Kinetics model development of cocoa bean fermentation
NASA Astrophysics Data System (ADS)
Kresnowati, M. T. A. P.; Gunawan, Agus Yodi; Muliyadini, Winny
2015-12-01
Although Indonesia is one of the biggest cocoa beans producers in the world, Indonesian cocoa beans are oftenly of low quality and thereby frequently priced low in the world market. In order to improve the quality, adequate post-harvest cocoa processing techniques are required. Fermentation is the vital stage in series of cocoa beans post harvest processing which could improve the quality of cocoa beans, in particular taste, aroma, and colours. During the fermentation process, combination of microbes grow producing metabolites that serve as the precursors for cocoa beans flavour. Microbial composition and thereby their activities will affect the fermentation performance and influence the properties of cocoa beans. The correlation could be reviewed using a kinetic model that includes unstructured microbial growth, substrate utilization and metabolic product formation. The developed kinetic model could be further used to design cocoa bean fermentation process to meet the expected quality. Further the development of kinetic model of cocoa bean fermentation also serve as a good case study of mixed culture solid state fermentation, that has rarely been studied. This paper presents the development of a kinetic model for solid-state cocoa beans fermentation using an empirical approach. Series of lab scale cocoa bean fermentations, either natural fermentations without starter addition or fermentations with mixed yeast and lactic acid bacteria starter addition, were used for model parameters estimation. The results showed that cocoa beans fermentation can be modelled mathematically and the best model included substrate utilization, microbial growth, metabolites production and its transport. Although the developed model still can not explain the dynamics in microbial population, this model can sufficiently explained the observed changes in sugar concentration as well as metabolic products in the cocoa bean pulp.
Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin
2013-07-20
Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.
Choi, Minsung; Al-Zahrani, Saeed M; Lee, Sang Yup
2014-06-01
Arabic date is overproduced in Arabic countries such as Saudi Arabia and Iraq and is mostly composed of sugars (70-80 wt%). Here we developed a fed-batch fermentation process by using a kinetic model for the efficient production of lactic acid to a high concentration from Arabic date juice. First, a kinetic model of Lactobacillus rhamnosus grown on date juice in batch fermentation was constructed in EXCEL so that the estimation of parameters and simulation of the model can be easily performed. Then, several fed-batch fermentations were conducted by employing different feeding strategies including pulsed feeding, exponential feeding, and modified exponential feeding. Based on the results of fed-batch fermentations, the kinetic model for fed-batch fermentation was also developed. This new model was used to perform feed-forward controlled fed-batch fermentation, which resulted in the production of 171.79 g l(-1) of lactic acid with the productivity and yield of 1.58 and 0.87 g l(-1) h(-1), respectively.
Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture
Buehler, Edward A.; Mesbah, Ali
2016-01-01
Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663
Kashid, Mohan; Ghosalkar, Anand
2017-08-01
The efficient utilization of lignocellulosic biomass for ethanol production depends on the fermentability of the biomass hydrolysate obtained after pretreatment. In this work we evaluated the kinetics of ethanol production from xylose using Pichia stipitis in acid-treated corn cob hydrolysate. Acetic acid is one of the main inhibitors in corn cob hydrolysate that negatively impacts kinetics of xylose fermentation by P. stipitis. Unstructured kinetic model has been formulated that describes cell mass growth and ethanol production as a function of xylose, oxygen, ethanol, and acetic acid concentration. Kinetic parameters were estimated under different operating conditions affecting xylose fermentation. This is the first report on kinetics of xylose fermentation by P. stipitis which includes inhibition of acetic acid on growth and product formation. In the presence of acetic acid in the hydrolysate, the model accurately predicted reduction in maximum specific growth rate (from 0.23 to 0.15 h -1 ) and increase in ethanol yield per unit biomass (from 3 to 6.2 gg -1 ), which was also observed during experimental trials. Presence of acetic acid in the fermentation led to significant reduction in the cell growth rate, reduction in xylose consumption and ethanol production rate. The developed model accurately described physiological state of P. stipitis during corn cob hydrolysate fermentation. Proposed model can be used to predict the influence of xylose, ethanol, oxygen, and acetic acid concentration on cell growth and ethanol productivity in industrial fermentation.
Temperature-Dependent Kinetic Model for Nitrogen-Limited Wine Fermentations▿
Coleman, Matthew C.; Fish, Russell; Block, David E.
2007-01-01
A physical and mathematical model for wine fermentation kinetics was adapted to include the influence of temperature, perhaps the most critical factor influencing fermentation kinetics. The model was based on flask-scale white wine fermentations at different temperatures (11 to 35°C) and different initial concentrations of sugar (265 to 300 g/liter) and nitrogen (70 to 350 mg N/liter). The results show that fermentation temperature and inadequate levels of nitrogen will cause stuck or sluggish fermentations. Model parameters representing cell growth rate, sugar utilization rate, and the inactivation rate of cells in the presence of ethanol are highly temperature dependent. All other variables (yield coefficient of cell mass to utilized nitrogen, yield coefficient of ethanol to utilized sugar, Monod constant for nitrogen-limited growth, and Michaelis-Menten-type constant for sugar transport) were determined to vary insignificantly with temperature. The resulting mathematical model accurately predicts the observed wine fermentation kinetics with respect to different temperatures and different initial conditions, including data from fermentations not used for model development. This is the first wine fermentation model that accurately predicts a transition from sluggish to normal to stuck fermentations as temperature increases from 11 to 35°C. Furthermore, this comprehensive model provides insight into combined effects of time, temperature, and ethanol concentration on yeast (Saccharomyces cerevisiae) activity and physiology. PMID:17616615
Fan, Senqing; Chen, Shiping; Tang, Xiaoyu; Xiao, Zeyi; Deng, Qing; Yao, Peina; Sun, Zhaopeng; Zhang, Yan; Chen, Chunyan
2015-02-01
Unstructured kinetic models were proposed to describe the principal kinetics involved in ethanol fermentation in a continuous and closed-circulating fermentation (CCCF) process with a pervaporation membrane bioreactor. After ethanol was removed in situ from the broth by the membrane pervaporation, the secondary metabolites accumulated in the broth became the inhibitors to cell growth. The cell death rate related to the deterioration of the culture environment was described as a function of the cell concentration and fermentation time. In CCCF process, 609.8 g L(-1) and 750.1 g L(-1) of ethanol production were obtained in the first run and second run, respectively. The modified Gompertz model, correlating the ethanol production with the fermentation period, could be used to describe the ethanol production during CCCF process. The fitting results by the models showed good agreement with the experimental data. These models could be employed for the CCCF process technology development for ethanol fermentation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Yingying; Wu, Ying; Zhu, Baotong; Zhang, Guanyu; Wei, Na
2018-01-01
Efficient conversion of cellulosic sugars in cellulosic hydrolysates is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge. The present study reports a new approach for simultaneous fermentation of cellobiose and xylose by using the co-culture consisting of recombinant Saccharomyces cerevisiae specialist strains. The co-culture system can provide competitive advantage of modularity compared to the single culture system and can be tuned to deal with fluctuations in feedstock composition to achieve robust and cost-effective biofuel production. This study characterized fermentation kinetics of the recombinant cellobiose-consuming S. cerevisiae strain EJ2, xylose-consuming S. cerevisiae strain SR8, and their co-culture. The motivation for kinetic modeling was to provide guidance and prediction of using the co-culture system for simultaneous fermentation of mixed sugars with adjustable biomass of each specialist strain under different substrate concentrations. The kinetic model for the co-culture system was developed based on the pure culture models and incorporated the effects of product inhibition, initial substrate concentration and inoculum size. The model simulations were validated by results from independent fermentation experiments under different substrate conditions, and good agreement was found between model predictions and experimental data from batch fermentation of cellobiose, xylose and their mixtures. Additionally, with the guidance of model prediction, simultaneous co-fermentation of 60 g/L cellobiose and 20 g/L xylose was achieved with the initial cell densities of 0.45 g dry cell weight /L for EJ2 and 0.9 g dry cell weight /L SR8. The results demonstrated that the kinetic modeling could be used to guide the design and optimization of yeast co-culture conditions for achieving simultaneous fermentation of cellobiose and xylose with improved ethanol productivity, which is critically important for robust and efficient renewable biofuel production from lignocellulosic biomass.
Garnier, Alain; Gaillet, Bruno
2015-12-01
Not so many fermentation mathematical models allow analytical solutions of batch process dynamics. The most widely used is the combination of the logistic microbial growth kinetics with Luedeking-Piret bioproduct synthesis relation. However, the logistic equation is principally based on formalistic similarities and only fits a limited range of fermentation types. In this article, we have developed an analytical solution for the combination of Monod growth kinetics with Luedeking-Piret relation, which can be identified by linear regression and used to simulate batch fermentation evolution. Two classical examples are used to show the quality of fit and the simplicity of the method proposed. A solution for the combination of Haldane substrate-limited growth model combined with Luedeking-Piret relation is also provided. These models could prove useful for the analysis of fermentation data in industry as well as academia. © 2015 Wiley Periodicals, Inc.
Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling.
Lunelli, Betânia H; Andrade, Rafael R; Atala, Daniel I P; Wolf Maciel, Maria Regina; Maugeri Filho, Francisco; Maciel Filho, Rubens
2010-05-01
Lactic acid is an important product arising from the anaerobic fermentation of sugars. It is used in the pharmaceutical, cosmetic, chemical, and food industries as well as for biodegradable polymer and green solvent production. In this work, several bacterial strains were isolated from industrial ethanol fermentation, and the most efficient strain for lactic acid production was selected. The fermentation was conducted in a batch system under anaerobic conditions for 50 h at a temperature of 34 degrees C, a pH value of 5.0, and an initial sucrose concentration of 12 g/L using diluted sugarcane molasses. Throughout the process, pulses of molasses were added in order to avoid the cell growth inhibition due to high sugar concentration as well as increased lactic acid concentrations. At the end of the fermentation, about 90% of sucrose was consumed to produce lactic acid and cells. A kinetic model has been developed to simulate the batch lactic acid fermentation results. The data obtained from the fermentation were used for determining the kinetic parameters of the model. The developed model for lactic acid production, growth cell, and sugar consumption simulates the experimental data well.
USDA-ARS?s Scientific Manuscript database
Scheffersomyces (formly Pichia) stipitis is a potential biocatalyst for converting lignocelluloses to ethanol because the yeast natively ferments xylose. An unstructured kinetic model based upon a system of linear differential equations has been formulated that describes growth and ethanol productio...
Yang, Li-Bo; Zhan, Xiao-Bei; Zhu, Li; Gao, Min-Jie; Lin, Chi-Chung
2016-05-18
The production of erythritol by Yarrowia lipolytica from low-cost substitutable substrates for high yield was investigated. Crude glycerol, urea, and NaCl related to osmotic pressure were the most significant factors affecting erythritol production. An artificial neural network model and genetic algorithm were used to search the optimal composition of the significant factors and locate the resulting erythritol yield. Medium with 232.39 g/L crude glycerol, 1.57 g/L urea, and 31.03 g/L NaCl led to predictive maximum erythritol concentration of 110.7 g/L. The erythritol concentration improved from 50.4 g/L to 109.2 g/L with the optimized medium, which was reproducible. Erythritol fermentation kinetics were investigated in a batch system. Multistep fermentation kinetic models with hyperosmotic inhibitory effects were developed. The resulting mathematical equations provided a good description of temporal variations such as microbial growth (X), substrate consumption (S), and product formation (P) in erythritol fermentation. The accordingly derived model is the first reported model for fermentative erythritol production from glycerol, providing useful information to optimize the growth of Y. lipolytica and contributing visual description for the erythritol fermentation process under high osmotic pressure, as well as improvement of productivity and efficiency.
Coskun, T; Kabuk, H A; Varinca, K B; Debik, E; Durak, I; Kavurt, C
2012-10-01
In this study, an upflow anaerobic sludge blanket (UASB) mesophilic reactor was used to remove antibiotic fermentation broth wastewater. The hydraulic retention time was held constant at 13.3 days. The volumetric organic loading value increased from 0.33 to 7.43 kg(COD)m(-3)d(-1) using antibiotic fermentation broth wastewater gradually diluted with various ratios of domestic wastewater. A COD removal efficiency of 95.7% was obtained with a maximum yield of 3,700 L d(-1) methane gas production. The results of the study were interpreted using the modified Stover-Kincannon, first-order, substrate mass balance and Van der Meer and Heertjes kinetic models. The obtained kinetic coefficients showed that antibiotic fermentation broth wastewater can be successfully treated using a UASB reactor while taking COD removal and methane production into account. Copyright © 2012 Elsevier Ltd. All rights reserved.
Dikshit, Pritam Kumar; Padhi, Susant Kumar; Moholkar, Vijayanand S
2017-11-01
In present study, statistical optimization of biodiesel-derived crude glycerol fermentation to DHA by immobilized G. oxydans cells over polyurethane foam is reported. Effect of DHA (product) inhibition on crude glycerol fermentation was analyzed using conventional biokinetic models and new model that accounts for both substrate and product inhibition. Optimum values of fermentation parameters were: pH=4.7, temperature=31°C, initial substrate concentration=20g/L. At optimum conditions, DHA yield was 89% (17.83g/L). Effect of product inhibition on fermentation was trivial for DHA concentrations ≤30g/L. At higher concentrations (≥50g/L), kinetics and yield of fermentation showed marked reduction with sharp drop in V max and K S values. Inhibition effect was more pronounced for immobilized cells due to restricted transport of fermentation mixture across polyurethane foam. Retention of fermentation mixture in immobilized matrix resulted in higher localized DHA concentration that possibly enhanced inhibition effect. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comelli, Raúl N; Seluy, Lisandro G; Isla, Miguel A
2016-12-25
This work focuses on the performance of ten commercial Saccharomyces yeast strains in the batch alcoholic fermentation of sugars contained in selected industrial wastewaters from the soft drink industry. Fermentation has been applied successfully to treat these effluents prior to their disposal. Although many strains were investigated, similar behaviour was observed between all of the Saccharomyces strains tested. When media were inoculated with 2gL -1 of yeast, all strains were able to completely consume the available sugars in less than 14h. Thus, any of the strains studied in this work could be used in non-conventional wastewater treatment processes based on alcoholic fermentation. However, ethanol production varied between strains, and these differences could be significant from a production point of view. Saccharomyces bayanus produced the most ethanol, with a mean yield of 0.44g ethanol g sugarconsumed -1 and an ethanol specific production rate of 5.96g ethanol (Lh) -1 . As the assayed soft drinks wastewaters contain about 105g sugar /L of fermentable sugars, the concentration of ethanol achieved after the fermentations process was 46.2g ethanol /L. A rigorous kinetic modelling methodology was used to model the Saccharomyces bayanus fermentation process. The kinetic model included coupled mass balances and a minimal number of parameters. A simple unstructured model based on the Andrews equation (substrate inhibition) was developed. This model satisfactorily described biomass growth, sugar consumption and bioethanol production. In addition to providing insights into the fermentative performance of potentially relevant strains, this work can facilitate the design of large-scale ethanol production processes that use wastewaters from the sugar-sweetened beverage industry as feedstock. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Ruifei; Koppram, Rakesh; Olsson, Lisbeth; Franzén, Carl Johan
2014-11-01
Fed-batch simultaneous saccharification and fermentation (SSF) is a feasible option for bioethanol production from lignocellulosic raw materials at high substrate concentrations. In this work, a segregated kinetic model was developed for simulation of fed-batch simultaneous saccharification and co-fermentation (SSCF) of steam-pretreated birch, using substrate, enzymes and cell feeds. The model takes into account the dynamics of the cellulase-cellulose system and the cell population during SSCF, and the effects of pre-cultivation of yeast cells on fermentation performance. The model was cross-validated against experiments using different feed schemes. It could predict fermentation performance and explain observed differences between measured total yeast cells and dividing cells very well. The reproducibility of the experiments and the cell viability were significantly better in fed-batch than in batch SSCF at 15% and 20% total WIS contents. The model can be used for simulation of fed-batch SSCF and optimization of feed profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chavan, Abhijit R; Raghunathan, Anuradha; Venkatesh, K V
2009-04-01
Simultaneous saccharification and fermentation (SSF) is a combined process of saccharification of a renewable bioresource and fermentation process to produce products, such as lactic acid and ethanol. Recently, SSF has been extensively used to convert various sources of cellulose and starch into fermentative products. Here, we present a study on production of buttery flavors, namely diacetyl and acetoin, by growing Lactobacillus rhamnosus on a starch medium containing the enzyme glucoamylase. We further develop a structured kinetics for the SSF process, which includes enzyme and growth kinetics. The model was used to simulate the effect of pH and temperature on the SSF process so as to obtain optimum operating conditions. The model was experimentally verified by conducting SSF using an initial starch concentration of 100 g/L. The study demonstrated that the developed kinetic was able to suggest strategies for improved productivities. The developed model was able to accurately predict the enhanced productivity of flavors in a three stage process with intermittent addition of starch. Experimental and simulations demonstrated that citrate addition can also lead to enhanced productivity of flavors. The developed optimal model for SSF was able to capture the dynamics of SSF in batch mode as well as in a three stage process. The structured kinetics was also able to quantify the effect of multiple substrates present in the medium. The study demonstrated that structured kinetic models can be used in the future for design and optimization of SSF as a batch or a fed-batch process.
Mathematical models of ABE fermentation: review and analysis.
Mayank, Rahul; Ranjan, Amrita; Moholkar, Vijayanand S
2013-12-01
Among different liquid biofuels that have emerged in the recent past, biobutanol produced via fermentation processes is of special interest due to very similar properties to that of gasoline. For an effective design, scale-up, and optimization of the acetone-butanol-ethanol (ABE) fermentation process, it is necessary to have insight into the micro- and macro-mechanisms of the process. The mathematical models for ABE fermentation are efficient tools for this purpose, which have evolved from simple stoichiometric fermentation equations in the 1980s to the recent sophisticated and elaborate kinetic models based on metabolic pathways. In this article, we have reviewed the literature published in the area of mathematical modeling of the ABE fermentation. We have tried to present an analysis of these models in terms of their potency in describing the overall physiology of the process, design features, mode of operation along with comparison and validation with experimental results. In addition, we have also highlighted important facets of these models such as metabolic pathways, basic kinetics of different metabolites, biomass growth, inhibition modeling and other additional features such as cell retention and immobilized cultures. Our review also covers the mathematical modeling of the downstream processing of ABE fermentation, i.e. recovery and purification of solvents through flash distillation, liquid-liquid extraction, and pervaporation. We believe that this review will be a useful source of information and analysis on mathematical models for ABE fermentation for both the appropriate scientific and engineering communities.
Slininger, P J; Dien, B S; Lomont, J M; Bothast, R J; Ladisch, M R; Okos, M R
2014-08-01
Scheffersomyces (formerly Pichia) stipitis is a potential biocatalyst for converting lignocelluloses to ethanol because the yeast natively ferments xylose. An unstructured kinetic model based upon a system of linear differential equations has been formulated that describes growth and ethanol production as functions of ethanol, oxygen, and xylose concentrations for both growth and fermentation stages. The model was validated for various growth conditions including batch, cell recycle, batch with in situ ethanol removal and fed-batch. The model provides a summary of basic physiological yeast properties and is an important tool for simulating and optimizing various culture conditions and evaluating various bioreactor designs for ethanol production. © 2014 Wiley Periodicals, Inc.
Pradhan, Nirakar; Dipasquale, Laura; d'Ippolito, Giuliana; Fontana, Angelo; Panico, Antonio; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni
2016-08-01
The aim of the present study was to develop a kinetic model for a recently proposed unique and novel metabolic process called capnophilic (CO2-requiring) lactic fermentation (CLF) pathway in Thermotoga neapolitana. The model was based on Monod kinetics and the mathematical expressions were developed to enable the simulation of biomass growth, substrate consumption and product formation. The calibrated kinetic parameters such as maximum specific uptake rate (k), semi-saturation constant (kS), biomass yield coefficient (Y) and endogenous decay rate (kd) were 1.30 h(-1), 1.42 g/L, 0.1195 and 0.0205 h(-1), respectively. A high correlation (>0.98) was obtained between the experimental data and model predictions for both model validation and cross validation processes. An increase of the lactate production in the range of 40-80% was obtained through CLF pathway compared to the classic dark fermentation model. The proposed kinetic model is the first mechanistically based model for the CLF pathway. This model provides useful information to improve the knowledge about how acetate and CO2 are recycled back by Thermotoga neapolitana to produce lactate without compromising the overall hydrogen yield. Copyright © 2016 Elsevier Ltd. All rights reserved.
Darkwah, Kwabena; Nokes, Sue E; Seay, Jeffrey R; Knutson, Barbara L
2018-05-22
Process simulations of batch fermentations with in situ product separation traditionally decouple these interdependent steps by simulating a separate "steady state" continuous fermentation and separation units. In this study, an integrated batch fermentation and separation process was simulated for a model system of acetone-butanol-ethanol (ABE) fermentation with in situ gas stripping, such that the fermentation kinetics are linked in real-time to the gas stripping process. A time-dependent cell growth, substrate utilization, and product production is translated to an Aspen Plus batch reactor. This approach capitalizes on the phase equilibria calculations of Aspen Plus to predict the effect of stripping on the ABE fermentation kinetics. The product profiles of the integrated fermentation and separation are shown to be sensitive to gas flow rate, unlike separate steady state fermentation and separation simulations. This study demonstrates the importance of coupled fermentation and separation simulation approaches for the systematic analyses of unsteady state processes.
Bai, Jie; Liu, He; Yin, Bo; Ma, Huijun; Chen, Xinchun
2017-02-01
Anaerobic acidogenic fermentation with high-solid sludge is a promising method for volatile fatty acid (VFA) production to realize resource recovery. In this study, to model inhibition by free ammonia in high-solid sludge fermentation, the anaerobic digestion model No. 1 (ADM1) was modified to simulate the VFA generation in batch, semi-continuous and full scale sludge. The ADM1 was operated on the platform AQUASIM 2.0. Three kinds of inhibition forms, e.g., simple inhibition, Monod and non-inhibition forms, were integrated into the ADM1 and tested with the real experimental data for batch and semi-continuous fermentation, respectively. The improved particle swarm optimization technique was used for kinetic parameter estimation using the software MATLAB 7.0. In the modified ADM1, the K s of acetate is 0.025, the k m,ac is 12.51, and the K I_NH3 is 0.02, respectively. The results showed that the simple inhibition model could simulate the VFA generation accurately while the Monod model was the better inhibition kinetics form in semi-continuous fermentation at pH10.0. Finally, the modified ADM1 could successfully describe the VFA generation and ammonia accumulation in a 30m 3 full-scale sludge fermentation reactor, indicating that the developed model can be applicable in high-solid sludge anaerobic fermentation. Copyright © 2016. Published by Elsevier B.V.
Xu, Li-Jian; Liu, Yuan-Shuai; Zhou, Li-Gang; Wu, Jian-Yong
2011-09-01
Beauvericin (BEA) is a cyclic hexadepsipeptide mycotoxin with notable phytotoxic and insecticidal activities. Fusarium redolens Dzf2 is a highly BEA-producing fungus isolated from a medicinal plant. The aim of the current study was to develop a simple and valid kinetic model for F. redolens Dzf2 mycelial growth and the optimal fed-batch operation for efficient BEA production. A modified Monod model with substrate (glucose) and product (BEA) inhibition was constructed based on the culture characteristics of F. redolens Dzf2 mycelia in a liquid medium. Model parameters were derived by simulation of the experimental data from batch culture. The model fitted closely with the experimental data over 20-50 g l(-1) glucose concentration range in batch fermentation. The kinetic model together with the stoichiometric relationships for biomass, substrate and product was applied to predict the optimal feeding scheme for fed-batch fermentation, leading to 54% higher BEA yield (299 mg l(-1)) than in the batch culture (194 mg l(-1)). The modified Monod model incorporating substrate and product inhibition was proven adequate for describing the growth kinetics of F. redolens Dzf2 mycelial culture at suitable but not excessive initial glucose levels in batch and fed-batch cultures.
A novel approach of modeling continuous dark hydrogen fermentation.
Alexandropoulou, Maria; Antonopoulou, Georgia; Lyberatos, Gerasimos
2018-02-01
In this study a novel modeling approach for describing fermentative hydrogen production in a continuous stirred tank reactor (CSTR) was developed, using the Aquasim modeling platform. This model accounts for the key metabolic reactions taking place in a fermentative hydrogen producing reactor, using fixed stoichiometry but different reaction rates. Biomass yields are determined based on bioenergetics. The model is capable of describing very well the variation in the distribution of metabolic products for a wide range of hydraulic retention times (HRT). The modeling approach is demonstrated using the experimental data obtained from a CSTR, fed with food industry waste (FIW), operating at different HRTs. The kinetic parameters were estimated through fitting to the experimental results. Hydrogen and total biogas production rates were predicted very well by the model, validating the basic assumptions regarding the implicated stoichiometric biochemical reactions and their kinetic rates. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Keer
2018-01-01
Paper mill wastewater (PMW) is the outlet water generated during pulp and papermaking process in the paper industry. Fermentation by wastewater can lower the cost of production as well as alleviate the pressure of wastewater treatment. Rhamnolipids find broad placations as natural surfactants. This paper studied the rhamnolipids fermentation by employing Pseudomonas aeruginosa isolated by the laboratory, and determined to use wastewater which filtered by medium speed filter paper and strain Z2, the culture conditions were optimized, based on the flask shaking fermentation. On the basis of 5L tank fermentation, batch fermentation was carried out, the yield of fermentation reached 7.067g/L and the fermentation kinetics model of cell growth, product formation and substrate consumption was established by using origin software, and the fermentation process could be simulated well. And studied on the extraction process of rhamnolipids, through fermentation dynamic equation analysis can predict the in fill material yield can be further improved. Research on the extraction process of rhamnolipid simplifies the operation of extraction, and lays the foundation for the industrial extraction.
Białas, Wojciech; Czerniak, Adrian; Szymanowska-Powałowska, Daria
2014-01-01
Fuel ethanol production, using a simultaneous saccharification and fermentation process (SSF) of native starch from corn flour, has been performed using Saccharomyces cerevisiae and a granular starch hydrolyzing enzyme. The quantitative effects of mash concentration, enzyme dose and pH were investigated with the use of a Box-Wilson central composite design protocol. Proceeding from results obtained in optimal fermentation conditions, a kinetics model relating the utilization rates of starch and glucose as well as the production rates of ethanol and biomass was tested. Moreover, scanning electron microscopy (SEM) was applied to investigate corn starch granule surface after the SFF process. A maximum ethanol concentration of 110.36 g/l was obtained for native corn starch using a mash concentration of 25%, which resulted in ethanol yield of 85.71%. The optimal conditions for the above yield were found with an enzyme dose of 2.05 ml/kg and pH of 5.0. These results indicate that by using a central composite design, it is possible to determine optimal values of the fermentation parameters for maximum ethanol production. The investigated kinetics model can be used to describe SSF process conducted with granular starch hydrolyzing enzymes. The SEM micrographs reveal randomly distributed holes on the surface of granules.
Esfahanian, Mehri; Shokuhi Rad, Ali; Khoshhal, Saeed; Najafpour, Ghasem; Asghari, Behnam
2016-07-01
In this paper, genetic algorithm was used to investigate mathematical modeling of ethanol fermentation in a continuous conventional bioreactor (CCBR) and a continuous membrane bioreactor (CMBR) by ethanol permselective polydimethylsiloxane (PDMS) membrane. A lab scale CMBR with medium glucose concentration of 100gL(-1) and Saccharomyces cerevisiae microorganism was designed and fabricated. At dilution rate of 0.14h(-1), maximum specific cell growth rate and productivity of 0.27h(-1) and 6.49gL(-1)h(-1) were respectively found in CMBR. However, at very high dilution rate, the performance of CMBR was quite similar to conventional fermentation on account of insufficient incubation time. In both systems, genetic algorithm modeling of cell growth, ethanol production and glucose concentration were conducted based on Monod and Moser kinetic models during each retention time at unsteady condition. The results showed that Moser kinetic model was more satisfactory and desirable than Monod model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Roohina, Fatemeh; Mohammadi, Maedeh; Najafpour, Ghasem D
2016-09-01
Cheese whey fermentation to ethanol using immobilized Kluyveromyces marxianus cells was investigated in batch and continuous operation. In batch fermentation, the yeast cells were immobilized in carboxymethyl cellulose (CMC) polymer and also synthesized graft copolymer of CMC with N-vinyl-2-pyrrolidone, denoted as CMC-g-PVP, and the efficiency of the two developed cell entrapped beads for lactose fermentation to ethanol was examined. The yeast cells immobilized in CMC-g-PVP performed slightly better than CMC with ethanol production yields of 0.52 and 0.49 g ethanol/g lactose, respectively. The effect of supplementation of cheese whey with lactose (42, 70, 100 and 150 g/l) on fermentative performance of K. marxianus immobilized in CMC beads was considered and the results were used for kinetic studies. The first order reaction model was suitable to describe the kinetics of substrate utilization and modified Gompertz model was quite successful to predict the ethanol production. For continuous ethanol fermentation, a packed-bed immobilized cell reactor (ICR) was operated at several hydraulic retention times; HRTs of 11, 15 and 30 h. At the HRT of 30 h, the ethanol production yield using CMC beads was 0.49 g/g which implies that 91.07 % of the theoretical yield was achieved.
Kinetic modeling of lactic acid production from batch submerged fermentation of cheese whey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tango, M.S.A.; Ghaly, A.E.
1999-12-01
A kinetic model for the production of lactic acid through batch submerged fermentation of cheese whey using Lactobacillus helveticus was developed. The model accounts for the effect of substrate limitation, substrate inhibition, lactic acid inhibition, maintenance energy and cell death on the cell growth, substrate utilization, and lactic acid production during the fermentation process. The model was evaluated using experimental data from Tango and Ghaly (1999). The predicted results obtained from the model compared well with experimental (R{sup 2} = 0.92--0.98). The model was also used to investigate the effect of the initial substrate concentration on the lag period, fermentationmore » time, specific growth rate, and cell productivity during batch fermentation. The maximum specific growth rate ({micro}{sub m}), the saturation constant (K{sub S}), the substrate inhibition constant (K{sub IS}), and the lactic acid inhibition constant (K{sub IP}) were found to be 0.25h{sup {minus}1}, 0.9 g/L, 250.0 g/L, and 60.0 g/L, respectively. High initial lactose concentration in cheese whey reduced both the specific growth rate and substrate utilization rate due to the substrate inhibition phenomenon. The maximum lactic acid production occurred at about 100 g/L initial lactose concentration after 40 h of fermentation. The maximum lactic acid concentration above which Lactobacillus helveticus did not grow was found to be 80.0 g/L.« less
Kaur, Guneet; Srivastava, Ashok K; Chand, Subhash
2012-09-01
1,3-propanediol (1,3-PD) is a chemical compound of immense importance primarily used as a raw material for fiber and textile industry. It can be produced by the fermentation of glycerol available abundantly as a by-product from the biodiesel plant. The present study was aimed at determination of key kinetic parameters of 1,3-PD fermentation by Clostridium diolis. Initial experiments on microbial growth inhibition were followed by optimization of nutrient medium recipe by statistical means. Batch kinetic data from studies in bioreactor using optimum concentration of variables obtained from statistical medium design was used for estimation of kinetic parameters of 1,3-PD production. Direct use of raw glycerol from biodiesel plant without any pre-treatment for 1,3-PD production using this strain investigated for the first time in this work gave results comparable to commercial glycerol. The parameter values obtained in this study would be used to develop a mathematical model for 1,3-PD to be used as a guide for designing various reactor operating strategies for further improving 1,3-PD production. An outline of protocol for model development has been discussed in the present work.
Yang, Guang; Wang, Jianlong
2017-11-01
The low C/N ratio and low carbohydrate content of sewage sludge limit its application for fermentative hydrogen production. In this study, perennial ryegrass was added as the co-substrate into sludge hydrogen fermentation with different mixing ratios for enhancing hydrogen production. The results showed that the highest hydrogen yield of 60mL/g-volatile solids (VS) added was achieved when sludge/perennial ryegrass ratio was 30:70, which was 5 times higher than that from sole sludge. The highest VS removal of 21.8% was also achieved when sludge/perennial ryegrass ratio was 30:70, whereas VS removal from sole sludge was only 0.7%. Meanwhile, the co-fermentation system simultaneously improved hydrogen production efficiency and organics utilization of ryegrass. Kinetic analysis showed that the Cone model fitted hydrogen evolution better than the modified Gompertz model. Furthermore, hydrogen yield and VS removal increased with the increase of dehydrogenase activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Henderson, Clark M.; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L.
2013-01-01
Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R2 = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R2 = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems. PMID:23064336
Henderson, Clark M; Lozada-Contreras, Michelle; Jiranek, Vladimir; Longo, Marjorie L; Block, David E
2013-01-01
Optimizing ethanol yield during fermentation is important for efficient production of fuel alcohol, as well as wine and other alcoholic beverages. However, increasing ethanol concentrations during fermentation can create problems that result in arrested or sluggish sugar-to-ethanol conversion. The fundamental cellular basis for these problem fermentations, however, is not well understood. Small-scale fermentations were performed in a synthetic grape must using 22 industrial Saccharomyces cerevisiae strains (primarily wine strains) with various degrees of ethanol tolerance to assess the correlation between lipid composition and fermentation kinetic parameters. Lipids were extracted at several fermentation time points representing different growth phases of the yeast to quantitatively analyze phospholipids and ergosterol utilizing atmospheric pressure ionization-mass spectrometry methods. Lipid profiling of individual fermentations indicated that yeast lipid class profiles do not shift dramatically in composition over the course of fermentation. Multivariate statistical analysis of the data was performed using partial least-squares linear regression modeling to correlate lipid composition data with fermentation kinetic data. The results indicate a strong correlation (R(2) = 0.91) between the overall lipid composition and the final ethanol concentration (wt/wt), an indicator of strain ethanol tolerance. One potential component of ethanol tolerance, the maximum yeast cell concentration, was also found to be a strong function of lipid composition (R(2) = 0.97). Specifically, strains unable to complete fermentation were associated with high phosphatidylinositol levels early in fermentation. Yeast strains that achieved the highest cell densities and ethanol concentrations were positively correlated with phosphatidylcholine species similar to those known to decrease the perturbing effects of ethanol in model membrane systems.
Zhang, Jiayi; Shao, Xiongjun; Townsend, Oliver V; Lynd, Lee R
2009-12-01
A kinetic model was developed to predict batch simultaneous saccharification and co-fermentation (SSCF) of paper sludge by the xylose-utilizing yeast Saccharomyces cerevisiae RWB222 and the commercial cellulase preparation Spezyme CP. The model accounts for cellulose and xylan enzymatic hydrolysis and competitive uptake of glucose and xylose. Experimental results show that glucan and xylan enzymatic hydrolysis are highly correlated, and that the low concentrations of xylose encountered during SSCF do not have a significant inhibitory effect on enzymatic hydrolysis. Ethanol is found to not only inhibit the specific growth rate, but also to accelerate cell death. Glucose and xylose uptake rates were found to be competitively inhibitory, but this did not have a large impact during SSCF because the sugar concentrations are low. The model was used to evaluate which constants had the greatest impact on ethanol titer for a fixed substrate loading, enzyme loading, and fermentation time. The cellulose adsorption capacity and cellulose hydrolysis rate constants were found to have the greatest impact among enzymatic hydrolysis related constants, and ethanol yield and maximum ethanol tolerance had the greatest impact among fermentation related constants.
Ni, Bing-Jie; Liu, He; Nie, Yan-Qiu; Zeng, Raymond J; Du, Guo-Cheng; Chen, Jian; Yu, Han-Qing
2011-02-01
Homoacetogenesis is an important potential hydrogen sink in acetogenesis, in which hydrogen is used to reduce carbon dioxide to acetate. So far the acetate production from homoacetogenesis, especially its kinetics, has not been given sufficient attention. In this work, enhanced production of acetate from anaerobic conversion of glucose through coupling glucose fermentation and homoacetogenesis is investigated with both experimental and mathematical approaches. Experiments are conducted to explore elevated acetate production in a coupled anaerobic system. Acetate production could be achieved by homoacetogenesis with a relative high acetate yield under mixed fermentation conditions. With the experimental observations, a kinetic model is formulated to describe such a homoacetogenic process. The maximum homoacetogenic rate (k(m,homo)) is estimated to be 28.5 ± 1.7 kg COD kg⁻¹ COD day⁻¹ with an uptake affinity constant of 3.7 × 10⁻⁵± 3.1 × 10⁻⁶kg COD m⁻³. The improved calculation of homoacetogenic kinetics by our approach could correct the underestimation of homoacetogenesis in anaerobic fermentation processes, as it often occurs in these systems supported by literature analysis. The model predictions match the experimental results in different cases well and provide insights into the dynamics of anaerobic glucose conversion and acetate production. Furthermore, acetate production via homoacetogenesis increases by about 40% through utilizing the fed-batch coupling system, attributed to a balance between the hydrogen production in the acetogenesis phase and the hydrogen consumption in the homoacetogenesis phase. This work provides an effective way for increased anaerobic acetate production, and gives us a better understanding about the homoacetogenic kinetics in the anaerobic fermentation process. © 2010 Wiley Periodicals, Inc.
A mathematical model for ethanol fermentation from oil palm trunk sap using Saccharomyces cerevisiae
NASA Astrophysics Data System (ADS)
Sultana, S.; Jamil, Norazaliza Mohd; Saleh, E. A. M.; Yousuf, A.; Faizal, Che Ku M.
2017-09-01
This paper presents a mathematical model and solution strategy of ethanol fermentation for oil palm trunk (OPT) sap by considering the effect of substrate limitation, substrate inhibition product inhibition and cell death. To investigate the effect of cell death rate on the fermentation process we extended and improved the current mathematical model. The kinetic parameters of the model were determined by nonlinear regression using maximum likelihood function. The temporal profiles of sugar, cell and ethanol concentrations were modelled by a set of ordinary differential equations, which were solved numerically by the 4th order Runge-Kutta method. The model was validated by the experimental data and the agreement between the model and experimental results demonstrates that the model is reasonable for prediction of the dynamic behaviour of the fermentation process.
Advanced modelling, monitoring, and process control of bioconversion systems
NASA Astrophysics Data System (ADS)
Schmitt, Elliott C.
Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate fermentation with diauxic growth. Model predictive control (MPC), an advanced process control strategy, is capable of utilizing nonlinear models and sensor feedback to provide optimal input while ensuring critical process constraints are met. Using the microorganism Saccharomyces cerevisiae, a commonly used microorganism for biofuel production, and work performed with M. thermoacetica, a nonlinear MPC was implemented on a continuous membrane cell-recycle bioreactor (MCRB) for the conversion of glucose to ethanol. The dilution rate was used to control the ethanol productivity of the system will maintaining total substrate conversion above the constraint of 98%. PLS multivariate models for glucose (RMSEP 1.5 g L-1) and ethanol (RMSEP 0.4 g L-1) were robust in predicting concentrations and a mechanistic kinetic model built accurately predicted continuous fermentation behavior. A setpoint trajectory, ranging from 2 - 4.5 g L-1 h-1 for productivity was closely tracked by the fermentation system using Raman measurements and an extended Kalman filter to estimate biomass concentrations. Overall, this work was able to demonstrate an effective approach for real-time monitoring and control of a complex fermentation system.
Yao, Peina; Xiao, Zeyi; Chen, Chunyan; Li, Weijia; Deng, Qing
2016-01-01
Acetone-butanol-ethanol fermentation using Clostridium acetobutylicum was studied in the continuous and closed-circulating fermentation (CCCF) system. The experiment lasting for 192 H was carried out by integrating fermentation with in situ pervaporation. In the entire process, the cell growth profile took place in the following two phases: the logarithmic phase during early 28 H and the linear phase from 130 to 150 H. This was a unique characteristic compared with the curve of traditional fermentation, and the fitting equations of two growth phases were obtained by Origin software according to the kinetic model of cell growth. Besides, the kinetic parameters that include the butanol yield, maximum specific growth rate, average specific formation rate, and volumetric productivity of butanol were measured as 0.19 g g(-1) , 0.345 H(-1) , 0.134 H(-1) and 0.23 g L(-1) H(-1) , respectively. The C. acetobutylicum in the CCCF system showed good adaptability and fermentation performance, and the prolonged fermentation period and high production were also the main advantages of CCCF technology. © 2014 International Union of Biochemistry and Molecular Biology, Inc.
Modelling of Batch Lactic Acid Fermentation in the Presence of Anionic Clay
Jinescu, Cosmin; Aruş, Vasilica Alisa; Nistor, Ileana Denisa
2014-01-01
Summary Batch fermentation of milk inoculated with lactic acid bacteria was conducted in the presence of hydrotalcite-type anionic clay under static and ultrasonic conditions. An experimental study of the effect of fermentation temperature (t=38–43 °C), clay/milk ratio (R=1–7.5 g/L) and ultrasonic field (ν=0 and 35 kHz) on process dynamics was performed. A mathematical model was selected to describe the fermentation process kinetics and its parameters were estimated based on experimental data. A good agreement between the experimental and simulated results was achieved. Consequently, the model can be employed to predict the dynamics of batch lactic acid fermentation with values of process variables in the studied ranges. A statistical analysis of the data based on a 23 factorial experiment was performed in order to express experimental and model-regressed process responses depending on t, R and ν factors. PMID:27904318
Expanding a dynamic flux balance model of yeast fermentation to genome-scale
2011-01-01
Background Yeast is considered to be a workhorse of the biotechnology industry for the production of many value-added chemicals, alcoholic beverages and biofuels. Optimization of the fermentation is a challenging task that greatly benefits from dynamic models able to accurately describe and predict the fermentation profile and resulting products under different genetic and environmental conditions. In this article, we developed and validated a genome-scale dynamic flux balance model, using experimentally determined kinetic constraints. Results Appropriate equations for maintenance, biomass composition, anaerobic metabolism and nutrient uptake are key to improve model performance, especially for predicting glycerol and ethanol synthesis. Prediction profiles of synthesis and consumption of the main metabolites involved in alcoholic fermentation closely agreed with experimental data obtained from numerous lab and industrial fermentations under different environmental conditions. Finally, fermentation simulations of genetically engineered yeasts closely reproduced previously reported experimental results regarding final concentrations of the main fermentation products such as ethanol and glycerol. Conclusion A useful tool to describe, understand and predict metabolite production in batch yeast cultures was developed. The resulting model, if used wisely, could help to search for new metabolic engineering strategies to manage ethanol content in batch fermentations. PMID:21595919
Application of balancing methods in modeling the penicillin fermentation.
Heijnen, J J; Roels, J A; Stouthamer, A H
1979-12-01
This paper shows the application of elementary balancing methods in combination with simple kinetic equations in the formulation of an unstructured model for the fed-batch process for the production of penicillin. The rate of substrate uptake is modeled with a Monod-type relationship. The specific penicillin production rate is assumed to be a function of growth rate. Hydrolysis of penicillin to penicilloic acid is assumed to be first order in penicillin. In simulations with the present model it is shown that the model, although assuming a strict relationship between specific growth rate and penicillin productivity, allows for the commonly observed lag phase in the penicillin concentration curve and the apparent separation between growth and production phase (idiophase-trophophase concept). Furthermore it is shown that the feed rate profile during fermentation is of vital importance in the realization of a high production rate throughout the duration of the fermentation. It is emphasized that the method of modeling presented may also prove rewarding for an analysis of fermentation processes other than the penicillin fermentation.
Shao, Xiongjun; Lynd, Lee; Wyman, Charles; Bakker, André
2009-01-01
The model of South et al. [South et al. (1995) Enzyme Microb Technol 17(9): 797-803] for simultaneous saccharification of fermentation of cellulosic biomass is extended and modified to accommodate intermittent feeding of substrate and enzyme, cascade reactor configurations, and to be more computationally efficient. A dynamic enzyme adsorption model is found to be much more computationally efficient than the equilibrium model used previously, thus increasing the feasibility of incorporating the kinetic model in a computational fluid dynamic framework in the future. For continuous or discretely fed reactors, it is necessary to use particle conversion in conversion-dependent hydrolysis rate laws rather than reactor conversion. Whereas reactor conversion decreases due to both reaction and exit of particles from the reactor, particle conversion decreases due to reaction only. Using the modified models, it is predicted that cellulose conversion increases with decreasing feeding frequency (feedings per residence time, f). A computationally efficient strategy for modeling cascade reactors involving a modified rate constant is shown to give equivalent results relative to an exhaustive approach considering the distribution of particles in each successive fermenter.
Selvaraj, Subbalaxmi; Vytla, Ramachandra Murty
2017-10-01
Production of tannase from B. gottheilii M2S2 was studied under solid-state fermentation with an optimized medium consisting of polyurethane foam matrix of dimension 40 × 40 × 5 mm, impregnated with a liquid medium comprising (w/v): 4% tannic acid; 2% NH 4 NO 3 ; 0.1% KH 2 PO 4 ; 0.2% MgSO 4 ; 0.1% NaCl and 0.05% CaCl 2 ·2H 2 O in distilled water, having a pH of 4.7. Maximum tannase production of 56.87 U/L was obtained after 32 h of fermentation at 32 °C in static condition. This study deals with the evaluation of unstructured kinetic models to understand the behavior of biomass, tannase production and tannic acid degradation, with the fermentation time. The growth rate of B. gottheilii M2S2 was 0.0703 h -1 at 32 h of fermentation. Product ( Y x/s ) and biomass yield ( Y p/s ) coefficients were estimated as 1.77 U/g of tannic acid and 0.276 g of biomass/g of tannic acid. All the kinetic constants µ , α , β , m and n were evaluated using MATLAB 2015Rb program. The experimental and model-generated data showed a good correlation, which indicated that these models will describe tannase production and fermentation process.
Scheiblauer, Johannes; Scheiner, Stefan; Joksch, Martin; Kavsek, Barbara
2018-09-14
A combined experimental/theoretical approach is presented, for improving the predictability of Saccharomyces cerevisiae fermentations. In particular, a mathematical model was developed explicitly taking into account the main mechanisms of the fermentation process, allowing for continuous computation of key process variables, including the biomass concentration and the respiratory quotient (RQ). For model calibration and experimental validation, batch and fed-batch fermentations were carried out. Comparison of the model-predicted biomass concentrations and RQ developments with the corresponding experimentally recorded values shows a remarkably good agreement for both batch and fed-batch processes, confirming the adequacy of the model. Furthermore, sensitivity studies were performed, in order to identify model parameters whose variations have significant effects on the model predictions: our model responds with significant sensitivity to the variations of only six parameters. These studies provide a valuable basis for model reduction, as also demonstrated in this paper. Finally, optimization-based parametric studies demonstrate how our model can be utilized for improving the efficiency of Saccharomyces cerevisiae fermentations. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, C.H.
1989-01-01
A novel process employing immobilized cells and in-situ product removal was studied for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum and ethanol fermentation by Saccharomyces cerevisiae. Experimental studies of ABE fermentation in a trickle bed reactor without product separation showed that solvent production could be improved by one order of magnitude compared to conventional batch fermentation. Control of effluent pH near 4.3 and feed glucose concentrations higher than 10 g/L were the necessary conditions for cell growth and solvent production. A mathematical model using an equilibrium staged model predicted efficient separation of butanol from the fermentation broth. Activity coefficients of multicomponentmore » system were estimated by Wilson's equation or the ASOG method. Inhibition by butanol and organic acids was incorporated into the kinetic expression. Experimental performance of simultaneous fermentation and separation in an immobilized cell trickle bed reactor showed that glucose conversion was improved as predicted by mathematical modeling and analysis. The effect of pH and temperature on ethanol fermentation by Saccharomyces cerevisiae was studied in free and immobilized cell reactors. Conditions for the highest glucose conversion, cell viability and least glycerol yield were determined.« less
Saccharomyces cerevisiae 424A (LNH-ST) strain was used for fermentation of glucose and xylose. Growth kinetics and ethanol productivity were calculated for batch fermentation on media containing different combinations of glucose and xylose to give a final sugar concentra...
Gahlawat, Geeta; Srivastava, Ashok K
2012-11-01
Polyhydroxybutyrate or PHB is a biodegradable and biocompatible thermoplastic with many interesting applications in medicine, food packaging, and tissue engineering materials. The present study deals with the enhanced production of PHB by Azohydromonas australica using sucrose and the estimation of fundamental kinetic parameters of PHB fermentation process. The preliminary culture growth inhibition studies were followed by statistical optimization of medium recipe using response surface methodology to increase the PHB production. Later on batch cultivation in a 7-L bioreactor was attempted using optimum concentration of medium components (process variables) obtained from statistical design to identify the batch growth and product kinetics parameters of PHB fermentation. A. australica exhibited a maximum biomass and PHB concentration of 8.71 and 6.24 g/L, respectively in bioreactor with an overall PHB production rate of 0.75 g/h. Bioreactor cultivation studies demonstrated that the specific biomass and PHB yield on sucrose was 0.37 and 0.29 g/g, respectively. The kinetic parameters obtained in the present investigation would be used in the development of a batch kinetic mathematical model for PHB production which will serve as launching pad for further process optimization studies, e.g., design of several bioreactor cultivation strategies to further enhance the biopolymer production.
Ant colony system algorithm for the optimization of beer fermentation control.
Xiao, Jie; Zhou, Ze-Kui; Zhang, Guang-Xin
2004-12-01
Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.
