technology are discussed. Moreover, security scanning applications are addressed in terms of identifying liquid explosives. We present the vision and first components of a handheld security scanner. In addition, a new approach for parameter extraction of THz TDS data is presented. All in all, we give an overview how industry can benefit from THz TDS completing the tool box of non-destructive evaluation.

  6. THz Spectroscopy of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Pickett, Herbert M.

    2000-01-01

    THz spectroscopy of the atmosphere has been driven by the need to make remote sensing measurements of OH. While the THz region can be used for sensitive detection on many atmospheric molecules, the THz region is the best region for measuring the diurnal behavior of stratospheric OH by remote sensing. The infrared region near 3 microns suffers from chemiluminescence and from spectral contamination due to water. The ultraviolet region near 300 nm requires solar illumination. The three techniques for OH emission measurements in the THz region include Fourier Transform interferometry, Fabry-Perot interferometry, and heterodyne radiometry. The first two use cryogenic direct detectors while the last technique uses a local oscillator and a mixer to down convert the THz signal to GHz frequencies. All techniques have been used to measure stratospheric OH from balloon platforms. OH results from the Fabry-Perot based FILOS instrument will be given. Heterodyne measurement of OH at 2.5 THz has been selected to be a component of the Microwave Limb Sounder on the Earth Observing System CHEM-1 polar satellite. The design of this instrument will be described. A balloon-based prototype heterodyne 2.5 THz radiometer had its first flight on, 24 May 1998. Results form this flight will be presented.

  7. Study on high coupling efficiency Er-doped fiber laser for femtosecond optical frequency comb

    NASA Astrophysics Data System (ADS)

    Pang, Lihui; Liu, Wenjun; Han, Hainian; Wei, Zhiyi

    2016-09-01

    The femtosecond laser is crucial to the operation of the femtosecond optical frequency comb. In this paper, a passively mode-locked erbium-doped fiber laser is presented with 91.4 fs pulse width and 100.8 MHz repetition rate, making use of the nonlinear polarized evolution effect. Using a 976 nm pump laser diode, the average output power is 16 mW from the coupler and 27 mW from the polarization beam splitter at the pump power of 700 mW. The proposed fiber laser can offer excellent temporal purity in generated pulses with high power, and provide a robust source for fiber-based frequency combs and supercontinuum generation well suited for industrial applications.

  8. Comparison of self-reported quality of vision outcomes after myopic LASIK with two femtosecond lasers: a prospective, eye-to-eye study

    PubMed Central

    Sáles, Christopher S; Manche, Edward E

    2016-01-01

    Purpose To compare self-reported quality of vision (QoV) outcomes after myopic LASIK (laser-assisted in situ keratomileusis) with two femtosecond lasers. Design Prospective, randomized, eye-to-eye study. Methods Consecutive myopic patients were treated with wavefront-guided LASIK bilaterally. Eyes were randomized according to ocular dominance. The flap of one eye was made with the IntraLase FS 60 kHz femtosecond laser with a conventional 70° side-cut, and the flap of the fellow eye was made with the IntraLase iFS 150 kHz femtosecond laser with an inverted 130° side-cut. Patients completed the validated, Rasch-tested, linear-scaled 30-item QoV questionnaire preoperatively and at Months 1, 3, 6, and 12. Results The study enrolled 120 fellow eyes in 60 patients. None of the measured QoV parameters exhibited statistically significant differences between the groups preoperatively or at any postoperative time point. Conclusion Creating LASIK flaps with an inverted side-cut using a 150 kHz femtosecond laser and with a conventional 70° side-cut using a 60 kHz femtosecond laser resulted in no significant differences in self-reported QoV assessed by the QoV questionnaire.

  9. Comparison of self-reported quality of vision outcomes after myopic LASIK with two femtosecond lasers: a prospective, eye-to-eye study

    PubMed Central

    Sáles, Christopher S; Manche, Edward E

    2016-01-01

    Purpose To compare self-reported quality of vision (QoV) outcomes after myopic LASIK (laser-assisted in situ keratomileusis) with two femtosecond lasers. Design Prospective, randomized, eye-to-eye study. Methods Consecutive myopic patients were treated with wavefront-guided LASIK bilaterally. Eyes were randomized according to ocular dominance. The flap of one eye was made with the IntraLase FS 60 kHz femtosecond laser with a conventional 70° side-cut, and the flap of the fellow eye was made with the IntraLase iFS 150 kHz femtosecond laser with an inverted 130° side-cut. Patients completed the validated, Rasch-tested, linear-scaled 30-item QoV questionnaire preoperatively and at Months 1, 3, 6, and 12. Results The study enrolled 120 fellow eyes in 60 patients. None of the measured QoV parameters exhibited statistically significant differences between the groups preoperatively or at any postoperative time point. Conclusion Creating LASIK flaps with an inverted side-cut using a 150 kHz femtosecond laser and with a conventional 70° side-cut using a 60 kHz femtosecond laser resulted in no significant differences in self-reported QoV assessed by the QoV questionnaire. PMID:27621589

  10. FLUTE: a versatile linac-based THz source.

    PubMed

    Nasse, M J; Schuh, M; Naknaimueang, S; Schwarz, M; Plech, A; Mathis, Y-L; Rossmanith, R; Wesolowski, P; Huttel, E; Schmelling, M; Müller, A-S

    2013-02-01

    A new compact versatile linear accelerator named FLUTE is currently being designed at the Karlsruhe Institute of Technology. This paper presents the status of this 42 MeV machine. It will be used to generate strong (several 100 MV/m) ultra-short (~1 ps) THz pulses (up to ~4-25 THz) for photon science experiments, as well as to conduct a variety of accelerator studies. The latter range from comparing different coherent THz radiation generation schemes to compressing electron bunches and studying the electron beam stability. The bunch charge will cover a wide range (~100 pC-3 nC). Later we plan to also produce ultra-short x-ray pulses from the electron bunches, which, for example, could then be combined for THz pump-x-ray probe experiments. PMID:23464187

  11. FLUTE: A versatile linac-based THz source

    SciTech Connect

    Nasse, M. J.; Schuh, M.; Schwarz, M.; Naknaimueang, S.; Mathis, Y.-L.; Rossmanith, R.; Wesolowski, P.; Huttel, E.; Plech, A.; Schmelling, M.; Mueller, A.-S.

    2013-02-15

    A new compact versatile linear accelerator named FLUTE is currently being designed at the Karlsruhe Institute of Technology. This paper presents the status of this 42 MeV machine. It will be used to generate strong (several 100 MV/m) ultra-short ({approx}1 ps) THz pulses (up to {approx}4-25 THz) for photon science experiments, as well as to conduct a variety of accelerator studies. The latter range from comparing different coherent THz radiation generation schemes to compressing electron bunches and studying the electron beam stability. The bunch charge will cover a wide range ({approx}100 pC-3 nC). Later we plan to also produce ultra-short x-ray pulses from the electron bunches, which, for example, could then be combined for THz pump-x-ray probe experiments.

  12. FLUTE: a versatile linac-based THz source.

    PubMed

    Nasse, M J; Schuh, M; Naknaimueang, S; Schwarz, M; Plech, A; Mathis, Y-L; Rossmanith, R; Wesolowski, P; Huttel, E; Schmelling, M; Müller, A-S

    2013-02-01

    A new compact versatile linear accelerator named FLUTE is currently being designed at the Karlsruhe Institute of Technology. This paper presents the status of this 42 MeV machine. It will be used to generate strong (several 100 MV/m) ultra-short (~1 ps) THz pulses (up to ~4-25 THz) for photon science experiments, as well as to conduct a variety of accelerator studies. The latter range from comparing different coherent THz radiation generation schemes to compressing electron bunches and studying the electron beam stability. The bunch charge will cover a wide range (~100 pC-3 nC). Later we plan to also produce ultra-short x-ray pulses from the electron bunches, which, for example, could then be combined for THz pump-x-ray probe experiments.

  13. Uncooled THz/sub-THz Rectifying Detectors: FET vs. SBD

    NASA Astrophysics Data System (ADS)

    Sakhno, M.; Sizov, F.; Golenkov, A.

    2013-12-01

    The parameters (responsivity R and noise equivalent power ( NEP)) of long channel unbiased (zero drain-source bias ( V DS = 0)) silicon field effect transistors (FET) as THz/sub-THz detectors with account of some parasitics were considered. These parameters and their radiation frequency ν dependences are compared with those of contemporary Schottky barrier diode (SBD) THz/sub-THz detectors. To describe and compare the known experimental data for both of detectors similar models, taking into account the parasitics (some FET or SBD resistances and capacities), were used. It is shown that taking into account the parasitics and detector-antenna impedance matching one can describe Si FET detector parameters and estimate the performance limits of such detectors. The R and NEP radiation frequency ν dependences are similar for FET and SBD detectors and are proportional to ν -2 or to ν -4. The model used for SBD detectors describes well the known experimental data for optical NEP opt but for Si FET ones the sufficient scatter in experimental data is observed. The reason of it seems is mainly due to non-optimized technologies for FETs as detectors for THz/sub-THz radiation.

  14. THz-Driven Ultrafast Spin-Lattice Scattering in Amorphous Metallic Ferromagnets.

    PubMed

    Bonetti, S; Hoffmann, M C; Sher, M-J; Chen, Z; Yang, S-H; Samant, M G; Parkin, S S P; Dürr, H A

    2016-08-19

    We use single-cycle THz fields and the femtosecond magneto-optical Kerr effect to, respectively, excite and probe the magnetization dynamics in two thin-film ferromagnets with different lattice structures: crystalline Fe and amorphous CoFeB. We observe Landau-Lifshitz-torque magnetization dynamics of comparable magnitude in both systems, but only the amorphous sample shows ultrafast demagnetization caused by the spin-lattice depolarization of the THz-induced ultrafast spin current. Quantitative modeling shows that such spin-lattice scattering events occur on similar time scales than the conventional spin conserving electronic scattering (∼30  fs). This is significantly faster than optical laser-induced demagnetization. THz conductivity measurements point towards the influence of lattice disorder in amorphous CoFeB as the driving force for enhanced spin-lattice scattering. PMID:27588880

  15. THz-Driven Ultrafast Spin-Lattice Scattering in Amorphous Metallic Ferromagnets

    NASA Astrophysics Data System (ADS)

    Bonetti, S.; Hoffmann, M. C.; Sher, M.-J.; Chen, Z.; Yang, S.-H.; Samant, M. G.; Parkin, S. S. P.; Dürr, H. A.

    2016-08-01

    We use single-cycle THz fields and the femtosecond magneto-optical Kerr effect to, respectively, excite and probe the magnetization dynamics in two thin-film ferromagnets with different lattice structures: crystalline Fe and amorphous CoFeB. We observe Landau-Lifshitz-torque magnetization dynamics of comparable magnitude in both systems, but only the amorphous sample shows ultrafast demagnetization caused by the spin-lattice depolarization of the THz-induced ultrafast spin current. Quantitative modeling shows that such spin-lattice scattering events occur on similar time scales than the conventional spin conserving electronic scattering (˜30 fs ). This is significantly faster than optical laser-induced demagnetization. THz conductivity measurements point towards the influence of lattice disorder in amorphous CoFeB as the driving force for enhanced spin-lattice scattering.

  16. Analysis of cavity and window for THz gyrotron

    SciTech Connect

    Alaria, Mukesh Kumar; Mukherjee, P.; Rao, R.R.; Sinha, A.K. E-mail: aksinha@ceeri.ernet.in

    2011-07-01

    In this paper study of cavity and window has been carried out using Ansoft HFSS for Terahertz Gyrotron. Eigen mode analysis of the cavity has been carried out at 1 THz. An idea about the operating modes in the cavity of the Gyrotron and obtained the simulated Eigen frequency and field pattern of the modes. The design of window for 1 THz Gyrotron has also been carried out using HFSS. The simulated results have also been compared with ST microwave studio. (author)

  17. Femtosecond photoelectron spectroscopy: a new tool for the study of anion dynamics

    SciTech Connect

    Greenblatt, B.J.

    1999-02-01

    A new experimental technique for the time-resolved study of anion reactions is presented. Using femtosecond laser pulses, which provide extremely fast ({approx} 100 fs) time resolution, in conjunction with photoelectron spectroscopy, which reveals differences between anion and neutral potential energy surfaces, a complex anion reaction can be followed from its inception through the formation of asymptotic products. Experimental data can be modeled quantitatively using established theoretical approaches, allowing for the refinement of potential energy surfaces as well as dynamical models. After a brief overview, a detailed account of the construction of the experimental apparatus is presented. Documentation of the data acquisition program is contained in the Appendix. The first experimental demonstration of the technique is then presented for I{sub 2}{sup -} photodissociation, modeled using a simulation program which is also detailed in the Appendix. The investigation of I{sub 2}{sup -} photodissociation in several size-selected I{sub 2}{sup -}(Ar){sub n} (n = 6-20) and I{sub 2}{sup -}(CO{sub 2}){sub n} (n = 4-16) clusters forms the heart of the dissertation. In a series of chapters, the numerous effects of solvation on this fundamental bond-breaking reaction are explored, the most notable of which is the recombination of I{sub 2}{sup -} on the ground {tilde X}({sup 2}{Sigma}{sub u}{sup +}) state in sufficiently large clusters. Recombination and trapping of I{sub 2}{sup -} on the excited {tilde A}({sup 2}{Pi}{sub 3/2,g}) state is also observed in both types of clusters. The studies have revealed electronic state transitions, the first step in recombination, on a {approx}500 fs to {approx}10 ps timescale. Accompanying the changes in electronic state is solvent reorganization, which occurs on a similar timescale. Over longer periods ({approx}1 ps to >200 ps), energy is transferred from vibrationally excite d I{sub 2}{sup -} to modes of the solvent, which in turn leads

  18. Multiple THz pulse generation with variable energy ratio and delay

    NASA Astrophysics Data System (ADS)

    Ungureanu, R. G.; Grigore, O. V.; Dinca, M. P.; Cojocaru, G. V.; Ursescu, D.; Dascalu, T.

    2015-04-01

    Two methods for multiple high energetic THz pulse generation by two-color filamentation in air with controllable energy ratio and delay ranging from one to hundreds of ps were investigated. In the first method the laser pulse is split into two inside the optical stretcher of a CPA laser system, the resulting consecutive filaments occur in the same region and allows the study of the influence of the first plasma filament on the THz emission of the delayed filament. Based on a polarization sensitive thin film beam splitter placed in front of a 45° mirror, the second method produces multiple parallel consecutive filaments. Above a certain total pump level the THz energy delivered by multiple pulses exceeds the value given by a single filament for the same pump energy, thereby overcoming the THz emission saturation of the single filament.

  19. THz-wave parametric sources and imaging applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo

    2004-12-01

    We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We have also developed a novel basic technology for THz imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral trasillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  20. Calculations for Tera-Hertz (THZ) Radiation Sources

    SciTech Connect

    Hussein, Yasser A.; Spencer, James E.; /SLAC

    2005-06-07

    We explore possibilities for THz sources from 0.3-30 THz. While still inaccessible, this broad gap is even wider for advanced acceleration schemes extending from X or, at most, W band RF at the low end up to CO{sub 2} lasers. While the physical implementations of these two approaches are quite different, both are proving difficult to develop so that lower frequency, superconducting RF is currently preferred. Similarly, the validity of modeling techniques varies greatly over this range of frequencies but generally mandates coupling Maxwell's equations to the appropriate device transport physics for which there are many options. Here we study radiation from undulatory-shaped transmission lines using finite-difference, time-domain (FDTD) simulations. Also, we present Monte-Carlo techniques for pulse generation. Examples of THz sources demonstrating coherence are shown with the goal of optimizing on-chip THz radiators for applications that may lead to accelerators.

  1. A tunable, linac based, intense, broad-band THz source forpump-probe experiments

    SciTech Connect

    Schmerge, J.; Adolphsen, C.; Corbett, J.; Dolgashev, V.; Durr, H.; Fazio, M.; Fisher, A.; Frisch, J.; Gaffney, K.; Guehr, M.; Hastings, J.; Hettel, B.; Hoffmann, M.; Hogan, M.; Holtkamp, N.; Huang, X.; Huang, Z.; Kirchmann, P.; LaRue, J.; Limborg, C.; Lindenberg, A.; Loos, H.; Maxwell, T.; Nilsson, A.; Raubenheimer, T.; Reis, D.; Ross, M.; Shen, Z. -X.; Stupakov, G.; Tantawi, S.; Tian, K.; Wu, Z.; Xiang, D.; Yakimenko, V.

    2015-02-02

    We propose an intense THz source with tunable frequency and bandwidth that can directly interact with the degrees of freedom that determine the properties of materials and thus provides a new tool for controlling and directing these ultrafast processes as well as aiding synthesis of new materials with new functional properties. This THz source will broadly impact our understanding of dynamical processes in matter at the atomic-scale and in real time. Established optical pumping schemes using femtosecond visible frequency laser pulses for excitation are extended into the THz frequency regime thereby enabling resonant excitation of bonds in correlated solid state materials (phonon pumping), to drive low energy electronic excitations, to trigger surface chemistry reactions, and to all-optically bias a material with ultrashort electric fields or magnetic fields. A linac-based THz source can supply stand-alone experiments with peak intensities two orders of magnitude stronger than existing laser-based sources, but when coupled with atomic-scale sensitive femtosecond x-ray probes it opens a new frontier in ultrafast science with broad applications to correlated materials, interfacial and liquid phase chemistry, and materials in extreme conditions.

  2. THz-wave sensing via pump and signal wave detection interacted with evanescent THz waves.

    PubMed

    Akiba, Takuya; Kaneko, Naoya; Suizu, Koji; Miyamoto, Katsuhiko; Omatsu, Takashige

    2013-09-15

    We report a novel sensing technique that uses an evanescent terahertz (THz) wave, without detecting the THz wave directly. When a THz wave generated by Cherenkov phase matching via difference frequency generation undergoes total internal reflection, the evanescent THz wave is subject to a phase change and an amplitude decrease. The reflected THz wave, under the influence of the sample, interferes with the propagating THz wave and the changing electric field of the THz wave interacts with the electric field of the pump waves. We demonstrate a sensing technique for detecting changes in the electric field of near-infrared light, transcribed from changes in the electric field of a THz wave.

  3. Determination of death thresholds and identification of terahertz (THz)-specific gene expression signatures

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Ibey, Bennett L.; Roth, Caleb L.; Vincelette, Rebecca L.; Rivest, Benjamin D.; Horn, Christopher B.; Bernhard, Joshua; Roberson, Dawnlee; Roach, William P.

    2010-02-01

    In recent years, numerous security, military, and medical applications have been developed which use Terahertz (THz) radiation. These developments have heightened concerns in regards to the potential health risks that are associated with this type of radiation. To determine the cellular and molecular effects caused by THz radiation, we exposed several human cell lines to high-power THz radiation, and then we determined death thresholds and gene expression profiles. Necrotic and apoptotic death thresholds were determined for Jurkat cells using an optically-pumped molecular gas THz source (υ = 2.52 THz, H = 227 mW/cm2), MTT viability assays, and flow cytometric techniques. In addition, we used confocal microscopic techniques to demarcate lethal spatial regions in a monolayer of dermal fibroblasts exposed to THz radiation. Then, to determine if cells exhibit a THz-specific gene expression signature, we exposed dermal fibroblasts to THz radiation and analyzed their transcriptional response using microarray gene chips. We found that 60% of the Jurkat cells survived the 30-minute THz exposure, whereas only 20% survived the 40-minute exposure. The flow data confirmed these results and provided evidence that THz-induced cell death was mediated using both nectrotic and apoptotic processes. The preliminary microscopy studies provided convincing evidence warranting future efforts using these techniques. Lastly, we found that dermal fibroblasts up-regulated several genes when exposed to THz radiation. Overall, these results provide evidence for the cellular and molecular effects associated with THz radiation, and we speculate that the identified up-regulated genes may serve as excellent candidate biomarkers for THz exposures.

  4. THz Emission Based On Intersubband Plasmon Resonances

    SciTech Connect

    Coquelin, M.; Zobl, R.; Strasser, G.; Gornik, E.; Bakshi, P.; Umansky, V.; Heiblum, M.

    2010-01-04

    The radiative decay of collective plasma oscillations as a new mechanism for THz emission is studied. This phenomenon is based on the attractive interaction of two intersubband plasmons. This interaction can be viewed as a collective e-e scattering phenomenon. The emission results fit very well to the results of the current voltage measurements indicating that the conditions for a plasma instability are reached.

  5. Polarization Sensitive THz TDS and Fabrication of Alignment Cells for Solution Phase THz Spectroscopy

    NASA Astrophysics Data System (ADS)

    George, Deepu Koshy

    The overall goal of this thesis is to explore polarization sensitive THz time domain spectroscopy techniques and elucidate the need for aligned sample studies in protein solution. To that end, I have chosen PYP as a model system to show the limitations of traditional, non-aligned sample THz TDS and progressed towards the fabrication of a Dynamical Alignment THz Spectroscopy sample cell for alignment based spectroscopy. Measurements on Photoactive Yellow Proteins address aspects of two previous studies with conflicting results. PYP was chosen as a model system because of its small size and ease of switching between functional states. My measurements in a more controlled environment eliminating the sources of errors and uncertainties in the previous studies have proved that THz dielectric response is invariant between the ground and excited states of PYP which vastly differ in their structure. This `negative' result proves that structural vibrational modes in protein solution are often masked by the background due to relaxational response from solvent and side chains. Low temperature measurements on Cytochrome C and Salmon testes DNA have shown contrast in THz measurements as a result of denaturing. At below freezing temperature the contribution from bulk water is minimized but any water which is unfrozen due to confinement will give rise to the background signal. Even though specific vibrational modes could still not be observed, low temperature measurements provided insights into the nature of interaction between protein surface and water. The section on Polarization Modulation Orientation Terahertz Spectroscopy deviates from the rest of this thesis in the sense that it was a technique developed to study solid state samples like 2DEG in GaAs as well as topological insulators, which give rise to a change in the polarization of the incident THz radiation as it is transmitted through them. Nevertheless this also falls into the general discussion in this thesis in the

  6. A comparative study of silver nanoparticles synthesized by arc discharge and femtosecond laser ablation in aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqiang; Zou, Guisheng; Liu, Lei; Li, Yong; Tong, Hao; Sun, Zhenguo; Zhou, Y. Norman

    2016-10-01

    Silver nanoparticles have been synthesized by arc discharge and femtosecond laser ablation in polyvinylpyrrolidone (PVP) aqueous solution. Both methods are the simple, cost-effective and environment-friendly way to obtain the purity silver nanoparticles. In this study, the structure, composition, morphology, size and distribution, stability, production rate and sintering properties of silver nanoparticles synthesized by both methods were compared. The spherical or pseudo-spherical silver nanoparticles were synthesized by both methods, and the diameters were below 50 nm. The arc discharge-synthesized particle distribution varied with the breakdown voltage, and laser-synthesized particle size mainly depended on the laser energy. PVP solution could cap and stabilize the silver nanoparticles by Ag-O bond, while arc discharge and laser ablation resulted in some level of PVP degradation during processing. Sliver nanoparticle colloids synthesized by both methods had the high negative values of zeta potential and exhibited the good stability. The maximum production rates of the silver nanoparticles synthesized by arc discharge and femtosecond laser ablation were 6.0 and 3.0 mg/min, respectively. In addition, the sintering properties of silver nanoparticles synthesized by both methods were also discussed.

  7. Dynamics of femtosecond laser ablation studied with time-resolved x-ray absorption fine structure imaging

    SciTech Connect

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi; Nakano, Hidetoshi

    2009-04-01

    We studied the dynamics of the femtosecond laser ablation of aluminum in an energy range well above the ablation threshold with the ultrafast time-resolved x-ray-absorption fine structure imaging technique. Analyzing the spectral structures near the L absorption edge that appeared in one-dimensional images of soft-x-ray absorbance, we successfully identified doubly and singly charged ions, neutral atoms, liquid nanoparticles, and possible atomic clusters in the expanding ablation plume. We also clarified that the ejected particles depend strongly on the laser irradiation intensity. The spatiotemporal evolution of the ablation particles allows us to estimate the spatial distribution of atomic density and the ejection velocity of each type of particle. In particular, we discuss the temporal sequence of the particle ejection in the early stages of plume expansion. Our experimental results strongly support the idea that photomechanical fragmentation and vaporization are dominant mechanisms for the production of liquid nanoparticles and neutral atoms, respectively, in femtosecond laser ablation induced in an irradiation intensity range of 10{sup 14}-10{sup 15} W/cm{sup 2}.

  8. Novel materials, fabrication techniques and algorithms for microwave and THz components, systems and applications

    NASA Astrophysics Data System (ADS)

    Liang, Min

    This dissertation presents the investigation of several additive manufactured components in RF and THz frequency, as well as the applications of gradient index lens based direction of arrival (DOA) estimation system and broadband electronically beam scanning system. Also, a polymer matrix composite method to achieve artificially controlled effective dielectric properties for 3D printing material is studied. Moreover, the characterization of carbon based nano-materials at microwave and THz frequency, photoconductive antenna array based Terahertz time-domain spectroscopy (THz-TDS) near field imaging system, and a compressive sensing based microwave imaging system is discussed in this dissertation. First, the design, fabrication and characterization of several 3D printed components in microwave and THz frequency are presented. These components include 3D printed broadband Luneburg lens, 3D printed patch antenna, 3D printed multilayer microstrip line structure with vertical transition, THz all-dielectric EMXT waveguide to planar microstrip transition structure and 3D printed dielectric reflectarrays. Second, the additive manufactured 3D Luneburg Lens is employed for DOA estimation application. Using the special property of a Luneburg lens that every point on the surface of the Lens is the focal point of a plane wave incident from the opposite side, 36 detectors are mounted around the surface of the lens to estimate the direction of arrival (DOA) of a microwave signal. The direction finding results using a correlation algorithm show that the averaged error is smaller than 1º for all 360 degree incident angles. Third, a novel broadband electronic scanning system based on Luneburg lens phased array structure is reported. The radiation elements of the phased array are mounted around the surface of a Luneburg lens. By controlling the phase and amplitude of only a few adjacent elements, electronic beam scanning with various radiation patterns can be easily achieved

  9. Femtosecond Study of Self-Trapped Vibrational Excitons in Crystalline Acetanilide

    NASA Astrophysics Data System (ADS)

    Edler, J.; Hamm, P.; Scott, A. C.

    2002-02-01

    Femtosecond IR spectroscopy of delocalized NH excitations of crystalline acetanilide confirms that self-trapping in hydrogen-bonded peptide units exists and does stabilize the excitation. Two phonons with frequencies of 48 and 76 cm -1 are identified as the major degrees of freedom that mediate self-trapping. After selective excitation of the free exciton, self-trapping occurs within a few 100 fs. Excitation of the self-trapped states disappears from the spectral window of this investigation on a 1 ps time scale, followed by a slow ground state recovery of the hot ground state within 18 ps.

  10. THz and Ft-Ir Study of 18-O Isotopologues of Sulfur Dioxide: 32S16O18O and 32S18O_2

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Demaison, J.; Perrin, Agnes; Kwabia Tchana, F.; Manceron, Laurent

    2016-06-01

    Sulfur dioxide is a molecule that have a great interest in different domains: for atmospheric and planetology chemistry, it is also ubiquitous and abundant in interstellar medium. If the 16O species were extensively studied, this is not the case of the 18O isotopologues. The aim of this study is first to complete the rotational spectra of the ground state with these new measurements up to 1.5 THz, previous measurements are up to 1050 GHz for the 32S16O18O species, and 145 GHz concerning the 32S18O_2 species. The second part is making a global fit of the rotational and vibrational transitions for the excited vibrational states. For the v_2 band, we will complete the recent I.R. analysis. About the triad (v_1, 2v_2, v_3): 32S18O_2 species was studied, but not the 32S16O18O one. and 145 GHz concerning the 32S18O_2 species. The second part is making a global fit of the rotational and vibrational transitions for the excited vibrational states. For the v_2 band, we will complete the recent I.R. analysis. About the triad (v_1, 2v_2, v_3): 32S18O_2 species was studied, but not the 32S16O18O one. The FT-IR spectra were recorded on the AILES Beamline at Synchrotron SOLEIL using the Synchrotron light source, coupled to the Bruker IFS125HR Fourier transform spectrometer. The THz spectra were obtained from 150 to 1500 GHz using the Lille's solid state spectrometer. The analysis is in progress, the latest results will be presented. Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged Belov, S. P.; et al., 1998, J. Mol. Spectrosc. 191, 17 Lindermayer, J.; et al., 1985, J. Mol. Spectrosc. 110, 357 Gueye, F.; et al. Mol. Phys. in press Ulenikov, O. N.; et al., 2015, JQSRT 166, 13 Brubach, J.; et al., 2010, AIP Conf. Proc. 1214, 81 Zakharenko, O.; et al., 2015, J. Mol. Spectrosc. 317, 41

  11. Monolithic THz Frequency Multipliers

    NASA Technical Reports Server (NTRS)

    Erickson, N. R.; Narayanan, G.; Grosslein, R. M.; Martin, S.; Mehdi, I.; Smith, P.; Coulomb, M.; DeMartinez, G.

    2001-01-01

    Frequency multipliers are required as local oscillator sources for frequencies up to 2.7 THz for FIRST and airborne applications. Multipliers at these frequencies have not previously been demonstrated, and the object of this work was to show whether such circuits are really practical. A practical circuit is one which not only performs as well as is required, but also can be replicated in a time that is feasible. As the frequency of circuits is increased, the difficulties in fabrication and assembly increase rapidly. Building all of the circuit on GaAs as a monolithic circuit is highly desirable to minimize the complexity of assembly, but at the highest frequencies, even a complete monolithic circuit is extremely small, and presents serious handling difficulty. This is compounded by the requirement for a very thin substrate. Assembly can become very difficult because of handling problems and critical placement. It is very desirable to make the chip big enough to that it can be seen without magnification, and strong enough that it may be picked up with tweezers. Machined blocks to house the chips present an additional challenge. Blocks with complex features are very expensive, and these also imply very critical assembly of the parts. It would be much better if the features in the block were as simple as possible and non-critical to the function of the chip. In particular, grounding and other electrical interfaces should be done in a manner that is highly reproducible.

  12. THz imaging system with the IJJ emitter

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Manabu; Minami, Hidetoshi; Sawamura, Masashi; Delfanazari, Kaveh; Yamamoto, Takashi; Kashiwagi, Takanari; Kadowaki, Kazuo

    2011-03-01

    The intrinsic Josephson junction (IJJ) emitter consisted of thousands of IJJs uniformly stacked in single crystalline high-Tc superconductor Bi 2 Sr 2 CaCu 2 O8 + δ (Bi-2212) [L. Ozyuzer et al., Science 318, (2007) 1291.] is expected to be a novel source of the continuous terahertz electromagnetic waves (THz-waves). The maximum emission power of tens of microwatts recently obtained with the mesa structure of IJJs seems to be sufficient to make use of the IJJ emitter for some practical applications such as THz imaging. According to the cavity resonance condition, we can control the radiation frequency by changing the geometrical size of the mesa. In this study, we develop the THz imaging system with IJJ emitter. In the presentation, we will show some transparent images of standard specimens obtained by the raster scanning method. Also, we will mention some problems to be solved for the future applications of the IJJ emitter. CREST-JST, WPI-MANA, Strategic Initiative A (University of Tsukuba).

  13. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  14. Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses

    SciTech Connect

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-04-15

    In this work, using a two-dimensional kinetic model based on particle in cell-Monte Carlo collision simulation method, the influence of different parameters on the broadband intense Terahertz (THz) radiation generation via application of two-color laser fields, i.e., the fundamental and second harmonic modes, is studied. These two modes are focused into the molecular oxygen (O{sub 2}) with uniform density background gaseous media and the plasma channels are created. Thus, a broadband THz pulse that is around the plasma frequency is emitted from the formed plasma channel and co-propagates with the laser pulse. For different laser pulse shapes, the THz electric field and its spectrum are both calculated. The effects of laser pulse and medium parameters, i.e., positive and negative chirp pulse, number of laser cycles in the pulse, laser pulse shape, background gas pressure, and exerted DC electric field on THz spectrum are verified. Application of a negatively chirped femtosecond (40 fs) laser pulse results in four times enhancement of the THz pulse energy (2 times in THz electric field). The emission of THz radiation is mostly observed in the forward direction.

  15. Parametric study of broadband terahertz radiation generation based on interaction of two-color ultra-short laser pulses

    NASA Astrophysics Data System (ADS)

    Moradi, S.; Ganjovi, A.; Shojaei, F.; Saeed, M.

    2015-04-01

    In this work, using a two-dimensional kinetic model based on particle in cell-Monte Carlo collision simulation method, the influence of different parameters on the broadband intense Terahertz (THz) radiation generation via application of two-color laser fields, i.e., the fundamental and second harmonic modes, is studied. These two modes are focused into the molecular oxygen (O2) with uniform density background gaseous media and the plasma channels are created. Thus, a broadband THz pulse that is around the plasma frequency is emitted from the formed plasma channel and co-propagates with the laser pulse. For different laser pulse shapes, the THz electric field and its spectrum are both calculated. The effects of laser pulse and medium parameters, i.e., positive and negative chirp pulse, number of laser cycles in the pulse, laser pulse shape, background gas pressure, and exerted DC electric field on THz spectrum are verified. Application of a negatively chirped femtosecond (40 fs) laser pulse results in four times enhancement of the THz pulse energy (2 times in THz electric field). The emission of THz radiation is mostly observed in the forward direction.

  16. Molecular and structural preservation of dehydrated bio-tissue for THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Png, Gretel M.; Choi, Jin Wook; Guest, Ian; Ng, Brian W.-H.; Mickan, Samuel P.; Abbott, Derek; Zhang, Xi-Cheng

    2007-12-01

    Terahertz transmission through freshly excised biological tissue is limited by the tissue's high water content. Tissue fixation methods that remove water, such as fixation in Formalin, destroy the structural information of proteins hence are not suitable for THz applications. Dehydration is one possible method for revealing the tissue's underlying molecular structure and components. In this study, we measured the THz responses over time of dehydrating fresh, necrotic and lyophilized rat tissue. Our results show that as expected, THz absorption increases dramatically with drying and tissue freshness can be maintained through lyophilization. Dehydrated biological tissue with retained molecular structure can be useful for future laser-based THz wave molecular analysis.

  17. Coherent THz Pulses from Linear Accelerators

    SciTech Connect

    G.L. Carr; H. Loos; J.B. Murphy; T. Shaftan; B. Sheehy; X.-J. Wang; W.R. McKinney; M.C. Martin; G.P. Williams; K. Jordan; G. Neil

    2003-10-01

    Coherent THz pulses are being produced at several facilities using relativistic electrons from linear accelerators. The THz pulses produced at the Brookhaven accelerator have pulse energies exceeding 50 {micro}J and reach a frequency of 2 THz. The high repetition rate of the Jefferson Lab accelerator leads to an average THz power of 20 watts. Possible uses for these high power pulses are discussed.

  18. Femtosecond study of partially folded states of cytochrome C by solvation dynamics.

    PubMed

    Sahu, Kalyanasis; Mondal, Sudip Kumar; Ghosh, Subhadip; Roy, Durba; Sen, Pratik; Bhattacharyya, Kankan

    2006-01-19

    Using femtosecond time-resolved fluorescence spectroscopy, it is shown that the solvation dynamics in the two partially folded states (IS' and IS' ') of a protein, cytochrome C, are very different. In the case of IS' (formed by the addition of 2 mM sodium dodecyl sulfate, SDS) almost the entire dynamic solvent shift of coumarin 153 (C153) is captured in a picosecond setup and the contribution of the ultrafast component (0.5 ps) is very small (5%). Solvation dynamics of IS' ' (formed by 2 mM SDS and 5 M urea) displays a major component (47%) of 1.3 ps. This indicates that the structure of IS' ' is much more open and exposed compared to that of IS'. The difference in the dynamics of IS' and IS' ' is attributed to differences in their structure, particularly near the heme region, and the presence of urea in IS' '.

  19. Recent progress and future prospects of THz quantum-cascade lasers

    NASA Astrophysics Data System (ADS)

    Hirayama, H.; Terashima, W.; Lin, Tsung-Tse; Sasaki, Miho

    2015-03-01

    Terahertz quantum cascade laser (THz-QCL) is expected as a compact terahertz laser light source which realizes high output power, quite narrow emission linewidth, and cw operation. We are studying on THz-QCLs using GaAs/AlGaAs and GaN/AlGaN semiconductor superlattices. We demonstrated 1.9-3.8 THz GaAs/AlGaAs QCLs with double metal waveguide (DMW) structures. We developed a low-frequency high-temperature operation QCL (T<160K for 1.9 THz- QCL) by introducing indirect injection scheme design (4-level design) into GaAs/AlGaAs THz-QCLs. Nitride semiconductor is a material having potentials for realizing wide frequency range of QCL, i.e., 3~20 THz and 1~8 μm, including an unexplored terahertz frequency range from 5 to 12 THz, as well as realizing room temperature operation of THz-QCL. The merit of using an AlGaN-based semiconductor is that it has much higher longitudinal optical phonon energies (ELO> 90meV) than those of conventional semiconductors (~ 36 meV). We fabricated high-quality AlGaN/GaN QC stacking layers by introducing a novel growth technique in molecular beam epitaxy (MBE). We fabricated a GaN/AlGaN QCLs with "pure three-level" design and obtained the first lasing action of nitride-based QCL from 5.4-7 THz.

  20. Femtosecond study of the interplay between excitons, trions, and carriers in (Cd,Mn)Te quantum wells.

    PubMed

    Płochocka, P; Kossacki, P; Maślana, W; Cibert, J; Tatarenko, S; Radzewicz, C; Gaj, J A

    2004-04-30

    We study the absorption by neutral excitons and positively charged excitons (trions) following a femtosecond, circularly polarized, resonant pump pulse. Three populations are involved: free holes, excitons, and trions, all exhibiting transient spin polarization. In particular, a polarization of the gas of free holes is created by the formation of trions. The evolution of these populations is described, including spin flip and trion formation. We evaluate the contributions of phase space filling and spin-dependent screening. We propose a new explanation of the oscillator strength stealing phenomena observed in doped quantum wells, based on the screening of neutral excitons by charge carriers. We have also found that binding holes into charged excitons excludes them from the interaction with the rest of the system, so that oscillator strength stealing is partially blocked.

  1. Nonlinear intersubband absorption of a hot quasi-two-dimensional electron plasma studied by femtosecond infrared spectroscopy

    SciTech Connect

    Lutgen, S.; Kaindl, R.A.; Woerner, M.; Elsaesser, T.; Hase, A.; Kuenzel, H.

    1996-12-01

    The transient ({ital n}=1) to ({ital n}=2) intersubband absorption of a pure electron plasma in {ital n}-type Ga{sub 0.48}In{sub 0.53}As/Al{sub 0.48}In{sub 0.52}As quantum wells is studied in femtosecond pump-probe experiments. The ultrafast dynamics of nonlinear absorption shows strong changes when tuning the midinfrared pulses over the intersubband absorption line. The nonlinear optical response is determined by both intersubband relaxation with a time constant of 1.3 ps and the intraband dynamics of ({ital n}=1) electrons, which are monitored in an independent experiment. {copyright} {ital 1996 The American Physical Society.}

  2. High-throughput on-chip in vivo neural regeneration studies using femtosecond laser nano-surgery and microfluidics

    NASA Astrophysics Data System (ADS)

    Rohde, Christopher B.; Zeng, Fei; Gilleland, Cody; Samara, Chrysanthi; Yanik, Mehmet F.

    2009-02-01

    In recent years, the advantages of using small invertebrate animals as model systems for human disease have become increasingly apparent and have resulted in three Nobel Prizes in medicine or chemistry during the last six years for studies conducted on the nematode Caenorhabditis elegans (C. elegans). The availability of a wide array of species-specific genetic techniques, along with the transparency of the worm and its ability to grow in minute volumes make C. elegans an extremely powerful model organism. We present a suite of technologies for complex high-throughput whole-animal genetic and drug screens. We demonstrate a high-speed microfluidic sorter that can isolate and immobilize C. elegans in a well-defined geometry, an integrated chip containing individually addressable screening chambers for incubation and exposure of individual animals to biochemical compounds, and a device for delivery of compound libraries in standard multiwell plates to microfluidic devices. The immobilization stability obtained by these devices is comparable to that of chemical anesthesia and the immobilization process does not affect lifespan, progeny production, or other aspects of animal health. The high-stability enables the use of a variety of key optical techniques. We use this to demonstrate femtosecond-laser nanosurgery and three-dimensional multiphoton microscopy. Used alone or in various combinations these devices facilitate a variety of high-throughput assays using whole animals, including mutagenesis and RNAi and drug screens at subcellular resolution, as well as high-throughput high-precision manipulations such as femtosecond-laser nanosurgery for large-scale in vivo neural degeneration and regeneration studies.

  3. THz Pump and X-Ray Probe Development at LCLS

    SciTech Connect

    Fisher, Alan S; Durr, Hermann; Lindenberg, Aaron; Stanford U., Materials Sci.Dept.; Reis, David; Frisch, Josef; Loos, Henrik; Petree, Mark; Daranciang, Dan; Fuchs, Matthias; Ghimire, Shambhu; Goodfellow, John; /Stanford U., Materials Sci. Dept.

    2011-11-08

    We report on measurements of broadband, intense, coherent transition radiation at terahertz frequencies, generated as the highly compressed electron bunches in Linear Coherent Light Source (LCLS) pass through a thin metal foil. The foil is inserted at 45{sup o} to the electron beam, 31 m downstream of the undulator. The THz emission passes downward through a diamond window to an optical table below the beamline. A fully compressed 350-pC bunch produces up to 0.5 mJ in a nearly half-cycle pulse of 50 fs FWHM with a spectrum peaking at 10 THz. We estimate a peak field at the focus of over 2.5 GV/m. A 20-fs Ti:sapphire laser oscillator has recently been installed for electro-optic measurements. We are developing plans to add an x-ray probe to this THz pump, by diffracting FEL x rays onto the table with a thin silicon crystal. The x rays would arrive with an adjustable time delay after the THz. This will provide a rapid start to user studies of materials excited by intense single-cycle pulses and will serve as a step toward a THz transport line for LCLS-II.

  4. A BRIGHT IMPULSIVE SOLAR BURST DETECTED AT 30 THz

    SciTech Connect

    Kaufmann, P.; Fernandes, L. O. T.; Kudaka, A. S.; De Souza, R. V.; Valio, A.; Raulin, J.-P.; White, S. M.; Freeland, S. L.; Marcon, R.; Aballay, J. L.; Fernandez, G.; Godoy, R.; Marun, A.; Gimenez de Castro, C. G.

    2013-05-10

    Ground- and space-based observations of solar flares from radio wavelengths to gamma-rays have produced considerable insights but raised several unsolved controversies. The last unexplored wavelength frontier for solar flares is in the range of submillimeter and infrared wavelengths. Here we report the detection of an intense impulsive burst at 30 THz using a new imaging system. The 30 THz emission exhibited remarkable time coincidence with peaks observed at microwave, mm/submm, visible, EUV, and hard X-ray wavelengths. The emission location coincides with a very weak white-light feature, and is consistent with heating below the temperature minimum in the atmosphere. However, there are problems in attributing the heating to accelerated electrons. The peak 30 THz flux is several times larger than the usual microwave peak near 9 GHz, attributed to non-thermal electrons in the corona. The 30 THz emission could be consistent with an optically thick spectrum increasing from low to high frequencies. It might be part of the same spectral component found at sub-THz frequencies whose nature remains mysterious. Further observations at these wavelengths will provide a new window for flare studies.

  5. Optical and acoustical monitoring of femtosecond laser-induced intracellular contrast agents: initial cell culture studies

    NASA Astrophysics Data System (ADS)

    Zohdy, Marwa J.; Tse, Christine; Ye, Jing Yong; Balogh, Lajos P.; Norris, Theodore B.; O'Donnell, Matthew

    2005-04-01

    Acoustical monitoring of laser-induced optical breakdown can be used as an important tool for diagnostics and therapeutics in living cells. Laser-induced intracellular microbubbles provide measurable contrast when detected with high-frequency ultrasound, and the bioeffects of these bubbles can be controlled to be within two distinct regimes. In the nondestructive regime, a single, transient, detectable bubble can be generated within a cell, without affecting its viability. In the destructive regime, the induced photodisruption can kill a target cell. To generate and monitor this range of effects in real time, we have developed a system integrating a femtosecond pulsed laser source with optical and acoustical microscopy. Experiments were performed on monolayers of Chinese hamster ovary cells. A Ti:Sapphire laser (793 nm wavelength, 100 fs pulse duration) was pulsed at 3.8 kHz and tightly focused to a 1 μm spot within each cell, and a high-frequency (50 MHz) ultrasonic transducer monitored the generated bubble with continuous pulse-echo recordings. The photodisruption was also observed with bright field optical microscopy, and cell viability was assessed after laser exposure using a colorimetric live/dead stain. By controlling laser pulse fluence, exposure duration, and the intracellular location of the laser focus, either nondestructive or destructive bubbles could be generated.