Samsudin, Mohd Dinie Muhaimin; Mat Don, Mashitah
2015-01-01
Oil palm trunk (OPT) sap was utilized for growth and bioethanol production by Saccharomycescerevisiae with addition of palm oil mill effluent (POME) as nutrients supplier. Maximum yield (YP/S) was attained at 0.464g bioethanol/g glucose presence in the OPT sap-POME-based media. However, OPT sap and POME are heterogeneous in properties and fermentation performance might change if it is repeated. Contribution of parametric uncertainty analysis on bioethanol fermentation performance was then assessed using Monte Carlo simulation (stochastic variable) to determine probability distributions due to fluctuation and variation of kinetic model parameters. Results showed that based on 100,000 samples tested, the yield (YP/S) ranged 0.423-0.501g/g. Sensitivity analysis was also done to evaluate the impact of each kinetic parameter on the fermentation performance. It is found that bioethanol fermentation highly depend on growth of the tested yeast. Copyright © 2014 Elsevier Ltd. All rights reserved.
Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste
Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming
2017-01-01
This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste. PMID:28546964
Application of the Initial Rate Method in Anaerobic Digestion of Kitchen Waste.
Feng, Lei; Gao, Yuan; Kou, Wei; Lang, Xianming; Liu, Yiwei; Li, Rundong; Yu, Meiling; Shao, Lijie; Wang, Xiaoming
2017-01-01
This article proposes a methane production approach through sequenced anaerobic digestion of kitchen waste, determines the hydrolysis constants and reaction orders at both low total solid (TS) concentrations and high TS concentrations using the initial rate method, and examines the population growth model and first-order hydrolysis model. The findings indicate that the first-order hydrolysis model better reflects the kinetic process of gas production. During the experiment, all the influential factors of anaerobic fermentation retained their optimal values. The hydrolysis constants and reaction orders at low TS concentrations are then employed to demonstrate that the first-order gas production model can describe the kinetics of the gas production process. At low TS concentrations, the hydrolysis constants and reaction orders demonstrated opposite trends, with both stabilizing after 24 days at 0.99 and 1.1252, respectively. At high TS concentrations, the hydrolysis constants and the reaction orders stabilized at 0.98 (after 18 days) and 0.3507 (after 14 days), respectively. Given sufficient reaction time, the hydrolysis involved in anaerobic fermentation of kitchen waste can be regarded as a first-order reaction in terms of reaction kinetics. This study serves as a good reference for future studies regarding the kinetics of anaerobic digestion of kitchen waste.
Zijlstra, R T; Jha, R; Woodward, A D; Fouhse, J; van Kempen, T A T G
2012-12-01
Traditionally in swine nutrition, analyses of starch and fiber have focused on assessing quantity; however, both have a wide range of functional properties making them underappreciated nutrients. Starch ranging from low to high amylose changes from rapidly digestible in the upper gut to poorly digestible but fermentable in the lower gut thereby changing from a source of glucose to VFA source. Likewise, fibers ranging from low to high viscosity affect digesta flow and from slowly to rapidly fermentable alter production of VFA serving as energy for the gut or whole body. Our hypothesis is that total extent, kinetics, and site of digestion or fermentation of starch and fiber are important for whole body nutrient use and intestinal health. To elucidate their effects, we developed in vitro, lab-based methodologies to describe kinetics of digestion and fermentation and linked these with in vivo models including i) ileum cannulation to collect digesta, ii) portal-vein catheterization to sequentially sample blood, iii) slaughter method to collect site-specific intestinal tissue and digesta, and iv) indirect calorimetry. Using these methods, kinetics of nutrient absorption was associated with pancreatic and intestinal hormones released into the portal vein, intestinal microbiota, and gene expression in intestinal tissue and microbiota. These studies confirmed that slowly digestible starch is partially degraded in the distal small and large intestine and fermented into VFA including butyrate (10-fold increase in net portal appearance), which reduces insulin responses by 60% and whole body energy use. Starch entering the distal intestine altered mRNA abundance of nutrient transporters and was bifidogenic. Extremely viscous purified fiber dampened glycemic responses and reduced digesta passage rate by 50% thereby increasing ileal digestion of dietary nutrients whereas increased fiber in feed grains reduced nutrient digestibility. Fermentable fiber increased butyrate and insulin production. These methods will therefore support elucidation of mechanisms that link starch and fiber properties to whole body nutrient use and intestinal health.
Unrean, Pornkamol; Khajeeram, Sutamat; Laoteng, Kobkul
2016-03-01
An integrative simultaneous saccharification and fermentation (SSF) modeling is a useful guiding tool for rapid process optimization to meet the techno-economic requirement of industrial-scale lignocellulosic ethanol production. In this work, we have developed the SSF model composing of a metabolic network of a Saccharomyces cerevisiae cell associated with fermentation kinetics and enzyme hydrolysis model to quantitatively capture dynamic responses of yeast cell growth and fermentation during SSF. By using model-based design of feeding profiles for substrate and yeast cell in the fed-batch SSF process, an efficient ethanol production with high titer of up to 65 g/L and high yield of 85 % of theoretical yield was accomplished. The ethanol titer and productivity was increased by 47 and 41 %, correspondingly, in optimized fed-batch SSF as compared to batch process. The developed integrative SSF model is, therefore, considered as a promising approach for systematic design of economical and sustainable SSF bioprocessing of lignocellulose.
Application of a metabolic balancing technique to the analysis of microbial fermentation data.
de Hollander, J A
1991-01-01
A general method for the development of fermentation models, based on elemental and metabolic balances, is illustrated with three examples from the literature. Physiological parameters such as the (maximal) yield on ATP, the energetic maintenance coefficient, the P/O ratio and others are estimated by fitting model equations to experimental data. Further, phenomenological relations concerning kinetics of product formation and limiting enzyme activities are assessed. The results are compared with the conclusions of the original articles, and differences due to the application of improved models are discussed.
Ko, Jordon; Su, Wen-Jun; Chien, I-Lung; Chang, Der-Ming; Chou, Sheng-Hsin; Zhan, Rui-Yu
2010-02-01
The rice straw, an agricultural waste from Asians' main provision, was collected as feedstock to convert cellulose into ethanol through the enzymatic hydrolysis and followed by the fermentation process. When the two process steps are performed sequentially, it is referred to as separate hydrolysis and fermentation (SHF). The steps can also be performed simultaneously, i.e., simultaneous saccharification and fermentation (SSF). In this research, the kinetic model parameters of the cellulose saccharification process step using the rice straw as feedstock is obtained from real experimental data of cellulase hydrolysis. Furthermore, this model can be combined with a fermentation model at high glucose and ethanol concentrations to form a SSF model. The fermentation model is based on cybernetic approach from a paper in the literature with an extension of including both the glucose and ethanol inhibition terms to approach more to the actual plants. Dynamic effects of the operating variables in the enzymatic hydrolysis and the fermentation models will be analyzed. The operation of the SSF process will be compared to the SHF process. It is shown that the SSF process is better in reducing the processing time when the product (ethanol) concentration is high. The means to improve the productivity of the overall SSF process, by properly using aeration during the batch operation will also be discussed.
Mazaheri, Davood; Shojaosadati, Seyed Abbas; Zamir, Seyed Morteza; Mousavi, Seyyed Mohammad
2018-04-21
In this work, mathematical modeling of ethanol production in solid-state fermentation (SSF) has been done based on the variation in the dry weight of solid medium. This method was previously used for mathematical modeling of enzyme production; however, the model should be modified to predict the production of a volatile compound like ethanol. The experimental results of bioethanol production from the mixture of carob pods and wheat bran by Zymomonas mobilis in SSF were used for the model validation. Exponential and logistic kinetic models were used for modeling the growth of microorganism. In both cases, the model predictions matched well with the experimental results during the exponential growth phase, indicating the good ability of solid medium weight variation method for modeling a volatile product formation in solid-state fermentation. In addition, using logistic model, better predictions were obtained.
Diaz, Ana Belen; Blandino, Ana; Webb, Colin; Caro, Ildefonso
2016-11-01
A simple kinetic model, with only three fitting parameters, for several enzyme productions in Petri dishes by solid-state fermentation is proposed in this paper, which may be a valuable tool for simulation of this type of processes. Basically, the model is able to predict temporal fungal enzyme production by solid-state fermentation on complex substrates, maximum enzyme activity expected and time at which these maxima are reached. In this work, several fermentations in solid state were performed in Petri dishes, using four filamentous fungi grown on different agro-industrial residues, measuring xylanase, exo-polygalacturonase, cellulose and laccase activities over time. Regression coefficients after fitting experimental data to the proposed model turned out to be quite high in all cases. In fact, these results are very interesting considering, on the one hand, the simplicity of the model and, on the other hand, that enzyme activities correspond to different enzymes, produced by different fungi on different substrates.
Modeling of acetate-type fermentation of sugar-containing wastewater under acidic pH conditions.
Huang, Liang; Pan, Xin-Rong; Wang, Ya-Zhou; Li, Chen-Xuan; Chen, Chang-Bin; Zhao, Quan-Bao; Mu, Yang; Yu, Han-Qing; Li, Wen-Wei
2018-01-01
In this study, a kinetic model was developed based on Anaerobic Digestion Model No. 1 to provide insights into the directed production of acetate and methane from sugar-containing wastewater under low pH conditions. The model sufficiently described the dynamics of liquid-phase and gaseous products in an anaerobic membrane bioreactor by comprehensively considering the syntrophic bioconversion steps of sucrose hydrolysis, acidogenesis, acetogenesis and methanogenesis under acidic pH conditions. The modeling results revealed a significant pH-dependency of hydrogenotrophic methanogenesis and ethanol-producing processes that govern the sucrose fermentative pathway through changing the hydrogen yield. The reaction thermodynamics of such acetate-type fermentation were evaluated, and the implications for process optimization by adjusting the hydraulic retention time were discussed. This work sheds light on the acid-stimulated acetate-type fermentation process and may lay a foundation for optimization of resource-oriented processes for treatment of food wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Bo-Bo; Lu, Li-Ping; Xu, Gan-Rong
2015-07-20
The underlying mechanisms by which solid-state fermentation (SSF) was more advantageous over submerged fermentation (SmF) for converting high concentration of glycerol into Monacolin K by Monascus purpureus were investigated innovatively. First, the established kinetic models and kinetic parameters showed that the cell growth, Monacolin K formation and glycerol consumption in SSF were more rapid than those in SmF. Secondly, the comparison of fatty acid composition of mycelial cells indicated a better fluidity and permeability of the cell membrane in SSF than that of SmF, which was also consistent with the difference in the ratio of extracellular/intracellular Monacolin K between the two systems. Thirdly, the phenomenon of glycerol concentration gradient was verified in SSF, which could well explain the resistance effect to high concentration of glycerol in SSF. These new findings provide some important insights to the elucidation of the advantages of SSF for the synthesis of fungal secondary metabolites. Copyright © 2015 Elsevier B.V. All rights reserved.
Lavrenčič, A
2007-03-01
In vitro gas production kinetics of six different substrates, pectin (PEC), xylan (XYL), starch (STA), cellulose (CEL), commercial compound feed (FEED; 201 g crude protein per kg, 155 g crude fibre per kg, 334 g neutral-detergent fibre (NDF) per kg and 190 g acid-detergent fibre (ADF) per kg) and an NDF prepared from commercial compound feed (NDFFEED) were determined using the caecum contents of weaned rabbits (36 days of age) and of rabbits at slaughter age (78 days of age) as inoculums. The cumulated gas production over 96 h of incubation was modelled with Gompertz model, and the kinetic parameters compared. The total potential gas production (parameter 'B' of the Gompertz model) was not affected (P>0.05) by the inoculum source, except with STA, where rabbits at slaughter weight had significantly higher total potential fermentability (314 ml/g dry matter (DM)) than those at weaning age (189 ml/g DM). Intensities of fermentation (maximum fermentation rate; MFR) of PEC (32.2 ml/h) and XYL (24.4 ml/h) were significantly greater in rabbits at weaning, while that of STA (45 ml/h) was significantly lower than at slaughter age (23.0, 14.3 and 14.0 ml/h for PEC, XYL and STA, respectively). The MFRs of CEL and NDFFEED were very similar between inoculum sources. In the first 10 h of fermentation which correspond to the normal retention time of the substrates in the caecum, the highest amount of gas was produced from PEC, followed by FEED and XYL. These substrates had a time of maximum fermentation rate (TMFR) at both rabbit ages short enough (8.0 and 9.5 h for PEC, 9.5 and 6.6 h for FEED, 13.7 and 14.2 h for XYL at weaning and at slaughter age, respectively) to be almost completely fermented in vivo.
Zhang, Peng; Chen, Yinguang; Zhou, Qi; Zheng, Xiong; Zhu, Xiaoyu; Zhao, Yuxiao
2010-12-15
Most of the studies on sewage sludge treatment in literature were conducted for methane generation under acidic or near neutral pH conditions. It was reported in our previous studies that the accumulation of short-chain fatty acids (SCFAs), the preferred carbon source of biological wastewater nutrient removal, was significantly enhanced when sludge was fermented under alkaline conditions, but the optimal pH was temperature-dependent (pH 10 at ambient temperature, pH 9 at mesophilic, and pH 8 at thermophilic), and the maximal SCFAs yields were in the following order: thermophilic pH 8 > mesophilic pH 9 > ambient pH 10 > ambient uncontrolled pH. In this study the kinetic and microbiological features of waste activated sludge fermented in the range of pH 7-10 were investigated to understand the mechanism of remarkably high SCFAs accumulation under alkaline conditions. The developed sludge alkaline fermentation model could be applied to predicate the experimental data in either batch or semicontinuous sludge alkaline fermentation tests, and the relationships among alkaline pH, kinetic parameters, and SCFAs were discussed. Further analyses with fluorescence in situ hybridization (FISH) and PCR-based 16S rRNA gene clone library indicated that both the ratio of bacteria to archaea and the fraction of SCFAs producer accounting for bacteria were in the sequence of thermophilic pH 8 > mesophilic pH 9 > ambient pH 10 > ambient uncontrolled pH, which was in correspondence with the observed order of maximal SCFAs yields.
Rochus, Kristel; Janssens, Geert P J; Van de Velde, Hannelore; Verbrugghe, Adronie; Wuyts, Birgitte; Vanhaecke, Lynn; Hesta, Myriam
2013-03-28
The present study evaluated the potential of affecting amino acid metabolism through intestinal fermentation in domestic cats, using dietary guar gum as a model. Apparent protein digestibility, plasma fermentation metabolites, faecal fermentation end products and fermentation kinetics (exhaled breath hydrogen concentrations) were evaluated. Ten cats were randomly assigned to either guar gum- or cellulose-supplemented diets, that were fed in two periods of 5 weeks in a crossover design. No treatment effect was seen on fermentation kinetics. The apparent protein digestibility (P= 0.07) tended to be lower in guar gum-supplemented cats. As a consequence of impaired small-intestinal protein digestion and amino acid absorption, fermentation of these molecules in the large intestine was stimulated. Amino acid fermentation has been shown to produce high concentrations of acetic and butyric acids. Therefore, no treatment effect on faecal propionic acid or plasma propionylcarnitine was observed in the present study. The ratio of faecal butyric acid:total SCFA tended to be higher in guar gum-supplemented cats (P= 0.05). The majority of large-intestinal butyric acid is absorbed by colonocytes and metabolised to 3-hydroxy-butyrylcoenzyme A, which is then absorbed into the bloodstream. This metabolite was analysed in plasma as 3-hydroxy-butyrylcarnitine, which was higher (P= 0.02) in guar gum-supplemented cats. In all probability, the high viscosity of the guar gum supplement was responsible for the impaired protein digestion and amino acid absorption. Further research is warranted to investigate whether partially hydrolysed guar gum is useful to potentiate the desirable in vivo effects of this fibre supplement.
Miskovic, Ljubisa; Alff-Tuomala, Susanne; Soh, Keng Cher; Barth, Dorothee; Salusjärvi, Laura; Pitkänen, Juha-Pekka; Ruohonen, Laura; Penttilä, Merja; Hatzimanikatis, Vassily
2017-01-01
Recent advancements in omics measurement technologies have led to an ever-increasing amount of available experimental data that necessitate systems-oriented methodologies for efficient and systematic integration of data into consistent large-scale kinetic models. These models can help us to uncover new insights into cellular physiology and also to assist in the rational design of bioreactor or fermentation processes. Optimization and Risk Analysis of Complex Living Entities (ORACLE) framework for the construction of large-scale kinetic models can be used as guidance for formulating alternative metabolic engineering strategies. We used ORACLE in a metabolic engineering problem: improvement of the xylose uptake rate during mixed glucose-xylose consumption in a recombinant Saccharomyces cerevisiae strain. Using the data from bioreactor fermentations, we characterized network flux and concentration profiles representing possible physiological states of the analyzed strain. We then identified enzymes that could lead to improved flux through xylose transporters (XTR). For some of the identified enzymes, including hexokinase (HXK), we could not deduce if their control over XTR was positive or negative. We thus performed a follow-up experiment, and we found out that HXK2 deletion improves xylose uptake rate. The data from the performed experiments were then used to prune the kinetic models, and the predictions of the pruned population of kinetic models were in agreement with the experimental data collected on the HXK2 -deficient S. cerevisiae strain. We present a design-build-test cycle composed of modeling efforts and experiments with a glucose-xylose co-utilizing recombinant S. cerevisiae and its HXK2 -deficient mutant that allowed us to uncover interdependencies between upper glycolysis and xylose uptake pathway. Through this cycle, we also obtained kinetic models with improved prediction capabilities. The present study demonstrates the potential of integrated "modeling and experiments" systems biology approaches that can be applied for diverse applications ranging from biotechnology to drug discovery.
Medina, Karina; Boido, Eduardo; Dellacassa, Eduardo; Carrau, Francisco
2012-07-02
Yeast produces numerous secondary metabolites during fermentation that impact final wine quality. Although it is widely recognized that growth of diverse non-Saccharomyces (NS) yeast can positively affect flavor complexity during Saccharomyces cerevisiae wine fermentation, the inability to control spontaneous or co-fermentation processes by NS yeast has restricted their use in winemaking. We selected two NS yeasts from our Uruguayan native collection to study NS-S. cerevisiae interactions during wine fermentation. The selected strains of Hanseniaspora vineae and Metschnikowia pulcherrima had different yeast assimilable nitrogen consumption profiles and had different effects on S. cerevisiae fermentation and growth kinetics. Studies in which we varied inoculum size and using either simultaneous or sequential inoculation of NS yeast and S. cerevisiae suggested that competition for nutrients had a significant effect on fermentation kinetics. Sluggish fermentations were more pronounced when S. cerevisiae was inoculated 24h after the initial stage of fermentation with a NS strain compared to co-inoculation. Monitoring strain populations using differential WL nutrient agar medium and fermentation kinetics of mixed cultures allowed for a better understanding of strain interactions and nutrient addition effects. Limitation of nutrient availability for S. cerevisiae was shown to result in stuck fermentations as well as to reduce sensory desirability of the resulting wine. Addition of diammonium phosphate (DAP) and a vitamin mix to a defined medium allowed for a comparison of nutrient competition between strains. Addition of DAP and the vitamin mix was most effective in preventing stuck fermentations. Copyright © 2012 Elsevier B.V. All rights reserved.
Kinetic modeling of Candida shehatae ATCC 22984 on xylose and glucose for ethanol production.
Yuvadetkun, Prawphan; Leksawasdi, Noppol; Boonmee, Mallika
2017-03-16
Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8 g/L in xylose and 52.6 g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4 g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40 g/L of ethanol and ethanol production capacity of the yeast was 52 g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170 g/L sugar concentrations.
Wang, Dongjie; Williams, Barbara A; Ferruzzi, Mario G; D'Arcy, Bruce R
2013-01-01
Grape seed extract (GSE) phenolics have potential health-promoting properties, either from compounds present within the extract, or metabolites resulting from gastrointestinal tract (GIT) fermentation of these compounds. This study describes how GSE affected the kinetics and end-products of starch fermentation in vitro using pig intestinal and fecal inocula. Six GSE concentrations (0, 60, 125, 250, 500, and 750 µg ml⁻¹ were fermented in vitro by porcine ileal and fecal microbiota using starch as the energy source. Cumulative gas production, and end-point short chain fatty acids and ammonia were measured. GSE phenolics altered the pattern (gas kinetics, and end-products such as SCFA and NH₄⁺) of starch fermentation by both inocula, at concentrations above 250 µg ml⁻¹ . Below this level, neither inoculum showed any significant (P > 0.05) effect of the GSE. The results show that GSE phenolics at a concentration over 250 µg ml⁻¹ can have measurable effects on microbial activity in an in vitro fermentation system, as evidenced by the changes in kinetics and end-products from starch fermentation. This suggests that fermentation patterns could be conceivably shifted in the actual GIT, though further evidence will be required from in vivo studies. Copyright © 2012 Society of Chemical Industry.
Detailed Modelling of Kinetic Biodegradation Processes in a Laboratory Mmicrocosm
NASA Astrophysics Data System (ADS)
Watson, I.; Oswald, S.; Banwart, S.; Mayer, U.
2003-04-01
Biodegradation of organic contaminants in soil and groundwater usually takes places via different redox processes happening sequentially as well as simultaneously. We used numerical modelling of a long-term lab microcosm experiment to simulate the dynamic behaviour of fermentation and respiration in the aqueous phase in contact with the sandstone material, and to develop a conceptual model describing these processes. Aqueous speciation, surface complexation, mineral dissolution and precipitation were taken into account also. Fermentation can be the first step of the degradation process producing intermediate species, which are subsequently consumed by TEAPs. Microbial growth and substrate utilisation kinetics are coupled via a formulation that also includes aqueous speciation and other geochemical reactions including surface complexation, mineral dissolution and precipitation. Competitive exclusion between TEAPs is integral to the conceptual model of the simulation, and the results indicate that exclusion is not complete, but some overlap is found between TEAPs. The model was used to test approaches like the partial equilibrium approach that currently make use of hydrogen levels to diagnose prevalent TEAPs in groundwater. The observed pattern of hydrogen and acetate concentrations were reproduced well by the simulations, and the results show the relevance of kinetics, lag times and inhibition, and especially that intermediate products play a key role.
Djordjević, Radovan; Gibson, Brian; Sandell, Mari; de Billerbeck, Gustavo M; Bugarski, Branko; Leskošek-Čukalović, Ida; Vunduk, Jovana; Nikićević, Ninoslav; Nedović, Viktor
2015-01-01
The objectives of this study were to assess the differences in fermentative behaviour of two different strains of Saccharomyces cerevisiae (EC1118 and RC212) and to determine the differences in composition and sensory properties of raspberry wines fermented with immobilized and suspended yeast cells of both strains at 15 °C. Analyses of aroma compounds, glycerol, acetic acid and ethanol, as well as the kinetics of fermentation and a sensory evaluation of the wines, were performed. All fermentations with immobilized yeast cells had a shorter lag phase and faster utilization of sugars and ethanol production than those fermented with suspended cells. Slower fermentation kinetics were observed in all the samples that were fermented with strain RC212 (suspended and immobilized) than in samples fermented with strain EC1118. Significantly higher amounts of acetic acid were detected in all samples fermented with strain RC212 than in those fermented with strain EC1118 (0.282 and 0.602 g/l, respectively). Slightly higher amounts of glycerol were observed in samples fermented with strain EC1118 than in those fermented with strain RC212. Copyright © 2014 John Wiley & Sons, Ltd.
Zhang, Mingliang; Wu, Weibin; Guo, Xiaolei; Weichen, You; Qi, Feng; Jiang, Xianzhang; Huang, Jianzhong
2018-03-01
To obtain high-cell-density cultures of Schizochytrium sp. FJU-512 for DHA production, two stages of fermentation strategy were used and carbon/nitrogen ratio, DO and temperature were controlled at different levels. The final dry cell weight, total lipid production and DHA yield in 15 l bioreactor reached 103.9, 37.2 and 16.0 g/l, respectively. For the further study of microbial growth and DHA production dynamics, we established a set of kinetic models for the fed-batch production of DHA by Schizochytrium sp. FJU-512 in 15 and 100 l fermenters and a compensatory parameter n was integrated into the model in order to find the optimal mathematical equations. A modified Logistic model was proposed to fit the cell growth data and the following kinetic parameters were obtained: µ m = 0.0525/h, X m = 100 g/l and n = 4.1717 for the 15 l bioreactor, as well as µ m = 0.0382/h, X m = 107.4371 g/l and n = 10 for the 100 l bioreactor. The Luedeking-Piret equations were utilized to model DHA production, yielding values of α = 0.0648 g/g and β = 0.0014 g/g/h for the 15 l bioreactor, while the values of α and β obtained for the 100 l fermentation were 0.0209 g/g and 0.0030 g/g/h. The predicted results compared with experimental data showed that the established models had a good fitting precision and were able to exactly depict the dynamic features of the DHA production process.
Heat and Mass Transfer Measurements for Tray-Fermented Fungal Products
NASA Astrophysics Data System (ADS)
Jou, R.-Y.; Lo, C.-T.
2011-01-01
In this study, heat and mass transfer in static tray fermentation, which is widely used in solid-state fermentation (SSF) to produce fungal products, such as enzymes or koji, is investigated. Specifically, kinetic models of transport phenomena in the whole-tray chamber are emphasized. The effects of temperature, moisture, and humidity on microbial growth in large-scale static tray fermentation are essential to scale-up SSF and achieve uniform fermentation. In addition, heat and mass transfer of static tray fermentation of Trichoderma fungi with two tray setups—traditional linen coverings and stacks in a temperature-humidity chamber is examined. In both these setups, the following factors of fermentation were measured: air velocity, air temperature, illumination, pH, carbon dioxide (CO2) concentration, and substrate temperature, and the effects of bed height, moisture of substrate, and relative humidity of air are studied. A thin (1 cm) bed at 28 °C and 95 % relative humidity is found to be optimum. Furthermore, mixing was essential for achieving uniform fermentation of Trichoderma fungi. This study has important applications in large-scale static tray fermentation of fungi.
On-line identification of fermentation processes for ethanol production.
Câmara, M M; Soares, R M; Feital, T; Naomi, P; Oki, S; Thevelein, J M; Amaral, M; Pinto, J C
2017-07-01
A strategy for monitoring fermentation processes, specifically, simultaneous saccharification and fermentation (SSF) of corn mash, was developed. The strategy covered the development and use of first principles, semimechanistic and unstructured process model based on major kinetic phenomena, along with mass and energy balances. The model was then used as a reference model within an identification procedure capable of running on-line. The on-line identification procedure consists on updating the reference model through the estimation of corrective parameters for certain reaction rates using the most recent process measurements. The strategy makes use of standard laboratory measurements for sugars quantification and in situ temperature and liquid level data. The model, along with the on-line identification procedure, has been tested against real industrial data and have been able to accurately predict the main variables of operational interest, i.e., state variables and its dynamics, and key process indicators. The results demonstrate that the strategy is capable of monitoring, in real time, this complex industrial biomass fermentation. This new tool provides a great support for decision-making and opens a new range of opportunities for industrial optimization.
Effect of solid state fermentation of peanut shell on its dye adsorption performance.
Liu, Jiayang; Wang, Zhixin; Li, Hongyan; Hu, Changwei; Raymer, Paul; Huang, Qingguo
2018-02-01
The effect of solid state fermentation of peanut shell to produce beneficial laccase and on its dye adsorption performance was evaluated. The resulting residues from solid fermentation were tested as sorbents (designated as SFs) in comparison to the raw peanut shell (RPS) for their ability to remove crystal violet from water. The fermentation process reduced the adsorption capacity (q m ) of SF by about 50%, and changed the sorptive behavior when compared to the RPS. The Langmuir model was more suitable for fitting adsorption by SFs. q m was positively correlated with the surface area of peanut shell, but negatively correlated with acid detergent lignin content. For all the sorbents tested, the process was spontaneous and endothermic, and the adsorption followed both the pseudo 1st and 2nd order kinetic model and the film diffusion model. Dye adsorption efficiency was greater when SFs dispersed solution than when placed in filter packets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Chao; Chen, Yin-Guang
2013-07-01
As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.
Fiorda, Fernanda A; de Melo Pereira, Gilberto V; Thomaz-Soccol, Vanete; Rakshit, Sudip K; Soccol, Carlos R
2016-12-01
The aim of this work was to study the fermentation process of honey with kefir grains through a comprehensive understanding of its rheological properties, probiotic cell viability, instrumental color parameters and kinetic aspects in a batch bioreactor and during storage. The results showed that kefir grains were well adapted to bioreactor conditions, reaching high levels of cell viability (over 10 6 CFU mL -1 for total yeast and bacteria), phenolic compounds content (190 GAE/100 g) and acidification after 24 h of fermentation at 30 ℃. Colorimetric analysis showed that lightness (L*) and redness (a*) remained constant, while yellowness intensities (b*) decreased during fermentation time. After 35 days of storage, honey kefir beverage maintained its chemical characteristics and microbial viability as required to be classified as a probiotic product. The Ostwald-de-Waele (R 2 ≥ 0.98) and Herschel-Bulkley (R 2 ≥ 0.99) models can be used to predict the behavior of honey kefir beverage. The parameters analyzed in this study should be taken into account for industrial production of this novel non-dairy beverage. © The Author(s) 2016.
Modeling and parameters identification of 2-keto-L-gulonic acid fed-batch fermentation.
Wang, Tao; Sun, Jibin; Yuan, Jingqi
2015-04-01
This article presents a modeling approach for industrial 2-keto-L-gulonic acid (2-KGA) fed-batch fermentation by the mixed culture of Ketogulonicigenium vulgare (K. vulgare) and Bacillus megaterium (B. megaterium). A macrokinetic model of K. vulgare is constructed based on the simplified metabolic pathways. The reaction rates obtained from the macrokinetic model are then coupled into a bioreactor model such that the relationship between substrate feeding rates and the main state variables, e.g., the concentrations of the biomass, substrate and product, is constructed. A differential evolution algorithm using the Lozi map as the random number generator is utilized to perform the model parameters identification, with the industrial data of 2-KGA fed-batch fermentation. Validation results demonstrate that the model simulations of substrate and product concentrations are well in coincidence with the measurements. Furthermore, the model simulations of biomass concentrations reflect principally the growth kinetics of the two microbes in the mixed culture.
[Progress in industrial bioprocess engineering in China].
Zhuang, Yingping; Chen, Hongzhang; Xia, Jianye; Tang, Wenjun; Zhao, Zhimin
2015-06-01
The advances of industrial biotechnology highly depend on the development of industrial bioprocess researches. In China, we are facing several challenges because of a huge national industrial fermentation capacity. The industrial bioprocess development experienced several main stages. This work mainly reviews the development of the industrial bioprocess in China during the past 30 or 40 years: including the early stage kinetics model study derived from classical chemical engineering, researching method based on control theory, multiple-parameter analysis techniques of on-line measuring instruments and techniques, and multi-scale analysis theory, and also solid state fermentation techniques and fermenters. In addition, the cutting edge of bioprocess engineering was also addressed.
Bastos, Valdeci S; Santos, Maria Fs; Gomes, Laidson P; Leite, Analy Mo; Flosi Paschoalin, Vânia M; Del Aguila, Eduardo M
2018-03-25
Cocoa bean fermentation is a spontaneous process involving a succession of microbial activities, yeasts, lactic acid, and acetic acid bacteria. The spontaneous fermentation of cocoa beans by Theobroma cacao TSH565 clonal variety, a highly productive hybrid resistant to Moniliophthora perniciosa and Phytophthora spp., was investigated. The natural cocobiota involved in the spontaneous fermentation of this hybrid in southern Brazil, was investigated by using both a culture-dependent microbiological analysis and a molecular analysis. The changes in the physicochemical characteristics and the kinetics of substrate utilization and metabolite production during fermentation were also evaluated. Yeasts (178) and bacteria (244) isolated during fermentation were identified by partial sequencing of the ITS and 16S rDNAs, respectively. After 144 h of fermentation, the indigenous yeast community was composed of Hanseniaspora spp., Saccharomyces spp., and Pichia spp. The bacterial population comprised Lactococcus spp., Staphylococcus spp., Acetobacter spp. and Lactobacilli strains. The kinetics of substrate transformation reflected the dynamic composition of the cocobiota. Substrates such as glucose, fructose, sucrose, and citric acid, present at the beginning of fermentation, were metabolized to produce ethanol, acetic acid, and lactic acid. The results described here provide new insights into microbial diversity in cocoa bean-pulp mass fermentation and the kinetics of metabolites synthesis, and pave the way for the selection of starter cultures to increase efficiency and consistency to obtain homogeneous and best quality cocoa products. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
2012-01-01
Background The expression and activity of the different Saccharomyces cerevisiae hexose uptake systems (Hxt) and the kinetics of glucose uptake are considered essential to industrial alcoholic fermentation performance. However, the dynamics of glucose uptake kinetics during the different stages of fermentation, depending on glucose and nitrogen availability, is very poorly characterized. The objective of the present work was to examine thoroughly the alterations occurring in glucose uptake kinetics during alcoholic fermentation, by the wine strain S. cerevisiae PYCC 4072, of a synthetic grape juice basal medium with either a limiting or non-limiting initial nitrogen concentration and following nitrogen supplementation of the nitrogen-depleted sluggish fermentation. Results Independently of the initial concentration of the nitrogen source, glucose transport capacity is maximal during the early stages of fermentation and presumably sustained by the low-affinity and high-capacity glucose transporter Hxt1p. During nitrogen-limited sluggish fermentation, glucose uptake capacity was reduced to approximately 20% of its initial values (Vmax = 4.9 ± 0.8 compared to 21.9 ± 1.2 μmol h-1 10-8 cells), being presumably sustained by the low-affinity glucose transporter Hxt3p (considering the calculated Km = 39.2 ± 8.6 mM). The supplementation of the sluggish fermentation broth with ammonium led to the increase of glucose transport capacity associated to the expression of different glucose uptake systems with low and high affinities for glucose (Km = 58.2 ± 9.1 and 2.7 ± 0.4 mM). A biclustering analysis carried out using microarray data, previously obtained for this yeast strain transcriptional response to equivalent fermentation conditions, indicates that the activation of the expression of genes encoding the glucose transporters Hxt2p (during the transition period to active fermentation) and Hxt3p, Hxt4p, Hxt6p and Hxt7p (during the period of active fermentation) may have a major role in the recovery of glucose uptake rate following ammonium supplementation. These results suggest a general derepression of the glucose-repressible HXT genes and are consistent with the downregulation of Mig1p and Rgt1p. Conclusions Although reduced, glucose uptake rate during nitrogen-limited fermentation is not abrogated. Following ammonium supplementation, sluggish fermentation recovery is associated to the increase of glucose uptake capacity, related to the de novo synthesis of glucose transporters with different affinity for glucose and capacity, presumably of Hxt2p, Hxt3p, Hxt4p, Hxt6p and Hxt7p. This study is a contribution to the understanding of yeast response to different stages of alcoholic fermentation at the level of glucose uptake kinetics, in particular under nitrogen limitation or replenish, which is useful knowledge to guide fermentation practices. PMID:22846176
Rocchetti, Gabriele; Lucini, Luigi; Chiodelli, Giulia; Giuberti, Gianluca; Gallo, Antonio; Masoero, Francesco; Trevisan, Marco
2017-07-01
The fate of phenolic compounds, along with short-chain fatty acids (SCFAs) production kinetics, was evaluated on six different commercial gluten-free (GF) pasta samples varying in ingredient compositions, focussing on the in vitro faecal fermentation after the gastrointestinal digestion. A general reduction of both total phenolics and reducing power was observed in all samples, together with a substantial change in phenolic profile over 24h of faecal fermentation, with differences among GF pasta samples. Flavonoids, hydroxycinnamics and lignans degraded over time, with a concurrent increase in low-molecular-weight phenolic acids (hydroxybenzoic acids), alkylphenols, hydroxybenzoketones and tyrosols. Interestingly, discriminant analysis also identified several alkyl derivatives of resorcinol as markers of the changes in phenolic profile during in vitro fermentation. Furthermore, degradation pathways of phenolics by intestinal microbiota have been proposed. Considering the total SCFAs and butyrate production during the in vitro fermentation, different fermentation kinetics were observed among GF pasta post-hydrolysis residues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kinetic study of the thermal hydrolysis of Agave salmiana for mezcal production.
Garcia-Soto, M J; Jimenez-Islas, H; Navarrete-Bolanos, J L; Rico-Martinez, R; Miranda-Lopez, R; Botello-Alvarez, J E
2011-07-13
The kinetics of the thermal hydrolysis of the fructans of Agave salmiana were determined during the cooking step of mezcal production in a pilot autoclave. Thermal hydrolysis was achieved at different temperatures and cooking times, ranging from 96 to 116 °C and from 20 to 80 h. A simple kinetic model of the depolymerization of fructans to monomers and other reducing sugars and of the degradation of reducing sugars to furans [principally 5-(hydroxymethyl)furfural, HMF] was developed. From this model, the rate constants of the reactions were calculated, as well as the pre-exponential factors and activation energies of the Arrhenius equation. The model was found to fit the experimental data well. The tradeoff between a maximum fructan hydrolysis and a critical furan concentration in allowing for the best ethanol yield during fermentation was investigated. The results indicated that the thermal hydrolysis of agave was optimal, from the point of view of ethanol yield in the ensuing fermentation, in the temperature range of 106-116 °C and the cooking range time of 6-14 h. The optimal conditions corresponded to a fructan hydrolysis of 80%, producing syrups with furan and reducing sugar concentrations of 1 ± 0.1 and 110 ± 10 g/L, respectively.
Effect of pretreatment on the enzymatic hydrolysis of kitchen waste for xanthan production.
Li, Panyu; Zeng, Yu; Xie, Yi; Li, Xiang; Kang, Yan; Wang, Yabo; Xie, Tonghui; Zhang, Yongkui
2017-01-01
The study was carried out to gain insight into the effect of pretreatment on enzymatic hydrolysis of kitchen waste (KW) for xanthan fermentation. Herein, various pretreatments were applied and it was found that chemical pretreatment had positive effect on the following enzymatic or overall hydrolysis process. The highest reducing sugar concentration was obtained as 51.87g/L from 2% HCl (90°C) pretreated sample, while the Kjeldahl nitrogen (KDN) concentration was 7.79g/L. Kinetic study showed that first order kinetic model was suitable to describe the enzymatic hydrolysis process. The obtained kitchen waste hydrolysate (KWH) was successfully applied for xanthan fermentation. Xanthan concentration reached 4.09-6.46g/L when KWH with 2% HCl (90°C) pretreatment was applied as medium. In comparison, a xanthan concentration of 3.25-5.57g/L was obtained from KWH without pretreatment. Therefore, pretreatment of KW using diluted acid is favorable for the overall hydrolysis process and effective for xanthan fermentation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Yitong; Qian, Zijun; Liu, Peng; Liu, Lei; Zheng, Zhaojuan; Ouyang, Jia
2018-02-01
To get rid of the dependence on lactic acid neutralizer, a simple and economical approach for efficient in situ separation and production of L-lactic acid was established by Bacillus coagulans using weak basic anion-exchange resin. During ten tested resins, the 335 weak basic anion-exchange resins demonstrated the highest adsorption capacity and selectivity for lactic acid recovery. The adsorption study of the 335 resins for lactic acid confirmed that it is an efficient adsorbent under fermentation condition. Langmuir models gave a good fit to the equilibrium data at 50 °C and the maximum adsorption capacity for lactic acid by 335 resins was about 402 mg/g. Adsorption kinetic experiments showed that pseudo-second-order kinetics model gave a good fit to the adsorption rate. When it was used for in situ fermentation, the yield of L-lactic acid by B. coagulans CC17 was close to traditional fermentation and still maintained at about 82% even after reuse by ten times. These results indicated that in situ separation and production of L-lactic acid using the 335 resins were efficient and feasible. This process could greatly reduce the dosage of neutralizing agent and potentially be used in industry.
Kinetic Modeling of Corn Fermentation with S. cerevisiae Using a Variable Temperature Strategy.
Souza, Augusto C M; Mousaviraad, Mohammad; Mapoka, Kenneth O M; Rosentrater, Kurt A
2018-04-24
While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae , at five different fixed and controlled variable temperatures. The lower temperatures presented higher ethanol yields but took a longer time to reach equilibrium. Higher temperatures had higher initial growth rates, but the decay of yeast cells was faster compared to the lower temperatures. However, in a controlled variable temperature model, the temperature decreased with time with the initial value of 40 ∘ C. When analyzing a time window of 60 h, the ethanol production increased 20% compared to the batch with the highest temperature; however, the yield was still 12% lower compared to the 20 ∘ C batch. When the 24 h’ simulation was analyzed, the controlled model had a higher ethanol concentration compared to both fixed temperature batches.
Species diversity, community dynamics, and metabolite kinetics of spontaneous leek fermentations.
Wouters, D; Bernaert, N; Conjaerts, W; Van Droogenbroeck, B; De Loose, M; De Vuyst, L
2013-04-01
Leek (Allium ampeloprasum var. porrum) is one of Belgium's most important vegetables. All or part of the green leek parts are often left on the fields because of their limited cooking applications compared to the white leek parts. Therefore, the possibility to perform leek fermentations in view of product valorization and diversification was investigated. This study deals with the community dynamics, species diversity, and metabolite kinetics of spontaneous leek fermentations, thereby studying the influence of added NaCl concentration, harvesting season, and duration of the fermentation. The combination of a culture-dependent and culture-independent approach revealed the prevalence of lactic acid bacteria (LAB) from the third day of fermentation onwards, which was not influenced by the fermentation conditions applied. Enterobacteriaceae, Pseudomonadaceae, and yeasts disappeared after one week of fermentation. Leuconostoc mesenteroides, Lactobacillus sakei, and Lactobacillus plantarum, Lactobacillus brevis, and Lactobacillus parabrevis were the most frequently isolated LAB species. Both added NaCl concentrations were suitable to perform successful fermentations within three weeks. By that time, glucose and fructose, the main leek carbohydrates, were metabolized into mainly lactic acid, acetic acid, ethanol, and mannitol. A sensory analysis revealed that the fermented white leek parts were generally more appreciated than the fermented green leek parts. Copyright © 2012 Elsevier Ltd. All rights reserved.
Schneiderman, Steven J; Johnson, Roger W; Menkhaus, Todd J; Gilcrease, Patrick C
2015-03-01
While softwoods represent a potential feedstock for second generation ethanol production, compounds present in their hydrolysates can inhibit fermentation. In this study, a novel Design of Experiments (DoE) approach was used to identify significant inhibitory effects on Saccharomyces cerevisiae D5A for the purpose of guiding kinetic model development. Although acetic acid, furfural and 5-hydroxymethyl furfural (HMF) were present at potentially inhibitory levels, initial factorial experiments only identified ethanol as a significant rate inhibitor. It was hypothesized that high ethanol levels masked the effects of other inhibitors, and a subsequent factorial design without ethanol found significant effects for all other compounds. When these non-ethanol effects were accounted for in the kinetic model, R¯(2) was significantly improved over an ethanol-inhibition only model (R¯(2)=0.80 vs. 0.76). In conclusion, when ethanol masking effects are removed, DoE is a valuable tool to identify significant non-ethanol inhibitors and guide kinetic model development. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis.
He, Yuyuan; Chang, Chun; Li, Pan; Han, Xiuli; Li, Hongliang; Fang, Shuqi; Chen, Junying; Ma, Xiaojian
2018-07-01
The thermal behavior and kinetics of Yiluo coal (YC) and the residues of fermented cornstalk (FC) were investigated in this study. The Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods were used for the kinetic analysis of the pyrolysis process. The results showed that the activation energy (E α ) was increased with the increase of the thermal conversion rate (α), and the average values of E α of YC, FC and the blend (m YC /m FC = 6/4) were 304.26, 224.94 and 233.46 kJ/mol, respectively. The order reaction model function for the blend was also developed by the master-plots method. By comparing the E a and the enthalpy, it was found that the blend was favored to format activated complex due to the lower potential energy barrier. Meanwhile, the average value of Gibbs free energy of the blend was 169.83 kJ/mol, and the changes of entropies indicated that the pyrolysis process was evolved from ordered-state to disordered-state. Copyright © 2018 Elsevier Ltd. All rights reserved.
Peltier, Emilien; Bernard, Margaux; Trujillo, Marine; Prodhomme, Duyên; Barbe, Jean-Christophe; Gibon, Yves; Marullo, Philippe
2018-01-01
This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes.
Bernard, Margaux; Trujillo, Marine; Prodhomme, Duyên; Barbe, Jean-Christophe; Gibon, Yves; Marullo, Philippe
2018-01-01
This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes. PMID:29351285
Zhao, Bo; Wang, Limin; Li, Fengsong; Hua, Dongliang; Ma, Cuiqing; Ma, Yanhe; Xu, Ping
2010-08-01
D-lactic acid was produced by Sporolactobacillus sp. strain CASD in repeated batch fermentation with one- and two-reactor systems. The strain showed relatively high energy consumption in its growth-related metabolism in comparison with other lactic acid producers. When the fermentation was repeated with 10% (v/v) of previous culture to start a new batch, D-lactic acid production shifted from being cell-maintenance-dependent to cell-growth-dependent. In comparison with the one-reactor system, D-lactic acid production increased approximately 9% in the fourth batch of the two-reactor system. Strain CASD is an efficient D-lactic acid producer with increased growth rate at the early stage of repeated cycles, which explains the strain's physiological adaptation to repeated batch culture and improved performance in the two-reactor fermentation system. From a kinetic point of view, two-reactor fermentation system was shown to be an alternative for conventional one-reactor repeated batch operation. Copyright 2010 Elsevier Ltd. All rights reserved.
Impact of initial lipid content and oxygen supply on alcoholic fermentation in champagne-like musts.
Ochando, Thomas; Mouret, Jean-Roch; Humbert-Goffard, Anne; Sablayrolles, Jean-Marie; Farines, Vincent
2017-08-01
Available nitrogen, lipids, or oxygen are nutrients with major impact on the kinetics of winemaking fermentation. Assimilable nitrogen is usually the growth-limiting nutrient which availability determines the fermentation rate and therefore the fermentation duration. In some particular cases, as in Champagne, grape musts have high available nitrogen content and low turbidity, i.e., below 50 Nephelometric Turbidity Unit (NTU). In the case of low turbidity, the availability of lipids, particularly phytosterols, becomes limiting. In this situation, control of oxygenation, which is necessary for lipid synthesis by yeast, is particularly crucial during fermentation. To mimic and understand these situations, a synthetic medium simulating the average composition of a Champagne must was used. This medium contained phytosterol (mainly β-sitosterol) concentrations ranging from 0 to 8mg/L corresponding to turbidity between 10 and 90 NTU. Population reached during the stationary phase and the maximum fermentation rate are conditioned by the initial phytosterol concentration determining the amount of nitrogen consumption. An early loss of viability was observed when the lipid concentrations were very low. For example, the viability continuously decreased during the stationary phase to a final value of 50% for an initial phytosterol concentration of 1mg/L. In some fermentations, 10mg/L oxygen were added at the end of the growth phase to combine the effects of initial content of phytosterols in the musts and the de novo synthesis of ergosterol and unsaturated fatty acids induced by oxygen addition. Effect of oxygen supply on the fermentation kinetics was particularly significant for media with low phytosterol contents. For example, the maximum fermentation rate was increased by 1.4-fold and the fermentation time was 70h shorter with oxygen addition in the medium containing 2mg/L of phytosterols. As a consequence of the oxygen supply, for the media containing 3, 5 and 8mg/L of phytosterols, the assimilable nitrogen was completely exhausted and the fermentation kinetics, as well as the final populations and viabilities (greater than 90%), were identical for the 3 conditions. The impacts of the lipid content and additional oxygen on acetate, glycerol and succinate synthesis were also studied. The phytosterols decreased the acetate and increased the succinate synthesis, and oxygenation resulted in a decrease in succinate formation. This work highlights the similarities and differences between the effects of lipids and oxygen on fermentation kinetics and yeast metabolism. This research highlights the need for an optimal combined management of lipid content in the must via turbidity and oxygenation, particularly in nitrogen-rich musts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Omega-3 production by fermentation of Yarrowia lipolytica: From fed-batch to continuous.
Xie, Dongming; Miller, Edward; Sharpe, Pamela; Jackson, Ethel; Zhu, Quinn
2017-04-01
The omega-3 fatty acid, cis-5,8,11,14,17-eicosapentaenoic acid (C20:5; EPA) has wide-ranging benefits in improving heart health, immune function, and mental health. A sustainable source of EPA production through fermentation of metabolically engineered Yarrowia lipolytica has been developed. In this paper, key fed-batch fermentation conditions were identified to achieve 25% EPA in the yeast biomass, which is so far the highest EPA titer reported in the literature. Dynamic models of the EPA fermentation process were established for analyzing, optimizing, and scaling up the fermentation process. In addition, model simulations were used to develop a two-stage continuous process and compare to single-stage continuous and fed- batch processes. The two stage continuous process, which is equipped with a smaller growth fermentor (Stage 1) and a larger production fermentor (Stage 2), was found to be a superior process to achieve high titer, rate, and yield of EPA. A two-stage continuous fermentation experiment with Y. lipolytica strain Z7334 was designed using the model simulation and then tested in a 2 L and 5 L fermentation system for 1,008 h. Compared with the standard 2 L fed-batch process, the two-stage continuous fermentation process improved the overall EPA productivity by 80% and EPA concentration in the fermenter by 40% while achieving comparable EPA titer in biomass and similar conversion yield from glucose. During the long-term experiment it was also found that the Y. lipolytica strain evolved to reduce byproduct and increase lipid production. This is one of the few continuous fermentation examples that demonstrated improved productivity and concentration of a final product with similar conversion yield compared with a fed-batch process. This paper suggests the two-stage continuous fermentation could be an effective process to achieve improved production of omega-3 and other fermentation products where non-growth or partially growth associated kinetics characterize the process. Biotechnol. Bioeng. 2017;114: 798-812. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Kinetic models in industrial biotechnology - Improving cell factory performance.
Almquist, Joachim; Cvijovic, Marija; Hatzimanikatis, Vassily; Nielsen, Jens; Jirstrand, Mats
2014-07-01
An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories that convert sugars into chemicals. These processes range from the production of bulk chemicals in yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in the continuous search for improved performance of such production systems is the development and application of mathematical models. To be of value for industrial biotechnology, mathematical models should be able to assist in the rational design of cell factory properties or in the production processes in which they are utilized. Kinetic models are particularly suitable towards this end because they are capable of representing the complex biochemistry of cells in a more complete way compared to most other types of models. They can, at least in principle, be used to in detail understand, predict, and evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for supporting the design of the bioreactor or fermentation process. However, several challenges still remain before kinetic modeling will reach the degree of maturity required for routine application in industry. Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling methodology concepts, including model network structure, kinetic rate expressions, parameter estimation, optimization methods, identifiability analysis, model reduction, and model validation, but several applications of kinetic models for the improvement of cell factories are also discussed. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Quinto, E J; Arinder, P; Axelsson, L; Heir, E; Holck, A; Lindqvist, R; Lindblad, M; Andreou, P; Lauzon, H L; Marteinsson, V Þ; Pin, C
2014-05-01
A model to predict the population density of verotoxigenic Escherichia coli (VTEC) throughout the elaboration and storage of fermented raw-meat sausages (FRMS) was developed. Probabilistic and kinetic measurement data sets collected from publicly available resources were completed with new measurements when required and used to quantify the dependence of VTEC growth and inactivation on the temperature, pH, water activity (aw), and concentration of lactic acid. Predictions were compared with observations in VTEC-contaminated FRMS manufactured in a pilot plant. Slight differences in the reduction of VTEC were predicted according to the fermentation temperature, 24 or 34°C, with greater inactivation at the highest temperature. The greatest reduction was observed during storage at high temperatures. A population decrease greater than 6 decimal logarithmic units was observed after 66 days of storage at 25°C, while a reduction of only ca. 1 logarithmic unit was detected at 12°C. The performance of our model and other modeling approaches was evaluated throughout the processing of dry and semidry FRMS. The greatest inactivation of VTEC was predicted in dry FRMS with long drying periods, while the smallest reduction was predicted in semidry FMRS with short drying periods. The model is implemented in a computing tool, E. coli SafeFerment (EcSF), freely available from http://www.ifr.ac.uk/safety/EcoliSafeFerment. EcSF integrates growth, probability of growth, and thermal and nonthermal inactivation models to predict the VTEC concentration throughout FRMS manufacturing and storage under constant or fluctuating environmental conditions.
Quinto, E. J.; Arinder, P.; Axelsson, L.; Heir, E.; Holck, A.; Lindqvist, R.; Lindblad, M.; Andreou, P.; Lauzon, H. L.; Marteinsson, V. Þ.
2014-01-01
A model to predict the population density of verotoxigenic Escherichia coli (VTEC) throughout the elaboration and storage of fermented raw-meat sausages (FRMS) was developed. Probabilistic and kinetic measurement data sets collected from publicly available resources were completed with new measurements when required and used to quantify the dependence of VTEC growth and inactivation on the temperature, pH, water activity (aw), and concentration of lactic acid. Predictions were compared with observations in VTEC-contaminated FRMS manufactured in a pilot plant. Slight differences in the reduction of VTEC were predicted according to the fermentation temperature, 24 or 34°C, with greater inactivation at the highest temperature. The greatest reduction was observed during storage at high temperatures. A population decrease greater than 6 decimal logarithmic units was observed after 66 days of storage at 25°C, while a reduction of only ca. 1 logarithmic unit was detected at 12°C. The performance of our model and other modeling approaches was evaluated throughout the processing of dry and semidry FRMS. The greatest inactivation of VTEC was predicted in dry FRMS with long drying periods, while the smallest reduction was predicted in semidry FMRS with short drying periods. The model is implemented in a computing tool, E. coli SafeFerment (EcSF), freely available from http://www.ifr.ac.uk/safety/EcoliSafeFerment. EcSF integrates growth, probability of growth, and thermal and nonthermal inactivation models to predict the VTEC concentration throughout FRMS manufacturing and storage under constant or fluctuating environmental conditions. PMID:24561587
Boudreau, Thomas F; Peck, Gregory M; O'Keefe, Sean F; Stewart, Amanda C
2017-01-01
Fungicide residues on fruit may adversely affect yeast during cider fermentation, leading to sluggish or stuck fermentation or the production of hydrogen sulfide (H 2 S), which is an undesirable aroma compound. This phenomenon has been studied in grape fermentation but not in apple fermentation. Low nitrogen availability, which is characteristic of apples, may further exacerbate the effects of fungicides on yeast during fermentation. The present study explored the effects of three fungicides: elemental sulfur (S 0 ) (known to result in increased H 2 S in wine); fenbuconazole (used in orchards but not vineyards); and fludioxonil (used in post-harvest storage of apples). Only S 0 led to increased H 2 S production. Fenbuconazole (≥0.2 mg L -1 ) resulted in a decreased fermentation rate and increased residual sugar. An interactive effect of yeast assimilable nitrogen (YAN) concentration and fenbuconazole was observed such that increasing the YAN concentration alleviated the negative effects of fenbuconazole on fermentation kinetics. Cidermakers should be aware that residual fenbuconazole (as low as 0.2 mg L -1 ) in apple juice may lead to stuck fermentation, especially when the YAN concentration is below 250 mg L -1 . These results indicate that fermentation problems attributed to low YAN may be caused or exacerbated by additional factors such as fungicide residues, which have a greater impact on fermentation performance under low YAN conditions. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Wastewater from the soft drinks industry as a source for bioethanol production.
Isla, Miguel A; Comelli, Raúl N; Seluy, Lisandro G
2013-05-01
Wastewaters from the soft drinks industry were examined as media for producing bioethanol using yeast-mediated fermentation. Fermentation assays were performed using cola-type, orange and lemon-lime soft drinks and the biomass, sugar and ethanol levels were monitored over time. The effect of the addition of yeast extract was evaluated; the results indicated that 15 g/L is a suitable value for successful fermentation. Depletion of the sugars contained in the soft drinks (10-12% w/v) was achieved in less than 12 h when the medium was inoculated with 2 g/L of Saccharomyces cerevisiae var. Windsor. Ethanol yields were close to the theoretical values. The performance of several kinetic models was evaluated, and their parameters were determined. A model including inhibition by ethanol enabled the best adjustment of the experimental results in all assayed media. Some soft drinks include sodium benzoate in their formulae, the effect of which on yeast metabolism is discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Díaz, Víctor Hugo Grisales; Tost, Gerard Olivar
2016-10-01
Techno-economic study of acetone, butanol and ethanol (ABE) fermentation from lignocellulose was performed. Simultaneous saccharification, fermentation and vacuum evaporation (SFS-V) or pervaporation (SFS-P) were proposed. A kinetic model of metabolic pathways for ABE fermentation with the effect of phenolics and furans in the growth was proposed based on published laboratory results. The processes were optimized in Matlab®. The end ABE purification was carried out by heat-integrated distillation. The objective function of the minimization was the total annualized cost (TAC). Fuel consumption of SFS-P using poly[1-(trimethylsilyl)-1-propyne] membrane was between 13.8 and 19.6% lower than SFS-V. Recovery of furans and phenolics for the hybrid reactors was difficult for its high boiling point. TAC of SFS-P was increased 1.9 times with supplementation of phenolics and furans to 3g/l each one for its high toxicity. Therefore, an additional detoxification method or an efficient pretreatment process will be necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.
Acetate adaptation of clostridia tyrobutyricum for improved fermentation production of butyrate.
Jaros, Adam M; Rova, Ulrika; Berglund, Kris A
2013-12-01
Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium capable of utilizing xylose for the fermentation production of butyrate. Hot water extraction of hardwood lingocellulose is an efficient method of producing xylose where autohydrolysis of xylan is catalysed by acetate originating from acetyl groups present in hemicellulose. The presence of acetic acid in the hydrolysate might have a severe impact on the subsequent fermentations. In this study the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 26.3 g/L acetate equivalents were studied. Analysis of xylose batch fermentations found that even in the presence of high levels of acetate, acetate adapted strains had similar fermentation kinetics as the parental strain cultivated without acetate. The parental strain exposed to acetate at inhibitory conditions demonstrated a pronounced lag phase (over 100 hours) in growth and butyrate production as compared to the adapted strain (25 hour lag) or non-inhibited controls (0 lag). Additional insight into the metabolic pathway of xylose consumption was gained by determining the specific activity of the acetate kinase (AK) enzyme in adapted versus control batches. AK activity was reduced by 63% in the presence of inhibitory levels of acetate, whether or not the culture had been adapted.
Laureys, David; De Vuyst, Luc
2014-04-01
Water kefir is a sour, alcoholic, and fruity fermented beverage of which the fermentation is started with water kefir grains. These water kefir grains consist of polysaccharide and contain the microorganisms responsible for the water kefir fermentation. In this work, a water kefir fermentation process was followed as a function of time during 192 h to unravel the community dynamics, the species diversity, and the kinetics of substrate consumption and metabolite production. The majority of the water kefir ecosystem was found to be present on the water kefir grains. The most important microbial species present were Lactobacillus casei/paracasei, Lactobacillus harbinensis, Lactobacillus hilgardii, Bifidobacterium psychraerophilum/crudilactis, Saccharomyces cerevisiae, and Dekkera bruxellensis. The microbial species diversities in the water kefir liquor and on the water kefir grains were similar and remained stable during the whole fermentation process. The major substrate, sucrose, was completely converted after 24 h of fermentation, which coincided with the production of the major part of the water kefir grain polysaccharide. The main metabolites of the fermentation were ethanol and lactic acid. Glycerol, acetic acid, and mannitol were produced in low concentrations. The major part of these metabolites was produced during the first 72 h of fermentation, during which the pH decreased from 4.26 to 3.45. The most prevalent volatile aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, ethyl octanoate, and ethyl decanoate, which might be of significance with respect to the aroma of the end product.
Microbial Species Diversity, Community Dynamics, and Metabolite Kinetics of Water Kefir Fermentation
Laureys, David
2014-01-01
Water kefir is a sour, alcoholic, and fruity fermented beverage of which the fermentation is started with water kefir grains. These water kefir grains consist of polysaccharide and contain the microorganisms responsible for the water kefir fermentation. In this work, a water kefir fermentation process was followed as a function of time during 192 h to unravel the community dynamics, the species diversity, and the kinetics of substrate consumption and metabolite production. The majority of the water kefir ecosystem was found to be present on the water kefir grains. The most important microbial species present were Lactobacillus casei/paracasei, Lactobacillus harbinensis, Lactobacillus hilgardii, Bifidobacterium psychraerophilum/crudilactis, Saccharomyces cerevisiae, and Dekkera bruxellensis. The microbial species diversities in the water kefir liquor and on the water kefir grains were similar and remained stable during the whole fermentation process. The major substrate, sucrose, was completely converted after 24 h of fermentation, which coincided with the production of the major part of the water kefir grain polysaccharide. The main metabolites of the fermentation were ethanol and lactic acid. Glycerol, acetic acid, and mannitol were produced in low concentrations. The major part of these metabolites was produced during the first 72 h of fermentation, during which the pH decreased from 4.26 to 3.45. The most prevalent volatile aroma compounds were ethyl acetate, isoamyl acetate, ethyl hexanoate, ethyl octanoate, and ethyl decanoate, which might be of significance with respect to the aroma of the end product. PMID:24532061
Hocalar, A; Türker, M; Karakuzu, C; Yüzgeç, U
2011-04-01
In this study, previously developed five different state estimation methods are examined and compared for estimation of biomass concentrations at a production scale fed-batch bioprocess. These methods are i. estimation based on kinetic model of overflow metabolism; ii. estimation based on metabolic black-box model; iii. estimation based on observer; iv. estimation based on artificial neural network; v. estimation based on differential evaluation. Biomass concentrations are estimated from available measurements and compared with experimental data obtained from large scale fermentations. The advantages and disadvantages of the presented techniques are discussed with regard to accuracy, reproducibility, number of primary measurements required and adaptation to different working conditions. Among the various techniques, the metabolic black-box method seems to have advantages although the number of measurements required is more than that for the other methods. However, the required extra measurements are based on commonly employed instruments in an industrial environment. This method is used for developing a model based control of fed-batch yeast fermentations. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Kinetics of growth and sugar consumption in yeasts.
van Dijken, J P; Weusthuis, R A; Pronk, J T
1993-01-01
An overview is presented of the steady- and transient state kinetics of growth and formation of metabolic byproducts in yeasts. Saccharomyces cerevisiae is strongly inclined to perform alcoholic fermentation. Even under fully aerobic conditions, ethanol is produced by this yeast when sugars are present in excess. This so-called 'Crabtree effect' probably results from a multiplicity of factors, including the mode of sugar transport and the regulation of enzyme activities involved in respiration and alcoholic fermentation. The Crabtree effect in S. cerevisiae is not caused by an intrinsic inability to adjust its respiratory activity to high glycolytic fluxes. Under certain cultivation conditions, for example during growth in the presence of weak organic acids, very high respiration rates can be achieved by this yeast. S. cerevisiae is an exceptional yeast since, in contrast to most other species that are able to perform alcoholic fermentation, it can grow under strictly anaerobic conditions. 'Non-Saccharomyces' yeasts require a growth-limiting supply of oxygen (i.e. oxygen-limited growth conditions) to trigger alcoholic fermentation. However, complete absence of oxygen results in cessation of growth and therefore, ultimately, of alcoholic fermentation. Since it is very difficult to reproducibly achieve the right oxygen dosage in large-scale fermentations, non-Saccharomyces yeasts are therefore not suitable for large-scale alcoholic fermentation of sugar-containing waste streams. In these yeasts, alcoholic fermentation is also dependent on the type of sugar. For example, the facultatively fermentative yeast Candida utilis does not ferment maltose, not even under oxygen-limited growth conditions, although this disaccharide supports rapid oxidative growth.
Optoelectronic sensor device for monitoring ethanol concentration in winemaking applications
NASA Astrophysics Data System (ADS)
Jiménez-Márquez, F.; Vázquez, J.; Úbeda, J.; Rodríguez-Rey, J.; Sánchez-Rojas, J. L.
2015-05-01
The supervision of key variables such as sugar, alcohol, released CO2 and microbiological evolution in fermenting grape must is of great importance in the winemaking industry. However, the fermentation kinetics is assessed by monitoring the evolution of the density as it varies during a fermentation, since density is an indicator of the total amount of sugars, ethanol and glycerol. Even so, supervising the fermentation process is an awkward and non-comprehensive task, especially in wine cellars where production rates are massive, and enologists usually measure the density of the extracted samples from each fermentation tank manually twice a day. This work aims at the design of a fast, low-cost, portable and reliable optoelectronic sensor for measuring ethanol concentration in fermenting grape must samples. Different sets of model solutions, which contain ethanol, fructose, glucose, glycerol dissolved in water and emulate the grape must composition at different stages of the fermentation, were prepared both for calibration and validation. The absorption characteristics of these model solutions were analyzed by a commercial spectrophotometer in the NIR region, in order to identify key wavelengths from which valuable information regarding the sample composition can be extracted. Finally, a customized optoelectronic prototype based on absorbance measurements at two wavelengths belonging to the NIR region was designed, fabricated and successfully tested. The system, whose optoelectronics is reduced after a thorough analysis to only two LED lamps and their corresponding paired photodiodes operating at 1.2 and 1.3 μm respectively, calculates the ethanol content by a multiple linear regression.
Alcoholic fermentation with flocculant Saccharomyces cerevisiae in fed-batch process.
Guidini, Carla Zanella; Marquez, Líbia Diniz Santos; de Almeida Silva, Helisângela; de Resende, Miriam Maria; Cardoso, Vicelma Luiz; Ribeiro, Eloízio Júlio
2014-02-01
Studies have been conducted on selecting yeast strains for use in fermentation for ethanol production to improve the performance of industrial plants and decrease production costs. In this paper, we study alcoholic fermentation in a fed-batch process using a Saccharomyces cerevisiae yeast strain with flocculant characteristics. Central composite design (CCD) was used to determine the optimal combination of the variables involved, with the sucrose concentration of 170 g/L, a cellular concentration in the inoculum of 40% (v/v), and a filling time of 6 h, which resulted in a 92.20% yield relative to the theoretical maximum yield, a productivity of 6.01 g/L h and a residual sucrose concentration of 44.33 g/L. With some changes in the process such as recirculation of medium during the fermentation process and increase in cellular concentration in the inoculum after use of the CCD was possible to reduce the residual sucrose concentration to 2.8 g/L in 9 h of fermentation and increase yield and productivity for 92.75% and 9.26 g/L h, respectively. A model was developed to describe the inhibition of alcoholic fermentation kinetics by the substrate and the product. The maximum specific growth rate was 0.103 h(-1), with K(I) and K(s) values of 109.86 and 30.24 g/L, respectively. The experimental results from the fed-batch reactor show a good fit with the proposed model, resulting in a maximum growth rate of 0.080 h(-1).
Leroy, Frédéric; de Vuyst, Luc
1999-01-01
Sakacin K is an antilisterial bacteriocin produced by Lactobacillus sake CTC 494, a strain isolated from Spanish dry fermented sausages. The biokinetics of cell growth and bacteriocin production of L. sake CTC 494 in vitro during laboratory fermentations were investigated by making use of MRS broth. The data obtained from the fermentations was used to set up a predictive model to describe the influence of the physical factors temperature and pH on microbial behavior. The model was validated successfully for all components. However, the specific bacteriocin production rate seemed to have an upper limit. Both cell growth and bacteriocin activity were very much influenced by changes in temperature and pH. The production of biomass was closely related to bacteriocin activity, indicating primary metabolite kinetics, but was not the only factor of importance. Acidity dramatically influenced both the production and the inactivation of sakacin K; the optimal pH for cell growth did not correspond to the pH for maximal sakacin K activity. Furthermore, cells grew well at 35°C but no bacteriocin production could be detected at this temperature. L. sake CTC 494 shows special promise for implementation as a novel bacteriocin-producing sausage starter culture with antilisterial properties, considering the fact that the temperature and acidity conditions that prevail during the fermentation process of dry fermented sausages are optimal for the production of sakacin K. PMID:10049850
Rios-Iribe, Erika Y; Hernández-Calderón, Oscar M; Reyes-Moreno, C; Contreras-Andrade, I; Flores-Cotera, Luis B; Escamilla-Silva, Eleazar M
2013-01-01
A nonstructured model was used to study the dynamics of gibberellic acid production in a stirred tank bioreactor. Experimental data were obtained from submerged batch cultures of Gibberella fujikuroi (CDBB H-984) grown in varying ratios of glucose-corn oil as the carbon source. The nitrogen depletion effect was included in mathematical model by considering the specific kinetic constants as a linear function of the normalized nitrogen consumption rate. The kinetics of biomass growth and consumption of phosphate and nitrogen were based on the logistic model. The traditional first-order kinetic model was used to describe the specific consumption of glucose and corn oil. The nitrogen effect was solely included in the phosphate and corn oil consumption and biomass growth. The model fit was satisfactory, revealing the dependence of the kinetics with respect to the nitrogen assimilation rate. Through simulations, it was possible to make diagrams of specific growth rate and specific rate of substrate consumptions, which was a powerful tool for understanding the metabolic interactions that occurred during the various stages of fermentation process. This kinetic analysis provided the proposal of a possible mechanism of regulation on growth, substrate consumptions, and production of gibberellic acid (GA3 ) in G. fujikuroi. © 2013 American Institute of Chemical Engineers.
Pinto Mariano, Adriano; Bastos Borba Costa, Caliane; de Franceschi de Angelis, Dejanira; Maugeri Filho, Francisco; Pires Atala, Daniel Ibraim; Wolf Maciel, Maria Regina; Maciel Filho, Rubens
2009-11-01
In this work, the mathematical optimization of a continuous flash fermentation process for the production of biobutanol was studied. The process consists of three interconnected units, as follows: fermentor, cell-retention system (tangential microfiltration), and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). The objective of the optimization was to maximize butanol productivity for a desired substrate conversion. Two strategies were compared for the optimization of the process. In one of them, the process was represented by a deterministic model with kinetic parameters determined experimentally and, in the other, by a statistical model obtained using the factorial design technique combined with simulation. For both strategies, the problem was written as a nonlinear programming problem and was solved with the sequential quadratic programming technique. The results showed that despite the very similar solutions obtained with both strategies, the problems found with the strategy using the deterministic model, such as lack of convergence and high computational time, make the use of the optimization strategy with the statistical model, which showed to be robust and fast, more suitable for the flash fermentation process, being recommended for real-time applications coupling optimization and control.
Induction of simultaneous and sequential malolactic fermentation in durian wine.
Taniasuri, Fransisca; Lee, Pin-Rou; Liu, Shao-Quan
2016-08-02
This study represented for the first time the impact of malolactic fermentation (MLF) induced by Oenococcus oeni and its inoculation strategies (simultaneous vs. sequential) on the fermentation performance as well as aroma compound profile of durian wine. There was no negative impact of simultaneous inoculation of O. oeni and Saccharomyces cerevisiae on the growth and fermentation kinetics of S. cerevisiae as compared to sequential fermentation. Simultaneous MLF did not lead to an excessive increase in volatile acidity as compared to sequential MLF. The kinetic changes of organic acids (i.e. malic, lactic, succinic, acetic and α-ketoglutaric acids) varied with simultaneous and sequential MLF relative to yeast alone. MLF, regardless of inoculation mode, resulted in higher production of fermentation-derived volatiles as compared to control (alcoholic fermentation only), including esters, volatile fatty acids, and terpenes, except for higher alcohols. Most indigenous volatile sulphur compounds in durian were decreased to trace levels with little differences among the control, simultaneous and sequential MLF. Among the different wines, the wine with simultaneous MLF had higher concentrations of terpenes and acetate esters while sequential MLF had increased concentrations of medium- and long-chain ethyl esters. Relative to alcoholic fermentation only, both simultaneous and sequential MLF reduced acetaldehyde substantially with sequential MLF being more effective. These findings illustrate that MLF is an effective and novel way of modulating the volatile and aroma compound profile of durian wine. Copyright © 2016 Elsevier B.V. All rights reserved.
Salmon, Jean-Michel; Barre, Pierre
1998-01-01
Metabolism of nitrogen compounds by yeasts affects the efficiency of wine fermentation. Ammonium ions, normally present in grape musts, reduce catabolic enzyme levels and transport activities for nonpreferred nitrogen sources. This nitrogen catabolite repression severely impairs the utilization of proline and arginine, both common nitrogen sources in grape juice that require the proline utilization pathway for their assimilation. We attempted to improve fermentation performance by genetic alteration of the regulation of nitrogen-assimilatory pathways in Saccharomyces cerevisiae. One mutant carrying a recessive allele of ure2 was isolated from an industrial S. cerevisiae strain. This mutation strongly deregulated the proline utilization pathway. Fermentation kinetics of this mutant were studied under enological conditions on simulated standard grape juices with various nitrogen levels. Mutant strains produced more biomass and exhibited a higher maximum CO2 production rate than the wild type. These differences were primarily due to the derepression of amino acid utilization pathways. When low amounts of dissolved oxygen were added, the mutants could assimilate proline. Biomass yield and fermentation rate were consequently increased, and the duration of the fermentation was substantially shortened. S. cerevisiae strains lacking URE2 function could improve alcoholic fermentation of natural media where proline and other poorly assimilated amino acids are the major potential nitrogen source, as is the case for most fruit juices and grape musts. PMID:9758807
Metabolic regulation and maximal reaction optimization in the central metabolism of a yeast cell
NASA Astrophysics Data System (ADS)
Kasbawati, Gunawan, A. Y.; Hertadi, R.; Sidarto, K. A.
2015-03-01
Regulation of fluxes in a metabolic system aims to enhance the production rates of biotechnologically important compounds. Regulation is held via modification the cellular activities of a metabolic system. In this study, we present a metabolic analysis of ethanol fermentation process of a yeast cell in terms of continuous culture scheme. The metabolic regulation is based on the kinetic formulation in combination with metabolic control analysis to indicate the key enzymes which can be modified to enhance ethanol production. The model is used to calculate the intracellular fluxes in the central metabolism of the yeast cell. Optimal control is then applied to the kinetic model to find the optimal regulation for the fermentation system. The sensitivity results show that there are external and internal control parameters which are adjusted in enhancing ethanol production. As an external control parameter, glucose supply should be chosen in appropriate way such that the optimal ethanol production can be achieved. For the internal control parameter, we find three enzymes as regulation targets namely acetaldehyde dehydrogenase, pyruvate decarboxylase, and alcohol dehydrogenase which reside in the acetaldehyde branch. Among the three enzymes, however, only acetaldehyde dehydrogenase has a significant effect to obtain optimal ethanol production efficiently.
Piezoelectric MEMS resonators for monitoring grape must fermentation
NASA Astrophysics Data System (ADS)
Toledo, J.; Jiménez-Márquez, F.; Úbeda, J.; Ruiz-Díez, V.; Pfusterschmied, G.; Schmid, U.; Sánchez-Rojas, J. L.
2016-10-01
The traditional procedure followed by winemakers for monitoring grape must fermentation is not automated, has not enough accuracy or has only been tested in discrete must samples. In order to contribute to the automation and improvement of the wine fermentation process, we have designed an AlN-based piezoelectric microresonator, serving as a density sensor and being excited in the 4th-order roof tile-shaped vibration mode. Furthermore, conditioning circuits were designed to convert the one-port impedance of the resonator into a resonant two-port transfer function. This allowed us to design a Phase Locked Loop-based oscillator circuit, implemented with a commercial lock-in amplifier with an oscillation frequency determined by the vibrating mode. We were capable of measuring the fermentation kinetics by both tracking the resonance frequency and by determining the quality factor measurements of the microresonator. Moreover, the resonator was calibrated with an artificial model solution of grape must and then applied for the monitoring of real grape must fermentation. Our results demonstrate the high potential of MEMS resonators to detect the decrease in sugar and the increase in ethanol concentrations during the grape must fermentation with a resolution of 100 μg/ml and a sensitivity of 0.16 Hz/μg/ml as upper limits.
Schellekens, RCA; Olsder, GG; Langenberg, SMCH; Boer, T; Woerdenbag, HJ; Frijlink, HW; Kosterink, JGW; Stellaard, F
2009-01-01
Background and purpose: 13C-urea may be a suitable marker to assess the in vivo fate of colon-targeted dosage forms given by mouth. We postulated that release in the colon (urease-rich segment) of 13C-urea from colon-targeted capsules would lead to fermentation of 13C-urea by bacterial ureases into 13CO2. Subsequent absorption into the blood and circulation would lead to detectable 13C (as 13CO2) in breath. If, however, release of 13C-urea occurred in the small intestine (urease-poor segment), we expected detectable 13C (as 13C-urea) in blood but no breath 13C (as 13CO2). The differential kinetics of 13C-urea could thus potentially describe both release kinetics and indicate the gastrointestinal segment of release. Experimental approach: The in vivo study consisted of three experiments, during which the same group of four volunteers participated. Key results: The kinetic model was internally valid. The appearance of 13C-in breath CO2 (Ffermented) and the appearance of 13C in blood as 13C-urea (Fnot fermented) show a high inverse correlation (Pearson's r=−0.981, P= 0.06). The total recovery of 13C (Ffermented+Fnot fermented) averaged 99%, indicating complete recovery of the administered 13C via breath and blood. 13CO2 exhalation was observed in all subjects. This indicates that 13C-urea was available in urease-rich segments, such as the caecum or colon. Conclusions and implications: In this proof-of-concept study, 13C-urea was able to provide information on both the release kinetics of a colon-targeted oral dosage form and the gastrointestinal segment where it was released. PMID:19732063
González-Sáiz, J M; Esteban-Díez, I; Sánchez-Gallardo, C; Pizarro, C
2008-08-01
Wastes and by-products of the onion-processing industry pose an increasing disposal and environmental problem and represent a loss of valuable sources of nutrients. The present study focused on the production of vinegar from worthless onions as a potential valorisation route which could provide a viable solution to multiple disposal and environmental problems, simultaneously offering the possibility of converting waste materials into a useful food-grade product and of exploiting the unique properties and health benefits of onions. This study deals specifically with the second and definitive step of the onion vinegar production process: the efficient production of vinegar from onion waste by transforming onion ethanol, previously produced by alcoholic fermentation, into acetic acid via acetic fermentation. Near-infrared spectroscopy (NIRS), coupled with multivariate calibration methods, has been used to monitor the concentrations of both substrates and products in acetic fermentation. Separate partial least squares (PLS) regression models, correlating NIR spectral data of fermentation samples with each kinetic parameter studied, were developed. Wavelength selection was also performed applying the iterative predictor weighting-PLS (IPW-PLS) method in order to only consider significant spectral features in each model development to improve the quality of the final models constructed. Biomass, substrate (ethanol) and product (acetic acid) concentration were predicted in the acetic fermentation of onion alcohol with high accuracy using IPW-PLS models with a root-mean-square error of the residuals in external prediction (RMSEP) lower than 2.5% for both ethanol and acetic acid, and an RMSEP of 6.1% for total biomass concentration (a very satisfactory result considering the relatively low precision and accuracy associated with the reference method used for determining the latter). Thus, the simple and reliable calibration models proposed in this study suggest that they could be implemented in routine applications to monitor and predict the key species involved in the acetic fermentation of onion alcohol, allowing the onion vinegar production process to be controlled in real time.
USDA-ARS?s Scientific Manuscript database
An effective means of relieving the toxicity of furan aldehydes, furfural (FFA) and 5-hydroxymethylfurfural (HMF), on fermenting organisms is essential for achieving efficient fermentation of lignocellulosic biomass to ethanol and other products. Ari1p, an aldehyde reductase from Saccharomyces cerev...
Deed, Rebecca C.; Fedrizzi, Bruno; Gardner, Richard C.
2017-01-01
Low fermentation temperatures are of importance to food and beverage industries working with Saccharomyces cerevisiae. Therefore, the identification of genes demonstrating a positive impact on fermentation kinetics is of significant interest. A set of 121 mapped F1 progeny, derived from a cross between haploid strains BY4716 (a derivative of the laboratory yeast S288C) and wine yeast RM11-1a, were fermented in New Zealand Sauvignon Blanc grape juice at 12.5°. Analyses of five key fermentation kinetic parameters among the F1 progeny identified a quantitative trait locus (QTL) on chromosome I with a significant degree of linkage to maximal fermentation rate (Vmax) at low temperature. Independent deletions of two candidate genes within the region, FLO1 and SWH1, were constructed in the parental strains (with S288C representing BY4716). Fermentation of wild-type and deletion strains at 12.5 and 25° confirmed that the genetic linkage to Vmax corresponds to the S288C version of the FLO1 allele, as the absence of this allele reduced Vmax by ∼50% at 12.5°, but not at 25°. Reciprocal hemizygosity analysis (RHA) between S288C and RM11-1a FLO1 alleles did not confirm the prediction that the S288C version of FLO1 was promoting more rapid fermentation in the opposing strain background, suggesting that the positive effect on Vmax derived from S288C FLO1 may only provide an advantage in haploids, or is dependent on strain-specific cis or trans effects. This research adds to the growing body of evidence demonstrating the role of FLO1 in providing stress tolerance to S. cerevisiae during fermentation. PMID:28143947
Vecino, X; Devesa-Rey, R; Cruz, J M; Moldes, A B
2013-10-15
This study analyzes the kinetics of sediment sorption on two chemical surfactants (Tween 20 and SDS) and a biotechnologically produced surfactant (obtained from Lactobacillus pentosus). Biosurfactants were produced by fermentation of hemicellulosic sugars from vineyard pruning waste supplied as a substrate to L. pentosus. Results obtained showed that almost no SDS was adsorbed onto the sediments, whereas Tween 20 and biosurfactants from L. pentosus were absorbed after a few minutes. Kinetic models revealed that adsorption of surfactant onto riverbed sediments is governed not only by an intra-particle diffusion model (evaluated by the Weber and Morris model), but also by surface reaction models (evaluated by first, second, third order equations and Elovich equation), showing the best fit when employing the Elovich model. The adsorption properties showed by biosurfactant from L. pentosus onto sediments present it as a potential foaming agent in froth flotation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sirohi, S.K.; Goel, N.; Pandey, P.
2012-01-01
The present study was carried out to evaluate the effect of methanolic extracts of three plants, mehandi (Lawsonia inermis), jaiphal (Myristica fragrans) and green chili (Capsicum annuum) on methanogenesis, rumen fermentation and fermentation kinetic parameters by in vitro gas production techniques. Single dose of each plant extract (1 ml / 30 ml buffered rumen fluid) and two sorghum fodder containing diets (high and low fiber diets) were used for evaluating the effect on methanogenesis and rumen fermentation pattern, while sequential incubations (0, 1, 2, 3, 6 9, 12, 24, 36, 48, 60, 72 and 96 h) were carried out for gas production kinetics. Results showed that methane production was reduced, ammonia nitrogen was increased significantly, while no significant effect was found on pH and protozoal population following addition of different plant extracts in both diets except mehandi. Green chili significantly reduced digestibility of dry matter, total fatty acid and acetate concentration at incubation with sorghum based high and low fiber diets. Among all treatments, green chili increased potential gas production, while jaiphal decreased the gas production rate constant significantly. The present results demonstrate that methanolic extracts of different plants are promising rumen modifying agents. They have the potential to modulate the methane production, potential gas production, gas production rate constant, dry matter digestibility and microbial biomass synthesis. PMID:26623296
Sirohi, S K; Goel, N; Pandey, P
2012-01-01
The present study was carried out to evaluate the effect of methanolic extracts of three plants, mehandi (Lawsonia inermis), jaiphal (Myristica fragrans) and green chili (Capsicum annuum) on methanogenesis, rumen fermentation and fermentation kinetic parameters by in vitro gas production techniques. Single dose of each plant extract (1 ml / 30 ml buffered rumen fluid) and two sorghum fodder containing diets (high and low fiber diets) were used for evaluating the effect on methanogenesis and rumen fermentation pattern, while sequential incubations (0, 1, 2, 3, 6 9, 12, 24, 36, 48, 60, 72 and 96 h) were carried out for gas production kinetics. Results showed that methane production was reduced, ammonia nitrogen was increased significantly, while no significant effect was found on pH and protozoal population following addition of different plant extracts in both diets except mehandi. Green chili significantly reduced digestibility of dry matter, total fatty acid and acetate concentration at incubation with sorghum based high and low fiber diets. Among all treatments, green chili increased potential gas production, while jaiphal decreased the gas production rate constant significantly. The present results demonstrate that methanolic extracts of different plants are promising rumen modifying agents. They have the potential to modulate the methane production, potential gas production, gas production rate constant, dry matter digestibility and microbial biomass synthesis.
A review of dark fermentative hydrogen production from biodegradable municipal waste fractions.
De Gioannis, G; Muntoni, A; Polettini, A; Pomi, R
2013-06-01
Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject. Copyright © 2013 Elsevier Ltd. All rights reserved.
de Oliveira, Samuel Conceição; de Castro, Heizir Ferreira; Visconti, Alexandre Eliseu Stourdze; Giudici, Reinaldo
2015-03-01
Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D 1 = D 2 = 0.27-0.95 h(-1)), constant recycle ratio (α = F R /F = 4.0) and a sugar concentration in the feed stream (S 0) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.
Luján-Rhenals, Deivis E; Morawicki, Rubén O; Gbur, Edward E; Ricke, Steven C
2015-07-01
Most of the ethanol currently produced by fermentation is derived from sugar cane, corn, or beets. However, it makes good ecological and economic sense to use the carbohydrates contained in by-products and coproducts of the food processing industry for ethanol production. Soybean meal, a co-product of the production of soybean oil, has a relatively high carbohydrate content that could be a reasonable substrate for ethanol production after fermentable sugars are released via hydrolysis. In this research, the capability of Saccharomyces cerevisiae NRRL Y-2233 and Zymomonas mobilis subsp. mobilis NRRL B-4286 to produce ethanol was evaluated using soybean meal hydrolyzates as substrates for the fermentation. These substrates were produced from the dilute-acid hydrolysis of soybean meal at 135 °C for 45 min with 0, 0.5%, 1.25%, and 2% H2 SO4 and at 120 °C for 30 min with 1.25% H2 SO4 . Kinetic parameters of the fermentation were estimated using the logistic model. Ethanol production using S. cerevisiae was highest with the substrates obtained at 135 °C, 45 min, and 0.5% H2 SO4 and fermented for 8 h, 8 g/L (4 g ethanol/100 g fresh SBM), while Z. mobilis reached its maximum ethanol production, 9.2 g/L (4.6 g ethanol/100 g fresh SBM) in the first 20 h of fermentation with the same hydrolyzate. © 2015 Institute of Food Technologists®
Mechanisms and kinetics of cellulose fermentation for protein production
NASA Technical Reports Server (NTRS)
Dunlap, C. A.
1971-01-01
The development of a process (and ancillary processing and analytical techniques) to produce bacterial single-cell protein of good nutritional quality from waste cellulose is discussed. A fermentation pilot plant and laboratory were developed and have been in operation for about two years. Single-cell protein (SCP) can be produced from sugarcane bagasse--a typical agricultural cellulosic waste. The optimization and understanding of this process and its controlling variables are examined. Both batch and continuous fermentation runs have been made under controlled conditions in the 535 liter pilot plant vessel and in the laboratory 14-liter fermenters.
Phukoetphim, Niphaphat; Salakkam, Apilak; Laopaiboon, Pattana; Laopaiboon, Lakkana
2017-02-10
The aim of this study was to model batch ethanol production from sweet sorghum juice (SSJ), under normal gravity (NG, 160g/L of total sugar) and high gravity (HG, 240g/L of total sugar) conditions with and without nutrient supplementation (9g/L of yeast extract), by Saccharomyces cerevisiae NP 01. Growth and ethanol production increased with increasing initial sugar concentration, and the addition of yeast extract enhanced both cell growth and ethanol production. From the results, either logistic or a modified Gompertz equation could be used to describe yeast growth, depending on information required. Furthermore, the modified Gompertz model was suitable for modeling ethanol production. Both the models fitted the data very well with coefficients of determination exceeding 0.98. The results clearly showed that these models can be employed in the development of ethanol production processes using SSJ under both NG and HG conditions. The models were also shown to be applicable to other ethanol fermentation systems employing pure and mixed sugars as carbon sources. Copyright © 2016 Elsevier B.V. All rights reserved.
Warner, Daniel; Dijkstra, Jan; Hendriks, Wouter H; Pellikaan, Wilbert F
2014-03-30
Knowledge of digesta passage kinetics in ruminants is essential to predict nutrient supply to the animal in relation to optimal animal performance, environmental pollution and animal health. Fractional passage rates (FPR) of feed are widely used in modern feed evaluation systems and mechanistic rumen models, but data on nutrient-specific FPR are scarce. Such models generally rely on conventional external marker techniques, which do not always describe digesta passage kinetics in a satisfactory manner. Here the use of stable isotope-labelled dietary nutrients as a promising novel tool to assess nutrient-specific passage kinetics is discussed. Some major limitations of this technique include a potential marker migration, a poor isotope distribution in the labelled feed and a differential disappearance rate of isotopes upon microbial fermentation in non-steady state conditions. Such limitations can often be circumvented by using intrinsically stable isotope-labelled plant material. Data are limited but indicate that external particulate markers overestimate rumen FPR of plant fibre compared with the internal stable isotope markers. Stable isotopes undergo the same digestive mechanism as the labelled feed components and are thus of particular interest to specifically measure passage kinetics of digestible dietary nutrients. © 2013 Society of Chemical Industry.
Guo, Juanjuan; Zhang, Longtao; Lu, Xu; Zeng, Shaoxiao; Zhang, Yi; Xu, Hui; Zheng, Baodong
2016-11-05
Effective degradation of κ-carrageenan by isolated Thalassospira sp. fjfst-332 is reported for the first time in this paper. It was identified by 16S rDNA sequencing and morphological observation using Transmission Electron Microscopy (TEM). Based on a Plackett-Burman design for significant variables, Box-Behnken experimental design and response surface methodology were used to optimize the culture conditions. Through statistical optimization, the optimum medium components were determined as follows: 2.0 g/L κ-carrageenan, 1.0 g/L yeast extract, 1.0 g/L FOS, 20.0 g/L NaCl, 2.0 g/L NaNO₃, 0.5 g/L MgSO₄·7H₂O, 0.1 g/L K₂HPO₄, and 0.1 g/L CaCl₂. The highest activity exhibited by Thalassospira sp. fjfst-332 was 267 U/mL, which makes it the most vigorous wild bacterium for κ-carrageenan production. In order to guide scaled-up production, two empirical models-the logistic equation and Luedeking-Piretequation-were proposed to predict the strain growth and enzyme production, respectively. Furthermore, we report the fermentation kinetics and every empirical equation of the coefficients (α, β, X ₀, X m and μ m ) for the two models, which could be used to design and optimize industrial processes.
Effects of glucose and oxygen on arginine metabolism by coagulase-negative staphylococci.
Sánchez Mainar, María; Matheuse, Fréderick; De Vuyst, Luc; Leroy, Frédéric
2017-08-01
Coagulase-negative staphylococci (CNS) are not only part of the desirable microbiota of fermented meat products but also commonly inhabit skin and flesh wounds. Their proliferation depends on the versatility to use energy sources and the adaptation to fluctuating environmental parameters. In this study, the conversion of the amino acid arginine by two strains with arginine deiminase (ADI) activity (Staphylococcus carnosus 833 and S. pasteuri αs3-13) and a strain with nitric oxide synthase (NOS) activity (S. haemolyticus G110) was modelled as a function of glucose and oxygen availability. Both factors moderately inhibited the ADI-based conversion kinetics, never leading to full repression. However, for NOS-driven conversion of arginine by S. haemolyticus G110, oxygen was an absolute requirement. When changing from microaerobic conditions to aerobiosis, a switch from homolactic fermentation to a combined formation of lactic acid, acetic acid, and acetoin was found in all cases, after which lactic acid and acetic acid were used as substrates. The kinetic model proposed provided a suitable description of the data of glucose and arginine co-metabolism as a function of oxygen levels and may serve as a tool to further analyse the behaviour of staphylococci in different ecosystems or when applying specific food processing conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Kinetic Modelling of Enzyme Inhibitions in the Central Metabolism of Yeast Cells
NASA Astrophysics Data System (ADS)
Kasbawati; Kalondeng, A.; Aris, N.; Erawaty, N.; Azis, M. I.
2018-03-01
Metabolic regulation plays an important role in the metabolic engineering of a cellular process. It is conducted to improve the productivity of a microbial process by identifying the important regulatory nodes of a metabolic pathway such as fermentation pathway. Regulation of enzymes involved in a particular pathway can be held to improve the productivity of the system. In the central metabolism of yeast cell, some enzymes are known as regulating enzymes that can be inhibited to increase the production of ethanol. In this research we study the kinetic modelling of the enzymes in the central pathway of yeast metabolism by taking into consideration the enzyme inhibition effects to the ethanol production. The existence of positive steady state solution and the stability of the system are also analysed to study the property and dynamical behaviour of the system. One stable steady state of the system is produced if some conditions are fulfilled. The conditions concern to the restriction of the maximum reactions of the enzymes in the pyruvate and acetaldehyde branch points. There exists a certain time of fermentation reaction at which a maximum and a minimum ethanol productions are attained after regulating the system. Optimal ethanol concentration is also produced for a certain initial concentration of inhibitor.
Zheng, Jianqiu; Thornton, Peter; Painter, Scott; Gu, Baohua; Wullschleger, Stan; Graham, David
2018-06-13
This anaerobic carbon decomposition model is developed with explicit representation of fermentation, methanogenesis and iron reduction by combining three well-known modeling approaches developed in different disciplines. A pool-based model to represent upstream carbon transformations and replenishment of DOC pool, a thermodynamically-based model to calculate rate kinetics and biomass growth for methanogenesis and Fe(III) reduction, and a humic ion-binding model for aqueous phase speciation and pH calculation are implemented into the open source geochemical model PHREEQC (V3.0). Installation of PHREEQC is required to run this model.
Flux analysis of the human proximal colon using anaerobic digestion model 1.
Motelica-Wagenaar, Anne Marieke; Nauta, Arjen; van den Heuvel, Ellen G H M; Kleerebezem, Robbert
2014-08-01
The colon can be regarded as an anaerobic digestive compartment within the gastro intestinal tract (GIT). An in silico model simulating the fluxes in the human proximal colon was developed on basis of the anaerobic digestion model 1 (ADM1), which is traditionally used to model waste conversion to biogas. Model calibration was conducted using data from in vitro fermentation of the proximal colon (TIM-2), and, amongst others, supplemented with the bio kinetics of prebiotic galactooligosaccharides (GOS) fermentation. The impact of water and solutes absorption by the host was also included. Hydrolysis constants of carbohydrates and proteins were estimated based on total short chain fatty acids (SCFA) and ammonia production in vitro. Model validation was established using an independent dataset of a different in vitro model: an in vitro three-stage continuous culture system. The in silico model was shown to provide quantitative insight in the microbial community structure in terms of functional groups, and the substrate and product fluxes between these groups as well as the host, as a function of the substrate composition, pH and the solids residence time (SRT). The model confirms the experimental observation that methanogens are washed out at low pH or low SRT-values. The in silico model is proposed as useful tool in the design of experimental setups for in vitro experiments by giving insight in fermentation processes in the proximal human colon. Copyright © 2014. Published by Elsevier Ltd.
Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations.
Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert
2016-01-01
Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard ecosystem, which contains yeasts from different species. The description of this yeast diversity will lead to the selection of native microbiota that can be used to produce quality wines with the characteristics of the Priorat.
Brickwedde, Anja; van den Broek, Marcel; Geertman, Jan-Maarten A.; Magalhães, Frederico; Kuijpers, Niels G. A.; Gibson, Brian; Pronk, Jack T.; Daran, Jean-Marc G.
2017-01-01
The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion (“attenuation”) of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains. PMID:28943864
Brickwedde, Anja; van den Broek, Marcel; Geertman, Jan-Maarten A; Magalhães, Frederico; Kuijpers, Niels G A; Gibson, Brian; Pronk, Jack T; Daran, Jean-Marc G
2017-01-01
The lager brewing yeast Saccharomyces pastorianus , an interspecies hybrid of S. eubayanus and S. cerevisiae , ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14 C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.
Palma, C; Lloret, L; Sepúlveda, L; Contreras, E
2016-01-01
Interest in production of ligninolytic enzymes has been growing over recent years for their use in various applications such as recalcitrant pollutants bioremediation; specifically, versatile peroxidase (VP) presents a great potential due to its catalytic versatility. The proper selection of the fermentation mode and the culture medium should be an imperative to ensure a successful production by an economic and available medium that favors the process viability. VP was produced by solid-state fermentation (SSF) of Pleurotus eryngii, using the agricultural residue banana peel as growth medium; an enzymatic activity of 10,800 U L(-1) (36 U g(-1) of substrate) was detected after 18 days, whereas only 1800 U L(-1) was reached by conventional submerged fermentation (SF) with glucose-based medium. The kinetic parameters were determined by evaluating the H2O2 and Mn(2+) concentration effects on the Mn(3+)-tartrate complex formation. The results indicated that although the H2O2 inhibitory effect was observed for the enzyme produced by both media, the reaction rates for VP obtained by SSF were less impacted. This outcome suggests the presence of substances released from banana peel during the fermentation, which might exhibit a protective effect resulting in an improved kinetic behavior of the enzyme.
Pereira, Gilberto Vinícius de Melo; Miguel, Maria Gabriela da Cruz Pedrozo; Ramos, Cíntia Lacerda; Schwan, Rosane Freitas
2012-08-01
Spontaneous cocoa bean fermentations performed under bench- and pilot-scale conditions were studied using an integrated microbiological approach with culture-dependent and culture-independent techniques, as well as analyses of target metabolites from both cocoa pulp and cotyledons. Both fermentation ecosystems reached equilibrium through a two-phase process, starting with the simultaneous growth of the yeasts (with Saccharomyces cerevisiae as the dominant species) and lactic acid bacteria (LAB) (Lactobacillus fermentum and Lactobacillus plantarum were the dominant species), which were gradually replaced by the acetic acid bacteria (AAB) (Acetobacter tropicalis was the dominant species). In both processes, a sequence of substrate consumption (sucrose, glucose, fructose, and citric acid) and metabolite production kinetics (ethanol, lactic acid, and acetic acid) similar to that of previous, larger-scale fermentation experiments was observed. The technological potential of yeast, LAB, and AAB isolates was evaluated using a polyphasic study that included the measurement of stress-tolerant growth and fermentation kinetic parameters in cocoa pulp media. Overall, strains L. fermentum UFLA CHBE8.12 (citric acid fermenting, lactic acid producing, and tolerant to heat, acid, lactic acid, and ethanol), S. cerevisiae UFLA CHYC7.04 (ethanol producing and tolerant to acid, heat, and ethanol), and Acetobacter tropicalis UFLA CHBE16.01 (ethanol and lactic acid oxidizing, acetic acid producing, and tolerant to acid, heat, acetic acid, and ethanol) were selected to form a cocktail starter culture that should lead to better-controlled and more-reliable cocoa bean fermentation processes.