  6. Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2

    PubMed Central

    Santomauro, F. G.; Lübcke, A.; Rittmann, J.; Baldini, E.; Ferrer, A.; Silatani, M.; Zimmermann, P.; Grübel, S.; Johnson, J. A.; Mariager, S. O.; Beaud, P.; Grolimund, D.; Borca, C.; Ingold, G.; Johnson, S.L.; Chergui, M.

    2015-01-01

    Transition metal oxides are among the most promising solar materials, whose properties rely on the generation, transport and trapping of charge carriers (electrons and holes). Identifying the latter’s dynamics at room temperature requires tools that combine elemental and structural sensitivity, with the atomic scale resolution of time (femtoseconds, fs). Here, we use fs Ti K-edge X-ray absorption spectroscopy (XAS) upon 3.49 eV (355 nm) excitation of aqueous colloidal anatase titanium dioxide nanoparticles to probe the trapping dynamics of photogenerated electrons. We find that their localization at Titanium atoms occurs in <300 fs, forming Ti3+ centres, in or near the unit cell where the electron is created. We conclude that electron localization is due to its trapping at pentacoordinated sites, mostly present in the surface shell region. The present demonstration of fs hard X-ray absorption capabilities opens the way to a detailed description of the charge carrier dynamics in transition metal oxides. PMID:26437873

  7. Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2.

    PubMed

    Santomauro, F G; Lübcke, A; Rittmann, J; Baldini, E; Ferrer, A; Silatani, M; Zimmermann, P; Grübel, S; Johnson, J A; Mariager, S O; Beaud, P; Grolimund, D; Borca, C; Ingold, G; Johnson, S L; Chergui, M

    2015-10-06

    Transition metal oxides are among the most promising solar materials, whose properties rely on the generation, transport and trapping of charge carriers (electrons and holes). Identifying the latter's dynamics at room temperature requires tools that combine elemental and structural sensitivity, with the atomic scale resolution of time (femtoseconds, fs). Here, we use fs Ti K-edge X-ray absorption spectroscopy (XAS) upon 3.49 eV (355 nm) excitation of aqueous colloidal anatase titanium dioxide nanoparticles to probe the trapping dynamics of photogenerated electrons. We find that their localization at Titanium atoms occurs in <300 fs, forming Ti(3+) centres, in or near the unit cell where the electron is created. We conclude that electron localization is due to its trapping at pentacoordinated sites, mostly present in the surface shell region. The present demonstration of fs hard X-ray absorption capabilities opens the way to a detailed description of the charge carrier dynamics in transition metal oxides.

  8. Beam waist position study for surface modification of polymethyl-methacrylate with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Caballero-Lucas, F.; Florian, C.; Fernández-Pradas, J. M.; Morenza, J. L.; Serra, P.

    2016-06-01

    Femtosecond lasers are versatile tools to process transparent materials. This optical property poses an issue for surface modification. In this case, laser radiation would not be absorbed at the surface unless the beam is just focused there. Otherwise, absorption would take place in the bulk leaving the surface unperturbed. Therefore, strategies to position the material surface at the laser beam waist with high accuracy are essential. We investigated and compared two options to achieve this aim: the use of reflectance data and transmittance measurements across the sample, both obtained during z-scans with pulses from a 1027 nm wavelength laser and 450 fs pulse duration. As the material enters the beam waist region, a reflectance peak is detected while a transmittance drop is observed. With these observations, it is possible to control the position of the sample surface with respect to the beam waist with high resolution and attain pure surface modification. In the case of polymethyl-methacrylate (PMMA), this resolution is 0.6 μm. The results prove that these methods are feasible for submicrometric processing of the surface.

  9. Electronic dynamics in helium nanodroplets studied via femtosecond XUV pump / UV probe photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Ziemkiewicz, Michael; Bacellar, Camila; Leone, Stephen; Neumark, Daniel; Gessner, Oliver

    2014-05-01

    Superfluid helium nanodroplets consisting of ~ 2 × 106 atoms are examined using femtosecond time-resolved photoelectron imaging. The droplets are excited by a 23.6(2) eV extreme ultraviolet (XUV) pulse in resonance with an electronically excited band associated largely with the 1s3p Rydberg level of free He atoms. Relaxation dynamics are monitored by ionizing transient states with a 3.2 eV probe pulse and measuring the time-dependent photoelectron kinetic energy distributions using velocity map imaging (VMI). A broad, intense signal associated with the initially excited 1s3p band (Ekin ~ 2.5 eV) appears within the experimental time resolution and decays within 190(70) fs. Concomitantly, a second photoelectron feature with kinetic energies ranging from 0 to 0.5 eV appears on a time scale of ~ 200 fs. The new feature is identified as originating from the 1s2p droplet Rydberg band, indicating the direct observation of a previously suggested interband relaxation within the droplet. This feature also decays within ~ 200 fs, likely due to intraband relaxation within the 1s2p/1s2s manifold to states which are too deeply bound to be ionized by the 3.2 eV probe pulse.

  10. Toward Femtosecond Time-Resolved Studies of Solvent-Solute Energy Transfer in Doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Bacellar, C.; Ziemkiewicz, M. P.; Leone, S. R.; Neumark, D. M.; Gessner, O.

    2015-05-01

    Superfluid helium nanodroplets provide a unique cryogenic matrix for high resolution spectroscopy and ultracold chemistry applications. With increasing photon energy and, in particular, in the increasingly important Extreme Ultraviolet (EUV) regime, the droplets become optically dense and, therefore, participate in the EUV-induced dynamics. Energy- and charge-transfer mechanisms between the host droplets and dopant atoms, however, are poorly understood. Static energy domain measurements of helium droplets doped with noble gas atoms (Xe, Kr) indicate that Penning ionization due to energy transfer from the excited droplet to dopant atoms may be a significant relaxation channel. We have set up a femtosecond time-resolved photoelectron imaging experiment to probe these dynamics directly in the time-domain. Droplets containing 104 to 106 helium atoms and a small percentage (<10-4) of dopant atoms (Xe, Kr, Ne) are excited to the 1s2p Rydberg band by 21.6 eV photons produced by high harmonic generation (HHG). Transiently populated states are probed by 1.6 eV photons, generating time-dependent photoelectron kinetic energy distributions, which are monitored by velocity map imaging (VMI). The results will provide new information about the dynamic timescales and the different relaxation channels, giving access to a more complete physical picture of solvent-solute interactions in the superfluid environment. Prospects and challenges of the novel experiment as well as preliminary experimental results will be discussed.

  11. Exploration of the effects of burn parameters on THz wound imaging

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Sung, Shijun; Fishbein, Michael; Grundfest, Warren S.; Taylor, Zachary D.

    2015-08-01

    The high contrast resolution afforded by terahertz (1 THz = 1012 Hz) imaging of physiologic tissue continues to drive explorations into the utility of THz technology for burn wound detection. Although we have previously reported the use of a novel, reflective THz imaging technology to sense spatiotemporal differences in reflectivity between partial and full thickness burn wounds, no evidence exists of a one-to-one correlation between structural damage observed in histological assessments of burn severity and THz signal. For example, varying burn induction methods may all result in a common burn wound severity, however, burn features observed in parallel THz imagery may not be identical. Successful clinical translation of THz technology as a comprehensive burn guidance tool, therefore, necessitates an understanding of THz signal and its relation to wound pathophysiology. In this work, longitudinal THz imagery was acquired with a quartz (n = 2.1, 500 μm) window of cutaneous wounds induced with the same brand geometry and contact pressure but varying contact times (5, 7, and 10 seconds) in in vivo, pre-clinical rat models (n=3) over a period of 3 days. Though all burn wounds were evaluated to be deep partial thickness with histology, THz contrasts observed for each burn contact time were intrinsically unique. This is the first preliminary in vivo evidence of a many-to-one relationship between changes in THz contrast and burn severity as ascertained by histology. Future large-scale studies are required to assess whether these observed changes in THz contrast may be interpreted as physiological changes occurring over time, morphometric changes related to anatomical change, or electromagnetic changes between dielectric substrate windows and the underlying tissue.

  12. Material Inspection Using THz and Thermal Wave

    NASA Astrophysics Data System (ADS)

    Zhang, Cunlin; Mu, Kaijun; Li, Yanhong; Zhang, X.-C.

    2007-03-01

    Terahertz (THz) and thermal wave imaging technologies are complementary inspection modalities for use in non-contact and non-destructive evaluation. Both of them are applied in order to evaluate damages on a variety of composite samples. We will also report the test of a large number of insulation foam panels used in NASA's External Fuel Tank through pulse and CW terahertz systems. The study of defects using the two techniques in selected materials, including metal plates, carbon fibers, glass fibers, carbon silicon composites, etc is also shown.

  13. Femtosecond Electron Diffraction and Shadow Imaging

    NASA Astrophysics Data System (ADS)

    McPherson, David

    2010-03-01

    Using femtosecond electron pulses as an imaging tool, we can probe ultrafast dynamics by taking snapshots at different time delays. By using femtosecond electron diffraction (FED), we can examine structural dynamics at the atomic level in real time, and study the structure-function correlation. Additionally, femtosecond electron shadow imaging (FESI) can explore the dynamics of laser induced plasmas off the surfaces of conductors, semiconductors, and insulators. Project as part of a Research Experience for Undergraduates program funded by the National High Magnetic Field Laboratory, Florida State University and the National Science Foundation under supervision of Jianming Cao, PhD., Florida State University.

  14. Improvement of passive THz camera images

    NASA Astrophysics Data System (ADS)

    Kowalski, Marcin; Piszczek, Marek; Palka, Norbert; Szustakowski, Mieczyslaw

    2012-10-01

    Terahertz technology is one of emerging technologies that has a potential to change our life. There are a lot of attractive applications in fields like security, astronomy, biology and medicine. Until recent years, terahertz (THz) waves were an undiscovered, or most importantly, an unexploited area of electromagnetic spectrum. The reasons of this fact were difficulties in generation and detection of THz waves. Recent advances in hardware technology have started to open up the field to new applications such as THz imaging. The THz waves can penetrate through various materials. However, automated processing of THz images can be challenging. The THz frequency band is specially suited for clothes penetration because this radiation does not point any harmful ionizing effects thus it is safe for human beings. Strong technology development in this band have sparked with few interesting devices. Even if the development of THz cameras is an emerging topic, commercially available passive cameras still offer images of poor quality mainly because of its low resolution and low detectors sensitivity. Therefore, THz image processing is very challenging and urgent topic. Digital THz image processing is a really promising and cost-effective way for demanding security and defense applications. In the article we demonstrate the results of image quality enhancement and image fusion of images captured by a commercially available passive THz camera by means of various combined methods. Our research is focused on dangerous objects detection - guns, knives and bombs hidden under some popular types of clothing.

  15. Study of deposition parameters for the fabrication of ZnO thin films using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hashmi, Jaweria Zartaj; Siraj, Khurram; Latif, Anwar; Murray, Mathew; Jose, Gin

    2016-08-01

    Femtosecond (fs) pulsed laser deposition (fs-PLD) of ZnO thin film on borosilicate glass substrates is reported in this work. The effect of important fs-PLD parameters such as target-substrate distance, laser pulse energy and substrate temperature on structure, morphology, optical transparency and luminescence of as-deposited films is discussed. XRD analysis reveals that all the films grown using the laser energy range 120-230 μJ are polycrystalline when they are deposited at room temperature in a ~10-5 Torr vacuum. Introducing 0.7 mTorr oxygen pressure, the films show preferred c-axis growth and transform into a single-crystal-like film when the substrate temperature is increased to 100 °C. The scanning electron micrographs show the presence of small nano-size grains at 25 °C, which grow in size to the regular hexagonal shape particles at 100 °C. Optical transmission of the ZnO film is found to increase with an increase in crystal quality. Maximum transmittance of 95 % in the wavelength range 400-1400 nm is achieved for films deposited at 100 °C employing a laser pulse energy of 180 μJ. The luminescence spectra show a strong UV emission band peaked at 377 nm close to the ZnO band gap. The shallow donor defects increase at higher pulse energies and higher substrate temperatures, which give rise to violet-blue luminescence. The results indicate that nano-crystalline ZnO thin films with high crystalline quality and optical transparency can be fabricated by using pulses from fs lasers.

  16. Photo-generated THz antennas

    NASA Astrophysics Data System (ADS)

    Georgiou, G.; Tyagi, H. K.; Mulder, P.; Bauhuis, G. J.; Schermer, J. J.; Rivas, J. Gómez

    2014-01-01

    Electromagnetic resonances in conducting structures give rise to the enhancement of local fields and extinction efficiencies. Conducting structures are conventionally fabricated with a fixed geometry that determines their resonant response. Here, we challenge this conventional approach by demonstrating the photo-generation of THz linear antennas on a flat semiconductor layer by the structured optical illumination through a spatial light modulator. Free charge carriers are photo-excited only on selected areas, which enables the realization of different conducting antennas on the same sample by simply changing the illumination pattern, thus without the need of physically structuring the sample. These results open a wide range of possibilities for the all-optical spatial control of resonances on surfaces and the concomitant control of THz extinction and local fields.

  17. Optically controllable THz chiral metamaterials.

    PubMed

    Kenanakis, G; Zhao, R; Katsarakis, N; Kafesaki, M; Soukoulis, C M; Economou, E N

    2014-05-19

    Switchable and tunable chiral metamaterial response is numerically demonstrated here in different uniaxial chiral metamaterial structures operating in the THz regime. The structures are based on the bi-layer conductor design and the tunable/switchable response is achieved by replacing parts of the metallic components of the structures by photoconducting Si, which can be transformed from an insulating to an almost conducting state through photoexcitation, achievable under external optical pumping. All the structures proposed and discussed here exhibit frequency regions with giant tunable circular dichroism, as well as regions with giant tunable optical activity, showing unique potential in the achievement of active THz polarization components, like tunable polarizers and polarization filters. PMID:24921336

  18. THz Imaging of Skin Burn: Seeing the Unseen—An Overview

    PubMed Central

    Dutta, Moumita; Bhalla, Amar S.; Guo, Ruyan

    2016-01-01

    Significance: This review article puts together all the studies performed so far in realizing terahertz (THz) spectra as a probing mechanism for burn evaluation, summarizing their experimental conditions, observations, outcomes, merits, and demerits, along with a comparative discussion of other currently used technologies to present the state of art in a condensed manner. The key features of this noncontact investigation technique like its precise burn depth analysis and the approaches it follows to convert the probed data into a quantitative measure have also been discussed in this article. Recent Advances: The current research developments in THz regime observed in device design technologies (like THz time domain spectrometer, quantum cascade THz lasers, THz single-photon detectors, etc.) and in understanding its unique properties (like nonionizing nature, penetrability through dry dielectrics, etc.) have motivated the research world to realize THz window as a potential candidate for burn detection. Critical Issues: Application of appropriate medical measure for burn injury is primarily subjective to proper estimation of burn depth. Tool modality distinguishing between partial and full-thickness burn contributing toward correct medical care is indeed awaited. Future Directions: The overview of THz imaging as a burn assessment tool as provided in this article will certainly help in further nurturing of this emerging diagnostic technique particularly in improving its detection and accompanied image processing methods so that the minute nuances captured by the THz beam can be correlated with the physiological–anatomical changes in skin structures, caused by burn, for better sensitivity, resolution, and quantitative analysis. PMID:27602253

  19. THz Imaging of Skin Burn: Seeing the Unseen—An Overview

    PubMed Central

    Dutta, Moumita; Bhalla, Amar S.; Guo, Ruyan

    2016-01-01

    Significance: This review article puts together all the studies performed so far in realizing terahertz (THz) spectra as a probing mechanism for burn evaluation, summarizing their experimental conditions, observations, outcomes, merits, and demerits, along with a comparative discussion of other currently used technologies to present the state of art in a condensed manner. The key features of this noncontact investigation technique like its precise burn depth analysis and the approaches it follows to convert the probed data into a quantitative measure have also been discussed in this article. Recent Advances: The current research developments in THz regime observed in device design technologies (like THz time domain spectrometer, quantum cascade THz lasers, THz single-photon detectors, etc.) and in understanding its unique properties (like nonionizing nature, penetrability through dry dielectrics, etc.) have motivated the research world to realize THz window as a potential candidate for burn detection. Critical Issues: Application of appropriate medical measure for burn injury is primarily subjective to proper estimation of burn depth. Tool modality distinguishing between partial and full-thickness burn contributing toward correct medical care is indeed awaited. Future Directions: The overview of THz imaging as a burn assessment tool as provided in this article will certainly help in further nurturing of this emerging diagnostic technique particularly in improving its detection and accompanied image processing methods so that the minute nuances captured by the THz beam can be correlated with the physiological–anatomical changes in skin structures, caused by burn, for better sensitivity, resolution, and quantitative analysis.

  20. Superradiant THz undulator radiation source based on a superconducting photo-injector

    NASA Astrophysics Data System (ADS)

    Wen, Xiaodong; Huang, Senlin; Lin, Lin; Wang, Fang; Zhu, Feng; Feng, Liwen; Yang, Limin; Wang, Zhiwen; Fan, Peiliang; Hao, Jiankui; Quan, Shengwen; Liu, Kexin; Chen, Jia-er

    2016-06-01

    Superconducting radio frequency accelerators are used to produce terahertz (THz) radiation pulses with a high repetition rate. In this study, a compact high repetition rate THz radiation source has been developed based on a DC-SRF photo-injector through velocity bunching at Peking University. This compact THz source can theoretically generate approximately 1 W of superradiant THz radiation, with a repetition rate of 16.25 MHz and a frequency that can be tuned from 0.24 THz to 0.42 THz by varying the electron beam energy from 2.4 MeV to 3.1 MeV. Simulation results indicate that the asymmetrical longitudinal distribution of electrons in each bunch caused by velocity bunching increases the THz power by about 2 orders at wavelength within 400-700 μm. Experimental measurements are consistent with the calculation results when propagation loss is considered. This paper presents the system description, simulation, and experiments of the high repetition rate THz source.

  1. Protein and water confined in nanometer-scale reverse micelles studied by near infrared, terahertz, and ultrafast visible spectroscopies.

    PubMed

    Murakami, Hiroshi

    2013-01-01

    Protein-containing reverse (PCR) micelles are suitable systems to study the properties of proteins and waters in a cell-like environment. A model for determining the structural parameters of PCR micelles, such as the aqueous cavity size and molecule number of water within the reverse micelle, is presented. The model is based on an important hypothesis that the structural parameters of the protein-unfilled reverse micelle do not change after solubilization of protein. I describe a procedure using near infrared spectroscopy of OH stretching vibration band of water to verify the hypothesis. Further, the terahertz (THz) absorption spectrum of myoglobin is derived from THz time-domain spectroscopy of the PCR micellar solution, and the states of waters in reverse micelles with and without protein are discussed on the basis of the structural parameters. The last topic is on internal dynamics of PCR micelles on timescales from femtoseconds to nanoseconds studied by femtosecond time-resolved fluorescence spectroscopy.

  2. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy.

    PubMed

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-01-01

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction. PMID:27346494

  3. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-06-01

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction.

  4. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy

    PubMed Central

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-01-01

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction. PMID:27346494

  5. A compact THz imaging system

    NASA Astrophysics Data System (ADS)

    Sešek, Aleksander; Å vigelj, Andrej; Trontelj, Janez

    2015-03-01

    The objective of this paper is the development of a compact low cost imaging THz system, usable for observation of the objects near to the system and also for stand-off detection. The performance of the system remains at the high standard of more expensive and bulkiest system on the market. It is easy to operate as it is not dependent on any fine mechanical adjustments. As it is compact and it consumes low power, also a portable system was developed for stand-off detection of concealed objects under textile or inside packages. These requirements rule out all optical systems like Time Domain Spectroscopy systems which need fine optical component positioning and requires a large amount of time to perform a scan and the image capture pixel-by-pixel. They are also almost not suitable for stand-off detection due to low output power. In the paper the antenna - bolometer sensor microstructure is presented and the THz system described. Analysis and design guidelines for the bolometer itself are discussed. The measurement results for both near and stand-off THz imaging are also presented.

  6. Femtosecond pulse propagation in nitrogen: Numerical study of (3+1)-dimensional extended nonlinear Schroedinger equation with shock-term correction

    SciTech Connect

    Ando, Taro; Fujimoto, Masatoshi

    2005-08-01

    We develop an accurate and efficient method for calculating evolution due to the extended nonlinear Schroedinger equation, which describes the propagation behavior of a femtosecond light pulse in a nonlinear medium. Applying Suzuki's exponential operator expansion to the evolution operator based on the finite-differential formulation, we realize the accurate and fast calculation that can be performed without large-scale computing systems even for (3+1)-dimensional problems. To study the correspondence between experiments and calculations, we calculate the propagation behavior of a femtosecond light pulse that is weakly focused in nitrogen gas of various pressures and compare the calculation results to the experimental ones. The calculation results reproduce the relative behavior of the spatial light pattern observed during the propagation. Additionally, the multiple-cone formation and interaction between two collimated pulses in nitrogen gas are also demonstrated as applications of the developed method.

  7. Study of nonlinear optical absorption properties of V2O5 nanoparticles in the femtosecond excitation regime

    NASA Astrophysics Data System (ADS)

    Molli, Muralikrishna; Bhat Kademane, Abhijit; Pradhan, Prabin; Sai Muthukumar, V.

    2016-08-01

    In this work, we report for the first time, the nonlinear optical absorption properties of vanadium pentoxide (V2O5) nanoparticles in the femtosecond excitation regime. V2O5 nanoparticles were synthesized through solution combustion technique. The as-synthesized samples were further characterized using XRD, FESEM, EDAX, TEM and UV-visible spectroscopy. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies showed the size of the nanoparticles to be ~200 nm. Open-aperture z-scan technique was employed to study the nonlinear optical absorption behavior of the synthesized samples using a 100-fs laser pulses at 800 nm from a regeneratively amplified Ti: sapphire laser. The mechanism of nonlinear absorption was found to be a three-photon absorption process which was explained using the density of states of V2O5 obtained using density functional theory. These nanoparticles exhibit strong intensity-dependent nonlinear optical absorption and hence could be considered for optical-power-limiting applications.

  8. Measurement of middle and upper atmospheric horizontal winds with a submillimeter/THz limb sounder: results from JEM/SMILES and simulation study for SMILES-2

    NASA Astrophysics Data System (ADS)

    Baron, Philippe; Manago, Naohiro; Ozeki, Hiroyuki; Yoshihisa, Irimajiri; Donal, Murtagh; Yoshinori, Uzawa; Satoshi, Ochiai; Masato, Shiotani; Makoto, Suzuki

    2016-04-01

    In a near future, ESA will launch the Atmospheric Dynamics Mission (ADM) equipped with a lidar for measuring tropospheric and lower stratospheric winds. NASA will continue a long-term series of upper atmospheric wind measurements (altitudes >80 km) with the new Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on the Ionospheric Connection Explorer (ICON) satellite. No mission is planned to observe winds in the middle atmosphere (30-80 km), though they are recognized as essential parameters for understanding atmospheric dynamics and the vertical coupling between atmospheric regions. They are also promising data for improving long-term weather forecast and climate modelling. It has been demonstrated with the Superconducting Submillimeter Wave Limb Emission Sounder (SMILES, Oct 2009 - Apr 2010) that a 4-K cooled microwave radiometer can provide data to fill the altitude gap in the wind measurements. Its possible successor named SMILES-2, is being designed in Japan for the study of the middle and upper atmospheric chemistry and dynamics (O3, H2O, T, atomic O, OH, HO2, ClO, BrO, ...). If realized, the instrument will measure sub-millimeter and THz molecular spectral lines (616-150 μm) with high sensitivity and frequency resolution. The SMILES-2 characteristics are very well suited for horizontal wind observations between 20 km to more than 160 km. The best performances are found between 35-90 km where the retrieval precision is better than 3 m/s for a vertical resolution of 2-3 km [1]. In this presentation, we summarize the results obtained from SMILES and assess the measurement performances of SMILES-2 to measure horizontal winds. [1] P. Baron, N. Manago, H. Ozeki, Y. Irimajiri, D. Murtagh, Y. Uzawa, S. Ochiai, M. Shiotani, M. Suzuki: "Measurement of stratospheric and mesospheric winds with a SubMillimeter wave limb sounder: Results from JEM/SMILES and simulation study for SMILES-2"; Proc. of SPIE Remote sensing, 96390N-96390N-20

  9. Fabrication of THz Sensor with Metamaterial Absorber

    NASA Astrophysics Data System (ADS)

    Gonzalez, Hugo; Alves, Fabio; Karunasiri, Gamani

    The terahertz (THz) portion of the electromagnetic spectrum (0.1-10 THz) has not been fully utilized due to the lack of sensitive detectors. Real-time imaging in this spectral range has been demonstrated using uncooled infrared microbolometer cameras and external illumination provided by quantum cascade laser (QCL) based THz sources. However, the microbolometer pixels in the cameras have not been optimized to achieve high sensitivity in THz frequencies. Recently, we have developed a highly sensitive micromechanical THz sensor employing bi-material effect with an integrated metamaterial absorber tuned to the THz frequency of interest. The use of bi-material structures causes deflection on the sensor to as the absorbed THz radiation increases its temperature, which can be monitored optically by reflecting a light beam. This approach eliminates the integration of readout electronics needed in microbolometers. The absorption of THz by metamaterial can be tailored by controlling geometrical parameters. The sensors can be fabricated using conventional microelectronic materials and incorporated into pixels to form focal plane arrays (FPAs). In this presentation, characterization and readout of a THz sensor with integrated metamaterial structure will be described. Supported by DoD.

  10. Dissociation of H{sub 2}{sup +} in intense femtosecond laser fields studied by coincidence three-dimensional momentum imaging

    SciTech Connect

    Wang, P. Q.; Sayler, A. M.; Carnes, K. D.; Xia, J. F.; Smith, M. A.; Esry, B. D.; Ben-Itzhak, I.

    2006-10-15

    The dissociation of H{sub 2}{sup +} in an intense laser field has been experimentally studied using femtosecond laser pulses at 790 nm in the intensity range of 10{sup 13}-10{sup 15} W/cm{sup 2}. Kinematically complete measurements of both the ionic H{sup +} and neutral H fragments dissociated from a vibrationally excited H{sub 2}{sup +} beam have been achieved by a coincidence three-dimensional momentum imaging system. Angular-resolved kinetic energy release spectra for a series of different intensity ranges have been obtained using the intensity-difference spectrum method, thus disentangling the problem caused by the intensity volume effect. Our results indicate that the dissociation dynamics are drastically different for 'long' (135 fs) and 'short' (45 fs) laser pulses at similar high laser intensities. Specifically, bond softening is found to be the main feature in long pulses, while above threshold dissociation is dominant in short pulses whose durations are comparable with the vibrational period of the molecule. Bond softening in short pulses appears at low kinetic energy release with a narrow angular distribution. The experimental results are well interpreted by solving the time-dependent Schroedinger equation in the Born-Oppenheimer representation without nuclear rotation.

  11. Study of nonlinear optical absorption properties of Sb2Se3 nanoparticles in the nanosecond and femtosecond excitation regime

    NASA Astrophysics Data System (ADS)

    Molli, Muralikrishna; Pradhan, Prabin; Dutta, Devarun; Jayaraman, Aditya; Bhat Kademane, Abhijit; Muthukumar, V. Sai; Kamisetti, Venkataramaniah; Philip, Reji

    2016-05-01

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb2Se3) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10-40 nm. Elemental analysis was performed using EDAX. The nanosecond optical limiting effect was characterized by using fluence-dependent transmittance measurements with 15-ns laser pulses at 532 and 1064 nm excitation wavelengths. Mechanistically, effective two-photon (2PA) absorption and nonlinear scattering processes were the dominant nonlinear processes at both the wavelengths. At 800 nm excitation in the femtosecond regime (100 fs), the nonlinear optical absorption was found to be a three-photon (3PA) process. Both 2PA and 3PA processes were explained using the band structure and density of states of Sb2Se3 obtained using density functional theory. These nanoparticles exhibit strong intensity-dependent nonlinear optical absorption and hence could be considered to have optical power-limiting applications in the visible range.

  12. On the accretion process in a high-mass star forming region. A multitransitional THz Herschel-HIFI study of ammonia toward G34.26+0.15

    NASA Astrophysics Data System (ADS)

    Hajigholi, M.; Persson, C. M.; Wirström, E. S.; Black, J. H.; Bergman, P.; Olofsson, A. O. H.; Olberg, M.; Wyrowski, F.; Coutens, A.; Hjalmarson, Å.; Menten, K. M.

    2016-01-01

    Aims: Our aim is to explore the gas dynamics and the accretion process in the early phase of high-mass star formation. Methods: The inward motion of molecular gas in the massive star forming region G34.26+0.15 is investigated by using high-resolution profiles of seven transitions of ammonia at THz frequencies observed with Herschel-HIFI. The shapes and intensities of these lines are interpreted in terms of radiative transfer models of a spherical, collapsing molecular envelope. An accelerated Lambda Iteration (ALI) method is used to compute the models. Results: The seven ammonia lines show mixed absorption and emission with inverse P-Cygni-type profiles that suggest infall onto the central source. A trend toward absorption at increasingly higher velocities for higher excitation transitions is clearly seen in the line profiles. The J = 3 ← 2 lines show only very weak emission, so these absorption profiles can be used directly to analyze the inward motion of the gas. This is the first time a multitransitional study of spectrally resolved rotational ammonia lines has been used for this purpose. Broad emission is, in addition, mixed with the absorption in the 10-00 ortho-NH3 line, possibly tracing a molecular outflow from the star forming region. The best-fitting ALI model reproduces the continuum fluxes and line profiles, but slightly underpredicts the emission and absorption depth in the ground-state ortho line 10-00. An ammonia abundance on the order of 10-9 relative to H2 is needed to fit the profiles. The derived ortho-to-para ratio is approximately 0.5 throughout the infalling cloud core similar to recent findings for translucent clouds in sight lines toward W31C and W49N. We find evidence of two gas components moving inwards toward the central region with constant velocities: 2.7 and 5.3 km s-1, relative to the source systemic velocity. Attempts to model the inward motion with a single gas cloud in free-fall collapse did not succeed. Herschel is an ESA space

  13. Numerical analysis of second harmonic generation for THz-wave in a photonic crystal waveguide using a nonlinear FDTD algorithm

    NASA Astrophysics Data System (ADS)

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2016-04-01

    We have presented a numerical analysis to describe the behavior of a second harmonic generation (SHG) in THz regime by taking into account for both linear and nonlinear optical susceptibility. We employed a nonlinear finite-difference-time-domain (nonlinear FDTD) method to simulate SHG output characteristics in THz photonic crystal waveguide based on semi insulating gallium phosphide crystal. Unique phase matching conditions originated from photonic band dispersions with low group velocity are appeared, resulting in SHG output characteristics. This numerical study provides spectral information of SHG output in THz PC waveguide. THz PC waveguides is one of the active nonlinear optical devices in THz regime, and nonlinear FDTD method is a powerful tool to design photonic nonlinear THz devices.

  14. THz pulse shaping and improved optical-to-THz conversion efficiency using a binary phase mask.

    PubMed

    Ropagnol, Xavier; Morandotti, Roberto; Ozaki, Tsuneyuki; Reid, Matt

    2011-07-15

    We demonstrate improved optical-to-terahertz (THz) conversion efficiency and THz pulse shaping from an interdigitated GaAs large area photoconductive antenna by using a binary phase mask. The binary phase mask results in a time-delayed excitation of the adjacent antennas, which allows subsequent antennas to produce an additive field, thus resulting in a quasi-single-cycle THz pulse. We demonstrate control over the temporal profile of the THz waveform to maximize optical-to-THz conversion efficiency. PMID:21765501

  15. Femtosecond laser photodisruption of vitelline vessels of avian embryos as a technique to study embryonic vascular remodeling.

    PubMed

    Yalcin, Huseyin C

    2014-12-01

    During cardiogenesis, congenital heart defects (CHDs), generally start as local tissue abnormalities without underlying genetic causes, suggesting abnormal hemodynamics may be an important source. Due to the scarcity of experimental techniques that permits the formation of minimally-invasive and well-controlled cardiac perturbations, experimental investigation of embryonic development of CHD via in-vivo models is difficult. In this study, in order to investigate the relationship between abnormal mechanical signaling and embryonic CHD development, a previously developed laser-based technique was adopted to alter chicken embryonic cardiovascular development. The technique incorporates two-photon fluorescence microscopy to visualize deep tissue while femtosecond-pulsed laser photodisruption is used to ablate targeted tissue. Vitelline vessel remodeling under abnormal hemodynamics was the prime concern of the study. In order to alter the hemodynamics, blood flowing inside 50-300 µm diameter Hamburger-Hamilton 24 embryonic vessels was selectively ablated. Red blood cells in the blood and endothelial cells of the vessel walls were damaged as a result of ablation. Cellular injuries led to micro-occlusions in the vessels. Several micro-occlusions formed stable clots, resulting in a complete cessation of blood flow in the targeted vessels. By measuring blood velocities in the surrounding vessels via line scanning technique, the subsequent redistribution of blood flow in the immediate upstream and downstream vessels was revealed. The network was analyzed after 24 h, and it was found to be degraded. Degradation of the entire network can be attributed to the abnormalities in hemodynamics within the vessels. For studying embryonic development of heart defects under disturbed flow conditions, the present study can be extended to clot a blood vessel inside the embryo or a vitelline vessel in the vicinity of the heart. These results demonstrate that, laser-based noninvasive

  16. THz detection in graphene nanotransistors

    NASA Astrophysics Data System (ADS)

    Tredicucci, Alessandro; Vitiello, Miriam S.; Polini, Marco; Pellegrini, Vittorio

    2014-03-01

    Nanotransistors offer great prospect for the development of innovative THz detectors based on the non-linearity of transport characteristics. Semiconductor nanowires are appealing for their one-dimensional nature and intrinsically low capacitance of the devices, while graphene, with its record-high room-temperature mobility, has the potential to exploit plasma wave resonances in the transistor channel to achieve high-responsivity and tuneable detection. First graphene detectors have been recently demonstrated in both monolayer and bilayer field effect devices performances already suitable for first imaging application. Here will discuss the physics and technology of these devices, their operation, as well as first examples of imaging applications.

  17. Coherent femtosecond low-energy single-electron pulses for time-resolved diffraction and imaging: A numerical study

    SciTech Connect

    Paarmann, A.; Mueller, M.; Ernstorfer, R.; Gulde, M.; Schaefer, S.; Schweda, S.; Maiti, M.; Ropers, C.; Xu, C.; Hohage, T.; Schenk, F.

    2012-12-01

    We numerically investigate the properties of coherent femtosecond single electron wave packets photoemitted from nanotips in view of their application in ultrafast electron diffraction and non-destructive imaging with low-energy electrons. For two different geometries, we analyze the temporal and spatial broadening during propagation from the needle emitter to an anode, identifying the experimental parameters and challenges for realizing femtosecond time resolution. The simple tip-anode geometry is most versatile and allows for electron pulses of several ten of femtosecond duration using a very compact experimental design, however, providing very limited control over the electron beam collimation. A more sophisticated geometry comprising a suppressor-extractor electrostatic unit and a lens, similar to typical field emission electron microscope optics, is also investigated, allowing full control over the beam parameters. Using such a design, we find {approx}230 fs pulses feasible in a focused electron beam. The main limitation to achieve sub-hundred femtosecond time resolution is the typical size of such a device, and we suggest the implementation of more compact electron optics for optimal performance.

  18. High power THz sources for nonlinear imaging

    NASA Astrophysics Data System (ADS)

    Tekavec, Patrick F.; Kozlov, Vladimir G.

    2014-02-01

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source delivers 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.

  19. High power THz sources for nonlinear imaging

    SciTech Connect

    Tekavec, Patrick F.; Kozlov, Vladimir G.

    2014-02-18

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source delivers 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.

  20. Laser Micromachining Fabrication of THz Components

    NASA Technical Reports Server (NTRS)

    DrouetdAubigny, C.; Walker, C.; Jones, B.; Groppi, C.; Papapolymerou, J.; Tavenier, C.

    2001-01-01

    Laser micromachining techniques can be used to fabricate high-quality waveguide structures and quasi-optical components to micrometer accuracies. Successful GHz designs can be directly scaled to THz frequencies. We expect this promising technology to allow the construction of the first fully integrated THz heterodyne imaging arrays. At the University of Arizona, construction of the first laser micromachining system designed for THz waveguide components fabrication has been completed. Once tested and characterized our system will be used to construct prototype THz lx4 focal plane mixer arrays, magic tees, AR coated silicon lenses, local oscillator source phase gratings, filters and more. Our system can micro-machine structures down to a few microns accuracy and up to 6 inches across in a short time. This paper discusses the design and performance of our micromachining system, and illustrates the type, range and performance of components this exciting new technology will make accessible to the THz community.

  1. Majolica imaging with THz waves: preliminary results

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Affinito, Antonio; Guerriero, Luigi; Bisceglia, Bruno; Soldovieri, Francesco

    2016-05-01

    Recent advancements performed in the development of stable and flexible devices working at TeraHertz (THz) frequencies have opened the way at considering this technology as a very interesting noninvasive diagnostic tool in cultural heritage. In this frame, the paper aims at assessing the ability of THz imaging to gather information about preservation state and constructive modalities of majolica artworks. In particular, THz surveys have been carried out on two majolica tiles dated back to the nineteenth century and realized as building cladding at Naples (Italy). The analysis has been performed by means of the Zomega fiber-coupled THz time-domain system. This analysis corroborates the ability of THz to reconstruct irregularities of majolica tile topography, to characterize pigment and glaze losses, and to detect and localize glaze and pigment layer as well as the glaze-clay body interface.

  2. High-Resolution Waveguide THz Spectroscopy of Biological Molecules☆

    PubMed Central

    Laman, N.; Harsha, S. Sree; Grischkowsky, D.; Melinger, Joseph S.

    2008-01-01

    Abstract Low-frequency vibrational modes of biological molecules consist of intramolecular modes, which are dependent on the molecule as a whole, as well as intermolecular modes, which arise from hydrogen-bonding interactions and van der Waals forces. Vibrational modes thus contain important information about conformation dynamics of biological molecules, and can also be used for identification purposes. However, conventional Fourier transform infrared spectroscopy and terahertz time-domain spectroscopy (THz-TDS) often result in broad, overlapping features that are difficult to distinguish. The technique of waveguide THz-TDS has been recently developed, resulting in sharper features. For this technique, an ordered polycrystalline film of the molecule is formed on a metal sample plate. This plate is incorporated into a metal parallel-plate waveguide and probed via waveguide THz-TDS. The planar order of the film reduces the inhomogeneous broadening, and cooling of the samples to 77K reduces the homogenous broadening. This combination results in the line-narrowing of THz vibrational modes, in some cases to an unprecedented degree. Here, this technique has been demonstrated with seven small biological molecules, thymine, deoxycytidine, adenosine, D-glucose, tryptophan, glycine, and L-alanine. The successful demonstration of this technique shows the possibilities and promise for future studies of internal vibrational modes of large biological molecules. PMID:17933879

  3. Investigations on time stability of passive THz imaging

    NASA Astrophysics Data System (ADS)

    Kowalski, Marcin; Palka, Norbert; Zyczkowski, Marek; Szustakowski, Mieczyslaw

    2014-10-01

    Terahertz radiation is within the frequency range from 100 GHz to 10THz. This radiation has specific characteristics in terms of imaging. The radiation is harmless to the human body because the energy transferred by electromagnetic waves in this range of frequencies are very small thus there is no ionization of matter. The development of imaging devices and exploration of new spectral bands is a chance to introduce new equipment for assuring public safety. It has been proved that objects hidden under clothing can be detected and visualized using terahertz (THz) cameras. However, passive THz cameras still offer too low image resolution for objects recognition. In order to determine the properties of terahertz imaging for detection of hidden objects several aspects need to be considered. Taking into account the fact that the image captured by the terahertz camera reflects the spatial distribution of the relative temperature of the observed objects, the effect of the measurement time on the imaging capabilities should be examined. A very important aspect is the influence of the type (material composition) of coating material, as well as the type of an object hidden under clothing (size and material). The purpose of the studies is to investigate the time stability of passive THz imaging on 250 GHz for detection of concealed objects. In the article, we present the measurement setup, the measurement methodology as well as the initial results of measurements with various types of clothing and test objects.

  4. Nanoflow electrospinning serial femtosecond crystallography

    SciTech Connect

    Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan; Tran, Rosalie; Hattne, Johan; Alonso-Mori, Roberto; Lassalle-Kaiser, Benedikt; Glöckner, Carina; Hellmich, Julia; Schafer, Donald W.; Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W.; Sellberg, Jonas; McQueen, Trevor A.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Glatzel, Pieter; Milathianaki, Despina; White, William E.; Adams, Paul D.; Williams, Garth J.; Boutet, Sébastien; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.; Bogan, Michael J.

    2012-11-01

    A low flow rate liquid microjet method for delivery of hydrated protein crystals to X-ray lasers is presented. Linac Coherent Light Source data demonstrates serial femtosecond protein crystallography with micrograms, a reduction of sample consumption by orders of magnitude. An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min{sup −1} to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min{sup −1} and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption.

  5. Dual Femtosecond TITANIUM:SAPPHIRE Laser for Ultrafast Optical Sampling Two-Color Pump/probe Studies.

    NASA Astrophysics Data System (ADS)

    Luo, Ningyi Daniel

    A pair of self-synchronous Ti:Sapphire lasers have been setup for two-color pump/probe detection in the sub-picosecond time regime. The two 75 femtosecond self -mode-locked Ti:Sapphire lasers are operated asynchronously at slightly different repetition rates to provide continuously varying dynamic delay times. They are tunable at 700-890 nm. The shorter wavelength pulses from one laser are used as a pump source, while the longer wavelength pulses are used as a probe. The sum-frequency pulses generated by the cross-correlation of the two laser pulses are used to define the "time-zero" position and trigger the pump/probe process. The experiment is triggered at the difference frequency, and the signal can be averaged many times allowing a weak signal to build up. Dual-time scale is involved with the interpretation of the signal, which allows the experiment to be carried on the real time scale and the signal to be recorded on a much reduced equivalent time scale. Excited state lifetime measurement of laser HITCI has proven that this technology is practically feasible. Several advantages have been seen: (1) independent wavelength tunability of the pump and probe lasers; (2) variable femto- to nano -second pump/probe time delay; (3) fast (mu s-ms) data collection time; (4) compact optical layout, without the need for optical delay lines and modulators, and thus, simple optical alignment. This study sheds light on the development of a novel compact high speed optical instrument.

  6. Deuterium isotope effect on femtosecond solvation dynamics in an ionic liquid microemulsion: an excitation wavelength dependence study.

    PubMed

    Sasmal, Dibyendu Kumar; Mojumdar, Supratik Sen; Adhikari, Aniruddha; Bhattacharyya, Kankan

    2010-04-01

    The deuterium isotope effect on the solvation dynamics and the anisotropy decay of coumarin 480 (C480) in a room temperature ionic liquid (RTIL) microemulsion is studied by femtosecond up-conversion. The microemulsion consists of the RTIL 1-pentyl-3-methyl-imidazolium tetra-fluoroborate ([pmim][BF(4)]) in triton X-100 (TX-100)/benzene. Replacement of H(2)O by D(2)O in the microemulsion causes retardation of solvation dynamics. The average solvation time of C480 (tau(s)) in RTIL microemulsion with 5 wt % D(2)O is approximately 1.5-1.7 times slower compared to that in the H(2)O containing RTIL microemulsion. This suggests that the main species in the microemulsion responsible for solvation is the water molecules. In both D(2)O and H(2)O containing RTIL microemulsion, the solvation dynamics exhibits marked dependence on the excitation wavelength (lambda(ex)) and becomes about 15 times faster as lambda(ex) increases from 375 to 435 nm. This is ascribed to the structural heterogeneity in the RTIL microemulsion. For lambda(ex) = 375 nm, the region near the TX-100 surfactant is probed where bound water molecules cause slow solvation dynamics. At 435 nm, the RTIL pool is selected where the water molecules are more mobile and hence gives rise to faster solvation. The average time constant of anisotropy decay shows opposite dependence on lambda(ex) and increases about 2.5-fold from 180 ps at lambda(ex) = 375 nm to 500 ps at lambda(ex) = 435 nm for D(2)O containing RTIL microemulsion. The slower anisotropy decay at lambda(ex) = 435 nm is ascribed to the higher viscosity of RTIL which causes greater friction at the core. PMID:20235504

  7. Generation of THz-radiation in the Cherenkov decelerating structure with planar geometry at frequency ∼ 0.675 THz

    NASA Astrophysics Data System (ADS)

    Ashanin, I. A.; Polozov, S. M.

    2016-07-01

    One of the ways to generate THz-radiation is by the relativistic electron bunches travelling through Cherenkov decelerating dielectric filled capillary channel. Sapphire or other dielectric materials can be used for the internal surface coating of the capillary. Relativistic electron bunches of ∼100 µm in diameter and pulse durations of 1 ps or shorter are capable to produce substantial power of THz-radiation. The aperture of Cherenkov decelerating structure should be comparable with the sub-mm wavelength (0.05-3 mm). Such type of decelerating system allows providing of the wide range of operating parameters at the various geometrical sizes. But it is necessary to consider that such capillaries are difficult in production as there is a requirement to drill a small aperture in a long crystal of high hardness but brittle. In this regard it would be desirable to offer transition option from the axial to the planar geometry. Furthermore the ribbon beam has some advantages as focusing at low energies and possessing smaller expansion in the drift space. The authors present design and results of electrodynamics study of the decelerating planar dielectric filling Cherenkov channel at frequency 0.675 THz in this article. It is also delivered characteristic comparison with axial geometry channel. A horn antenna attached to such channel at 0.675 THz resonant frequency is considered.

  8. Applications of terahertz (THz) technology to medical imaging

    NASA Astrophysics Data System (ADS)

    Arnone, Donald D.; Ciesla, Craig M.; Corchia, Alessandra; Egusa, S.; Pepper, Michael; Chamberlain, J. Martyn; Bezant, C.; Linfield, Edmund H.; Clothier, R.; Khammo, N.

    1999-09-01

    An imaging system has been developed based on pulses of Terahertz (THz) radiation generated and detected using all- optical effects accessed by irradiating semiconductors with ultrafast pulses of visible laser light. This technique, commonly referred to as T-Ray Imaging or THz Pulse Imaging (TPI), holds enormous promise for certain aspects of medical imaging. We have conducted an initial survey of possible medical applications of TPI and demonstrated that TPI images show good contrast between different animal tissue types. Moreover, the diagnostic power of TPI has been elicidated by the spectra available at each pixel in the image, which are markedly different for the different tissue types. This suggests that the spectral information inherent in TPI might be used to identify the type of soft and hard tissue at each pixel in an image and provide other diagnostic information not afforded by conventional imagin techniques. Preliminary TPI studies of pork skin show that 3D tomographic imaging of the skin surface and thickness is possible, and data from experiments on models of the human dermis are presented which demonstrate that different constituents of skin have different refractive indices. Lastly, we present the first THz image of human tissue, namely an extracted tooth. The time of flight of THz pulses through the tooth allows the thickness of the enamel to be determined, and is used to create an image showing the enamel and dentine regions. Absorption of THz pulses in the tooth allows the pulp cavity region to be identified. Initial evidence strongly suggests that TPI my be used to provide valuable diagnostic information pertaining to the enamel, dentine, and the pump cavity.

  9. Plasmon-phonon coupling in charged n-type CdSe quantum dots: A THz time-domain spectroscopic study.

    PubMed

    Mandal, Pankaj K; Chikan, Viktor

    2007-08-01

    This work aims to experimentally determine the polarizability of confined electron in CdSe quantum dots (QD). The dielectric response of uncharged and charged CdSe quantum dots (3.2 and 6.3 nm) has been measured using terahertz time-domain spectroscopy in the frequency range of 2.0-7.0 THz. A strong coupling between the surface plasmon and surface phonons appears upon charging the QDs. The absolute polarizability of an electron in 3.2 and 6.3 nm charged QDs are experimentally determined to be 0.5 +/- 0.1 x 10(3) A3 and 14.6 +/- 0.3 x 10(3) A3, respectively, and the values agree reasonably well with theory and the previous experiment. The observed plasmon-phonon coupling is expected to play an important role in electron relaxation in absence of a hole in CdSe QDs.

  10. DNA detection by THz pumping

    SciTech Connect

    Chernev, A. L.; Bagraev, N. T.; Klyachkin, L. E.; Emelyanov, A. K.; Dubina, M. V.

    2015-07-15

    DNA semiconductor detection and sequencing is considered to be the most promising approach for future discoveries in genome and proteome research which is dramatically dependent on the challenges faced by semiconductor nanotechnologies. DNA pH-sensing with ion-sensitive field effect transistor (ISFET) is well-known to be a successfully applied electronic platform for genetic research. However this method lacks fundamentally in chemical specificity. Here we develop the first ever silicon nanosandwich pump device, which provides both the excitation of DNA fragments’ self-resonant modes and the feedback for current-voltage measurements at room temperature. This device allows direct detection of singlestranded label-free oligonucleotides by measuring their THz frequency response in aqueous solution. These results provide a new insight into the nanobioelectronics for the future real-time technologies of direct gene observations.

  11. Ultrafast Spatiotemporal Dynamics of Terahertz Generation by Ionizing Two-Color Femtosecond Pulses in Gases

    SciTech Connect

    Babushkin, I.; Kuehn, W.; Reimann, K.; Woerner, M.; Herrmann, J.; Elsaesser, T.; Koehler, C.; Skupin, S.; Berge, L.

    2010-07-30

    We present a combined theoretical and experimental study of spatiotemporal propagation effects in terahertz (THz) generation in gases using two-color ionizing laser pulses. The observed strong broadening of the THz spectra with increasing gas pressure reveals the prominent role of spatiotemporal reshaping and of a plasma-induced blueshift of the pump pulses in the generation process. Results obtained from (3+1)-dimensional simulations are in good agreement with experimental findings and clarify the mechanisms responsible for THz emission.

  12. Ultrafast electronic dynamics in polyatomic molecules studied using femtosecond vacuum ultraviolet and x-ray pulses

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshinori

    2014-06-01

    Time-resolved velocity map photoelectron imaging is performed using sub-20 fs deep ultraviolet and vacuum ultraviolet pulses to study electronic dynamics of isolated polyatomic molecules. The non-adiabatic dynamics of pyrazine, furan and carbon disulfide (CS2) are described as examples. Also described is sub-picosecond time-resolved x-ray direct absorption spectroscopy using a hard x-ray free electron laser (SACLA) and a synchronous near ultraviolet laser to study ultrafast electronic dynamics in solutions.

  13. Feasibility study for a recirculating linac-based facility for femtosecond dynamics

    SciTech Connect

    Corlett, J.N.; Barry, W.; Barletta, W.A.; Byrd, J.M.; DeSantis, S.; Doolittle, L.; Fawley, W.; Green, M.A.; Hartman, N.; Heimann, P.; Kairan, D.; Kujawski, E.; Li, D.; Lidia, S.; Luft, P.; McClure, R.; Parmigiani, F.; Petroff, Y.; Pirkl, W.; Placidi, M.; Reavill, D.; Reichel, I.; Rimmer, R.A.; Ratti, A.; Robinson, K.E.; Sannibale, F.; Schoenlein, R.; Staples, J.; Tanabe, J.; Truchlikova, D.; Wan, W.; Wang, S.; Wells, R.; Wolski, A.; Zholents, A.

    2002-12-21

    LBNL is pursuing design studies and the scientific program for a facility dedicated to the production of x-ray pulses with ultra-short time duration, for application in dynamical studies of processes in physics, biology, and chemistry. The proposed x-ray facility has the short x-ray pulse length ({approx}60 fs FWHM) necessary to study very fast dynamics, high flux (up to approximately 10E11 photons/sec/0.1 percentBW) to study weakly scattering systems, and tuneability over 1-12 keV photon energy. The hard x-ray photon production section of the machine accommodates seven 2-m long undulators. Design studies for longer wavelength sources, using high-gain harmonic generation, are in progress. The x-ray pulse repetition rate of 10 kHz is matched to studies of dynamical processes (initiated by ultra-short laser pulses) that typically have a long recovery time or are not generally cyclic or reversible and need time to allow relaxation, replacement, or flow of the sample. The technique for producing ultra-short x-ray pulses uses relatively long electron bunches to minimize high-peak-current collective effects, and the ultimate x-ray duration is achieved by a combination of bunch manipulation and optical compression. Synchronization of x-ray pulses to sample excitation signals is expected to be of order 50 - 100 fs. Techniques for making use of the recirculating geometry to provide beam-based signals from early passes through the machine are being studied.

  14. New THz opportunities based on graphene

    SciTech Connect

    Hartnagel, Hans

    2015-04-24

    Graphene is a new material of a single or multiple layer carbon structure with impressive properties. A brief introduction is initially presented. Graphene does not have a bandwidth and is a semimetal with charge carriers of zero mass. A bandgap can be formed by confining the graphene width in nanoribbon or nanoconstricition structures. For example, the induced bandgap by a 20 nm wide nanoribbon is about 50 meV. The charge carrier mass then increases, but is still very small. This material can especially be employed for various Terahertz applications. Here several examples are to be described, namely a) a THz transistor, b) the opportunities of ballistic electron resonances for THz signal generation, c) the simultaneous optical transmission and electrical conduction up to THz frequencies and d) Cascaded THz emitters. The optical advantages of multilayer graphene can be compared to ITO (Indium Tin Oxide)

  15. THz Medical Imaging: in vivo Hydration Sensing

    PubMed Central

    Taylor, Zachary D.; Singh, Rahul S.; Bennett, David B.; Tewari, Priyamvada; Kealey, Colin P.; Bajwa, Neha; Culjat, Martin O.; Stojadinovic, Alexander; Lee, Hua; Hubschman, Jean-Pierre; Brown, Elliott R.; Grundfest, Warren S.

    2015-01-01

    The application of THz to medical imaging is experiencing a surge in both interest and federal funding. A brief overview of the field is provided along with promising and emerging applications and ongoing research. THz imaging phenomenology is discussed and tradeoffs are identified. A THz medical imaging system, operating at ~525 GHz center frequency with ~125 GHz of response normalized bandwidth is introduced and details regarding principles of operation are provided. Two promising medical applications of THz imaging are presented: skin burns and cornea. For burns, images of second degree, partial thickness burns were obtained in rat models in vivo over an 8 hour period. These images clearly show the formation and progression of edema in and around the burn wound area. For cornea, experimental data measuring the hydration of ex vivo porcine cornea under drying is presented demonstrating utility in ophthalmologic applications. PMID:26085958

  16. Transition state region in the A-Band photodissociation of allyl iodide--A femtosecond extreme ultraviolet transient absorption study.

    PubMed

    Bhattacherjee, Aditi; Attar, Andrew R; Leone, Stephen R

    2016-03-28

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH2 =CHCH2I). The photolysis of the C-I bond at this wavelength produces iodine atoms both in the ground ((2)P3/2, I) and spin-orbit excited ((2)P1/2, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N4/5 edge (45-60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region of the repulsive nIσ(∗) C-I excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ(∗) states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ(∗)(C-I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs-65 fs and decay completely by 145 fs-185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic structure in the transition state region. The results provide a benchmark

  17. Transition state region in the A-Band photodissociation of allyl iodide—A femtosecond extreme ultraviolet transient absorption study

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Aditi; Attar, Andrew R.; Leone, Stephen R.

    2016-03-01

    Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH2 =CHCH2I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground (2P3/2, I) and spin-orbit excited (2P1/2, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N4/5 edge (45-60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region of the repulsive nIσ∗C—I excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ∗ states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ∗(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs-65 fs and decay completely by 145 fs-185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic structure in the transition state region. The results provide a benchmark for

  18. The THz fingerprint spectra of the active ingredients of a TCM medicine: Herba Ephedrae

    NASA Astrophysics Data System (ADS)

    Ma, Shihua; Liu, Guifeng; Zhang, Peng; Song, Xiyu; Ji, Te; Wang, Wenfeng

    2008-12-01

    In this paper, THz-TDS has been used to measure the spectral properties of two active ingredients of Herba Ephedrae: ephedrine and pseudoephedrine, which exist in hydrochloride salts. The THz spectra of the sole-ingredient, twoingredient and three-ingredient compounds are studied. We obtained the finger-print spectra of the net active ingredients of the medicine, and also measured the mixtures of by two or three active ingredients at the different ratios. At the same time, theoretical analysis and quantitative analysis is applied to foretell the different THz spectra, identify the ingredients and infer the contents of principal components in samples. The THz spectroscopy is a potential and promising technique in evaluating and inspecting the quality of the drugs in the TCM field.

  19. Study of filamentary damage in synthesized silica induced by chirped femtosecond laser pulses

    SciTech Connect

    Onda, Satoshi; Watanabe, Wataru; Yamada, Kazuhiro; Itoh, Kazuyoshi; Nishii, Junji

    2005-11-01

    Different filamentary tracks in synthesized silica were induced by varying both the pulse duration and the incident energy of chirped laser pulses under slow-focusing conditions. Short-duration pulses induced filamentary refractive-index change, whereas longer pulses produced scattering damage in filamentary tracks. We report a systematic study on the morphology and birefringence of filamentary refractive-index change and scattering damage.

  20. Photoinduced Reconfiguration Cycle in a Molecular Adsorbate Layer Studied by Femtosecond Inner-Shell Photoelectron Spectroscopy

    SciTech Connect

    Dachraoui, H.; Michelswirth, M.; Bartz, P.; Pfeiffer, W.; Heinzmann, U.; Siffalovic, P.; Schaefer, C.; Schnatwinkel, B.; Mattay, J.; Drescher, M.

    2011-03-11

    A time-resolved study of core-level chemical shifts in a monolayer of aromatic molecules reveals complex photoinduced reaction dynamics. The combination of electron spectroscopy for chemical analysis and ultrashort pulse excitation in the extreme ultraviolet allows performing time-correlated 4d-core-level spectroscopy of iodine atoms that probe the local chemical environment in the adsorbate molecule. The selectivity of the method unveils metastable molecular configurations that appear about 50 ps after the excitation and are efficiently quenched back to the ground state.

  1. A study of single-beam femtosecond MCARS in trace material detection

    NASA Astrophysics Data System (ADS)

    Roberson, Stephen D.; Bowman, Sherrie S.; Pellegrino, Paul M.

    2015-05-01

    There is a need for rapid and accurate detection and identification of complex aerosol particles in a number of fields for countless applications. Full identification of these particles has been hampered by the inability to use an information-rich spectroscopic method such as Raman scattering in a flowing aerosol environment due to the time needed to generate a Raman spectrum. Multiplex coherent anti-Stokes Raman spectroscopy (MCARS) has been shown to generate a complete Raman spectrum from the material of interest using a single ultrabroadband pulse to coherently drive multiple molecular vibrations simultaneously. When used in conjunction with a narrow probe pulse, a complete Raman spectrum is created that can be detected in milliseconds. We will report on the MCARS spectra obtained from materials of interest at a distance of 1 m from the sample location. A limit of detection study of the MCARS spectrum of various materials of interest will be also reported in with the nonresonant background both present and removed. Additionally, a limit of detection study as a function of the number of pulses used to comprise the CARS spectrum of the materials of interest will be presented.

  2. Femtosecond Heterodyne Transient Grating Spectroscopic Studies of Intramolecular Charge Transfer Character of Peridinin and Peridinin Analogs

    NASA Astrophysics Data System (ADS)

    Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Whitelock, Hope; Carroll, Ann Marie; Lafountain, Amy; Frank, Harry; Beck, Warren; Gibson, George; Berrah, Nora

    2016-05-01

    The peridinin chlorophyll-a protein is a light harvesting complex found in several species of dinoflagellates. Peridinin absorbs strongly in the mid-visible spectral region and, despite the lack of a strong permanent dipole moment in its lowest energy excited state, is able to transfer excitation energy quickly and efficiently to chlorophyll-a. It is believed that the high efficiency arises from the development of intramolecular charge-transfer (ICT) character upon photoexcitation. Recently, heterodyne transient grating spectroscopy has been used to study the ultrafast (<50 fs) dynamics of β carotene and peridinin. The studies show evidence for a structurally displaced intermediate in both cases and strong ICT character in the case of peridinin, but up to now the work has not provided appropriate control experiments. The present experiments examine peridinin and two peridinin analogs, S1-peridinin and S2-peridinin. S1-peridinin is reported to have greatly diminished ICT character, and S2-peridinin is reported to have little-or-no ICT character. Heterodyne transient grating data will be presented and provide a more unambiguous characterization spectral and kinetic properties associated with the peridinin ICT state. Funded by the DoE-BES, Grant No. DE-SC0012376.

  3. Femtosecond laser ablation of CuxZr1-x bulk metallic glasses: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Marinier, Sébastien; Lewis, Laurent J.

    2015-11-01

    Molecular-dynamics simulations combined with a two-temperature model are used to study laser ablation in CuxZr1-x (x =0.33 ,0.50 ,0.67 ) metallic glasses as well as crystalline CuZr2 in the C11b (MoSi2) structure. Ablation thresholds are found to be 430 ±10 ,450 ±10 ,510 ±10 , and 470 ±10 J/m 2 for a-Cu2Zr , a-CuZr, a-CuZr2, and c-CuZr2, respectively. The larger threshold in amorphous CuZr2 results from a weaker electron-phonon coupling and thus longer electron-ion equilibration time. We observe that the velocity of the pressure waves in the amorphous samples is not affected by the fluence, in contrast to the crystal; this is due to differences in the behavior of the shear modulus with increasing pressure. The heat-affected zone in the different systems is characterized in terms of the melting depth as well as inelastic deformations. The melting depth is found to be smaller in the crystal than in the amorphous targets because of its higher melting temperature. The inelastic deformations are investigated in terms of the von Mises shear strain invariant ηMises; the homogeneous nucleation of shear transformation zones is observed in the glass as reported in previous theoretical and experimental studies. The coalescence of the shear transformation zones is also found at higher fluence.

  4. Novel materials, fabrication techniques and algorithms for microwave and THz components, systems and applications

    NASA Astrophysics Data System (ADS)

    Liang, Min

    This dissertation presents the investigation of several additive manufactured components in RF and THz frequency, as well as the applications of gradient index lens based direction of arrival (DOA) estimation system and broadband electronically beam scanning system. Also, a polymer matrix composite method to achieve artificially controlled effective dielectric properties for 3D printing material is studied. Moreover, the characterization of carbon based nano-materials at microwave and THz frequency, photoconductive antenna array based Terahertz time-domain spectroscopy (THz-TDS) near field imaging system, and a compressive sensing based microwave imaging system is discussed in this dissertation. First, the design, fabrication and characterization of several 3D printed components in microwave and THz frequency are presented. These components include 3D printed broadband Luneburg lens, 3D printed patch antenna, 3D printed multilayer microstrip line structure with vertical transition, THz all-dielectric EMXT waveguide to planar microstrip transition structure and 3D printed dielectric reflectarrays. Second, the additive manufactured 3D Luneburg Lens is employed for DOA estimation application. Using the special property of a Luneburg lens that every point on the surface of the Lens is the focal point of a plane wave incident from the opposite side, 36 detectors are mounted around the surface of the lens to estimate the direction of arrival (DOA) of a microwave signal. The direction finding results using a correlation algorithm show that the averaged error is smaller than 1º for all 360 degree incident angles. Third, a novel broadband electronic scanning system based on Luneburg lens phased array structure is reported. The radiation elements of the phased array are mounted around the surface of a Luneburg lens. By controlling the phase and amplitude of only a few adjacent elements, electronic beam scanning with various radiation patterns can be easily achieved

  5. Femtosecond UV studies of the electronic relaxation processes in Cytochrome c.

    PubMed

    Bräm, Olivier; Consani, Cristina; Cannizzo, Andrea; Chergui, Majed

    2011-11-24

    We report on an experimental study with UV and visible ultrafast time-gated emission and transient absorption of the early photodynamics of horse heart Cytochrome c in both ferric and ferrous redox states. A clear separation in time and energy of tryptophan and haem emission is observed. Excitation of the haem via resonant energy transfer from the tryptophan residue is observed in the subsequent haem electronic relaxation. Different Trp-haem energy transfer time constants of the ferrous and ferric forms are obtained. An almost instantaneous relaxation to the lowest singlet excited state (corresponding to the so-called Q band) characterizes the earliest electronic dynamics of the haem, independent of excitation energy, while dark intermediate states govern the ground-state recovery. The information gathered in these two experiments and in the literature allows us to propose a simple scheme for the electronic relaxation leading to ligand dissociation.

  6. Frequency tuning of THz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Qian, Xifeng; Danylov, Andriy A.; Light, Alexander R.; Waldman, Jerry; Erickson, Neal

    2015-03-01

    This paper introduces the continuously tunable THz radiation through sideband generation of a free running and solidnitrogen- cooled THz quantum cascade laser. The 2.324 THz QCL operating in a single longitudinal mode (SLM) in continuous-wave (cw) was mixed with a swept synthesized microwave signal by a THz Schottky-diode-balanced mixer. Through sideband generation, two frequency branches were observed at low and high frequency, characterized with a Fourier-transform spectrometer. At low frequency, the sideband generates frequencies from -50 GHz to +50 GHz. At high frequency, it generates sideband frequencies from 70 GHz to 115 GHz. The total +/-100 GHz tuning range can be further expanded with higher frequency millimeter wave amplifier/multiplier source. The sideband generates total 1 μW of output power at both upper and lower frequency with 200 μW of driven power from the THz QCL, showing a power conversion efficiency of 5 × 10-3. The demonstration of this SM, continuously tunable THz source enables its applications where SM, spatially coherent beam is required.

  7. Femtosecond transient grating studies of electron transfer in porphyrin and chlorophyll donor-acceptor molecules

    SciTech Connect

    Wiederrecht, G.P.; Svec, W.A.; Wasielewski, M.R.

    1994-04-01

    Transient grating studies of electron transfer in artificial photosynthetic systems are described. These systems include simple donor-acceptor molecules where the donor, a chlorophyll or porphyrin, is rigidly attached to an easily reduced species such as napthoquinone or benzoquinone. We have previously synthesized acceptor molecules which have well defined absorption bands upon reduction and are well removed from the excited and cationic states of porphyrins and chlorophylls. They also possess large molar extinction coefficients that dominate the spectra and have well defined polarization characteristics. These traits are ideal for polarization sensitive transient grating experiments which enable accurate determination of the angle of the transition dipole between the initial excitation and the acceptor probe, dynamic solvation effects on the charge separated species, and any time dependent rotation of the chromophores relative to each other. An example of the type of molecule utilized for these experiments is a free base porphyrin (HP) donor and a pyromellitic diimide (PI) acceptor directly bonded to the porphyrin ring.

  8. Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, A. K.; Rajgara, F. A.; Mathur, D.

    2005-01-01

    We report the results of a systematic study of white light generation in different high band-gap optical media (BaF2, acrylic, water and BK-7 glass) using ultrashort (45 fs) laser pulses. We have investigated the influence of different parameters, such as focal position of the incident laser light within the medium, the polarization state of the incident laser radiation and the pulse duration of the incident laser beam on the white light generation. Our results indicate that for intense, ultrashort pulses, the position of physical focus inside the media is crucial in the generation, with high efficiency, of white light spectra over the wavelength range 400 1100 nm. Linearly polarized incident laser light generates white light with higher intensity in the blue region than circularly polarized light. Ultrashort (45 fs) pulses generate a flatter spectrum with higher white light conversion efficiency than longer (300 fs) pulses of the same laser power. We believe that a flat response over a wide range of wavelengths in the continuum may be efficiently compressed for generation of sub-10 fs pulses.

  9. Studies in Above- and Below-Threshold Harmonics in Argon with an Infrared Femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Chew, Andrew; Yin, Yanchun; Li, Jie; Ren, Xiaoming; Cunningham, Eric; Wu, Yi; Chang, Zenghu

    2016-05-01

    We investigate and compare the above- and below-threshold harmonics in Argon gas using our recently-developed 1 kHz, two-cycle (11.4 fs), 3mJ, and carrier-envelope-phase(CEP)-stable laser at 1.6 μm. Such ultraviolet pulses can serve as pump or probe for studying dynamics in atoms and molecules. Unlike high harmonics with photon energy well above the ionization potential, the mechanism for generating harmonics near the ionization threshold is still under intense investigation. Previous work by Chini et al. on below-threshold harmonics was done using a 0.8 μm few-cycle Ti:Sapphire spectrally-broadened source with energy up to 300 μJ. It has been predicted by theory that free-free transitions dominate the below threshold harmonic generation as the laser wavelength increase from near infrared to mid-infrared. We are therefore interested in investigating how using a longer wavelength laser might lead to changes to the behavior of below-threshold harmonics when we vary various parameters. We report the π-periodity CEP dependence and ellipticity dependence of the above- and below-threshold harmonics. This material was based on work supported by National Science Foundation (1068604), Army Research Office (W911NF-14-1-0383), Air Force Office of Scientific Research (FA9550-15-1-0037) and the DARPA PULSE program by a Grant from AMRDEC (W31P4Q1310017).

  10. Utility of micro-filter membrane in THz spectrum of molecules in solution

    NASA Astrophysics Data System (ADS)

    Yoneyama, H.; Yamashita, M.; Kasai, S.; Ito, H.; Ouchi, T.

    2008-02-01

    We report the experimental results of physiologically active substances including hormones utilizing Terahertz (THz) spectrum technology. Various analytical techniques have been employed for the determination of physiologically active substances. Most of methods used oxidation reagent and sodium sulfite stabilization reagent or fluorescent reagent. These methods had a good selectivity, but the stability of samples was not satisfactory. The direct detection method has not been advanced yet. In this study, the THz characteristics of physiologically active substances were measured directly. We found all of samples have their vibrational features like signature peaks either in pellet and/or sample solution. A membrane device was used to hold the sample solution in this study. This device allows samples to be prepared in solutions and measured easily with THz measurement system after dried. Results suggest that this membrane device is sensitive for detecting the physiologically active substances in THz ranges. THz spectrum technology has the potential to be a useful tool in clinical applications. This approach promotes the understanding of the relationships between biomolecules with THz radiation.

  11. Ultrafast excited-state dynamics in photochromic N-salicylideneaniline studied by femtosecond time-resolved REMPI spectroscopy

    SciTech Connect

    Okabe, Chie; Nakabayashi, Takakazu; Inokuchi, Yoshiya; Nishi, Nobuyuki; Sekiya, Hiroshi

    2004-11-15

    Ultrafast processes in photoexcited N-salicylideneaniline have been investigated with femtosecond time-resolved resonance-enhanced multiphoton ionization spectroscopy. The ion signals via the S{sub 1}(n,{pi}*) state of the enol form as well as the proton-transferred cis-keto form emerge within a few hundred femtoseconds after photoexcitation to the first S{sub 1}({pi},{pi}*) state of the enol form. This reveals that two ultrafast processes, excited-state intramolecular proton transfer (ESIPT) reaction and an internal conversion (IC) to the S{sub 1}(n,{pi}*) state, occur on a time scale less than a few hundred femtoseconds from the S{sub 1}({pi},{pi}*) state of the enol form. The rise time of the transient corresponding to the production of the proton-transferred cis-keto form is within 750 fs when near the red edge of the absorption is excited, indicating that the ESIPT reaction occurs within 750 fs. The decay time of the S{sub 1}({pi},{pi}*) state of the cis-keto form is 8.9 ps by exciting the enol form at 370 nm, but it dramatically decreases to be 1.5-1.6 ps for the excitation at 365-320 nm. The decrease in the decay time has been attributed to the opening of an efficient nonradiative channel; an IC from S{sub 1}({pi},{pi}*) to S{sub 1}(n,{pi}*) of the cis-keto form promotes the production of the trans-keto form as the final photochromic products. The two IC processes may provide opposite effect on the quantum yield of photochromic products: IC in the enol form may substantially reduce the quantum yield, but IC in the cis-keto form increase it.

  12. Subsurface modifications in indium phosphide induced by single and multiple femtosecond laser pulses: A study on the formation of periodic ripples

    SciTech Connect

    Couillard, M.; Borowiec, A.; Haugen, H. K.; Preston, J. S.; Griswold, E. M.; Botton, G. A.

    2007-02-01

    We use cross-sectional transmission electron microscopy to study the damage induced below the surface of indium phosphide (InP) samples by single and multiple femtosecond laser pulses with a photon energy lower than the InP band gap. Single-pulse irradiation creates a {approx}100 nm deep crater with a resolidified surface layer consisting of quasiamorphous indium phosphide. The resolidified layer has a thickness of {approx}60 nm at the center and extends laterally beyond the edge of the crater rim. Exposure to multiple femtosecond pulses of 2050 nm center wavelength results in the formation of laser-induced periodic surface structures (LIPSS) with two different periods, one ({approx}1730 nm) less than but close to the laser wavelength and one ({approx}470 nm) four times smaller. Segregation beneath both types of ripples leads to the formation of In-rich particles embedded in the resolidified surface layer. Extended defects are detected only below the center of the multiple-pulse crater and their distribution appears to be correlated with the LIPSS modulation. Finally, LIPSS formation is discussed in terms of the observed subsurface microstructures.

  13. The Study of Femtosecond Laser Irradiation on GaAs Solar Cells With TiO2/SiO2 Anti-Reflection Films

    NASA Astrophysics Data System (ADS)

    Hua, Yinqun; Shi, Zhiguo; Wu, Wenhui; Chen, Ruifang; Rong, Zhen; Ye, Yunxia; Liu, Haixia

    Femtosecond laser ablation on GaAs solar cells for space power has been investigated. In particular, we studied the effects of laser energy and laser number on the ablation of solar cells. Furthermore, the morphologies and microstructure of ablation were characterized by the non-contact optical profilometer and scanning electron microscope (SEM). The photovoltaic properties were tested by the volt ampere characteristic test system. The abaltion threshold of the TiO2/SiO2 anti-reflection film of GaAs solar cells was obtained from the linear fit of the dependence of the square diameter of the ablated area with the natural logarithm of the femtosecond laser pulse energy, the resulting threshold of the laser fluence is about 0.31J/cm2, and the corresponding energy is 5.4uJ. The ablation depth showed nonlinear dependence of energy. With the fixed energy 6uJ and the increasing laser number, the damage degree increases obviously. Furthermore, the electric properties also suffer a certain degradation. Among all the evaluated electric properties, the photoelectric conversion efficiency (η) degraded remarkably.

  14. Direct and indirect methods for studying the energetics and dynamics of the Auger Doppler effect in femtosecond ultra-fast dissociation

    NASA Astrophysics Data System (ADS)

    Björneholm, O.

    2001-09-01

    Molecules may fragment within a few femtoseconds after core-excitation, a phenomenon known as ultra-fast dissociation. With the aim of providing an understanding of the fundamental phenomenology of the Auger Doppler effect, two methods are presented to study the energetics and dynamics, i.e., the kinetic energy release and the fragment velocities in such processes. The first, direct, method is based on the shifts in kinetic energy of the Auger electrons due to the velocity acquired by the fragment in the ultra-fast dissociation process, i.e., the Auger Doppler effect. The second, indirect, method is based on total-energy arguments in a Born-Haber cycle for excitation, dissociation, and ionization. A combination of the two methods is shown to be able to reproduce experimental spectra well. Based on this, predictions are made for other, yet unstudied, molecular systems. It is also shown that the Auger Doppler effect is not static, but will exhibit dynamic photon energy dependence. The complete energetics of the three-body dissociation of a molecule into an electron, an ion, and a neutral fragment on a time-scale of a few femtoseconds can thus be accounted for.

  15. Construction of a femtosecond laser microsurgery system

    PubMed Central

    Steinmeyer, Joseph D; Gilleland, Cody L; Pardo-Martin, Carlos; Angel, Matthew; Rohde, Christopher B; Scott, Mark A; Yanik, Mehmet Fatih

    2014-01-01

    Femtosecond laser microsurgery is a powerful method for studying cellular function, neural circuits, neuronal injury and neuronal regeneration because of its capability to selectively ablate sub-micron targets in vitro and in vivo with minimal damage to the surrounding tissue. Here, we present a step-by-step protocol for constructing a femtosecond laser microsurgery setup for use with a widely available compound fluorescence microscope. The protocol begins with the assembly and alignment of beam-conditioning optics at the output of a femtosecond laser. Then a dichroic mount is assembled and installed to direct the laser beam into the objective lens of a standard inverted microscope. Finally, the laser is focused on the image plane of the microscope to allow simultaneous surgery and fluorescence imaging. We illustrate the use of this setup by presenting axotomy in Caenorhabditis elegans as an example. This protocol can be completed in 2 d. PMID:20203659

  16. Excited state structure of 4-(dimethylamino)benzonitrile studied by femtosecond mid-infrared spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Chudoba, C.; Kummrow, A.; Dreyer, J.; Stenger, J.; Nibbering, E. T. J.; Elsaesser, T.; Zachariasse, K. A.

    1999-08-01

    Combining femtosecond transient vibrational spectroscopy and high-level calculations is a powerful tool in the determination of excited-state structures. Striking differences in the experimental vibrational pattern of the locally excited states of 4-(dimethylamino)benzonitrile (DMABN) and 4-aminobenzonitrile (ABN) are explained on the basis of molecular structures obtained from ab initio complete-active-space self-consistent-field (CASSCF) calculations, giving evidence for a strong sensitivity of the molecular structure on modest changes in the substituents. The 4.0 ps charge-transfer time for DMABN in acetonitrile is resolved for the first time by tracking the downshifted CN stretching mode.

  17. Synthesis of Optical Frequencies and Ultrastable Femtosecond Pulse Trains from an Optical Reference Oscillator

    NASA Astrophysics Data System (ADS)

    Bartels, A.; Ramond, T. M.; Diddams, S. A.; Hollberg, L.

    Recently, atomic clocks based on optical frequency standards have been demonstrated [1,2]. A key element in these clocks is a femtosecond laser that downconverts the petahertz oscillation rate into countable ticks at 1 GHz. When compared to current microwave standards, these new optical clocks are expected to yield an improvement in stability and accuracy by roughly a factor of 1000. Furthermore, it is possible that the lowest noise microwave sources will soon be based on atomically-stabilized optical oscillators that have their frequency converted to the microwave domain via a femtosecond laser. Here, we present tests of the ability of femtosecond lasers to transfer stability from an optical oscillator to their repetition rates as well as to the associated broadband frequency comb. In a first experiment, we phase-lock two lasers to a stabilized laser diode and find that the relative timing jitter in their pulse trains can be on the order of 1 femtosecond in a 100 kHz bandwidth. It is important to distinguish this technique from previous work where a femtosecond laser has been stabilized to a microwave standard [3,4] or another femtosecond laser [5]. Furthermore, we extract highly stable microwave signals with a fractional frequency instability of 2×10-14 in 1 s by photodetection of the laser pulse trains. In a second experiment, we similarly phase-lock the femtosecond laser to an optical oscillator with linewidth less than 1 Hz [6]. The precision with which we can make the femtosecond frequency comb track this reference oscillator is then tested by a heterodyne measurement between a second stable optical oscillator and a mode of the frequency comb that is displaced 76 THz from the 1 Hz-wide reference. From this heterodyne signal we place an upper limit of 150 Hz on the linewidth of the elements of the frequency comb, limited by the noise in the measurement itself.

  18. Strong near field enhancement in THz nano-antenna arrays.

    PubMed

    Feuillet-Palma, Cheryl; Todorov, Yanko; Vasanelli, Angela; Sirtori, Carlo

    2013-01-01

    A key issue in modern photonics is the ability to concentrate light into very small volumes, thus enhancing its interaction with quantum objects of sizes much smaller than the wavelength. In the microwave domain, for many years this task has been successfully performed by antennas, built from metals that can be considered almost perfect at these frequencies. Antenna-like concepts have been recently extended into the THz and up to the visible, however metal losses increase and limit their performances. In this work we experimentally study the light coupling properties of dense arrays of subwavelength THz antenna microcavities. We demonstrate that the combination of array layout with subwavelength electromagnetic confinement allows for 10(4)-fold enhancement of the electromagnetic energy density inside the cavities, despite the low quality factor of a single element. This effect is quantitatively described by an analytical model that can be applied for the optimization of any nanoantenna array. PMID:23449101

  19. Sapphire decelerating capillary channel integrated with antenna at frequency 0.675 THz

    NASA Astrophysics Data System (ADS)

    Ashanin, I. A.; Polozov, S. M.

    2016-07-01

    In recent years, there has been an increasing interest in THz-radiation for application in medicine (THz tomographs), in pharmaceutics (composition analysis for medicines), in introscopy of large-scale objects (ships, trains, containers) and others. THz-radiation can be generated by relativistic electron bunches passing through the Cherenkov decelerating capillary channel (circular waveguide with dielectric filling) with horn extraction. Relativistic electron beams having ∼100 µm in diameter and pulse durations of 1 ps or less (as in photoinjectors) are capable of producing substantial power of THz-radiation. High-peak power coherent Cherenkov radiation can be produced by a properly modulated high-brightness electron beam or by a single, high-density bunch having sub-wavelength dimension. The aperture of a Cherenkov decelerating structure should be comparable with the mm or sub-mm wavelength (0.1-3 mm). Different dielectric materials for the internal surface coating of the capillary channel of mm-sub-mm cross-section can be used. As is known, a frequency of 0.675 THz corresponds to the atmospheric window with high transparency. This report presents the results of electrodynamics study of the metallized sapphire decelerating Cherenkov capillary. A horn antenna attached to the metallized sapphire capillary channel at the 0.675 THz resonant frequency will be considered.

  20. The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements

    NASA Astrophysics Data System (ADS)

    Png, G. M.; Choi, J. W.; W-H Ng, B.; Mickan, S. P.; Abbott, D.; Zhang, X.-C.

    2008-07-01

    We present a study of how residual hydration in fresh rat tissue samples can vastly alter their extracted terahertz (THz) optical properties and influence their health assessment. Fresh (as opposed to preserved) tissue most closely mimics in vivo conditions, but high water content creates many challenges for tissue handling and THz measurement. Our THz measurements of fresh tissue over time highlight the effect of tissue hydration on tissue texture and dimension, the latter directly influencing the accuracy of calculated optical properties. We then introduce lyophilization (freeze drying) as a viable solution for overcoming hydration and freshness problems. Lyophilization removes large amounts of water while retaining sample freshness. In addition, lyophilized tissue samples are easy to handle and their textures and dimensions do not vary over time, allowing for consistent and stable THz measurements. A comparison of lyophilized and fresh tissue shows for the first time that freeze drying may be one way of overcoming tissue hydration issues while preserving tissue cellular structure. Finally, we compare THz measurements from fresh tissue against necrotic tissue to verify freshness over time. Indeed, THz measurements from fresh and necrotic tissues show marked differences.

  1. The impact of hydration changes in fresh bio-tissue on THz spectroscopic measurements.

    PubMed

    Png, G M; Choi, J W; Ng, B W-H; Mickan, S P; Abbott, D; Zhang, X-C

    2008-07-01

    We present a study of how residual hydration in fresh rat tissue samples can vastly alter their extracted terahertz (THz) optical properties and influence their health assessment. Fresh (as opposed to preserved) tissue most closely mimics in vivo conditions, but high water content creates many challenges for tissue handling and THz measurement. Our THz measurements of fresh tissue over time highlight the effect of tissue hydration on tissue texture and dimension, the latter directly influencing the accuracy of calculated optical properties. We then introduce lyophilization (freeze drying) as a viable solution for overcoming hydration and freshness problems. Lyophilization removes large amounts of water while retaining sample freshness. In addition, lyophilized tissue samples are easy to handle and their textures and dimensions do not vary over time, allowing for consistent and stable THz measurements. A comparison of lyophilized and fresh tissue shows for the first time that freeze drying may be one way of overcoming tissue hydration issues while preserving tissue cellular structure. Finally, we compare THz measurements from fresh tissue against necrotic tissue to verify freshness over time. Indeed, THz measurements from fresh and necrotic tissues show marked differences.

  2. Biological effects of in vitro THz radiation exposure in human foetal fibroblasts.

    PubMed

    De Amicis, Andrea; Sanctis, Stefania De; Cristofaro, Sara Di; Franchini, Valeria; Lista, Florigio; Regalbuto, Elisa; Giovenale, Emilio; Gallerano, Gian Piero; Nenzi, Paolo; Bei, Roberto; Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Coluzzi, Elisa; Cicia, Cristina; Sgura, Antonella

    2015-11-01

    In recent years, terahertz (THz) radiation has been widely used in a variety of applications: medical, security, telecommunications and military areas. However, few data are available on the biological effects of this type of electromagnetic radiation and the reported results, using different genetic or cellular assays, are quite discordant. This multidisciplinary study focuses on potential genotoxic and cytotoxic effects, evaluated by several end-points, associated with THz radiation. For this purpose, in vitro exposure of human foetal fibroblasts to low frequency THz radiation (0.1-0.15THz) was performed using a Compact Free Electron Laser. We did not observe an induction of DNA damage evaluated by Comet assay, phosphorylation of H2AX histone or telomere length modulation. In addiction, no induction of apoptosis or changes in pro-survival signalling proteins were detected. Moreover, our results indicated an increase in the total number of micronuclei and centromere positive micronuclei induction evaluated by CREST analysis, indicating that THz radiation could induce aneugenic rather than clastogenic effects, probably leading to chromosome loss. Furthermore, an increase of actin polymerization observed by ultrastructural analysis after THz irradiation, supports the hypothesis that an abnormal assembly of spindle proteins could lead to the observed chromosomal malsegregation.

  3. Biological effects of in vitro THz radiation exposure in human foetal fibroblasts.

    PubMed

    De Amicis, Andrea; Sanctis, Stefania De; Cristofaro, Sara Di; Franchini, Valeria; Lista, Florigio; Regalbuto, Elisa; Giovenale, Emilio; Gallerano, Gian Piero; Nenzi, Paolo; Bei, Roberto; Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Coluzzi, Elisa; Cicia, Cristina; Sgura, Antonella

    2015-11-01

    In recent years, terahertz (THz) radiation has been widely used in a variety of applications: medical, security, telecommunications and military areas. However, few data are available on the biological effects of this type of electromagnetic radiation and the reported results, using different genetic or cellular assays, are quite discordant. This multidisciplinary study focuses on potential genotoxic and cytotoxic effects, evaluated by several end-points, associated with THz radiation. For this purpose, in vitro exposure of human foetal fibroblasts to low frequency THz radiation (0.1-0.15THz) was performed using a Compact Free Electron Laser. We did not observe an induction of DNA damage evaluated by Comet assay, phosphorylation of H2AX histone or telomere length modulation. In addiction, no induction of apoptosis or changes in pro-survival signalling proteins were detected. Moreover, our results indicated an increase in the total number of micronuclei and centromere positive micronuclei induction evaluated by CREST analysis, indicating that THz radiation could induce aneugenic rather than clastogenic effects, probably leading to chromosome loss. Furthermore, an increase of actin polymerization observed by ultrastructural analysis after THz irradiation, supports the hypothesis that an abnormal assembly of spindle proteins could lead to the observed chromosomal malsegregation. PMID:26520385

  4. The New 30 THz Solar Telescope in São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Kudaka, A. S.; Cassiano, M. M.; Marcon, R.; Cabezas, D. P.; Fernandes, L. O. T.; Hidalgo Ramirez, R. F.; Kaufmann, P.; de Souza, R. V.

    2015-08-01

    It has been found that solar bursts exhibit one unexpected spectral component with fluxes increasing with frequency in the sub-THz range, which is distinct from the well-known microwave emission that peaks at a few to some tens of GHz. This component has been found to extend into the THz range of frequencies by recent 30 THz solar flare observations of impulsive bursts with flux intensities considerably higher than fluxes at sub-THz and microwaves frequencies. High-cadence solar observations at 30 THz (continuum) are therefore an important tool for the study of active regions and flaring events. We report the recent installation of a new 30 THz solar telescope in São Paulo, located at the top of one of the University's buildings. The instrument uses a Hale-type coelostat with two 20 cm diameter flat mirrors sending light to a 15 cm mirror Newtonian telescope. Radiation is directed to a microbolometer array camera that is kept at room temperature. Observations are usually obtained with 5 frames s^{-1} cadence. One 60 mm refractor has been added to observe H\\upalpha images simultaneously. We describe our new telescopes and the new observatory examples of the first results obtained.