Pereira, Gilberto Vinícius de Melo; Miguel, Maria Gabriela da Cruz Pedrozo; Ramos, Cíntia Lacerda
2012-01-01
Spontaneous cocoa bean fermentations performed under bench- and pilot-scale conditions were studied using an integrated microbiological approach with culture-dependent and culture-independent techniques, as well as analyses of target metabolites from both cocoa pulp and cotyledons. Both fermentation ecosystems reached equilibrium through a two-phase process, starting with the simultaneous growth of the yeasts (with Saccharomyces cerevisiae as the dominant species) and lactic acid bacteria (LAB) (Lactobacillus fermentum and Lactobacillus plantarum were the dominant species), which were gradually replaced by the acetic acid bacteria (AAB) (Acetobacter tropicalis was the dominant species). In both processes, a sequence of substrate consumption (sucrose, glucose, fructose, and citric acid) and metabolite production kinetics (ethanol, lactic acid, and acetic acid) similar to that of previous, larger-scale fermentation experiments was observed. The technological potential of yeast, LAB, and AAB isolates was evaluated using a polyphasic study that included the measurement of stress-tolerant growth and fermentation kinetic parameters in cocoa pulp media. Overall, strains L. fermentum UFLA CHBE8.12 (citric acid fermenting, lactic acid producing, and tolerant to heat, acid, lactic acid, and ethanol), S. cerevisiae UFLA CHYC7.04 (ethanol producing and tolerant to acid, heat, and ethanol), and Acetobacter tropicalis UFLA CHBE16.01 (ethanol and lactic acid oxidizing, acetic acid producing, and tolerant to acid, heat, acetic acid, and ethanol) were selected to form a cocktail starter culture that should lead to better-controlled and more-reliable cocoa bean fermentation processes. PMID:22636007
Yu, Miao; Wu, Chuanfu; Wang, Qunhui; Sun, Xiaohong; Ren, Yuanyuan; Li, Yu-You
2018-01-01
This study investigates the effects of ethanol prefermentation (EP) on methane fermentation. Yeast was added to the substrate for EP in the sequencing batch methane fermentation of food waste. An Illumina MiSeq high-throughput sequencing system was used to analyze changes in the microbial community. Methane production in the EP group (254mL/g VS) was higher than in the control group (35mL/g VS) because EP not only increased the buffering capacity of the system, but also increased hydrolytic acidification. More carbon source was converted to ethanol in the EP group than in the control group, and neutral ethanol could be converted continuously to acetic acid, which promoted the growth of Methanobacterium and Methanosarcina. As a result, the relative abundance of methane-producing bacteria was significantly higher than that of the control group. Kinetic modeling indicated that the EP group had a higher hydrolysis efficiency and shorter lag phase. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bacteriocins from lactic acid bacteria: production, purification, and food applications.
De Vuyst, Luc; Leroy, Frédéric
2007-01-01
In fermented foods, lactic acid bacteria (LAB) display numerous antimicrobial activities. This is mainly due to the production of organic acids, but also of other compounds, such as bacteriocins and antifungal peptides. Several bacteriocins with industrial potential have been purified and characterized. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail through mathematical modeling and positive predictive microbiology. Application of bacteriocin-producing starter cultures in sourdough (to increase competitiveness), in fermented sausage (anti-listerial effect), and in cheese (anti-listerial and anti-clostridial effects), have been studied during in vitro laboratory fermentations as well as on pilot-scale level. The highly promising results of these studies underline the important role that functional, bacteriocinogenic LAB strains may play in the food industry as starter cultures, co-cultures, or bioprotective cultures, to improve food quality and safety. In addition, antimicrobial production by probiotic LAB might play a role during in vivo interactions occurring in the human gastrointestinal tract, hence contributing to gut health.
Bosch, G; Wrigglesworth, D J; Cone, J W; Pellikaan, W F; Hendriks, W H
2013-01-01
This study investigated the effect of chilling and freezing (for 24 h) canine feces on in vitro gas production kinetics and fermentation end product profiles from carbohydrate-rich (in vitro run 1) and protein-rich (in vitro run 2) substrates. Feces were collected from 3 adult retriever-type dogs fed a canned diet for at least 2 wk. Each fecal sample was divided into 3 portions: 1 portion was used immediately as an inoculum (fresh) and the other 2 portions were used after either chilling to 5°C for 30 min and storage in crushed ice for 23.5 h (chilling) or freezing to -20°C for 30 min and storage in a prefrozen (-20°C) container for 23.5 h (freezing). The medium solution for run 1 contained N whereas that for run 2 was N free. Substrates included fructooligosaccharide (FOS), sugar beet pulp, and wheat middlings in run 1 and soybean meal, poultry meat meal, and feather meal in run 2. Gas production kinetics were calculated from cumulative gas production data measured for 72 h. After incubation, fermentation liquids were analyzed for short-chain fatty acids, NH3, and aromatic compounds. For both in vitro runs, chilling feces did not affect gas production kinetics and end product profiles of substrates compared with inocula from fresh feces. Freezing feces decreased the maximum rate of gas production in phase 2 for FOS (P<0.001) and across substrates increased gas produced (P≤0.005) and time of maximum gas production in phase 2 (P<0.001). Furthermore, compared with fresh fecal inocula, inocula from frozen feces resulted in increased overall indole concentrations in run 1 (P=0.006) and indole concentrations from soybean meal and poultry meat meal in run 2 (P<0.001). In run 2, phenol concentrations were greater (P=0.015) for frozen feces than for fresh feces (P=0.015). In conclusion, freezing canine feces for 24 h slightly altered fermentative characteristics of fecal inoculum whereas chilling feces in crushed ice for 24 h maintained fermentative characteristics. Chilling feces in crushed ice is a practical method to preserve feces during transport between laboratories within 24 h for in vitro fermentation studies evaluating dietary ingredients.
Numerical prediction of kinetic model for enzymatic hydrolysis of cellulose using DAE-QMOM approach
NASA Astrophysics Data System (ADS)
Jamil, N. M.; Wang, Q.
2016-06-01
Bioethanol production from lignocellulosic biomass consists of three fundamental processes; pre-treatment, enzymatic hydrolysis, and fermentation. In enzymatic hydrolysis phase, the enzymes break the cellulose chains into sugar in the form of cellobiose or glucose. A currently proposed kinetic model for enzymatic hydrolysis of cellulose that uses population balance equation (PBE) mechanism was studied. The complexity of the model due to integrodifferential equations makes it difficult to find the analytical solution. Therefore, we solved the full model of PBE numerically by using DAE-QMOM approach. The computation was carried out using MATLAB software. The numerical results were compared to the asymptotic solution developed in the author's previous paper and the results of Griggs et al. Besides confirming the findings were consistent with those references, some significant characteristics were also captured. The PBE model for enzymatic hydrolysis process can be solved using DAE-QMOM method. Also, an improved understanding of the physical insights of the model was achieved.
Hafid, Halimatun Saadiah; Nor 'Aini, Abdul Rahman; Mokhtar, Mohd Noriznan; Talib, Ahmad Tarmezee; Baharuddin, Azhari Samsu; Umi Kalsom, Md Shah
2017-09-01
In Malaysia, the amount of food waste produced is estimated at approximately 70% of total municipal solid waste generated and characterised by high amount of carbohydrate polymers such as starch, cellulose, and sugars. Considering the beneficial organic fraction contained, its utilization as an alternative substrate specifically for bioethanol production has receiving more attention. However, the sustainable production of bioethanol from food waste is linked to the efficient pretreatment needed for higher production of fermentable sugar prior to fermentation. In this work, a modified sequential acid-enzymatic hydrolysis process has been developed to produce high concentration of fermentable sugars; glucose, sucrose, fructose and maltose. The process started with hydrothermal and dilute acid pretreatment by hydrochloric acid (HCl) and sulphuric acid (H 2 SO 4 ) which aim to degrade larger molecules of polysaccharide before accessible for further steps of enzymatic hydrolysis by glucoamylase. A kinetic model is proposed to perform an optimal hydrolysis for obtaining high fermentable sugars. The results suggested that a significant increase in fermentable sugar production (2.04-folds) with conversion efficiency of 86.8% was observed via sequential acid-enzymatic pretreatment as compared to dilute acid pretreatment (∼42.4% conversion efficiency). The bioethanol production by Saccharomyces cerevisiae utilizing fermentable sugar obtained shows ethanol yield of 0.42g/g with conversion efficiency of 85.38% based on the theoretical yield was achieved. The finding indicates that food waste can be considered as a promising substrate for bioethanol production. Copyright © 2017. Published by Elsevier Ltd.
Rimaux, T; Vrancken, G; Pothakos, V; Maes, D; De Vuyst, L; Leroy, F
2011-05-01
Lactobacillus sakei is frequently present as the dominant lactic acid bacterium in spontaneously fermented meat products, demonstrating its competitiveness in and adaptation to the meat environment. Since meat is generally low in carbohydrate content, the ability to utilize other energy sources to generate ATP, such as arginine via the arginine deiminase (ADI) pathway, represents a competitive benefit. In this study, the kinetics of growth and arginine conversion capabilities of Lb. sakei CTC 494 were analyzed, and a model was set up to describe the influence of pH on growth and arginine conversion. A series of in vitro batch fermentations using reconstituted MRS medium at different constant pH values (pH 4.50-pH 7.75) was performed. Arginine conversion through the ADI pathway, which was activated from the stationary growth phase on, resulted in the production of both citrulline and ornithine for all pH conditions tested. However, the pattern and the ratio of the end-products of the ADI pathway were influenced by pH. For certain pH values (between pH 5.0 and 6.5), a further conversion of citrulline into ornithine was found when all arginine was depleted. Characterization of responses of the ADI pathway in Lb. sakei CTC 494 to environmental conditions will allow a better understanding and control of this important starter culture in meat fermentations. Copyright © 2010 Elsevier Ltd. All rights reserved.
Dimitrovski, Darko; Velickova, Elena; Dimitrovska, Maja; Langerholc, Tomaz; Winkelhausen, Eleonora
2016-01-01
A probiotic strain Lactobacillus plantarum PCS26 was used to ferment Jerusalem artichoke juice. Growth kinetics of the bacterial strain was followed during juice fermentation both in flask and in laboratory fermentor. Jerusalem artichoke showed to be an excellent source of nutrients for L. plantarum PCS26 growth. The culture grew very well reaching more than 10(10) cfu/ml in just 12 h. The pH changed from the initial 6.5 to 4.6 at the end of fermentation. The culture hydrolyzed fructooligosaccharides present in the Jerusalem artichoke juice, yielding fructose which was presumably consumed along with the malic acid as energy and carbon source. Lactic acid was the main metabolite produced in concentration of 4.6 g/L. Acetic and succinic acid were also identified. Sensory evaluation of the fermented Jerusalem artichoke juice and its mixtures with blueberry juice showed that the 50/50 % v/v mixture would be very well accepted by the consumers. Above 80 % of the panelists would buy this drink, and over 60 % were willing to pay more for it. Culture survivability in the fermented juices during storage at 4-7 °C was assayed by the Weibullian model. The product shelf-life was extended from 19.70 ± 0.50 days of pure Jerusalem artichoke juice to 35.7 ± 6.4 days of the mixture containing 30 % blueberry juice.
A Thermodynamically-consistent FBA-based Approach to Biogeochemical Reaction Modeling
NASA Astrophysics Data System (ADS)
Shapiro, B.; Jin, Q.
2015-12-01
Microbial rates are critical to understanding biogeochemical processes in natural environments. Recently, flux balance analysis (FBA) has been applied to predict microbial rates in aquifers and other settings. FBA is a genome-scale constraint-based modeling approach that computes metabolic rates and other phenotypes of microorganisms. This approach requires a prior knowledge of substrate uptake rates, which is not available for most natural microbes. Here we propose to constrain substrate uptake rates on the basis of microbial kinetics. Specifically, we calculate rates of respiration (and fermentation) using a revised Monod equation; this equation accounts for both the kinetics and thermodynamics of microbial catabolism. Substrate uptake rates are then computed from the rates of respiration, and applied to FBA to predict rates of microbial growth. We implemented this method by linking two software tools, PHREEQC and COBRA Toolbox. We applied this method to acetotrophic methanogenesis by Methanosarcina barkeri, and compared the simulation results to previous laboratory observations. The new method constrains acetate uptake by accounting for the kinetics and thermodynamics of methanogenesis, and predicted well the observations of previous experiments. In comparison, traditional methods of dynamic-FBA constrain acetate uptake on the basis of enzyme kinetics, and failed to reproduce the experimental results. These results show that microbial rate laws may provide a better constraint than enzyme kinetics for applying FBA to biogeochemical reaction modeling.
Lima-Costa, Maria Emília; Tavares, Catarina; Raposo, Sara; Rodrigues, Brígida; Peinado, José M
2012-05-01
The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.
Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc
2010-01-01
The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes. PMID:20889778
Lefeber, Timothy; Janssens, Maarten; Camu, Nicholas; De Vuyst, Luc
2010-12-01
The composition of cocoa pulp simulation media (PSM) was optimized with species-specific strains of lactic acid bacteria (PSM-LAB) and acetic acid bacteria (PSM-AAB). Also, laboratory fermentations were carried out in PSM to investigate growth and metabolite production of strains of Lactobacillus plantarum and Lactobacillus fermentum and of Acetobacter pasteurianus isolated from Ghanaian cocoa bean heap fermentations, in view of the development of a defined starter culture. In a first step, a selection of strains was made out of a pool of strains of these LAB and AAB species, obtained from previous studies, based on their fermentation kinetics in PSM. Also, various concentrations of citric acid in the presence of glucose and/or fructose (PSM-LAB) and of lactic acid in the presence of ethanol (PSM-AAB) were tested. These data could explain the competitiveness of particular cocoa-specific strains, namely, L. plantarum 80 (homolactic and acid tolerant), L. fermentum 222 (heterolactic, citric acid fermenting, mannitol producing, and less acid tolerant), and A. pasteurianus 386B (ethanol and lactic acid oxidizing, acetic acid overoxidizing, acid tolerant, and moderately heat tolerant), during the natural cocoa bean fermentation process. For instance, it turned out that the capacity to use citric acid, which was exhibited by L. fermentum 222, is of the utmost importance. Also, the formation of mannitol was dependent not only on the LAB strain but also on environmental conditions. A mixture of L. plantarum 80, L. fermentum 222, and A. pasteurianus 386B can now be considered a mixed-strain starter culture for better controlled and more reliable cocoa bean fermentation processes.
Divakar, K; Suryia Prabha, M; Nandhinidevi, G; Gautam, P
2017-04-21
The simultaneous production of intracellular esterase and extracellular protease from the strain Lysinibacillus fusiformis AU01 was studied in detail. The production was performed both under batch and fed-batch modes. The maximum yield of intracellular esterase and protease was obtained under full oxygen saturation at the beginning of the fermentation. The data were fitted to the Luedeking-Piret model and it was shown that the enzyme (both esterase and protease) production was growth associated. A decrease in intracellular esterase and increase in the extracellular esterase were observed during late stationary phase. The appearance of intracellular proteins in extracellular media and decrease in viable cell count and biomass during late stationary phase confirmed that the presence of extracellular esterase is due to cell lysis. Even though the fed-batch fermentation with different feeding strategies showed improved productivity, feeding yeast extract under DO-stat fermentation conditions showed highest intracellular esterase and protease production. Under DO-stat fed-batch cultivation, maximum intracellular esterase activity of 820 × 10 3 U/L and extracellular protease activity of 172 × 10 3 U/L were obtained at the 16th hr. Intracellular esterase and extracellular protease production were increased fivefold and fourfold, respectively, when compared to batch fermentation performed under shake flask conditions.
Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations
Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert
2016-01-01
Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard ecosystem, which contains yeasts from different species. The description of this yeast diversity will lead to the selection of native microbiota that can be used to produce quality wines with the characteristics of the Priorat. PMID:27379060
Zhao, Xinhe; Kasbi, Mayssa; Chen, Jingkui; Peres, Sabine; Jolicoeur, Mario
2017-12-01
The present study reveals that supplementing sodium acetate (NaAc) strongly stimulates riboflavin production in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824 with xylose as carbon source. Riboflavin production increased from undetectable concentrations to ∼0.2 g L -1 (0.53 mM) when supplementing 60 mM NaAc. Of interest, solvents production and biomass yield were also promoted with fivefold acetone, 2.6-fold butanol, and 2.4-fold biomass adding NaAc. A kinetic metabolic model, developed to simulate ABE biosystem, with riboflavin production, revealed from a dynamic metabolic flux analysis (dMFA) simultaneous increase of riboflavin (ribA) and GTP (precursor of riboflavin) (PurM) synthesis flux rates under NaAc supplementation. The model includes 23 fluxes, 24 metabolites, and 72 kinetic parameters. It also suggested that NaAc condition has first stimulated the accumulation of intracellular metabolite intermediates during the acidogenic phase, which have then fed the solventogenic phase leading to increased ABE production. In addition, NaAc resulted in higher intracellular levels of NADH during the whole culture. Moreover, lower GTP-to-adenosine phosphates (ATP, ADP, AMP) ratio under NaAc supplemented condition suggests that GTP may have a minor role in the cell energetic metabolism compared to its contribution to riboflavin synthesis. © 2017 Wiley Periodicals, Inc.
Favier, Marion; Bilhère, Eric; Lonvaud-Funel, Aline; Moine, Virginie; Lucas, Patrick M.
2012-01-01
Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb) and pOENI-1v2 (21.9-kb). Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye). Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that possibly contribute to the technological performance of strains in wine. PMID:23139835
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dash, Satyakam; Khodayari, Ali; Zhou, Jilai
Background. Clostridium thermocellum is a Gram-positive anaerobe with the ability to hydrolyze and metabolize cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At present, metabolic engineering in C. thermocellum is hindered due to the incomplete description of its metabolic repertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes. Results. In this effort, we first update a second-generation genome-scale metabolic model (iCth446) for C. thermocellum by correcting cofactor dependencies, restoring elemental and charge balances,more » and updating GAM and NGAM values to improve phenotype predictions. The iCth446 model is next used as a scaffold to develop a core kinetic model (k-ctherm118) of the C. thermocellum central metabolism using the Ensemble Modeling (EM) paradigm. Model parameterization is carried out by simultaneously imposing fermentation yield data in lactate, malate, acetate, and hydrogen production pathways for 19 measured metabolites spanning a library of 19 distinct single and multiple gene knockout mutants along with 18 intracellular metabolite concentration data for a Δgldh mutant and ten experimentally measured Michaelis–Menten kinetic parameters. Conclusions. The k-ctherm118 model captures significant metabolic changes caused by (1) nitrogen limitation leading to increased yields for lactate, pyruvate, and amino acids, and (2) ethanol stress causing an increase in intracellular sugar phosphate concentrations (~1.5-fold) due to upregulation of cofactor pools. Robustness analysis of k-ctherm118 alludes to the presence of a secondary activity of ketol-acid reductoisomerase and possible regulation by valine and/or leucine pool levels. In addition, cross-validation and robustness analysis allude to missing elements in k-ctherm118 and suggest additional experiments to improve kinetic model prediction fidelity. Overall, the study quantitatively assesses the advantages of EM-based kinetic modeling towards improved prediction of C. thermocellum metabolism and develops a predictive kinetic model which can be used to design biofuel-overproducing strains.« less
Dash, Satyakam; Khodayari, Ali; Zhou, Jilai; ...
2017-05-02
Background. Clostridium thermocellum is a Gram-positive anaerobe with the ability to hydrolyze and metabolize cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At present, metabolic engineering in C. thermocellum is hindered due to the incomplete description of its metabolic repertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes. Results. In this effort, we first update a second-generation genome-scale metabolic model (iCth446) for C. thermocellum by correcting cofactor dependencies, restoring elemental and charge balances,more » and updating GAM and NGAM values to improve phenotype predictions. The iCth446 model is next used as a scaffold to develop a core kinetic model (k-ctherm118) of the C. thermocellum central metabolism using the Ensemble Modeling (EM) paradigm. Model parameterization is carried out by simultaneously imposing fermentation yield data in lactate, malate, acetate, and hydrogen production pathways for 19 measured metabolites spanning a library of 19 distinct single and multiple gene knockout mutants along with 18 intracellular metabolite concentration data for a Δgldh mutant and ten experimentally measured Michaelis–Menten kinetic parameters. Conclusions. The k-ctherm118 model captures significant metabolic changes caused by (1) nitrogen limitation leading to increased yields for lactate, pyruvate, and amino acids, and (2) ethanol stress causing an increase in intracellular sugar phosphate concentrations (~1.5-fold) due to upregulation of cofactor pools. Robustness analysis of k-ctherm118 alludes to the presence of a secondary activity of ketol-acid reductoisomerase and possible regulation by valine and/or leucine pool levels. In addition, cross-validation and robustness analysis allude to missing elements in k-ctherm118 and suggest additional experiments to improve kinetic model prediction fidelity. Overall, the study quantitatively assesses the advantages of EM-based kinetic modeling towards improved prediction of C. thermocellum metabolism and develops a predictive kinetic model which can be used to design biofuel-overproducing strains.« less
Zhang, Yongming; Kennedy, John F; Knill, Charles J; Panesar, Parmjit S
2006-01-01
Yeast cells were immobilized by absorption onto porous ceramic support and evaluated for continuous beer primary fermentation using a bioreactor in comparison to yeast cells immobilized by entrapment in calcium alginate gel. The effects of temperature and flow rate as a function of reaction/fermentation time on fermentation rate were investigated. The fermentation reaction (in terms of loss of total soluble solids in the beer wort as a function of time) was first-order with half-lifes in the range of approximately 9-11 hours at approximately 10-12 degrees C at beer wort linear flow rates of approximately 0.8-1.6 cm/minute for ceramic support, compared with approximately 16 hours for Ca-alginate gel, the former support matrix being more efficient and demonstrating greater potential for future commercial application.
Ki, Kwang Seok; Park, Su Bum; Lim, Dong Hyun; Seo, Seongwon
2017-03-01
The use of locally produced forage (LPF) in cattle production has economic and environmental advantages over imported forage. The objective of this study was to characterize the nutritional value of LPF commonly used in Korea. Differences in ruminal fermentation characteristics were also examined for the LPF species commonly produced from two major production regions: Chungcheong and Jeolla. Ten LPF (five from each of the two regions) and six of the most widely used imported forages originating from North America were obtained at least three times throughout a year. Each forage species was pooled and analyzed for nutrient content using detailed chemical analysis. Ruminal fermentation characteristics were also determined by in vitro anaerobic incubations using strained rumen fluid for 0, 3, 6, 12, 24, and 48 h. At each incubation time, total gas, pH, ammonia, volatile fatty acid (VFA) concentrations, and neutral detergent fiber digestibility were measured. By fitting an exponential model, gas production kinetics were obtained. Significant differences were found in the non-fiber carbohydrate (NFC) content among the forage species and the regions (p<0.01). No nutrient, other than NFC, showed significant differences among the regions. Crude protein, NFC, and acid detergent lignin significantly differed by forage species. The amount of acid detergent insoluble protein tended to differ among the forages. The forages produced in Chungcheong had a higher amount of NFC than that in Jeolla (p<0.05). There were differences in ruminal fermentation of LPF between the two regions and interactions between regions and forage species were also significant (p<0.05). The pH following a 48-h ruminal fermentation was lower in the forages from Chungcheong than from Jeolla (p<0.01), and total VFA concentration was higher in Chungcheong than in Jeolla (p = 0.05). This implies that fermentation was more active with the forages from Chungcheong than from Jeolla. Analysis of gas production profiles showed the rate of fermentation differed among forage species (p<0.05). The results of the present study showed that the nutritional values of some LPF (i.e., corn silage and Italian ryegrass) are comparable to those of imported forages widely used in Korea. This study also indicated that the nutritional value of LPF differs by origin, as well as by forage species. Detailed analyses of nutrient composition and digestion kinetics of LPF should be routinely employed to evaluate the correct nutritional value of LPF and to increase their use in the field.
Ki, Kwang Seok; Park, Su Bum; Lim, Dong Hyun; Seo, Seongwon
2017-01-01
Objective The use of locally produced forage (LPF) in cattle production has economic and environmental advantages over imported forage. The objective of this study was to characterize the nutritional value of LPF commonly used in Korea. Differences in ruminal fermentation characteristics were also examined for the LPF species commonly produced from two major production regions: Chungcheong and Jeolla. Methods Ten LPF (five from each of the two regions) and six of the most widely used imported forages originating from North America were obtained at least three times throughout a year. Each forage species was pooled and analyzed for nutrient content using detailed chemical analysis. Ruminal fermentation characteristics were also determined by in vitro anaerobic incubations using strained rumen fluid for 0, 3, 6, 12, 24, and 48 h. At each incubation time, total gas, pH, ammonia, volatile fatty acid (VFA) concentrations, and neutral detergent fiber digestibility were measured. By fitting an exponential model, gas production kinetics were obtained. Results Significant differences were found in the non-fiber carbohydrate (NFC) content among the forage species and the regions (p<0.01). No nutrient, other than NFC, showed significant differences among the regions. Crude protein, NFC, and acid detergent lignin significantly differed by forage species. The amount of acid detergent insoluble protein tended to differ among the forages. The forages produced in Chungcheong had a higher amount of NFC than that in Jeolla (p<0.05). There were differences in ruminal fermentation of LPF between the two regions and interactions between regions and forage species were also significant (p<0.05). The pH following a 48-h ruminal fermentation was lower in the forages from Chungcheong than from Jeolla (p<0.01), and total VFA concentration was higher in Chungcheong than in Jeolla (p = 0.05). This implies that fermentation was more active with the forages from Chungcheong than from Jeolla. Analysis of gas production profiles showed the rate of fermentation differed among forage species (p<0.05). Conclusion The results of the present study showed that the nutritional values of some LPF (i.e., corn silage and Italian ryegrass) are comparable to those of imported forages widely used in Korea. This study also indicated that the nutritional value of LPF differs by origin, as well as by forage species. Detailed analyses of nutrient composition and digestion kinetics of LPF should be routinely employed to evaluate the correct nutritional value of LPF and to increase their use in the field. PMID:28002936
Li, Xiang; Zhang, Wenjuan; Ma, Li; Lai, Sizhou; Zhao, Shu; Chen, Yinguang; Liu, Yanan
2016-11-01
This study investigated the feasibility of improved production propionic acid-enriched volatile fatty acid (VFA) from high concentration (Cs) of food waste and waste activated sludge (WAS) via lactic acid pathway by using of Propionibacterium acidipropionici. It was observed that production of l-lactate overwhelmed to d-lactate at first stage, which improved from 3.21 to 35.45gCOD/L with increase of substrate Cs. However, kinetic model analysis indicated that P. acidipropionici growth rate μmax was decreased with increase of l-lactate concentration, which explained second stage free cell fermentation of propionic acid was inhibited when fed by first stage liquid from R-40, R-55 and R-70. Then, the fibrous bed bioreactor was employed to eliminate the feed inhibition. The maximal percentage of propionic acid (68.3%) and production (16.31gCOD/L) was obtained by feeding liquid of R-55, which was improved by 3.33 folds compared to the free cell fermentation. Copyright © 2016. Published by Elsevier Ltd.
Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Lovitt, Robert W; Chang, In Seop
2017-09-01
A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (k L a) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (C ace ), headspace gas (N co and [Formula: see text] ), dissolved CO concentration in the fermentation medium (C co ), and mass transfer rate (R) were simulated using a variety of k L a values. The simulated results showed excellent agreement with the experimental data for a k L a of 13/hr. The C co values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ripening influences banana and plantain peels composition and energy content.
Emaga, Thomas Happi; Bindelle, Jérôme; Agneesens, Richard; Buldgen, André; Wathelet, Bernard; Paquot, Michel
2011-01-01
Musa sp. peels are widely used by smallholders as complementary feeds for cattle in the tropics. A study of the influence of the variety and the maturation stage of the fruit on fermentability and metabolisable energy (ME) content of the peels was performed using banana (Yangambi Km5) and plantain (Big Ebanga) peels at three stages of maturation in an in vitro model of the rumen. Peel samples were analysed for starch, free sugars and fibre composition. Samples were incubated in the presence of rumen fluid. Kinetics of gas production were modelled, ME content was calculated using prediction equation and short-chain fatty acids production and molar ratio were measured after 72 h of fermentation. Final gas production was higher in plantain (269-339 ml g(-1)) compared to banana (237-328 ml g(-1)) and plantain exhibited higher ME contents (8.9-9.7 MJ/kg of dry matter, DM) compared to banana (7.7-8.8 MJ/kg of DM). Butyrate molar ratio decreased with maturity of the peels. The main influence of the variety and the stage of maturation on all fermentation parameters as well as ME contents of the peels was correlated to changes in the carbohydrate fraction of the peels, including starch and fibre.
NASA Astrophysics Data System (ADS)
Frediansyah, Andri; Kurniadi, Muhamad
2017-01-01
Our previous study reveal that single culture of Lactobacillus plantarum has ability to ferment cassava tuber in relation to produce modified cassava flour (mocaf). It was used to accelerate a fermentation process. L. plantarum grow well and produce some extracellular enzymes i.e. cellulase to change the structure and breakdown the cell wall of cassava tuber. Then, the starchy materials will be hydrolyzed by i.e. amylase into simple sugar and convert to organic acid. All of these process will give new characteristic of cassava i.e. lower fiber content, good flavor, taste, aroma and texture and the amount of cyanide acid is lower. Therefore this present study was to analyze Michaelis kinetics of extracellular carboxymethyl cellulase and amylase production by L. plantarum during cassava fermentation. The maximum carboxymethyl cellulase and amylase activity of 8.60 U/ml and 14.07 U/ml, respectively, were obtained from filtrate which has been incubated at 37°C for 18 h under stationary conditions. The Vmax and Km of CMCase were 0.8506 × 10-3 U/ml and 0.9594 × 10-3 g/mL, respectively. For amylase were 9.291 × 10-3 U/ml and 0.9163 × 10-3 g/ml, respectively.
Rollero, Stephanie; Bloem, Audrey; Ortiz-Julien, Anne; Camarasa, Carole; Divol, Benoit
2018-01-01
The sequential inoculation of non- Saccharomyces yeasts and Saccharomyces cerevisiae in grape juice is becoming an increasingly popular practice to diversify wine styles and/or to obtain more complex wines with a peculiar microbial footprint. One of the main interactions is competition for nutrients, especially nitrogen sources, that directly impacts not only fermentation performance but also the production of aroma compounds. In order to better understand the interactions taking place between non-Saccharomyces yeasts and S. cerevisiae during alcoholic fermentation, sequential inoculations of three yeast species ( Pichia burtonii, Kluyveromyces marxianus, Zygoascus meyerae ) with S. cerevisiae were performed individually in a synthetic medium. Different species-dependent interactions were evidenced. Indeed, the three sequential inoculations resulted in three different behaviors in terms of growth. P. burtonii and Z. meyerae declined after the inoculation of S. cerevisiae which promptly outcompeted the other two species. However, while the presence of P. burtonii did not impact the fermentation kinetics of S. cerevisiae , that of Z. meyerae rendered the overall kinetics very slow and with no clear exponential phase. K. marxianus and S. cerevisiae both declined and became undetectable before fermentation completion. The results also demonstrated that yeasts differed in their preference for nitrogen sources. Unlike Z. meyerae and P. burtonii, K. marxianus appeared to be a competitor for S. cerevisiae (as evidenced by the uptake of ammonium and amino acids), thereby explaining the resulting stuck fermentation. Nevertheless, the results suggested that competition for other nutrients (probably vitamins) occurred during the sequential inoculation of Z. meyerae with S. cerevisiae . The metabolic footprint of the non- Saccharomyces yeasts determined after 48 h of fermentation remained until the end of fermentation and combined with that of S. cerevisiae . For instance, fermentations performed with K. marxianus were characterized by the formation of phenylethanol and phenylethyl acetate, while those performed with P. burtonii or Z. meyerae displayed higher production of isoamyl alcohol and ethyl esters. When considering sequential inoculation of yeasts, the nutritional requirements of the yeasts used should be carefully considered and adjusted accordingly. Finally, our chemical data suggests that the organoleptic properties of the wine are altered in a species specific manner.
Pinal, L; Cornejo, E; Arellano, M; Herrera, E; Nuñez, L; Arrizon, J; Gschaedler, A
2009-05-01
The effect of yeast strain, the agave age and the cultivation field location of agave were evaluated using kinetic parameters and volatile compound production in the tequila fermentation process. Fermentations were carried out with Agave juice obtained from two cultivation fields (CF1 and CF2), as well as two ages (4 and 8 years) and two Saccharomyces cerevisiae yeast strains (GU3 and AR5) isolated from tequila fermentation must. Sugar consumption and ethanol production varied as a function of cultivation field and agave age. The production of ethyl acetate, 1-propanol, isobutanol and amyl alcohols were influenced in varying degrees by yeast strain, agave age and cultivation field. Methanol production was only affected by the agave age and 2-phenylethanol was influenced only by yeast strain. This work showed that the use of younger Agave tequilana for tequila fermentation resulted in differences in sugar consumption, ethanol and volatile compounds production at the end of fermentation, which could affect the sensory quality of the final product.
Paramithiotis, Spiros; Kouretas, Konstantinos; Drosinos, Eleftherios H
2014-06-01
Spontaneous fermentation of plant-derived material is mainly performed on a small scale, with the exception of fermented olives, cucumbers, sauerkraut and kimchi, which have met worldwide commercial significance. This study of spontaneous fermentation of green tomatoes at different stages of ripening revealed a significant effect on the growth kinetics of lactic acid bacteria and the final pH value. Leuconostoc mesenteroides dominated spontaneous fermentation when the initial pH value ranged from 3.8 to 4.8 whereas at higher pH values (4.9-5.4) it co-dominated with Leu. citreum and Lactobacillus casei. Application of RAPD-PCR and rep-PCR allowed differentiation at sub-species level, suggesting a microbial succession at that level accompanying the respective at species level. Ripening stage affected the development of the micro-ecosystem through the growth of lactic acid bacteria and concomitant pH value reduction; however, the outcome of the fermentation was only marginally different. © 2013 Society of Chemical Industry.
Moens, Frédéric; Lefeber, Timothy; De Vuyst, Luc
2014-03-01
Four cocoa-specific acetic acid bacterium (AAB) strains, namely, Acetobacter pasteurianus 386B, Acetobacter ghanensis LMG 23848(T), Acetobacter fabarum LMG 24244(T), and Acetobacter senegalensis 108B, were analyzed kinetically and metabolically during monoculture laboratory fermentations. A cocoa pulp simulation medium (CPSM) for AAB, containing ethanol, lactic acid, and mannitol, was used. All AAB strains differed in their ethanol and lactic acid oxidation kinetics, whereby only A. pasteurianus 386B performed a fast oxidation of ethanol and lactic acid into acetic acid and acetoin, respectively. Only A. pasteurianus 386B and A. ghanensis LMG 23848(T) oxidized mannitol into fructose. Coculture fermentations with A. pasteurianus 386B or A. ghanensis LMG 23848(T) and Lactobacillus fermentum 222 in CPSM for lactic acid bacteria (LAB) containing glucose, fructose, and citric acid revealed oxidation of lactic acid produced by the LAB strain into acetic acid and acetoin that was faster in the case of A. pasteurianus 386B. A triculture fermentation with Saccharomyces cerevisiae H5S5K23, L. fermentum 222, and A. pasteurianus 386B, using CPSM for LAB, showed oxidation of ethanol and lactic acid produced by the yeast and LAB strain, respectively, into acetic acid and acetoin. Hence, acetic acid and acetoin are the major end metabolites of cocoa bean fermentation. All data highlight that A. pasteurianus 386B displayed beneficial functional roles to be used as a starter culture, namely, a fast oxidation of ethanol and lactic acid, and that these metabolites play a key role as substrates for A. pasteurianus in its indispensable cross-feeding interactions with yeast and LAB during cocoa bean fermentation.
Moens, Frédéric; Lefeber, Timothy
2014-01-01
Four cocoa-specific acetic acid bacterium (AAB) strains, namely, Acetobacter pasteurianus 386B, Acetobacter ghanensis LMG 23848T, Acetobacter fabarum LMG 24244T, and Acetobacter senegalensis 108B, were analyzed kinetically and metabolically during monoculture laboratory fermentations. A cocoa pulp simulation medium (CPSM) for AAB, containing ethanol, lactic acid, and mannitol, was used. All AAB strains differed in their ethanol and lactic acid oxidation kinetics, whereby only A. pasteurianus 386B performed a fast oxidation of ethanol and lactic acid into acetic acid and acetoin, respectively. Only A. pasteurianus 386B and A. ghanensis LMG 23848T oxidized mannitol into fructose. Coculture fermentations with A. pasteurianus 386B or A. ghanensis LMG 23848T and Lactobacillus fermentum 222 in CPSM for lactic acid bacteria (LAB) containing glucose, fructose, and citric acid revealed oxidation of lactic acid produced by the LAB strain into acetic acid and acetoin that was faster in the case of A. pasteurianus 386B. A triculture fermentation with Saccharomyces cerevisiae H5S5K23, L. fermentum 222, and A. pasteurianus 386B, using CPSM for LAB, showed oxidation of ethanol and lactic acid produced by the yeast and LAB strain, respectively, into acetic acid and acetoin. Hence, acetic acid and acetoin are the major end metabolites of cocoa bean fermentation. All data highlight that A. pasteurianus 386B displayed beneficial functional roles to be used as a starter culture, namely, a fast oxidation of ethanol and lactic acid, and that these metabolites play a key role as substrates for A. pasteurianus in its indispensable cross-feeding interactions with yeast and LAB during cocoa bean fermentation. PMID:24413595
Zhang, Hong-Tao; Xiong, Weili; Hu, Jianhua; Xu, Baoguo; Lin, Chi-Chung; Xu, Ling; Jiang, Lihua
2014-01-01
Production of high quality Chinese rice wine largely depends on fermentation temperature. However, there is no report on the ethanol, sugars, and acids kinetics in the fermentation mash of Chinese rice wine treated at various temperatures. The effects of fermentation temperatures on Chinese rice wine quality were investigated. The compositions and concentrations of ethanol, sugars, glycerol, and organic acids in the mash of Chinese rice wine samples were determined by HPLC method. The highest ethanol concentration and the highest glycerol concentration both were attained at the fermentation mash treated at 23°C. The highest peak value of maltose (90 g/L) was obtained at 18°C. Lactic acid and acetic acid both achieved maximum values at 33°C. The experimental results indicated that temperature contributed significantly to the ethanol production, acid flavor contents, and sugar contents in the fermentation broth of the Chinese rice wines. PMID:24672788
Liu, Dengfeng; Zhang, Hong-Tao; Xiong, Weili; Hu, Jianhua; Xu, Baoguo; Lin, Chi-Chung; Xu, Ling; Jiang, Lihua
2014-01-01
Production of high quality Chinese rice wine largely depends on fermentation temperature. However, there is no report on the ethanol, sugars, and acids kinetics in the fermentation mash of Chinese rice wine treated at various temperatures. The effects of fermentation temperatures on Chinese rice wine quality were investigated. The compositions and concentrations of ethanol, sugars, glycerol, and organic acids in the mash of Chinese rice wine samples were determined by HPLC method. The highest ethanol concentration and the highest glycerol concentration both were attained at the fermentation mash treated at 23 °C. The highest peak value of maltose (90 g/L) was obtained at 18 °C. Lactic acid and acetic acid both achieved maximum values at 33 °C. The experimental results indicated that temperature contributed significantly to the ethanol production, acid flavor contents, and sugar contents in the fermentation broth of the Chinese rice wines.
Deng, Li-Hong; Tang, Yong; Liu, Yun
2014-01-01
Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was fermented by immobilized Candida tropicalis cell to produce xylitol. Results revealed that SAA pretreatment showed high delignification and efficient removal of acetyl group compounds without effect on cellulose and xylan content. Acetic acid was completely removed, and the content of phenolic compounds was reduced by 80%. Furthermore, kinetic behaviors of xylitol production by immobilized C. tropicalis cell were elucidated from corncob acid hydrolysate detoxified with SAA pretreatment and two-step adsorption method, respectively. The immobilized C. tropicalis cell showed higher productivity efficiency using the corncob acid hydrolysate as fermentation substrate after detoxification with SAA pretreatment than by two-step adsorption method in the five successive batch fermentation rounds. After the fifth round fermentation, about 60 g xylitol/L fermentation substrate was obtained for SAA pretreatment detoxification, while about 30 g xylitol/L fermentation substrate was obtained for two-step adsorption detoxification. PMID:25133211
Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist; Jespersen, Lene
2015-03-01
Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Leuconostoc mesenteroides ssp. cremoris, by the DL-starter culture, and by the type strains. High and low levels of oxygen were produced by flushing milk with oxygen or nitrogen, respectively. The kinetics of milk acidification was characterized by the maximum rate and time of acidification (Vamax and Tamax), the maximum rate and time of reduction (Vrmax and Trmax), the minimum redox potential (Eh7 final), and time of reaching Eh7 final (Trfinal). Variations in kinetic parameters were observed at both the species and strain levels. Two of the Lc. lactis ssp. lactis strains were not able to lower redox potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum) and after (anaerobic maximum) oxygen depletion. The redox potential decreased concurrently with oxygen consumption and continued to decrease at slower rate until reaching the final values, indicating involvement of both oxygen and microbiological activity in the redox state of milk. Oxygen flushing had a negative effect on reduction and acidification capacity of tested LAB. Reduction was significantly delayed at high initial oxygen, exhibiting longer Trmax, Trfinal, or both. Concurrently, anaerobic acidification rate maximum Vamax was decreased and Tamax was extended. Fermentation kinetics in nitrogen-flushed milk was not statistically different from that in untreated milk except for Lc. lactis ssp. lactis CHCC D2, which showed faster reduction time after nitrogen flushing. This study clarifies the relationship between the redox state in milk and acidification kinetics of the predominant subspecies in DL-starter cultures. This knowledge is important for dairies to ensure optimized, fast, and controlled milk fermentations, leading to greater standardization of dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pornkamol, Unrean; Franzen, Carl J
2015-08-01
Achieving efficient and economical lignocellulose-based bioprocess requires a robust organism tolerant to furfural, a major inhibitory compound present in lignocellulosic hydrolysate. The aim of this study was to develop a model that could generate quantitative descriptions of cell metabolism for elucidating the cell's adaptive response to furfural. Such a modelling tool could provide strategies for the design of more robust cells. A dynamic flux balance (dFBA) model of Saccharomyces cerevisiae was created by coupling a kinetic fermentation model with a previously published genome-scale stoichiometric model. The dFBA model was used for studying intracellular and extracellular flux responses to furfural perturbations under steady state and dynamic conditions. The predicted effects of furfural on dynamic flux profiles agreed well with previously published experimental results. The model showed that the yeast cell adjusts its metabolism in response to furfural challenge by increasing fluxes through the pentose phosphate pathway, TCA cycle, and proline and serine biosynthesis in order to meet the high demand of NAD(P)H cofactors. The model described here can be used to aid in systematic optimization of the yeast, as well as of the fermentation process, for efficient lignocellulosic ethanol production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Van Kerrebroeck, Simon; Bastos, Francisca Casanova C; Harth, Henning; De Vuyst, Luc
2016-12-19
This study dealt with the influence of a crucial pH value of 4.0 on the microbiota of spontaneously fermented backslopped liquid wheat sourdoughs. Two spontaneously fermented wheat sourdough fermentation experiments were carried out, one without control of the pH and one with the pH kept constant at pH4.0, both during nine backslopping steps. In each case, two additional backslopping steps were carried out, with the pH kept constant at 4.0 and with free pH, respectively. Keeping the pH constant at 4.0 changed the microbial community dynamics and metabolite kinetics of the sourdough fermentations. A slower prevalence of sourdough-specific Kazachstania yeasts occurred. Nevertheless, in both experiments, Lactobacillus fermentum, Lb. plantarum/pentosus/paraplantarum, and Kazachstania exigua/bulderi/barnettii prevailed ultimately. The lactic acid and ethanol concentration profiles were affected positively by keeping the pH constant at a minimum of 4.0 as well as the l- and d-lactic acid ratio profile, a potential biological marker for sourdough stability and maturity. Also, the concentration and diversity of acetate esters and their precursors, in particular isoamyl acetate and isoamyl alcohol, were affected negatively by the pH control, indicating the role of pH stress in the sourdough aroma formation. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Pin-Rou; Kho, Stephanie Hui Chern; Yu, Bin; Curran, Philip; Liu, Shao-Quan
2013-01-01
Summary The growth kinetics and fermentation performance of Williopsis saturnus and Saccharomyces cerevisiae at ratios of 10:1, 1:1 and 1:10 (W.:S.) were studied in papaya juice with initial 7-day fermentation by W. saturnus, followed by S. cerevisiae. The growth kinetics of W. saturnus were similar at all ratios, but its maximum cell count decreased as the proportion of S. cerevisiae was increased. Conversely, there was an early death of S. cerevisiae at the ratio of 10:1. Williopsis saturnus was the dominant yeast at 10:1 ratio that produced papaya wine with elevated concentrations of acetate esters. On the other hand, 1:1 and 1:10 ratios allowed the coexistence of both yeasts which enabled the flavour-enhancing potential of W. saturnus as well as the ethyl ester and alcohol-producing abilities of S. cerevisiae. In particular, 1:1 and 1:10 ratios resulted in production of more ethyl esters, alcohols and 2-phenylethyl acetate. However, the persistence of both yeasts at 1:1 and 1:10 ratios led to formation of high levels of acetic acid. The findings suggest that yeast ratio is a critical factor for sequential fermentation of papaya wine by W. saturnus and S. cerevisiae as a strategy to modulate papaya wine flavour. PMID:23171032
Lee, Pin-Rou; Kho, Stephanie Hui Chern; Yu, Bin; Curran, Philip; Liu, Shao-Quan
2013-07-01
The growth kinetics and fermentation performance of Williopsis saturnus and Saccharomyces cerevisiae at ratios of 10:1, 1:1 and 1:10 (W.:S.) were studied in papaya juice with initial 7-day fermentation by W.saturnus, followed by S. cerevisiae. The growth kinetics of W. saturnus were similar at all ratios, but its maximum cell count decreased as the proportion of S. cerevisiae was increased. Conversely, there was an early death of S. cerevisiae at the ratio of 10:1. Williopsis saturnus was the dominant yeast at 10:1 ratio that produced papaya wine with elevated concentrations of acetate esters. On the other hand, 1:1 and 1:10 ratios allowed the coexistence of both yeasts which enabled the flavour-enhancing potential of W.saturnus as well as the ethyl ester and alcohol-producing abilities of S. cerevisiae. In particular, 1:1 and 1:10 ratios resulted in production of more ethyl esters, alcohols and 2-phenylethyl acetate. However, the persistence of both yeasts at 1:1 and 1:10 ratios led to formation of high levels of acetic acid. The findings suggest that yeast ratio is a critical factor for sequential fermentation of papaya wine by W.saturnus and S. cerevisiae as a strategy to modulate papaya wine flavour. © 2012 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Guo, F C; Williams, B A; Kwakkel, R P; Verstegen, M W A
2003-10-01
In vitro fermentabilities of two mushrooms (Lentinus edodes--LenS; Tremella fuciformis--TreS), an herb (Astragalus membranaceus--AstS), and their polysaccharide fractions (LenE, TreE, and AstE) were investigated using microflora from chicken ceca. Polysaccharides were extracted using the hot water method. The mushrooms had lower polysaccharide yields (8 to 10%) than the herb (31%). Fermentation kinetics were determined using the in vitro cumulative gas production technique. End-products, such as gas, volatile fatty acids (VFA), and ammonia, were also determined. The gas profiles of intact materials were similar for AstS and LenS. The TreS had a diphasic digestion pattern. The extracts had similar profiles to the intact materials though gas production rates were faster. Intact materials tended to produce less VFA than the extracts though LenS and AstE had the highest total VFA production overall. Intact materials contained more protein than the extracts, and therefore resulted in more branched-chain fatty acids and ammonia. Fermentation kinetics and end-point products demonstrated differences in availability of substrates between the mushrooms and herb. These medicinal mushroom and herb materials, particularly their polysaccharide extracts, show promise in altering microbial activities and composition in chicken ceca. In vivo experiments are necessary for confirmation of this hypothesis.
Papalexandratou, Zoi; Falony, Gwen; Romanens, Edwina; Jimenez, Juan Carlos; Amores, Freddy; Daniel, Heide-Marie; De Vuyst, Luc
2011-01-01
Traditional fermentations of the local Ecuadorian cocoa type Nacional, with its fine flavor, are carried out in boxes and on platforms for a short time. A multiphasic approach, encompassing culture-dependent and -independent microbiological analyses of fermenting cocoa pulp-bean samples, metabolite target analyses of both cocoa pulp and beans, and sensory analysis of chocolates produced from the respective fermented dry beans, was applied for the investigation of the influence of these fermentation practices on the yeast and bacterial species diversity and community dynamics during cocoa bean fermentation. A wide microbial species diversity was found during the first 3 days of all fermentations carried out. The prevailing ethanol-producing yeast species were Pichia kudriavzevii and Pichia manshurica, followed by Saccharomyces cerevisiae. Leuconostoc pseudomesenteroides (glucose and fructose fermenting), Fructobacillus tropaeoli-like (fructose fermenting), and Lactobacillus fermentum (citrate converting, mannitol producing) represented the main lactic acid bacterial species in the fermentations studied, resulting in intensive heterolactate metabolism of the pulp substrates. Tatumella saanichensis and Tatumella punctata were among the members of the family Enterobacteriaceae present during the initial phase of the cocoa bean fermentations and could be responsible for the production of gluconic acid in some cases. Also, a potential new yeast species was isolated, namely, Candida sorbosivorans-like. Acetic acid bacteria, whose main representative was Acetobacter pasteurianus, generally appeared later during fermentation and oxidized ethanol to acetic acid. However, acetic acid bacteria were not always present during the main course of the platform fermentations. All of the data taken together indicated that short box and platform fermentation methods caused incomplete fermentation, which had a serious impact on the quality of the fermented dry cocoa beans. PMID:21926224
Aguilar-Uscanga, M G; Garcia-Alvarado, Y; Gomez-Rodriguez, J; Phister, T; Delia, M L; Strehaiano, P
2011-08-01
To study the effect of glucose concentrations on the growth by Brettanomyces bruxellensis yeast strain in batch experiments and develop a mathematical model for kinetic behaviour analysis of yeast growing in batch culture. A Matlab algorithm was developed for the estimation of model parameters. Glucose fermentation by B. bruxellensis was studied by varying its concentration (5, 9.3, 13.8, 16.5, 17.6 and 21.4%). The increase in substrate concentration up to a certain limit was accompanied by an increase in ethanol and biomass production; at a substrate concentration of 50-138 g l(-1), the ethanol and biomass production were 24, 59 and 6.3, 11.4 g l(-1), respectively. However, an increase in glucose concentration to 165 g l(-1) led to a drastic decrease in product formation and substrate utilization. The model successfully simulated the batch kinetic observed in all cases. The confidence intervals were also estimated at each phase at a 0.95 probability level in a t-Student distribution for f degrees of freedom. The maximum ethanol and biomass yields were obtained with an initial glucose concentration of 138 g l(-1). These experiments illustrate the importance of using a mathematical model applied to kinetic behaviour on glucose concentration by B. bruxellensis. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
Maltotriose fermentation by Saccharomyces cerevisiae.