  5. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B.C.

    1997-02-01

    The use femtosecond pulses for materials processing results in very precise cutting and drilling with high efficiency. Energy deposited in the electrons is not coupled into the bulk during the pulse, resulting in negligible shock or thermal loading to adjacent areas.

  6. Comparison of objects detection capabilities in LWIR and THz ranges

    NASA Astrophysics Data System (ADS)

    Kowalski, Marcin; Kastek, Mariusz; Szustakowski, Mieczyslaw

    2015-10-01

    Multispectral systems for detection of concealed dangerous objects are becoming more popular because of their higher effectiveness compared to mono-spectral systems. So far, the problem of detecting objects hidden under clothing was considered only in the case of airports but it is becoming more important for public places like metro stations, and government buildings. Exploration of new spectral bands as well as development of technology result in introduction of new solutions - both mono and multispectral. It has been proved that objects hidden under clothing can be detected and visualized using terahertz (THz) cameras. However, passive THz cameras still offer too low image resolution for objects recognition. Limited range is another issue of passive imagers. On the other hand new infrared cameras offer sufficient parameters to detect objects covered with fabrics in some conditions, as well as high image quality and big pixel resolutions. The purpose of the studies is to investigate and compare the possibilities of using passive cameras operating in long wavelength infrared (LWIR) and THz spectral ranges for detection of concealed objects. For the purpose of investigations, commercial imagers operating in 6.5-11.7 μm and 250GHz (1.25mm) were used. In the article, we present the measurement setup and the results of measurements in various operating conditions. Theoretical studies of both spectral bands focused on detection of objects with passive imagers are also presented.

  7. Nanochemical effects in femtosecond laser ablation of metals

    SciTech Connect

    Vorobyev, A. Y.; Guo, Chunlei

    2013-02-18

    We study chemical energy released from the oxidation of aluminum in multipulse femtosecond laser ablation in air and oxygen. Our study shows that the released chemical energy amounts to about 13% of the incident laser energy, and about 50% of the ablated material is oxidized. The ablated material mass per laser pulse is measured to be on the nanogram scale. Our study indicates that femtosecond laser ablation is capable of inducing nanochemical reactions since the femtosecond laser pulse can controllably produce nanoparticles, clusters, and atoms from a solid target.

  8. Thz Spectroscopy of D_2H^+

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Pearson, John; Amano, Takayoshi

    2015-06-01

    Pure rotational transitions of D_2H^+ observed by high-resolution spectroscopy have been limited so far to the J = 110-101 transition at 691.7 GHz, J=220-211 at 1.370 THz, and J=111-000 at 1.477 THz. As this ion is a light asymmetric-top molecule, spectroscopic characterization and prediction of other rotational transition frequencies are not straightforward. In this presentation, we extended the measurements up to 2 THz by using the JPL frequency multiplier chains, and observed three new THz lines and re-measured the three known transitions. D_2H^+ was generated in an extended negative glow discharge cell cooled to liquid nitrogen temperature. Six rotational transition frequencies together with the combination differences derived from three fundamental bands were subject to least square analysis to determine the molecular constants. New THz measurements are definitely useful for better characterization of spectroscopic properties. The improved molecular constants provide better predictions of other unobserved rotational transitions. T. Hirao and T. Amano, Ap. J.,597, L85 (2003) K. M. Evenson et al cited by O. L. Polyansky and A. R. W. McKellar, J. Chem. Phys., 92, 4039 (1990) O. Asvany et al, Phys. Rev. Lett., 100, 233004 (2008)

  9. Novel detectors for traceable THz power measurements

    NASA Astrophysics Data System (ADS)

    Müller, Ralf; Bohmeyer, Werner; Kehrt, Mathias; Lange, Karsten; Monte, Christian; Steiger, Andreas

    2014-08-01

    Several novel types of detectors for the measurement of electromagnetic radiation in the THz spectral range are described. Firstly, detectors based on pyroelectric foil coated with different absorbers have been developed focusing on the following features: high accuracy due to well-characterized absorption, high sensitivity, large area absorbers and frequency and polarization independence. A three-dimensional design with five absorptions gave an overall absorption of more than 98 %. Secondly, detectors based on pyroelectric foils with thin metal layers were realized. An absorption of 50 % can be obtained if the thickness of the layers is carefully adjusted. According to electromagnetic theory this degree of absorption is independent of the polarization and frequency of the radiation in a wide range from at least 20 GHz to 5 THz. The third type of detector is based on a new type of volume absorber with a polished front surface and a gold-coated back side. It is the absorber of choice of the standard power detector for disseminating the spectral power responsivity scale. This standard detector allows the application of a physical model to calculate its spectral responsivity in the range from 1 THz to 5 THz if the detector has been calibrated at one single frequency. Finally, a THz detector calibration facility was set up and is now in operation at PTB to calibrate detectors from customers with an uncertainty as low as 1.7 %.

  10. Femtosecond Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Bock, Katherine J.

    This thesis focuses on research I have done on ytterbium-doped femtosecond fiber lasers. These lasers operate in the near infrared region, lasing at 1030 nm. This wavelength is particularly important in biomedical applications, which includes but is not limited to confocal microscopy and ablation for surgical incisions. Furthermore, fiber lasers are advantageous compared to solid state lasers in terms of their cost, form factor, and ease of use. Solid state lasers still dominate the market due to their comparatively high energy pulses. High energy pulse generation in fiber lasers is hindered by either optical wave breaking or by multipulsing. One of the main challenges for fiber lasers is to overcome these limitations to achieve high energy pulses. The motivation for the work done in this thesis is increasing the output pulse peak power and energy. The main idea of the work is that decreasing the nonlinearity that acts on the pulse inside the cavity will prevent optical wave breaking, and thus will generate higher energy pulses. By increasing the output energy, ytterbium-doped femtosecond fiber lasers can be competitive with solid state lasers which are used commonly in research. Although fiber lasers tend to lack the wavelength tuning ability of solid state lasers, many biomedical applications take advantage of the 1030 microm central wavelength of ytterbium-doped fiber lasers, so the major limiting factor of fiber lasers in this field is simply the output power. By increasing the output energy without resorting to external amplification, the cavity is optimized and cost can remain low and economical. During verification of the main idea, the cavity was examined for possible back-reflections and for components with narrow spectral bandwidths which may have contributed to the presence of multipulsing. Distinct cases of multipulsing, bound pulse and harmonic mode-locking, were observed and recorded as they may be of more interest in the future. The third

  11. Tunable Room Temperature THz Sources Based on Nonlinear Mixing in a Hybrid Optical and THz Micro-Ring Resonator

    PubMed Central

    Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K.; Güney, Durdu Ö.; Pala, Nezih

    2015-01-01

    We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5–10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ(2)) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields. PMID:25800287

  12. Mode-selective terahertz emission from rippled air irradiated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Shin, Junghun; Zhidkov, Alexei; Jin, Zhan; Hosokai, Tomonao; Kodama, Ryosuke

    2014-04-01

    Terahertz (THz) emission from rippled air is studied in multidimensional particle-in-cell simulations that include optical field ionization. The ionization modulation in a plasma channel produced by a laser pulse propagating along a ripple and the pulse self-focusing result in THz mode selection with the generation of intense signals having quasi-monochromatic spectral distributions.

  13. A femtosecond visible/visible and visible/mid-infrared transient absorption study of the light harvesting complex II.

    PubMed

    Stahl, Andreas D; Di Donato, Mariangela; van Stokkum, Ivo; van Grondelle, Rienk; Groot, Marie Louise

    2009-12-16

    Light harvesting complex II (LHCII) is the most abundant protein in the thylakoid membrane of higher plants and green algae. LHCII acts to collect solar radiation, transferring this energy mainly toward photosystem II, with a smaller amount going to photosystem I; it is then converted into a chemical, storable form. We performed time-resolved femtosecond visible pump/mid-infrared probe and visible pump/visible probe absorption difference spectroscopy on purified LHCII to gain insight into the energy transfer in this complex occurring in the femto-picosecond time regime. We find that information derived from mid-infrared spectra, together with structural and modeling information, provides a unique visualization of the flow of energy via the bottleneck pigment chlorophyll a604.

  14. Nonresonant ionization of oxygen molecules by femtosecond pulses: Plasma dynamics studied by time-resolved terahertz spectroscopy

    SciTech Connect

    Mics, Zoltan; Kadlec, Filip; Kuzel, Petr; Jungwirth, Pavel; Bradforth, Stephen E.; Apkarian, V. Ara

    2005-09-08

    We show that optical pump-terahertz probe spectroscopy is a direct experimental tool for exploring laser-induced ionization and plasma formation in gases. Plasma was produced in gaseous oxygen by focused amplified femtosecond pulses. The ionization mechanisms at 400- and 800-nm excitation wavelengths differ significantly being primarily of a multiphoton character in the former case and a strong-field process in the latter case. The generation of the plasma in the focal volume of the laser and its expansion on subnanosecond time scale is directly monitored through its density-dependent susceptibility. A Drude model used to evaluate the plasma densities and electron-scattering rates successfully captures the observations for a wide range of pump intensities. In addition, rotational fingerprints of molecular and ionic species were also observed in the spectra.

  15. THz propagation in kagome hollow-core microstructured fibers.

    PubMed

    Anthony, Jessienta; Leonhardt, Rainer; Leon-Saval, Sergio G; Argyros, Alexander

    2011-09-12

    We demonstrate single mode terahertz (THz) guidance in hollow-core kagome microstructured fibers over a broad frequency bandwidth. The fibers are characterized using a THz time-domain spectroscopy (THz-TDS) setup, incorporating specially designed THz lenses to achieve good mode overlap with the fundamental mode field distribution. Losses 20 times lower than the losses of the fiber material are observed in the experiments, as well as broad frequency ranges of low dispersion, characteristic of hollow-core fibers.

  16. Theoretical modeling of laser ablation of quaternary bronze alloys: case studies comparing femtosecond and nanosecond LIBS experimental data.

    PubMed

    Fornarini, Lucilla; Fantoni, Roberta; Colao, Francesco; Santagata, Antonio; Teghil, Roberto; Elhassan, Asmaa; Harith, Mohamed A

    2009-12-31

    A model, formerly proposed and utilized to understand the formation of laser induced breakdown spectroscopy (LIBS) plasma upon irradiation with nanosecond laser pulses at different fluences and wavelengths, has been extended to the irradiation with femtosecond laser pulses in order to control the fractionation mechanisms which heavily affect the application of laser-ablation-based microanalytical techniques. The model takes into account the different chemico-physical processes occurring during the interaction of an ultrashort laser pulse with a metallic surface. In particular, a two-temperature description, relevant to the electrons and lattice of the substrate, respectively, has been introduced and applied to different ternary and quaternary copper-based alloys subjected to fs and ns ablation both in the visible (527 nm) and in the UV (248 nm). The model has been found able to reproduce the shorter plasma duration experimentally found upon fs laser ablation. Kinetic decay times of several copper (major element) emission lines have been examined together with those relevant to the main plasma parameters. The plasma experimental temperature, derived assuming a Boltzmann distribution, and the electron density following the Saha equation have been compared with the corresponding theoretical data. A satisfactory description of plasma parameters and main matrix constituent composition has been obtained in the time window where local thermal equilibrium was assumed for LIBS data analysis. Improved analytical capabilities are predicted upon delayed detection of plasma emission in femtosecond LIBS, in relation to the better LOD achieved and to the improved data reproducibility expected. Results support the utilization of ultrafast laser sources for trace detection, despite the residual fractionation occurring in the examined range of fluences which affects the linearity of experimental calibration curves built for tin and lead after internal standardization on copper. The

  17. Collective modes in quasi-one-dimensional charge-density wave systems probed by femtosecond time-resolved optical studies

    NASA Astrophysics Data System (ADS)

    Schaefer, H.; Kabanov, V. V.; Demsar, J.

    2014-01-01

    The interplay between the electronic and structural subsystems has strong implications on the character of collective excitations in cooperative systems. Their detailed understanding can provide important information on the coupling mechanisms and coupling strengths in such systems. With the recent developments in femtosecond time-resolved optical probes, numerous advantages with respect to conventional time-integrated probes have been put forward. Owing to their high dynamic range, high-frequency resolution, fast data acquisition, and an inherent access to phases of coherent excitations, they provide direct access to the interplay between various degrees of freedom. In this paper, we present a detailed analysis of time-resolved optical data on blue bronzes (K0.3MoO3 and Rb0.3MoO3), prototype quasi-one-dimensional charge-density wave (CDW) systems. Numerous coherent (Raman active) modes appear upon the phase transition into the CDW state. We analyze the temperature dependence of mode frequencies, their damping times, as well as their oscillator strengths and phases using the time-dependent Ginzburg-Landau model. We demonstrate that these low-temperature modes are a result of linear coupling between the Fermi surface nesting driven modulation of the conduction electron density and the normal-state phonons at the CDW wave vector, and determine their coupling strengths. Moreover, we are able to identify the nature of excitation of these coupled modes, as well as the nature of the probing mechanisms in this type of experiments. We demonstrate that in incommensurate CDW systems, femtosecond optical excitation initially suppresses the electronic density modulation, while the reflectivity changes at frequencies far above the CDW induced gap in the single-particle excitation spectrum are governed by the modulation of interband transitions caused by lattice motion. This approach can be readily extended to more complex systems with spatially modulated ground states.

  18. Sub-cycle control of multi-THz high-harmonic generation and all-coherent charge transport in bulk semiconductors

    NASA Astrophysics Data System (ADS)

    Lange, C.; Schubert, O.; Hohenleutner, M.; Langer, F.; Baierl, S.; Maag, T.; Urbanek, B.; Edwards, E. R. J.; Woltersdorf, G.; Bougeard, D.; Huttner, U.; Golde, D.; Meier, T.; Kira, M.; Koch, S. W.; Huber, R.

    2015-02-01

    Ultrafast transport of electrons in semiconductors lies at the heart of high-speed electronics, electro-optics and fundamental solid-state physics. Intense phase-locked terahertz (THz) pulses at photon energies far below electronic interband resonances may serve as a precisely adjustable alternating bias, strongly exceeding d.c. breakdown voltages. Here, we exploit the near-field enhancement in gold metamaterial structures on undoped bulk GaAs, driven by few-cycle THz transients centered at 1 THz, to bias the semiconductor substrate with field amplitudes exceeding 12 MV/cm. Such fields correspond to a potential drop of the bandgap energy over a distance of only two unit cells. In this extremely off-resonant scenario characterized by a Keldysh parameter of γK ≈ 0.02, massive interband Zener tunneling injects a sizeable carrier density exceeding 1019 cm-3, and strong photoluminescence results. At a center frequency of 30 THz, THz transients with peak fields of 72 MV/cm analogously excite carriers in a bulk, semiconducting GaSe crystal, without metamaterial. Here, in contrast, we are able to drive coherent interband polarization and furthermore dynamical Bloch oscillations of electrons in the conduction band, on femtosecond time scales. The dynamics entail the generation of absolutely phase-stable high-harmonic transients containing spectral components up to the 22nd order of the fundamental frequency, spanning 12.7 optical octaves throughout the entire terahertz-to-visible domain between 0.1 and 675 THz. Our experiments establish a new field of light-wave electronics exploring coherent charge transport at optical clock rates and bring picosecond-scale electric circuitry at the interface of THz optics and electronics into reach.

  19. Comparative study of amplified spontaneous emission and short pre-pulse impacts onto fast electron generation at sub-relativistic femtosecond laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Ivanov, K. A.; Shulyapov, S. A.; Ksenofontov, P. A.; Tsymbalov, I. N.; Volkov, R. V.; Savel'ev, A. B.; Brantov, A. V.; Bychenkov, V. Yu.; Turinge, A. A.; Lapik, A. M.; Rusakov, A. V.; Djilkibaev, R. M.; Nedorezov, V. G.

    2014-09-01

    This paper describes the study of hot electron generation under the action of intense (˜1018 W/cm2) femtosecond pulses onto the surface of a solid target, in the presence of a long pre-plasma, which varied with different spatial extents and densities. The corona was formed by pre-pulses with varied intensities and temporal profiles (amplified spontaneous emission (ASE) and short pre-pulses). The most efficient fast electron acceleration, to energies well beyond the ponderomotive potential, was observed if the ASE was able to form to the extent of ˜100 μm a slightly undercritical plasma. Energy of accelerated electrons underwent further growth if the laser pulse duration increased from ˜45 to ˜350 fs at constant energy fluence. The experimental results were supported by numerical simulations using 3D3V Mandor PIC code.

  20. Femtosecond time-resolved study of the dissociation of small molecules using a two-color vacuum ultraviolet pump and x-ray probe technique.

    NASA Astrophysics Data System (ADS)

    Belkacem, A.; Allison, T.; Khurmi, C.; Wright, T.; Stooke, A.

    2010-03-01

    We developed a unique two-color ultraviolet (UV) pump and extreme ultraviolet (EUV) probe capability to study molecular dissociation and non-adiabatic molecular dynamics of small to complex molecules excited in the UV regime. This capability revolves around the development of a very high intensity high harmonics source in combination with a split-mirror technique. The pump-probe delay has an interferometric stability of better than 100 attoseconds. We used this system to probe the femtosecond internal conversion of excited ethylene, water and oxygen molecules pumped with the 5th harmonic (˜7.75 eV) and probed with the 19th harmonic (˜29.45 eV). The results of these measurements will be presented.

  1. Dynamical Study of Femtosecond-Laser-Ablated Liquid-Aluminum Nanoparticles Using Spatiotemporally Resolved X-Ray-Absorption Fine-Structure Spectroscopy

    SciTech Connect

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi; Nakano, Hidetoshi

    2007-10-19

    We study the temperature evolution of aluminum nanoparticles generated by femtosecond laser ablation with spatiotemporally resolved x-ray-absorption fine-structure spectroscopy. We successfully identify the nanoparticles based on the L-edge absorption fine structure of the ablation plume in combination with the dependence of the edge structure on the irradiation intensity and the expansion velocity of the plume. In particular, we show that the lattice temperature of the nanoparticles is estimated from the L-edge slope, and that its spatial dependence reflects the cooling of the nanoparticles during plume expansion. The results reveal that the emitted nanoparticles travel in a vacuum as a condensed liquid phase with a lattice temperature of about 2500 to 4200 K in the early stage of plume expansion.

  2. The Kassel Laboratory Astrophysics Thz Spectrometrs

    NASA Astrophysics Data System (ADS)

    Chantzos, Johanna; Herberth, Doris; Kutzer, Pia; Muster, Christoph; Fuchs, Guido W.; Giesen, Thomas

    2016-06-01

    We present a brief overview of the recently established laboratory astrophysics group in Kassel/Germany with a focus on our THz technology. After an outline of our laboratory equipment and recent projects the talk will focus on our new fast spectral scan technique for molecular jet experiments. Here, a new test setup for broadband fast sweep spectrometry in the MW to submm wavelength region has been realized and can be applied to identify transient molecules in a supersonic jet. An arbitrary waveform generator (AWG) is used to generate chirped pulses with a linear frequency sweep in the MHz regime. Pulse durations are of a few microseconds. These pulses are up-converted in frequency, e.g. into the 50 GHz microwave frequency range utilizing a synthesizer, or using a synthesizer plus standard amplifier multiplier chain (AMC) to reach the 100-300 GHz region. As test, NH_3 has been measured between 18-26 GHz in a supersonic jet of 500 μ s duration. Acetonitrile (CH_3CN) was tested in the (90-110) GHz range. The spectrometer is capable of providing fast, broadband and low-noise measurements. Experiments with non-stabel molecular production conditions can greatly benefit from these advantages. The setup enables the study of Van-der-Waals-clusters, as well as carbon chain molecules and small metal-containing refractory molecules when combined with appropriate molecule sources.

  3. THz Low Resolution Spectroscopy for Astronomy

    NASA Astrophysics Data System (ADS)

    Stacey, Gordon J.

    2011-09-01

    The THz spectral regime provides a wide range of spectral lines that are invaluable probes of star formation and AGN activity in galaxies both in the local Universe and at the earliest times. We review the utility of these lines, give examples of the science they deliver, and detail the properties of successful low resolution direct detection spectrometers for work in the THz regime. We finish with a discussion of the exciting new science we expect with the next direct detection generation spectrometers on new facilities such as SOFIA, CCAT, SPICA, and ALMA.

  4. Detectivity enhancement in THz electrooptical sampling

    SciTech Connect

    Ahmed, Saima; Savolainen, Janne; Hamm, Peter

    2014-01-15

    We demonstrate and discuss a simple scheme that significantly enhances the detectivity of THz electro-optical sampling by introducing a sequence of Brewster windows that increases the ellipticity of the probe beam. By varying the window material or the number of Brewster windows, the enhancement factor can be adjusted; we demonstrate an enhancement factor of ≈20 with four ZnSe Brewster windows. The scheme is particularly useful when very small THz fields are to be measured in connection with low-repetition rate amplified Ti:S laser systems.

  5. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B. C., LLNL

    1998-06-02

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  6. Femtosecond laser materials processing

    SciTech Connect

    Stuart, B

    1998-08-05

    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area. Applications ranging from drilling teeth to cutting explosives to precision cuts in composites are possible by using this technology. For material removal at reasonable rates, we have developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  7. Terahertz generation and detection using femtosecond mode-locked Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Kong, Moon Sik; Kim, Ji Su; Han, Sang-Pil; Kim, Namje; Moon, Ki Won; Park, Kyung Hyun; Jeon, Min Yong

    2016-02-01

    We successfully demonstrate a THz generation using an ytterbium (Yb)-doped mode-locked femtosecond fiber laser and a home-made low-temperature grown (LTG) InGaAs Photoconductive antenna (PCA) module for THz Time-domain spectroscopy (TDS) systems. The Yb-doped fiber ring laser consists of a pump laser diode (PLD), a wavelength division multiplexer (WDM) coupler, a single-mode fiber (SMF), a 25 cm-long highly Yb-doped fiber, two collimators, two quarter wave plates (QWPs), a half-wave plate (HWP), a 10 nm broadband band pass filter, an isolator, and a polarizing beam splitter (PBS). In order to achieve the passively mode-locked optical short pulse, the nonlinear polarization rotation (NPR) effect is used. The achieved center wavelength and the 3 dB bandwidth of the modelocked fiber laser are 1.03 μm and ~ 15.6 nm, respectively. It has 175 fs duration after pulse compression with 66.2 MHz repetition rate. The average output power of mode-locked laser has more than 275 mW. The LTG-InGaAs PCA modules are used as the emitter and receiver in order to achieve the THz radiation. The PCA modules comprise a hyper-hemispherical Si lens and a log-spiral antenna-integrated LTG-InGaAs PCA chip electronically contacted on a printed circuit board (PCB). An excitation optical average pumping and probing power were ~ 6.3 mW and 5 mW, respectively. The free-space distance between the emitter and the receiver in the THz-TDS system was 70 mm. The spectrum of the THz radiation is achieved higher than 1.5 THz.

  8. Measurement of submilliwatt, picosecond terahertz emission from a femtosecond-laser-pumped solid-state dc to ac radiation converter based on a ZnSe crystal

    SciTech Connect

    Yugami, Noboru; Ohata, Nobuo; Yaegashi, Kenta; Kawanago, Hiroshi

    2006-11-15

    We measured the terahertz pulse emission from a femtosecond-laser-pumped solid-state dc to ac radiation converter using a 150 fs Ti:sapphire laser pulse for dense plasma diagnostics. The laser-produced ionization front was directly modulated from a periodic electrostatic field to pulsed emission. The central frequency of the emission was measured to be 0.13 THz having a bandwidth of 0.1 THz and a peak power of 0.2 mW. This emission source is suitable for use in various novel diagnostic techniques, such as dense plasma diagnostics.

  9. THz QCLs for heterodyne receivers and wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Alan W. M.; Kao, Tsung-Yu; Zimmerman, Ian A.; Cole, William T. S.; Thurston, Richard; Saykally, Richard J.; Han, Ningren; Hu, Qing

    2016-05-01

    Milliwatt average power terahertz quantum cascade lasers (THz-QCLs, 2 THz to 5 THz) have been developed for spectroscopy and as local oscillators for heterodyne receivers. Novel DFB THz-QCLs have been fabricated and show single-mode operation. The narrow line widths of <10 MHz and stark shift tuning of of 6 GHz, allows for wavelength modulation spectroscopy of low pressure gasses in the unexplored THz frequency band. The same devices also act as local-oscillators for heterodyne receivers for remote-sensing and astronomy. Lastly we report on improved tunable DFB devices for use in spectroscopy.

  10. Photonic-integrated circuit for continuous-wave THz generation.

    PubMed

    Theurer, Michael; Göbel, Thorsten; Stanze, Dennis; Troppenz, Ute; Soares, Francisco; Grote, Norbert; Schell, Martin

    2013-10-01

    We demonstrate a photonic-integrated circuit for continuous-wave (cw) terahertz (THz) generation. By comprising two lasers and an optical phase modulator on a single chip, the full control of the THz signal is enabled via a unique bidirectional operation technique. Integrated heaters allow for continuous tuning of the THz frequency over 570 GHz. Applied to a coherent cw THz photomixing system operated at 1.5 μm optical wavelength, we reach a signal-to-noise ratio of 44 dB at 1.25 THz, which is identical to the performance of a standard system based on discrete components.

  11. THz local oscillator sources: performance and capabilities

    NASA Technical Reports Server (NTRS)

    Mehdi, I.; Chattopadhyah, G.; Schlecht, E.; Siegel, P.

    2002-01-01

    Frequency multiplier circuits based on planar GaAs Schottky diodes have made significant advances in the last decade. Useful power in the >1 THz range has now been demonstrated from a complete solid-state chain. This paper will review some of the technology responsible for this achievement along with presenting a brief look at future challenges.

  12. Monitoring of tryptophan as a biomarker for cancerous cells in Terahertz (THz) sensing

    NASA Astrophysics Data System (ADS)

    Altan, Hakan; Simsek Ozek, Nihal; Gok, Seher; Ozyurt, Ipek; Severcan, Feride

    2016-03-01

    Tryptophan is an extremely important amino acid for a variety of biological functions in living organisms. Changes in the concentration of this amino acid can point to identification of cancerous tissues or even confirm symptoms of depression in patients. Therefore it is extremely important to identify and quantify tryptophan concentrations in human blood as well as in in-vivo diagnostic studies. Here a reflection based terahertz pulsed spectroscopy system was used to study the interaction of THz pulses with cancerous cells to gauge the possibility of using L-tryptophan as a biomarker for THz sensing of diseases. Initial measurements were performed on human colon adenocarcinoma cells and human breast cancer cells cultivated on glass slides. The glass slides utilized in the growth process limited the measurements not only to reflection based geometries but also limited the analysis of the samples in the frequency domain due to the highly absorbing nature of glass in the THz region. The useful bandwidth was limited to frequencies below 0.6THz which prohibited us from investigating the effects of L-tryptophan in these samples. Even with the limited frequency range the measurements show that there are slight differences in the transmission of the THz pulse through different samples.

  13. Micromachining with femtosecond 250-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Li, C.; Argument, Michael A.; Tsui, Ying Y.; Fedosejevs, Robert

    2000-12-01

    Laser micromachining is a flexible technique for precision patterning of surfaces in microelectronics, microelectromechanical devices and integrated optical devices. Typical applications include drilling of holes, cutting of conducting lines or shaping of micro component surfaces. The resolution, edge finish and residual damage to the surrounding and underlying structures depend on a variety of parameters including laser energy, intensity, pulse width and wavelength. Femtosecond pulses are of particular interest because the limited time of interaction limits the lateral expansion of the plasma and the inward propagation of the heat front. Thus, very small spot size can be achieved and minimal heating and damage of underlying layers can be obtained. An additional advantage of femtosecond pulses is that multiphoton absorption leads to efficient coupling of energy to many materials independent of the linear reflectivity of the surface. Thus metals and transmitting dielectrics, which are difficult to micromachine, may be machined with such pulses. The coupling is improved further by employing ultraviolet wavelength laser pulses where the linear absorption typically is much higher than for visible and infrared laser pulses. To explore these advantages, we have initiated a study of the interaction of 250nm femtosecond laser pulses with metals. The laser pulses are obtained by generating the third harmonic from a femtosecond Ti:sapphire laser operating at 750nm. The pulses are focused to various intensities in the range of 1010Wcm2 to 1015 Wcm2 using reflective and refractive microscope objectives and ablation thresholds and ablation rates have been determined for a few metals. In addition the ability to control feature size and produce submicron holes and lines have been investigated. The results are presented and compared to results obtained using infrared and visible femtosecond laser pulses.

  14. Nanotechnology-supported THz medical imaging

    PubMed Central

    Stylianou, Andreas; Talias, Michael A

    2013-01-01

    Over the last few decades, the achievements and progress in the field of medical imaging have dramatically enhanced the early detection and treatment of many pathological conditions. The development of new imaging modalities, especially non-ionising ones, which will improve prognosis, is of crucial importance. A number of novel imaging modalities have been developed but they are still in the initial stages of development and serious drawbacks obstruct them from offering their benefits to the medical field. In the 21 st century, it is believed that nanotechnology will highly influence our everyday life and dramatically change the world of medicine, including medical imaging. Here we discuss how nanotechnology, which is still in its infancy, can improve Terahertz (THz) imaging, an emerging imaging modality, and how it may find its way into real clinical applications. THz imaging is characterised by the use of non-ionising radiation and although it has the potential to be used in many biomedical fields, it remains in the field of basic research. An extensive review of the recent available literature shows how the current state of this emerging imaging modality can be transformed by nanotechnology. Innovative scientific concepts that use nanotechnology-based techniques to overcome some of the limitations of the use of THz imaging are discussed. We review a number of drawbacks, such as a low contrast mechanism, poor source performance and bulky THz systems, which characterise present THz medical imaging and suggest how they can be overcome through nanotechnology. Better resolution and higher detection sensitivity can also be achieved using nanotechnology techniques. PMID:24555052

  15. Study of dispersion compensation effect of femtosecond laser amplifier using home-made third-order autocorrelator

    NASA Astrophysics Data System (ADS)

    Bao, Wenxia; Zhang, Nan; Zhu, Xiaonong

    2013-12-01

    Detailed experimental and theoretical analyses of the dispersion compensation effect in a femtosecond laser amplifier are presented. It is confirmed that the temporal structures in the vicinity of the central peak of the amplified laser pulse are primarily caused by the uncompensated third- and/or fourth-order dispersion. The specific detrimental roles played by the third- and fourth-order dispersions such as resulting in the formation of asymmetrical pulse shapes and satellite pulses are revealed and experimentally verified with third-order autocorrelation measurements. With the help of a third-order autocorrelator, it is more efficient and accurate to optimize the third- and fourth-order dispersion compensation when the roundtrip times of a laser pulse inside the regenerative amplifier changes. For practical applications, in order to achieve laser pulses with highest quality, namely with minimum pulse energy in their wings, it is imperative to optimize the dispersion-control parameters while monitoring the laser pulses with a third-order autocorrelator.

  16. Femtosecond Nonlinear Optical Studies of Radiationless Decay in Carotenoids and in the Peridinin-Chlorophyll a Protein

    NASA Astrophysics Data System (ADS)

    Ghosh, Soumen; Bishop, Michael; Mueller, Jenny Jo; Shepherd, Nolan; Beck, Warren; Frank, Harry

    2014-03-01

    Femtosecond transient-grating spectroscopy with optical heterodyne detection was employed to observe the time evolution of the absorption and dispersion components of the third-order nonlinear optical signal following resonant excitation of the S2 (1Bu+)states of βcarotene in benzonitrile and peridinin in methanol. The absorption and dispersion components exhibit distinct time profiles owing to the population of dark intermediate states. An initial intermediate is populated on an ultrashort (<30 fs) time scale in both carotenoids owing to the onset of torsional distortions on the S2-state potential surface. The time-resolved transient-grating spectra obtained for peridinin in the peridinin-chlorophyll a protein from Amphidinium carterae indicate that the intermediate is formed even more rapidly than in solution. This finding suggests that the twisted conformation of the peridinin chromophore is controlled in the binding site so as to optimize energy transfer to chlorophyll a by enhancing the formation of an intramolecular charge-transfer character. Supported by the Department of Energy, BES Photosynthetic Systems Program, under Award Number DE-SC0010847.

  17. Tunable THz Generation by the Interaction of a Super-luminous Laser Pulse with Biased Semiconductor Plasma

    SciTech Connect

    Papadopoulos, K.; Zigler, A.

    2006-01-03

    Terahertz (THz) radiation is electromagnetic radiation in the range between several hundred and a few thousand GHz. It covers the gap between fast-wave electronics (millimeter waves) and optics (infrared). This spectral region offers enormous potential for detection of explosives and chemical/biological agents, non-destructive testing of non-metallic structural materials and coatings of aircraft structures, medical imaging, bio-sensing of DNA stretching modes and high-altitude secure communications. The development of these applications has been hindered by the lack of powerful, tunable THz sources with controlled waveform. The need for such sources is accentuated by the strong, but selective absorption of THz radiation during transmission through air with high vapor content. The majority of the current experimental work relies on time-domain spectroscopy using fast electrically biased photoconductive sources in conjunction with femto-second mode-locked Ti:Sapphire lasers. These sources known as Large Aperture Photoconductive Antennas (LAPA) have very limited tunability, relatively low upper bound of power and no bandwidth control. The paper presents a novel source of THz radiation known as Miniature Photoconductive Capacitor Array (MPCA). Experiments demonstrated tunability between .1 - 2 THz, control of the relative bandwidth {delta}f/f between .5-.01, and controlled pulse length and pulse waveform (temporal shape, chirp, pulse-to-pulse modulation etc.). Direct scaling from the current device indicates efficiency in excess of 30% at 1 THz with 1/f2 scaling at higher frequencies, peak power of 100 kW and average power between .1-1 W. The physics underlying the MPCA is the interaction of a super-luminous ionization front generated by the oblique incidence of a Ti:Sapphire laser pulse on a semiconductor crystal (ZnSe) biased with an alternating electrostatic field, similar to that of a frozen wave generator. It is shown theoretically and experimentally that the

  18. Intersubband Rabi oscillations in asymmetric nanoheterostructures: implications for a tunable continuous-wave source of a far-infrared and THz radiation.

    PubMed

    Kukushkin, V A

    2012-06-01

    A tunable continuous-wave source of a far-infrared and THz radiation based on a semiconductor nanoheterostructure with asymmetric quantum wells is suggested. It utilizes Rabi oscillations at a transition between quantum well subbands excited by external femtosecond pulses of a mid-infrared electromagnetic field. Due to quantum well broken inversion symmetry the subbands possess different average dipole moments, which enables the creation of polarization at the Rabi frequency as the subband populations change. It is shown that if this polarization is excited so that it is periodic in space, then, though being pulsed, it can produce continuous-wave output radiation. Changing the polarization space period and the time intervals between the exciting pulses, one can tune the frequency of this radiation throughout the far-infrared and THz range. In the present work a concrete multiple quantum well heterostructure design and a scheme of its space-periodic polarization are suggested. It is shown that for existing sources of mid-infrared femtosecond pulses the proposed scheme can provide a continuous-wave output power of order the power of far-infrared and THz quantum cascade lasers. Being added to the possibility of its output frequency tuning, this can make the suggested device attractive for fundamental research and various applications.

  19. THz Limb Sounder (TLS) for Lower Thermospheric Wind, Oxygen Density, and Temperature

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.

    2016-01-01

    Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium(LTE) at altitudes up to 350km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP)mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.

  20. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    PubMed

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching. PMID:27410061

  1. THz limb sounder (TLS) for lower thermospheric wind, oxygen density, and temperature

    NASA Astrophysics Data System (ADS)

    Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.

    2016-07-01

    Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium (LTE) at altitudes up to 350 km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP) mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.

  2. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    PubMed

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.

  3. Broadband transient THz conductivity of the transition-metal dichalcogenide MoS2

    NASA Astrophysics Data System (ADS)

    Buss, J. H.; Smith, R. P.; Coslovich, G.; Kaindl, R. A.

    2015-03-01

    The transient dynamics of transition-metal dichalcogenides is of significant interest for clarifying fundamental manyparticle interactions at the nanoscale as well as for novel applications. We report an ultrafast terahertz study up to 7 THz of the lamellar semiconductor MoS2 to access the non-equilibrium conductivity of photo-excited indirect e-h pairs in this multi-layered parent compound. While the equilibrium transport is Drude-like, near-IR optical excitation results in a complex photo-induced conductivity that consists of two components. Mobile charge carriers dominate the low frequency response below 2 THz, while at low temperatures an additional excess conductivity is observed that is enhanced around 4 THz. Two time scales appear in the dynamics: a slow ns relaxation due to non-radiative recombination and a faster sub-100 ps decay connected to the high-frequency THz feature. We discuss the broad THz peak within a model of intra-excitonic transitions in MoS2. It agrees well with the expected binding energy and oscillator strength, yet results in an anomalous temperature dependence of the exciton fraction requiring an electronically inhomogeneous phase.

  4. Advances in biomedical imaging using THz technology with applications to burn-wound assessment

    NASA Astrophysics Data System (ADS)

    Tewari, Priyamvada; Kealey, Colin; Sung, Jun; Maccabi, Ashkan; Bajwa, Neha; Singh, Rahul; Culjat, Martin; Stojadinovic, Alexander; Grundfest, Warren; Taylor, Zachary D.

    2012-02-01

    Terahertz (THz) hydration sensing and image has been a topic of increased interest recently due largely to improvements in source and detector technology and the identification of applications where current hydration sensing techniques are insufficient. THz medical imaging is an expanding field of research and tissue hydration plays a key role in the contrast observed in THz tissue reflectance and absorbance maps. This paper outlines the most recent results in burn and corneal imaging where hydration maps were used to assess tissue status. A 3 day study was carried out in rat models where a THz imaging system was used to assess the severity and extent of burn throughout the first day of injury and at the 24, 48, and 72 hour time points. Marked difference in tissue reflectance were observed between the partial and full thickness burns and image features were identified that may be used as diagnostic markers for burn severity. Companion histological analysis performed on tissue excised on Day 3 confirms hypothesized burn severity. The results of these preliminary animal trials suggest that THz imaging may be useful in burn wound assessment where current clinical modalities have resolution and/or sensitivity insufficient for accurate diagnostics.

  5. Modeling of THz Lasers Based on Intersubband Transitions in Semiconductor Quantum Wells

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Woo, Alex C. (Technical Monitor)

    1999-01-01

    In semiconductor quantum well structures, the intersubband energy separation can be adjusted to the terahertz (THz) frequency range by changing the well width and material combinations. The electronic and optical properties of these nanostructures can also be controlled by an applied dc electric field. These unique features lead to a large frequency tunability of the quantum well devices. In the on-going project of modeling of the THz lasers, we investigate the possibility of using optical pumping to generate THz radiation based on intersubband transitions in semiconductor quantum wells. We choose the optical pumping because in the electric current injection it is difficult to realize population inversion in the THz frequency range due to the small intersubband separation (4-40 meV). We considered both small conduction band offset (GaAs/AlGaAs) and large band offset (InGaAs/AlAsSb) quantum well structures. For GaAs/AlGaAs quantum wells, mid-infrared C02 lasers are used as pumping sources. For InGaAs/AlAsSb quantum wells, the resonant intersubband transitions can be excited by the near-infrared diode lasers. For three- and four-subband quantum wells, we solve the pumpfield-induced nonequilibrium distribution function for each subband of the quantum well system from a set of rate equations that include both intrasubband and intersubband relaxation processes. Taking into account the coherent interactions between pump and THz (signal) waves, we calculate the optical gain for the THz field. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. A graph shows the calculated THz gain spectra for three-subband GaAs/AlGaAs quantum wells. We see that the coherent pump and signal wave interactions contribute significantly to the gain. The pump intensity dependence of the THz gain is also studied. The calculated results are shown. Because of the optical Stark effect and pump-induced population redistribution, the maximum

  6. [Determination of Carbaryl in Rice by Using FT Far-IR and THz-TDS Techniques].

    PubMed

    Sun, Tong; Zhang, Zhuo-yong; Xiang, Yu-hong; Zhu, Ruo-hua

    2016-02-01

    Determination of carbaryl in rice by using Fourier transform far-infrared (FT- Far-IR) and terahertz time-domain spectroscopy (THz-TDS) combined with chemometrics was studied and the spectral characteristics of carbaryl in terahertz region was investigated. Samples were prepared by mixing carbaryl at different amounts with rice powder, and then a 13 mm diameter, and about 1 mm thick pellet with polyethylene (PE) as matrix was compressed under the pressure of 5-7 tons. Terahertz time domain spectra of the pellets were measured at 0.5~1.5 THz, and the absorption spectra at 1.6. 3 THz were acquired with Fourier transform far-IR spectroscopy. The method of sample preparation is so simple that it does not need separation and enrichment. The absorption peaks in the frequency range of 1.8-6.3 THz have been found at 3.2 and 5.2 THz by Far-IR. There are several weak absorption peaks in the range of 0.5-1.5 THz by THz-TDS. These two kinds of characteristic absorption spectra were randomly divided into calibration set and prediction set by leave-N-out cross-validation, respectively. Finally, the partial least squares regression (PLSR) method was used to establish two quantitative analysis models. The root mean square error (RMSECV), the root mean square errors of prediction (RMSEP) and the correlation coefficient of the prediction are used as a basis for the model of performance evaluation. For the R,, a higher value is better; for the RMSEC and RMSEP, lower is better. The obtained results demonstrated that the predictive accuracy of. the two models with PLSR method were satisfactory. For the FT-Far-IR model, the correlation between actual and predicted values of prediction samples (Rv) was 0.99. The root mean square error of prediction set (RMSEP) was 0.008 6, and for calibration set (RMSECV) was 0.007 7. For the THz-TDS model, R. was 0. 98, RMSEP was 0.004 4, and RMSECV was 0.002 5. Results proved that the technology of FT-Far-IR and THz- TDS can be a feasible tool for

  7. THz time-domain spectroscopy of mixed CO2-CH3OH interstellar ice analogs.

    PubMed

    McGuire, Brett A; Ioppolo, Sergio; Allodi, Marco A; Blake, Geoffrey A

    2016-07-27

    The icy mantles of interstellar dust grains are the birthplaces of the primordial prebiotic molecular inventory that may eventually seed nascent solar systems and the planets and planetesimals that form therein. Here, we present a study of two of the most abundant species in these ices after water: carbon dioxide (CO2) and methanol (CH3OH), using TeraHertz (THz) time-domain spectroscopy and mid-infrared spectroscopy. We study pure and mixed-ices of these species, and demonstrate the power of the THz region of the spectrum to elucidate the long-range structure (i.e. crystalline versus amorphous) of the ice, the degree of segregation of these species within the ice, and the thermal history of the species within the ice. Finally, we comment on the utility of the THz transitions arising from these ices for use in astronomical observations of interstellar ices.

  8. Femtosecond polarization pulse shaping.

    PubMed

    Brixner, T; Gerber, G

    2001-04-15

    We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control.

  9. Femtosecond polarization pulse shaping.

    PubMed

    Brixner, T; Gerber, G

    2001-04-15

    We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control. PMID:18040384

  10. Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons

    NASA Astrophysics Data System (ADS)

    Bossini, D.; Dal Conte, S.; Hashimoto, Y.; Secchi, A.; Pisarev, R. V.; Rasing, Th.; Cerullo, G.; Kimel, A. V.

    2016-02-01

    The understanding of how the sub-nanoscale exchange interaction evolves in macroscale correlations and ordered phases of matter, such as magnetism and superconductivity, requires to bridging the quantum and classical worlds. This monumental challenge has so far only been achieved for systems close to their thermodynamical equilibrium. Here we follow in real time the ultrafast dynamics of the macroscale magnetic order parameter in the Heisenberg antiferromagnet KNiF3 triggered by the impulsive optical generation of spin excitations with the shortest possible nanometre wavelength and femtosecond period. Our magneto-optical pump-probe experiments also demonstrate the coherent manipulation of the phase and amplitude of these femtosecond nanomagnons, whose frequencies are defined by the exchange energy. These findings open up opportunities for fundamental research on the role of short-wavelength spin excitations in magnetism and strongly correlated materials; they also suggest that nanospintronics and nanomagnonics can employ coherently controllable spin waves with frequencies in the 20 THz domain.

  11. Femtosecond Nonlinear Optical Studies of Radiationless Decay in Carotenoids and in the Peridinin-Chlorophyll a Protein

    NASA Astrophysics Data System (ADS)

    Roscioli, Jerome D.; Ghosh, Soumen; Bishop, Michael M.; Beck, Warren F.; Frank, Harry A.

    2014-06-01

    Femtosecond transient-grating spectroscopy with optical heterodyne detection was employed to observe separately the time evolution of the absorption and dispersion components of the third-order nonlinear optical signal following resonant excitation of the S_2 (^1B_u^+) states of β-carotene in benzonitrile and peridinin in methanol using 40-fs pulses centered at 520 nm. The absorption and dispersion components exhibit distinctively different time profiles owing to the population of intermediate states. An initial intermediate state is populated on an ultrashort (<30 fs) time scale in both carotenoids. Owing to the fast red-shifting of the stimulated emission part of the S_2-state transient grating signal, we suggest that the intermediate state arises from vibrational displacements on the S_2-state potential surface that eventually yield twisted or bent conformations. Motions of the molecule of this type in the S_2-state would contribute to a mixing of the diabatic S_2 and S_1 electronic states and would promote the formation of intramolecular charge-transfer character. Both of these effects would enhance the efficiency of energy transfer from the S_1 state to the (B)Chl Q_y state in photosynthetic light-harvesting proteins. The time-resolved transient-grating spectra obtained for peridinin in the peridinin-chlorophyll a protein from Amphidinium carterae suggest a more rapid formation of the intermediate than for peridinin in methanol. This finding suggests that the conformation of the peridinin chromophore is controlled in the binding site to optimize the formation of the twisted intermediate upon excitation of the S_2 state. (Supported by grant DE-SC0010847 from the Department of Energy, Office of Basic Energy Sciences, Photosynthetic Systems program.)

  12. MEASUREMENTS OF HIGH-FIELD THZ INDUCED PHOTOCURRENTS IN SEMICONDUCTORS

    SciTech Connect

    Wiczer, M.; Lindenberg, A.

    2008-01-01

    THz pulses have provided a useful tool for probing the time-resolved dynamics of free carriers in a system. However, the development of methods to produce intense THz radiation has been slow. We have developed a method for producing intense ultra-short THz pulses, which have a full width at half maximum of 300 fs — approximately a half cycle of THz radiation. These intense half cycle pulses (HCPs) allowed us to use THz radiation as a source of excitation. By exposing the semiconductor indium antimonide (InSb) to intense THz HCP radiation, we have observed non-linear optical effects which suggest the generation of new free carriers by below band-gap THz photons. This generation of free carriers appears to be due to an avalanche multiplication process which then induces a current in the time-scale of our THz pulse. This amplifi cation on such a short timescale suggests the possibility of an ultrafast detector of weak above band-gap radiation. We constructed a device which detects these currents by painting an electrode structure on the surface of the semiconductor. The currents induced across the electrodes by this avalanche multiplication process were measured and compared with other measurements of this non-linear optical process. We successfully measured THz induced currents in InSb, suggesting promise towards the development of an ultra-fast detector. Further, we have gained insight into a possible physical explanation of the THz induced free carriers we observe in InSb.

  13. THz-waves channeling in a monolithic saddle-coil for Dynamic Nuclear Polarization enhanced NMR.

    PubMed

    Macor, A; de Rijk, E; Annino, G; Alberti, S; Ansermet, J-Ph

    2011-10-01

    A saddle coil manufactured by electric discharge machining (EDM) from a solid piece of copper has recently been realized at EPFL for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance experiments (DNP-NMR) at 9.4 T. The corresponding electromagnetic behavior of radio-frequency (400 MHz) and THz (263 GHz) waves were studied by numerical simulation in various measurement configurations. Moreover, we present an experimental method by which the results of the THz-wave numerical modeling are validated. On the basis of the good agreement between numerical and experimental results, we conducted by numerical simulation a systematic analysis on the influence of the coil geometry and of the sample properties on the THz-wave field, which is crucial in view of the optimization of DNP-NMR in solids.

  14. Asymmetric devices based on carbon nanotubes as detectors of sub-THz radiation

    NASA Astrophysics Data System (ADS)

    Gayduchenko, I. A.; Fedorov, G. E.; Stepanova, T. S.; Titova, N.; Voronov, B. M.; But, D.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.

    2016-08-01

    Demand for efficient terahertz (THz) radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. In this work, we systematically investigate the response of asymmetric carbon nanodevices to sub-terahertz radiation using different sensing elements: from dense carbon nanotube (CNT) network to individual CNT. We conclude that the detectors based on individual CNTs both semiconducting and quasi-metallic demonstrate much stronger response in sub-THz region than detectors based on disordered CNT networks at room temperature. We also demonstrate the possibility of using asymmetric detectors based on CNT for imaging in the THz range at room temperature. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.

  15. Dual-Polarization, Sideband-Separating, Balanced Receiver for 1.5 THz

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutman; Ward, John; Manohara, Harish; Siegel, Peter

    2009-01-01

    A proposed heterodyne receiver would be capable of detecting electromagnetic radiation in both of two orthogonal linear polarizations, separating sidebands, and providing balanced outputs in a frequency band centered at 1.5 THz with a fractional bandwidth greater than 40 percent. Dual polarization, sideband-separating, and balanced-output receivers are well-known and have been used extensively at frequencies up to about 100 GHz; and there was an earlier proposal for such a receiver for frequencies up to 900 GHz. However, the present proposal represents the first realistic design concept for such a receiver capable of operating above 1 THz. The proposed receiver is intended to be a prototype of mass-producible receiver units, operating at frequencies up to 6 THz, that would be incorporated into highly sensitive heterodyne array instruments to be used in astronomical spectroscopic and imaging studies.

  16. Frequency domain Fourier transform THz-EPR on single molecule magnets using coherent synchrotron radiation.

    PubMed

    Schnegg, Alexander; Behrends, Jan; Lips, Klaus; Bittl, Robert; Holldack, Karsten

    2009-08-21

    Frequency domain Fourier transform THz electron paramagnetic resonance (FD-FT THz-EPR) based on coherent synchrotron radiation (CSR) is presented as a novel tool to ascertain very large zero field splittings in transition metal ion complexes. A description of the FD-FT THz-EPR at the BESSY II storage ring providing CSR in a frequency range from 5 cm(-1) up to 40 cm(-1) at external magnetic fields from -10 T to +10 T is given together with first measurements on the single molecule magnet Mn(12)Ac where we studied DeltaM(S) = +/-1 spin transition energies as a function of the external magnetic field and temperature.

  17. Thz Spectroscopy of 12CH^+, 13CH^+, and 12CD^+

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, Brian; Pearson, John; Amano, Takayoshi

    2015-06-01

    In 1937, Dunham detected a couple of unidentified lines in near-UV, and later Douglas and Herzberg identified them based on their laboratory observations to be low-J electronic transitions of CH^+. The electronic spectra, in particular the A^1Π-X^1σ^+ band, have been investigated extensively. On the other hand, the pure rotational transitions have not been studied so extensively. Only the lowest rotational transition, J=1-0, was observed in the laboratory for the normal species, 13CH^+, and CD^+. Based on the laboratory frequency, CH^+ was detected in star forming regions with the Hershel space observatory. Cernicharo et al identified pure rotational transitions from J=2-1 to J=6-5 in the far-infrared region in the ISO spectrum of the planetary nebula NGC 7027. The ISO spectra, however, were of low-resolution, so high-resolution spectroscopic observation is highly desirable. In this presentation, we have extended the measurements to higher-J lines up to 2 THz. For production of CH^+, an extended negative glow discharge in a gas mixture of CH_4 (˜ 0.5 mTorr) diluted in He (˜ 60 mTorr) was used. The optimum discharge current was about 15 mA and the axial magnetic filed to 160 Gauss was applied up. The discharge cell was cooled down to liquid nitrogen temperature. Several frequency multiplier chains, developed at JPL and purchased from Virginia Diodes, were used as THz radiation sources. New THz measurements are not only useful for providing better characterization of spectroscopic properties but also will serve as starting point for astronomical observations. T. Dunham, Publ. Astron. Soc. Pac., 49,~26 (1937) A. E. Douglas and G. Herzberg, Ap. J. 94,~381 (1941) T. Amano, Ap.J.Lett., 716, L1 (2010) T. Amano, J. Chem. Phys., 133, 244305 (2010) J. Cernicharo et al., Ap. J. Lett., 483, L65 (1997)

  18. Quantum control in silicon using coherent THz pulses

    NASA Astrophysics Data System (ADS)

    Lynch, Stephen A.; Greenland, P. Thornton; van der Meer, Alexander F. G.; Murdin, Benedict N.; Pidgeon, Carl R.; Redlich, Britta; Vinh, Nguyen Q.; Aeppli, Gabriel

    2012-10-01

    It has long been known that shallow donors such as phosphorous and the other group-V elements, have a hydrogen-like optical spectrum. The main difference is that while the spectrum of atomic hydrogen lies in the visible band, the spectrum of shallow donors in silicon is downshifted to the THz frequency band. This is a direct consequence of the reduced Coulomb attraction seen by the loosely bound electron because the core electrons shield the positive donor atom nucleus, and because the electron is now moving in a dielectric material. While spectroscopy has already revealed much about the energy level structure, very little was known about the temporal dynamics of the system until now. We have used THz pulses from the FELIX free electron laser to probe these hydrogen-like levels. By exploiting the well-known pump-probe technique we have measured the characteristic lifetimes of the excited Rydberg states and found them to be of the order 200 ps. Then, by making subtle changes to the geometry of the pump-probe experimental setup we demonstrate the existence of a THz photon echo. The photon echo is a purely quantum phenomenon with no classical analogue, and it allows us to study the quantum state of the donor electron. We then show, using the photon echo, that it is possible to create a coherent superposition of the ground and excited state of the donor. Measuring the photon echo is important because it can also be used to measure a second important characteristic lifetime of the silicon-donor system, the phase decoherence time.

  19. Experimental (X-ray, (13)C CP/MAS NMR, IR, RS, INS, THz) and Solid-State DFT Study on (1:1) Co-Crystal of Bromanilic Acid and 2,6-Dimethylpyrazine.

    PubMed

    Łuczyńska, Katarzyna; Drużbicki, Kacper; Lyczko, Krzysztof; Dobrowolski, Jan Cz

    2015-06-01

    A combined structural, vibrational spectroscopy, and solid-state DFT study of the hydrogen-bonded complex of bromanilic acid with 2,6-dimethylpyrazine is reported. The crystallographic structure was determined by means of low-temperature single-crystal X-ray diffraction, which reveals the molecular units in their native protonation states, forming one-dimensional infinite nets of moderate-strength O···H-N hydrogen bonds. The nature of the crystallographic forces, stabilizing the studied structure, has been drawn by employing the noncovalent interactions analysis. It was found that, in addition to the hydrogen bonding, the intermolecular forces are dominated by stacking interactions and C-H···O contacts. The thermal and calorimetric analysis was employed to probe stability of the crystal phase. The structural analysis was further supported by a computationally assisted (13)C CP/MAS NMR study, providing a complete assignment of the recorded resonances. The vibrational dynamics was explored by combining the optical (IR, Raman, TDs-THz) and inelastic neutron scattering (INS) spectroscopy techniques with the state-of-the-art solid-state density functional theory (DFT) computations. Despite the quasi-harmonic approximation assumed throughout the study, an excellent agreement between the theoretical and experimental data was achieved over the entire spectral range, allowing for a deep and possibly thorough understanding of the vibrational characteristics of the system. Particularly, the significant influence of the long-range dipole coupling on the IR spectrum has been revealed. On the basis of a wealth of information gathered, the recent implementation of a dispersion-corrected linear-response scheme has been extensively examined.

  20. Invited Article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy

    SciTech Connect

    Teo, Stephanie M.; Ofori-Okai, Benjamin K.; Werley, Christopher A.; Nelson, Keith A.

    2015-05-15

    Multidimensional spectroscopy at visible and infrared frequencies has opened a window into the transfer of energy and quantum coherences at ultrafast time scales. For these measurements to be performed in a manageable amount of time, one spectral axis is typically recorded in a single laser shot. An analogous rapid-scanning capability for THz measurements will unlock the multidimensional toolkit in this frequency range. Here, we first review the merits of existing single-shot THz schemes and discuss their potential in multidimensional THz spectroscopy. We then introduce improved experimental designs and noise suppression techniques for the two most promising methods: frequency-to-time encoding with linear spectral interferometry and angle-to-time encoding with dual echelons. Both methods, each using electro-optic detection in the linear regime, were able to reproduce the THz temporal waveform acquired with a traditional scanning delay line. Although spectral interferometry had mediocre performance in terms of signal-to-noise, the dual echelon method was easily implemented and achieved the same level of signal-to-noise as the scanning delay line in only 4.5% of the laser pulses otherwise required (or 22 times faster). This reduction in acquisition time will compress day-long scans to hours and hence provides a practical technique for multidimensional THz measurements.

  1. Invited Article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Teo, Stephanie M.; Ofori-Okai, Benjamin K.; Werley, Christopher A.; Nelson, Keith A.

    2015-05-01

    Multidimensional spectroscopy at visible and infrared frequencies has opened a window into the transfer of energy and quantum coherences at ultrafast time scales. For these measurements to be performed in a manageable amount of time, one spectral axis is typically recorded in a single laser shot. An analogous rapid-scanning capability for THz measurements will unlock the multidimensional toolkit in this frequency range. Here, we first review the merits of existing single-shot THz schemes and discuss their potential in multidimensional THz spectroscopy. We then introduce improved experimental designs and noise suppression techniques for the two most promising methods: frequency-to-time encoding with linear spectral interferometry and angle-to-time encoding with dual echelons. Both methods, each using electro-optic detection in the linear regime, were able to reproduce the THz temporal waveform acquired with a traditional scanning delay line. Although spectral interferometry had mediocre performance in terms of signal-to-noise, the dual echelon method was easily implemented and achieved the same level of signal-to-noise as the scanning delay line in only 4.5% of the laser pulses otherwise required (or 22 times faster). This reduction in acquisition time will compress day-long scans to hours and hence provides a practical technique for multidimensional THz measurements.

  2. Photonic generation for multichannel THz wireless communication.

    PubMed

    Shams, Haymen; Fice, Martyn J; Balakier, Katarzyna; Renaud, Cyril C; van Dijk, Frédéric; Seeds, Alwyn J

    2014-09-22

    We experimentally demonstrate photonic generation of a multichannel THz wireless signal at carrier frequency 200 GHz, with data rate up to 75 Gbps in QPSK modulation format, using an optical heterodyne technique and digital coherent detection. BER measurements were carried out for three subcarriers each modulated with 5 Gbaud QPSK or for two subcarriers modulated with 10 Gbaud QPSK, giving a total speed of 30 Gbps or 40 Gbps, respectively. The system evaluation was also performed with three subcarriers modulated with 12.5 Gbaud QPSK (75 Gbps total) without and with 40 km fibre transmission. The proposed system enhances the capacity of high-speed THz wireless transmission by using spectrally efficient modulated subcarriers spaced at the baud rate. This approach increases the overall transmission capacity and reduces the bandwidth requirement for electronic devices.

  3. Femtosecond damage resistance of femtosecond multilayer and hybrid mirrors.

    PubMed

    Csajbók, Viktória; Szikszai, Lőrinc; Nagy, Benedek J; Dombi, Péter

    2016-08-01

    Improving the laser-induced damage threshold of optical components is a basic endeavor in femtosecond technology. By testing more than 30 different femtosecond mirrors with 42 fs laser pulses at 1 kHz repetition rate, we found that a combination of high-bandgap dielectric materials and improved design and coating techniques enable femtosecond multilayer damage thresholds exceeding 2  J/cm2 in some cases. A significant ×2.5 improvement in damage resistance can also be achieved for hybrid Ag-multilayer mirrors exhibiting more than 1  J/cm2 threshold with a clear anticorrelation between damage resistance and peak field strength in the stack. Slight dependence on femtosecond pulse length and substantial decrease for high (megahertz) repetition rates are also observed.

  4. The source of THz radiation based on dielectric waveguide excited by sequence of electron bunches

    NASA Astrophysics Data System (ADS)

    Altmark, A. M.; Kanareykin, A. D.

    2016-07-01

    We present a new method for excitation of THz Cherenkov radiation in a dielectric waveguide by relativistic electron bunches. A sequence of bunches generates monochromatic radiation. The frequency of radiation is defined by the distance between the bunches. The studies were carried by using the newly updated BBU-3000 code which permits taking into account a number of additional options: an external quadrupole focusing system, group velocity of the wakefield, and the dielectric material loss factor. In this paper, we present our algorithm for optimizing the number and sequential positions of bunches for generation of narrow band high power THz radiation.

  5. Perspective sub-THz powerful microwave generator "nanovircator" for T-rays biomedical diagnostics

    NASA Astrophysics Data System (ADS)

    Frolov, Nikita S.; Kurkin, Semen A.; Khramova, Marina V.; Badarin, Artem A.; Koronovskii, Alexey A.; Pavlov, Alexey N.; Hramov, Alexander E.

    2016-04-01

    In this paper we suggest the new approach of powerful sub-THz signal generation based on intense electron beams containing oscillating virtual cathode. Suggested compact microwave source complies with a number of biomedical applications such as imaging, preventive healthcare, etc. In this work we discuss the results of numerical simulation and optimization of the novel device called "nanovircator" that have been carried out. The results of the numerical study show the possibility of "nanovircator" operation at 0.1-0.4 THz frequency range.

  6. THz polarization difference imaging of aqueous targets

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Bajwa, Neha; Ramirez, Lucia; Grundfest, Warren; Taylor, Zachary

    2015-08-01

    This paper describes the basic design, implementation, and testing of a polarization difference imaging system for use on aqueous targets. The ultimate performance limitation of THz imaging in many active areas of research is clutter from surface geometry. While the signal to nose ratio (SNR) of standard THz imaging systems is quite large, the signal to clutter ratio (SCR) often faced in an imaging application is orders of magnitude lower and, in many cases, lower than the contrast to noise (CNR) resulting in imagery where the contrast mechanism of interest does not significantly contribute to the overall observed contrast. To overcome these limitations we develop a system that uses a circularly polarized source and linearly polarized detectors to acquire images of transverse electric (TE) and transverse magnetic (TM) reflectivities of the target over the same field of view. Geletin based tissue mimicking phantoms are fabricated with spatially varying water content and modified with a range of surface topologies and surface roughness. TE and TM images are combined to yield self-calibrated clutter-suppressed images. The resulting image indicates that the imaging field clutter affected both polarization channels nearly equally allowing the system to resolve differences in phantom water content. This design is a step toward windowless THz imaging capability critical for clinical translation where patient imaging is dominated by clutter.

  7. Spectral superbroadening of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Wittmann, M.; Penzkofer, A.

    1996-02-01

    The spectral superbroadening of femtosecond pulses in water, heavy water, ethanol, and fused silica is studied under strong focusing conditions. Efficient transient stimulated Raman scattering, impulsive stimulated Raman scattering, longitudinally phase-matched parametric four-photon interaction, and cascading light up-conversion and down-conversion are responsible for the spectral superbroadening. Self-phase modulation and cross-phase modulation broaden the laser and stimulated Raman lines.

  8. Use of near infrared femtosecond lasers as sub-micron radiation microbeam for cell DNA damage and repair studies.

    PubMed

    Botchway, S W; Reynolds, P; Parker, A W; O'Neill, P

    2010-01-01

    Laser induced radiation microbeam technology for radiobiology research is undergoing rapid growth because of the increased availability and ease of use of femtosecond laser sources. The main processes involved are multiphoton absorption and/or plasma formation. The high peak powers these lasers generate make them ideal tools for depositing sub-micrometer size radiant energy within a region of a living cell nucleus to activate ionising and/or photochemically driven processes. The technique allows questions relating to the effects of low doses of radiation, the propagation and treatment of deoxyribonucleic acid (DNA) damage and repair in individual live cells as well as non-targeted cell to cell effects to be addressed. This mini-review focuses on the use of near infrared (NIR) ca. 800nm radiation to induce damage that is radically different from the early and subsequent ultraviolet microbeam techniques. Ultrafast pulsed NIR instrumentation has many benefits including the ability to eliminate issues of unspecific UV absorption by the many materials prevalent within cells. The multiphoton interaction volume also permits energy deposition beyond the diffraction limit. Work has established that the fundamental process of the damage induced by the ultrashort laser pulses is different to those induced from continuous wave light sources. Pioneering work has demonstrated that NIR laser microbeam radiation can mimic ionising radiation via multiphoton absorption within the 3D femtolitre volume of the highly focused Gaussian beam. This light-matter interaction phenomenon provides a novel optical microbeam probe for mimicking both complex ionising and UV radiation-type cell damage including double strand breaks (DSBs) and base damage. A further advantage of the pulsed laser technique is that it provides further scope for time-resolved experiments. Recently the NIR laser microbeam technique has been used to investigate the recruitment of repair proteins to the sub

  9. Progress towards two-dimensional biomedical imaging with THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Beard, Matthew C.; Turner, Gordon M.; Schmuttenmaer, Charles A.

    2002-11-01

    Terahertz spectroscopy represents a frontier in the field of biomedical imaging. It is possible to image complex objects that are opaque to visible and infrared light. In this paper, we have used THz imaging to reveal the structure inside a sunflower seed. We compare images based on time- and frequency-domain representations of the THz scans, and conclude that for this type of specimen the time-domain THz scans provide more detailed information than their frequency-domain counterparts.

  10. Effect of intense THz pulses on expression of genes associated with skin cancer and inflammatory skin conditions

    NASA Astrophysics Data System (ADS)

    Titova, Lyubov V.; Ayesheshim, Ayesheshim K.; Purschke, David; Golubov, Andrey; Rodriguez-Juarez, Rocio; Woycicki, Rafal; Hegmann, Frank A.; Kovalchuk, Olga

    2014-03-01

    The growing experimental evidence suggests that broadband, picosecond-duration THz pulses may influence biological systems and functions. While the mechanisms by which THz pulse-induced biological effects are not yet known, experiments using in vitro cell cultures, tissue models, as well as recent in vivo studies have demonstrated that THz pulses can elicit cellular and molecular changes in exposed cells and tissues in the absence of thermal effects. Recently, we demonstrated that intense, picosecond THz pulses induce phosphorylation of H2AX, indicative of DNA damage, and at the same time activate DNA damage response in human skin tissues. We also find that intense THz pulses have a profound impact on global gene expression in human skin. Many of the affected genes have important functions in epidermal differentiation and have been implicated in skin cancer and inflammatory skin conditions. The observed THzinduced changes in expression of these genes are in many cases opposite to disease-related changes, suggesting possible therapeutic applications of intense THz pulses.

  11. Influence of THz broadband pulse radiation on some biotissues

    NASA Astrophysics Data System (ADS)

    Bespalov, Victor G.; Gorodetsky, Andrei A.; Grachev, Yaroslav V.; Kozlov, Sergei A.; Smolyanskaya, Olga A.

    2010-02-01

    In the present paper research results of broadband THz radiation influence in a range 0.1÷2 THz on some biological tissues are presented. Theoretical modeling of THz radiation propagation through the fat sample is performed. Experimental absorption spectra of samples of vegetable oil, nail tissue, skin tissue and blood are obtained. Spectra of these tissues differ in a range of 0.1 ÷ 2 THz. Also they depend on water content. From these samples vegetable oil has the best transmission.

  12. Influence of THz broadband pulse radiation on some biotissues

    NASA Astrophysics Data System (ADS)

    Bespalov, Victor G.; Gorodetsky, Andrei A.; Grachev, Yaroslav V.; Kozlov, Sergei A.; Smolyanskaya, Olga A.

    2009-10-01

    In the present paper research results of broadband THz radiation influence in a range 0.1÷2 THz on some biological tissues are presented. Theoretical modeling of THz radiation propagation through the fat sample is performed. Experimental absorption spectra of samples of vegetable oil, nail tissue, skin tissue and blood are obtained. Spectra of these tissues differ in a range of 0.1 ÷ 2 THz. Also they depend on water content. From these samples vegetable oil has the best transmission.

  13. THz quantum cascade lasers for standoff molecule detection.

    SciTech Connect

    Chow, Weng Wah; Wanke, Michael Clement; Lerttamrab, Maytee; Waldmueller, Ines

    2007-10-01

    Remote optical detection of molecules, agents, and energetic materials has many applications to national security interests. Currently there is significant interest in determining under what circumstances THz frequency coverage will aid in a complete sensing package. Sources of coherent THz frequency (i.e. 0.1 to 10 THz) electromagnetic radiation with requisite power levels, frequency agility, compactness and reliability represent the single greatest obstacle in establishing a THz technology base, but recent advances in semiconductor-based quantum cascade lasers (QCLs) offer huge improvements towards the ultimate THz source goals. This project advanced the development of narrow-linewidth THz quantum cascade lasers. We developed theoretical tools to guide the improvement of standard THz quantum cascade lasers, the investigation of nonlinear optics employing infrared QCLs, and the exploration of quantum coherence to improve QCL performance. The latter was aimed especially towards achieving high temperature operation. In addition we developed a computer algorithm capable of shifting the frequencies of an existing THz QCL to a different frequency and invented a new type of laser that may enable room temperature THz generation in a electrically driven solid-state source.

  14. THz antenna-coupled nanoscale electron-phonon bolometers

    NASA Astrophysics Data System (ADS)

    McKenney, Christopher; Cleland, Andrew

    2010-03-01

    We are fabricating nanoscale bolometers for use in THz radiation detection. A sufficiently small volume of normal metal volume is so decoupled from phonons at mK temperatures that thermal time constants can reach milliseconds. We sense the temperature change in the electron gas due to THz radiation absorption using a pair of superconductor-insulator-normal metal (SIN) tunnel junctions, probed using a radiofrequency tank circuit to achieve large measurement bandwidth. THz radiation is coupled to the normal metal with an impedance-matched double slotline antenna; we use a blackbody source to generate photons at ˜ 1 THz. We report our progress on the development of these devices.

  15. The Spectrum of Methyl Formate in the Thz Region

    NASA Astrophysics Data System (ADS)

    Tudorie, M.; Huet, T. R.; Margules, L.; Goubet, M.; Pirali, O.; Roy, P.; Ilyushin, V. V.; Kleiner, I.

    2009-06-01

    The THz spectrum of methyl formate-HCOOCH_3 is currently investigated. At first a multi-pass cell having an optical path of 150 m coupled to an internal source of the Fourier Transform spectrometer of the AILES beamline, synchrotron SOLEIL (France), was used to obtain the methyl formate THz spectrum. Preliminary assignments of the pure rotation spectrum up to 80 cm^{-1}, and of the very weak torsion band v_t = 1-0 around 130 cm^{-1} are carried out. The assignments are based on the rotation-torsion energy levels calculated using the RAM approach. The particular interest in Δ v_t = 1 torsion-rotation band lies in the direct experimental determination of the barrier height V_3, which up to now was determined from pure rotational transitions only, and consequently in the contribution to the improvement of the global study of the rotational levels in the lowest torsional states of methyl formate. Secondly further measurements using the synchrotron radiation are planned. The latest results will be presented. [2] Ilyushin, Kryvda, Alekseev, J. Mol. Spectrosc. (2009), doi: 10.1016/j.jms.2009.01.016

  16. Thermally triggered phononic gaps in liquids at THz scale

    DOE PAGESBeta

    Bolmatov, Dima; Zhernenkov, Mikhail; Zavyalov, Dmitry; Stoupin, Stanislav; Cunsolo, Alessandro; Cai, Yong Q.

    2016-01-14

    In this study we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to themore » transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.« less

  17. Femtosecond Kerr index of cyclic olefin co/polymers for THz nonlinear optics

    NASA Astrophysics Data System (ADS)

    Noskovicova, E.; Lorenc, D.; Slusna, L.; Velic, D.

    2016-10-01

    The second-order nonlinear refractive index n2 (Kerr index) of cyclic olefin copolymer (TOPAS) and cyclic olefin polymers (ZEONEX, ZEONOR) was determined at the wavelength of 800 nm within this work. Bulk samples of ZEONEX, ZEONOR and TOPAS were measured using the single-beam Z-scan technique and the values of their nonlinear refractive index were determined to be approximately 2 × 10-20 m2W-1 for all cases. The obtained values of n2 play a vital role for ultrafast pulse evolution and corresponding phenomena such as nonlinear spectral transformation.

  18. THz generation at 1.55 µm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions.

    PubMed

    Dietz, Roman J B; Gerhard, Marina; Stanze, Dennis; Koch, Martin; Sartorius, Bernd; Schell, Martin

    2011-12-19

    We present first results on photoconductive THz emitters for 1.55µm excitation. The emitters are based on MBE grown In0.53Ga0.47As/In0.52Al0.48As multilayer heterostructures (MLHS) with high carrier mobility. The high mobility is achieved by spatial separation of photoconductive and trapping regions. Photoconductive antennas made of these MLHS are evaluated as THz emitters in a THz time domain spectrometer (THz TDS). The high carrier mobility and effective absorption significantly increases the optical-to-THz conversion efficiency with THz bandwidth in excess of 3 THz. PMID:22274179

  19. Coherent detection of THz waves based on THz-induced time-resolved luminescence quenching in bulk gallium arsenide.

    PubMed

    Chu, Zheng; Liu, Jinsong; Wang, Kejia

    2012-05-01

    A kind of photoluminescence quenching, in which the time-resolved photoluminescence is modulated by a THz pulse, has been theoretically investigated by performing the ensemble Monte Carlo method in bulk gallium arsenide (GaAs) at room temperature. The quenching ratio could reach up to 50% under a strong THz field (100  kV/cm). The range in which luminescence quenching is linearly proportional to the THz field could be over 60  kV/cm. On the basis of these results, a principle for THz modulation and coherent detection is proposed.

  20. Technology trend in real-time, uncooled image sensors for sub-THz and THz wave detection

    NASA Astrophysics Data System (ADS)

    Oda, Naoki

    2016-05-01

    The author summarizes development of uncooled microbolometer terahertz (THz) focal plane arrays (FPAs) and real-time cameras for sub-THz and THz wave detection. The array formats are 320x240 and 640x480, and the cameras have several functions, such as lock-in imaging, external-trigger imaging, image processing (pixel binning and frame integration), beam profiling and so on. The FPAs themselves are sensitive to sub-THz, THz and infrared radiations. Active imaging systems based on the imagers are described. One of them is a real-time transmission-type THz microscope which contains a THz camera and a quantum cascade laser (QCL). The other one is an active sub-THz imaging system, where a transmission imaging mode and a reflection imaging mode can be switched with one-touch operation. Strong THz emitters, such as far-infrared gas lasers and QCLs, are strongly coherent and often produce interference fringes in an image. A method of reducing the interference fringes (beam homogenizing) is described. Microbolometer FPAs developed by other groups, antenna-coupled CMOS FPA, array detectors based on GaAs high-mobility heterostructure and so on are also summarized, which operate in real-time and at room temperature. A fair method of evaluating performance of detectors with different sizes and at different wavelengths is explained and the performances of the detectors are compared.

  1. Measurements of High-Field THz Induced Photocurrents in Semiconductors

    SciTech Connect

    Wiczer, Michael; /Illinois U., Urbana

    2007-11-07

    THz pulses have provided a useful tool for probing, with time resolution, the free carriers in a system. The development of methods to produce intense THz radiation has been slow since spectroscopists and condensed matter physicists first began probing materials with THz pulses. We have developed a method for producing intense ultra-short THz pulses, which have full width half maximum of 300 fs - approximately a half cycle of THz radiation. These intense half cycle pulses (HCPs) allow us to use THz radiation not only as a probe of the free carriers in a system but also as a source of excitation to alter a system in some way. In particular, HPCs perturb free carriers considerably in short time scales but show minimal effect to individual free carriers over long time. By exposing the semiconductor indium antimonide (InSb) to our intense THz HCP radiation, we have observed non-linear optical effects which suggest the generation of new free carriers by below band-gap THz photons. This generation of free carriers appears to be caused by an avalanche multiplication process, which should amplify the number of free carriers already in the system and then induce a current in the timescale of our THz pulse. This amplification on such a short timescale suggests the possibility of an ultra-fast detector of weak above band-gap radiation. We constructed a device which detects these currents by painting an electrode structure on the surface of the semiconductor. The currents induced across the electrodes by this avalanche multiplication process were measured and compared with other measurements of this non-linear optical process. We successfully measured THz induced currents in InSb, which indicate promise towards the development of an ultra-fast detector, and we gain insight into a possible physical explanation of the THz induced free carriers we observe in InSb.

  2. THz-TDS Characterization of the Digital Communication Channels of the Atmosphere and the Enabled Applications

    NASA Astrophysics Data System (ADS)

    Yang, Yihong; Mandehgar, Mahboubeh; Grischkowsky, D.

    2015-02-01

    Our measurements and complete linear dispersion theory calculations of amplitude and phase show that it is possible to have seven high performance point-to-point, 10.7 Gb/s to 28.4 Gb/s, digital THz ground links in the atmosphere. At a RH 58% (10g/m3) and 20 °C including O2 absorption, and for an absorption loss of 10 dB, the seven links are: Channel 1: at 96 GHz, Bandwidth (BW) 30 GHz, 10.7 Gb/s for 17.5 km, Channel 2: at 144 GHz, BW 30 GHz, 12.0 Gb/s for 7.4 km, Channel 3: at 252 GHz, BW 50 GHz, 25.2 Gb/s for 2.5 km, Channel 4: at 342 GHz, BW 24 GHz, 11.4 Gb/s for 840 m, Channel 5: at 408 GHz, BW 30 GHz, 13.6 Gb/s for 440 m, Channel 6: at 672 GHz, BW 60 GHz, 22.6 Gb/s for 140 m, and Channel 7: at 852 GHz, BW 60 GHz, 28.4 Gb/s for 120 m. The enabled long-path THz links are discussed. Two applications are presented in detail, namely, a long-path 17.5 km THz ground-link operating at 96 GHz, BW 30 GHz, 10.7 Gb/s, and a GEO satellite link at 252 GHz, BW 50 GHz, 25.2 Gb/s. In addition, Channel 7 at 852 GHz is studied by calculated pulse propagation to understand the relationships between high bit-rates and propagation distance. It is shown that good digital transmission could be obtained with 852 GHz, BW 108 GHz, 56.8 Gb/s for a 160 m propagation distance in the atmosphere with RH 58% (10g/m3) and 20 °C. Good digital transmission could also be obtained with 852 GHz, BW 108 GHz, 71.0 Gb/s for 80 m. These results are discussed with respect to high bit-rate, short-path applications. These digital THz communication channels were determined together with a new measurement of the water vapor continuum absorption from 0.35 to 1 THz. The THz pulses propagate though a 137 m long humidity-controlled chamber and are measured by THz time-domain spectroscopy (THz-TDS). The average relative humidity along the entire THz path is precisely obtained by measuring the difference between transit times of the sample and reference THz pulses to an accuracy of 0.1 ps. Using the measured

  3. Study of Third-Order Optical Nonlinearities of Se-Sn (Bi,Te) Quaternary Chalcogenide Thin Films Using Ti: Sapphire Laser in Femtosecond Regime

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2016-09-01

    The objective of the present research work is to study the nonlinear optical properties of quaternary Se-Sn (Bi,Te) chalcogenide thin films. A Z-scan technique utilizing 800 nm femtosecond laser source has been used for the determination of the nonlinear refractive index (n 2), two-photon absorption coefficient (β 2) and third-order susceptibility (χ (3)). In the measurement of n 2, an aperture is placed in the far field before the detector (closed aperture), while for the measurement of β 2, entire transmitted light is collected by the detector without an aperture (open aperture). Self-focusing has been observed in closed aperture transmission spectra. The appearance of the peak after the valley in this spectrum reflects the positive nonlinear refractive index. The calculated value of n 2 of the studied thin films varies from 1.06 × 10-12 cm2/W to 0.88 × 10-12 cm2/W. The compound-dependent behavior of n 2 is explained in this paper. We have also compared the experimental values of n 2 with the theoretically determined values, other compounds of chalcogenide glass and pure silica. The n 2 of the investigated thin films is found to be 3200 times higher than pure silica. The results of the open aperture Z-scan revealed that the value of β 2 of the studied compound is in the order of 10-8 cm/W. The behavior of two-photon absorption is described by means of the optical band gap (E g) of the studied compound. The variation in the figure-of-merit from 0.32 to 1.4 with varying Sn content is also reported in this paper. The higher value of nonlinearity makes this material advantageous for optical fibers, waveguides and optical limiting devices.

  4. Electrochemical behavior of nano and femtosecond laser textured titanium alloy for implant surface modification.

    PubMed

    Jeong, Yong-Hoon; Kim, Won-Gi; Choe, Han-Cheol

    2011-02-01

    In this study, the electrochemical behavior of nano and femtosecond laser textured titanium alloy for implant surface modification has been researched using the potentiostat equipment. Cp-Ti and Ti-6Al-4V alloy, located on X-Y motorized stage, were irradiated using femtosecond laser. The corrosion properties were examined by a potentiodynamic and AC impedance test.

  5. A high Tc superconducting terahertz emitter operated from 0.5 to 2.4 THz

    NASA Astrophysics Data System (ADS)

    Kashiwagi, T.; Sakamoto, K.; Kubo, H.; Shibano, Y.; Enomoto, T.; Kitamura, T.; Asanuma, K.; Yasui, T.; Watanabe, C.; Nakade, K.; Saiwai, Y.; Katsuragawa, T.; Tanaka, T.; Yuasa, T.; Tsujimoto, M.; Yoshizaki, R.; Yamamoto, T.; Minami, H.; Klemm, R. A.; Kadowaki, K.

    According to our previous studies, the efficiency of the THz radiation from a high Tc superconducting emitter can be improved greatly when the stand-alone mesa structure of Bi2212 single crystal is used for the emitter1). The principal reason for that lies in the heat removal from the mesa. Recently, we developed a new device structure with high heat exhaust from the stand-alone mesa structures and studied the radiation characteristics from the different shape of mesa structures. The results obtained from a cylindrical stand alone mesa show very wide the radiation frequencies ranging from 0.5 to 2.4 THz. Strong emission power peaks were observed at about 1.0 THz and 1.6 THz2). 1) T. Kitamura et al., Appl. Phys. Lett. 105, 202603 (2014) 2) T. Kashiwagi et al., Appl. Phys. Lett. 107, 082601 (2015) T. K. is supported by Futaba Electronics Memorial Foundation and JSPS KAKENHI Grant No. 15K20897. This work is in part performed in collaboration with Dr. Wai Kwok and his group in Argonne National Lab.

  6. Silicon Micromachined Microlens Array for THz Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, IImran; Gill, John J.; Jung-Kubiak, Cecile D.; Llombart, Nuria

    2013-01-01

    5 5 silicon microlens array was developed using a silicon micromachining technique for a silicon-based THz antenna array. The feature of the silicon micromachining technique enables one to microfabricate an unlimited number of microlens arrays at one time with good uniformity on a silicon wafer. This technique will resolve one of the key issues in building a THz camera, which is to integrate antennas in a detector array. The conventional approach of building single-pixel receivers and stacking them to form a multi-pixel receiver is not suited at THz because a single-pixel receiver already has difficulty fitting into mass, volume, and power budgets, especially in space applications. In this proposed technique, one has controllability on both diameter and curvature of a silicon microlens. First of all, the diameter of microlens depends on how thick photoresist one could coat and pattern. So far, the diameter of a 6- mm photoresist microlens with 400 m in height has been successfully microfabricated. Based on current researchers experiences, a diameter larger than 1-cm photoresist microlens array would be feasible. In order to control the curvature of the microlens, the following process variables could be used: 1. Amount of photoresist: It determines the curvature of the photoresist microlens. Since the photoresist lens is transferred onto the silicon substrate, it will directly control the curvature of the silicon microlens. 2. Etching selectivity between photoresist and silicon: The photoresist microlens is formed by thermal reflow. In order to transfer the exact photoresist curvature onto silicon, there needs to be etching selectivity of 1:1 between silicon and photoresist. However, by varying the etching selectivity, one could control the curvature of the silicon microlens. The figure shows the microfabricated silicon microlens 5 x5 array. The diameter of the microlens located in the center is about 2.5 mm. The measured 3-D profile of the microlens surface has a

  7. Simulation, fabrication and characterization of THz metamaterial absorbers.

    PubMed

    Grant, James P; McCrindle, Iain J H; Cumming, David R S

    2012-12-27

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical(1) and experimental demonstration(2) of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical(3), near IR(4), mid IR(5) , THz(6) , mm-wave(7) , microwave(8) and radio(9) bands. Applications include perfect lenses(10), sensors(11), telecommunications(12), invisibility cloaks(13) and filters(14,15). We have recently developed single band(16), dual band(17) and broadband(18) THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers(19). In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems.

  8. THz devices based on 2D electron systems

    NASA Astrophysics Data System (ADS)

    Xing, Huili Grace; Yan, Rusen; Song, Bo; Encomendero, Jimy; Jena, Debdeep

    2015-05-01

    In two-dimensional electron systems with mobility on the order of 1,000 - 10,000 cm2/Vs, the electron scattering time is about 1 ps. For the THz window of 0.3 - 3 THz, the THz photon energy is in the neighborhood of 1 meV, substantially smaller than the optical phonon energy of solids where these 2D electron systems resides. These properties make the 2D electron systems interesting as a platform to realize THz devices. In this paper, I will review 3 approaches investigated in the past few years in my group toward THz devices. The first approach is the conventional high electron mobility transistor based on GaN toward THz amplifiers. The second approach is to employ the tunable intraband absorption in 2D electron systems to realize THz modulators, where I will use graphene as a model material system. The third approach is to exploit plasma wave in these 2D electron systems that can be coupled with a negative differential conductance element for THz amplifiers/sources/detectors.

  9. Investigation of bovine serum albumin glycation by THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Cherkasova, Olga P.; Nazarov, Maxim M.; Shkurinov, Alexander P.

    2016-04-01

    Protein glycation is accelerated under hyperglycemic conditions resulting to loss in the structure and biological functions of proteins. The transmission THz spectroscopy has been used for measuring of bovine serum albumin glycation dynamics. It was found that amplitude of albumin THz absorption depends on type of sugars and incubation time.

  10. Simulation, Fabrication and Characterization of THz Metamaterial Absorbers

    PubMed Central

    Grant, James P.; McCrindle, Iain J.H.; Cumming, David R.S.

    2012-01-01

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical1 and experimental demonstration2 of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical3, near IR4, mid IR5 , THz6 , mm-wave7 , microwave8 and radio9 bands. Applications include perfect lenses10, sensors11, telecommunications12, invisibility cloaks13 and filters14,15. We have recently developed single band16, dual band17 and broadband18 THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers19. In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems. PMID:23299442

  11. Simulation, fabrication and characterization of THz metamaterial absorbers.

    PubMed

    Grant, James P; McCrindle, Iain J H; Cumming, David R S

    2012-01-01

    Metamaterials (MM), artificial materials engineered to have properties that may not be found in nature, have been widely explored since the first theoretical(1) and experimental demonstration(2) of their unique properties. MMs can provide a highly controllable electromagnetic response, and to date have been demonstrated in every technologically relevant spectral range including the optical(3), near IR(4), mid IR(5) , THz(6) , mm-wave(7) , microwave(8) and radio(9) bands. Applications include perfect lenses(10), sensors(11), telecommunications(12), invisibility cloaks(13) and filters(14,15). We have recently developed single band(16), dual band(17) and broadband(18) THz metamaterial absorber devices capable of greater than 80% absorption at the resonance peak. The concept of a MM absorber is especially important at THz frequencies where it is difficult to find strong frequency selective THz absorbers(19). In our MM absorber the THz radiation is absorbed in a thickness of ~ λ/20, overcoming the thickness limitation of traditional quarter wavelength absorbers. MM absorbers naturally lend themselves to THz detection applications, such as thermal sensors, and if integrated with suitable THz sources (e.g. QCLs), could lead to compact, highly sensitive, low cost, real time THz imaging systems. PMID:23299442

  12. Towards THz medical imaging; reflective imaging of animal tissues.

    PubMed

    Singh, Rahul S; Taylor, Zachary D; Culjat, Martin O; Grundfest, Warren S; Brown, Elliott R

    2008-01-01

    A reflective THz imaging system has been developed, and features a photoconductive switch and zero-bias Schottky diode detector. The system was used to image deli meats and can distinguish between muscle and adipose tissue based on water content. This capability is a step towards the development of THz medical imaging systems.