Zastrow, C R; Hollatz, C; de Araujo, P S; Stambuk, B U
2001-07-01
Maltotriose, the second most abundant sugar of brewer's wort, is not fermented but is respired by several industrial yeast strains. We have isolated a strain capable of growing on a medium containing maltotriose and the respiratory inhibitor, antimycin A. This strain produced equivalent amounts of ethanol from 20 g l(-1) glucose, maltose, or maltotriose. We performed a detailed analysis of the rates of active transport and intracellular hydrolysis of maltotriose by this strain, and by a strain that does not ferment this sugar. The kinetics of sugar hydrolysis by both strains was similar, and our results also indicated that yeast cells do not synthesize a maltotriose-specific alpha-glucosidase. However, when considering active sugar transport, a different pattern was observed. The maltotriose-fermenting strain showed the same rate of active maltose or maltotriose transport, while the strain that could not ferment maltotriose showed a lower rate of maltotriose transport when compared with the rates of active maltose transport. Thus, our results revealed that transport across the plasma membrane, and not intracellular hydrolysis, is the rate-limiting step for the fermentation of maltotriose by these Saccharomyces cerevisiae cells.
Fermentation Kinetics and Continuous Process of L-Asparaginase Production
Liu, F. S.; Zajic, J. E.
1973-01-01
For the purpose of obtaining L-asparaginase in quantities from Erwinia aroideae, cell growth and enzyme formation were investigated in both batch and continuous fermentation. Using yeast extract as a growth-limiting substrate, the relationship between specific growth rate and substrate concentration was found to fit the Monod equation. The optimum temperature for enzyme production was 24 C, although cell growth was higher at 28 C. The enzyme yield reached its maximum of 4 IU/ml during the negative acceleration growth phase which occurs just prior to stationary growth. Compared to batch fermentations, the continuous fermentation process gave a lower enzyme yield except when the fermentation was conducted at a dilution rate of 0.1 hr-1. The graphical method frequently used for prediction of continuous fermentation does not apply to L-asparaginase production by E. aroideae. The optimum temperature for enzyme production in continuous process was 24 C, which was the same as in batch process. Increasing the temperature from 24 to 28 C resulted in a 20% loss of enzyme yield. PMID:4568894
Amores-Arrocha, Antonio; Roldán, Ana; Jiménez-Cantizano, Ana; Caro, Ildefonso; Palacios, Víctor
2018-05-31
The aim of the present study was to compare and analyze the impact of using bee pollen doses (0.1, 0.25, 1, 5, 10 and 20 g/L) as activator in the alcoholic fermentation process of Palomino fino and Riesling wines. In this regard, its influence on the musts composition, the fermentative kinetics, the evolution of the populations of Saccharomyces cerevisiae , the evolution of yeast-assimilable nitrogen and physico-chemical characteristics of final wines has been analyzed. Bee pollen addition produces significant increases in yeast-assimilable nitrogen and maximum yeasts population and exponential velocity reached during alcoholic fermentation. Bee pollen showed an important effect on yeast survival during the death phase. Final wines showed significantly increase in volatile acidity above doses higher than 10 g/L and Comisión Internacional de L'Eclairage parameters (CIELab), color intensity and Abs 420 nm, from 1 g/L. Therefore, pollen could be used as fermentative activator for the alcoholic fermentation of white wines applying doses below of 1 g/L.
Rollero, Stephanie; Bloem, Audrey; Ortiz-Julien, Anne; Camarasa, Carole; Divol, Benoit
2018-01-01
The sequential inoculation of non-Saccharomyces yeasts and Saccharomyces cerevisiae in grape juice is becoming an increasingly popular practice to diversify wine styles and/or to obtain more complex wines with a peculiar microbial footprint. One of the main interactions is competition for nutrients, especially nitrogen sources, that directly impacts not only fermentation performance but also the production of aroma compounds. In order to better understand the interactions taking place between non-Saccharomyces yeasts and S. cerevisiae during alcoholic fermentation, sequential inoculations of three yeast species (Pichia burtonii, Kluyveromyces marxianus, Zygoascus meyerae) with S. cerevisiae were performed individually in a synthetic medium. Different species-dependent interactions were evidenced. Indeed, the three sequential inoculations resulted in three different behaviors in terms of growth. P. burtonii and Z. meyerae declined after the inoculation of S. cerevisiae which promptly outcompeted the other two species. However, while the presence of P. burtonii did not impact the fermentation kinetics of S. cerevisiae, that of Z. meyerae rendered the overall kinetics very slow and with no clear exponential phase. K. marxianus and S. cerevisiae both declined and became undetectable before fermentation completion. The results also demonstrated that yeasts differed in their preference for nitrogen sources. Unlike Z. meyerae and P. burtonii, K. marxianus appeared to be a competitor for S. cerevisiae (as evidenced by the uptake of ammonium and amino acids), thereby explaining the resulting stuck fermentation. Nevertheless, the results suggested that competition for other nutrients (probably vitamins) occurred during the sequential inoculation of Z. meyerae with S. cerevisiae. The metabolic footprint of the non-Saccharomyces yeasts determined after 48 h of fermentation remained until the end of fermentation and combined with that of S. cerevisiae. For instance, fermentations performed with K. marxianus were characterized by the formation of phenylethanol and phenylethyl acetate, while those performed with P. burtonii or Z. meyerae displayed higher production of isoamyl alcohol and ethyl esters. When considering sequential inoculation of yeasts, the nutritional requirements of the yeasts used should be carefully considered and adjusted accordingly. Finally, our chemical data suggests that the organoleptic properties of the wine are altered in a species specific manner. PMID:29487584
Transcriptional response of Saccharomyces cerevisiae to low temperature during wine fermentation.
Deed, Rebecca C; Deed, Nathan K; Gardner, Richard C
2015-04-01
Although the yeast response to low temperature has industrial significance for baking, lager brewing and white wine fermentation, the molecular response of yeast cells to low temperature remains poorly characterised. Transcriptional changes were quantified in a commercial wine yeast, Enoferm M2, fermented at optimal (25 °C) and low temperature (12.5 °C), at two time points during fermentation of Sauvignon blanc grape juice. The transition from early to mid-late fermentation was notably less severe in the cold than at 25 °C, and the Rim15p-Gis1p pathway was involved in effecting this transition. Genes for three key nutrients were strongly influenced by low temperature fermentation: nitrogen, sulfur and iron/copper, along with changes in the cell wall and stress response. Transcriptional analyses during wine fermentation at 12.5 °C in four F1 hybrids of M2 also highlighted the importance of genes involved in nutrient utilisation and the stress response. We identified transcription factors that may be important for these differences between genetic backgrounds. Since low fermentation temperatures cause fundamental changes in membrane kinetics and cellular metabolism, an understanding of the physiological and genetic limitations on cellular performance will assist breeding of improved industrial strains.
Mendes-Ferreira, A; Mendes-Faia, A; Leão, C
2004-01-01
To study the effects of assimilable nitrogen concentration on growth profile and on fermentation kinetics of Saccharomyces cerevisiae. Saccharomyces cerevisiae was grown in batch in a defined medium with glucose (200 g l(-1)) as the only carbon and energy source, and nitrogen supplied as ammonium sulphate or phosphate forms under different concentrations. The initial nitrogen concentration in the media had no effect on specific growth rates of the yeast strain PYCC 4072. However, fermentation rate and the time required for completion of the alcoholic fermentation were strongly dependent on nitrogen availability. At the stationary phase, the addition of ammonium was effective in increasing cell population, fermentation rate and ethanol. The yeast strain required a minimum of 267 mg N l(-1) to attain complete dryness of media, within the time considered for the experiments. Lower levels were enough to support growth, although leading to sluggish or stuck fermentation. The findings reported here contribute to elucidate the role of nitrogen on growth and fermentation performance of wine yeast. This information might be useful to the wine industry where excessive addition of nitrogen to prevent sluggish or stuck fermentation might have a negative impact on wine stability and quality. Copyright 2004 The Society for Applied Microbiology
Attainable region analysis for continuous production of second generation bioethanol
2013-01-01
Background Despite its semi-commercial status, ethanol production from lignocellulosics presents many complexities not yet fully solved. Since the pretreatment stage has been recognized as a complex and yield-determining step, it has been extensively studied. However, economic success of the production process also requires optimization of the biochemical conversion stage. This work addresses the search of bioreactor configurations with improved residence times for continuous enzymatic saccharification and fermentation operations. Instead of analyzing each possible configuration through simulation, we apply graphical methods to optimize the residence time of reactor networks composed of steady-state reactors. Although this can be easily made for processes described by a single kinetic expression, reactions under analysis do not exhibit this feature. Hence, the attainable region method, able to handle multiple species and its reactions, was applied for continuous reactors. Additionally, the effects of the sugars contained in the pretreatment liquor over the enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) were assessed. Results We obtained candidate attainable regions for separate enzymatic hydrolysis and fermentation (SHF) and SSF operations, both fed with pretreated corn stover. Results show that, despite the complexity of the reaction networks and underlying kinetics, the reactor networks that minimize the residence time can be constructed by using plug flow reactors and continuous stirred tank reactors. Regarding the effect of soluble solids in the feed stream to the reactor network, for SHF higher glucose concentration and yield are achieved for enzymatic hydrolysis with washed solids. Similarly, for SSF, higher yields and bioethanol titers are obtained using this substrate. Conclusions In this work, we demonstrated the capabilities of the attainable region analysis as a tool to assess the optimal reactor network with minimum residence time applied to the SHF and SSF operations for lignocellulosic ethanol production. The methodology can be readily modified to evaluate other kinetic models of different substrates, enzymes and microorganisms when available. From the obtained results, the most suitable reactor configuration considering residence time and rheological aspects is a continuous stirred tank reactor followed by a plug flow reactor (both in SSF mode) using washed solids as substrate. PMID:24286451
Attainable region analysis for continuous production of second generation bioethanol.
Scott, Felipe; Conejeros, Raúl; Aroca, Germán
2013-11-29
Despite its semi-commercial status, ethanol production from lignocellulosics presents many complexities not yet fully solved. Since the pretreatment stage has been recognized as a complex and yield-determining step, it has been extensively studied. However, economic success of the production process also requires optimization of the biochemical conversion stage. This work addresses the search of bioreactor configurations with improved residence times for continuous enzymatic saccharification and fermentation operations. Instead of analyzing each possible configuration through simulation, we apply graphical methods to optimize the residence time of reactor networks composed of steady-state reactors. Although this can be easily made for processes described by a single kinetic expression, reactions under analysis do not exhibit this feature. Hence, the attainable region method, able to handle multiple species and its reactions, was applied for continuous reactors. Additionally, the effects of the sugars contained in the pretreatment liquor over the enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) were assessed. We obtained candidate attainable regions for separate enzymatic hydrolysis and fermentation (SHF) and SSF operations, both fed with pretreated corn stover. Results show that, despite the complexity of the reaction networks and underlying kinetics, the reactor networks that minimize the residence time can be constructed by using plug flow reactors and continuous stirred tank reactors. Regarding the effect of soluble solids in the feed stream to the reactor network, for SHF higher glucose concentration and yield are achieved for enzymatic hydrolysis with washed solids. Similarly, for SSF, higher yields and bioethanol titers are obtained using this substrate. In this work, we demonstrated the capabilities of the attainable region analysis as a tool to assess the optimal reactor network with minimum residence time applied to the SHF and SSF operations for lignocellulosic ethanol production. The methodology can be readily modified to evaluate other kinetic models of different substrates, enzymes and microorganisms when available. From the obtained results, the most suitable reactor configuration considering residence time and rheological aspects is a continuous stirred tank reactor followed by a plug flow reactor (both in SSF mode) using washed solids as substrate.
Zhang, Hongjiao; Gao, Yuntao; Xiong, Huabin
2017-04-01
The citric acid fermentation broth was prepared and it was employed to washing remediation of heavy metal-polluted soil. A well-defined washing effect was obtained, the removal percentages using citric acid fermentation broth are that 48.2% for Pb, 30.6% for Cu, 43.7% for Cr, and 58.4% for Cd and higher than that using citric acid solution. The kinetics of heavy metals desorption can be described by the double constant equation and Elovich equation and is a heterogeneous diffusion process. The speciation analysis shows that the citric acid fermentation broth can effectively reduce bioavailability and environmental risk of heavy metals. Spectroscopy characteristics analysis suggests that the washing method has only a small effect on the mineral composition and does not destroy the framework of soil system. Therefore, the citric acid fermentation broth is a promising washing agent and possesses a potential practical application value in the field of remediation of soils with a good washing performance.
Callewaert, Raf; De Vuyst, Luc
2000-01-01
Amylovorin L471 is a small, heat-stable, and hydrophobic bacteriocin produced by Lactobacillus amylovorus DCE 471. The nutritional requirements for amylovorin L471 production were studied with fed-batch fermentations. A twofold increase in bacteriocin titer was obtained when substrate addition was controlled by the acidification rate of the culture, compared with the titers reached with constant substrate addition or pH-controlled batch cultures carried out under the same conditions. An interesting feature of fed-batch cultures observed under certain culture conditions (constant feed rate) is the apparent stabilization of bacteriocin activity after obtaining maximum production. Finally, a mathematical model was set up to simulate cell growth, glucose and complex nitrogen source consumption, and lactic acid and bacteriocin production kinetics. The model showed that bacterial growth was dependent on both the energy and the complex nitrogen source. Bacteriocin production was growth associated, with a simultaneous bacteriocin adsorption on the producer cells dependent on the lactic acid accumulated and hence the viability of the cells. Both bacteriocin production and adsorption were inhibited by high concentrations of the complex nitrogen source. PMID:10653724
Orihuel, Alejandra; Bonacina, Julieta; Vildoza, María José; Bru, Elena; Vignolo, Graciela; Saavedra, Lucila; Fadda, Silvina
2018-05-01
The aim of this work was to evaluate the effect of meat curing agents on the bioprotective activity of the bacteriocinogenic strain, Enterococcus (E.) mundtii CRL35 against Listeria (L.) monocytogenes during meat fermentation. The ability of E. mundtii CRL35 to grow, acidify and produce bacteriocin in situ was assayed in a meat model system in the presence of curing additives (CA). E. mundtii CRL35 showed optimal growth and acidification rates in the presence of CA. More importantly, the highest bacteriocin titer was achieved in the presence of these food agents. In addition, the CA produced a statistical significant enhancement of the enterocin CRL35 activity. This positive effect was demonstrated in vitro in a meat based culture medium, by time-kill kinetics and finally by using a beaker sausage model with a challenge experiment with the pathogenic L. monocytogenes FBUNT strain. E. mundtii CRL35 was found to be a promising strain of use as a safety adjunct culture in meat industry and a novel functional supplement for sausage fermentation, ensuring hygiene and quality of the final product. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cornet, I; Wittner, N; Tofani, G; Tavernier, S
2018-02-01
Since the determination of the fermentation kinetics is one of the main challenges in solid state fermentation, the quantitative measurement of biomass growth during microbial pretreatment by FTIR spectroscopy in Attenuated Total Reflectance mode was evaluated. Peaks at wave numbers of 1651 cm -1 and 1593 cm -1 showed to be affected during pretreatment of poplar wood particles by Phanerochaete chrysosporium MUCL 19343. Samples with different microbial biomass fractions were obtained from two different experiments, i.e., shake flask and fixed-bed reactor experiments. The glucosamine concentration was compared to the normalized absorbance ratio of the 1651 cm -1 to 1593 cm -1 peak, measured by FTIR-ATR, and resulted in a linear relationship. The application of a normalized absorbance ratio in function of time provided a graph that was similar to the microbial growth curve. Application of FTIR in ATR mode to follow-up kinetics during solid state fermentation seems to be a fast and easy alternative to laborious measurement techniques, such as glucosamine determination. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
School Science Review, 1990
1990-01-01
Presented are 25 science activities on colorations of prey, evolution, blood, physiology, nutrition, enzyme kinetics, leaf pigments, analytical chemistry, milk, proteins, fermentation, surface effects of liquids, magnetism, drug synthesis, solvents, wintergreen synthesis, chemical reactions, multicore cables, diffraction, air resistance,…
Bradfield, Michael F A; Nicol, Willie
2016-11-01
Increased pentose phosphate pathway flux, relative to total substrate uptake flux, is shown to enhance succinic acid (SA) yields under continuous, non-growth conditions of Actinobacillus succinogenes biofilms. Separate fermentations of glucose and xylose were conducted in a custom, continuous biofilm reactor at four different dilution rates. Glucose-6-phosphate dehydrogenase assays were performed on cell extracts derived from in situ removal of biofilm at each steady state. The results of the assays were coupled to a kinetic model that revealed an increase in oxidative pentose phosphate pathway (OPPP) flux relative to total substrate flux with increasing SA titre, for both substrates. Furthermore, applying metabolite concentration data to metabolic flux models that include the OPPP revealed similar flux relationships to those observed in the experimental kinetic analysis. A relative increase in OPPP flux produces additional reduction power that enables increased flux through the reductive branch of the TCA cycle, leading to increased SA yields, reduced by-product formation and complete closure of the overall redox balance.
Linville, Jessica L; Rodriguez, Miguel; Mielenz, Jonathan R; Cox, Chris D
2013-11-01
The extent of inhibition of two strains of Clostridium thermocellum by a Populus hydrolysate was investigated. A Monod-based model of wild type (WT) and Populus hydrolysate tolerant mutant (PM) strains of the cellulolytic bacterium C. thermocellum was developed to quantify growth kinetics in standard media and the extent of inhibition to a Populus hydrolysate. The PM was characterized by a higher growth rate (μmax=1.223 vs. 0.571 h(-1)) and less inhibition (KI,gen=0.991 vs. 0.757) in 10% v/v Populus hydrolysate compared to the WT. In 17.5% v/v Populus hydrolysate inhibition of PM increased slightly (KI,gen=0.888), whereas the WT was strongly inhibited and did not grow in a reproducible manner. Of the individual inhibitors tested, 4-hydroxybenzoic acid was the most inhibitory, followed by galacturonic acid. The PM did not have a greater ability to detoxify the hydrolysate than the WT. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kinetic analysis and modeling of daptomycin batch fermentation by Streptomyces roseosporus.
Lu, Wenyu; Fan, Jinghua; Wen, Jianping; Xia, Zhendong; Caiyin, Qinggele
2011-02-01
In this study, Streptomyces roseosporus was subjected to helium-neon (He-Ne) laser (632.8 nm) irradiation to improve the production ability of extracellular antibiotic daptomycin. Under the optimum irradiation dosage of 18 mW for 22 min, a stable positive mutant strain S. roseosporus LC-54 was obtained. The maximum A21978C (daptomycin is a semisynthetic antimicrobial substance derived from the A21978C complex) yield of this mutant strain was 296 mg/l, which was 146% higher than that of the wild strain. The mutant strain grew more quickly and utilized carbohydrate sources more efficiently than the wild strain. The batch culture kinetics was investigated in a 7 l bioreactor. The logistic equation for growth, the Luedeking-Piret equation for daptomycin production, and Luedeking-Piret-like equations for carbon substrate consumption were established. This model appeared to provide a reasonable description for each parameter during the growth phase and fitted fairly well with the experiment data.
Papalexandratou, Zoi; Vrancken, Gino; De Bruyne, Katrien; Vandamme, Peter; De Vuyst, Luc
2011-10-01
Spontaneous organic cocoa bean box fermentations were carried out on two different farms in Brazil. Physical parameters, microbial growth, bacterial species diversity [mainly lactic acid bacteria (LAB) and acetic acid bacteria (AAB)], and metabolite kinetics were monitored, and chocolates were produced from the fermented dry cocoa beans. The main end-products of the catabolism of the pulp substrates (glucose, fructose, and citric acid) by yeasts, LAB, and AAB were ethanol, lactic acid, mannitol, and/or acetic acid. Lactobacillus fermentum and Acetobacter pasteurianus were the predominating bacterial species of the fermentations as revealed through (GTG)(5)-PCR fingerprinting of isolates and PCR-DGGE of 16S rRNA gene PCR amplicons of DNA directly extracted from fermentation samples. Fructobacillus pseudoficulneus, Lactobacillus plantarum, and Acetobacter senegalensis were among the prevailing species during the initial phase of the fermentations. Also, three novel LAB species were found. This study emphasized the possible participation of Enterobacteriaceae in the cocoa bean fermentation process. Tatumella ptyseos and Tatumella citrea were the prevailing enterobacterial species in the beginning of the fermentations as revealed by 16S rRNA gene-PCR-DGGE. Finally, it turned out that control over a restricted bacterial species diversity during fermentation through an ideal post-harvest handling of the cocoa beans will allow the production of high-quality cocoa and chocolates produced thereof, independent of the fermentation method or farm. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jussier, Delphine; Dubé Morneau, Amélie; Mira de Orduña, Ramón
2006-01-01
Inoculating grape musts with wine yeast and lactic acid bacteria (LAB) concurrently in order to induce simultaneous alcoholic fermentation (AF) and malolactic fermentation (MLF) can be an efficient alternative to overcome potential inhibition of LAB in wines because of high ethanol concentrations and reduced nutrient content. In this study, the simultaneous inoculation of yeast and LAB into must was compared with a traditional vinification protocol, where MLF was induced after completion of AF. For this, two suitable commercial yeast-bacterium combinations were tested in cool-climate Chardonnay must. The time courses of glucose and fructose, acetaldehyde, several organic acids, and nitrogenous compounds were measured along with the final values of other key wine parameters. Sensory evaluation was done after 12 months of storage. The current study could not confirm a negative impact of simultaneous AF/MLF on fermentation success and kinetics or on final wine parameters. While acetic acid concentrations were slightly increased in wines after simultaneous AF/MLF, the differences were of neither practical nor legal significance. No statistically significant differences were found with regard to the final values of pH or total acidity and the concentrations of ethanol, acetaldehyde, glycerol, citric and lactic acids, and the nitrogen compounds arginine, ammonia, urea, citrulline, and ornithine. Sensory evaluation by a semiexpert panel confirmed the similarity of the wines. However, simultaneous inoculation led to considerable reductions in overall fermentation durations. Furthermore, differences of physiological and microbiological relevance were found. Specifically, we report the vinification of “super-dry” wines devoid of glucose and fructose after simultaneous inoculation of yeast and bacteria. PMID:16391046
Zhang, Dian; Strawn, Mary; Novak, John T; Wang, Zhi-Wu
2018-07-01
The highly volatile methanethiol (MT) with an extremely low odor threshold and distinctive putrid smell is often identified as a major odorous compound generated under anaerobic conditions. As an intermediate compound in the course of anaerobic digestion, the extent of MT emission is closely related to the time of anaerobic reaction. In this study, lab-scale anaerobic digesters were operated at solids retention time (SRTs) of 15, 20, 25, 30, 40 and 50 days to investigate the effect of SRT on MT emission. The experimental results demonstrated a bell-shaped curve of MT emission versus SRT with a peak around 20 days SRT. In order to understand this SRT effect, a kinetic model was developed to describe MT production and utilization dynamics in the course of anaerobic digestion and calibrated with the experimental results collected from this study. The model outcome revealed that the high protein content in the feed sludge together with the large maintenance coefficient of MT fermenters are responsible for the peak MT emission emergence in the range of typical SRT used for anaerobic digestion. A further analysis of the kinetic model shows that it can be extensively simplified with reasonable approximation to a form that anaerobic digestion practitioners could easily use to predict the MT and SRT relationship. Copyright © 2018 Elsevier Ltd. All rights reserved.
Manufacture and prebiotic potential of oligosaccharides derived from industrial solid wastes.
Gullón, Patricia; González-Muñoz, María Jesús; Parajó, Juan Carlos
2011-05-01
The solid waste obtained in malting industries when dehulling barley grains, which was mainly made up of barley husks, spent grains and grain fragments, was subjected to a double hydrothermal processing under selected conditions. The liquor from the second stage (containing xylooligosaccharides, XOS) was refined by membrane and ion exchange processing (with or without a previous endoxylanase treatment to reduce the XOS molecular weight). Three XOS concentrates with different purity and/or molecular weight distribution were fermented in vitro with faecal inocula to assess their prebiotic potential. Succinate, lactate, formiate, acetate, propionate and butyrate were generated in fermentations, confirming the prebiotic potential of the various products assayed. The purity of XOS concentrates did not play a significant role in fermentation, whereas the sample with shorter average degree of polymerization presented a faster fermentation kinetics and led to the highest concentration of lactic acid. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fessard, Amandine; Kapoor, Ashish; Patche, Jessica; Assemat, Sophie; Hoarau, Mathilde; Bourdon, Emmanuel; Bahorun, Theeshan; Remize, Fabienne
2017-01-01
Tropical fruits like pineapple, papaya, mango, and beverages such as green or black teas, represent an underestimated source of antioxidants that could exert health-promoting properties. Most food processing technologies applied to fruit beverages or teas result in an impairment of inherent nutritional properties. Conversely, we hypothesise that lactic acid fermentation may constitute a promising route to maintain and even improve the nutritional qualities of processed fruits. Using specific growth media, lactic acid bacteria were selected from the fruit phyllosphere diversity and fruit juice, with the latter undergoing acidification kinetics analyses and characterised for exopolysaccharide production. Strains able to ferment tropical fruit juices or teas into pleasant beverages, within a short time, were of particular interest. Strains Weissella cibaria 64 and Leuconostoc mesenteroides 12b, able to increase antioxidant activity, were specifically studied as potential starters for lactic fermented pineapple juice. PMID:28489022
Biotechnology Laboratory Methods.
ERIC Educational Resources Information Center
Davis, Robert H.; Kompala, Dhinakar S.
1989-01-01
Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream…
Numerical study on anaerobic digestion of fruit and vegetable waste: Biogas generation
NASA Astrophysics Data System (ADS)
Wardhani, Puteri Kusuma; Watanabe, Masaji
2016-02-01
The study provides experimental results and numerical results concerning anaerobic digestion of fruit and vegetable waste. Experiments were carried out by using batch floating drum type digester without mixing and temperature setting. The retention time was 30 days. Numerical results based on Monod type model with influence of temperature is introduced. Initial value problems were analyzed numerically, while kinetic parameters were analyzed by using trial error methods. The numerical results for the first five days seems appropriate in comparison with the experimental outcomes. However, numerical results shows that the model is inappropriate for 30 days of fermentation. This leads to the conclusion that Monod type model is not suitable for describe the mixture degradation of fruit and vegetable waste and horse dung.
Papalexandratou, Zoi; Lefeber, Timothy; Bahrim, Bakhtiar; Lee, Ong Seng; Daniel, Heide-Marie; De Vuyst, Luc
2013-09-01
Two spontaneous Malaysian cocoa bean box fermentations (one farm, two plantation plots) were investigated. Physical parameters, microbial community dynamics, yeast and bacterial species diversity [mainly lactic acid bacteria (LAB) and acetic acid bacteria (AAB)], and metabolite kinetics were monitored, and chocolates were produced from the respective fermented dry cocoa beans. Similar microbial growth and metabolite profiles were obtained for the two fermentations. Low concentrations of citric acid were found in the fresh pulp, revealing low acidity of the raw material. The main end-products of the catabolism of the pulp substrates glucose, fructose, and citric acid by yeasts, LAB, and AAB were ethanol, lactic acid, acetic acid, and/or mannitol. Hanseniaspora opuntiae, Lactobacillus fermentum, and Acetobacter pasteurianus were the prevalent species of the two fermentations. Saccharomyces cerevisiae, Lactobacillus plantarum, Lactobacillus pentosus, and Acetobacter ghanensis were also found during the mid-phase of the fermentation processes. Leuconostoc pseudomesenteroides and Acetobacter senegalensis were among the prevailing species during the initial phase of the fermentations. Tatumella saanichensis and Enterobacter sp. were present in the beginning of the fermentations and they could be responsible for the degradation of citric acid and/or the production of gluconic acid and lactic acid, respectively. The presence of facultative heterofermentative LAB during the fermentations caused a high production of lactic acid. Finally, as these fermentations were carried out with high-quality raw material and were characterised by a restricted microbial species diversity, resulting in successfully fermented dry cocoa beans and good chocolates produced thereof, it is likely that the prevailing species H. opuntiae, S. cerevisiae, Lb. fermentum, and A. pasteurianus were responsible for it. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ozone pretreatment and fermentative hydrolysis of wheat straw
NASA Astrophysics Data System (ADS)
Ben'ko, E. M.; Chukhchin, D. G.; Lunin, V. V.
2017-11-01
Principles of the ozone pretreatment of wheat straw for subsequent fermentation into sugars are investigated. The optimum moisture contents of straw in the ozonation process are obtained from data on the kinetics of ozone absorbed by samples with different contents of water. The dependence of the yield of reducing sugars in the fermentative reaction on the quantity of absorbed ozone is established. The maximum conversion of polysaccharides is obtained at ozone doses of around 3 mmol/g of biomass, and it exceeds the value for nonozonated samples by an order of magnitude. The yield of sugar falls upon increasing the dose of ozone. The process of removing lignin from the cell walls of straw during ozonation is visualized by means of scanning electron microscopy.
Cheng, Chi; Zhou, Yipin; Lin, Meng; Wei, Peilian; Yang, Shang-Tian
2017-01-01
Polymalic acid (PMA) production by Aureobasidium pullulans ZX-10 from soybean hull hydrolysate supplemented with corn steep liquor (CSL) gave a malic acid yield of ∼0.4g/g at a productivity of ∼0.5g/L·h. ZX-10 can also ferment soy molasses, converting all carbohydrates including the raffinose family oligosaccharides to PMA, giving a high titer (71.9g/L) and yield (0.69g/g) at a productivity of 0.29g/L·h in fed-batch fermentation under nitrogen limitation. A higher productivity of 0.64g/L·h was obtained in repeated batch fermentation with cell recycle and CSL supplementation. Cost analysis for a 5000 MT plant shows that malic acid can be produced at $1.10/kg from soy molasses, $1.37/kg from corn, and $1.74/kg from soybean hull. At the market price of $1.75/kg, malic acid production from soy molasses via PMA fermentation offers an economically competitive process for industrial production of bio-based malic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anaerobic Degradation of Phthalate Isomers by Methanogenic Consortia
Kleerebezem, Robbert; Pol, Look W. Hulshoff; Lettinga, Gatze
1999-01-01
Three methanogenic enrichment cultures, grown on ortho-phthalate, iso-phthalate, or terephthalate were obtained from digested sewage sludge or methanogenic granular sludge. Cultures grown on one of the phthalate isomers were not capable of degrading the other phthalate isomers. All three cultures had the ability to degrade benzoate. Maximum specific growth rates (μSmax) and biomass yields (YXtotS) of the mixed cultures were determined by using both the phthalate isomers and benzoate as substrates. Comparable values for these parameters were found for all three cultures. Values for μSmax and YXtotS were higher for growth on benzoate compared to the phthalate isomers. Based on measured and estimated values for the microbial yield of the methanogens in the mixed culture, specific yields for the phthalate and benzoate fermenting organisms were calculated. A kinetic model, involving three microbial species, was developed to predict intermediate acetate and hydrogen accumulation and the final production of methane. Values for the ratio of the concentrations of methanogenic organisms, versus the phthalate isomer and benzoate fermenting organisms, and apparent half-saturation constants (KS) for the methanogens were calculated. By using this combination of measured and estimated parameter values, a reasonable description of intermediate accumulation and methane formation was obtained, with the initial concentration of phthalate fermenting organisms being the only variable. The energetic efficiency for growth of the fermenting organisms on the phthalate isomers was calculated to be significantly smaller than for growth on benzoate. PMID:10049876
Assessment of cocoa (Theobroma cacao L.) butter content and composition throughout fermentations.
Servent, Adrien; Boulanger, Renaud; Davrieux, Fabrice; Pinot, Marie-Neige; Tardan, Eric; Forestier-Chiron, Nelly; Hue, Clotilde
2018-05-01
Cocoa fermentation is a crucial step for the development of cocoa aroma and precursors of high quality cocoa and by-products. This bioprocess has been studied for years to understand cocoa chemical changes but some matters concerning changes in fat content remain that are investigated in this work. Changes in the quantity (free and total fat), extractability and composition of cocoa butter were assessed in samples from Madagascar, the Dominican Republic and Ecuador. Increases in free fat content were highlighted in samples from each origin thanks to the use of the 'soxtec' solvent method, which preserves the integrity of the butter. A 4.71% increase in free fat was measured in the Ecuadorian samples fermented for 144 h. Conversely, total fat content remained stable throughout fermentation. Protein and polyphenol contents decreases were linked to fat content augmentation by a strong negative interaction. Triglyceride and total and linked fatty acid kinetics (0 to 6 days) of the butter remained statistically stable during fermentation, as did unsaponifiable matter. The origin of fermentation had a predominant and significant impact on composition, revealed by PCA. This work underlines and explains the importance of fermentation process in improving yield of fat that can be extracted while preserving the composition of this cocoa butter. This study highlights an interaction in cocoa unfermented or partially fermented beans. This phenomenon causes butter content retention but is slowly broken after 72 h fermentation. Therefore, fermentation appears to be also necessary to enhance the cocoa butter content extracted from the nibs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Batcha, Abeed Fatima Mohidin; Prasad, D M Reddy; Khan, Maksudur R; Abdullah, Hamidah
2014-05-01
Poly(3-hydroxybutyrate) (PHB) is a biodegradable polymer that can be synthesized through bacterial fermentation. In this study, Cupriavidus necator H16 is used to synthesize PHB by using Jatropha oil as its sole carbon source. Different variables mainly jatropha oil and urea concentrations, and agitation rate were investigated to determine the optimum condition for microbial fermentation in batch culture. Based on the results, the highest cell dry weight and PHB concentrations of 20.1 and 15.5 g/L, respectively, were obtained when 20 g/L of jatropha oil was used. Ethanol was used as external stress factor and the addition of 1.5 % ethanol at 38 h had a positive effect with a high PHB yield of 0.987 g PHB/g jatropha oil. The kinetic studies for cell growth rate and PHB production were conducted and the data were fitted with Logistic and Leudeking–Piret models. The rate constants were evaluated and the theoretical values were in accordance with the experimental data obtained
Almeida Streitwieser, Daniela
2017-10-01
An overall kinetic power law model has been successfully applied to study the anaerobic digestion of agricultural wastes. In this comparative kinetic study feed composition, organic load rate, residence time and process temperature have been systematically varied in an automated semi-continuous fermentation system to obtain the dependency of the rate of degradation as biogas production on the organic load rate and temperature. The results show that the overall reaction order depend only on the Chemical Oxygen Demand (COD) at values between 3.6 and 3.7. The Arrhenius approach shows a shift in the rate determining step between the mesophilic and thermophilic temperature regimes. The activation energy at the temperature insensitive mesophilic regime is very small at 8.9 (kJ/mole), while the activation energy at the temperature sensitive thermophilic regime lies around 117 (kJ/mole). Copyright © 2017 Elsevier Ltd. All rights reserved.
Tan, C Q; Sun, H Q; Wei, H K; Tan, J J; Long, G; Jiang, S W; Peng, J
2017-11-29
The effects of soluble fiber inclusion in gestation diets with varying fermentation characteristics (fermentation kinetics and short-chain fatty acids (SCFA)-profile) on lactational feed intake of sows and their piglet growth over two parities were investigated using an in vitro-in vivo methodology. After breeding, 90 multiparous Landrace sows were randomized to one of three experimental diets: the control (CON) diet, konjac flour (KF) diet or sugar beet pulp (SBP) diet. All diets had similar levels of net energy, CP, insoluble fiber and NDF, but KF and SBP diets had higher soluble fiber levels than the CON diet. During gestation, the sows were restrictively fed with three different diets, but during lactation, all the sows were similarly fed ad libitum. The three gestation diets were enzymatically hydrolyzed using pepsin and pancreatin, and enzymolyzed residues were used in in vitro fermentation. Gas and SCFA production were monitored during fermentation. After fermentation, enzymolyzed residues of KF or SBP diets resulted in higher final asymptotic gas volume than those of the CON diet. The enzymolyzed residues of KF diet were mainly part of rapidly fermented fractions, whereas those of SBP diet were mainly part of slowly fermented fractions. In addition, the acetic acid, butyric acid and total SCFA concentrations of enzymolyzed residues of KF diet were higher (P<0.01) than the control and SBP diets. In the in vivo studies, on day 90 of gestation, the KF diet sows had higher plasma SCFA concentration (P<0.05) at 4 h after feeding than the CON diet sows. Furthermore, the KF diet sows had lower plasma free fatty acid (FFA) concentration (P<0.01) at 4 h after feeding, and a lower value of homeostasis model assessment (HOMA)-insulin resistance (P<0.05), but a higher value of HOMA-insulin sensitivity (P<0.01). The KF diet sows also consumed more feed during lactation (P<0.01) and weaned significantly heavier pigs (P<0.01) than the CON diet sows. The overall results showed that the high fermentation capacity KF diet contributed to an increased lactational feed intake and improved performance of piglets in the second reproductive cycle.
López, D; Vázquez-Armijo, J F; López-Villalobos, N; Lee-Rangel, H A; Salem, A Z M; Borquez-Gastelum, J L; Domínguez-Vara, I A; Rojo-Rubio, R
2016-10-01
The aim of this study was to evaluate the effect of different dose levels of exogenous fibrolytic enzymes (EFE) on in vitro ruminal fermentation kinetics and energy utilization of foliages from three browse trees (Pithecellobium dulce, Heliocarpus velutinus and Guazuma ulmifolia). Mixture of EFE product was added to the leaves of the three browse tree species at three dose levels: 0 (control), 3.5 and 7.0 mg/g of DM. Chemical composition of the foliages, including plant secondary metabolites such as total phenolics (TP), saponins (SAP) and aqueous fraction (AF), was determined. In addition, in vitro assaying of ruminal gas production kinetics was determined for the three browse three foliages treated with EFE. P. dulce had the highest crude protein content (p < 0.05), whereas G. ulmifolia had the highest content of neutral detergent fibre and SAP (p < 0.05) and H. velutinus had the lowest content of TP (p < 0.05). The interaction between tree species and dose level of EFE was significant (p < 0.05) for gas production (GP) at 24 h of incubation, parameters b and c of the accumulated GP curve, short-chain fatty acids (SCFA) and metabolizable energy (ME). The lowest (p < 0.01) extent of accumulated GP as well as the b and c values occurred in G. ulmifolia at 0 mg EFE/g DM. P. dulce had the highest (p < 0.05) values for ME and SCFA at the highest dose of EFE. Tree species and dose level had significant (p < 0.05) effects on all parameters describing in vitro ruminal fermentation kinetics and energy utilization. Addition of EFE improved the fermentation kinetics of the browse species considered in this study. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Yan, Shoubao; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao
2013-07-01
The aim of this study was to develop a bioprocess to produce ethanol from food waste at laboratory, semipilot and pilot scales. Laboratory tests demonstrated that ethanol fermentation with reducing sugar concentration of 200 g/L, inoculum size of 2 % (Initial cell number was 2 × 10⁶ CFU/mL) and addition of YEP (3 g/L of yeast extract and 5 g/L of peptone) was the best choice. The maximum ethanol concentration in laboratory scale (93.86 ± 1.15 g/L) was in satisfactory with semipilot scale (93.79 ± 1.11 g/L), but lower than that (96.46 ± 1.12 g/L) of pilot-scale. Similar ethanol yield and volumetric ethanol productivity of 0.47 ± 0.02 g/g, 1.56 ± 0.03 g/L/h and 0.47 ± 0.03 g/g, 1.56 ± 0.03 g/L/h after 60 h of fermentation in laboratory and semipilot fermentors, respectively, however, both were lower than that (0.48 ± 0.02 g/g, 1.79 ± 0.03 g/L/h) of pilot reactor. In addition, simple models were developed to predict the fermentation kinetics during the scale-up process and they were successfully applied to simulate experimental results.
Ungerfeld, Emilio M.
2015-01-01
Research is being conducted with the objective of decreasing methane (CH4) production in the rumen, as methane emissions from ruminants are environmentally damaging and a loss of digestible energy to ruminants. Inhibiting ruminal methanogenesis generally results in accumulation of dihydrogen (H2), which is energetically inefficient and can inhibit fermentation. It would be nutritionally beneficial to incorporate accumulated H2 into propionate or butyrate production, or reductive acetogenesis. The objective of this analysis was to examine three possible physicochemical limitations to the incorporation of accumulated H2 into propionate and butyrate production, and reductive acetogenesis, in methanogenesis-inhibited ruminal batch and continuous cultures: (i) Thermodynamics; (ii) Enzyme kinetics; (iii) Substrate kinetics. Batch (N = 109) and continuous (N = 43) culture databases of experiments with at least 50% inhibition in CH4 production were used in this meta-analysis. Incorporation of accumulated H2 into propionate production and reductive acetogenesis seemed to be thermodynamically feasible but quite close to equilibrium, whereas this was less clear for butyrate. With regard to enzyme kinetics, it was speculated that hydrogenases of ruminal microorganisms may have evolved toward high-affinity and low maximal velocity to compete for traces of H2, rather than for high pressure accumulated H2. Responses so far obtained to the addition of propionate production intermediates do not allow distinguishing between thermodynamic and substrate kinetics control. PMID:26635743
The effect of protected sardine fish oil as feed supplement on ruminal fermentation
NASA Astrophysics Data System (ADS)
Pramono, A.; Widayati, D. T.; Handayanta, E.
2018-03-01
The research aims to evaluate the influence of protected sardine fish oil as feed supplement on ruminal fermentation (pH rumen fluid, ammonia concentration and volatile fatty acids production in the rumen). Protected feed supplement was produced from sardine fish oil and soybean meal, through two protection methods, they were saponification and microencapsulation. The experiment consists of two treatments i.e. P0: basal diet (control) and P1: basal diet + 3 % protected feed supplement. Each treatment was repeated 10 times. The kinetics observation of the pH rumen fluid, ammonia concentration and volatile fatty acids production were performed at incubation times 0, 2, 4 and 6 hours respectively. Data were analyzed using independent samples t-test. Results in cow with protected feed supplement showed that kinetics of pH rumen fluid: 7.23; 7.13; 6.90 and 6.76 respectively; ruminal ammonia concentration: 26.70; 31.06; 19.75 and 15.52 respectively; and volatile fatty acids production: 22.75; 26.08; 29.19 and 25.79 respectively. The results could be concluded that the effect of supplementation of protected sardine fish oil have an optimal of pH rumen fluid, ammonia concentration, and volatile fatty acids production so it did not interfere the ruminal fermentation in the rumen.
Generalised additive modelling approach to the fermentation process of glutamate.
Liu, Chun-Bo; Li, Yun; Pan, Feng; Shi, Zhong-Ping
2011-03-01
In this work, generalised additive models (GAMs) were used for the first time to model the fermentation of glutamate (Glu). It was found that three fermentation parameters fermentation time (T), dissolved oxygen (DO) and oxygen uptake rate (OUR) could capture 97% variance of the production of Glu during the fermentation process through a GAM model calibrated using online data from 15 fermentation experiments. This model was applied to investigate the individual and combined effects of T, DO and OUR on the production of Glu. The conditions to optimize the fermentation process were proposed based on the simulation study from this model. Results suggested that the production of Glu can reach a high level by controlling concentration levels of DO and OUR to the proposed optimization conditions during the fermentation process. The GAM approach therefore provides an alternative way to model and optimize the fermentation process of Glu. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Glaser, Robert; Venus, Joachim
2017-04-01
The data presented in this article are related to the research article entitled "Model-based characterization of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium (R. Glaser and J. Venus, 2016) [1]". This data survey provides the information on characterization of three Bacillus coagulans strains. Information on cofermentation of lignocellulose-related sugars in lignin-containing media is given. Basic characterization data are supported by optical-density high-throughput screening and parameter adjustment to logistic growth models. Lab scale fermentation procedures are examined by model adjustment of a Monod kinetics-based growth model. Lignin consumption is analyzed using the data on decolorization of a lignin-supplemented minimal medium.
Assar, Rodrigo; Montecino, Martín A; Maass, Alejandro; Sherman, David J
2014-07-01
In order to describe the dynamic behavior of a complex biological system, it is useful to combine models integrating processes at different levels and with temporal dependencies. Such combinations are necessary for modeling acclimatization, a phenomenon where changes in environmental conditions can induce drastic changes in the behavior of a biological system. In this article we formalize the use of hybrid systems as a tool to model this kind of biological behavior. A modeling scheme called strong switches is proposed. It allows one to take into account both minor adjustments to the coefficients of a continuous model, and, more interestingly, large-scale changes to the structure of the model. We illustrate the proposed methodology with two applications: acclimatization in wine fermentation kinetics, and acclimatization of osteo-adipo differentiation system linking stimulus signals to bone mass. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Florence, Ana Carolina R; Béal, Catherine; Silva, Roberta C; Bogsan, Cristina S B; Pilleggi, Ana Lucia O S; Gioielli, Luiz Antonio; Oliveira, Maricê N
2012-12-15
Development of dairy organic probiotic fermented products is of great interest as they associate ecological practices and benefits of probiotic bacteria. As organic management practices of cow milk production allow modification of the fatty acid composition of milk (as compared to conventional milk), we studied the influence of the type of milk on some characteristics of fermented milks, such as acidification kinetics, bacterial counts and fatty acid content. Conventional and organic probiotic fermented milks were produced using Bifidobacterium animalis subsp. lactis HN019 in co-culture with Streptococcus thermophilus TA040 and Lactobacillus delbrueckii subsp. bulgaricus LB340. The use of organic milk led to a higher acidification rate and cultivability of Lactobacillus bulgaricus. Fatty acids profile of organic fermented milks showed higher amounts of trans-octadecenoic acid (C18:1, 1.6 times) and polyunsaturated fatty acids, including cis-9 trans-11, C18:2 conjugated linoleic (CLA-1.4 times), and α-linolenic acids (ALA-1.6 times), as compared to conventional fermented milks. These higher levels were the result of both initial percentage in the milk and increase during acidification, with no further modification during storage. Finally, use of bifidobacteria slightly increased CLA relative content in the conventional fermented milks, after 7 days of storage at 4°C, whereas no difference was seen in organic fermented milks. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mechmeche, Manel; Kachouri, Faten; Yaghlane, Hana B; Ksontini, Hamida; Setti, Khaoula; Hamdi, Moktar
2017-03-01
The aim of the present study was to evaluate the applicability of using protein-rich isolates from tomato seed as a sole source of nutrition for the growth of lactic acid bacteria. Unstructured mathematical and logistic models were proposed to describe growth, pH drop, lactic acid production and nutriment consumption by Lactobacillus plantarum in whole and defatted isolates in order to compare their suitability for the production of a fermented beverage. These media have considerable good quantities of nutriment that allowed the growth of L. plantarum, after which the cell numbers begin to decline. The maximum biomass was observed in defatted isolate (1.42 g L -1 ) followed by the whole isolate (1.24 g L -1 ). The lactic acid increased by about 5.5 and 6.5 times respectively in whole and defatted protein isolates. However, significant nutriment consumption occurred during the growth phase as well as stationary phase. A reduction of 61.90% and 95.88% in sugar content, as well as 21.91% and 16.93% reduction in protein content were observed respectively in whole and defatted isolates. In most cases, the proposed models adequately describe the biochemical changes taking place during fermentation and are a promising approach for the formulation of tomato seed-based functional foods.
Moshi, Anselm P; Crespo, Carla F; Badshah, Malik; Hosea, Kenneth M M; Mshandete, Anthony Manoni; Mattiasson, Bo
2014-03-01
A process for the production of high bioethanol titre was established through fed-batch and simultaneous saccharification and fermentation (FB-SSF) of wild, non-edible cassava Manihot glaziovii. FB-SSF allowed fermentation of up to 390g/L of starch-derived glucose achieving high bioethanol concentration of up to 190g/L (24% v/v) with yields of around 94% of the theoretical value. The wild cassava M. glaziovii starch is hydrolysable with a low dosage of amylolytic enzymes (0.1-0.15% v/w, Termamyl® and AMG®). The Automatic Gas Potential Test System (AMPTS) was adapted to yeast ethanol fermentation and demonstrated to be an accurate, reliable and flexible device for studying the kinetics of yeast in SSF and FB-SSF. The bioethanol derived stoichiometrically from the CO2 registered in the AMPTS software correlated positively with samples analysed by HPLC (R(2)=0.99). Copyright © 2013 Elsevier Ltd. All rights reserved.
Protein enrichment of brewery spent grain from Rhizopus oligosporus by solid-state fermentation.
Canedo, Marianny Silva; de Paula, Fernanda Gomes; da Silva, Flávio Alves; Vendruscolo, Francielo
2016-07-01
Brewery spent grain represents approximately 85 % of total by-products generated in a brewery. Consisting of carbohydrates, fiber, minerals and low amounts of protein, the use of brewery spent grain is limited to the feeding of ruminants; however, its potential use should be investigated. The reuse of this by-product using microorganisms by solid-state fermentation process as the case of protein enrichment by single-cell protein incorporation is an alternative to ensure sustainability and generate commercially interesting products. In this context, the aim of this study was to grow Rhizopus oligosporus in brewery spent grain under different initial moisture contents and nitrogen sources to increase the protein content of the fermented material. After 7 days of fermentation, increase of 2-4 times in the crude protein and soluble protein content was verified, respectively, compared to unfermented brewery spent grain. The kinetics of protein enrichment demonstrated the possibility of application of this technique, which can be a great alternative for use in diets for animals.
Abad, Sergi; Pérez, Xavier; Planas, Antoni; Turon, Xavier
2014-04-01
Recently, the need for crude glycerol valorisation from the biodiesel industry has generated many studies for practical and economic applications. Amongst them, fermentations based on glycerol media for the production of high value metabolites are prominent applications. This has generated a need to develop analytical techniques which allow fast and simple glycerol monitoring during fermentation. The methodology should be fast and inexpensive to be adopted in research, as well as in industrial applications. In this study three different methods were analysed and compared: two common methodologies based on liquid chromatography and enzymatic kits, and the new method based on a DotBlot assay coupled with image analysis. The new methodology is faster and cheaper than the other conventional methods, with comparable performance. Good linearity, precision and accuracy were achieved in the lower range (10 or 15 g/L to depletion), the most common range of glycerol concentrations to monitor fermentations in terms of growth kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluation of the effect of supplementing fermented milk with quinoa flour on probiotic activity.
Casarotti, Sabrina N; Carneiro, Bruno M; Penna, Ana Lúcia B
2014-10-01
In this work, we investigated the effect of supplementing fermented milk with quinoa flour as an option to increase probiotic activity during fermented milk production and storage. Fermented milk products were produced with increasing concentrations of quinoa flour (0, 1, 2, or 3g/100g) and submitted to the following analyses at 1, 14, and 28 d of refrigerated storage: postacidification, bacterial viability, resistance of probiotics to simulated gastrointestinal (GI) conditions, and adhesion of probiotics to Caco-2 cells in vitro. The kinetics of acidification were measured during the fermentation process. The time to reach maximum acidification rate, time to reach pH 5.0, and time to reach pH 4.6 (end of fermentation) were similar for all treatments. Adding quinoa flour had no effect on fermentation time; however, it did contribute to postacidification of the fermented milk during storage. Quinoa flour did not affect counts of Bifidobacterium animalis ssp. lactis BB-12 or Lactobacillus acidophilus La-5 during storage, it did not protect the probiotic strains during simulated GI transit, and it did not have a positive effect on the adhesion of probiotic bacteria to Caco-2 cells in vitro. Additionally, the adhesion of strains to Caco-2 cells decreased during refrigerated storage of fermented milk. Although the addition of up to 3% quinoa flour had a neutral effect on probiotic activity, its incorporation to fermented milk can be recommended because it is an ingredient with high nutritive value, which may increase the appeal of the product to consumers. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Díaz-Hellín, Patricia; Naranjo, Victoria; Úbeda, Juan; Briones, Ana
2016-12-01
When exposed to mixtures of glucose and fructose, as occurs during the fermentation of grape juice into wine, Saccharomyces cerevisiae uses these sugars at different rates. Moreover, glucose and fructose are transported by the same hexose transporters (HXT), which present a greater affinity for glucose, so that late in fermentation, fructose becomes the predominant sugar. Only a few commercial fermentation activators are available to optimally solve the problems this entails. The aim of this study was to investigate the relation between HXT3 gene expression and fructose/glucose discrepancy in two different media inoculated with a commercial wine strain of S. cerevisiae in the presence of three metabolic activators. Fermentation kinetics, vitality and major metabolites were also measured. Rehydration with ergosterol improved the area under the curve and the growth rate (µ max ) in both studied media. Also, the fructose/glucose discrepancy values were improved with all activator treatments, highlighting rehydration in the presence of ascorbic acid. The yeast rehydration process was demonstrated to influence HXT3 expression under the studied conditions. Tetrahydrofolic acid treatment greatly influenced HXT3 gene expression, especially on the 12th day of the fermentation process. To a lesser extent, ergosterol and ascorbic acid also improved this parameter.
Chen, Kai; Escott, Carlos; Loira, Iris; Del Fresno, Juan Manuel; Morata, Antonio; Tesfaye, Wendu; Calderon, Fernando; Suárez-Lepe, Jose Antonio; Han, Shunyu; Benito, Santiago
2018-02-01
Today, many non-Saccharomyces strains have been verified can be positive for the development of wine anthocyanin and aroma in different fermentation scenarios. Moreover, oenological tannins are widely used in wine industry to improve the colour profile and aroma complexity. The aim of this work is to analyze the fermentation characters of non-Saccharomyces strains and investigate the effects of pre-fermentative addition of oenological tannins on the wine components as well as sensory properties. For this purpose, five selected non-Saccharomyces strains and grape seed tannin were used to carry out the different fermentation trials. As a result, the grape seed tannin were less likely to influence growth kinetics of non-Saccharomyces strains. Schizosaccharomyces pombe has been proved can be effective to reduce the malic acid content while increase the level of vinylphenolic pyranoanthocyanin, which is positive for wine colour stability. Pre-fermentative use of oenological tannin was verified could be beneficial for the wines fermented with non-Saccharomyces regarding the improvement of wine colour, anthocyanin composition and the complexity of volatile compounds. Nevertheless, sensory analysis showed that oenological tannin could be less effective to modify the aroma impression of non-Saccharomyces wines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ferone, Mariateresa; Raganati, Francesca; Olivieri, Giuseppe; Salatino, Piero; Marzocchella, Antonio
2017-12-01
Succinic acid (SA) is a well-established chemical building block. Actinobacillus succinogenes fermentation is by far the most investigated route due to very promising high SA yield and titer on several sugars. This study contributes to include the SA production within the concept of biorefinery of lignocellulose biomass. The study was focused on the SA production by A. succinogenes DSM 22257 using sugars representative from lignocellulose hydrolysis-glucose, mannose, arabinose, and xylose-as carbon source. Single sugar batch fermentation tests and mixture sugar fermentation tests were carried out. All the sugars investigated were converted in succinic acid by A. succinogenes. The best fermentation performances were measured in tests with glucose as carbon source. The bacterial growth kinetics was characterized by glucose inhibition. No inhibition phenomena were observed with the other sugar investigated. The sugar mixture fermentation tests highlighted the synergic effects of the co-presence of the four sugars. Under the operating conditions tested, the final concentration of succinic acid in the sugar mixture test was larger (27 g/L) than that expected (25.5 g/L) by combining the fermentation of the single sugar. Moreover, the concentration of acetic and formic acid was lower, consequently obtaining an increment in the succinic acid specificity.
Patrignani, Francesca; Lanciotti, Rosalba; Mathara, Julius Maina; Guerzoni, Maria Elisabetta; Holzapfel, Wilhelm H
2006-03-01
The purpose of this research was the evaluation of technological features and of the ability of functional LAB strains with desirable sensory characteristics, to produce fermented milk. Eight strains of Lactobacillus plantarum, Lactobacillus acidophilus, Lactobacillus paracasei and Lactococcus lactis, isolated from Maasai traditional fermented milk in Kenya and previously tested for their probiotic properties, were selected for this investigation. Technological features such as growth kinetics in fresh heat-treated whole milk medium and survival in the final product during storage at 4 degrees C, were studied. The strains Lb. acidophilus BFE 6,059, Lb. paracasei BFE 5,264 and Lc. lactis BFE 6,049 showed the best potential and were thus selected for use as starter cultures in further trials with the objective to improve their technological performance and to optimise the sensory features of fermented milk obtained. The effects of fat (F), non-fat milk solids (S) and fermentation temperature (T), modulated according to a Central Composite Design, on fermentation rates and viability losses during refrigerated storage of the chosen starters, and on product texture parameters, were studied. From the data analysis, it was possible to select optimum conditions for enhancing positive sensory traits of final products and for improving the survival of these potentially probiotic cultures.
Effect of temperature on Brettanomyces bruxellensis: metabolic and kinetic aspects.
Brandam, Cédric; Castro-Martínez, Claudia; Délia, Marie-Line; Ramón-Portugal, Felipe; Strehaiano, Pierre
2008-01-01
The effect of temperatures ranging from 15 to 35 degrees C on a culture of Brettanomyces bruxellensis was investigated in regards to thermodynamics, metabolism, and kinetics. In this temperature range, we observed an increase in growth and production rates. The growth behavior was well represented using the Arrhenius model, and an apparent activation energy of 16.61 kcal/mol was estimated. A stuck fermentation was observed at 35 degrees C as represented by high cell death. The carbon balance established that temperature had no effect on repartition of the glucose consumption between biomass and products. Hence, the same biomass concentration was obtained for all temperatures, except at 35 degrees C. Moreover, using logistic and Luedeking-Piret models, we demonstrated that production rates of ethanol and acetic acid were partially growth associated. Parameters associated with growth (alpha eth and alpha aa) remained constant with changing temperature, whereas, parameters associated with the population (beta eth and beta aa) varied. Optimal values were obtained at 32 degrees C for ethanol and at 25 degrees C for acetic acid.
Unrean, Pornkamol; Srienc, Friedrich
2010-01-01
We have developed highly efficient ethanologenic E. coli strains that selectively consume pentoses and/or hexoses. Mixed cultures of these strains can be used to selectively adjust the sugar utilization kinetics in ethanol fermentations. Based on the kinetics of sugar utilization, we have designed and implemented an immobilized cell system for the optimized continuous conversion of sugars into ethanol. The results confirm that immobilized mixed cultures support a simultaneous conversion of hexoses and pentoses into ethanol at high yield and at a faster rate than immobilized homogenous cells. Continuous ethanol production has been maintained for several weeks at high productivity with near complete sugar utilization. The control of sugar utilization using immobilized mixed cultures can be adapted to any composition of hexoses and pentoses by adjusting the strain distribution of immobilized cells. The approach, therefore, holds promise for ethanol fermentation from lignocellulosic hydrolysates where the feedstock varies in sugar composition. PMID:20699108
Sewsynker-Sukai, Yeshona; Gueguim Kana, E B
2018-08-01
This study investigates the simultaneous saccharification and fermentation (SSF) process for bioethanol production from corn cobs with prehydrolysis (PSSF) and without prehydrolysis (OSSF). Two response surface models were developed with high coefficients of determination (>0.90). Process optimization gave high bioethanol concentrations and bioethanol conversions for the PSSF (36.92 ± 1.34 g/L and 62.36 ± 2.27%) and OSSF (35.04 ± 0.170 g/L and 58.13 ± 0.283%) models respectively. Additionally, the logistic and modified Gompertz models were used to study the kinetics of microbial cell growth and ethanol formation under microaerophilic and anaerobic conditions. Cell growth in the OSSF microaerophilic process gave the highest maximum specific growth rate (µ max ) of 0.274 h -1 . The PSSF microaerophilic bioprocess gave the highest potential maximum bioethanol concentration (P m ) (42.24 g/L). This study demonstrated that microaerophilic rather than anaerobic culture conditions enhanced cell growth and bioethanol production, and that additional prehydrolysis steps do not significantly impact on the bioethanol concentration and conversion in SSF process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Muik, Barbara; Edelmann, Andrea; Lendl, Bernhard; Ayora-Cañada, María José
2002-09-01
An automated method for measuring the primary amino acid concentration in wine fermentations by sequential injection analysis with spectrophotometric detection was developed. Isoindole-derivatives from the primary amino acid were formed by reaction with o-phthaldialdehyde and N-acetyl- L-cysteine and measured at 334 nm with respect to a baseline point at 700 nm to compensate the observed Schlieren effect. As the reaction kinetic was strongly matrix dependent the analytical readout at the final reaction equilibrium has been evaluated. Therefore four parallel reaction coils were included in the flow system to be capable of processing four samples simultaneously. Using isoleucine as the representative primary amino acid in wine fermentations a linear calibration curve from 2 to 10 mM isoleucine, corresponding to 28 to 140 mg nitrogen/L (N/L) was obtained. The coefficient of variation of the method was 1.5% at a throughput of 12 samples per hour. The developed method was successfully used to monitor two wine fermentations during alcoholic fermentation. The results were in agreement with an external reference method based on high performance liquid chromatography. A mean-t-test showed no significant differences between the two methods at a confidence level of 95%.
Leroy, Frédéric; de Vuyst, Luc
1999-01-01
The specific conditions in the batter of raw fermented sausages may reduce the efficiency of bacteriocin-producing starter cultures. In this work, using in vitro fermentation, we found that sodium chloride and sodium nitrite interfere with the growth of Lactobacillus sakei CTC 494, an organism which produces the antilisterial bacteriocin sakacin K. Because sakacin K production follows primary metabolite kinetics, a decrease in cell formation resulted in a decrease in sakacin K production as well. Sodium chloride dramatically influenced bacteriocin production by decreasing both biomass production and specific bacteriocin production. Sodium nitrite, however, had no effect on specific bacteriocin production and decreased bacteriocin production only because of its effect on cell growth. Moreover, sodium nitrite enhanced the toxic effect of lactic acid on bacterial growth. PMID:10583988
Torres, J; Muñoz, L S; Peters, M; Montoya, C A
2013-12-01
In the tropic, the small-scale pork production is negatively influenced by the low availability of high protein ingredients. The study aimed to compare the protein and starch hydrolysis as well as fibre fermentation of five tropical legume grains (Canavalia brasiliensis, CB; Lablab purpureus, LP; Vigna unguiculata, white WVU; pink PVU and red RVU) and a control (extruded full-fat soybean (SB)), using an in vitro model that simulated digestion in the gastrointestinal tract of pigs. A sequential in vitro hydrolysis was carried out with pepsin (120 min) and pancreatin (240 min) to determine the degree of hydrolysis (DH) of protein and starch. The indigestible residue was fermented in vitro with pig faecal inoculum to compare the modelled kinetics of gas production over 72 h and the production of short-chain fatty acids (SCFA). After 360 min of pepsin-pancreatin hydrolysis, SB and WVU had the highest protein hydrolysis (76% and 66%) and PVU and WVU the highest starch hydrolysis (70% and 64%) (p < 0.01). The in vitro fermentation of the indigestible residue of WVU resulted in the highest (482 ml/g DM; p < 0.001) and CB the lowest (335 ml/g DM) gas production. These data were consistent with the SCFA production. Butyrate, propionate and total SCFA were higher (or tended) for RVU and WVU when compared with CB and SB (p = 0.015-0.085). In conclusion, the high DH of protein and starch as well as the high gas and SCFA production obtained with raw WVU makes it an interesting alternative to SB as a feedstuff for swine nutrition in the tropic. Other legume grains (LP and CB) cannot be used by pigs in their raw form. © 2012 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Rodrigues, Rita C. L. B.; Lu, Chenfeng; Lin, Bernice; Jeffries, Thomas W.
Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3Δ) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h-1). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 gxylose/gcel h) and xylitol production (0.059 gxylitol/gcel h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.
Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T.; Ferreira, António C.; Bauer, Florian F.
2017-01-01
Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways. PMID:29312237
Fairbairn, Samantha; McKinnon, Alexander; Musarurwa, Hannibal T; Ferreira, António C; Bauer, Florian F
2017-01-01
Nitrogen availability and utilization by Saccharomyces cerevisiae significantly influence fermentation kinetics and the production of volatile compounds important for wine aroma. Amino acids are the most important nitrogen source and have been classified based on how well they support growth. This study evaluated the effect of single amino acids on growth kinetics and major volatile production of two phenotypically different commercial wine yeast strains in synthetic grape must. Four growth parameters, lag phase, maximum growth rate, total biomass formation and time to complete fermentation were evaluated. In contrast with previous findings, in fermentative conditions, phenylalanine and valine supported growth well and asparagine supported it poorly. The four parameters showed good correlations for most amino acid treatments, with some notable exceptions. Single amino acid treatments resulted in the predictable production of aromatic compounds, with a linear correlation between amino acid concentration and the concentration of aromatic compounds that are directly derived from these amino acids. With the increased complexity of nitrogen sources, linear correlations were lost and aroma production became unpredictable. However, even in complex medium minor changes in amino acid concentration continued to directly impact the formation of aromatic compounds, suggesting that the relative concentration of individual amino acids remains a predictor of aromatic outputs, independently of the complexity of metabolic interactions between carbon and nitrogen metabolism and between amino acid degradation and utilization pathways.
Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian
2013-08-01
Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application. Copyright © 2013 Wiley Periodicals, Inc.
Wang, Min; Wang, Rong; Yang, Shan; Deng, Jin Ping; Tang, Shao Xun; Tan, Zhi Liang
2016-02-01
Methane (CH4 ) can be mitigated through directly inhibiting methanogen activity and starving methanogens by hydrogen (H2 ) sink. Three types of mechanism (i.e. bromoethanesulphonate (BES), nitrate and emodin) and doses of CH4 mitigation agents were employed to investigate their pathways of CH4 inhibition. Results indicated that both BES and emodin inhibited CH4 production and altered H2 balance, which could be accompanied by decreased dry matter disappearance (DMD), fractional rate of gH2 formation, volatile fatty acid (VFA) production, ability to produce and use reducing equivalences and molecular H2 , and increased final asymptotic gH2 production, time to the peak of gH2 , discrete lag time of gH2 production and fermentation efficiency. However, emodin decreased gas volume produced by rapidly fermentable components of substrate and the rate of fermentation at early stage of incubation, while BES supplementation inhibited gas volume produced by both rapidly and slowly fermentable components of substrate and the rate of fermentation at middle or late stage of incubation. The nitrate supplementation inhibited CH4 production without affecting VFA profile, because of its dual role as H2 sink and being toxic to methanogens. Nitrate supplementation had more complicated pattern of fermentation, VFA production and profile and H2 balance in comparison to BES and emodin supplementation. © 2015 Japanese Society of Animal Science.
2017-01-01
Summary In this work, autochthonous lactic acid bacteria (LAB) were isolated from chia (Salvia hispanica L.) dough and selected on the basis of the kinetics of acidification and proteolytic activity. Strain no. C8, identified as Lactobacillus plantarum C8, was selected and used as starter to obtain chia sourdough. Lactic acid fermentation increased the organic acid mass fractions (lactic, acetic and phenyl lactic acids to 12.3 g, 1.0 g and 23.8 µg per kg of dough respectively), and antioxidant activities, which increased by approx. 33–40% compared to unfermented chia flour dough. In addition, total phenolic content increased 25% and its composition was strongly modified after 24 h of fermentation by L. plantarum C8. Chlorogenic acid was only found in the fermented dough (2.5 mg/g), while ferulic acid was detected from the beginning of fermentation, being 32% higher in chia sourdough (5.6 mg/g). The use of fermented chia sourdough improved the overall characteristics of white bread, including physical (e.g. reduced hardness and chewiness of the crumb) and antioxidant properties (25% on average), compared to the white bread. These results indicate that the use of chia sourdough could be a promising alternative to improve the technological and antioxidant properties of wheat bread. In addition, this work has shown, for the first time, that lactic acid bacterium is able to ferment chia dough, improving its overall characteristics. PMID:29089851
NASA Astrophysics Data System (ADS)
Yulistiani, D.; Nurhayati
2018-02-01
Utilization of crop by-products such as maize straw mixed with legume is expected to be able to overcome the limitation of forage availability during dry season and have similar nutritional value with grass. Addition of fermentable carbohydrate in this diet can be improved fermentability and reduced methane production. The objective of this study was to evaluate supplementation of ground corn grain or rice bran as fermentable carbohydrate in maize straw-gliricidiamixture. Treatment diets evaluated were: Maize straw + gliricidialeaf meal (Control/RO); Control + 10% ground maize grain (ROC); Control + 10% rice bran (RORB). Maize straw was chopped and ground then mixed with gliricidia leaf meal at ratio 60:40% DM. Maize straw-gliricidia mixture then supplemented either with ground corn grain or rice bran at 10% of DM basal diet (control). Sample was incubated for 48 hours, gas production was recorded at 4, 8,12, 16, 24, 36 and 48 hours. Study was conducted in randomized complete design. Results of the study showed that supplementation of fermentable carbohydrate from corn grain or rice bran was able to increased (P<0.05) rate of gas production by 24 and 18% respectively. However only in ROC potential gas production was increased (P<0.05) by 32% and percentage of methane production was decreased. From this study it can be concluded that supplementation of ground corn grain at 10% in maize straw-gliricidia mixture was able to improve diet fermentation and reduced methane production.
Chávez-González, Mónica L; Guyot, Sylvain; Rodríguez-Herrera, Raul; Prado-Barragán, Arely; Aguilar, Cristóbal N
2018-06-01
Due to great interest on producing bioactive compounds for functional foods and biopharmaceuticals, it is important to explore the microbial degradation of potential sources of target biomolecules. Gallotannins are polyphenols present in nature, an example of them is tannic acid which is susceptible to enzymatic hydrolysis. This hydrolysis is performed by tannase or tannin acyl hydrolase, releasing in this way, biomolecules with high-added value. In the present study, chemical profiles obtained after fungal degradation of tannic acid under two bioprocesses (submerged fermentation (SmF) and solid state fermentation (SSF)) were determined. In both fermentation systems (SmF and SSF), Aspergillus niger GH1 strain and tannic acid as a sole carbon source and inducer were used (the presence of tannic acid promotes production of enzyme tannase). In case of SSF, polyurethane foam (PUF) was used like as support of fermentation; culture medium only was used in case of submerged fermentation. Fermentation processes were monitored during 72 h; samples were taken kinetically every 8 h; and all extracts obtained were partially purified to obtain polyphenolic fraction and then were analyzed by liquid chromatography-mass spectrometry (LC-MS). Molecules like gallic acid and n-galloyl glucose were identified as intermediates in degradation of tannic acid; during SSF was identified ellagic acid production. The results obtained in this study will contribute to biotechnological production of ellagic acid.
Cabezas-Garcia, E H; Krizsan, S J; Shingfield, K J; Huhtanen, P
2017-06-01
A meta-analysis based on an individual-cow data set was conducted to investigate the effects of between-cow variation and related animal variables on predicted CH 4 emissions from dairy cows. Data were taken from 40 change-over studies consisting of a total of 637 cow/period observations. Animal production and rumen fermentation characteristics were measured for 154 diets in 40 studies; diet digestibility was measured for 135 diets in 34 studies, and ruminal digestion kinetics was measured for 56 diets in 15 studies. The experimental diets were based on grass silage, with cereal grains or by-products as energy supplements, and soybean or canola meal as protein supplements. Average forage:concentrate ratio across all diets on a dry matter basis was 59:41. Methane production was predicted from apparently fermented substrate using stoichiometric principles. Data were analyzed by mixed-model regression using diet and period within experiment as random effects, thereby allowing the effect of experiment, diet, and period to be excluded. Dry matter intake and milk yield were more repeatable experimental measures than rumen fermentation, nutrient outflow, diet digestibility, or estimated CH 4 yield. Between-cow coefficient of variation (CV) was 0.010 for stoichiometric CH 4 per mol of volatile fatty acids and 0.067 for predicted CH 4 yield (CH 4 /dry matter intake). Organic matter digestibility (OMD) also displayed little between-cow variation (CV = 0.013), indicating that between-cow variation in diet digestibility and rumen fermentation pattern do not markedly contribute to between cow-variation in CH 4 yield. Digesta passage rate was much more variable (CV = 0.08) between cows than OMD or rumen fermentation pattern. Increased digesta passage rate is associated with improved energetic efficiency of microbial N synthesis, which partitions fermented substrate from volatile fatty acids and gases to microbial cells that are more reduced than fermented carbohydrates. Positive relationships were observed between CH 4 per mol of volatile fatty acids versus OMD and rumen ammonia N concentration versus OMD; and negative relationships between the efficiency of microbial N synthesis versus OMD and digesta passage rate versus OMD, suggesting that the effects of these variables on CH 4 yield were additive. It can be concluded that variations in OMD and efficiency in microbial N synthesis resulting from variations in digesta passage contribute more to between-animal variation in CH 4 emissions than rumen fermentation pattern. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kinetic study of enzymatic hydrolysis of acid-pretreated coconut coir
NASA Astrophysics Data System (ADS)
Fatmawati, Akbarningrum; Agustriyanto, Rudy
2015-12-01
Biomass waste utilization for biofuel production such as bioethanol, has become more prominent currently. Coconut coir is one of lignocellulosic food wastes, which is abundant in Indonesia. Bioethanol production from such materials consists of more than one step. Pretreatment and enzymatic hydrolysis is crucial steps to produce sugar which can then be fermented into bioethanol. In this research, ground coconut coir was pretreated using dilute sulfuric acid at 121°C. This pretreatment had increased the cellulose content and decreased the lignin content of coconut coir. The pretreated coconut coir was hydrolyzed using a mix of two commercial cellulase enzymes at pH of 4.8 and temperature of 50°C. The enzymatic hydrolysis was conducted at several initial coconut coir slurry concentrations (0.1-2 g/100 mL) and reaction times (2-72 hours). The reducing sugar concentration profiles had been produced and can be used to obtain reaction rates. The highest reducing sugar concentration obtained was 1,152.567 mg/L, which was produced at initial slurry concentration of 2 g/100 mL and 72 hours reaction time. In this paper, the reducing sugar concentrations were empirically modeled as a function of reaction time using power equations. Michaelis-Menten kinetic model for enzymatic hydrolysis reaction is adopted. The kinetic parameters of that model for sulfuric acid-pretreated coconut coir enzymatic hydrolysis had been obtained which are Vm of 3.587×104 mg/L.h, and KM of 130.6 mg/L.
L-lactic acid production from apple pomace by sequential hydrolysis and fermentation.
Gullón, Beatriz; Yáñez, Remedios; Alonso, José Luis; Parajó, J C
2008-01-01
The potential of apple pomace (a solid waste from cider and apple juice making factories) as a source of sugars and other compounds for fermentation was evaluated. The effect of the cellulase-to-solid ratio (CSR) and the liquor-to-solid ratio (LSR) on the kinetics of glucose and total monosaccharide generation was studied. Mathematical models suitable for reproducing and predicting the hydrolyzate composition were developed. When samples of apple pomace were subjected to enzymatic hydrolysis, the glucose and fructose present in the raw material as free monosaccharides were extracted at the beginning of the process. Using low cellulase and cellobiase charges (8.5 FPU/g-solid and 8.5 IU/g-solid, respectively), 79% of total glucan was saccharified after 12 h, leading to solutions containing up to 43.8 g monosaccharides/L (glucose, 22.8 g/L; fructose, 14.8 g/L; xylose+mannose+galactose, 2.5 g/L; arabinose+rhamnose, 2.8g/L). These results correspond to a monosaccharide/cellulase ratio of 0.06 g/FPU and to a volumetric productivity of 3.65 g of monosaccharides/L h. Liquors obtained under these conditions were used for fermentative lactic acid production with Lactobacillus rhamnosus CECT-288, leading to media containing up to 32.5 g/L of L-lactic acid after 6 h (volumetric productivity=5.41 g/L h, product yield=0.88 g/g).
USDA-ARS?s Scientific Manuscript database
Fructans are an important nonfiber carbohydrate in cool-season grasses. Their fermentation by ruminal microbes is not well described, though such information is needed to understand their nutritional value to ruminants. Our objective was to compare kinetics and product formation of orchardgrass fruc...
Learning by Brewing: Beer Production Experiments in the Chemical Engineering Laboratory
ERIC Educational Resources Information Center
Cerretani, Colin; Kelkile, Esayas; Landry, Alexandra
2017-01-01
We discuss the successful creation and implementation of a biotechnology track within the chemical engineering unit operations course. The track focuses on engineering principles relevant to brewing. Following laboratory modules investigating heat transfer processes and yeast fermentation kinetics, student groups design and implement a project to…
Mohana, Sarayu; Shah, Amita; Divecha, Jyoti; Madamwar, Datta
2008-11-01
Xylanase production by a newly isolated strain of Burkholderia sp. was studied under solid state fermentation using anaerobically treated distillery spent wash. Response surface methodology (RSM) involving Box-Behnken design was employed for optimizing xylanase production. The interactions between distillery effluent concentration, initial pH, moisture ratio and inoculum size were investigated and modeled. Under optimized conditions, xylanase production was found to be in the range of 5200-5600 U/g. The partially purified enzyme recovered after ammonium sulphate fractionation showed maximum activity at 50 degrees C and pH 8.6. Kinetic parameters like Km and Vmax for xylan were found to be 12.75 mg/ml and 165 micromol/mg/min. In the presence of metal ions such as Ca2+, Co2+, Mn2+, Ba2+, Mg2+ and protein disulphide reducing agents such as beta-mercaptoethanol and dithiotheritol (DTT) the activity of enzyme increased, where as strong inhibition of enzyme activity was observed in the presence of Cu2+, Ag+, Fe2+ and SDS. The crude enzyme hydrolysed lignocellulosic substrate, wheat bran as well as industrial pulp.
Díaz-Montaño, Dulce M; Favela-Torres, Ernesto; Córdova, Jesus
2010-01-30
The aim of this work was to improve the productivity and yield of tequila fermentation and to propose the use of a recently isolated non-Saccharomyces yeast in order to obtain a greater diversity of flavour and aroma of the beverage. For that, the effects of the addition of different nitrogen (N) sources to Agave tequilana juice on the growth, fermentative capacity and ethanol tolerance of Kloeckera africana and Saccharomyces cerevisiae were studied and compared. Kloeckera africana K1 and S. cerevisiae S1 were cultured in A. tequilana juice supplemented with ammonium sulfate, diammonium phosphate or yeast extract. Kloeckera africana did not assimilate inorganic N sources, while S. cerevisiae utilised any N source. Yeast extract stimulated the growth, fermentative capacity and alcohol tolerance of K. africana, giving kinetic parameter values similar to those calculated for S. cerevisiae. This study revealed the importance of supplementing A. tequilana juice with a convenient N source to achieve fast and complete conversion of sugars in ethanol, particularly in the case of K. africana. This yeast exhibited similar growth and fermentative capacity to S. cerevisiae. The utilisation of K. africana in the tequila industry is promising because of its variety of synthesised aromatic compounds, which would enrich the attributes of this beverage. (c) 2009 Society of Chemical Industry.
Oliveira, Jorge; Sousa-Gallagher, Maria; Méndez-Zavala, Alejandro; Montañez, Julio Cesar
2017-01-01
A high percentage of the pigments produced by Talaromyces spp. remains inside the cell, which could lead to a high product concentration inhibition. To overcome this issue an extractive fermentation process, perstraction, was suggested, which involves the extraction of the intracellular products out of the cell by using a two-phase system during the fermentation. The present work studied the effect of various surfactants on secretion of intracellular pigments produced by Talaromyces spp. in submerged fermentation. Surfactants used were: non-ionic surfactants (Tween 80, Span 20 and Triton X-100) and a polyethylene glycerol polymer 8000, at different concentrations (5, 20, 35 g/L). The highest extracellular pigment yield (16 OD500nm) was reached using Triton X-100 (35 g/L), which was 44% higher than the control (no surfactant added). The effect of addition time of the selected surfactant was further studied. The highest extracellular pigment concentration (22 OD500nm) was achieved when the surfactant was added at 120 h of fermentation. Kinetics of extracellular and intracellular pigments were examined. Total pigment at the end of the fermentation using Triton X-100 was 27.7% higher than the control, confirming that the use of surfactants partially alleviated the product inhibition during the pigment production culture. PMID:29371551
Advances and perspectives in in vitro human gut fermentation modeling.
Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe
2012-01-01
The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.
Devarapalli, Mamatha; Atiyeh, Hasan K; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L
2016-06-01
An efficient syngas fermentation bioreactor provides a mass transfer capability that matches the intrinsic kinetics of the microorganism to obtain high gas conversion efficiency and productivity. In this study, mass transfer and gas utilization efficiencies of a trickle bed reactor during syngas fermentation by Clostridium ragsdalei were evaluated at various gas and liquid flow rates. Fermentations were performed using a syngas mixture of 38% CO, 28.5% CO2, 28.5% H2 and 5% N2, by volume. Results showed that increasing the gas flow rate from 2.3 to 4.6sccm increased the CO uptake rate by 76% and decreased the H2 uptake rate by 51% up to Run R6. Biofilm formation after R6 increased cells activity with over threefold increase in H2 uptake rate. At 1662h, the final ethanol and acetic acid concentrations were 5.7 and 12.3g/L, respectively, at 200ml/min of liquid flow rate and 4.6sccm gas flow rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sambusiti, C; Monlau, F; Antoniou, N; Zabaniotou, A; Barakat, A
2016-12-01
Pyrolysis is a sustainable pathway to transform renewable biomasses into both biofuels and advanced carbonaceous materials (i.e. pyrochar) which can be used as adsorbent of furan compounds. In particular, the aim of this study was to: i) evaluate the effect of vibro-ball milling on physical characteristics of pyrochar and its consequent performance on solely detoxification of a synthetic medium, containing furans and soluble sugars; ii) study the simultaneous detoxification and bioethanol fermentation, by adding activated pyrochar into fermentation medium. Results demonstrated that, compared to untreated pyrochar, the use of milled pyrochar increased by 52% furfural removal from the synthetic medium. Furfural removal rate was also increased (adsorption kinetic constant increased from 0.015 min -1 up to 0.215 min -1 ), at a pyrochar loading of 40 g L -1 . Although, the simultaneous addition of pyrochar into the fermentation medium did not improve the bioethanol yield of the synthetic medium, it has significantly increased the bioethanol production rate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Breidt, F.; Crowley, K. A.; Fleming, H. P.
1993-01-01
Leuconostoc mesenteroides strains that are resistant to high levels of nisin (up to 25,000 IU/ml in broth) were isolated. These nisin-resistant mutants were evaluated to determine their potential use as starter culture strains for cabbage fermentations. We found that some L. mesenteroides strains could be adapted to high levels of nisin resistance, while others could not. The nisin resistance trait was found to be stable for at least 35 generations, in the absence of nisin selection, for all mutants tested. The effects of nisin and salt, separately and in combination, on growth kinetics of the nisin-resistant strains were determined. Salt was the most influential factor on the specific growth rates of the mutants, and no synergistic effect between nisin and salt on specific growth rates was observed. The nisin-resistant strains were unimpaired in their ability to rapidly produce normal heterolactic fermentation end products. The use of these L. mesenteroides mutants as starter cultures in combination with nisin may extend the heterolactic phase of cabbage fermentations. PMID:16349090
Zhang, Guanfei; Chen, Wenxue; Chen, Weijun; Chen, Haiming
2018-03-01
Matured coconut water (MCW) is a by-product in the coconut milk industry that is usually discarded due to its unpleasant flavor. In this study, low-alcohol coconut water (LACW) was fermented with Saccharomyces cerevisiae to improve the quality of MCW. Volatile components and nonvolatile flavor-related elements were estimated to compare the qualities of the MCW and LACW. Besides measuring the kinetic changes, the levels of fructose, glucose, sucrose and ethanol contents were also determined. The results of the organic acid assays showed that tartaric, pyruvic and succinic acids were the primary organic acids present in LACW and increased significantly with fermentation. The resulting volatile composition assay indicated that esters, alcohols and fatty acids were significantly influenced by fermentation and yeast strains. Moreover, 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric ion reducing antioxidant capacity and ferric reducing antioxidant power values increased significantly throughout the process, correlating with the enhancement of total phenolic content.
Biogas production of Chicken Manure by Two-stage fermentation process
NASA Astrophysics Data System (ADS)
Liu, Xin Yuan; Wang, Jing Jing; Nie, Jia Min; Wu, Nan; Yang, Fang; Yang, Ren Jie
2018-06-01
This paper performs a batch experiment for pre-acidification treatment and methane production from chicken manure by the two-stage anaerobic fermentation process. Results shows that the acetate was the main component in volatile fatty acids produced at the end of pre-acidification stage, accounting for 68% of the total amount. The daily biogas production experienced three peak period in methane production stage, and the methane content reached 60% in the second period and then slowly reduced to 44.5% in the third period. The cumulative methane production was fitted by modified Gompertz equation, and the kinetic parameters of the methane production potential, the maximum methane production rate and lag phase time were 345.2 ml, 0.948 ml/h and 343.5 h, respectively. The methane yield of 183 ml-CH4/g-VSremoved during the methane production stage and VS removal efficiency of 52.7% for the whole fermentation process were achieved.
Chen, Mingmin; Cao, Hongxia; Peng, Huasong; Hu, Hongbo; Wang, Wei; Zhang, Xuehong
2014-01-01
The phenazine derivative 2-hydroxyphenazine (2-OH-PHZ) plays an important role in the biocontrol of plant diseases, and exhibits stronger bacteriostatic and fungistatic activity than phenazine-1-carboxylic acid (PCA) toward some pathogens. PhzO has been shown to be responsible for the conversion of PCA to 2-OH-PHZ, however the kinetics of the reaction have not been systematically studied. Further, the yield of 2-OH-PHZ in fermentation culture is quite low and enhancement in our understanding of the reaction kinetics may contribute to improvements in large-scale, high-yield production of 2-OH-PHZ for biological control and other applications. In this study we confirmed previous reports that free PCA is converted to 2-hydroxy-phenazine-1-carboxylic acid (2-OH-PCA) by the action of a single enzyme PhzO, and particularly demonstrate that this reaction is dependent on NADP(H) and Fe3+. Fe3+ enhanced the conversion from PCA to 2-OH-PHZ and 28°C was a optimum temperature for the conversion. However, PCA added in excess to the culture inhibited the production of 2-OH-PHZ. 2-OH-PCA was extracted and purified from the broth, and it was confirmed that the decarboxylation of 2-OH-PCA could occur without the involvement of any enzyme. A kinetic analysis of the conversion of 2-OH-PCA to 2-OH-PHZ in the absence of enzyme and under different temperatures and pHs in vitro, revealed that the conversion followed first-order reaction kinetics. In the fermentation, the concentration of 2-OH-PCA increased to about 90 mg/L within a red precipitate fraction, as compared to 37 mg/L within the supernatant. The results of this study elucidate the reaction kinetics involved in the biosynthesis of 2-OH-PHZ and provide insights into in vitro methods to enhance yields of 2-OH-PHZ. PMID:24905009
Mewa-Ngongang, Maxwell; du Plessis, Heinrich W; Hutchinson, Ucrecia F; Mekuto, Lukhanyo; Ntwampe, Seteno Ko
2017-06-01
Biological antimicrobial compounds from yeast can be used to address the critical need for safer preservatives in food, fruit and beverages. The inhibition of Candida guilliermondii, a common fermented beverage spoilage organism, was achieved using antimicrobial compounds produced by Candida pyralidae KU736785. The antimicrobial production system was modelled and optimised using response surface methodology, with 22.5 ℃ and pH of 5.0 being the optimum conditions. A new concept for quantifying spoilage organism inhibition was developed. The inhibition activity of the antimicrobial compounds was observed to be at a maximum after 17-23 h of fermentation, with C. pyralidae concentration being between 0.40 and 1.25 × 10 9 CFU ml -1 , while its maximum specific growth rate was 0.31-0.54 h -1 . The maximum inhibitory activity was between 0.19 and 1.08 l contaminated solidified media per millilitre of antimicrobial compound used. Furthermore, the antimicrobial compound formation rate was 0.037-0.086 l VZI ml -1 ACU h -1 , respectively. The response surface methodology analysis showed that the model developed sufficiently described the antimicrobial compound formation rate 1.08 l VZI ml -1 ACU, as 1.17 l VZI ml -1 ACU, predicted under the optimum production conditions.
NASA Astrophysics Data System (ADS)
Lee, Y. Y.; Teh, P. S.; Kumaresan, S.; Tiong, C. H.
2017-06-01
In this study, two processes (fermentation and drying) were conducted on Clicanthus Nutans Lindau, which is well-known for its antioxidant activities. The aim of this research is to investigate the effects of these processes towards the Total Phenolic Content (TPC), antioxidant activity and the crude yield of the leaves. For the fermentation process, the fermentation time is varied for 6, 12, 24, 48 and 72 hours. For drying, oven drying (40, 45 and 50°C, freeze-drying and shade drying are investigated. Blanching was also conducted for oven dried samples (90°C for 1 minute). It was found that 12 hours fermentation produced the highest yield corresponding to Total Phenolic Content at 0.33 while 6 hours fermentation produced the highest Antioxidant Activity and yield at 2.218 x 10-10 mg/mL and 0.64 . On the other hand, 48 hours fermentation produced the highest overall extract yield at 0.64 . Analysis for antioxidant activity was carried out using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteau method for Total Phenolic Content. Thermal inactivation kinetics (blanching) has been investigated for oven drying samples. Results showed that 40°C oven drying and 50°C oven drying with blanching has better retention of bioactive constituents. Blanching has no significant effect on phenolic content but has increased the crude extract for higher temperature oven drying. It has no positive effect on antioxidant activity. Drying is also a better processing method compared to fermentation as drying has slightly favorable results in all three aspects. Through comparison with extraction time of 60 minutes for 40°C oven drying and 6 hour fermented samples, yield of total phenolic content and overall yield of oven dried sample is higher than fermented sample by 4.14 and 0.39 respectively as well as showing better antioxidant activity.
Multi-stage high cell continuous fermentation for high productivity and titer.
Chang, Ho Nam; Kim, Nag-Jong; Kang, Jongwon; Jeong, Chang Moon; Choi, Jin-dal-rae; Fei, Qiang; Kim, Byoung Jin; Kwon, Sunhoon; Lee, Sang Yup; Kim, Jungbae
2011-05-01
We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.
Martínez-Trujillo, A; Arreguín-Rangel, L; García-Rivero, M; Aguilar-Osorio, G
2011-08-01
Utilization of fruit residues for pectinase production by two Aspergillus strains for recognizing the effects of some factors during fermentation and describing enzyme production kinetics. Pectinase production on several fruit residues was compared. The effects of three factors on the production of several pectinases were evaluated by a full factorial 2(k) experimental design. Higher activities were obtained on lemon peel. In both strains, acidic pH values and high carbon source concentration favoured exopectinase and endopectinase production, while higher pH values and low carbon source concentration promoted pectin lyase and rhamnogalacturonase production. Unstructured mathematical modelling provided a good description of pectinase production in a submerged batch culture. Fruit residues were very good substrates for pectinase production, and Aspergillus strains used showed a promising performance in submerged fermentation. Mathematical modelling was useful to describe growth and pectinase production. Lemon peel can be used as a substrate to obtain high pectinase titres by Aspergillus flavipes FP-500 and Aspergillus terreus FP-370. The factors that contributed to improve the yield were identified, which supports the possibility of using this substrate in the industrial production of these enzymes. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
Celińska, Ewelina; Borkowska, Monika; Białas, Wojciech
2016-03-01
Starch is the dominant feedstock consumed for the bioethanol production, accounting for 60 % of its global production. Considering the significant contribution of bioethanol to the global fuel market, any improvement in its major operating technologies is economically very attractive. It was estimated that up to 40 % of the final ethanol unit price is derived from the energy input required for the substrate pre-treatment. Application of raw starch hydrolyzing enzymes (RSHE), combined with operation of the process according to a simultaneous saccharification and fermentation (SSF) strategy, constitutes the most promising solutions to the current technologies limitations. In this study, we expressed the novel RSHE derived from an insect in Saccharomyces cerevisiae strain dedicated for the protein overexpression. Afterwards, the enzyme performance was assessed in SSF process conducted by industrial ethanologenic or thermotolerant yeast species. Comparison of the insect-derived RSHE preparation with commercially available amylolytic RSH preparation was conducted. Our results demonstrate that the recombinant alpha-amylase from rice weevil can be efficiently expressed and secreted with its native signal peptide in S. cerevisiae INVSc-pYES2-Amy1 expression system (accounting for nearly 72 % of the strain's secretome). Application of the recombinant enzyme-based preparation in SSF process secured sufficient amylolytic activity for the yeast cell propagation and ethanol formation from raw starch. (Oligo)saccharide profiles generated by the compared preparations differed with respect to homogeneity of the sugar mixtures. Concomitantly, as demonstrated by a kinetic model developed in this study, the kinetic parameters describing activity of the compared preparations were different.
NASA Astrophysics Data System (ADS)
Hunter, K. S.; Van Cappellen, P.
2000-01-01
Our paper, 'Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' (Hunter et al., 1998), presents a theoretical exploration of biogeochemical reaction networks and their importance to the biogeochemistry of groundwater systems. As with any other model, the kinetic reaction-transport model developed in our paper includes only a subset of all physically, biologically and chemically relevant processes in subsurface environments. It considers aquifer systems where the primary energy source driving microbial activity is the degradation of organic matter. In addition to the primary biodegradation pathways of organic matter (i.e. respiration and fermentation), the redox chemistry of groundwaters is also affected by reactions not directly involving organic matter oxidation. We refer to the latter as secondary reactions. By including secondary redox reactions which consume reduced reaction products (e.g., Mn2+, FeS, H2S), and in the process compete with microbial heterotrophic populations for available oxidants (i.e. O2, NO3-, Mn(IV), Fe(III), SO42-), we predict spatio-temporal distributions of microbial activity which differ significantly from those of models which consider only the biodegradation reactions. That is, the secondary reactions have a significant impact on the distributions of the rates of heterotrophic and chemolithotrophic metabolic pathways. We further show that secondary redox reactions, as well as non-redox reactions, significantly influence the acid-base chemistry of groundwaters. The distributions of dissolved inorganic redox species along flowpaths, however, are similar in simulations with and without secondary reactions (see Figs. 3(b) and 7(b) in Hunter et al., 1998), indicating that very different biogeochemical reaction dynamics may lead to essentially the same chemical redox zonation of a groundwater system.
Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects.
Moysés, Danuza Nogueira; Reis, Viviane Castelo Branco; de Almeida, João Ricardo Moreira; de Moraes, Lidia Maria Pepe; Torres, Fernando Araripe Gonçalves
2016-02-25
Many years have passed since the first genetically modified Saccharomyces cerevisiae strains capable of fermenting xylose were obtained with the promise of an environmentally sustainable solution for the conversion of the abundant lignocellulosic biomass to ethanol. Several challenges emerged from these first experiences, most of them related to solving redox imbalances, discovering new pathways for xylose utilization, modulation of the expression of genes of the non-oxidative pentose phosphate pathway, and reduction of xylitol formation. Strategies on evolutionary engineering were used to improve fermentation kinetics, but the resulting strains were still far from industrial application. Lignocellulosic hydrolysates proved to have different inhibitors derived from lignin and sugar degradation, along with significant amounts of acetic acid, intrinsically related with biomass deconstruction. This, associated with pH, temperature, high ethanol, and other stress fluctuations presented on large scale fermentations led the search for yeasts with more robust backgrounds, like industrial strains, as engineering targets. Some promising yeasts were obtained both from studies of stress tolerance genes and adaptation on hydrolysates. Since fermentation times on mixed-substrate hydrolysates were still not cost-effective, the more selective search for new or engineered sugar transporters for xylose are still the focus of many recent studies. These challenges, as well as under-appreciated process strategies, will be discussed in this review.
Optimization of fed-batch fermentation for xylitol production by Candida tropicalis.
Kim, J-H; Han, K-C; Koh, Y-H; Ryu, Y-W; Seo, J-H
2002-07-01
Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l(-1)) and less than 200 g l(-1) total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l(-1) xylitol concentration, 0.75 g xylitol g xylose(-1) xylitol yield and 3.9 g xylitol l(-1) h(-1) volumetric productivity.
Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects
Moysés, Danuza Nogueira; Reis, Viviane Castelo Branco; de Almeida, João Ricardo Moreira; de Moraes, Lidia Maria Pepe; Torres, Fernando Araripe Gonçalves
2016-01-01
Many years have passed since the first genetically modified Saccharomyces cerevisiae strains capable of fermenting xylose were obtained with the promise of an environmentally sustainable solution for the conversion of the abundant lignocellulosic biomass to ethanol. Several challenges emerged from these first experiences, most of them related to solving redox imbalances, discovering new pathways for xylose utilization, modulation of the expression of genes of the non-oxidative pentose phosphate pathway, and reduction of xylitol formation. Strategies on evolutionary engineering were used to improve fermentation kinetics, but the resulting strains were still far from industrial application. Lignocellulosic hydrolysates proved to have different inhibitors derived from lignin and sugar degradation, along with significant amounts of acetic acid, intrinsically related with biomass deconstruction. This, associated with pH, temperature, high ethanol, and other stress fluctuations presented on large scale fermentations led the search for yeasts with more robust backgrounds, like industrial strains, as engineering targets. Some promising yeasts were obtained both from studies of stress tolerance genes and adaptation on hydrolysates. Since fermentation times on mixed-substrate hydrolysates were still not cost-effective, the more selective search for new or engineered sugar transporters for xylose are still the focus of many recent studies. These challenges, as well as under-appreciated process strategies, will be discussed in this review. PMID:26927067
Clement, T.; Perez, M.; Mouret, J. R.; Sanchez, I.; Sablayrolles, J. M.