  13. Bi-directional terahertz-to-infrared emission from metal-coated nanostructures upon femtosecond laser irradiation.

    PubMed

    Zhang, Liangliang; Wu, Tong; Zhao, Ji; Zhang, Cunlin; Zhang, X-C

    2015-09-21

    We report on the investigation of bi-directional terahertz-to-infrared (THz-to-IR) radiation from a metal film coated on a substrate with randomly ordered pore arrays by irradiation of femtosecond laser pulses. THz-to-IR radiation was observed both for front-side excitation (laser incident on the metal surface) and for rear-side excitation (laser incident on the substrate). In both cases, the radiation was observed both in the propagation direction of the laser beam and in the reverse direction. Considering these findings, we propose a thermal emission mechanism based on the production of surface plasmons, either delocalized (through phase-matched excitation) or localized (through surface roughness) at the air/metal and metal/substrate interfaces.

  14. Bi-directional terahertz-to-infrared emission from metal-coated nanostructures upon femtosecond laser irradiation.

    PubMed

    Zhang, Liangliang; Wu, Tong; Zhao, Ji; Zhang, Cunlin; Zhang, X-C

    2015-09-21

    We report on the investigation of bi-directional terahertz-to-infrared (THz-to-IR) radiation from a metal film coated on a substrate with randomly ordered pore arrays by irradiation of femtosecond laser pulses. THz-to-IR radiation was observed both for front-side excitation (laser incident on the metal surface) and for rear-side excitation (laser incident on the substrate). In both cases, the radiation was observed both in the propagation direction of the laser beam and in the reverse direction. Considering these findings, we propose a thermal emission mechanism based on the production of surface plasmons, either delocalized (through phase-matched excitation) or localized (through surface roughness) at the air/metal and metal/substrate interfaces. PMID:26406717

  15. Theoretical study on mode competition between fundamental and second harmonic modes in a 0.42 THz gyrotron with gradually tapered complex cavity

    SciTech Connect

    Zhao, Qixiang Yu, Sheng; Zhang, Tianzhong; Li, Xiang

    2015-10-15

    In this paper, the nonlinear dynamics of mode competition in the complex cavity gyrotron are studied by using multi-frequency, time-dependent theory with the cold-cavity longitudinal profile approximation. Based on the theory, a code is written to simulate the mode competition in the gradually tapered complex cavity gyrotron operating at second harmonic oscillation. The simulations tracking seven competition modes show that single mode oscillation of the desired mode TE{sub 17.4} at 150 kW level can be expected with proper choice of operating parameters. Through studying on mode competition, it is proved that the complex cavity has a good capability for suppressing the mode competition. Meanwhile, it is found that TE{sub 17.3} could be excited in the first cavity as a competition mode when the gyrotron operating at large beam current, which leads to that TE{sub 17.3} and TE{sub 17.4} with different frequencies can coexist stably in the complex cavity gyrotron with very close amplitudes. Thus, the complex cavity might be used for multi-frequency output gyrotron.

  16. THz transmission through cross metallic fractal slits by FDTD simulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan; Liu, Liming; Zhao, Guozhong; Zhang, Cunlin

    2011-08-01

    The transmission spectra of sub-wavelength cross metallic fractal slits in terahertz (THz) frequency region are presented by means of finite-difference-time-domain (FDTD) simulation. The transmission spectra with multiple pass bands and stop bands are observed. To understand the physical mechanism of the enhanced transmissions, we simulated the electric field distribution of THz radiation within the metallic slits at the resonance frequencies by the electromagnetic design software named CONCERTO. Further analysis reveals that the two transmission peaks in the low frequency is the local resonance of electric field of the two cross slit, respectively. The third transmission peak is the co-effect of the two level cross slits. Our simulation is helpful for the understanding of THz wave propagation and THz transmission through the cross metallic fractal structures. It is also useful for the development of THz photonic devices.

  17. THz transceiver characterization : LDRD project 139363 final report.

    SciTech Connect

    Nordquist, Christopher Daniel; Wanke, Michael Clement; Cich, Michael Joseph; Reno, John Louis; Fuller, Charles T.; Wendt, Joel Robert; Lee, Mark; Grine, Albert D.

    2009-09-01

    LDRD Project 139363 supported experiments to quantify the performance characteristics of monolithically integrated Schottky diode + quantum cascade laser (QCL) heterodyne mixers at terahertz (THz) frequencies. These integrated mixers are the first all-semiconductor THz devices to successfully incorporate a rectifying diode directly into the optical waveguide of a QCL, obviating the conventional optical coupling between a THz local oscillator and rectifier in a heterodyne mixer system. This integrated mixer was shown to function as a true heterodyne receiver of an externally received THz signal, a breakthrough which may lead to more widespread acceptance of this new THz technology paradigm. In addition, questions about QCL mode shifting in response to temperature, bias, and external feedback, and to what extent internal frequency locking can improve stability have been answered under this project.

  18. Manifestation of a Second Dirac Surface State and Bulk Bands in THz Radiation from Topological Insulators

    PubMed Central

    Tu, Chien-Ming; Yeh, Tien-Tien; Tzeng, Wen-Yen; Chen, Yi-Ru; Chen, Hsueh-Ju; Ku, Shin-An; Luo, Chih-Wei; Lin, Jiunn-Yuan; Wu, Kaung-Hsiung; Juang, Jenh-Yih; Kobayashi, Takayoshi; Cheng, Cheng-Maw; Tsuei, Ku-Ding; Berger, Helmuth; Sankar, Raman; Chou, Fang-Cheng

    2015-01-01

    Topological insulators (TIs) are interesting quantum matters that have a narrow bandgap for bulk and a Dirac-cone-like conducting surface state (SS). The recent discovered second Dirac surface state (SS) and bulk bands (BBs) located ~1.5 eV above the first SS are important for optical coupling in TIs. Here, we report on the time-domain measurements of THz radiation generated from TIs n-type Cu0.02Bi2Se3 and p-type Bi2Te3 single crystals by ultrafast optical pulse excitation. The observed polarity-reversal of the THz pulse originated from transient current is unusual, and cannot be reconciled with the photo-Dember effect. The second SS and BBs are found to be indispensable for the explanation of the unusual phenomenon. Thanks to the existence of the second SS and BBs, TIs manifest an effective wide band gap in THz generation. The present study demonstrates that time-domain THz spectroscopy provide rich information of the optical coupling and the electronic structure of TIs. PMID:26370337

  19. Manifestation of a Second Dirac Surface State and Bulk Bands in THz Radiation from Topological Insulators.

    PubMed

    Tu, Chien-Ming; Yeh, Tien-Tien; Tzeng, Wen-Yen; Chen, Yi-Ru; Chen, Hsueh-Ju; Ku, Shin-An; Luo, Chih-Wei; Lin, Jiunn-Yuan; Wu, Kaung-Hsiung; Juang, Jenh-Yih; Kobayashi, Takayoshi; Cheng, Cheng-Maw; Tsuei, Ku-Ding; Berger, Helmuth; Sankar, Raman; Chou, Fang-Cheng

    2015-01-01

    Topological insulators (TIs) are interesting quantum matters that have a narrow bandgap for bulk and a Dirac-cone-like conducting surface state (SS). The recent discovered second Dirac surface state (SS) and bulk bands (BBs) located ~1.5 eV above the first SS are important for optical coupling in TIs. Here, we report on the time-domain measurements of THz radiation generated from TIs n-type Cu(0.02)Bi2Se3 and p-type Bi2Te3 single crystals by ultrafast optical pulse excitation. The observed polarity-reversal of the THz pulse originated from transient current is unusual, and cannot be reconciled with the photo-Dember effect. The second SS and BBs are found to be indispensable for the explanation of the unusual phenomenon. Thanks to the existence of the second SS and BBs, TIs manifest an effective wide band gap in THz generation. The present study demonstrates that time-domain THz spectroscopy provide rich information of the optical coupling and the electronic structure of TIs.

  20. Femtosecond photography lessons

    NASA Astrophysics Data System (ADS)

    Fanchenko, S. D.

    1999-06-01

    Antic scientists, sailors, warriors, physician, etc. were perceiving the space by means of their eye vision system. Nowadays the same people use eyeglasses, telescopes, microscopes, image converters. All these devices fit the necessary magnification, intensification gain and image spectrum to the eyes. The human brain is processing the image data offered to him in a format pertaining to eyes. Hence, the cognition of images can be regarded as a direct measurement. As to the time scale converters, they turned out to be harder done as compared with the spatial scale converters. Hence, the development of the high-speed photography (HSP) continues for more than a hundred and fifty years. The recent pico- femtosecond HSP branch sprang up in 1949 at the Kurchatov Institute -- its cradle. All about the HSP had been advertised. Instead of reprinting what is already well known, it makes sense to emphasize some instructive lessons drawn from past experience. Also it is tempting to look a bit into the high-speed photography future.

  1. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  2. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  3. Reversible Femtosecond Laser-Assisted Myopia Correction: A Non-Human Primate Study of Lenticule Re-Implantation after Refractive Lenticule Extraction

    PubMed Central

    Chaurasia, Shyam S.; Lee, Wing S.; Tan, Donald T.; Mehta, Jodhbir S.

    2013-01-01

    LASIK (laser-assisted in situ keratomileusis) is a common laser refractive procedure for myopia and astigmatism, involving permanent removal of anterior corneal stromal tissue by excimer ablation beneath a hinged flap. Correction of refractive error is achieved by the resulting change in the curvature of the cornea and is limited by central corneal thickness, as a thin residual stromal bed may result in biomechanical instability of the cornea. A recently developed alternative to LASIK called Refractive Lenticule Extraction (ReLEx) utilizes solely a femtosecond laser (FSL) to incise an intrastromal refractive lenticule (RL), which results in reshaping the corneal curvature and correcting the myopia and/or astigmatism. As the RL is extracted intact in the ReLEx, we hypothesized that it could be cryopreserved and re-implanted at a later date to restore corneal stromal volume, in the event of keratectasia, making ReLEx a potentially reversible procedure, unlike LASIK. In this study, we re-implanted cryopreserved RLs in a non-human primate model of ReLEx. Mild intrastromal haze, noted during the first 2 weeks after re-implantation, subsided after 8 weeks. Refractive parameters including corneal thickness, anterior curvature and refractive error indices were restored to near pre-operative values after the re-implantation. Immunohistochemistry revealed no myofibroblast formation or abnormal collagen type I expression after 8 weeks, and a significant attenuation of fibronectin and tenascin expression from week 8 to 16 after re-implantation. In addition, keratocyte re-population could be found along the implanted RL interfaces. Our findings suggest that RL cryopreservation and re-implantation after ReLEx appears feasible, suggesting the possibility of potential reversibility of the procedure, and possible future uses of RLs in treating other corneal disorders and refractive errors. PMID:23826194

  4. THz Hot-Electron Photon Counter

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Sergeev, Andrei V.

    2004-01-01

    We present a concept for the hot-electron transition-edge sensor capable of counting THz photons. The main need for such a sensor is a spectroscopy on future space telescopes where a background limited NEP approx. 10(exp -20) W/H(exp 1/2) is expected at around 1 THz. Under these conditions, the rate of photon arrival is very low and any currently imaginable detector with sufficient sensitivity will operate in the photon counting mode. The Hot-Electron Photon Counter based on a submicron-size Ti bridge has a very low heat capacity which provides a high enough energy resolution (approx.140 GHz) at 0.3 K. With the sensor time constant of a few microseconds, the dynamic range would be approx. 30 dB. The sensor couples to radiation via a planar antenna and is read by a SQUID amplifier or by a 1-bit RSFQ ADC. A compact array of the antenna-coupled counters can be fabricated on a silicon wafer without membranes.

  5. Accelerator Sources for THz science: A Review

    SciTech Connect

    Neil, George R.

    2013-07-10

    Free Electron Lasers have been around since 1977 providing not only a test bed for the physics of FELs and electron/photon interactions but as a workhorse of scientific research. More than 30 FELs are presently operating around the world spanning a wavelength range from the millimeter region to the hard x-ray using direct current and rf linear accelerators or storage rings as electron sources. The characteristics that have driven the development of these sources are the desire for high peak and average power, high micropulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. Operation of FELs in the far infrared to terahertz regime poses special challenges which have been and are being addressed at a number of facilities around the world. This paper will review a number of former and existing FELs operating in this regime and discuss future efforts. Broadband collective radiation from relativistic electrons also plays a significant role in the production of FIR/THz radiation and several groups are taking advantage of this source for users. Applications for use of the radiation have evolved from simple imaging to complex pump probe tests of insulator/metal transitions and energy flow in organic molecules. We will discuss the technologies for generating the IR/FIR/THz radiation and cover some of the unique applications of such sources.

  6. Project on the superposition of beamlines for parametric X-ray radiation and coherent transition radiation in the THz region at LEBRA

    NASA Astrophysics Data System (ADS)

    Hayakawa, Y.; Hayakawa, K.; Inagaki, M.; Kaneda, T.; Nakao, K.; Nogami, K.; Sakae, T.; Sakai, T.; Sei, N.; Takahashi, Y.; Tanaka, T.

    2016-07-01

    A new project to develop a terahertz (THz)-wave light source is in progress at the parametric X-ray (PXR) beamline of the Laboratory for Electron Beam Research and Application (LEBRA) at Nihon University. The THz-wave source is based on coherent transition radiation (CTR) emitted from a metal foil inserted downstream from a crystal target that is the PXR radiator. Beryllium or titanium foil is the most promising candidate for a THz-wave radiator. Since the electron linac of LEBRA was developed for a free electron laser (FEL), electron beam with bunch length of 1 ps (rms) can be provided by magnetic bunching at the bending magnet section. Thus, very intense coherent transition radiation (CTR) can be obtained in the frequency region around 1 THz. The results of preliminary experiments for CTR production suggested that sufficiently intense THz-CTR can be obtained using the LEBRA linac. In order to realize a THz-wave source for practical application studies, we have a plan to add the extraction feature for THz waves to the PXR beamline.

  7. Mode analysis and design of 0.3-THz Clinotron

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Wang, Jian-Guo; Wang, Guang-Qiang; Zeng, Peng; Wang, Dong-Yang

    2016-10-01

    To develop a high-power continuous-wave terahertz source, a Clinotron operating at 0.3 THz is investigated. Based on the analyses of field distribution and coupling impedance, the dispersion characteristic of a rectangular resonator is preliminarily studied. The effective way to select fundamental mode to interact with the electron beam is especially studied. Finally, the structure is optimized by particle-in-cell simulation, and the problems of manufacture tolerance, current density threshold, and heat dissipation during Clinotron’s operation are also discussed. The optimum device can work with a good performance under the conditions of 8 kV and 60 mA. With the generation of signal frequency at 315.89 GHz and output power at 12 W on average, this device shows great prospects in the application of terahertz waves. Project supported by the National Natural Science Foundation of China (Grant No. 61231003).

  8. A femtosecond electron diffraction system

    NASA Astrophysics Data System (ADS)

    Zhao, Baosheng; Zhang, Jie; Tian, Jinshou; Wang, Junfeng; Wu, Jianjun; Liu, Yunquan; Liu, Hulin

    2007-01-01

    The femtosecond electron diffraction (FED) is a unique method for the study of the changes of complex molecular structures, and has been specifically applied in the investigations of transient-optics, opto-physics, crystallography, and other fields. The FED system designed by the present group, consists of a 35nm Ag photocathode evaporated on an ultraviolet glass, an anode with a 0.1mm aperture, two pairs of deflection plate for the deflection of electron beams in X and Y directions, and the Y deflection plate can be used as a scanning plate while measuring the pulse width of electron beams, the double MCPs detector for the enhancing and detecting of electron image. The magnetic lens was used for the focusing of the electron beams, and the focal length is 125mm. The distance between the object(the photocathode) and the image(the sample) is 503mm, and the size of electron beams is smaller than 17microns after focusing, the convergence angle is of -0.075~0.075°, and the temporal resolution is better than 350fs.

  9. Femtosecond dynamics of cluster expansion

    NASA Astrophysics Data System (ADS)

    Gao, Xiaohui; Wang, Xiaoming; Shim, Bonggu; Arefiev, Alexey; Tushentsov, Mikhail; Breizman, Boris; Downer, Mike

    2010-03-01

    Noble gas clusters irradiated by intense ultrafast laser expand quickly and become typical plasma in picosecond time scale. During the expansion, the clustered plasma demonstrates unique optical properties such as strong absorption and positive contribution to the refractive index. Here we studied cluster expansion dynamics by fs-time-resolved refractive index and absorption measurements in cluster gas jets after ionization and heating by an intense pump pulse. The refractive index measured by frequency domain interferometry (FDI) shows the transient positive peak of refractive index due to clustered plasma. By separating it from the negative contribution of the monomer plasma, we are able to determine the cluster fraction. The absorption measured by a delayed probe shows the contribution from clusters of various sizes. The plasma resonances in the cluster explain the enhancement of the absorption in our isothermal expanding cluster model. The cluster size distribution can be determined. A complete understanding of the femtosecond dynamics of cluster expansion is essential in the accurate interpretation and control of laser-cluster experiments such as phase-matched harmonic generation in cluster medium.

  10. Comprehensive Monte-Carlo simulator for optimization of imaging parameters for high sensitivity detection of skin cancer at the THz

    NASA Astrophysics Data System (ADS)

    Ney, Michael; Abdulhalim, Ibrahim

    2016-03-01

    Skin cancer detection at its early stages has been the focus of a large number of experimental and theoretical studies during the past decades. Among these studies two prominent approaches presenting high potential are reflectometric sensing at the THz wavelengths region and polarimetric imaging techniques in the visible wavelengths. While THz radiation contrast agent and source of sensitivity to cancer related tissue alterations was considered to be mainly the elevated water content in the cancerous tissue, the polarimetric approach has been verified to enable cancerous tissue differentiation based on cancer induced structural alterations to the tissue. Combining THz with the polarimetric approach, which is considered in this study, is examined in order to enable higher detection sensitivity than previously pure reflectometric THz measurements. For this, a comprehensive MC simulation of radiative transfer in a complex skin tissue model fitted for the THz domain that considers the skin`s stratified structure, tissue material optical dispersion modeling, surface roughness, scatterers, and substructure organelles has been developed. Additionally, a narrow beam Mueller matrix differential analysis technique is suggested for assessing skin cancer induced changes in the polarimetric image, enabling the tissue model and MC simulation to be utilized for determining the imaging parameters resulting in maximal detection sensitivity.

  11. Ultrafast Energy Transfer from Solvent to Solute Induced by Subpicosecond Highly Intense THz Pulses.

    PubMed

    Mishra, Pankaj Kr; Vendrell, Oriol; Santra, Robin

    2015-06-25

    The ultrafast energy transfer from an intense, subpicosecond THz pulse to bulk water at 300 K and density 1 g/cm(3) is simulated by ab initio molecular dynamics with explicit inclusion of the laser pulse. A 200 fs subcycle pulse of intensity 5 × 10(12) W/cm(2) corresponding to a peak field amplitude of 0.6 V/Å and achievable nowadays using optical rectification techniques results in a temperature jump from 300 K up to ∼1000 K within the first picosecond after the pulse. We discuss in detail the time-dependent structural changes caused by the THz pulse in the water medium and suggest possible ways to measure those changes by pump-probe experimental techniques. The ultrafast energy transfer from the energized water molecules to a solute molecule is studied on a test system, phenol. We find that phenol is, in the gas phase, insensitive to the THz pulse and only gains energy in solution via collisional energy transfer with the water molecules in its environment. The reason for this is found in the mode of interaction of the THz pulse with the aqueous medium. In short, water molecules respond mainly through their permanent dipole moments trying to orient themselves in the strong electric field of the pulse and disrupting their hydrogen-bonding structure. As compared with the water molecule, phenol has a smaller but still substantial permanent dipole moment. The moments of inertia of phenol are, however, too large for it to rotate in the short duration of the THz pulse. Therefore, the direct heating-up mechanism is mostly selective to the solvent molecules, whereas the solute heats up indirectly via collisions with its hot environment in about 1 to 2 ps. PMID:26000640

  12. Recent progress of THz-quantum cascade lasers using nitride-based materials

    NASA Astrophysics Data System (ADS)

    Hirayama, Hideki; Terashima, Wataru

    2015-08-01

    Nitride semiconductor is a material having potentials for realizing wide frequency range of quantum-cascade lasers (QCLs), i.e., 3~20 THz and 1~8 μm, including an unexplored terahertz frequency range from 5 to 12 THz, as well as realizing room temperature operation of THz-QCL. The merit of using an AlGaN-based semiconductor is that it has much higher longitudinal optical phonon energies (ELO> 90meV) than those of GaAs-based semiconductors (~ 36 meV). In this study, we demonstrate the first lasing action of GaN-based QCLs. We introduced an unique quantum design active region, i.e., "pure 3-level system design", which is consisting of 2 quantum wells (QWs) per one period. We grew GaN/AlGaN QC structures by using molecular beam epitaxy (MBE). The layer structure of the GaN/AlGaN QCL was consisting of 100~200 periods of QC active layers sandwiched by Si-doped (Al)GaN upper and lower contact layers, which were grown on a high-quality AlGaN/AlN template grown on a c-plane sapphire substrate. After the crystal growth, we fabricated QCL sample with single metal plasmon waveguide structure. Lasing spectrum was obtained at 5.39 THz measured under pulsed current injection at 5.8K. The threshold current density Jth and the threshold voltage Vth were 1.75 kA/cm2 and 14.5 V, respectively. We also fabricated similar design GaN/AlGaN QCL by metal organic chemical vapor deposition (MOCVD), and obtained lasing at 6.97 THz. The Jth and Vth of the MOCVD grown QCL were 0.75 kA/cm2 and 27 V, respectively, measured at 5.2 K.

  13. Robust identification of concealed dangerous substances using THz imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Nystad, Helle E.; Haakestad, Magnus W.; van Rheenen, Arthur D.

    2015-05-01

    False alarm rates must be kept sufficiently low if a method to detect and identify objects or substances is to be implemented in real life applications. This is also true when trying to detect and identify dangerous substances such as explosives and drugs that are concealed in packaging materials. THz technology may be suited to detect these substances, especially when imaging and spectroscopy are combined. To achieve reasonable throughput, the detection and identification process must be automated and this implies reliance on algorithms to perform this task, rather than human beings. The identification part of the algorithm must compare spectral features of the unknown substance with those in a library of features and determining the distance, in some sense, between these features. If the distance is less than some defined threshold a match is declared. In this paper we consider two types of spectral characteristic that are derived from measured time-domain signals measured in the THz regime: the absorbance and its derivative. Also, we consider two schemes to measure the distance between the unknown and library characteristics: Spectral Angle Mapping (SAM) and Principal Component Analysis (PCA). Finally, the effect of windowing of the measured time-domain signal on the performance of the algorithms is studied, by varying the Blackman-Harris (B-H) window width. Algorithm performance is quantified by studying the receiver-operating characteristics (ROC). For the data considered in this study we conclude that the best performance is obtained when the derivative of the absorbance is used in combination with a narrow B-H window and SAM. SAM is a more straight-forward method and requires no large training data sets and tweaking.

  14. Holographic vector-wave femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hayasaki, Yoshio; Hasegawa, Satoshi

    2016-03-01

    Arbitrary and variable beam shaping of femtosecond pulses by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM) have been applied to femtosecond laser processing. The holographic femtosecond laser processing has been widely used in many applications such as two-photon polymerization, optical waveguide fabrication, fabrication of volume phase gratings in polymers, and surface nanostructuring. A vector wave that has a spatial distribution of polarization states control of femtosecond pulses gives good performances for the femtosecond laser processing. In this paper, an in- system optimization of a CGH for massively-parallel femtosecond laser processing, a dynamic control of spatial spectral dispersion to improve the focal spot shape, and the holographic vector-wave femtosecond laser processing are demonstrated.

  15. Work on femtosecond lasers at Vilnyus University viewed

    NASA Astrophysics Data System (ADS)

    Piskarskas, A.

    1986-02-01

    Advances in shortening the duration of laser pulses from the nanosecond to picosecond to femtosecond ranges at the laser research center of Vil'nyus University over the past 20 years are reviewed. Physicists, mathematicians, chemists, biologists, and medical personnel are all involved in the development of lasers for various branches of science at the university's laser research center. A picosecond laser spectrometer was developed for measuring very rapid jumps of electrons, for example. The speed of electrons over a distance of 20 angstroms reportedly has been measured with this instrument. Personnel of the center have been using computers in work on laser methods for studying crystals in which electron jumps occur that are still more rapid, the author relates. A femtosecond parametric laser employing new crystals and pumping sources has been designed for this purpose. Such a unit is capable of emitting a pulse only 200 femtoseconds in duration.

  16. Femtosecond and ultraviolet laser irradiation of graphitelike hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Kanaev, Andrei V.; Petitet, Jean-Pierre; Museur, Luc; Marine, Vladimir; Solozhenko, Vladimir L.; Zafiropulos, Vassilis

    2004-10-01

    The effect of the femtosecond and nanosecond UV laser irradiation (below the ablation threshold) on graphitelike hexagonal boron nitride (hBN) has been studied. Experiments were carried out with the compacted powder under high vacuum at room temperature using the excimer KrF laser (248nm). In the nanosecond operation mode, the laser-induced fluorescence spectra are found strongly modified depending on the integrated doze, which is attributed to a progressive enrichment of the surface layer by an elemental boron. A slow sample recovery after the laser irradiation has been observed. On the other hand, in the femtosecond mode, the fluorescence spectra depend on the laser fluence, and the changes are reversible: low-energy fluorescence spectra are restored immediately when the laser energy decreases. This effect can be explained by a material bleaching, which favors a bulk centers emission. The ablation threshold has been determined as 78mJ/cm2 in the femtosecond laser operational mode.

  17. Response of graphene to femtosecond high-intensity laser irradiation

    SciTech Connect

    Roberts, Adam; Cormode, Daniel; Reynolds, Collin; Newhouse-Illige, Ty; LeRoy, Brian J.; Sandhu, Arvinder S.

    2011-08-01

    We study the response of graphene to high-intensity, 50-femtosecond laser pulse excitation. We establish that graphene has a high ({approx}3 x 10{sup 12} Wcm{sup -2}) single-shot damage threshold. Above this threshold, a single laser pulse cleanly ablates graphene, leaving microscopically defined edges. Below this threshold, we observe laser-induced defect formation leading to degradation of the lattice over multiple exposures. We identify the lattice modification processes through in-situ Raman microscopy. The effective lifetime of chemical vapor deposition grown graphene under femtosecond near-infrared irradiation and its dependence on laser intensity is determined. These results also define the limits of non-linear applications of graphene in femtosecond high-intensity regime.

  18. THz waveguide adapters for efficient radiation out-coupling from double metal THz QCLs.

    PubMed

    Castellano, Fabrizio; Li, Lianhe; Linfield, Edmund H; Davies, A Giles; Beere, Harvey E; Ritchie, David A; Vitiello, Miriam S

    2015-02-23

    We report the development of on-chip optical components designed to improve the out-coupling of double-metal terahertz (THz) frequency quantum cascade lasers (QCLs). A visible reshaping of the optical beam is achieved, independent of the precise waveguide configuration, by direct incorporation of cyclic-olefin copolymer (COC) dielectric optical fibers onto the QCL facet. A major improvement is further achieved by incorporating a micromachined feed-horn waveguide, assembled around the THz QCL and integrated with a slit-coupler. In its first implementation, we obtain a ± 20° beam divergence, offering the potential for high-efficiency radiation coupling from a metal-metal waveguide into optical fibers.

  19. Femtosecond Isomerization Dynamics in the Ethylene Molecule

    NASA Astrophysics Data System (ADS)

    Belkacem, Ali

    2009-05-01

    The ethylene molecule plays a fundamental and prototypical role for the understanding of photo-isomerizaton processes and particularly for ultrafast energy conversion through nonadiabatic transitions and state crossing via conical intersections. We have developed a high power femtosecond laser based pump-probe system to study femtosecond isomerization dynamics in various model molecules. By focusing 25-mJ laser pulses into a 5-cm-long xenon-filled gas cell, we can deliver about 10^9 photons per harmonic per pulse onto a target gas, with the photons ranging in energy from 8 to 40 eV. In this talk I will present the results of our studies of the dynamics in the excited ethylene cation (C2H4^+) using a high intensity high harmonic source. The dynamics in the excited ethylene cation leads, among other channels, to isomerization to the ethyledene configuration (CH3CH^+), which is predicted to be a transient configuration for electronic relaxation. With an intense femtosecond EUV pulse as pump, and a NIR (near infra-red) pulse as probe, we measure a time scale of 45±10 fs for formation of the transient ethylidene configuration (lifetime of 60±15 fs ) through detection of the NIR-induced fragmentation to CH3^+ and CH^+. Also, a H2-stretch transient configuration (believed to succeed ethylidene), yielding H2^+, is found to be populated after 100±10 fs. These studies were also extended to excited state dynamics in the neutral ethylene using a recently developed split mirror technique enabling XUV pump - XUV probe capability. In order to achieve this we optimized our high harmonic system for high power in order to produce a very intense source of high harmonics that allows multiphoton (XUV) absorption by a single molecule. In particular, we were able to measure two-photon double-ionization of Ethelyne and argon and three-photon double ionization of neon.

  20. Femtosecond time-resolved electronic relaxation dynamics in tetrathiafulvalene

    SciTech Connect

    Staedter, D.; Polizzi, L.; Thiré, N.; Mairesse, Y.; Mayer, P.; Blanchet, V.

    2015-05-21

    In the present paper, the ultrafast electronic relaxation of tetrathiafulvalene (TTF) initiated around 4 eV is studied by femtosecond time-resolved velocity-map imaging. The goal is to investigate the broad double structure observed in the absorption spectrum at this energy. By monitoring the transients of the parent cation and its fragments and by varying the pump and the probe wavelengths, two internal conversions and intramolecular vibrational relaxation are detected both on the order of a few hundred of femtoseconds. Photoelectron images permit the assignment of a dark electronic state involved in the relaxation. In addition, the formation of the dimer of TTF has been observed.

  1. Two dimensional spectroscopy of Liquids in THz-domain: THz analogue of 2D Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Okumura, K.; Tanimura, Y.

    1998-03-01

    After the initial proposal(Y. Tanimura and S. Mukamel, J. Chem. Phys. 99, 9496 (1993)), the two dimensional Raman spectroscopy in the liquid phase has been received a considerable attention. Both experimental and theoretical activity of this field has been quite high. Since we have two controllable delay times, we can obtain more information than the lower-order experiments such as OKE. The new information includes that on heterogeneous distribution in liquids. Recently, it is found that the coupling between the modes in liquids can be investigated by the technique, both experimentally and theoretically(A. Tokmakoff, M.J. Lang, D.S. Larsen, G.R. Fleming, V. Chernyak, and S. Mukamel, Phys. Rev. Lett. (in press))^,(K. Okumura and Y. Tanimura, Chem. Phys. Lett. 278, 175 (1997)) In this talk, we will emphasize that we can perform the THz analogue of the 2D Raman spectroscopy if the THz short-pulse laser becomes available, which may not be in the far future. Theoretically, we can formulate this novel THz spectroscopy on the same footing as the 2D Raman spectroscopy. We will clarify new aspects of this technique comparing with the 2D Raman spectroscopy--- the reason it worth trying the tough experiment. See

  2. [What's new in biomedical applications for Terahertz (THz) technology].

    PubMed

    Dabouis, Vincent; Chancerelle, Yves; Crouzier, David; Debouzy, Jean-Claude

    2009-01-01

    Terahertz technologies have recently been applied to develop high resolution imaging. Since practical portable systems can be designed, the possibilty has emerged to easily screen for biohazards and concealed objects, a procedure which usually requires remote analysis. Applications of THz are also envisaged in the medical field, because this technology offers a degree of accuracy never reached before in molecule analysis. Skin abnormalities and dental health care are two promising targets of THz applications. Nevertheless, potential hazards and health effects of THz exposure should be monitored carefully, particularly since some data suggest induction of genomic instability. PMID:19765389

  3. THz ATR Spectroscopy for Inline Monitoring of Highly Absorbing Liquids

    NASA Astrophysics Data System (ADS)

    Soltani, Amin; Busch, Stefan F.; Plew, Patrick; Balzer, Jan C.; Koch, Martin

    2016-10-01

    We present a THz attenuated total reflection (ATR) setup which allows for inline measurements of highly absorbing liquids. As a proof of principle, we investigate a mixture of water and ground calcium carbonate (GCC) from 5 to 40 wt%. Inline measurements prove that our THz ATR setup allows for the distinction of various concentrations. As an example, we show inline THz ATR measurements for 30 to 40 wt% for GCC watery solution, as this concentration range is of technical relevance. We obtain a sensitivity better than 2 wt%.

  4. Multifunctional surfaces produced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2015-01-01

    In this study, we create a multifunctional metal surface by producing a hierarchical nano/microstructure with femtosecond laser pulses. The multifunctional surface exhibits combined effects of dramatically enhanced broadband absorption, superhydrophobicity, and self-cleaning. The superhydrophobic effect is demonstrated by a falling water droplet repelled away from a structured surface with 30% of the droplet kinetic energy conserved, while the self-cleaning effect is shown by each water droplet taking away a significant amount of dust particles on the altered surface. The multifunctional surface is useful for light collection and water/dust repelling.

  5. Femtosecond pulses propagation through pure water

    NASA Astrophysics Data System (ADS)

    Naveira, Lucas; Sokolov, Alexei; Byeon, Joong-Hyeok; Kattawar, George

    2007-10-01

    Recently, considerable attention has been dedicated to the field of optical precursors, which can possibly be applied to long-distance underwater communications. Input beam intensities have been carefully adjusted to keep experiments in the linear regime, and some experiments have shown violation of the Beer-Lambert law. We are presently carrying out experiments using femtosecond laser pulses propagating through pure water strictly in the linear regime to study this interesting and important behavior. We are also employing several new and innovative schemes to more clearly define the phenomena.

  6. Serial Femtosecond Crystallography of Membrane Proteins.

    PubMed

    Zhu, Lan; Weierstall, Uwe; Cherezov, Vadim; Liu, Wei

    2016-01-01

    Membrane proteins, including G protein-coupled receptors (GPCRs), constitute the most important drug targets. The increasing number of targets requires new structural information, which has proven tremendously challenging due to the difficulties in growing diffraction-quality crystals. Recent developments of serial femtosecond crystallography at X-ray free electron lasers combined with the use of membrane-mimetic gel-like matrix of lipidic cubic phase (LCP-SFX) for crystal growth and delivery hold significant promise to accelerate structural studies of membrane proteins. This chapter describes the development and current status of the LCP-SFX technology and elaborates its future role in structural biology of membrane proteins. PMID:27553241

  7. Nanostructures created by interfered femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Chang, Yun-Ching; Yao, Jimmy; Luo, Claire; Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene

    2011-10-01

    The method by applying the interfered femtosecond laser to create nanostructured copper (Cu) surface has been studied. The nanostructure created by direct laser irradiation is also realized for comparison. Results show that more uniform and finer nanostructures with sphere shape and feature size around 100 nm can be induced by the interfered laser illumination comparing with the direct laser illumination. This offers an alternative fabrication approach that the feature size and the shape of the laser induced metallic nanostructures can be highly controlled, which can extremely improve its performance in related application such as the colorized metal, catalyst, SERS substrate, and etc.

  8. Investigation of transmission enhancement of THz radiation through subwavelength fractal structures of copper foils by FDTD simulation

    NASA Astrophysics Data System (ADS)

    Meng, Wei; Zhao, Guozhong; Meng, Tianhua; Zhang, Cunlin

    2008-12-01

    We present the enhanced transmission spectrum of a copper foil with the sub-wavelength fractal structures by means of the terahertz time domain spectroscopy (THz-TDS) and FDTD simulation. In the view of experimental measurement and finite-difference-time-domain (FDTD) simulations, respectively, we studied the influence of the electric field and magnetic field on the enhanced transmission of THz wave through each level of fractal pattern generated by the repeated affine transformations of an H-shaped mother element on the copper foil. We simulate the incidence and transmission of the THz wave and show the propagation and distribution of the interior electromagnetic field by the software for electromagnetic design named CONCERTO. To compare with the experimental results, we simulate the cases that the certain levels of the pattern are deleted. The results of simulation agree with the experimental one. It is found that the transmission enhancement in the low frequency regime is caused by the radiation of electron resonance in the low fractal levels, and the transmission enhancement in the high frequency regime is caused by the radiation of electron resonance in the high fractal level, that is, the localization resonance of the fractal structures. These results indicate that the flat surface fractal structure like an ideal wave-guide. The vertically incident THz wave is confined on the surface and transmitted along the fractal slits. The controlling ability of fractal structures will offer a powerful tool for the design of THz photonic devices.

  9. A Tape Method for Fast Characterization and Identification of Active Pharmaceutical Ingredients in the 2-18 THz Spectral Range

    NASA Astrophysics Data System (ADS)

    Kissi, Eric Ofosu; Bawuah, Prince; Silfsten, Pertti; Peiponen, Kai-Erik

    2015-03-01

    In order to find counterfeit drugs quickly and reliably, we have developed `tape method' a transmission spectroscopic terahertz (THz) measurement technique and compared it with a standard attenuated total reflection (ATR) THz spectroscopic measurement. We used well-known training samples, which include commercial paracetamol and aspirin tablets to check the validity of these two measurement techniques. In this study, the spectral features of some active pharmaceutical ingredients (APIs), such as aspirin and paracetamol are characterized for identification purpose. This work covers a wide THz spectral range namely, 2-18 THz. This proposed simple but novel technique, the tape method, was used for characterizing API and identifying their presence in their dosage forms. By comparing the spectra of the APIs to their dosage forms (powder samples), all distinct fingerprints present in the APIs are also present in their respective dosage forms. The positions of the spectral features obtained with the ATR techniques were akin to that obtained from the tape method. The ATR and the tape method therefore, complement each other. The presence of distinct fingerprints in this spectral range has highlighted the possibility of developing fast THz sensors for the screening of pharmaceuticals. It is worth noting that, the ATR method is applicable to flat faced tablets whereas the tape method is suitable for powders in general (e.g. curved surface tablets that require milling before measurement). Finally, we have demonstrated that ATR techniques can be used to screen counterfeit antimalarial tablets.

  10. Continuous Monitoring of Photolysis Products by Thz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Omar, Abdelaziz; Cuisset, Arnaud; Mouret, Gaël; Hindle, Francis; Eliet, Sophie; Bocquet, Robin

    2015-06-01

    We demonstrate the potential of THz spectroscopy to monitor the real time evolution of the gas phase concentration of photolysis products and determine the kinetic reaction rate constant. In the primary work, we have chosen to examine the photolysis of formaldehyde (H_2CO). Exposure of H_2CO to a UVB light (250 to 360 nm) in a single pass of 135 cm length cell leads to decomposition via two mechanisms: the radical channel with production of HCO and the molecular channel with production of CO. A commercial THz source (frequency multiplication chain) operating in the range 600-900 GHz was used to detect and quantify the various chemical species as a function of time. Monitoring the concentrations of CO and H_2CO via rotational transitions, allowed the kinetic rate of H_2CO consummation to be obtained, and an estimation of the rate constants for both the molecular and radical photolysis mechanisms. We have modified our experimental setup to increase the sensitivity of the spectrometer and changed sample preparation protocol specifically to quantify the HCO concentration. Acetaldehyde was used as the precursor for photolysis by UVC resulting in the decompositon mechanism can be described by: CH_3CHO+hν→ CH_3 + HCO → CH_4 + CO Frequency modulation of the source and Zeeman modulation is used to achieve the high sensitivity required. Particular attention has been paid to the mercury photosensitization effect that allowed us to increase the HCO production enabling quantification of the monitored radical. We quantify the HCO radical and start a spectroscopic study of the line positions. H. M. Pickett and T. L. Boyd, Chem. Phys. Lett, Vol 58, 446-449, (1978) S. Eliet, A. Cuisset, M Guinet, F. Hindle, G. Mouret, R. Bocquet, and J. Demaison, Journal of Molecular Spectroscopy, Vol 279, 12-15 (2012). G. Mouret, M. Guinet, A. Cuisset, L. Croizé, S. Eliet, R. Bocquet and F. Hindle, Sensors Journal. IEEE, Vol 13, 133 - 138, (2013)

  11. Surface Plasmon Thz Resonators for Security Applications

    NASA Astrophysics Data System (ADS)

    Gopalsami, N.; Chien, H.-T.; Elmer, T.; Bakhtiari, S.; Raptis, A. C.

    2009-03-01

    This paper investigates the use of surface plasmonic effect in slit resonators for sensing and imaging in the terahertz regime. The transmittance of electromagnetic (EM) waves through a narrow aperture becomes negligible when the aperture size becomes much smaller than the wavelength. However, with the resonant excitation of charge density waves in the metal/air interface, called the surface plasmons, an extraordinary transmittance has been observed through such apertures. Using slit resonators of 50 to 100 μm width, we have demonstrated enhanced transmission of THz radiation through the slits. The ability to concentrate the EM radiation through a sub-wavelength aperture bodes well for detection of chemical or biological materials with high sensitivity or for super-resolution imaging of materials for NDE. We present results of using a slit resonator for chemical detection and for super-resolution imaging of materials for NDE.

  12. One THz. Beamed Energy - Mission Capabilities

    NASA Astrophysics Data System (ADS)

    Johansen, Donald G.

    2005-04-01

    Gyrotrons now used for nuclear fusion experiments are a possibile source for beamed energy electro-thermal propulsion. Water vapor absorption is likely to bar 1 THz. transmission through the atmosphere. A space-based source in low equatorial orbit offers beamed energy velocity increments for upper stage orbit insertion. Transfer orbits to geosynchronous and lunar destinations and escape velocities to Mars and Venus are considered. Rapid acceleration (1 g) at high specific impulse implies very high source power and mass. Altitudes for BEP source satellites are in 600 to 800 kilometer range, set by atmospheric drag and avoidance of van Allen belt. Earth oblateness plus lunar and solar tidal forces are important factors governing source orbit selection and maintenance.

  13. Optically-electrically pumped THz source

    NASA Astrophysics Data System (ADS)

    Haji-Saeed, Bahareh; Khoury, Jed; Buchwald, Walter; Woods, Charles; Wentzell, Sandra; Krejca, Brian; Kierstead, John

    2010-08-01

    In this paper, we propose a design for a widely tunable solid-state optically and electrically pumped THz source based on the Smith-Purcell free-electron laser. Our design consists of a thin dielectric layer sandwiched between an upper corrugated structure and a lower layer of thin metal, semiconductor, or high electron mobility material. The lower layer is for current streaming, which replaces the electron beam in the Smith-Purcell free-electron laser design. The upper layer consists of two micro-gratings for optical pumping, and a nano-grating to couple with electrical pumping in the lower layer. The optically generated surface plasmon waves from the upper layer and the electrically induced surface plasmon waves from the lower layer are then coupled. Emission enhancement occurs when the plasmonic waves in both layers are resonantly coupled.

  14. Coupleurs fibres - metasurfaces aux frequences THz

    NASA Astrophysics Data System (ADS)

    Girard, Martin

    Metamaterials are a class of arficial materials where the electromagnetic properties can be tailored during the design process. Currently demonstrated properties are varied, ranging from frequency filters to enhancement of quentum effects such as photon spin Hall effect. While these materials are mastered from a theoretical point of view, their fabrication is much more complicated. It is generally accepted that metamaterial elements must be under the effective medium limit (Lambda < lambda/10). Moreover, assembly of a 3D periodical system becomes much more complicated for small elements. For this reason, metamaterials are usually printed in 2D, on a surface, which are called metasurfaces. Generally, these are produced for the THz frequencies (˜ 1012 Hz) or lower to have a large wavelength and thus easy fabrication. Working at THz frequencies also carries additional problems. Absorption in traditional optical mediums is typically large (for exemple, BK7 glass has losses of 20 dB / cm) and powers supplied by THz sources are generally weak ( 100 muW for a THz-TDS standard source). Metasurfaces can thus play an important role by replacing traditional mediums. Moreover, we can use the resonant properties of metamaterials to produce sensors and other devices. Currently, the metasurfaces are used in conjuction with a free-space beam instead of a typical waveguide, which may be problematic when implementing devices. A simple solution to this problem is to use the metamaterial as a standard coupler by placing a waveguide above the metasurface. As stated before, we generally consider metasurfaces as effective mediums, where the permittivity is insensitive to the angle of the incident beam. However, a large amount of publications on this subject shows that this is not respected. This can have a huge impact on properties of a coupler based on such a material. First, modelisation is not a simple 2D mode calculation with a simple expression for permittivity. Second, contra

  15. Development of SIS Mixers for 1 THz

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.; Kooi, J.; Chattopadhyay, G.; Bumble, B.; LeDuc, H. G.; Stern, J. A.