2013-01-01
Nitrogen supplementation, which is widely used in winemaking to improve fermentation kinetics, also affects the products of fermentation, including volatile compounds. However, the mechanisms underlying the metabolic response of yeast to nitrogen additions remain unclear. We studied the consequences for Saccharomyces cerevisiae metabolism of valine and ammonium pulses during the stationary phase of four-stage continuous fermentation (FSCF). This culture technique provides cells at steady state similar to that of the stationary phase of batch wine fermentation. Thus, the FSCF device is an appropriate and reliable tool for individual analysis of the metabolic rerouting associated with nutrient additions, in isolation from the continuous evolution of the environment in batch processes. Nitrogen additions, irrespective of the nitrogen-containing compound added, substantially modified the formation of fermentation metabolites, including glycerol, succinate, isoamyl alcohol, propanol, and ethyl esters. This flux redistribution, fulfilling the requirements for precursors of amino acids, was consistent with increased protein synthesis resulting from increased nitrogen availability. Valine pulses, less efficient than ammonium addition in increasing the fermentation rate, were followed by a massive conversion of this amino acid in isobutanol and isobutyl acetate through the Ehrlich pathway. However, additional routes were involved in valine assimilation when added in stationary phase. Overall, we found that particular metabolic changes may be triggered according to the nature of the amino acid supplied, in addition to the common response. Both these shared and specific modifications should be considered when designing strategies to modulate the production of volatile compounds, a current challenge for winemakers. PMID:23417007
Clement, T; Perez, M; Mouret, J R; Sanchez, I; Sablayrolles, J M; Camarasa, C
2013-04-01
Nitrogen supplementation, which is widely used in winemaking to improve fermentation kinetics, also affects the products of fermentation, including volatile compounds. However, the mechanisms underlying the metabolic response of yeast to nitrogen additions remain unclear. We studied the consequences for Saccharomyces cerevisiae metabolism of valine and ammonium pulses during the stationary phase of four-stage continuous fermentation (FSCF). This culture technique provides cells at steady state similar to that of the stationary phase of batch wine fermentation. Thus, the FSCF device is an appropriate and reliable tool for individual analysis of the metabolic rerouting associated with nutrient additions, in isolation from the continuous evolution of the environment in batch processes. Nitrogen additions, irrespective of the nitrogen-containing compound added, substantially modified the formation of fermentation metabolites, including glycerol, succinate, isoamyl alcohol, propanol, and ethyl esters. This flux redistribution, fulfilling the requirements for precursors of amino acids, was consistent with increased protein synthesis resulting from increased nitrogen availability. Valine pulses, less efficient than ammonium addition in increasing the fermentation rate, were followed by a massive conversion of this amino acid in isobutanol and isobutyl acetate through the Ehrlich pathway. However, additional routes were involved in valine assimilation when added in stationary phase. Overall, we found that particular metabolic changes may be triggered according to the nature of the amino acid supplied, in addition to the common response. Both these shared and specific modifications should be considered when designing strategies to modulate the production of volatile compounds, a current challenge for winemakers.
Kajala, Ilkka; Mäkelä, Jari; Coda, Rossana; Shukla, Shraddha; Shi, Qiao; Maina, Ndegwa Henry; Juvonen, Riikka; Ekholm, Päivi; Goyal, Arun; Tenkanen, Maija; Katina, Kati
2016-04-01
The consumption of fiber-rich foods such as cereal bran is highly recommended due to its beneficial health effects. Pre-fermentation of bran with lactic acid bacteria can be used to improve the otherwise impaired flavor and textural qualities of bran-rich products. These positive effects are attributed to enzymatic modification of bran components and the production of functional metabolites like organic acids and exopolysaccharides such as dextrans. The aim of this study was to investigate dextran production in wheat and rye bran by fermentation with two Weissella confusa strains. Bran raw materials were analyzed for their chemical compositions and mineral content. Microbial growth and acidification kinetics were determined from the fermentations. Both strains produced more dextran in rye bran in which the fermentation-induced acidification was slower and the acidification lag phase longer than in wheat bran. Higher dextran production in rye bran is expected to be due to the longer period of optimal pH for dextran synthesis during fermentation. The starch content of wheat bran was higher, which may promote isomaltooligosaccharide formation at the expense of dextran production. W. confusa Cab3 produced slightly higher amounts of dextran than W. confusa VTT E-90392 in all raw materials. Fermentation with W. confusa Cab3 also resulted in lower residual fructose content which has technological relevance. The results indicate that wheat and particularly rye bran are promising matrices for producing technologically significant amounts of dextran, which facilitates the use of nutritionally valuable raw bran in food applications.
In-situ biogas upgrading process: Modeling and simulations aspects.
Lovato, Giovanna; Alvarado-Morales, Merlin; Kovalovszki, Adam; Peprah, Maria; Kougias, Panagiotis G; Rodrigues, José Alberto Domingues; Angelidaki, Irini
2017-12-01
Biogas upgrading processes by in-situ hydrogen (H 2 ) injection are still challenging and could benefit from a mathematical model to predict system performance. Therefore, a previous model on anaerobic digestion was updated and expanded to include the effect of H 2 injection into the liquid phase of a fermenter with the aim of modeling and simulating these processes. This was done by including hydrogenotrophic methanogen kinetics for H 2 consumption and inhibition effect on the acetogenic steps. Special attention was paid to gas to liquid transfer of H 2 . The final model was successfully validated considering a set of Case Studies. Biogas composition and H 2 utilization were correctly predicted, with overall deviation below 10% compared to experimental measurements. Parameter sensitivity analysis revealed that the model is highly sensitive to the H 2 injection rate and mass transfer coefficient. The model developed is an effective tool for predicting process performance in scenarios with biogas upgrading. Copyright © 2017 Elsevier Ltd. All rights reserved.
Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation.
Wang, Dongbo; Liu, Yiwen; Ngo, Huu Hao; Zhang, Chang; Yang, Qi; Peng, Lai; He, Dandan; Zeng, Guangming; Li, Xiaoming; Ni, Bing-Jie
2017-08-01
In this work, a mathematical model was developed to describe the dynamics of fermentation products in sludge alkaline fermentation systems for the first time. In this model, the impacts of alkaline fermentation on sludge disintegration, hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes are specifically considered for describing the high-level formation of fermentation products. The model proposed successfully reproduced the experimental data obtained from five independent sludge alkaline fermentation studies. The modeling results showed that alkaline fermentation largely facilitated the disintegration, acidogenesis, and acetogenesis processes and severely inhibited methanogenesis process. With the pH increase from 7.0 to 10.0, the disintegration, acidogenesis, and acetogenesis processes respectively increased by 53%, 1030%, and 30% while methane production decreased by 3800%. However, no substantial effect on hydrolysis process was found. The model also indicated that the pathway of acetoclastic methanogenesis was more severely inhibited by alkaline condition than that of hydrogentrophic methanogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reverse Osmosis Processing of Organic Model Compounds and Fermentation Broths
2006-04-01
AFRL-ML-TY-TP-2007-4545 POSTPRINT REVERSE OSMOSIS PROCESSING OF ORGANIC MODEL COMPOUNDS AND FERMENTATION BROTHS Robert Diltz...TELEPHONE NUMBER (Include area code) Bioresource Technology 98 (2007) 686–695Reverse osmosis processing of organic model compounds and fermentation broths...December 2005; accepted 31 January 2006 Available online 4 April 2006Abstract Post-treatment of an anaerobic fermentation broth was evaluated using a 150
Nikdel, Ali; Braatz, Richard D; Budman, Hector M
2018-05-01
Dynamic flux balance analysis (DFBA) has become an instrumental modeling tool for describing the dynamic behavior of bioprocesses. DFBA involves the maximization of a biologically meaningful objective subject to kinetic constraints on the rate of consumption/production of metabolites. In this paper, we propose a systematic data-based approach for finding both the biological objective function and a minimum set of active constraints necessary for matching the model predictions to the experimental data. The proposed algorithm accounts for the errors in the experiments and eliminates the need for ad hoc choices of objective function and constraints as done in previous studies. The method is illustrated for two cases: (1) for in silico (simulated) data generated by a mathematical model for Escherichia coli and (2) for actual experimental data collected from the batch fermentation of Bordetella Pertussis (whooping cough).
[Obtaining a fermented chickpea extract (Cicer arietinum L.) and its use as a milk extensor].
Morales de León, J; Cassís Nosthas, M L; Cecin Salomón, P
2000-06-01
Chickpea (Cicer arietinum L) is cultivated in the North part of México and it is considered a good source of vegetal protein of low cost (20% average), nevertheless, the 80% used for the exportation and only the 20% less was used for animal feeding. The main objective in this study is to obtain a fermented chickpea extract for using in dairy extensor. Chickpea water absorbtion kinetics were carried out in e temperature conditions:while the conditions were established, chickpea was grounded and fermented in different amounts with its natural flora, L. casei, L. plantarum and a mixture culture of both microorganism in logarithmic phase. The results showed that the presence of microorganism of chickpea natural flora interferes during the fermentation, so before the inoculation it was necessary treat the chickpea extract (CE) terminally in a dilution 1:4 during 20 min at 7.7 kg/cm2 of pressure. The use of a mixture culture of 5% of L. casei and 5% L. plantarum inoculated in MRS broth was used to decrease fermentation time. Its addition in logarithmic phase to the sterile chickpea extract increased the lactic acid production and decreased the pH value in 6 h which was less time that one obtained with each of lactobacillus. The fermented extract obtained finally, presented similar sensory characteristics to the ones of dairy products. Therefore, chickpea is a good alternative as a extensor for this kind of products.
Ramírez, Manuel; Velázquez, Rocío; Maqueda, Matilde; Zamora, Emiliano; López-Piñeiro, Antonio; Hernández, Luis M
2016-12-05
Torulaspora delbrueckii can improve wine aroma complexity, but its impact on wine quality is still far from being satisfactory at the winery level, mainly because it is easily replaced by S. cerevisiae yeasts during must fermentation. New T. delbrueckii killer strains were selected to overcome this problem. These strains killed S. cerevisiae yeasts and dominated fermentation better than T. delbrueckii non-killer strains when they were single-inoculated into crushed red grape must. All the T. delbrueckii wines, but none of the S. cerevisiae wines, underwent malolactic fermentation. Putative lactic acid bacteria were always found in the T. delbrueckii wines, but none or very few in the S. cerevisiae wines. Malic acid degradation was the greatest in the wines inoculated with the killer strains, and these strains reached the greatest dominance ratios and had the slowest fermentation kinetics. The T. delbrueckii wines had dried-fruit/pastry aromas, but low intensities of fresh-fruit aromas. The aroma differences between the T. delbrueckii and the S. cerevisiae wines can be explained by the differences that were found in the amounts of some fruity aroma compounds such as isoamyl acetate, ethyl hexanoate, ethyl octanoate, and some lactones. This T. delbrueckii effect significantly raised the organoleptic quality scores of full-bodied Cabernet-Sauvignon red wines inoculated with the killer strains. In particular, these wines were judged as having excellent aroma complexity, mouth-feel, and sweetness. Copyright © 2016 Elsevier B.V. All rights reserved.
Prunescu, Remus Mihail; Sin, Gürkan
2013-12-01
The enzymatic hydrolysis process is one of the key steps in second generation biofuel production. After being thermally pretreated, the lignocellulosic material is liquefied by enzymes prior to fermentation. The scope of this paper is to evaluate a dynamic model of the hydrolysis process on a demonstration scale reactor. The following novel features are included: the application of the Convection-Diffusion-Reaction equation to a hydrolysis reactor to assess transport and mixing effects; the extension of a competitive kinetic model with enzymatic pH dependency and hemicellulose hydrolysis; a comprehensive pH model; and viscosity estimations during the course of reaction. The model is evaluated against real data extracted from a demonstration scale biorefinery throughout several days of operation. All measurements are within predictions uncertainty and, therefore, the model constitutes a valuable tool to support process optimization, performance monitoring, diagnosis and process control at full-scale studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Microwave pretreatment of switchgrass for bioethanol production
NASA Astrophysics Data System (ADS)
Keshwani, Deepak Radhakrishin
Lignocellulosic materials are promising alternative feedstocks for bioethanol production. These materials include agricultural residues, cellulosic waste such as newsprint and office paper, logging residues, and herbaceous and woody crops. However, the recalcitrant nature of lignocellulosic biomass necessitates a pretreatment step to improve the yield of fermentable sugars. The overall goal of this dissertation is to expand the current state of knowledge on microwave-based pretreatment of lignocellulosic biomass. Existing research on bioenergy and value-added applications of switchgrass is reviewed in Chapter 2. Switchgrass is an herbaceous energy crop native to North America and has high biomass productivity, potentially low requirements for agricultural inputs and positive environmental impacts. Based on results from test plots, yields in excess of 20 Mg/ha have been reported. Environmental benefits associated with switchgrass include the potential for carbon sequestration, nutrient recovery from run-off, soil remediation and provision of habitats for grassland birds. Published research on pretreatment of switchgrass reported glucose yields ranging from 70-90% and xylose yields ranging from 70-100% after hydrolysis and ethanol yields ranging from 72-92% after fermentation. Other potential value-added uses of switchgrass include gasification, bio-oil production, newsprint production and fiber reinforcement in thermoplastic composites. Research on microwave-based pretreatment of switchgrass and coastal bermudagrass is presented in Chapter 3. Pretreatments were carried out by immersing the biomass in dilute chemical reagents and exposing the slurry to microwave radiation at 250 watts for residence times ranging from 5 to 20 minutes. Preliminary experiments identified alkalis as suitable chemical reagents for microwave-based pretreatment. An evaluation of different alkalis identified sodium hydroxide as the most effective alkali reagent. Under optimum pretreatment conditions, 82% glucose and 63% xylose yields were achieved for switchgrass, and 87% glucose and 59% xylose yields were achieved for coastal bermudagrass following enzymatic hydrolysis of the pretreated biomass. The optimum enzyme loadings were 15 FPU/g and 20 CBU/g for switchgrass and 10 FPU/g and 20 CBU/g for coastal bermudagrass. Dielectric properties for dilute sodium hydroxide solutions were measured and compared to solid loss, lignin reduction and reducing sugar levels in hydrolyzates. Results indicate that the dielectric loss tangent of alkali solutions is a potential indicator of the severity of microwave-based pretreatments. Modeling of pretreatment processes can be a valuable tool in process simulations of bioethanol production from lignocellulosic biomass. Chapter 4 discusses three different approaches that were used to model delignification and carbohydrate loss during microwave-based pretreatment of switchgrass: statistical linear regression modeling, kinetic modeling using a time-dependent rate coefficient, and a Mamdani-type fuzzy inference system. The dielectric loss tangent of the alkali reagent and pretreatment time were used as predictors in all models. The statistical linear regression model for delignification gave comparable root mean square error (RMSE) values for training and testing data and predictions were approximately within 1% of experimental values. The kinetic model for delignification and xylan loss gave comparable RMSE values for training and testing data sets and predictions were approximately within 2% of experimental values. The kinetic model for cellulose loss was not as effective and predictions were only within 5-7% of experimental values. The time-dependent rate coefficients of the kinetic models calculated from experimental data were consistent with the heterogeneity (or lack thereof) of individual biomass components. The Mamdani-type fuzzy inference system was shown to be an effective means to model pretreatment processes and gave the most accurate predictions (<3%) for cellulose loss.
Souza da Silva, Carol; Bolhuis, J Elizabeth; Gerrits, Walter J J; Kemp, Bas; van den Borne, Joost J G C
2013-02-17
Dietary fibers can be fermented in the colon, resulting in production of short-chain fatty acids (SCFA) and secretion of satiety-related peptides. Fermentation characteristics (fermentation kinetics and SCFA-profile) differ between fibers and could impact their satiating potential. We investigated the effects of fibers with varying fermentation characteristics on feeding motivation in adult female pigs. Sixteen pair-housed pigs received four diets in four periods in a Latin square design. Starch from a control (C) diet was exchanged, based on gross energy, for inulin (INU), guar gum (GG), or retrograded tapioca starch (RS), each at a low (L) and a high (H) inclusion level. This resulted in a decreased metabolizable energy intake when feeding fiber diets as compared with the C diet. According to in vitro fermentation measurements, INU is rapidly fermentable and yields relatively high amounts of propionate, GG is moderately rapidly fermentable and yields relatively high amounts of acetate, and RS is slowly fermentable and yields relatively high amounts of butyrate. Feeding motivation was assessed using behavioral tests at 1h, 3h and 7h after the morning meal, and home pen behavioral observations throughout the day. The number of wheel turns paid for a food reward in an operant test was unaffected by diet. Pigs on H-diets ran 25% slower for a food reward in a runway test than pigs on L-diets, and showed less spontaneous physical activity and less stereotypic behavior in the hours before the afternoon meal, reflecting increased interprandial satiety. Reduced feeding motivation with increasing inclusion level was most pronounced for RS, as pigs decreased speed in the runway test and tended to have a lower voluntary food intake in an ad libitum food intake test when fed RS-H. In conclusion, increasing levels of fermentable fibers in the diet seemed to enhance satiety in adult pigs, despite a reduction in metabolizable energy supply. RS was the most satiating fiber, possibly due to its slow rate of fermentation and high production of butyrate. Copyright © 2013 Elsevier Inc. All rights reserved.
Alonso-Del-Real, Javier; Lairón-Peris, María; Barrio, Eladio; Querol, Amparo
2017-01-01
Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii ) or their hybrids ( S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii ) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S . cerevisiae can competitively displace other yeast species from wine fermentations, therefore the use of these new starters requires an analysis of their behavior during competition with S. cerevisiae during wine fermentation. In the present study we analyzed the survival capacity of non- cerevisiae strains in competition with S. cerevisiae during fermentation of synthetic wine must at different temperatures. First, we developed a new method, based on QPCR, to quantify the proportion of different Saccharomyces yeasts in mixed cultures. This method was used to assess the effect of competition on the growth fitness. In addition, fermentation kinetics parameters and final wine compositions were also analyzed. We observed that some cryotolerant Saccharomyces yeasts, particularly S. uvarum , seriously compromised S. cerevisiae fitness during competences at lower temperatures, which explains why S. uvarum can replace S. cerevisiae during wine fermentations in European regions with oceanic and continental climates. From an enological point of view, mixed co-cultures between S. cerevisiae and S. paradoxus or S. eubayanus , deteriorated fermentation parameters and the final product composition compared to single S. cerevisiae inoculation. However, in co-inoculated synthetic must in which S. kudriavzevii or S. uvarum coexisted with S. cerevisiae , there were fermentation performance improvements and the final wines contained less ethanol and higher amounts of glycerol. Finally, it is interesting to note that in co-inoculated fermentations, wine strains of S. cerevisiae and S. uvarum performed better than non-wine strains of the same species.
Alonso-del-Real, Javier; Lairón-Peris, María; Barrio, Eladio; Querol, Amparo
2017-01-01
Saccharomyces cerevisiae is the main microorganism responsible for the fermentation of wine. Nevertheless, in the last years wineries are facing new challenges due to current market demands and climate change effects on the wine quality. New yeast starters formed by non-conventional Saccharomyces species (such as S. uvarum or S. kudriavzevii) or their hybrids (S. cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii) can contribute to solve some of these challenges. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts. However, S. cerevisiae can competitively displace other yeast species from wine fermentations, therefore the use of these new starters requires an analysis of their behavior during competition with S. cerevisiae during wine fermentation. In the present study we analyzed the survival capacity of non-cerevisiae strains in competition with S. cerevisiae during fermentation of synthetic wine must at different temperatures. First, we developed a new method, based on QPCR, to quantify the proportion of different Saccharomyces yeasts in mixed cultures. This method was used to assess the effect of competition on the growth fitness. In addition, fermentation kinetics parameters and final wine compositions were also analyzed. We observed that some cryotolerant Saccharomyces yeasts, particularly S. uvarum, seriously compromised S. cerevisiae fitness during competences at lower temperatures, which explains why S. uvarum can replace S. cerevisiae during wine fermentations in European regions with oceanic and continental climates. From an enological point of view, mixed co-cultures between S. cerevisiae and S. paradoxus or S. eubayanus, deteriorated fermentation parameters and the final product composition compared to single S. cerevisiae inoculation. However, in co-inoculated synthetic must in which S. kudriavzevii or S. uvarum coexisted with S. cerevisiae, there were fermentation performance improvements and the final wines contained less ethanol and higher amounts of glycerol. Finally, it is interesting to note that in co-inoculated fermentations, wine strains of S. cerevisiae and S. uvarum performed better than non-wine strains of the same species. PMID:28223968
Wang, Ruifei; Unrean, Pornkamol; Franzén, Carl Johan
2016-01-01
High content of water-insoluble solids (WIS) is required for simultaneous saccharification and co-fermentation (SSCF) operations to reach the high ethanol concentrations that meet the techno-economic requirements of industrial-scale production. The fundamental challenges of such processes are related to the high viscosity and inhibitor contents of the medium. Poor mass transfer and inhibition of the yeast lead to decreased ethanol yield, titre and productivity. In the present work, high-solid SSCF of pre-treated wheat straw was carried out by multi-feed SSCF which is a fed-batch process with additions of substrate, enzymes and cells, integrated with yeast propagation and adaptation on the pre-treatment liquor. The combined feeding strategies were systematically compared and optimized using experiments and simulations. For high-solid SSCF process of SO2-catalyzed steam pre-treated wheat straw, the boosted solubilisation of WIS achieved by having all enzyme loaded at the beginning of the process is crucial for increased rates of both enzymatic hydrolysis and SSCF. A kinetic model was adapted to simulate the release of sugars during separate hydrolysis as well as during SSCF. Feeding of solid substrate to reach the instantaneous WIS content of 13 % (w/w) was carried out when 60 % of the cellulose was hydrolysed, according to simulation results. With this approach, accumulated WIS additions reached more than 20 % (w/w) without encountering mixing problems in a standard bioreactor. Feeding fresh cells to the SSCF reactor maintained the fermentation activity, which otherwise ceased when the ethanol concentration reached 40-45 g L(-1). In lab scale, the optimized multi-feed SSCF produced 57 g L(-1) ethanol in 72 h. The process was reproducible and resulted in 52 g L(-1) ethanol in 10 m(3) scale at the SP Biorefinery Demo Plant. SSCF of WIS content up to 22 % (w/w) is reproducible and scalable with the multi-feed SSCF configuration and model-aided process design. For simultaneous saccharification and fermentation, the overall efficiency relies on balanced rates of substrate feeding and conversion. Multi-feed SSCF provides the possibilities to balance interdependent rates by systematic optimization of the feeding strategies. The optimization routine presented in this work can easily be adapted for optimization of other lignocellulose-based fermentation systems.
León-Roque, Noemí; Abderrahim, Mohamed; Nuñez-Alejos, Luis; Arribas, Silvia M; Condezo-Hoyos, Luis
2016-12-01
Several procedures are currently used to assess fermentation index (FI) of cocoa beans (Theobroma cacao L.) for quality control. However, all of them present several drawbacks. The aim of the present work was to develop and validate a simple image based quantitative procedure, using color measurement and artificial neural network (ANNs). ANN models based on color measurements were tested to predict fermentation index (FI) of fermented cocoa beans. The RGB values were measured from surface and center region of fermented beans in images obtained by camera and desktop scanner. The FI was defined as the ratio of total free amino acids in fermented versus non-fermented samples. The ANN model that included RGB color measurement of fermented cocoa surface and R/G ratio in cocoa bean of alkaline extracts was able to predict FI with no statistical difference compared with the experimental values. Performance of the ANN model was evaluated by the coefficient of determination, Bland-Altman plot and Passing-Bablok regression analyses. Moreover, in fermented beans, total sugar content and titratable acidity showed a similar pattern to the total free amino acid predicted through the color based ANN model. The results of the present work demonstrate that the proposed ANN model can be adopted as a low-cost and in situ procedure to predict FI in fermented cocoa beans through apps developed for mobile device. Copyright © 2016 Elsevier B.V. All rights reserved.
El Kadri, Hani; Lalou, Sofia; Mantzouridou, FaniTh; Gkatzionis, Konstantinos
2018-05-01
W 1 /O/W 2 emulsion in set-type yogurt has the potential to segregate probiotics in order to avoid interference with the starter culture as well as protection against harsh processing and digestion conditions. Lactobacillus paracasei subsp. paracasei DC 412 probiotic cells in milk-based W 1 /O/W 2 emulsions were incorporated in yogurt, in addition to starter cultures Lactobacillus bulgaricus and Streptococcus thermophilus, and the effect on the fermentation, bacterial growth kinetics, physicochemical properties, and structural characteristics was investigated. Stability of W 1 /O/W 2 was monitored with optical microscopy and cryo-SEM and localisation of encapsulated L. paracasei in yogurt was monitored using fluorescent microscopy. During fermentation, starter culture was not affected by introduction of L. paracasei and/or W 1 /O/W 2 emulsion. The viability of L. paracasei encapsulated in W 1 /O/W 2 emulsion was enhanced during storage and after exposure to simulated gastrointestinal conditions. L. paracasei remained within the inner W 1 phase till the end of the storage period (28 days at 4 °C). Moreover, W 1 /O/W 2 emulsion altered physicochemical and textural properties; however, these were within acceptable range. These results demonstrate the capability of W 1 /O/W 2 emulsion to be utilised for probiotic fortification of yogurt to increase functionality without interfering with starter culture and fermentation. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, Q.; Zheng, Z.; Zhu, C.
2006-12-01
Microorganisms in nature conserve energy by catalyzing various geochemical reactions. To build a quantitative relationship between geochemical conditions and metabolic rates, we propose a bioenergetics-kinetics coupled modeling approach. This approach describes microbial community as a metabolic network, i.e., fermenting microbes degrade organic substrates while aerobic respirer, nitrate reducer, metal reducer, sulfate reducer, and methanogen consume the fermentation products. It quantifies the control of substrate availability and biological energy conservation on the metabolic rates using thermodynamically consistent rate laws. We applied this simulation approach to study the progress of microbial metabolism during a field biostimulation experiment conducted in Oak Ridge, Tennessee. In the experiment, ethanol was injected into a monitoring well and groundwater was sampled to monitor changes in the chemistry. With time, concentrations of ethanol and SO42- decreased while those of NH4+, Fe2+, and Mn2+ increased. The simulation results fitted well to the observation, indicating simultaneous ethanol degradation and terminal electron accepting processes. The rates of aerobic respiration and denitrification were mainly controlled by substrate concentrations while those of ethanol degradation, sulfate reduction, and methanogenesis were controlled dominantly by the energy availability. The simulation results suggested two different microbial growth statuses in the subsurface. For the functional groups with significant growth, variations with time in substrate concentrations demonstrated a typical S curve. For the groups without significant growth, initial decreases in substrate concentrations were linear with time. Injecting substrates followed by monitoring environmental chemistry therefore provides a convenient approach to characterize microbial growth in the subsurface where methods for direct observation are currently unavailable. This research was funded by the NABIR program, DOE, under grant No. DE-FG02-04ER63740 to CZ. We thank J. Istok, David Watson, and Philip Jardine for their help. The views and opinions of authors expressed herein do not necessarily state or reflect those of the DOE.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Sujaya; Chowdhury, Ranjana; Bhattacharjee, Chiranjib
2010-10-01
The conventional deep desulfurization must be followed by a suitable desulfurization process to achieve ultra low sulfur diesel (ULSD) with 10-15 ppm sulfur level which satisfies the strict environmental regulations. Bio-desulfurization is one of the potential routes for the above mentioned purpose. In this present investigation our major concern is production of Ultra Low sulfur diesel (ULSD) and production of biosurfactant simultaneously using Rhodococcus sp. The substituted benzothiophenes (BTs) and dibenzothiophenes (DBTs) get converted to 2-hydroxy biphenyl, which is a potential bio-surfactant. Kinetics of biodesulfurisation of deep desulfurized diesel using Rhodococcus sp. has been studied with special reference to removal of organo-sulfur compounds in diesel and production of 2-hydroxy biphenyl. The sulfur concentration of feed diesel is in the range of 200-540 mg/L. Aqueous phase to diesel ratios have been varied in the range of 9:1 to 1:9. The optimum ratio has been found to be 1:4 and the maximum conversion of sulfur of 95% has been achieved. The values of Monod kinetic parameters, μmax, maximum specific growth rate and Ks, saturation constant of the microbial growth and Yield coefficient of surfactant have been measured to be 0.096 h-1, 71 mg/L, and 17 μmol/g dry cell weights respectively by conducting batch type experiments. A deterministic mathematical model has been developed using the kinetic parameters and the experimental data have been compared with simulated ones satisfactorily.
Characterization of specialized flocculent yeasts to improve sparkling wine fermentation.
Tofalo, R; Perpetuini, G; Di Gianvito, P; Arfelli, G; Schirone, M; Corsetti, A; Suzzi, G
2016-06-01
Flocculent wine yeasts were characterized for the expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes, growth kinetics and physicochemical properties of the cell surface during a 6-month sparkling wine fermentation period. The expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes was determined by RT-qPCR. The physicochemical characterization of yeast surface properties was evaluated by the microbial adhesion to solvents method. FLO5 gene was the most expressed one and a linear correlation with the flocculent degree was found. Flocculent strains were more hydrophobic than the commercial wine strain EC1118. Gene expressions and the ability to face secondary wine fermentation conditions were strain dependent. The importance of FLO5 gene in developing the high flocculent characteristic of wine yeasts was highlighted. Cell surface properties depended on the time of fermentation. Better knowledge about the expression of some genes encoding the flocculent phenotype which could be useful to select suitable starter cultures to improve sparkling wine technology was achieved. A step forward in understanding the complexity and strain-specific nature of flocculation phenotype was done. © 2016 The Society for Applied Microbiology.
Shaghaghi-Moghaddam, Reza; Jafarizadeh-Malmiri, Hoda; Mehdikhani, Parviz; Jalalian, Sepide; Alijanianzadeh, Reza
2017-12-28
Efforts to produce bioethanol with higher productivity in a batch submerged fermentation were made by evaluating the bioethanol production of the five different strains of Saccharomyces cerevisiae, namely, NCYC 4109 (traditional bakery yeast), SFO6 (industrial yeast), TTCC 2956 (hybrid baking yeast) and two wild yeasts, PTCC 5052 and BY 4743. The bioethanol productivity and kinetic parameters for all five yeasts at constant fermentation conditions, during 72 h, were evaluated and monitored. The obtained results indicated that compared to the wild yeasts, both traditional bakery (NCYC 4109) and industrial (SFO6) yeasts had higher bioethanol productivity (0.9 g/L h). Significant (p<0.05) differences between biomass concentration of NCYC 4109 yeast and those of other yeasts 30 h after start of fermentation, and its high bioethanol concentration (59.19 g/L) and yield over consumed sugars (77.25%) were highlighted among all the studied yeasts. Minimum bioethanol productivity was obtained using yeasts PTCC 5052 (0.7 g/L h) and TTCC 2956 (0.86 g/L h). However, maximum yield over consumed sugar was obtained using the yeast TTCC 2956 (79.41%).
Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water
NASA Astrophysics Data System (ADS)
Olanrewaju, Kazeem Bode
The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in converting cellulose to fermentable sugars in subcritical and supercritical water differs because of the difference in their activation energies. Cellulose and starch were both hydrolyzed in micro- and tubular reactors and at subcritical and supercritical conditions. Due to the difficulty involved in generating an aqueous based dissolved cellulose and having it reacted in subcritical water, dissolved starch was used instead. Better yield of water soluble hydrolysates, especially fermentable sugars, were observed from the hydrolysis of cellulose and dissolved starch in subcritical water than at supercritical conditions. The concluding phase of this project focuses on establishing the mode of scission of cellulose chains in the hydrothermal reactor. This was achieved by using the simulated degradation pattern generated based on different scission modes to fingerprint the degradation pattern obtained from experiment.
Microbial diversity and biochemical characteristics of Borassus akeassii wine.
Tapsoba, F; Savadogo, A; Legras, J-L; Zongo, C; Traore, A S
2016-10-01
Palm wine produced traditionally and consumed by many people in the South-West of Burkina Faso is subject to alteration. In this study, we carried out a follow-up of two palm wines' fermentation during the 10 days in which palm wines are classically produced and consumed. We monitored biochemical characteristics of fermenting wines as well as followed the microflora kinetics using culture-dependent and culture-independent methods. The analysis of the acid content and the bacterial population revealed the correlation between the development of Lactic acid bacteria, acetic acid, and total acidity. Ribosomal intergenic spacer analysis and sequencing results revealed different yeast and bacterial populations for the two palm wines. Although Saccharomyces cerevisiae remained the sole yeast species in one fermentation, it was quickly replaced by Clavispora lusitaniae in the second fermentation, which had never been described until now in palm wine. When considering bacteria, the species Corynebacterium sp., Lactobacillus casei, Lactobacillus paracasei and Leuconostoc sp. were detected in both palm wines. But we also detected Acetobacter pasteurianus, Bacillus cereus and Bacillus thuringiensis in the second fermentation. Our results highlight the evolution of palm wine during the 10 days separating palm tapping and consumption of the fermented wine. The fermentation step is performed within few hours and completed after 24 h. The next days, its acidity increases progressively with the production of lactic and acetic acids by bacteria. The high production of acetic acid is very likely one of the main cause of palm wine degradation during this period. This indicates that the solution to palm wine preservation might be protection against oxygen, as well as the limit of bacterial growth through the use of preservatives. © 2016 The Society for Applied Microbiology.
Bağder Elmacı, Simel; Özçelik, Filiz; Tokatlı, Mehmet; Çakır, İbrahim
2014-05-01
The purpose of this study was to evaluate the important technological and fermentative properties of wine yeast strains previously isolated from different wine producing regions of Turkey. The determination of the following important properties was made: growth at high temperatures; fermentative capability in the presence of high sugar concentration; fermentation rate; hydrogen sulfide production; killer activity; resistance to high ethanol and sulfur dioxide; foam production; and enzymatic profiles. Ten local wine yeast strains belonging to Saccharomyces, and one commercial active dry yeast as a reference strain were evaluated. Fermentation characteristics were evaluated in terms of kinetic parameters, including ethanol yield (YP/S), biomass yield (YX/S), theoretical ethanol yield (%), specific ethanol production rate (qp; g/gh), specific glucose uptake rate (qs; g/gh), and the substrate conversion (%). All tested strains were able to grow at 37 °C and to start fermentation at 30° Brix, and were resistant to high concentrations of sulfur dioxide. 60 % of the strains were weak H2S producers, while the others produced high levels. Foam production was high, and no strains had killer activity. Six of the tested strains had the ability to grow and ferment at concentrations of 14 % ethanol. Except for one strain, all fermented most of the media sugars at a high rate, producing 11.0-12.4 % (v/v) ethanol. Although all but one strain had suitable characteristics for wine production, they possessed poor activities of glycosidase, esterase and proteinase enzymes of oenological interest. Nine of the ten local yeast strains were selected for their good oenological properties and their suitability as a wine starter culture.
Fernández-Naveira, Ánxela; Abubackar, Haris Nalakath; Veiga, María C; Kennes, Christian
2016-05-01
Butanol production from carbon monoxide-rich waste gases or syngas is an attractive novel alternative to the conventional acetone-butanol-ethanol (ABE) fermentation. Solvent toxicity is a key factor reported in ABE fermentation with carbohydrates as substrates. However, in the gas-fermentation process, kinetic aspects and the inhibition effect of solvents have not thoroughly been studied. Therefore, different batch bottle experiments were carried out with the bacterial species Clostridium carboxidivorans using CO as carbon source for butanol-ethanol fermentation. A maximum specific growth rate of 0.086 ± 0.004 h(-1) and a biomass yield of 0.011 gbiomass/gCO were found, which is significantly lower than in other clostridia grown on sugars. Besides, three assays were carried out to check the inhibitory effect of butanol, ethanol, and their mixtures. Butanol had a higher inhibitory effect on the cells than ethanol and showed a lower IC50, reduced growth rate, and slower CO consumption with increasing alcohol concentrations. A concentration of 14-14.50 g/L butanol caused 50 % growth inhibition in C. carboxidivorans, and 20 g/L butanol resulted in complete inhibition, with a growth rate of 0 h(-1). Conversely, 35 g/L ethanol decreased by 50 % the final biomass concentration respect to the control and yielded the lowest growth rate of 0.024 h(-1). The inhibitory effect of mixtures of both alcohols was also checked adding similar, near identical, concentrations of each one. Growth decreased by 50 % in the presence of a total concentration of alcohols of 16.22 g/L, consisting of similar amounts of each alcohol. Occasional differences in initially added concentrations of alcohols were minimal. The lowest growth rate (0.014 h(-1)) was observed at the highest concentration assayed (25 g/L).
System-level modeling of acetone-butanol-ethanol fermentation.
Liao, Chen; Seo, Seung-Oh; Lu, Ting
2016-05-01
Acetone-butanol-ethanol (ABE) fermentation is a metabolic process of clostridia that produces bio-based solvents including butanol. It is enabled by an underlying metabolic reaction network and modulated by cellular gene regulation and environmental cues. Mathematical modeling has served as a valuable strategy to facilitate the understanding, characterization and optimization of this process. In this review, we highlight recent advances in system-level, quantitative modeling of ABE fermentation. We begin with an overview of integrative processes underlying the fermentation. Next we survey modeling efforts including early simple models, models with a systematic metabolic description, and those incorporating metabolism through simple gene regulation. Particular focus is given to a recent system-level model that integrates the metabolic reactions, gene regulation and environmental cues. We conclude by discussing the remaining challenges and future directions towards predictive understanding of ABE fermentation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ortiz, Gastón Ezequiel; Noseda, Diego Gabriel; Ponce Mora, María Clara; Recupero, Matías Nicolás; Blasco, Martín; Albertó, Edgardo
2016-01-01
A comparative study of the proteolytic enzymes production using twelve Aspergillus strains previously unused for this purpose was performed by solid state fermentation. A semiquantitative and quantitative evaluation of proteolytic activity were carried out using crude enzymatic extracts obtained from the fermentation cultures, finding seven strains with high and intermediate level of protease activity. Biochemical, thermodynamics, and kinetics features such as optimum pH and temperature values, thermal stability, activation energy (E a), quotient energy (Q 10), K m, and V max were studied in four enzymatic extracts from the selected strains that showed the highest productivity. Additionally, these strains were evaluated by zymogram analysis obtaining protease profiles with a wide range of molecular weight for each sample. From these four strains with the highest productivity, the proteolytic extract of A. sojae ATCC 20235 was shown to be an appropriate biocatalyst for hydrolysis of casein and gelatin substrates, increasing its antioxidant activities in 35% and 125%, respectively. PMID:26989505
Bazoti, Suzana F; Golunski, Simone; Pereira Siqueira, Diego; Scapini, Thamarys; Barrilli, Évelyn T; Alex Mayer, Diego; Barros, Katharina O; Rosa, Carlos A; Stambuk, Boris U; Alves, Sérgio L; Valério, Alexsandra; de Oliveira, Débora; Treichel, Helen
2017-11-01
This work aims to evaluate the production of second-generation ethanol from sugarcane bagasse hydrolysate without acetic acid (inhibitor) detoxification. Three isolated yeast strains from lignocellulosic materials were evaluated, and one strain (UFFS-CE-3.1.2), identified using large subunit rDNA sequences as Wickerhamomyces sp., showed satisfactory results in terms of ethanol production without acetic acid removal. A Plackett-Burman design was used to evaluate the influence of hydrolysate composition and nutrients supplementation in the fermentation medium for the second-generation ethanol production. Two fermentation kinetics were performed, with controlled pH at 5.5, or keeping the initial pH at 4.88. The fermentation conducted without pH adjustment and supplementation of nutrients reported the best result in terms of second-generation ethanol production. Wickerhamomyces sp., isolated as UFFS-CE-3.1.2, was considered promising in the production of second-generation ethanol by using crude (non-detoxified) sugarcane hydrolysate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jansen, Mickel L A; Bracher, Jasmine M; Papapetridis, Ioannis; Verhoeven, Maarten D; de Bruijn, Hans; de Waal, Paul P; van Maris, Antonius J A; Klaassen, Paul; Pronk, Jack T
2017-08-01
The recent start-up of several full-scale 'second generation' ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions. © FEMS 2017.
A fermentation-powered thermopneumatic pump for biomedical applications.
Ochoa, Manuel; Ziaie, Babak
2012-10-21
We present a microorganism-powered thermopneumatic pump that utilizes temperature-dependent slow-kinetics gas (carbon dioxide) generating fermentation of yeast as a pressure source. The pump consists of stacked layers of polydimethylsiloxane (PDMS) and a silicon substrate that form a drug reservoir, and a yeast-solution-filled working chamber. The pump operates by the displacement of a drug due to the generation of gas produced via yeast fermentation carried out at skin temperatures. The robustness of yeast allows for long shelf life under extreme environmental conditions (50 °C, >250 MPa, 5-8% humidity). The generation of carbon dioxide is a linear function of time for a given temperature, thus allowing for a controlled volume displacement. A polymeric prototype (dimensions 15 mm × 15 mm × 10 mm) with a slow flow rate of <0.23 μL min(-1) and maximum backpressure of 5.86 kPa capable of continuously pumping for over two hours is presented and characterized.
Wei, Peilian; Cheng, Chi; Lin, Meng; Zhou, Yipin; Yang, Shang-Tian
2017-01-01
Poly(β-l-malic acid) (PMA) is a biodegradable polymer with many potential biomedical applications. PMA can be readily hydrolyzed to malic acid (MA), which is widely used as an acidulant in foods and pharmaceuticals. PMA production from sucrose and sugarcane juice by Aureobasidium pullulans ZX-10 was studied in shake-flasks and bioreactors, confirming that sugarcane juice can be used as an economical substrate without any pretreatment or nutrients supplementation. A high PMA titer of 116.3g/L and yield of 0.41g/g were achieved in fed-batch fermentation. A high productivity of 0.66g/L·h was achieved in repeated-batch fermentation with cell recycle. These results compared favorably with those obtained from glucose and other biomass feedstocks. A process economic analysis showed that PMA could be produced from sugarcane juice at a cost of $1.33/kg, offering a cost-competitive bio-based PMA for industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jansen, Mickel L. A.; Bracher, Jasmine M.; Papapetridis, Ioannis; Verhoeven, Maarten D.; de Bruijn, Hans; de Waal, Paul P.; van Maris, Antonius J. A.; Klaassen, Paul
2017-01-01
Abstract The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions. PMID:28899031
Franco, Wendy; Pérez-Díaz, Ilenys M
2012-10-01
Calcium chloride fermentations represent an alternative to reduce chloride concentrations in the wastewaters generated from commercial cucumber fermentations, currently performed in cover brine solutions containing 6% to 12% sodium chloride. However, preliminary attempts to commercially ferment the cucumbers in the presence of oxygen led to the development of a secondary cucumber fermentation or spoilage. The development of cucumber secondary fermentation has also been occasionally reported by processors using cover brine solutions containing sodium chloride. This study focused on the development of a model system to characterize CaCl(2) and NaCl secondary cucumber fermentations under conditions similar to those present on the commercial scale. Cucumber fruits mixed with cover brine solutions, containing 100 mM CaCl(2) or 1.03 M NaCl, and 25 mM acetic acid, were fermented in 2 L fermentation vessels subjected to air-purging at a rate of 5 mL/min. Microorganisms and selected biochemical changes detected in the experimental cucumber fermentations had been previously observed in commercial spoilage samples, suggesting the successful reproduction of the secondary fermentation in the laboratory. Experimental secondary fermentations were characterized by the rapid oxidation of the lactic acid produced during the primary fermentation, which, in turn, increased pH. Lactic acid disappearance seemed to be the result of yeast metabolism that also led to the chemical reduction of the environment to levels at which other bacteria could become established and produce butyric, propionic, and acetic acids. This model system will be applied for the identification of strategies to prevent the initiation of the cucumber secondary fermentation and reduce economic losses in the pickling industry. The study of secondary cucumber fermentation has represented a challenge for many years. The successful development of a model system for the study of this phenomenon in the laboratory is instrumental in furthering the study of the event and in optimizing the sodium-chloride-free fermentation at the commercial scale. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.
NASA Astrophysics Data System (ADS)
Ma, Lei; Wang, Yizhong; Chen, Ning; Liu, Tiegen; Xu, Qingyang; Kong, Fanzhi
2008-12-01
In this paper, a new method for monitoring and controlling fermentation process of branched chain amino acid (BCAA) was proposed based on color identification. The color image of fermentation broth of BCAA was firstly taken by a CCD camera. Then, it was changed from RGB color model to HIS color model. Its histograms of hue H and saturation S were calculated, which were used as the input of a designed BP network. The output of the BP network was the description of the color of fermentation broth of BCAA. After training, the color of fermentation broth was identified by the BP network according to the histograms of H and S of a fermentation broth image. Along with other parameters, the fermentation process of BCAA was monitored and controlled to start the stationary phase of fermentation soon. Experiments were conducted with satisfied results to show the feasibility and usefulness of color identification of fermentation broth in fermentation process control of BCAA.
NASA Astrophysics Data System (ADS)
Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.
2013-08-01
In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (no-ethanol lane) and BToX plus ethanol (with-ethanol lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field data set and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the with-ethanol lane than in the no-ethanol lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.
Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; de Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.
2013-01-01
In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol (With-Ethanol Lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field dataset and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the With-Ethanol Lane than in the No-Ethanol Lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron-reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.
Andrés-Toro, B; Girón-Sierra, J M; Fernández-Blanco, P; López-Orozco, J A; Besada-Portas, E
2004-04-01
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation. Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results. The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs). Successful finding of optimal ways to drive these processes were reported. Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules.
2013-01-01
Background Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. Results We constructed an l-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for l-glutamic acid production; the results of this process corresponded with previous experimental data regarding l-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of l-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model l-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in l-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. Conclusions In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation. PMID:24053676
Nishio, Yousuke; Ogishima, Soichi; Ichikawa, Masao; Yamada, Yohei; Usuda, Yoshihiro; Masuda, Tadashi; Tanaka, Hiroshi
2013-09-22
Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. We constructed an L-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for L-glutamic acid production; the results of this process corresponded with previous experimental data regarding L-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of L-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model L-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in L-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation.
Millat, Thomas; Janssen, Holger; Bahl, Hubert; Fischer, Ralf-Jörg; Wolkenhauer, Olaf
2013-01-01
Summary In a continuous culture under phosphate limitation the metabolism of Clostridium acetobutylicum depends on the external pH level. By comparing seven steady-state conditions between pH 5.7 and pH 4.5 we show that the switch from acidogenesis to solventogenesis occurs between pH 5.3 and pH 5.0 with an intermediate state at pH 5.1. Here, an integrative study is presented investigating how a changing external pH level affects the clostridial acetone–butanol–ethanol (ABE) fermentation pathway. This is of particular interest as the biotechnological production of n-butanol as biofuel has recently returned into the focus of industrial applications. One prerequisite is the furthering of the knowledge of the factors determining the solvent production and their integrative regulations. We have mathematically analysed the influence of pH-dependent specific enzyme activities of branch points of the metabolism on the product formation. This kinetic regulation was compared with transcriptomic regulation regarding gene transcription and the proteomic profile. Furthermore, both regulatory mechanisms were combined yielding a detailed projection of their individual and joint effects on the product formation. The resulting model represents an important platform for future developments of industrial butanol production based on C. acetobutylicum. PMID:23332010
Verluyten, Jurgen; Leroy, Frédéric; de Vuyst, Luc
2004-01-01
Lactobacillus curvatus LTH 1174, a fermented sausage isolate, produces the listericidal bacteriocin curvacin A. The effect of different spices relevant for the production of fermented sausages was investigated in vitro through laboratory fermentations with a meat simulation medium and an imposed pH profile relevant for Belgian-type fermented sausages. The influence on the growth characteristics and especially on the kinetics of curvacin A production with L. curvatus LTH 1174 was evaluated. Pepper, nutmeg, rosemary, mace, and garlic all decreased the maximum specific growth rate, while paprika was the only spice that increased it. The effect on the lag phase was minor except for nutmeg and especially for garlic, which increased it, yet garlic was stimulatory for biomass production. The maximum attainable biomass concentration (Xmax) was severely decreased by the addition of 0.40% (wt/vol) nutmeg, while 0.35% (wt/vol) garlic or 0.80% (wt/vol) white pepper increased Xmax. Nutmeg decreased both growth and bacteriocin production considerably. Garlic was the only spice enhancing specific bacteriocin production, resulting in higher bacteriocin activity in the cell-free culture supernatant. Finally, lactic acid production was stimulated by the addition of pepper, and this was not due to the manganese present because an amount of manganese that was not growth limiting was added to the growth medium. Addition of spices to the sausage mixture is clearly a factor that will influence the effectiveness of bacteriocinogenic starter cultures in fermented-sausage manufacturing. PMID:15294818
Verluyten, Jurgen; Leroy, Frédéric; De Vuyst, Luc
2004-08-01
Lactobacillus curvatus LTH 1174, a fermented sausage isolate, produces the listericidal bacteriocin curvacin A. The effect of different spices relevant for the production of fermented sausages was investigated in vitro through laboratory fermentations with a meat simulation medium and an imposed pH profile relevant for Belgian-type fermented sausages. The influence on the growth characteristics and especially on the kinetics of curvacin A production with L. curvatus LTH 1174 was evaluated. Pepper, nutmeg, rosemary, mace, and garlic all decreased the maximum specific growth rate, while paprika was the only spice that increased it. The effect on the lag phase was minor except for nutmeg and especially for garlic, which increased it, yet garlic was stimulatory for biomass production. The maximum attainable biomass concentration (X(max)) was severely decreased by the addition of 0.40% (wt/vol) nutmeg, while 0.35% (wt/vol) garlic or 0.80% (wt/vol) white pepper increased X(max). Nutmeg decreased both growth and bacteriocin production considerably. Garlic was the only spice enhancing specific bacteriocin production, resulting in higher bacteriocin activity in the cell-free culture supernatant. Finally, lactic acid production was stimulated by the addition of pepper, and this was not due to the manganese present because an amount of manganese that was not growth limiting was added to the growth medium. Addition of spices to the sausage mixture is clearly a factor that will influence the effectiveness of bacteriocinogenic starter cultures in fermented-sausage manufacturing.