    1998-01-01

    SIS heterodyne mixer technology based on niobium tunnel junctions has now been pushed to frequencies over 1 THz, clearly demonstrating that the SIS junctions are capable of mixing at frequencies up to twice the energy gap frequency (4 Delta/h). However, the performance degrades rapidly above the gap frequency of niobium (2 Delta/h approx. 700 GHz) due to substantial ohmic losses in the on-chip tuning circuit. To solve this problem, the tuning circuit should be fabricated using a superconducting film with a larger energy gap, such as NbN; unfortunately, NbN films often have a substantial excess surface resistance in the submillimeter band. In contrast, the SIS mixer measurements we present in this paper indicate that the losses for NbTiN thin films can be quite low.

  16. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    PubMed

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-01-01

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341

  17. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    PubMed

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  18. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    PubMed Central

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P.; Zolliker, Peter

    2016-01-01

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341

  19. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique

    NASA Astrophysics Data System (ADS)

    Yang, Jinfeng; Kondoh, Takafumi; Kozawa, Takahiro; Yoshida, Youichi; Tagawa, Seiichi

    2006-09-01

    A new pulse radiolysis system based on a femtosecond electron beam and a femtosecond laser light with oblique double-pulse injection was developed for studying ultrafast chemical kinetics and primary processes of radiation chemistry. The time resolution of 5.2 ps was obtained by measuring transient absorption kinetics of hydrated electrons in water. The optical density of hydrated electrons was measured as a function of the electron charge. The data indicate that the double-laser-pulse injection technique was a powerful tool for observing the transient absorptions with a good signal to noise ratio in pulse radiolysis.

  20. 2D THz and GHz signature for identification of explosive on reflected THz signal

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Chen, Jian

    2010-11-01

    The method of THz spectrum dynamics analysis (SDA - Spectral dynamics analysis - method) is applied for the detection and identification of substances by using the signal reflected from sample. It allows to obtain the spectrogram - composite Fourier spectrum dynamics - of the signal and to analyze the dynamics of many spectral lines simultaneously, even if the measurements are made on short time interval (less than 50 ps). The efficiency of the SDA method used for longer time intervals (more than 100 ps) is discussed also. The Fourier-Gabor sliding window method is used for obtaining the spectrogram. We consider the examples of finding the pure RDX and harmless materials (L-Tartaric Acid, Sucrose, PTFE) or their mixture in pellets by using a THz pulse reflected from them. A THz pulse with a few cycles falls on the sample and reflects from it. The receiver makes the discrete measurements of electric field strength of signal reflected from the sample. To restore the signal to the required accuracy the SVD - Single Value Decomposition - technique is used. Our investigations show that the spectrograms and dynamics of several spectral lines of the THz pulse reflected differ from the corresponding spectrograms and dynamics of spectral lines for the reference pulse under certain conditions and hence it is possible to detect the presence of the material in the sample of interest. The comparison of the Fourier spectrum of the substance with the corresponding spectrum calculated on the base of using an autocorrelation function for obtaining the spectrum shows that the AC-spectrum gives us essential less information about substance. From our consideration follows that in some cases the analysis of reflected signal on the short time interval (less than 50 ps) is insufficient for the reliable identification. It is necessary to analyze the response on the long time interval (about 300 - 400 ps). The analysis of spectrogram and spectral lines dynamics on the long time intervals

  1. Femtosecond Beam Sources and Applications

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru

    2004-12-01

    Short particle beam science has been promoted by electron linac and radiation chemistry up to picoseconds. Recently, table-top TW laser enables several kinds of short particle beams and pump-and-probe analyses. 4th generation SR sources aim to generation and application of about 100 fs X-ray. Thus, femtosecond beam science has become one of the important field in advanced accelerator concepts. By using electron linac with photoinjector, about 200 fs single bunch and 3 fs multi-bunches are available. Tens femtoseconds monoenergetic electron bunch is expected by laser plasma cathode. Concerning the electron bunch diagnosis, we have seen remarkable progress in streak camera, coherent radiation spectroscopy, fluctuation method and E/O crystal method. Picosecond time-resolved pump-and-probe analysis by synchronizing electron linac and laser is now possible, but the timing jitter and drift due to several fluctuations in electronic devices and environment are still in picoseconds. On the other hand, the synchronization between laser and secondary beam is done passively by an optical beam-splitter in the system based on one TW laser. Therefore, the timing jitter and drift do not intrinsically exist there. The author believes that the femtosecond time-resolved pump-and-probe analysis must be initiated by the laser plasma beam sources. As to the applications, picosecond time-resolved system by electron photoinjector/linac and femtosecond laser are operating in more than 5 facilities for radiation chemistry in the world. Ti:Sapphire-laser-based repetitive pump-and-probe analysis started by time-resolved X-ray diffraction to visualize the atomic motion. Nd:Glass-laser-based single-shot analysis was performed to visualize the laser ablation via the single-shot ion imaging. The author expects that protein dynamics and ultrafast nuclear physics would be the next interesting targets. Monograph titled "Femtosecond Beam Science" is published by Imperial College Press

  2. Femtosecond mid-infrared study of the dynamics of water molecules in water-acetone and water-dimethyl sulfoxide mixtures.

    PubMed

    Lotze, S; Groot, C C M; Vennehaug, C; Bakker, H J

    2015-04-23

    We study the vibrational relaxation dynamics and the reorientation dynamics of HDO molecules in binary water-dimethyl sulfoxide (DMSO) and water-acetone mixtures with polarization-resolved femtosecond mid-infrared spectroscopy. For low solute concentrations we observe a slowing down of the reorientation of part of the water molecules that hydrate the hydrophobic methyl groups of DMSO and acetone. For water-DMSO mixtures the fraction of slowed-down water molecules rises much steeper with solute concentration than for water-acetone mixtures, showing that acetone molecules show significant aggregation already at low concentrations. At high solute concentrations, the vibrational and reorientation dynamics of both water-DMSO and water-acetone mixtures show a clear distinction between the dynamics of water molecules donating hydrogen bonds to other water molecules and the dynamics of water donating a hydrogen bond to the S═O/C═O group of the solute. For water-DMSO mixtures both types of water molecules show a very slow reorientation. The water molecules forming hydrogen bonds to the S═O group reorient with a time constant that decreases from 46 ± 14 ps at XDMSO = 0.33 to 13 ± 2 ps at XDMSO = 0.95. The water molecules forming hydrogen bonds to the C═O group of acetone show a much faster reorientation with a time constant that decreases from 6.1 ± 0.2 ps at Xacet = 0.3 to 2.96 ± 0.05 ps at Xacet = 0.9. The large difference in reorientation time constant of the solute-bound water for DMSO and acetone can be explained from the fact that the hydrogen bond between water and the S═O group of DMSO is much stronger than the hydrogen bond between water and the C═O group of acetone. We attribute the strongly different behavior of water in DMSO-rich and acetone-rich mixtures to their difference in molecular shape.

  3. Single pass, THz spectral range free-electron laser driven by a photocathode hybrid rf linear accelerator

    NASA Astrophysics Data System (ADS)

    Lurie, Yu.; Friedman, A.; Pinhasi, Y.

    2015-07-01

    A single pass, THz spectral range free-electron laser (FEL) driven by a photocathode hybrid rf-LINAC is considered, taking the Israeli THz FEL project developed in Ariel University as an example. Two possible configurations of such FEL are discussed: an enhanced coherent spontaneous emission FEL, and a prebunched FEL utilizing periodically modulated short electron beam pulses. A general study of the FEL configurations is carried out in the framework of a space-frequency approach, realized in WB3D numerical code. The configurations are studied and compared based on preliminary parameters of a drive hybrid rf-LINAC gun under development in University of California, Los Angeles.

  4. Semianalytical study of the propagation of an ultrastrong femtosecond laser pulse in a plasma with ultrarelativistic electron jitter

    SciTech Connect

    Jovanović, Dušan; Fedele, Renato; Belić, Milivoj; De Nicola, Sergio

    2015-04-15

    The interaction of a multi-petawatt, pancake-shaped laser pulse with an unmagnetized plasma is studied analytically and numerically in a regime with ultrarelativistic electron jitter velocities, in which the plasma electrons are almost completely expelled from the pulse region. The study is applied to a laser wakefield acceleration scheme with specifications that may be available in the next generation of Ti:Sa lasers and with the use of recently developed pulse compression techniques. A set of novel nonlinear equations is derived using a three-timescale description, with an intermediate timescale associated with the nonlinear phase of the electromagnetic wave and with the spatial bending of its wave front. They describe, on an equal footing, both the strong and the moderate laser intensity regimes, pertinent to the core and to the edges of the pulse. These have fundamentally different dispersive properties since in the core the electrons are almost completely expelled by a very strong ponderomotive force, and the electromagnetic wave packet is imbedded in a vacuum channel, thus having (almost) linear properties. Conversely, at the pulse edges, the laser amplitude is smaller, and the wave is weakly nonlinear and dispersive. New nonlinear terms in the wave equation, introduced by the nonlinear phase, describe without the violation of imposed scaling laws a smooth transition to a nondispersive electromagnetic wave at very large intensities and a simultaneous saturation of the (initially cubic) nonlocal nonlinearity. The temporal evolution of the laser pulse is studied both analytically and by numerically solving the model equations in a two-dimensional geometry, with the spot diameter presently used in some laser acceleration experiments. The most stable initial pulse length is estimated to exceed ≳1.5–2 μm. Moderate stretching of the pulse in the direction of propagation is observed, followed by the development of a vacuum channel and of a very large

  5. Semianalytical study of the propagation of an ultrastrong femtosecond laser pulse in a plasma with ultrarelativistic electron jitter

    NASA Astrophysics Data System (ADS)

    Jovanović, Dušan; Fedele, Renato; Belić, Milivoj; De Nicola, Sergio

    2015-04-01

    The interaction of a multi-petawatt, pancake-shaped laser pulse with an unmagnetized plasma is studied analytically and numerically in a regime with ultrarelativistic electron jitter velocities, in which the plasma electrons are almost completely expelled from the pulse region. The study is applied to a laser wakefield acceleration scheme with specifications that may be available in the next generation of Ti:Sa lasers and with the use of recently developed pulse compression techniques. A set of novel nonlinear equations is derived using a three-timescale description, with an intermediate timescale associated with the nonlinear phase of the electromagnetic wave and with the spatial bending of its wave front. They describe, on an equal footing, both the strong and the moderate laser intensity regimes, pertinent to the core and to the edges of the pulse. These have fundamentally different dispersive properties since in the core the electrons are almost completely expelled by a very strong ponderomotive force, and the electromagnetic wave packet is imbedded in a vacuum channel, thus having (almost) linear properties. Conversely, at the pulse edges, the laser amplitude is smaller, and the wave is weakly nonlinear and dispersive. New nonlinear terms in the wave equation, introduced by the nonlinear phase, describe without the violation of imposed scaling laws a smooth transition to a nondispersive electromagnetic wave at very large intensities and a simultaneous saturation of the (initially cubic) nonlocal nonlinearity. The temporal evolution of the laser pulse is studied both analytically and by numerically solving the model equations in a two-dimensional geometry, with the spot diameter presently used in some laser acceleration experiments. The most stable initial pulse length is estimated to exceed ≳1.5-2 μm. Moderate stretching of the pulse in the direction of propagation is observed, followed by the development of a vacuum channel and of a very large

  6. Comparative study of CW, nanosecond- and femtosecond-pulsed laser microcutting of AZ31 magnesium alloy stents.

    PubMed

    Gökhan Demir, Ali; Previtali, Barbara

    2014-06-01

    Magnesium alloys constitute an interesting solution for cardiovascular stents due to their biocompatibility and biodegradability in human body. Laser microcutting is the industrially accepted method for stent manufacturing. However, the laser-material interaction should be well investigated to control the quality characteristics of the microcutting process that concern the surface roughness, chemical composition, and microstructure of the final device. Despite the recent developments in industrial laser systems, a universal laser source that can be manipulated flexibly in terms of process parameters is far from reality. Therefore, comparative studies are required to demonstrate processing capabilities. In particular, the laser pulse duration is a key factor determining the processing regime. This work approaches the laser microcutting of AZ31 Mg alloy from the perspective of a comparative study to evaluate the machining capabilities in continuous wave (CW), ns- and fs-pulsed regimes. Three industrial grade machining systems were compared to reach a benchmark in machining quality, productivity, and ease of postprocessing. The results confirmed that moving toward the ultrashort pulse domain the machining quality increases, but the need for postprocessing remains. The real advantage of ultrashort pulsed machining was the ease in postprocessing and maintaining geometrical integrity of the stent mesh after chemical etching. Resultantly, the overall production cycle time was shortest for fs-pulsed laser system, despite the fact that CW laser system provided highest cutting speed.

  7. Ballistic deflection transistors and their application to THz amplification

    NASA Astrophysics Data System (ADS)

    Margala, M.; Wu, H.; Sobolewski, Roman

    2015-10-01

    We present implementation of recently proposed ballistic deflection transistors (BDTs) as THz amplifiers. BDT is a planar device based on InGaAs/InAlAs/InP heterostructure with quasi-ballistic transport obtained in the two-dimensional electron gas layer that facilitates ultra-short transit time and high performance needed for THz-range circuitry. The BDT performance is optimized through its structural modification and the use of high-k dielectrics. Our time-domain, electrical transient measurements demonstrate sub-THz switching performance of a BDT with a ∼1-μm-wide channel. Independently, circuit simulations using experimental parameters of BDTs with a channel width of 430 nm and with the BDTs themselves connected as a multi-stage travelling-wave amplifier, designed for 6-dB gain, predict a 2.7- THz bandwidth with a gain flatness of ±0.3 dB.

  8. High precision spectroscopy and imaging in THz frequency range

    NASA Astrophysics Data System (ADS)

    Vaks, Vladimir L.

    2014-03-01

    Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.

  9. THz time-domain spectroscopy imaging for mail inspection

    NASA Astrophysics Data System (ADS)

    Zhang, Liquan; Wang, Zhongdong; Ma, Yanmei; Hao, Erjuan

    2011-08-01

    Acquiring messages from the mail but not destroying the envelope is a big challenge in the war of intelligence. If one can read the message of the mail when the envelope is closed, he will benefit from the message asymmetry and be on a good wicket in the competition. In this paper, we presented a transmitted imaging system using THz time-domain spectroscopy technology. We applied the system to image the mail inside an envelope by step-scanning imaging technology. The experimental results show that the THz spectroscopy can image the mail in an envelope. The words in the paper can be identified easily from the background. We also present the THz image of a metal blade in the envelope, in which we can see the metal blade clearly. The results show that it is feasible of THz Time-Domain Spectroscopy Imaging for mail inspection applications.

  10. The Jefferson Lab High Power THz User Facility

    SciTech Connect

    John Klopf; Amelia Greer; Joseph Gubeli; George Neil; Michelle D. Shinn; Timothy Siggins; David W. Waldman; Gwyn Williams; Alan Todd; Vincent Christina; Oleg Chubar

    2007-04-27

    We describe here, a high power (100 Watt average, 10 MW peak) broadband THz facility based on emission from sub-picosecond bunches of relativistic electrons and the beam transport system that delivers this beam in to a user laboratory.

  11. SUB-THz RADIATION MECHANISMS IN SOLAR FLARES

    SciTech Connect

    Fleishman, Gregory D.; Kontar, Eduard P.

    2010-02-01

    Observations in the sub-THz range of large solar flares have revealed a mysterious spectral component increasing with frequency and hence distinct from the microwave component commonly accepted to be produced by gyrosynchrotron (GS) emission from accelerated electrons. Evidently, having a distinct sub-THz component requires either a distinct emission mechanism (compared to the GS one), or different properties of electrons and location, or both. We find, however, that the list of possible emission mechanisms is incomplete. This Letter proposes a more complete list of emission mechanisms, capable of producing a sub-THz component, both well known and new in this context, and calculates a representative set of their spectra produced by (1) free-free emission, (2) GS emission, (3) synchrotron emission from relativistic positrons/electrons, (4) diffusive radiation, and (5) Cherenkov emission. We discuss the possible role of the mechanisms in forming the sub-THz emission and emphasize their diagnostics potential for flares.

  12. An analysis of THz-TDS signals using geometric algebra

    NASA Astrophysics Data System (ADS)

    Xie, Weixin; Li, Jing; Pei, Jihong

    2008-12-01

    THz-TDS signals can be represented as vectors in a high dimensional vector space, which are hyper-complex numbers in geometric algebra (GA). Using the language of GA, the properties of these vectors are theoretically analyzed and demonstrate the projective character of THz-TDS signals. The tangential distance of vectors is used to measure the difference of the corresponding THz-TDS signals. A novel imensionality reduction method via the projective split is presented, by which vectors of THz-TDS signals can be linear mapped from a high dimensional space into a lower dimensional space. The projective split is recursively employed and linear maps the vector space of high dimension into a sequence of sub-spaces step by step. Experiments demonstrate the feasibility and accuracy of our method.

  13. Heat Induced Damage Detection by Terahertz (THz) Radiation

    NASA Astrophysics Data System (ADS)

    Rahani, Ehsan Kabiri; Kundu, Tribikram; Wu, Ziran; Xin, Hao

    2011-06-01

    Terahertz (THz) and sub-terahertz imaging and spectroscopy are becoming increasingly popular nondestructive evaluation techniques for damage detection and characterization of materials. THz radiation is being used for inspecting ceramic foam tiles used in TPS (Thermal Protection System), thick polymer composites and polymer tiles that are not good conductors of ultrasonic waves. Capability of THz electromagnetic waves in detecting heat induced damage in porous materials is investigated in this paper. Porous pumice stone blocks are subjected to long time heat exposures to produce heat induced damage in the block. The dielectric properties extracted from THz TDS (Time Domain Spectroscopy) measurements are compared for different levels of heat exposure. Experimental results show noticeable and consistent change in dielectric properties with increasing levels of heat exposure, well before its melting point.

  14. The origin of radiationless conversion of the excited state in the kindling fluorescent protein (KFP): femtosecond studies and quantum modeling

    NASA Astrophysics Data System (ADS)

    Shelaev, I.; Mironov, V.; Rusanov, A.; Gostev, F.; Bochenkova, A.; Sarkisov, O.; Nemukhin, A.; Savitsky, A.

    2011-06-01

    The Ala143Gly variant of the chromoprotein asCP from the sea anemony Anemonia sulcata, called the kindling fluorescent protein (KFP), is a promising candidate for the development of novel subdiffraction method of fluorescent microscopy. The pump-probe method with the delay times between the pump and probe pulses up to 5 ps was applied to study dynamics of the primary processes upon excitation of KFP. The differential absorption spectra at 80 fs delay showed the absorption peak in the range 450-510 nm with the maximum wavelength at 490 nm, which diminished almost twice by intensity by 400 fs and practically disappeared by 1.5 ps. The quantum calculations showed that upon photo-excitation of KFP to the first excited state S1, the fast radiationless relaxation occurred to the ground state S0 due to rotation of the phenolic fragment of the chromophore.

  15. Oligothiophene/graphene supramolecular ensembles managing light induced processes: preparation, characterization, and femtosecond transient absorption studies leading to charge-separation

    NASA Astrophysics Data System (ADS)

    Stergiou, A.; Gobeze, H. B.; Petsalakis, I. D.; Zhao, S.; Shinohara, H.; D'Souza, F.; Tagmatarchis, N.

    2015-09-01

    Advances in organic synthetic chemistry combined with the exceptional electronic properties of carbon allotropes, particularly graphene, is the basis used to design and fabricate novel electron donor-acceptor ensembles with desired properties for technological applications. Thiophene-based materials, which are mainly thiophene-containing polymers, are known for their notable electronic properties. In this frame moving from polymer to oligomer forms, new fundamental information would help for a better understanding of their electrochemical and photophysical properties. Furthermore, a successful combination of their electronic properties with those of graphene is a challenging goal. In this study, two oligothiophene compounds, which consist of three and nine thiophene-rings and are abbreviated 3T and 9T, respectively, were synthesized and noncovalently associated with liquid phase exfoliated few-layered graphene sheets (abbreviated eG), thus forming donor-acceptor 3T/eG and 9T/eG nanoensembes. Markedly, intra-ensemble electronic interactions between the two components in the ground and excited states were evaluated with the aid of UV-Vis and photoluminescence spectroscopy. Furthermore, redox assays revealed the one-electron oxidation of 3T accompanied by one-electron reduction due to eG in 3T/eG, whereas there were two reversible one-electron oxidations of 9T accompanied by one-electron reduction of eG9T/eG. The electrochemical band gap for the 3T/eG and 9T/eG ensembles were calculated and verified, in which the negative free-energy change for the charge-separated state of 3T/eG and 9T/eGvia the singlet excited state of 3T and 9T, respectively, were thermodynamically favorable. Finally, the results of transient pump-probe spectroscopy studies at the femtosecond time scale were supportive of charge transfer type interactions in the 3T/eG and 9T/eG ensembles. The estimated rates for intra-ensemble charge separation were found to be 9.52 × 109 s-1 and 2.2 × 1011 s-1

  16. Oligothiophene/graphene supramolecular ensembles managing light induced processes: preparation, characterization, and femtosecond transient absorption studies leading to charge-separation

    NASA Astrophysics Data System (ADS)

    Stergiou, A.; Gobeze, H. B.; Petsalakis, I. D.; Zhao, S.; Shinohara, H.; D'Souza, F.; Tagmatarchis, N.

    2015-09-01

    Advances in organic synthetic chemistry combined with the exceptional electronic properties of carbon allotropes, particularly graphene, is the basis used to design and fabricate novel electron donor-acceptor ensembles with desired properties for technological applications. Thiophene-based materials, which are mainly thiophene-containing polymers, are known for their notable electronic properties. In this frame moving from polymer to oligomer forms, new fundamental information would help for a better understanding of their electrochemical and photophysical properties. Furthermore, a successful combination of their electronic properties with those of graphene is a challenging goal. In this study, two oligothiophene compounds, which consist of three and nine thiophene-rings and are abbreviated 3T and 9T, respectively, were synthesized and noncovalently associated with liquid phase exfoliated few-layered graphene sheets (abbreviated eG), thus forming donor-acceptor 3T/eG and 9T/eG nanoensembes. Markedly, intra-ensemble electronic interactions between the two components in the ground and excited states were evaluated with the aid of UV-Vis and photoluminescence spectroscopy. Furthermore, redox assays revealed the one-electron oxidation of 3T accompanied by one-electron reduction due to eG in 3T/eG, whereas there were two reversible one-electron oxidations of 9T accompanied by one-electron reduction of eG9T/eG. The electrochemical band gap for the 3T/eG and 9T/eG ensembles were calculated and verified, in which the negative free-energy change for the charge-separated state of 3T/eG and 9T/eGvia the singlet excited state of 3T and 9T, respectively, were thermodynamically favorable. Finally, the results of transient pump-probe spectroscopy studies at the femtosecond time scale were supportive of charge transfer type interactions in the 3T/eG and 9T/eG ensembles. The estimated rates for intra-ensemble charge separation were found to be 9.52 × 109 s-1 and 2.2 × 1011 s-1

  17. Saturated absorption in a rotational molecular transition at 2.5 THz using a quantum cascade laser

    SciTech Connect

    Consolino, L. Campa, A.; Ravaro, M.; Mazzotti, D.; Bartalini, S.; De Natale, P.; Vitiello, M. S.

    2015-01-12

    We report on the evidence of saturation effects in a rotational transition of CH{sub 3}OH around 2.5 THz, induced by a free-running continuous-wave quantum cascade laser (QCL). The QCL emission is used for direct-absorption spectroscopy experiments, allowing to study the dependence of the absorption coefficient on gas pressure and laser intensity. A saturation intensity of 25 μW/mm{sup 2}, for a gas pressure of 17 μbar, is measured. This result represents the initial step towards the implementation of a QCL-based high-resolution sub-Doppler THz spectroscopy, which is expected to improve by orders of magnitude the precision of THz spectrometers.

  18. Electrically driven nanopillars for THz quantum cascade lasers.

    PubMed

    Amanti, M I; Bismuto, A; Beck, M; Isa, L; Kumar, K; Reimhult, E; Faist, J

    2013-05-01

    In this work we present a rapid and parallel process for the fabrication of large scale arrays of electrically driven nanopillars for THz quantum cascade active media. We demonstrate electrical injection of pillars of 200 nm diameter and 2 µm height, over a surface of 1 mm(2). THz electroluminescence from the nanopillars is reported. This result is a promising step toward the realization of zero-dimensional structure for terahertz quantum cascade lasers.

  19. Formation of nanostructures under femtosecond laser ablation of metals

    NASA Astrophysics Data System (ADS)

    Ashitkov, S. I.; Romashevskii, S. A.; Komarov, P. S.; Burmistrov, A. A.; Zhakhovskii, V. V.; Inogamov, N. A.; Agranat, M. B.

    2015-06-01

    We present the results of studying the morphology of the modified surface of aluminium, nickel and tantalum after ablation of the surface layer by a femtosecond laser pulse. The sizes of characteristic elements of a cellular nanostructure are found to correlate with thermo-physical properties of the material and the intensity of laser radiation.

  20. Ultrafast energy transfer of one-dimensional excitons between carbon nanotubes: a femtosecond time-resolved luminescence study.

    PubMed

    Koyama, Takeshi; Miyata, Yasumitsu; Asaka, Koji; Shinohara, Hisanori; Saito, Yahachi; Nakamura, Arao

    2012-01-21

    Excitation energy transfer has long been an intriguing subject in the fields of photoscience and materials science. Along with the recent progress of photovoltaics, photocatalysis, and photosensors using nanoscale materials, excitation energy transfer between a donor and an acceptor at a short distance (≤1-10 nm) is of growing importance in both fundamental research and technological applications. This Perspective highlights our recent studies on exciton energy transfer between carbon nanotubes with interwall (surface-to-surface) distances of less than ∼1 nm, which are equivalent to or shorter than the size of one-dimensional excitons in carbon nanotubes. We show exciton energy transfer in bundles of single-walled carbon nanotubes with the interwall distances of ∼0.34 and 0.9 nm (center-to-center distances ∼1.3-1.4 and 1.9 nm). For the interwall distance of ∼0.34 nm (center-to-center distance ∼1.3-1.4 nm), the transfer rate per tube from a semiconducting tube to adjacent semiconducting tubes is (1.8-1.9) × 10(12) s(-1), and that to adjacent metallic tubes is 1.1 × 10(12) s(-1). For the interwall distance of ∼0.9 nm (center-to-center distance ∼1.9 nm), the transfer rate per tube from a semiconducting tube to adjacent semiconducting tubes is 2.7 × 10(11) s(-1). These transfer rates are much lower than those predicted by the Förster model calculation based on a point dipole approximation, indicating the failure of the conventional Förster model calculations. In double-walled carbon nanotubes, which are equivalent to ideal nanoscale coaxial cylinders, we show exciton energy transfer from the inner to the outer tubes. The transfer rate between the inner and the outer tubes with an interwall distance of ∼0.38 nm is 6.6 × 10(12) s(-1). Our findings provide an insight into the energy transfer mechanisms of one-dimensional excitons.

  1. Computational Investigations of THz Transmittance in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Yang, Xingyu; Calhoun, Casey; Calhoun, Ronald

    2016-06-01

    With the recent scientific advancements in Terahertz (THz) wave propagation and reception technology, there has been significant development in new possibilities for using THz waves - offering new possibilities in THz detection and ranging. A first foundational step toward this goal is to better understand THz transmittance in the turbulent atmosphere. In this project, a frequency modulation pattern of THz waves was created by utilizing a system of shifting frequency based on temperature, air humidity, and distance of transmission. The total path loss of the wave in air, based on the wave spread and molecular absorption, was then modeled using radiative transfer theory, onto a set of JavaHAWK filtered-HITRAN data representative of an air sample. This data was used to generate a path loss matrix, which was then used to optimize frequency of transmission for the specific conditions. The concept to be evaluated is whether adaptive frequency modulated THz might usefully decrease transmission losses by adjusting to atmospheric conditions (such as local variations in temperature and humidity).

  2. The physical theory and propagation model of THz atmospheric propagation

    NASA Astrophysics Data System (ADS)

    Wang, R.; Yao, J. Q.; Xu, D. G.; Wang, J. L.; Wang, P.

    2011-02-01

    Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.

  3. CW THz scanning transmission imaging for concealed object detection

    NASA Astrophysics Data System (ADS)

    Li, Qi; Yao, Rui; Yin, Qiguo; Ding, Shenghui; Wang, Qi

    2009-07-01

    In the paper, the two-dimensional THz imaging methods are described. The SIFIR-50 FPL Far-Infrared Laser is used as the THz source. The output frequency is 2.5THz in the experiment, because the THz laser operates steadily at this frequency. The P4-42 detector works at room temperature and offers relatively high sensitivity. The software of THz imaging system is self-designed, and it plays a crucial role in this imaging system because it controls nearly all the operations of this system, including the two-dimensional scanning, image data collection, image data storage, image display and image processing. Utilizing this setup, THz transmission images of concealed objects are obtained. In the experiment, a bottle cap and a plastic board covered by reflective materials are chosen as the imaging objects; paper and Teflon are placed before the object to test the transmission imaging effect. The experimental results show that this imaging system can generate clear images.

  4. Low-noise THz MgB2 Josephson mixer

    NASA Astrophysics Data System (ADS)

    Cunnane, Daniel; Kawamura, Jonathan H.; Acharya, Narendra; Wolak, Matthäus A.; Xi, X. X.; Karasik, Boris S.

    2016-09-01

    The potential applications for high frequency operation of the Josephson effect in MgB2 include THz mixers, direct detectors, and digital circuits. Here we report on MgB2 weak links which exhibit the Josephson behavior up to almost 2 THz and using them for low-noise heterodyne detection of THz radiation. The devices are made from epitaxial film grown in the c-axis direction by the hybrid physical-chemical vapor deposition method. The current in the junctions travels parallel to the surface of the film, thus making possible a large contribution of the quasi-two-dimensional σ-gap in transport across the weak link. These devices are connected to a planar spiral antenna with a dielectric substrate lens to facilitate coupling to free-space radiation for use as a detector. The IcRn product of the junction is 5.25 mV, giving confirmation of a large gap parameter. The sensitivity of the mixer was measured from 0.6 THz to 1.9 THz. At a bath temperature of over 20 K, a mixer noise temperature less than 2000 K (DSB) was measured near 0.6 THz.

  5. Non Destructive Thermal Analysis and In Situ Investigation of Creep Mechanism of Graphite and Ceramic Composites using Phase-sensitive THz Imaging & Nonlinear Resonant Ultrasonic Spectroscopy

    SciTech Connect

    Zhang, XI-Cheng; Hurley, David; Redo-Scanchez, Albert

    2012-11-26

    In this project, we conducted a comprehensive study on nuclear graphite properties with terahertz (THz) imaging. Graphite samples from Idaho National Laboratory were carefully imaged by continuous wave (CW) THz. The CW THz imaging of graphite shows that the samples from different billet with different fabricating conditions have different pore size and structure. Based on this result, we then used a phase sensitive THz system to study the graphite properties. In this exploration, various graphite were studied. By imaging nuclear graphite samples in reflection mode at nine different incident polarization angles using THz time-domain spectroscopy, we find that different domain distributions and levels of porosity will introduce polarization dependence in THz reflectivity. Sample with higher density is less porous and has a smaller average domain distribution. As a consequence, it is less polarization-dependent and the polarization-dependent frequency is higher. The results also show that samples oxidized at higher temperatures tend to be more polarization dependent. The graphite from the external billet is more polarization dependent compared to that from the center billet. In addition, we performed laser-based ultrasonic measurements on these graphite samples. The denser, unoxidized samples allow surface acoustic waves to propagate more rapidly than in the samples that had already undergone oxidation. Therefore, for the oxidized samples, the denser samples show less polarization-dependence, higher polarization-dependent frequency, and allow the surface acoustic waves propagate faster.

  6. A femtosecond study of the anomaly in electron injection for dye-sensitized solar cells: the influence of isomerization employing Ru(II) sensitizers with anthracene and phenanthrene ancillary ligands.

    PubMed

    Cheema, Hammad; Younts, Robert; Ogbose, Louis; Gautam, Bhoj; Gundogdu, Kenan; El-Shafei, Ahmed

    2015-01-28

    In this study, an intriguing difference caused by structural isomerization based on anthracene and phenanthrene stilbazole type ancillary ligands in Ru(ii) sensitizers for dye sensitized solar cells (DSCs) has been investigated using femtosecond transient absorption spectroscopy. Both anthracene and phenanthrene based sensitizers HD-7 and HD-8, respectively, resulted in a similar extinction coefficient, photophysical and thermodynamic free energy of electron injection and dye regeneration as measured by UV-Vis, excited state lifetime and cyclic voltammetry measurements, respectively. However, TiO2 adsorbed HD-7 resulted in up to 45% less photocurrent density than HD-8 although photovoltage was similar owing to comparable thermodynamic characteristics. It was obvious from the measurement of incident photon to current conversion efficiency (IPCE) that excited electrons in HD-7 are prone to internal energy loss before injection into the TiO2 conduction band. Analysis of photo-induced spectral features measured by femtosecond transient absorption spectroscopy showed that excited electrons in HD-7 are prone to ISC (intersystem crossing) much more than HD-8 and those triplet electrons are not injected into TiO2 efficiently. Interestingly, from impedance measurements, HD-7 showed higher recombination resistance than HD-8 and N719, but a shorter lifetime for electrons injected into the TiO2 conduction band.

  7. Femtosecond lasers for machining of transparent, brittle materials: ablative vs. non-ablative femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Hendricks, F.; Matylitsky, V. V.

    2016-03-01

    This paper focuses on precision machining of transparent materials by means of ablative and non-ablative femtosecond laser processing. Ablation technology will be compared with a newly developed patent pending non-ablative femtosecond process, ClearShapeTM, using the Spectra-Physics Spirit industrial femtosecond laser.

  8. Development of hot-electron THz bolometric mixers using MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Cunnane, Daniel; Kawamura, Jonathan; Karasik, Boris S.; Wolak, Matthaeus A.; Xi, X. X.

    2014-07-01

    Terahertz high-resolution spectroscopy of interstellar molecular clouds greatly relies on hot-electron superconducting bolometric (HEB) mixers. Current state-of-the-art receivers use mixer devices made from ultrathin (~ 3-5 nm) films of NbN with critical temperature ~ 9-11 K. Such mixers have been deployed on a number of groundbased, suborbital, and orbital platforms including the HIFI instrument on the Hershel Space Observatory. Despite its good sensitivity and well-established fabrication process, the NbN HEB mixer suffers from the narrow intermediate frequency (IF) bandwidth ~ 2-3 GHz and is limited to operation at liquid Helium temperature. As the heterodyne receivers are now trending towards "high THz" frequencies, the need in a larger IF bandwidth becomes more pressing since the same velocity resolution for a Doppler shifted line at 5 THz requires a 5-times greater IF bandwidth than at 1 THz. Our work is focusing on the realization of practical HEB mixers using ultrathin (10-20 nm) MgB2 films. They are prepared using a Hybrid Physical-Chemical Vapor Deposition (HPCVD) process yielding ultrathin films with critical temperature ~ 37-39 K. The expectation is that the combination of small thickness, high acoustic phonon transparency at the interface with the substrate, and very short electron-phonon relaxation time may lead to IF bandwidth ~ 10 GHz or even higher. SiC continues to be the most favorable substrate for MgB2 growth and as a result, a study has been conducted on the transparency of SiC at THz frequencies. FTIR measurements show that semi-insulating SiC substrates are at least as transparent as Si up to 2.5 THz. Currently films are passivated using a thin (10 nm) SiO2 layer which is deposited ex-situ via RF magnetron sputtering. Micron-sized spiral antenna-coupled HEB mixers have been fabricated using MgB2 films as thin as 10 nm. Fabrication was done using contact UV lithography and Ar Ion milling, with E-beam evaporated Au films deposited for the

  9. THz-circuits driven by photo-thermoelectric, gate-tunable graphene-junctions

    PubMed Central

    Brenneis, Andreas; Schade, Felix; Drieschner, Simon; Heimbach, Florian; Karl, Helmut; Garrido, Jose A.; Holleitner, Alexander W.

    2016-01-01

    For future on-chip communication schemes, it is essential to integrate nanoscale materials with an ultrafast optoelectronic functionality into high-frequency circuits. The atomically thin graphene has been widely demonstrated to be suitable for photovoltaic and optoelectronic devices because of its broadband optical absorption and its high electron mobility. Moreover, the ultrafast relaxation of photogenerated charge carriers has been verified in graphene. Here, we show that dual-gated graphene junctions can be functional parts of THz-circuits. As the underlying optoelectronic process, we exploit ultrafast photo-thermoelectric currents. We describe an immediate photo-thermoelectric current of the unbiased device following a femtosecond laser excitation. For a picosecond time-scale after the optical excitation, an additional photo-thermoelectric contribution shows up, which exhibits the fingerprint of a spatially inverted temperature profile. The latter can be understood by the different time-constants and thermal coupling mechanisms of the electron and phonon baths within graphene to the substrate and the metal contacts. The interplay of the processes gives rise to ultrafast electromagnetic transients in high-frequency circuits, and it is equally important for a fundamental understanding of graphene-based ultrafast photodetectors and switches. PMID:27762291

  10. Local THz time domain spectroscopy of duplex DNA via fluorescence of an embedded probe.

    PubMed

    Dallmann, André; Pfaffe, Matthias; Mügge, Clemens; Mahrwald, Rainer; Kovalenko, Sergey A; Ernsting, Nikolaus P

    2009-11-26

    We demonstrate that THz vibrational activity of a biopolymer can be measured locally, on the effective length scale for polar solvation, with an embedded molecular probe. For this purpose, the polarity probe 2-hydroxy-7-nitrofluorene was linked into a 13mer DNA duplex opposite an abasic site. The NMR solution structure shows that the fluorene moiety occupies a well-defined position in place of a base pair but can flip around the long axis on a millisecond time scale. Femtosecond optical pump-probe experiments are used to measure the time-resolved Stokes shift of emission from the probe. The dynamic shifts for solution in H(2)O and D(2)O are quantified. Their difference is much larger than that expected for free water, implying that only bound water is observed. A weak 26 cm(-1) spectral oscillation of the emission band is observed, which is not present when the probe is free in solution and is therefore caused by the supramolecular structure (DNA and hydration water). PMID:19764701

  11. Chiral THz metamaterial with tunable optical activity

    SciTech Connect

    Zhou, Jiangfeng; Taylor, Antoinette; O' Hara, John; Chowdhury, Roy; Zhao, Rongkuo; Soukoullis, Costas M

    2010-01-01

    Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation

  12. Femtosecond laser for glaucoma treatment: the comparison between simulation and experimentation results on ocular tissue removal

    NASA Astrophysics Data System (ADS)

    Hou, Dong Xia; Ngoi, Bryan K. A.; Hoh, Sek Tien; Koh, Lee Huat K.; Deng, Yuan Zi

    2005-04-01

    In ophthalmology, the use of femtosecond lasers is receiving more attention than ever due to its extremely high intensity and ultra short pulse duration. It opens the highly beneficial possibilities for minimized side effects during surgery process, and one of the specific areas is laser surgery in glaucoma treatment. However, the sophisticated femtosecond laser-ocular tissue interaction mechanism hampers the clinical application of femtosecond laser to treat glaucoma. The potential contribution in this work lies in the fact, that this is the first time a modified moving breakdown theory is applied, which is appropriate for femtosecond time scale, to analyze femtosecond laser-ocular tissue interaction mechanism. Based on this theory, energy deposition and corresponding thermal increase are studied by both simulation and experimentation. A simulation model was developed using Matlab software, and the simulation result was validated through in-vitro laser-tissue interaction experiment using pig iris. By comparing the theoretical and experimental results, it is shown that femtosecond laser can obtain determined ocular tissue removal, and the thermal damage is evidently reduced. This result provides a promising potential for femtosecond laser in glaucoma treatment.

  13. Analysis of impact factors of output characteristics for optically pumped THz lasers

    NASA Astrophysics Data System (ADS)

    Huang, Renshuai; Meng, Qinglong; Guo, Xiaoyang; Zhang, Bin

    2016-08-01

    Optically pumped terahertz (THz) lasers as a reliable THz radiation sources have been widely used in THz application area. Considering the Doppler-broadened effects and the two-photon light shift effects, the physical model for the THz output power and the THz output frequency drift of optically pumped THz lasers has been established based on the rate equations. The main factors affecting THz laser output have been analyzed quantitatively. The results indicate that the THz output power increases with the increasing of the pump power, while decreases with the increasing of the pump frequency offset from the operating gas absorption centre. The THz output frequency drift is mainly caused by two-photon light shift when the pump offset is small, whereas Doppler-broadened becomes main factor if the pump frequency offset is relatively larger. Furthermore, the THz output frequency drift increases in proportion to the pump power. The stability of the THz output frequency can be enhanced and the THz output power can be improved by choosing pressure in the cavity reasonably, and the optimal working gas pressure range is 15-20 Pa. Stabilizing the pump laser frequency in the range of gas absorption centre, choosing reasonable working gas pressure in the THz cavity and the pump power can efficiently improve the performance of the THz laser output.

  14. Absorption and Diffusion Measurements of Biological Samples using a THz Free Electron Laser.

    PubMed

    Giovenale, E; D'Arienzo, M; Doria, A; Gallerano, G P; Lai, A; Messina, G; Piccinelli, D

    2003-06-01

    A compact THz Free Electron Laser (FEL) isbeing used to perform irradiation ofbiological samples to investigate possiblegenotoxic effects. In order to evaluate theexact radiation dose absorbed by the singlecomponents of the samples it is necessaryto study the optical properties of thesamples, separating the contributions tothe radiation attenuation coefficientcoming from absorption and from diffusion.Spectroscopic measurements have beenperformed on different biological samples, comparing the experimental results withtheoretical models. PMID:23345832

  15. Mode manipulation and near-THz absorptions in binary grating-graphene layer structures

    PubMed Central

    2014-01-01

    The excitation and absorption properties of grating coupled graphene surface plasmons were studied. It was found that whether a mode can be excited is mainly determined by the frequency of incident light and the duty ratio of gratings. In the structure consisting graphene bilayer, a blueshift of the excitation frequency existed when the distance between neighbor graphene layer were decreased gradually. In graphene-grating multilayer structures, a strong absorption (approximately 90% at maximum) was found in near-THz range. PMID:24559407

  16. Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser.

    PubMed

    Han, D D; Liu, X M; Cui, Y D; Wang, G X; Zeng, C; Yun, L

    2014-03-15

    We propose a compact nanotube-mode-locked all-fiber laser that can simultaneously generate picosecond and femtosecond solitons at different wavelengths. The pulse durations of picosecond and femtosecond solitons are measured to be ∼10.6  ps and ∼466  fs, respectively. Numerical results agree well with the experimental observations and clearly reveal that the dynamic evolutions of the picosecond and femtosecond solitons are qualitatively distinct in the intracavity. Our study presents a simple, stable, low-cost, and dual-scale ultrafast-pulsed laser source suitable for practical applications in optical communications.

  17. Measurement of ablation threshold of oxide-film-coated aluminium nanoparticles irradiated by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Chefonov, O. V.; Ovchinnikov, A. V.; Il'ina, I. V.; Agranat, M. B.

    2016-03-01

    We report the results of experiments on estimation of femtosecond laser threshold intensity at which nanoparticles are removed from the substrate surface. The studies are performed with nanoparticles obtained by femtosecond laser ablation of pure aluminium in distilled water. The attenuation (or extinction, i.e. absorption and scattering) spectra of nanoparticles are measured at room temperature in the UV and optical wavelength ranges. The size of nanoparticles is determined using atomic force microscopy. A new method of scanning photoluminescence is proposed to evaluate the threshold of nanoparticle removal from the surface of a glass substrate exposed to IR femtosecond laser pulses with intensities 1011 - 1013 W cm-2.

  18. Femtosecond single-electron diffraction

    PubMed Central

    Lahme, S.; Kealhofer, C.; Krausz, F.; Baum, P.

    2014-01-01

    Ultrafast electron diffraction allows the tracking of atomic motion in real time, but space charge effects within dense electron packets are a problem for temporal resolution. Here, we report on time-resolved pump-probe diffraction using femtosecond single-electron pulses that are free from intra-pulse Coulomb interactions over the entire trajectory from the source to the detector. Sufficient average electron current is achieved at repetition rates of hundreds of kHz. Thermal load on the sample is avoided by minimizing the pump-probe area and by maximizing heat diffusion. Time-resolved diffraction from fibrous graphite polycrystals reveals coherent acoustic phonons in a nanometer-thick grain ensemble with a signal-to-noise level comparable to conventional multi-electron experiments. These results demonstrate the feasibility of pump-probe diffraction in the single-electron regime, where simulations indicate compressibility of the pulses down to few-femtosecond and attosecond duration. PMID:26798778

  19. Femtosecond Photon-Counting Receiver

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Rambo, Timothy M.; Yang, Guangning; Lu, Wei; Numata, Kenji

    2016-01-01

    An optical correlation receiver is described that provides ultra-precise distance and/or time/pulse-width measurements even for weak (single photons) and short (femtosecond) optical signals. A new type of optical correlation receiver uses a fourth-order (intensity) interferometer to provide micron distance measurements even for weak (single photons) and short (femtosecond) optical signals. The optical correlator uses a low-noise-integrating detector that can resolve photon number. The correlation (range as a function of path delay) is calculated from the variance of the photon number of the difference of the optical signals on the two detectors. Our preliminary proof-of principle data (using a short-pulse diode laser transmitter) demonstrates tens of microns precision.

  20. Femtosecond Laser-Induced Coulomb Explosion Imaging

    NASA Astrophysics Data System (ADS)

    Karimi, Reza; Liu, Wing-Ki; Sanderson, Joseph

    2016-07-01

    We review recent progress in the field of Coulomb imaging using femtosecond laser pulses of variable length, referred to as Femtosecond Multiple Pulse Length Spectroscopy (FEMPULS). This method introduces a multi-dimensional approach to the study of the molecular dynamics of the multiply ionized triatomic molecules: CO2, OCS, and N2O. We describe the experimental setup used and the approaches needed to optimize the multi-particle detection, coincidence technique. The results show the degree of high resolution imaging which can be achieved with few cycle pulses, and how the onset of charge resonance enhanced ionization (CREI) can be observed as pulse length is increased. By coupling pulse length variation with Dalitz and Newton plotting techniques, stepwise processes can be identified for all three molecules, giving insight into the dynamics, particularly on the 3+ state, which has been revealed as the doorway state to CREI. Finally, in the case of OCS, pulse length variation is shown to have the potential as a control mechanism, as it modulates the ratio of stepwise to concerted processes.

  1. THz electromagnetic radiation driven by intense relativistic electron beam based on ion focus regime

    NASA Astrophysics Data System (ADS)

    Zhou, Qing; Yang, Shengpeng; Xu, Jin; Zhang, Wenchao; Tang, Changjian; Duan, Zhaoyun; Gong, Yubin

    2016-06-01

    The simulation study finds that the relativistic electron beam propagating through the plasma background can produce electromagnetic (EM) radiation. With the propagation of the electron beam, the oscillations of the beam electrons in transverse and longitudinal directions have been observed simultaneously, which provides the basis for the electromagnetic radiation. The simulation results clearly show that the electromagnetic radiation frequency can reach up to terahertz (THz) wave band which may result from the filter-like property of plasma background, and the electromagnetic radiation frequency closely depends on the plasma density. To understand the above simulation results physically, the dispersion relation of the beam-plasma system has been derived using the field-matching method, and the dispersion curves show that the slow wave modes can couple with the electron beam effectively in THz wave band, which is an important theoretical evidence of the EM radiation.

  2. Improved efficiency of photoconductive THz emitters by increasing the effective contact length of electrodes

    SciTech Connect

    Singh, Abhishek; Surdi, Harshad; Nikesh, V. V.; Prabhu, S. S.; Döhler, G. H.

    2013-12-15

    We study the effect of a surface modification at the interface between metallic electrodes and semiconducting substrate in Semi-Insulating GaAs (SI-GaAs) based photoconductive emitters (PCE) on the emission of Tera-Hertz (THz) radiation. We partially etch out a 500 nm thick layer of SI-GaAs in grating like pattern with various periods before the contact deposition. By depositing the electrodes on the patterned surface, the electrodes follow the contour of the grating period. This increases the effective contact length of the electrodes per unit area of the active regions on the PCE. The maxima of the electric field amplitude of the THz pulses emitted from the patterned surface are enhanced by up to more than a factor 2 as compared to an un-patterned surface. We attribute this increase to the increase of the effective contact length of the electrode due to surface patterning.

  3. Surface plasmon-polariton resonance at diffraction of THz radiation on semiconductor gratings

    NASA Astrophysics Data System (ADS)

    Spevak, I. S.; Kuzmenko, A. A.; Tymchenko, M.; Gavrikov, V. K.; Shulga, V. M.; Feng, J.; Sun, H. B.; Kamenev, Yu. E.; Kats, A. V.

    2016-08-01

    Resonance diffraction of THz hidrogen cyanide laser radiation on a semiconductor (InSb) grating is studied both experimentally and theoretically. The specular reflectivity suppression due to the resonance excitation of the THz surface plasmon-polariton is observed on a pure semiconductor grating and on semiconductor gratings covered with a thin dielectric layer. The dielectric coating of the grating results in the resonance shift and widening depending both on the layer thickness and dielectric properties. A simple analytical theory of the resonance diffraction on rather shallow gratings covered with a dielectric layer is presented, and the results are in a good accordance with the experimental data. Analytical expressions for the resonance shift and broadening are essential for the resonance properties understanding and useful for sensing data interpretation of the agents deposited on the grating surface.

  4. Grating THz laser with optical pumping

    NASA Astrophysics Data System (ADS)

    Khoury, Jed; Haji-saeed, Bahareh; Woods, Charles; Kierstead, John

    2010-04-01

    In this paper, we present a design for a widely tunable solid-state optically and electrically pumped THz laser based on the Smith-Purcell free-electron laser. In the free-electron laser, an energetic electron beam pumps a metallic grating to generate surface plasmons. Our solid-state optically pumped design consists of a thin layer of dielectic, such as SiNx, sandwiched between a corrugated structure and a thin metal or semiconductor layer. The lower layer is for current streaming, and replaces the electron beam in the original design. The upper layer consists of one micro-grating for coupling the electromagnetic field in, another for coupling out, and a nano-grating for coupling with the current in the lower layer for electromagnetic field generation. The surface plasmon waves generated from the upper layer by an external electromagnetic field, and the lower layer by the applied current, are coupled. Emission enhancement occurs when the plasmonic waves in both layers are resonantly coupled.

  5. Towards large area THz electromagnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Moser, H. O.; Bahou, M.; Chen, A.; Heussler, S. P.; Jian, L. K.; Kalaiselvi, S. M. P.; Liu, G.; Maniam, S. M.; bin Mahmood, Shahrain; Gu, P. D.; Wen, L.; Kong, J. A.; Chen, H. S.; Cheng, X. X.; Wu, B. I.; Casse, B. D. F.; Rockstuhl, C.; Lederer, F.

    2008-08-01

    Up to date, electromagnetic metamaterials (EM3) have been mostly fabricated by primary pattern generation via electron beam or laser writer. Such an approach is time-consuming and may have limitations of the area filled with structures. Especially, electron beam written structures are typically confined to areas of a few 100×100 μm2. However, for meaningful technological applications, larger quantities of good quality materials are needed. Lithography, in particular X-ray deep lithography, is well suited to accomplish this task. Singapore Synchrotron Light Source (SSLS) has been applying its LIGA process that includes primary pattern generation via electron beam or laser writer, X-ray deep lithography and electroplating to the micro/nano-manufacturing of high-aspect ratio structures to produce a variety of EM3 structures. Starting with Pendry's split ring resonators, we have pursued structure designs suitable for planar lithography since 2002 covering a range of resonance frequencies from 1 to 216 THz. More recently, string-like structures have also been included. Latest progress made in the manufacturing and characterization of quasi 3D metamaterials having either split ring or string structures over areas of about ~1 cm2 extension will be described.

  6. THz Spectroscopy and Spectroscopic Database for Astrophysics

    NASA Technical Reports Server (NTRS)

    Pearson, John C.; Drouin, Brian J.

    2006-01-01

    Molecule specific astronomical observations rely on precisely determined laboratory molecular data for interpretation. The Herschel Heterodyne Instrument for Far Infrared, a suite of SOFIA instruments, and ALMA are each well placed to expose the limitations of available molecular physics data and spectral line catalogs. Herschel and SOFIA will observe in high spectral resolution over the entire far infrared range. Accurate data to previously unimagined frequencies including infrared ro-vibrational and ro-torsional bands will be required for interpretation of the observations. Planned ALMA observations with a very small beam will reveal weaker emission features requiring accurate knowledge of higher quantum numbers and additional vibrational states. Historically, laboratory spectroscopy has been at the front of submillimeter technology development, but now astronomical receivers have an enormous capability advantage. Additionally, rotational spectroscopy is a relatively mature field attracting little interest from students and funding agencies. Molecular database maintenance is tedious and difficult to justify as research. This severely limits funding opportunities even though data bases require the same level of expertise as research. We report the application of some relatively new receiver technology into a simple solid state THz spectrometer that has the performance required to collect the laboratory data required by astronomical observations. Further detail on the lack of preparation for upcoming missions by the JPL spectral line catalog is given.

  7. THz Spectroscopy and Spectroscopic Database for Astrophysics

    NASA Technical Reports Server (NTRS)

    Pearson, John C.; Drouin, Brian J.

    2006-01-01

    Molecule specific astronomical observations rely on precisely determined laboratory molecular data for interpretation. The Herschel Heterodyne Instrument for Far Infrared, a suite of SOFIA instruments, and ALMA are each well placed to expose the limitations of available molecular physics data and spectral line catalogs. Herschel and SOFIA will observe in high spectral resolution over the entire far infrared range. Accurate data to previously unimagined frequencies including infrared ro-vibrational and ro-torsional bands will be required for interpretation of the observations. Planned ALMA observations with a very small beam will reveal weaker emission features requiring accurate knowledge of higher quantum numbers and additional vibrational states. Historically, laboratory spectroscopy has been at the front of submillimeter technology development, but now astronomical receivers have an enormous capability advantage. Additionally, rotational spectroscopy is a relatively mature field attracting little interest from students and funding agencies. Molecular data base maintenance is tedious and difficult to justify as research. This severely limits funding opportunities even though data bases require the same level of expertise as research. We report the application of some relatively new receiver technology into a simple solid state THz spectrometer that has the performance required to collect the laboratory data required by astronomical observations. Further detail on the lack of preparation for upcoming missions by the JPL spectral line catalog is given.

  8. Precise micromachining of materials using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Garasz, K.; Tański, M.; Barbucha, R.; Kocik, M.

    2015-06-01

    We present the results of the experimental parametric study on efficiency, accuracy and quality of femtosecond laser micromachining of different materials. The laser micromachining process was performed with a solid-state Yb:KYW laser. The laser generates 500 fs pulses of three different wavelengths, repetition rate from 100 to 900 kHz and output power up to 50 W. This allows to perform a complex research for a wide range of parameters and materials. Laser micromachining is a process based on a laser ablation phenomenon, i.e. total evaporation of material from the target surface during laser irradiation. It is the most precise method of material removal. Applying a femtosecond laser in the process, allows the use of ultra short pulses, with a duration of 10-15 seconds, while maintaining a high laser power. The concentration of energy within a single pulse is sufficiently high to cause the detachment of particles from the irradiated target without any thermal interactions with the surrounding material. Therefore, the removal of the material occurs only in the laser focus. This allows to avoid most of the unwanted effects of the heat affected zone (HAZ). It has been established, that the quality of laser ablation process using femtosecond pulses is much higher than while using the long pulsed lasers (i.e. nanosecond). The use of femtosecond laser pulses creates therefore an attractive opportunity for high quality micromachining of many groups of materials.

  9. [Reseach on THz Time Domain Spectrum of Photo-Induced Insulator-Metal Phase Transition of VO₂ Films].

    PubMed

    Wang, Chang-lei; Wu, Shuai; Li, Yan-feng; Liu, Bo-wen; Hu, Ming-lie; Chai, Lu; Xing, Qi-rong; Wang, Qing-yue

    2015-11-01

    Vanadium dioxide (VO₂) film will be phase-transitioned from insulator into metal, accompanied with dramatic change on conductivity, which is named as photo-induced insulator-metal phase transition. Such phase transition of VO₂ film has important application potentials in modulators or other functional devices for terahertz waves. In this paper, the transmission spectrum variations before and after the photo-induced insulator-metal phase transition of vanadium dioxide film are investigated, and the phase transition properties in terahertz(THz) region are analyzed. In the experiment, the phase transition of the VO₂ film was induced by a continuous wave (CW) laser source and a femtosecond (fs) laser source, respectively. Obvious changes on the THz waveforms were observed for the both mentioned means of excitation, and the amplitude attenuation, as well as the signal distortion, was intensified with the increase of the impinging optical power. The fast Fourier transform (FFT) spectra of the transmitted THz time-domain signals were analyzed and it was found that the amplitude of the transmitted spectrum decreased synchronously with the increase of the optical power, accompanied with deformation of the spectrum line shape at the same time. The reason was that the macroscopic dielectric properties of the VO₂ film approached gradually to that of a metal as laser power was increased. A parameter, transmission modulation function, was defined in the paper as the amplitude difference between the transmission spectra of the VO₂ film before and after the laser excitation, to describe the dispersivity of the photo-induced phase transition more clearly. From the curve of the transmission modulation function, strong frequency-dependent properties at THz frequencies were found to vary regularly with the incident light power. After furthermore comparison, it was found that, though the insulator-metal phase transition could be trigged by both CW laser source and fs laser

  10. Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip.

    PubMed

    Pelusi, M D; Vo, T D; Luan, F; Madden, S J; Choi, D-Y; Bulla, D A P; Luther-Davies, B; Eggleton, B J

    2009-05-25

    We report the first demonstration of the use of an RF spectrum analyser with multi-terahertz bandwidth to measure the properties of femtosecond optical pulses. A low distortion and broad measurement bandwidth of 2.78 THz (nearly two orders of magnitude greater than conventional opto-electronic analyzers) was achieved by using a 6 cm long As(2)S(3) chalcogenide waveguide designed for high Kerr nonlinearity and near zero dispersion. Measurements of pulses as short as 260 fs produced from a soliton-effect compressor reveal features not evident from the pulse's optical spectrum. We also applied an inverse Fourier transform numerically to the captured data to re-construct a time-domain waveform that resembled pulse measurement obtained from intensity autocorrelation. PMID:19466183

  11. Spectral investigation of nematic liquid crystals with high optical anisotropy at THz frequency range

    NASA Astrophysics Data System (ADS)

    Chodorow, U.; Parka, J.; Garbat, K.; Pałka, N.; Czupryński, K.

    2012-04-01

    Liquid crystals (LCs) with high optical anisotropy are very desirable for different applications in devices, such as filters, phase shifters, or phase gratings [T. Göbel, P. Meissner, A. Gaebler, M. Koeberle, S. Mueller, and R. Jakoby, Dual-Frequency Switching Liquid Crystal Based Tunable THz Filter, CLEO, Baltimore, MD, 2009; C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals, Appl. Phys. Lett. 83 (2003), pp. 4497-4499; and C.-J. Lin, C.-H. Lin, Y.-T. Li, R.-P. Pan, and C.-L. Pan, Electrically controlled liquid crystal phase grating for terahertz waves, IEEE Photon. Technol. Lett. 21 (2009), pp. 730-732]. We present spectral studies of LCs with large optical anisotropy in the range from 0.3 to 3 THz. Nematic LC mixtures which have Δn > 0.30 for visible frequency range, i.e., 1825 (Δn = 0.42 at 633 nm) were measured. Properties of LC materials like birefringence, absorption coefficients, and refractive indices for ordinary and extraordinary polarization in THz range were obtained. Orientation of LC was done by a high electric field. Measurements were performed using a TDS spectra 3000 spectrometer.

  12. THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures.

    PubMed

    Mante, Pierre-Adrien; Huang, Yu-Ru; Yang, Szu-Chi; Liu, Tzu-Ming; Maznev, Alexei A; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2015-02-01

    Thanks to ultrafast acoustics, a better understanding of acoustic dynamics on a short time scale has been obtained and new characterization methods at the nanoscale have been developed. Among the materials that were studied during the development of ultrafast acoustics, nitride based heterostructures play a particular role due to their piezoelectric properties and the possibility to generate phonons with over-THz frequency and bandwidth. Here, we review some of the work performed using this type of structure, with a focus on THz phonon spectroscopy and nanoscopy. First, we present a brief description of the theory of coherent acoustic phonon generation by piezoelectric heterostructure. Then the first experimental observation of coherent acoustic phonon generated by the absorption of ultrashort light pulses in piezoelectric heterostructures is presented. From this starting point, we then present some methods developed to realize customizable phonon generation. Finally we review some more recent applications of these structures, including imaging with a nanometer resolution, broadband attenuation measurements with a frequency up to 1THz and phononic bandgap characterization.

  13. Generation of THz signals based on quasi-ballistic electron reflections in double-heterojunction structures

    NASA Astrophysics Data System (ADS)

    Ong, D. S.; Hartnagel, H. L.

    2007-09-01

    The generation of THz signals by the periodic quasi-ballistic resonant motion of electrons on the basis of the combined action of electron acceleration in a potential well and reflection at the heterointerface is demonstrated by a Monte Carlo simulation. The electron dynamics in In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As heterostructures is investigated for different well widths and doping densities under the influence of fundamental-wave signals which conveniently can also be of square shape of 100 GHz and 200 GHz. It is found that the resulting quasi-ballistic electron motion produces oscillations within these wells which generate particularly high odd harmonics in the terahertz frequency range. Simulation results of this new type of resonance phenomenon show that the amplitude of the THz radiation strongly depends on the well width and voltage level of the square wave signal. This study shows that double-heterojunction structures with well width of ballistic electron transport length are promising candidates for the design of efficient THz sources.

  14. THz acoustic phonon spectroscopy and nanoscopy by using piezoelectric semiconductor heterostructures.

    PubMed

    Mante, Pierre-Adrien; Huang, Yu-Ru; Yang, Szu-Chi; Liu, Tzu-Ming; Maznev, Alexei A; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2015-02-01

    Thanks to ultrafast acoustics, a better understanding of acoustic dynamics on a short time scale has been obtained and new characterization methods at the nanoscale have been developed. Among the materials that were studied during the development of ultrafast acoustics, nitride based heterostructures play a particular role due to their piezoelectric properties and the possibility to generate phonons with over-THz frequency and bandwidth. Here, we review some of the work performed using this type of structure, with a focus on THz phonon spectroscopy and nanoscopy. First, we present a brief description of the theory of coherent acoustic phonon generation by piezoelectric heterostructure. Then the first experimental observation of coherent acoustic phonon generated by the absorption of ultrashort light pulses in piezoelectric heterostructures is presented. From this starting point, we then present some methods developed to realize customizable phonon generation. Finally we review some more recent applications of these structures, including imaging with a nanometer resolution, broadband attenuation measurements with a frequency up to 1THz and phononic bandgap characterization. PMID:25455189

  15. Graphene quantum dots for high-performance THz hot electron bolometers

    NASA Astrophysics Data System (ADS)

    El Fatimy, A.; Han, P.; Myers-Ward, R. L.; Boyd, A. K.; Daniels, K. M.; Sushkov, A. B.; Drew, D.; Gaskill, D. K.; Barbara, P.

    We study graphene quantum dots patterned from epitaxial graphene on SiC with a resistance strongly dependent on temperature. The combination of weak electron-phonon coupling and small electronic heat capacity in graphene makes these quantum dots ideal hot-electron bolometers. We characterize their response to THz radiation as a function of dot size, with sizes ranging from 30 to 700 nm and temperature, from 2.4K to 80K. We show that quantum dots exhibit a variation of resistance with temperature higher than 430 M Ω/K below 6K, leading to electrical responsivities for an absorbed THz power above 1×1010 V/W. The high responsivity, the potential for operation above 80 K and the process scalability show great promise towards practical applications of graphene quantum dot THz detectors. 1A. El Fatimy, R.L.Myers-Ward, A.K. Boyd, K.M. Daniels, D. K. Gaskill, and P. Barbara, Nature Nanotechnology, Accepted (2015). This work was sponsored by the U.S. Office of Naval Research (Award Number N000141310865).

  16. Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves

    NASA Astrophysics Data System (ADS)

    Nusinovich, Gregory S.; Sprangle, Phillip; Romero-Talamas, Carlos A.; Rodgers, John; Pu, Ruifeng; Kashyn, Dmytro G.; Antonsen, Thomas M., Jr.; Granatstein, Victor L.

    2012-06-01

    Recently, a new method of remote detection of concealed radioactive materials was proposed. This method is based on focusing high-power short wavelength electromagnetic radiation in a small volume where the wave electric field exceeds the breakdown threshold. In the presence of free electrons caused by ionizing radiation, in this volume an avalanche discharge can then be initiated. When the wavelength is short enough, the probability of having even one free electron in this small volume in the absence of additional sources of ionization is low. Hence, a high breakdown rate will indicate that in the vicinity of this volume there are some materials causing ionization of air. To prove this concept a 0.67 THz gyrotron delivering 200-300 kW power in 10 microsecond pulses is under development. This method of standoff detection of concealed sources of ionizing radiation requires a wide range of studies, viz., evaluation of possible range, THz power and pulse duration, production of free electrons in air by gamma rays penetrating through container walls, statistical delay time in initiation of the breakdown in the case of low electron density, temporal evolution of plasma structure in the breakdown and scattering of THz radiation from small plasma objects. Most of these issues are discussed in the paper.

  17. THz photoresponse of quantum Hall devices based on HgTe-Quantum wells

    NASA Astrophysics Data System (ADS)

    Gouider, F.; Hein, G.; Brüne, C.; Buhmann, H.; Vasilyev, Yu. B.; Nachtwei, G.

    2010-01-01

    This study concerns the experimental investigation of the Terahertz -(THz-) photoresponse in systems under quantum-Hall-(QH-) conditions. These investigations are interesting regarding a potential application of QH-systems as fast and spectrally sensitive THz-detectors. The measurements of the THz-photoresponse (PR) of devices with HgTe quantum wells (QWs) embedded in CdHgTe barriers are aimed at obtaining photosignals at smaller magnetic fields in comparison to detectors made of GaAs/AlGaAs wafers. This can be realized by changing the electron density (application of a gate electrode). The QWs have a thickness of dQW between 7 nm and 12 nm, so that the material HgTe of the QW possesses a semimetallic band structure. We found a cyclotron mass of about mc = 0.026 m0 for our samples from cyclotron resonance measurements (also approximately determined from our PR). As this cyclotron mass is by about a factor 3 smaller than the one of electrons in GaAs, the same Landau level splitting is reached at about 1/3 of the magnetic field as in GaAs.

  18. Measuring THz QCL feedback using an integrated monolithic transceiver.

    SciTech Connect

    Wanke, Michael Clement

    2010-08-01

    THz quantum cascade lasers are of interest for use as solid-state local-oscillators in THz heterodyne receiver systems, especially for frequencies exceeding 2 THz and for use with non-cryogenic mixers which require mW power levels. Among other criteria, to be a good local oscillator, the laser must have a narrow linewidth and excellent frequency stability. Recent phase locking measurements of THz QCLs to high harmonics of microwave frequency reference sources as high as 2.7 THz demonstrate that the linewidth and frequency stability of QCLs can be more than adequate. Most reported THz receivers employing QCLs have used discrete source and detector components coupled via mechanically aligned free-space quasioptics. Unfortunately, retroreflections of the laser off of the detecting element can lead to deleterious feedback effects. Using a monolithically integrated transceiver with a Schottky diode monolithically integrated into a THz QCL, we have begun to explore the sensitivity of the laser performance to feedback due to retroreflections of the THz laser radiation. The transceiver allows us to monitor the beat frequency between internal Fabry-Perot modes of the QCL or between a QCL mode and external radiation incident on the transceiver. When some of the power from a free running Fabry-Perot type QCL is retroreflected with quasi-static optics we observe frequency pulling, mode splitting and chaos. Given the lack of calibrated frequency sources with sufficient stability and power to phase lock a QCL above a couple THz, attempts have been made to lock the absolute laser frequency by locking the beat frequency of a multimoded laser. We have phase locked the beat frequency between Fabry-Perot modes to an {approx}13 GHz microwave reference source with a linewidth less than 1 Hz, but did not see any improvment in stability of the absolute frequency of the laser. In this case, when some laser power is retroreflected back into the laser, the absolute frequency can be pulled

  19. Femtosecond laser enabled keratoplasty for advanced keratoconus

    PubMed Central

    Shivanna, Yathish; Nagaraja, Harsha; Kugar, Thungappa; Shetty, Rohit

    2013-01-01

    Purpose: To assess the efficacy and advantages of femtosecond laser enabled keratoplasty (FLEK) over conventional penetrating keratoplasty (PKP) in advanced keratoconus. Materials and Methods: Detailed review of literature of published randomized controlled trials of operative techniques in PKP and FLEK. Results: Fifteen studies were identified, analyzed, and compared with our outcome. FLEK was found to have better outcome in view of better and earlier stabilization uncorrected visual acuity (UCVA), best corrected visual acuity (BCVA), and better refractive outcomes with low astigmatism as compared with conventional PKP. Wound healing also was noticed to be earlier, enabling early suture removal in FLEK. Conclusions: Studies relating to FLEK have shown better results than conventional PKP, however further studies are needed to assess the safety and intraoperative complications of the procedure. PMID:23925340

  20. THz near-field imaging of biological tissues employing synchrotronradiation

    SciTech Connect

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried,Daniel

    2004-12-23

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  1. First tests of THz transmission through a Diamond Anvil Cell

    SciTech Connect

    John Klopf

    2011-01-24

    The THz source generated by the accelerator driver for the Jefferson Lab Free Electron Laser is unique in the world in its ability to deliver a high average power beam of ultrashort (<500 fs FWHM) broadband THz pulses. The spectrum of this source presents an ideal probe for many low energy phenomena, and the time structure enables measurement of dynamic processes with sub-ps resolution. An outline of the range of potential applications for this THz source as a probe of sub-ps dynamics in materials under extreme conditions will be presented. To demonstrate the capabilities of this source for just such experiments, the first set of tests to characterize the transmission of the THz beam through a diamond anvil cell (DAC) have been performed. These preliminary results will be presented along with a description of the optical design used to deliver the THz beam into and out of the DAC. The current design will be compared with other possible techniques and the plans for the next set of measurements will also be given.

  2. Collisional cooling investigation of THz rotational transitions of water

    NASA Astrophysics Data System (ADS)

    Dick, Michael J.; Drouin, Brian J.; Pearson, John C.

    2010-02-01

    An investigation of the pressure broadening by helium and hydrogen of six rotational transitions of water has been completed. The six transitions studied included two para water transitions (000-111 and 111-202) and four ortho water transitions (101-110, 221-312, 303-312 and 312-321) in the frequency region 0.55-1.17 THz. This survey was accomplished using the collisional cooling technique which allowed the broadening of each transition to be studied below the water condensation temperature. For each of the transitions studied, the temperature dependence of the pressure broadening by helium showed little dependence on temperature, while the broadening by hydrogen showed a sharp decrease at the lowest temperatures. This behavior was modeled, for each transition broadened by helium and hydrogen, with a power law, or a power law modified with a Boltzmann-like step function, and the results of these fits will be presented. In addition, an extensive investigation of the systematic error in the temperature of the water vapor in the collisional cooling experiment will be discussed. Finally, the impact of these new broadening measurements on models of star formation in the interstellar medium will be outlined.

  3. Collisional cooling investigation of THz rotational transitions of water

    SciTech Connect

    Dick, Michael J.; Drouin, Brian J.; Pearson, John C.

    2010-02-15

    An investigation of the pressure broadening by helium and hydrogen of six rotational transitions of water has been completed. The six transitions studied included two para water transitions (0{sub 00}-1{sub 11} and 1{sub 11}-2{sub 02}) and four ortho water transitions (1{sub 01}-1{sub 10}, 2{sub 21}-3{sub 12}, 3{sub 03}-3{sub 12} and 3{sub 12}-3{sub 21}) in the frequency region 0.55-1.17 THz. This survey was accomplished using the collisional cooling technique which allowed the broadening of each transition to be studied below the water condensation temperature. For each of the transitions studied, the temperature dependence of the pressure broadening by helium showed little dependence on temperature, while the broadening by hydrogen showed a sharp decrease at the lowest temperatures. This behavior was modeled, for each transition broadened by helium and hydrogen, with a power law, or a power law modified with a Boltzmann-like step function, and the results of these fits will be presented. In addition, an extensive investigation of the systematic error in the temperature of the water vapor in the collisional cooling experiment will be discussed. Finally, the impact of these new broadening measurements on models of star formation in the interstellar medium will be outlined.

  4. Growth, defect structure, and THz application of stoichiometric lithium niobate

    NASA Astrophysics Data System (ADS)

    Lengyel, K.; Péter, Á.; Kovács, L.; Corradi, G.; Pálfalvi, L.; Hebling, J.; Unferdorben, M.; Dravecz, G.; Hajdara, I.; Szaller, Zs.; Polgár, K.

    2015-12-01

    Owing to the extraordinary richness of its physical properties, congruent lithium niobate has attracted multidecade-long interest both for fundamental science and applications. The combination of ferro-, pyro-, and piezoelectric properties with large electro-optic, acousto-optic, and photoelastic coefficients as well as the strong photorefractive and photovoltaic effects offers a great potential for applications in modern optics. To provide powerful optical components in high energy laser applications, tailoring of key material parameters, especially stoichiometry, is required. This paper reviews the state of the art of growing large stoichiometric LiNbO3 (sLN) crystals, in particular, the defect engineering of pure and doped sLN with emphasis on optical damage resistant (ODR) dopants (e.g., Mg, Zn, In, Sc, Hf, Zr, Sn). The discussion is focused on crystals grown by the high temperature top seeded solution growth (HTTSSG) technique using alkali oxide fluxing agents. Based on high-temperature phase equilibria studies of the Li2O-Nb2O5-X2O ternary systems (X = Na, K, Rb, Cs), the impact of alkali homologue additives on the stoichiometry of the lithium niobate phase will be analyzed, together with a summary of the ultraviolet, infrared, and far-infrared absorption spectroscopic methods developed to characterize the composition of the crystals. It will be shown that using HTTSSG from K2O containing flux, crystals closest to the stoichiometric composition can be grown characterized by a UV-edge position of at about 302 nm and a single narrow hydroxyl band in the IR with a linewidth of less than 3 cm-1 at 300 K. The threshold concentrations for ODR dopants depend on crystal stoichiometry and the valence of the dopants; Raman spectra, hydroxyl vibration spectra, and Z-scan measurements prove to be useful to distinguish crystals below and above the photorefractive threshold. Crystals just above the threshold are preferred for most nonlinear optical applications apart

  5. Temperature and magnetic field dependence of rare -earth ↔iron exchange resonance mode in a magnetic oxide studied with femtosecond magneto-optical Kerr effect

    NASA Astrophysics Data System (ADS)

    Deb, Marwan; Molho, Pierre; Barbara, Bernard; Bigot, Jean-Yves

    2016-08-01

    In magnetic materials, the exchange is the strongest quantum interaction due to the Pauli exclusion principle. For that reason it can induce high-frequency modes fexch of the magnetization precession. In this work we investigate these modes over a wide range of temperatures (50 -300 K ) and magnetic fields up to 10 T in a bismuth-doped garnet with perpendicular magnetic anisotropy by performing femtosecond magneto-optical pump-probe experiments. Near the compensation temperature TM the divergence of 1 /fexch(T ) allows identifying unambiguously fexch with the rare-earth ↔ iron exchange mode. In addition, at low temperature fexch is independent of the field as usually observed. In contrast, we find that near TM,fexch decreases linearly with an increasing magnetic field. This behavior is explained in the context of the ferromagnetic resonance theory by including the perturbation term linear in the external applied field Hext.

  6. Laser photoionization of triacetone triperoxide (TATP) by femtosecond and nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Mullen, Christopher; Huestis, David; Coggiola, Michael; Oser, Harald

    2006-05-01

    Laser ionization time-of-flight mass spectrometry has been applied to the study of triacetone triperoxide (TATP), an improvised explosive. Wavelength dependent mass spectra in two time regimes were acquired using nanosecond (5 ns) and femtosecond (130 fs) laser pulses. We find the major difference between the two time regimes to be the detection of the parent molecular ion when femtosecond laser pulses are employed.

  7. Highly polarized all-fiber thulium laser with femtosecond-laser-written fiber Bragg gratings.

    PubMed

    Willis, Christina C C; McKee, Erik; Böswetter, Pascal; Sincore, Alex; Thomas, Jens; Voigtländer, Christian; Krämer, Ria G; Bradford, Joshua D; Shah, Lawrence; Nolte, Stefan; Tünnermann, Andreas; Richardson, Martin

    2013-05-01

    We demonstrate and characterize a highly linearly polarized (18.8 dB) narrow spectral emission (<80 pm) from an all-fiber Tm laser utilizing femtosecond-laser-written fiber Bragg gratings. Thermally-dependent anisotropic birefringence is observed in the FBG transmission, the effects of which enable both the generation and elimination of highly linearly polarized output. To our knowledge, this is the first detailed study of such thermal anisotropic birefringence in femtosecond-written FBGs.

  8. Investigation of interaction femtosecond laser pulses with skin and eyes mathematical model

    NASA Astrophysics Data System (ADS)

    Rogov, P. U.; Smirnov, S. V.; Semenova, V. A.; Melnik, M. V.; Bespalov, V. G.

    2016-08-01

    We present a mathematical model of linear and nonlinear processes that takes place under the action of femtosecond laser radiation on the cutaneous covering. The study is carried out and the analytical solution of the set of equations describing the dynamics of the electron and atomic subsystems and investigated the processes of linear and nonlinear interaction of femtosecond laser pulses in the vitreous of the human eye, revealed the dependence of the pulse duration on the retina of the duration of the input pulse and found the value of the radiation power density, in which there is a self-focusing is obtained. The results of the work can be used to determine the maximum acceptable energy, generated by femtosecond laser systems, and to develop Russian laser safety standards for femtosecond laser systems.

  9. Numerical simulation of impurity desorption induced by nanosecond and femtosecond laser pulses

    SciTech Connect

    Chi Yinsheng; Lin Xiaohui; Chen Minhua; Chen Yunfei

    2006-08-01

    A model based on a stochastic process was developed to study the impurity molecule desorption from a substrate induced by nanosecond and femtosecond lasers. The dynamics of adsorbed molecules irradiated by the laser pulses can be considered to be a Brownian motion in the bath of excited energy carriers. A two-step model was used to describe the nonequilibrium heating process induced by the femtosecond laser pulses. The difference between the desorption processes induced by nanosecond and femtosecond lasers was discussed based on the numerical results for the desorption of CO molecules from a Ru surface. Results indicate that the femtosecond laser is a much better tool for desorption than the nanosecond laser.

  10. Measurement of mixtures of melamine using THz ray

    NASA Astrophysics Data System (ADS)

    Cui, Ye; Mu, Kaijun; Wang, Xinke; Zhang, Yan; Zhang, Cunlin

    2009-07-01

    The terahertz spectra of pure melamine and two kinds of its mixtures that mix with polyethylene and milk powder were measured using the terahertz time-domain-spectroscopy (THz-TDS). It was found that there are two absorption peaks at 1.99THz and 2.29THz in all three spectra. The absorption coefficient of the mixture varies with the proportion of melamine in the mixture. Increasing the percentage of melamine in the mixture, the absorption peaks in spectrum get more obvious and sharper. According to the Lambert-Beer law, the absorption coefficient and the proportion of the melamine should followed linear relationship. The experimental data accord to this theory well. Using density functional theory, the vibration of melamine crystal was calculated, which accords to experimental data well. This work provides a method of detecting melamine in milk powders. It is expected that the terahertz spectroscopy technology can be used in food safety and other applications.

  11. Optimization of THz Radiation Generation from a Laser Wakefield Accelerator

    SciTech Connect

    Plateau, G. R.; Matlis, N. H.; Toth, C.; Geddes, C. G. R.; Schroeder, C. B.; Tilborg, J. van; Albert, O.; Esarey, E.; Leemans, W. P.

    2009-01-22

    Ultrashort terahertz pulses with energies in the {mu}J range can be generated with laser wakefield accelerators (LWFA), which are novel, compact accelerators that produce ultrashort electron bunches with energies up to 1 GeV and energy spreads of a few-percent. Laser pulses interacting with a plasma create accelerated electrons which upon exiting the plasma emit terahertz pulses via transition radiation. Because these electron bunches are ultrashort (<50 fs), they can radiate coherently (coherent transition radiation--CTR) in a wide bandwidth ({approx}1-10 THz) yielding high intensity terahertz pulses. In addition to providing a non-invasive bunch-length diagnostic and thus feedback for the LWFA, these high peak power THz pulses are suitable for high field (MV/cm) pump-probe experiments. Here we present energy-based measurements using a Golay cell and an electro-optic technique which were used to characterize these THz pulses.

  12. Method for the production of wideband THz radiation

    DOEpatents

    Krafft, Geoffrey A.

    2008-01-01

    A method for the production of extremely wide bandwidth THz radiation comprising: delivering an electron beam from a source to an undulator that does not deflect the angle or transversely move the electron beam; and optimizing the undulator to yield peak emission in the middle of the THz band (1 THz). These objectives are accomplished by magnetically bending the orbit of the incoming electron beam in the undulator according to the function x(z)=x.sub.o exp(-z.sup.2/2.sigma..sup.2) and controlling the transverse magnetic field to be B(z)=B.sub.0(1-z.sup.2/.sigma..sup.2)exp(-z.sup.2/2.sigma..sup.2).

  13. THz-wave parametric source and its imaging applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo

    2004-08-01

    Widely tunable coherent terahertz (THz) wave generation has been demonstrated based on the parametric oscillation using MgO doped LiNbO3 crystal pumped by a Q-switched Nd:YAG laser. This method exhibits multiple advantages like wide tunability, coherency and compactness of its system. We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  14. Filling the THz Gap - High Power Sources and Applications

    SciTech Connect

    Gwyn Williams

    2006-02-01

    Electromagnetic waves centered at a frequency of 1 THz lie between photonics on the one hand and electronics on the other, and are very hard to generate and detect. However, since the THz part of the spectrum is energetically equivalent to many important physical, chemical and biological processes including superconducting gaps and protein dynamical processes, it is of great interest to facilitate experimental research in this region. This has stimulated major steps in the past decade for filling this gap in the usable spectrum. In this review paper we describe the evolution of a new generation of sources that boost the average power available in the THz region by more than a million-fold, making this region routinely accessible for the first time. This is achieved using two enhancement factors, namely relativistic electrons and super-radiance. We will also point to the scientific potential for discovery that is now enabled in this region.

  15. Radiative Characteristics of On-Chip Terahertz (THz) Structures

    SciTech Connect

    Hussein, Yasser A.; Spencer, James E.; /SLAC

    2005-06-07

    Previously, we explored possibilities for producing narrow-band THz radiation using either free or bound electrons (solid state) in micro-undulatory configurations [1] because integrated circuit technology appeared well matched to this region extending from about 300 GHz to 30 THz. This range [2]-[3] has largely been neglected until recently because it runs from the limit of WR-3 waveguide around 300 GHz up to CO{sub 2} lasers where the laser regime becomes dominant. There are mainly two approaches for generating THz radiation, i.e. through free or bound electron (BE) implementations. In this paper, emphasis is on producing this radiation using bound electrons via IC technology but in close analogy to free electron lasers (FELs) that are comparatively immense, expensive, need high power and have low efficiencies [4].

  16. Active tunable plasmonically induced polarization conversion in the THz regime

    NASA Astrophysics Data System (ADS)

    Ling, Furi; Yao, Gang; Yao, Jianquan

    2016-10-01

    A plasmon-induced polarization conversion (PIPC) structure based on periodically patterned graphene was demonstrated in the THz regime. By varying the Fermi level of two connected T-shape graphene strips through the electrostatic gating, the peak frequency and the group index in the transparency window can be tuned, which is good agreement with the coupled Lorentz oscillator model. Due to interference between two polarization selective graphene plasmonic resonances coexisting in the planar metamaterial, polarization conversion can be achieved. The linearly polarized THz wave can be converted to elliptically and right circularly polarized THz wave through varying the relaxation time of electrons in graphene. This novel chip-scale active terahertz device promises essential application opportunities in terahertz sensing and terahertz communications.

  17. Active tunable plasmonically induced polarization conversion in the THz regime

    PubMed Central

    Ling, Furi; Yao, Gang; Yao, Jianquan

    2016-01-01

    A plasmon-induced polarization conversion (PIPC) structure based on periodically patterned graphene was demonstrated in the THz regime. By varying the Fermi level of two connected T-shape graphene strips through the electrostatic gating, the peak frequency and the group index in the transparency window can be tuned, which is good agreement with the coupled Lorentz oscillator model. Due to interference between two polarization selective graphene plasmonic resonances coexisting in the planar metamaterial, polarization conversion can be achieved. The linearly polarized THz wave can be converted to elliptically and right circularly polarized THz wave through varying the relaxation time of electrons in graphene. This novel chip-scale active terahertz device promises essential application opportunities in terahertz sensing and terahertz communications. PMID:27734912

  18. Self-organization approach for THz polaritonic metamaterials

    SciTech Connect

    Reyes-Coronado, A.; Acosta, M.F.; Merino, R.I.; Orera,, V.M.; Kenanakis, G.; Katsarakis, n.; Kafesaki, M.; Mavidis, Ch.; Garcia de Abajo, J.; Economou, E.N.; Soukoulis, Costas M.

    2012-06-15

    In this paper we discuss the fabrication and the electromagnetic (EM) characterization of anisotropic eutectic metamaterials, consisting of cylindrical polaritonic LiF rods embedded in either KCl or NaCl polaritonic host. The fabrication was performed using the eutectics directional solidification self-organization approach. For the EM characterization the specular reflectance at far infrared, between 3 THz and 11 THz, was measured and also calculated by numerically solving Maxwell equations, obtaining good agreement between experimental and calculated spectra. Applying an effective medium approach to describe the response of our samples, we predicted a range of frequencies in which most of our systems behave as homogeneous anisotropic media with a hyperbolic dispersion relation, opening thus possibilities for using them in negative refractive index and imaging applications at THz range.

  19. Detection of explosives using THz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Châteauneuf, Marc; Dubois, Jacques; Allard, Jean-François; Houde, Daniel; Morris, Denis

    2007-06-01

    Improvised Explosive Devices (IEDs) are a major threat to Canadian and allies troups involved in peacekeeping and minor conflict operations and despite their relative low technology they represent a major challenge in terms of detection and countermeasures. In order to provide tools to detect these threats, Defence Research & Development Canada - Valcartier initiated a research project to the feasibility of using terahertz (THz) radiations to detect and identify the presence of commonly used explosives and concealed weapons in a standoff method. This paper presents the initial results of the first year of the project and the future directions. A compact THz time domain spectroscopy was developed to build a THz signature table of commonly used explosives.

  20. Coherent Cherenkov radiation as an intense THz source

    NASA Astrophysics Data System (ADS)

    Bleko, V.; Karataev, P.; Konkov, A.; Kruchinin, K.; Naumenko, G.; Potylitsyn, A.; Vaughan, T.

    2016-07-01

    Diffraction and Cherenkov radiation of relativistic electrons from a dielectric target has been proposed as mechanism for production of intense terahertz (THz) radiation. The use of an extremely short high-energy electron beam of a 4th generation light source (X-ray free electron laser) appears to be very promising. A moderate power from the electron beam can be extracted and converted into THz radiation with nearly zero absorption losses. The initial experiment on THz observation will be performed at CLARA/VELA FEL test facility in the UK to demonstrate the principle to a wider community and to develop the radiator prototype. In this paper, we present our theoretical predictions (based on the approach of polarization currents), which provides the basis for interpreting the future experimental measurements. We will also present our hardware design and discuss a plan of the future experiment.