Judkins, M B; Krysl, L J; Barton, R K; Holcombe, D W; Gunter, S A; Broesder, J T
1991-09-01
Four ruminally cannulated Holstein steers (average BW 303 kg) were used in a 4 x 4 Latin square design digestion trial to study the influence of daily cottonseed meal (CSM; 1.6 g of CP/kg of BW) supplementation time on forage intake and ruminal fluid kinetics and fermentation. Steers were housed individually in tie stalls and were fed chopped fescue hay on an ad libitum basis at 0600 and 1400. Treatments were 1) control, grass hay only (CON) and grass hay and CSM fed once daily at 2) 0600 (EAM) 3) 1000 (MAM), or 4) 1400 (PM). Ruminal NH3 N concentrations reflected a time of supplementation x sampling time interaction (P less than .05); CON steers had the lowest (P less than .05) ruminal NH3 N concentrations at all times other than at 0600, 1000, 1200, and 2400, when they did not differ (P greater than .05) from at least one of the supplemented groups. Forage intake, ratio of bacterial purine:N, rate of DM and NDF disappearance, and ruminal fluid kinetics were not influenced (P greater than .05) by supplementation time. Total ruminal VFA differed (P less than .05) between CON and supplemented steers, as well as among supplemented steers (linear and quadratic effects P less than .05). Acetate, propionate, and valerate proportions were influenced (P less than .05) by a sampling time X supplementation time interaction. Under the conditions of this study, greater peak ammonia concentrations with morning supplementation than with afternoon supplementation did not stimulate ruminal fermentation or rate of NDF disappearance.
Rodrigues, B; Lima-Costa, M E; Constantino, A; Raposo, S; Felizardo, C; Gonçalves, D; Fernandes, T; Dionísio, L; Peinado, J M
2016-10-01
Alcoholic fermentation of carob waste sugars (sucrose, glucose and fructose) extracted with cheese whey, by co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis has been analyzed. Growth and fermentation of S. cerevisiae in the carob-whey medium showed an inhibition of about 30% in comparison with water-extracted carob. The inhibition of K. lactis on carob-whey was greater (70%) when compared with the whey medium alone, due to osmolarity problems. Oxygen availability was a very important factor for K. lactis, influencing its fermentation performance. When K. lactis was grown alone on carob-whey medium, lactose was always consumed first, and glucose and fructose were consumed afterwards, only at high aeration conditions. In co-culture with S. cerevisiae, K. lactis was completely inhibited and, at low aeration, died after 3 days; at high aeration this culture could survive but growth and lactose fermentation were only recovered after S. cerevisiae became stationary. To overcome the osmolarity and K. lactis' oxygen problems, the medium had to be diluted and a sequential fermentative process was designed in a STR-3l reactor. K. lactis was inoculated first and, with low aeration (0.13vvm), consumed all the lactose in 48h. Then S. cerevisiae was inoculated, consuming the total of the carob sugars, and producing ethanol in a fed-batch regime. The established co-culture with K. lactis increased S. cerevisiae ethanol tolerance. This fermentation process produced ethanol with good efficiency (80g/l final concentration and a conversion factor of 0.4g ethanol/g sugar), eliminating all the sugars of the mixed waste. These efficient fermentative results pointed to a new joint treatment of agro-industrial wastes which may be implemented successfully, with economic and environmental sustainability for a bioethanol industrial proposal. Copyright © 2016 Elsevier Inc. All rights reserved.
Coman, Maria Magdalena; Verdenelli, Maria Cristina; Cecchini, Cinzia; Silvi, Stefania; Vasile, Aida; Bahrim, Gabriela Elena; Orpianesi, Carla; Cresci, Alberto
2013-10-15
Fermented foods have a great significance since they provide and preserve large quantities of nutritious foods in a wide diversity of flavors, aromas and texture, which enrich the human diet. Originally fermented milks were developed as a means of preserving nutrients and are the most representatives of the category. The first aim of this study was to screen the effect of buckwheat flour and oat bran as prebiotics on the production of probiotic fiber-enriched fermented milks, by investigating the kinetics of acidification of buckwheat flour- and oat bran-supplemented milk fermented by Lactobacillus rhamnosus IMC 501®, Lactobacillus paracasei IMC 502® and their 1:1 combination named SYNBIO®. The probiotic strains viability, pH and sensory characteristics of the fermented fiber-enriched milk products, stored at 4 °C for 28 days were also monitored. The results showed that supplementation of whole milk with the tested probiotic strains and the two vegetable substrates results in a significant faster lowering of the pH. Also, the stability of L. rhamnosus IMC 501®, L. paracasei IMC 502® and SYNBIO® during storage at 4 °C for 28 days in buckwheat flour- and oat bran-supplemented samples was remarkably enhanced. The second aim of the study was to develop a new synbiotic product using the best combination of probiotics and prebiotics by promoting better growth and survival and be acceptable to the consumers with high concentration of probiotic strain. This new product was used to conduct a human feeding trial to validate the fermented milk as a carrier for transporting bacterial cells into the human gastrointestinal tract. The probiotic strains were recovered from fecal samples in 40 out of 40 volunteers fed for 4 weeks one portion per day of synbiotic fermented milk carrying about 10(9) viable cells. © 2013.
Liu, Chunbo; Pan, Feng; Li, Yun
2016-07-29
Glutamate is of great importance in food and pharmaceutical industries. There is still lack of effective statistical approaches for fault diagnosis in the fermentation process of glutamate. To date, the statistical approach based on generalized additive model (GAM) and bootstrap has not been used for fault diagnosis in fermentation processes, much less the fermentation process of glutamate with small samples sets. A combined approach of GAM and bootstrap was developed for the online fault diagnosis in the fermentation process of glutamate with small sample sets. GAM was first used to model the relationship between glutamate production and different fermentation parameters using online data from four normal fermentation experiments of glutamate. The fitted GAM with fermentation time, dissolved oxygen, oxygen uptake rate and carbon dioxide evolution rate captured 99.6 % variance of glutamate production during fermentation process. Bootstrap was then used to quantify the uncertainty of the estimated production of glutamate from the fitted GAM using 95 % confidence interval. The proposed approach was then used for the online fault diagnosis in the abnormal fermentation processes of glutamate, and a fault was defined as the estimated production of glutamate fell outside the 95 % confidence interval. The online fault diagnosis based on the proposed approach identified not only the start of the fault in the fermentation process, but also the end of the fault when the fermentation conditions were back to normal. The proposed approach only used a small sample sets from normal fermentations excitements to establish the approach, and then only required online recorded data on fermentation parameters for fault diagnosis in the fermentation process of glutamate. The proposed approach based on GAM and bootstrap provides a new and effective way for the fault diagnosis in the fermentation process of glutamate with small sample sets.
Evaluation of Cashew Apple Juice for the Production of Fuel Ethanol
NASA Astrophysics Data System (ADS)
Pinheiro, Álvaro Daniel Teles; Rocha, Maria Valderez Ponte; Macedo, Gorete R.; Gonçalves, Luciana R. B.
A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L-1 of initial sugar concentration was used. Cell yield (Yx/s) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L-1 of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.
Evaluation of cashew apple juice for the production of fuel ethanol.
Pinheiro, Alvaro Daniel Teles; Rocha, Maria Valderez Ponte; Macedo, Gorete R; Gonçalves, Luciana R B
2008-03-01
A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L(-1) of initial sugar concentration was used. Cell yield (Y (X/S)) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L(-1) of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.
Selection of Streptococcus lactis Mutants Defective in Malolactic Fermentation
Renault, Pierre P.; Heslot, Henri
1987-01-01
An enrichment medium and a new sensitive medium were developed to detect malolactic variants in different strains of lactic bacteria. Factors such as the concentration of glucose and l-malate, pH level, and the type of indicator dye used are discussed with regard to the kinetics of malic acid conversion to lactic acid. Use of these media allowed a rapid and easier screening of mutagenized streptococcal cells unable to ferment l-malate. A collection of malolactic-negative mutants of Streptococcus lactis induced by UV, nitrosoguanidine, or transposonal mutagenesis were characterized. The results showed that several mutants were apparently defective in the structural gene of malolactic enzyme, whereas others contained mutations which may either inactivate a putative permease or affect a regulatory sequence. PMID:16347282
Microbial Methane Fermentation Kinetics for Toxicant Exposure.
1981-08-31
percent of digester contents daily. Bauchcp (1967) used chloroform as a specific inhibitor for methane formation in suspensions of rumen fluid. Other...washout. -wt 113 ,YO. it i L ,. . , . . . - _ TABLE OF CONTENTS I temn Page ABSTRACT................ . . ...... . ... .. .. .. .. .. .. .. INTRODUCTION...several environmental factors (McCarty, 1964; Dague, 1968; Metcalf and Eddy, 1979). The reactor contents should be free of dis- solved oxygen and other
[GSH fermentation process modeling using entropy-criterion based RBF neural network model].
Tan, Zuoping; Wang, Shitong; Deng, Zhaohong; Du, Guocheng
2008-05-01
The prediction accuracy and generalization of GSH fermentation process modeling are often deteriorated by noise existing in the corresponding experimental data. In order to avoid this problem, we present a novel RBF neural network modeling approach based on entropy criterion. It considers the whole distribution structure of the training data set in the parameter learning process compared with the traditional MSE-criterion based parameter learning, and thus effectively avoids the weak generalization and over-learning. Then the proposed approach is applied to the GSH fermentation process modeling. Our results demonstrate that this proposed method has better prediction accuracy, generalization and robustness such that it offers a potential application merit for the GSH fermentation process modeling.
Li, Zhigang; Shi, Zhongping; Li, Xin
2014-05-01
Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kinetic modeling and exploratory numerical simulation of chloroplastic starch degradation
2011-01-01
Background Higher plants and algae are able to fix atmospheric carbon dioxide through photosynthesis and store this fixed carbon in large quantities as starch, which can be hydrolyzed into sugars serving as feedstock for fermentation to biofuels and precursors. Rational engineering of carbon flow in plant cells requires a greater understanding of how starch breakdown fluxes respond to variations in enzyme concentrations, kinetic parameters, and metabolite concentrations. We have therefore developed and simulated a detailed kinetic ordinary differential equation model of the degradation pathways for starch synthesized in plants and green algae, which to our knowledge is the most complete such model reported to date. Results Simulation with 9 internal metabolites and 8 external metabolites, the concentrations of the latter fixed at reasonable biochemical values, leads to a single reference solution showing β-amylase activity to be the rate-limiting step in carbon flow from starch degradation. Additionally, the response coefficients for stromal glucose to the glucose transporter kcat and KM are substantial, whereas those for cytosolic glucose are not, consistent with a kinetic bottleneck due to transport. Response coefficient norms show stromal maltopentaose and cytosolic glucosylated arabinogalactan to be the most and least globally sensitive metabolites, respectively, and β-amylase kcat and KM for starch to be the kinetic parameters with the largest aggregate effect on metabolite concentrations as a whole. The latter kinetic parameters, together with those for glucose transport, have the greatest effect on stromal glucose, which is a precursor for biofuel synthetic pathways. Exploration of the steady-state solution space with respect to concentrations of 6 external metabolites and 8 dynamic metabolite concentrations show that stromal metabolism is strongly coupled to starch levels, and that transport between compartments serves to lower coupling between metabolic subsystems in different compartments. Conclusions We find that in the reference steady state, starch cleavage is the most significant determinant of carbon flux, with turnover of oligosaccharides playing a secondary role. Independence of stationary point with respect to initial dynamic variable values confirms a unique stationary point in the phase space of dynamically varying concentrations of the model network. Stromal maltooligosaccharide metabolism was highly coupled to the available starch concentration. From the most highly converged trajectories, distances between unique fixed points of phase spaces show that cytosolic maltose levels depend on the total concentrations of arabinogalactan and glucose present in the cytosol. In addition, cellular compartmentalization serves to dampen much, but not all, of the effects of one subnetwork on another, such that kinetic modeling of single compartments would likely capture most dynamics that are fast on the timescale of the transport reactions. PMID:21682905
Time delay and noise explaining the behaviour of the cell growth in fermentation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah
2015-02-03
This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.
Time delay and noise explaining the behaviour of the cell growth in fermentation process
NASA Astrophysics Data System (ADS)
Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md
2015-02-01
This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.
Real-time monitoring of high-gravity corn mash fermentation using in situ raman spectroscopy.
Gray, Steven R; Peretti, Steven W; Lamb, H Henry
2013-06-01
In situ Raman spectroscopy was employed for real-time monitoring of simultaneous saccharification and fermentation (SSF) of corn mash by an industrial strain of Saccharomyces cerevisiae. An accurate univariate calibration model for ethanol was developed based on the very strong 883 cm(-1) C-C stretching band. Multivariate partial least squares (PLS) calibration models for total starch, dextrins, maltotriose, maltose, glucose, and ethanol were developed using data from eight batch fermentations and validated using predictions for a separate batch. The starch, ethanol, and dextrins models showed significant prediction improvement when the calibration data were divided into separate high- and low-concentration sets. Collinearity between the ethanol and starch models was avoided by excluding regions containing strong ethanol peaks from the starch model and, conversely, excluding regions containing strong saccharide peaks from the ethanol model. The two-set calibration models for starch (R(2) = 0.998, percent error = 2.5%) and ethanol (R(2) = 0.999, percent error = 2.1%) provide more accurate predictions than any previously published spectroscopic models. Glucose, maltose, and maltotriose are modeled to accuracy comparable to previous work on less complex fermentation processes. Our results demonstrate that Raman spectroscopy is capable of real time in situ monitoring of a complex industrial biomass fermentation. To our knowledge, this is the first PLS-based chemometric modeling of corn mash fermentation under typical industrial conditions, and the first Raman-based monitoring of a fermentation process with glucose, oligosaccharides and polysaccharides present. Copyright © 2013 Wiley Periodicals, Inc.
Xiao, Zhiping; Cheng, Chu; Bao, Teng; Liu, Lujie; Wang, Bin; Tao, Wenjing; Pei, Xun; Yang, Shang-Tian; Wang, Minqi
2018-01-01
Butyric acid is an important chemical currently produced from petrochemical feedstocks. Its production from renewable, low-cost biomass in fermentation has attracted large attention in recent years. In this study, the feasibility of corn husk, an abundant agricultural residue, for butyric acid production by using Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor (FBB) was evaluated. Hydrolysis of corn husk (10% solid loading) with 0.4 M H 2 SO 4 at 110 °C for 6 h resulted in a hydrolysate containing ~ 50 g/L total reducing sugars (glucose:xylose = 1.3:1.0). The hydrolysate was used for butyric acid fermentation by C. tyrobutyricum in a FBB, which gave 42.6 and 53.0% higher butyric acid production from glucose and xylose, respectively, compared to free-cell fermentations. Fermentation with glucose and xylose mixture (1:1) produced 50.37 ± 0.04 g L -1 butyric acid with a yield of 0.38 ± 0.02 g g -1 and productivity of 0.34 ± 0.03 g L -1 h -1 . Batch fermentation with corn husk hydrolysate produced 21.80 g L -1 butyric acid with a yield of 0.39 g g -1 , comparable to those from glucose. Repeated-batch fermentations consistently produced 20.75 ± 0.65 g L -1 butyric acid with an average yield of 0.39 ± 0.02 g g -1 in three consecutive batches. An extractive fermentation process can be used to produce, separate, and concentrate butyric acid to > 30% (w/v) sodium butyrate at an economically attractive cost for application as an animal feed supplement. A high concentration of total reducing sugars at ~ 50% (w/w) yield was obtained from corn husk after acid hydrolysis. Stable butyric acid production from corn husk hydrolysate was achieved in repeated-batch fermentation with C. tyrobutyricum immobilized in a FBB, demonstrating that corn husk can be used as an economical substrate for butyric acid production.
Singh, Nisha; Mathur, Anshu S; Tuli, Deepak K; Gupta, Ravi P; Barrow, Colin J; Puri, Munish
2017-01-01
Cellulose-degrading thermophilic anaerobic bacterium as a suitable host for consolidated bioprocessing (CBP) has been proposed as an economically suited platform for the production of second-generation biofuels. To recognize the overall objective of CBP, fermentation using co-culture of different cellulolytic and sugar-fermenting thermophilic anaerobic bacteria has been widely studied as an approach to achieving improved ethanol production. We assessed monoculture and co-culture fermentation of novel thermophilic anaerobic bacterium for ethanol production from real substrates under controlled conditions. In this study, Clostridium sp. DBT-IOC-C19, a cellulose-degrading thermophilic anaerobic bacterium, was isolated from the cellulolytic enrichment cultures obtained from a Himalayan hot spring. Strain DBT-IOC-C19 exhibited a broad substrate spectrum and presented single-step conversion of various cellulosic and hemicellulosic substrates to ethanol, acetate, and lactate with ethanol being the major fermentation product. Additionally, the effect of varying cellulose concentrations on the fermentation performance of the strain was studied, indicating a maximum cellulose utilization ability of 10 g L -1 cellulose. Avicel degradation kinetics of the strain DBT-IOC-C19 displayed 94.6% degradation at 5 g L -1 and 82.74% degradation at 10 g L -1 avicel concentration within 96 h of fermentation. In a comparative study with Clostridium thermocellum DSM 1313, the ethanol and total product concentrations were higher by the newly isolated strain on pretreated rice straw at an equivalent substrate loading. Three different co-culture combinations were used on various substrates that presented two-fold yield improvement than the monoculture during batch fermentation. This study demonstrated the direct fermentation ability of the novel thermophilic anaerobic bacteria on various cellulosic and hemicellulosic substrates into ethanol without the aid of any exogenous enzymes, representing CBP-based fermentation approach. Here, the broad substrate utilization spectrum of isolated cellulolytic thermophilic anaerobic bacterium was shown to be of potential utility. We demonstrated that the co-culture strategy involving novel strains is efficient in improving ethanol production from real substrate.
Leroy, Frédéric; Lievens, Kristoff; De Vuyst, Luc
2005-10-01
The kinetics of the antilisterial effect of meat-associated lactobacilli on Listeria innocua LMG 13568 were investigated during laboratory batch fermentations. During these fermentations, which were performed in a liquid meat simulation medium, a combination of process factors typical for European-style sausage fermentations was applied, such as a temperature of 20 degrees C and a representative pH and salting profile. Two bacteriocin-producing sausage isolates (Lactobacillus sakei CTC 494 and Lactobacillus curvatus LTH 1174), which have already proven efficacy in sausage trials, and one nonbacteriocinogenic, industrial strain (Lactobacillus sakei I), were evaluated. Staphylococcus carnosus 833 was included in the experiment because of its role in flavor and color development. When grown as a monoculture or upon cocultivation with L. sakei I and S. carnosus 833, L. innocua LMG 13568 developed slightly, despite the stress of low temperature, pH, lactic acid, salt, and nitrite. In contrast, when either of the bacteriocin producers was used, the L. innocua LMG 13568 population was rapidly inactivated with more than 3 log CFU ml(-1) after 2 days of fermentation. A bacteriocin-tolerant L. innocua LMG 13568 subpopulation (4 X 10(-4)) remained after bacteriocin inactivation. Thus, when the initial level of L. innocua LMG 13568 equaled 3 log CFU ml(-1), all cells were inactivated and no bacteriocin-tolerant cells were detected, even after 7 days of incubation. S. carnosus was not inactivated by the Lactobacillus bacteriocins and displayed slight growth.
Kinetics and thermodynamics of ethanol production by Saccharomyces cerevisiae MLD10 using molasses.
Arshad, Muhammad; Ahmed, Sibtain; Zia, Muhammad Anjum; Rajoka, Muhammad Ibrahim
2014-03-01
In this study, we have used ultraviolet (UV) and γ-ray induction to get a catabolite repression resistant and thermotolerant mutant with enhanced ethanol production along with optimization of sugar concentration and temperature of fermentation. Classical mutagenesis in two consecutive cycles of UV- and γ-ray-induced mutations evolved one best catabolite-resistant and thermotolerant mutant Saccharomyces cerevisiae MLD10 which showed improved ethanol yield (0.48 ± 0.02 g g(-1)), theoretical yield (93 ± 3%), and extracellular invertase productivity (1,430 ± 50 IU l(-1) h(-1)), respectively, when fermenting 180 g sugars l(-1) in molasses medium at 43 °C in 300 m(3) working volume fermenter. Ethanol production was highly dependent on invertase production. Enthalpy (ΔH*) (32.27 kJ M(-1)) and entropy (ΔS*) (-202.88 J M(-1) K(-1)) values at 43 °C by the mutant MLD10 were significantly lower than those of β-glucosidase production by a thermophilic mutant derivative of Thermomyces lanuginosus. These results confirmed the enhanced production of ethanol and invertase by this mutant derivative. These studies proved that mutant was significantly improved for ethanol production and was thermostable in nature. Lower fermentation time for ethanol production and maintenance of ethanol production rates (3.1 g l(-1) h(-1)) at higher temperature (43 °C) by this mutant could decrease the overall cost of fermentation process and increase the quality of ethanol production.
Díaz-Nava, L E; Montes-Garcia, N; Domínguez, J M; Aguilar-Uscanga, M G
2017-07-01
The importance of non-Saccharomyces yeast species in fermentation processes is widely acknowledged. Within this group, Pichia kudriavzevii ITV-S42 yeast strain shows particularly desirable characteristics for ethanol production. Despite this fact, a thorough study of the metabolic and kinetic characteristics of this strain is currently unavailable. The aim of this work is to study the nutritional requirements of Pichia kudriavzevii ITV-S42 strain and the effect of different carbon sources on the growth and ethanol production. Results showed that glucose and fructose were both assimilated and fermented, achieving biomass and ethanol yields of 0.37 and 0.32 gg -1 , respectively. Glycerol was assimilated but not fermented; achieving a biomass yield of 0.88 gg -1 . Xylose and sucrose were not metabolized by the yeast strain. Finally, the use of a culture medium enriched with salts and yeast extract favored glucose consumption both for growth and ethanol production, improving ethanol tolerance reported for this genre (35 g L -1 ) to 90 g L -1 maximum ethanol concentration (over 100%). Furthermore Pichia kudriavzevii ITV-S42 maintained its fermentative capacity up to 200 g L -1 initial glucose, demonstrating that this yeast is osmotolerant.
Technological Development of Brewing in Domestic Refrigerator Using Freeze-Dried Raw Materials.
Gialleli, Angelika-Ioanna; Ganatsios, Vassilios; Terpou, Antonia; Kanellaki, Maria; Bekatorou, Argyro; Koutinas, Athanasios A; Dimitrellou, Dimitra
2017-09-01
Development of a novel directly marketable beer brewed at low temperature in a domestic refrigerator combined with yeast immobilization technology is presented in this study. Separately, freeze-dried wort and immobilized cells of the cryotolerant yeast strain Saccharomyces cerevisiae AXAZ-1 on tubular cellulose were used in low-temperature fermentation (2, 5 and 7 °C). The positive effect of tubular cellulose during low-temperature brewing was examined, revealing that freeze-dried immobilized yeast cells on tubular cellulose significantly reduced the fermentation rates in contrast to freeze-dried free cells, although they are recommended for home-made beer production. Immobilization also enhanced the yeast resistance at low-temperature fermentation, reducing the minimum brewing temperature value from 5 to 2 °C. In the case of high-quality beer production, the effect of temperature and initial sugar concentration on the fermentation kinetics were assessed. Sensory enrichment of the produced beer was confirmed by the analysis of the final products, revealing a low diacetyl concentration, together with improved polyphenol content, aroma profile and clarity. The proposed process for beer production in a domestic refrigerator can easily be commercialized and applied by dissolving the content of two separate packages in tap water; one package containing dried wort and the other dried immobilized cells on tubular cellulose suspended in tap water.
Degradation of vicine, convicine and their aglycones during fermentation of faba bean flour
Rizzello, Carlo Giuseppe; Losito, Ilario; Facchini, Laura; Katina, Kati; Palmisano, Francesco; Gobbetti, Marco; Coda, Rossana
2016-01-01
In spite of its positive repercussions on nutrition and environment, faba bean still remains an underutilized crop due to the presence of some undesired compounds. The pyrimidine glycosides vicine and convicine are precursors of the aglycones divicine and isouramil, the main factors of favism, a genetic condition which may lead to severe hemolysis after faba bean ingestion. The reduction of vicine and convicine has been targeted in several studies but little is known about their degradation. In this study, the hydrolysis kinetics of vicine and convicine and their derivatives during fermentation with L. plantarum DPPMAB24W was investigated. In particular, a specific HPLC method coupled to ESI-MS and MS/MS analysis, including the evaluation procedure of the results, was set up as the analytical approach to monitor the compounds. The degradation of the pyrimidine glycosides in the fermented flour was complete after 48 h of incubation and the aglycone derivatives could not be detected in any of the samples. The toxicity of the fermented faba bean was established through ex-vivo assays on human blood, confirming the experimental findings. Results indicate that mild and cost effective bioprocessing techniques can be applied to detoxify faba bean also for industrial applications. PMID:27578427
Harnessing the Effect of pH on Lipid Production in Batch Cultures of Yarrowia lipolytica SKY7.
Kuttiraja, Mathiazhakan; Dhouha, Ayed; Tyagi, Rajeshwar Dayal
2018-04-01
The objective of this research was to investigate the kinetics of lipid production by Yarrowia lipolytica SKY7 in the crude glycerol-supplemented media with and without the control of pH. Lipid and citric acid production were improved with the pH control condition. There was no significant difference observed in the biomass concentration with or without the pH control. In the pH-controlled experiments, the biomass and lipid concentration reached 18 and 7.78 g/L, (45.5% w/w), respectively, with lipid yield (Yp/s) of 0.179 g/g at 60 h of fermentation. The lipid production was directly correlated with growth and the process was defined as growth associated. After 60 h of fermentation, the lipid degradation was noticed in the pH-controlled reactor whereas it occurred after 84 h in the pH-uncontrolled reactor. Apart from lipid, citric acid was produced as the major extracellular product in both fermentations but the much lower concentration in uncontrolled pH. Based on the experimental results, it is evident that controlling the pH will enhance the lipid production by 15% compared to pH-uncontrolled fermentation.
Rita C.L.B. Rodrigues; Chenfeng Lu; Bernice Liu; Thomas W. Jeffries
2008-01-01
Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3[delta]) to convert these sugars into useful products. FPL-YS30 produces a...
Auria, Richard; Boileau, Céline; Davidson, Sylvain; Casalot, Laurence; Christen, Pierre; Liebgott, Pierre Pol; Combet-Blanc, Yannick
2016-01-01
Thermotoga maritima is a hyperthermophilic bacterium known to produce hydrogen from a large variety of substrates. The aim of the present study is to propose a mathematical model incorporating kinetics of growth, consumption of substrates, product formations, and inhibition by hydrogen in order to predict hydrogen production depending on defined culture conditions. Our mathematical model, incorporating data concerning growth, substrates, and products, was developed to predict hydrogen production from batch fermentations of the hyperthermophilic bacterium, T. maritima . It includes the inhibition by hydrogen and the liquid-to-gas mass transfer of H 2 , CO 2 , and H 2 S. Most kinetic parameters of the model were obtained from batch experiments without any fitting. The mathematical model is adequate for glucose, yeast extract, and thiosulfate concentrations ranging from 2.5 to 20 mmol/L, 0.2-0.5 g/L, or 0.01-0.06 mmol/L, respectively, corresponding to one of these compounds being the growth-limiting factor of T. maritima . When glucose, yeast extract, and thiosulfate concentrations are all higher than these ranges, the model overestimates all the variables. In the window of the model validity, predictions of the model show that the combination of both variables (increase in limiting factor concentration and in inlet gas stream) leads up to a twofold increase of the maximum H 2 -specific productivity with the lowest inhibition. A mathematical model predicting H 2 production in T. maritima was successfully designed and confirmed in this study. However, it shows the limit of validity of such mathematical models. Their limit of applicability must take into account the range of validity in which the parameters were established.
Comprehensive Model for Enhanced Biodegradation of Chlorinated Solvents in Groundwater
NASA Astrophysics Data System (ADS)
Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Robinson, C.; Barry, A. D.; Harkness, M.; Mack, E. E.; Dworatzek, S.
2007-12-01
SABRE (Source Area BioREmediation) is a public/private consortium whose charter is to de-termine if enhanced anaerobic bioremediation can result in effective treatment of chlorinated solvent DNAPL source areas. The focus of this 4-year, $5.7 million research and development project is a field site in the United Kingdom containing TCE DNAPL. A comprehensive numerical model for simulating dehalogenation of chlorinated ethenes has been developed. The model considers the kinetic dissolution of DNAPL and nonaqueous organic amendments, bacterial growth and decay, and the interaction of biological and geochemical reactions that might influence biological activity. The model accounts for inhibitory effects of high chlorin-ated solvent concentrations as well as the link between fermentation and dehalogenation due to dynamic hydrogen concentration (the direct electron donor). In addition to the standard biodegradation pathways, sulphate reduction, mineral dissolution and precipitation kinetics are incorporated. These latter processes influence the soil buffering capacity and thus the net acidity generated. One-dimensional simulations were carried out to reproduce the data from columns packed with site soil and groundwater exhibiting both intermediate (250 mg/L) and near solubility (1100 mg/L) TCE concentrations. The modelling aims were to evaluate the key processes underpinning bioremediation success and provide a tool for investigating field sys-tem sensitivity to site data and design variables. This paper will present the model basis and validation and examine sensitivity to key processes including chlorinated ethene partitioning into soybean oil, sulphate reduction, and geochemical influences such as pH and the role of buffering in highly dechlorinating systems.
Aldrete-Tapia, J A; Miranda-Castilleja, D E; Arvizu-Medrano, S M; Hernández-Iturriaga, M
2018-02-01
The high concentration of fructose in agave juice has been associated with reduced ethanol tolerance of commercial yeasts used for tequila production and low fermentation yields. The selection of autochthonous strains, which are better adapted to agave juice, could improve the process. In this study, a 2-step selection process of yeasts isolated from spontaneous fermentations for tequila production was carried out based on analysis of the growth dynamics in combined conditions of high fructose and ethanol. First, yeast isolates (605) were screened to identify strains tolerant to high fructose (20%) and to ethanol (10%), yielding 89 isolates able to grow in both conditions. From the 89 isolates, the growth curves under 8 treatments of combined fructose (from 20% to 5%) and ethanol (from 0% to 10%) were obtained, and the kinetic parameters were analyzed with principal component analysis and k-means clustering. The resulting yeast strain groups corresponded to the fast, medium and slow growers. A second clustering of only the fast growers led to the selection of 3 Saccharomyces strains (199, 230, 231) that were able to grow rapidly in 4 out of the 8 conditions evaluated. This methodology differentiated strains phenotypically and could be further used for strain selection in other processes. A method to select yeast strains for fermentation taking into account the natural differences of yeast isolates. This methodology is based on the cell exposition to combinations of sugar and ethanol, which are the most important stress factors in fermentation. This strategy will help to identify the most tolerant strain that could improve ethanol yield and reduce fermentation time. © 2018 Institute of Food Technologists®.
Lin, Lin; Li, Xiao-Yan
2018-03-01
Iron-based chemically enhanced primary sedimentation (CEPS) is increasingly adopted for wastewater treatment in mega cities, producing a large amount of sludge (Fe-sludge) with a high content of organics for potential organic resource recovery. In this experimental study, acidogenic fermentation was applied treat FeCl 3 -based CEPS sludge for production of volatile fatty acids (VFAs) at different pHs. Batch fermentation tests on the Fe-sludge with an organic content of 10 g-COD/L showed that the maximum VFAs production reached 2782.2 mg-COD/L in the reactor without pH control, and it reached 688.4, 3095.3, and 2603.7 mg-COD/L in reactors with pHs kept at 5.0, 6.0 and 8.0, respectively. Analysis of the acidogenesis kinetics and enzymatic activity indicated that the alkaline pH could accelerate the rate of organic hydrolysis but inhibited the further organic conversion to VFAs. In semi-continuous sludge fermentation tests, the VFAs yield in the pH6 reactor was 20% higher than that in the control reactor without pH regulation, while the VFAs yield in the pH8 reactor was 10% lower than the control. Illumina MiSeq sequencing revealed that key functional microorganisms known for effective sludge fermentation, including Bacteroidia and Erysipelotrichi, were enriched in the pH6 reactor with an enhanced VFAs production, while Clostridia became more abundant in the pH8 reactor to stand the unfavorable pH condition. The research presented acidogenic fermentation as an effective process for CEPS sludge treatment and organic resource recovery and provided the first insight into the related microbial community dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.
A grey box model of glucose fermentation and syntrophic oxidation in microbial fuel cells.
de Los Ángeles Fernandez, Maria; de Los Ángeles Sanromán, Maria; Marks, Stanislaw; Makinia, Jacek; Gonzalez Del Campo, Araceli; Rodrigo, Manuel; Fernandez, Francisco Jesus
2016-01-01
In this work, the fermentative and oxidative processes taking place in a microbial fuel cell (MFC) fed with glucose were studied and modeled. The model accounting for the bioelectrochemical processes was based on ordinary, Monod-type differential equations. The model parameters were estimated using experimental results obtained from three H-type MFCs operated at open or closed circuits and fed with glucose or ethanol. The experimental results demonstrate that similar fermentation processes were carried out under open and closed circuit operation, with the most important fermentation products being ethanol (with a yield of 1.81molmol(-1) glucose) and lactic acid (with a yield of 1.36molmol(-1) glucose). A peak in the electricity generation was obtained when glucose and fermentation products coexisted in the liquid bulk. However, almost 90% of the electricity produced came from the oxidation of ethanol. Copyright © 2015 Elsevier Ltd. All rights reserved.
RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie
2011-06-01
Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jones, Rhys Jon; Massanet-Nicolau, Jaime; Guwy, Alan; Premier, Giuliano C; Dinsdale, Richard M; Reilly, Matthew
2015-08-01
Hydrogen production during dark fermentation is inhibited by the co-production of volatile fatty acids (VFAs) such as acetic and n-butyric acid. In this study, the effectiveness of conventional electrodialysis (CED) in reducing VFA concentrations in model solutions and hydrogen fermentation broths is evaluated. This is the first time CED has been reported to remove VFAs from hydrogen fermentation broths. During 60 min of operation CED removed up to 99% of VFAs from model solutions, sucrose-fed and grass-fed hydrogen fermentation broths, containing up to 1200 mg l(-1) each of acetic acid, propionic acid, i-butyric acid, n-butyric acid, i-valeric acid, and n-valeric acid. CED's ability to remove VFAs from hydrogen fermentation broths suggests that this technology is capable of improving hydrogen yields from dark fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
2013-01-01
Background Variation of gene expression can lead to phenotypic variation and have therefore been assumed to contribute the diversity of wine yeast (Saccharomyces cerevisiae) properties. However, the molecular bases of this variation of gene expression are unknown. We addressed these questions by carrying out an integrated genetical-genomic study in fermentation conditions. We report here quantitative trait loci (QTL) mapping based on expression profiling in a segregating population generated by a cross between a derivative of the popular wine strain EC1118 and the laboratory strain S288c. Results Most of the fermentation traits studied appeared to be under multi-allelic control. We mapped five phenotypic QTLs and 1465 expression QTLs. Several expression QTLs overlapped in hotspots. Among the linkages unraveled here, several were associated with metabolic processes essential for wine fermentation such as glucose sensing or nitrogen and vitamin metabolism. Variations affecting the regulation of drug detoxification and export (TPO1, PDR12 or QDR2) were linked to variation in four genes encoding transcription factors (PDR8, WAR1, YRR1 and HAP1). We demonstrated that the allelic variation of WAR1 and TPO1 affected sorbic and octanoic acid resistance, respectively. Moreover, analysis of the transcription factors phylogeny suggests they evolved with a specific adaptation of the strains to wine fermentation conditions. Unexpectedly, we found that the variation of fermentation rates was associated with a partial disomy of chromosome 16. This disomy resulted from the well known 8–16 translocation. Conclusions This large data set made it possible to decipher the effects of genetic variation on gene expression during fermentation and certain wine fermentation properties. Our findings shed a new light on the adaptation mechanisms required by yeast to cope with the multiple stresses generated by wine fermentation. In this context, the detoxification and export systems appear to be of particular importance, probably due to nitrogen starvation. Furthermore, we show that the well characterized 8–16 translocation located in SSU1, which is associated with sulfite resistance, can lead to a partial chromosomic amplification in the progeny of strains that carry it, greatly improving fermentation kinetics. This amplification has been detected among other wine yeasts. PMID:24094006
A low-cost procedure for production of fresh autochthonous wine yeast.
Maqueda, Matilde; Pérez-Nevado, Francisco; Regodón, José A; Zamora, Emiliano; Alvarez, María L; Rebollo, José E; Ramírez, Manuel
2011-03-01
A low-cost procedure was designed for easy and rapid response-on-demand production of fresh wine yeast for local wine-making. The pilot plant produced fresh yeast culture concentrate with good microbial quality and excellent oenological properties from four selected wine yeasts. The best production yields were obtained using 2% sugar beet molasses and a working culture volume of less than 60% of the fermenter capacity. The yeast yield using 2% sugar grape juice was low and had poor cell viability after freeze storage, although the resulting yeast would be directly available for use in the winery. The performance of these yeasts in commercial wineries was excellent; they dominated must fermentation and improved its kinetics, as well as improving the physicochemical parameters and the organoleptic quality of red and white wines.
A novel inhibitor of Lactobacillus biofilms prevents stuck fermentations in a shake flask model
USDA-ARS?s Scientific Manuscript database
Yeast ethanol fermentations contain contaminating bacteria and yeast, with Lactobacilli being a frequent contaminant. These bacteria tolerate the low pH and high ethanol concentrations present in the fermentation, and can decrease the ethanol yield. Fermentations are routinely treated with antibioti...
Lüdecke, Claudia; Jandt, Klaus D.; Siegismund, Daniel; Kujau, Marian J.; Zang, Emerson; Rettenmayr, Markus; Bossert, Jörg; Roth, Martin
2014-01-01
Biomaterials-associated infections are primarily initiated by the adhesion of microorganisms on the biomaterial surfaces and subsequent biofilm formation. Understanding the fundamental microbial adhesion mechanisms and biofilm development is crucial for developing strategies to prevent such infections. Suitable in vitro systems for biofilm cultivation and bacterial adhesion at controllable, constant and reproducible conditions are indispensable. This study aimed (i) to modify the previously described constant-depth film fermenter for the reproducible cultivation of biofilms at non-depth-restricted, constant and low shear conditions and (ii) to use this system to elucidate bacterial adhesion kinetics on different biomaterials, focusing on biomaterials surface nanoroughness and hydrophobicity. Chemostat-grown Escherichia coli were used for biofilm cultivation on titanium oxide and investigating bacterial adhesion over time on titanium oxide, poly(styrene), poly(tetrafluoroethylene) and glass. Using chemostat-grown microbial cells (single-species continuous culture) minimized variations between the biofilms cultivated during different experimental runs. Bacterial adhesion on biomaterials comprised an initial lag-phase I followed by a fast adhesion phase II and a phase of saturation III. With increasing biomaterials surface nanoroughness and increasing hydrophobicity, adhesion rates increased during phases I and II. The influence of materials surface hydrophobicity seemed to exceed that of nanoroughness during the lag-phase I, whereas it was vice versa during adhesion phase II. This study introduces the non-constant-depth film fermenter in combination with a chemostat culture to allow for a controlled approach to reproducibly cultivate biofilms and to investigate bacterial adhesion kinetics at constant and low shear conditions. The findings will support developing and adequate testing of biomaterials surface modifications eventually preventing biomaterial-associated infections. PMID:24404192
Lu, Yuyun; Voon, Marilyn Kai Wen; Huang, Dejian; Lee, Pin-Rou; Liu, Shao-Quan
2017-04-01
This study investigated the effects of temperature (20 and 30 °C) and pH (pH 3.1, 3.9) on kinetic changes of chemical constituents of the durian wine fermented with Saccharomyces cerevisiae. Temperature significantly affected growth of S. cerevisiae EC-1118 regardless of pH with a higher temperature leading to a faster cell death. The pH had a more significant effect on ethanol production than temperature with higher production at 20 °C (5.95%, v/v) and 30 °C (5.56%, v/v) at pH 3.9, relative to that at pH 3.1 (5.25 and 5.01%, v/v). However, relatively higher levels of isobutyl alcohol and isoamyl alcohol up to 64.52 ± 6.39 and 56.27 ± 3.00 mg/L, respectively, were produced at pH 3.1 than at pH 3.9 regardless of temperature. In contrast, production of esters was more affected by temperature than pH, where levels of ethyl esters (ethyl esters of octanoate, nonanoate, and decanoate) and acetate esters (ethyl acetate and isoamyl acetate) were significantly higher up to 2.13 ± 0.23 and 4.61 ± 0.22 mg/L, respectively, at 20 °C than at 30 °C. On the other hand, higher temperature improved the reduction of volatile sulfur compounds. This study illustrated that temperature control would be a more effective tool than pH in modulating the resulting aroma compound profile of durian wine.
Huntley, N F; Naumann, H D; Kenny, A L; Kerley, M S
2017-10-01
The domestic horse is used as a nutritional model for rhinoceros maintained under human care. The validity of this model for browsing rhinoceros has been questioned due to high prevalence of iron overload disorder (IOD) in captive black rhinoceros (Diceros bicornis), which is associated with high morbidity and mortality. Iron chelators, such as tannins, are under investigation as dietary supplements to ameliorate or prevent IOD in prone species. Polyphenolic compounds variably affect microbial fermentation, so the first objective of this experiment was to evaluate the effects of grape seed extract (GSE; a concentrated source of condensed tannins; CT) on black rhinoceros hindgut fermentation. Equine nutrition knowledge is used to assess supplements for rhinoceros; therefore, the second objective was to evaluate the domestic horse model for black rhinoceros fermentation and compare fermentation responses to GSE using a continuous single-flow in vitro culture system. Two replicated continuous culture experiments were conducted using horse and black rhinoceros faeces as inoculum sources comparing four diets with increasing GSE inclusion (0.0%, 1.3%, 2.7% and 4.0% of diet dry matter). Diet and GSE polyphenolic compositions were determined, and sodium sulphite effect on neutral detergent fibre extraction of CT-containing forages was tested. Increasing GSE inclusion stimulated microbial growth and fermentation, and proportionally increased diet CT concentration and iron-binding capacity. Horse and black rhinoceros hindgut microflora nutrient digestibility and fermentation responses to GSE did not differ, and results supported equine fermentation as an adequate model for microbial fermentation in the black rhinoceros. Interpretation of these results is limited to hindgut fermentation and further research is needed to compare foregut digestibility and nutrient absorption between these two species. Supplementation of GSE in black rhinoceros diets up to 4% is unlikely to adversely affect hindgut nutrient digestibility or microbial viability and fermentation. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Jeong, Kyung Hun; Israr, Beenish; Shoemaker, Sharon P; Mills, David A; Kim, Jaehan
2016-07-28
Lactobacillus brevis ATCC 14869 exhibited a carbon catabolite de-repressed (CCR) phenotype which has ability to consume fermentable sugar simultaneously with glucose. To evaluate this unusual phenotype under harsh conditions during fermentation, the effect of lactic acid and hydrogen ion concentrations on L. brevis ATCC 14869 were examined. Kinetic equations describing the relationship between specific cell growth rate and lactic acid or hydrogen ion concentration has been reduced. The change of substrate utilization and product formation according to lactic acid and hydrogen ion concentration in the media were quantitatively described. Moreover; utilization of other compounds were also observed along with hydrogen ion and lactic acid concentration simultaneously. It has been found that substrate preference changes significantly regarding to utilization of compounds in media. That could result into formation of two-carbon products. In particular, acetic acid present in the media as sodium acetate were consumed by L. brevis ATCC 14869 under extreme pH of both acid and alkaline conditions.
Li, Panyu; Li, Ting; Zeng, Yu; Li, Xiang; Jiang, Xiaolong; Wang, Yabo; Xie, Tonghui; Zhang, Yongkui
2016-10-20
Herein, we report the production of xanthan gum by fermentation using kitchen waste as the sole substrate. The kitchen waste was firstly pretreated by a simple hydrolysis method, after which the obtained kitchen waste hydrolysate was diluted with an optimal ratio 1:2. In a 5-L fermentor, the maximum xanthan production, reducing sugar conversion and utilization rates reached 11.73g/L, 67.07% and 94.82%, respectively. The kinetics of batch fermentation was also investigated. FT-IR and XRD characterizations confirmed the fermentation product as xanthan gum. TGA analyses showed that the thermal stability of the xanthan gum obtained in this study was similar to commercial sample. The molecular weights of xanthan gum were measured to be 0.69-1.37×10(6)g/mol. The maximum pyruvate and acetyl contents in xanthan gum were 6.11% and 2.49%, respectively. This study provides a cost-effective solution for the reusing of kitchen waste and a possible low-cost approach for xanthan production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vendramini, Chiara; Beltran, Gemma; Nadai, Chiara; Giacomini, Alessio; Mas, Albert; Corich, Viviana
2017-10-03
Three vineyard strains of Saccharomyces cerevisiae, P301.4, P304.4 and P254.12, were assayed in comparison with a commercial industrial strain, QA23. The aim was to understand if nitrogen availability could influence strain competition ability during must fermentation. Pairwise-strain fermentations and co-fermentations with the simultaneous presence of the four strains were performed in synthetic musts at two nitrogen levels: control nitrogen condition (CNC) that assured the suitable assimilable nitrogen amount required by the yeast strains to complete the fermentation and low nitrogen condition (LNC) where nitrogen is present at very low level. Results suggested a strong involvement of nitrogen availability, as the frequency in must of the vineyard strains, respect to QA23, in LNC was always higher than that found in CNC. Moreover, in CNC only strain P304.4 reached the same strain frequency as QA23. P304.4 competition ability increased during the fermentation, indicating better performance when nitrogen availability was dropping down. P301.4 was the only strain sensitive to QA23 killer toxin. In CNC, when it was co-inoculated with the industrial strain QA23, P301.4 was never detected. In LNC, P301.4 after 12h accounted for 10% of the total population. This percentage increased after 48h (20%). Single-strain fermentations were also run in both conditions and the nitrogen metabolism further analyzed. Fermentation kinetics, ammonium and amino-acid consumptions and the expression of genes under nitrogen catabolite repression evidenced that vineyard yeasts, and particularly strain P304.4, had higher nitrogen assimilation rate than the commercial control. In conclusion, the high nitrogen assimilation rate seems to be an additional strategy that allowed vineyard yeasts successful competition during the growth in grape musts. Copyright © 2017 Elsevier B.V. All rights reserved.
Prelude to rational scale-up of penicillin production: a scale-down study.
Wang, Guan; Chu, Ju; Noorman, Henk; Xia, Jianye; Tang, Wenjun; Zhuang, Yingping; Zhang, Siliang
2014-03-01
Penicillin is one of the best known pharmaceuticals and is also an important member of the β-lactam antibiotics. Over the years, ambitious yields, titers, productivities, and low costs in the production of the β-lactam antibiotics have been stepwise realized through successive rounds of strain improvement and process optimization. Penicillium chrysogenum was proven to be an ideal cell factory for the production of penicillin, and successful approaches were exploited to elevate the production titer. However, the industrial production of penicillin faces the serious challenge that environmental gradients, which are caused by insufficient mixing and mass transfer limitations, exert a considerably negative impact on the ultimate productivity and yield. Scale-down studies regarding diverse environmental gradients have been carried out on bacteria, yeasts, and filamentous fungi as well as animal cells. In accordance, a variety of scale-down devices combined with fast sampling and quenching protocols have been established to acquire the true snapshots of the perturbed cellular conditions. The perturbed metabolome information stemming from scale-down studies contributed to the comprehension of the production process and the identification of improvement approaches. However, little is known about the influence of the flow field and the mechanisms of intracellular metabolism. Consequently, it is still rather difficult to realize a fully rational scale-up. In the future, developing a computer framework to simulate the flow field of the large-scale fermenters is highly recommended. Furthermore, a metabolically structured kinetic model directly related to the production of penicillin will be further coupled to the fluid flow dynamics. A mathematical model including the information from both computational fluid dynamics and chemical reaction dynamics will then be established for the prediction of detailed information over the entire period of the fermentation process and thereby for the optimization of penicillin production, and subsequently also benefiting other fermentation products.
Gahlawat, Geeta; Srivastava, Ashok K
2013-06-01
In the present investigation, batch cultivation of Azohydromonas australica DSM 1124 was carried out in a bioreactor for growth associated PHB production. The observed batch PHB production kinetics data was then used for the development of a mathematical model which adequately described the substrate limitation and inhibition during the cultivation. The statistical validity test demonstrated that the proposed mathematical model predictions were significant at 99% confidence level. The model was thereafter extrapolated to fed-batch to identify various nutrients feeding regimes during the bioreactor cultivation to improve the PHB accumulation. The distinct capability of the mathematical model to predict highly dynamic fed-batch cultivation strategies was demonstrated by experimental implementation of two fed-batch cultivation strategies. A significantly high PHB concentration of 22.65 g/L & an overall PHB content of 76% was achieved during constant feed rate fed-batch cultivation which is the highest PHB content reported so far using A. australica. Copyright © 2013 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Economically viable production of lignocellulosic ethanol requires efficient conversion of feedstock sugars to ethanol. Saccharomyces cerevisiae cannot ferment xylose, the main five-carbon sugars in biomass, but can ferment xylulose, an enzymatically derived isomer. Xylulose fermentation is slow rel...
Fermented foods, neuroticism, and social anxiety: An interaction model.
Hilimire, Matthew R; DeVylder, Jordan E; Forestell, Catherine A
2015-08-15
Animal models and clinical trials in humans suggest that probiotics can have an anxiolytic effect. However, no studies have examined the relationship between probiotics and social anxiety. Here we employ a cross-sectional approach to determine whether consumption of fermented foods likely to contain probiotics interacts with neuroticism to predict social anxiety symptoms. A sample of young adults (N=710, 445 female) completed self-report measures of fermented food consumption, neuroticism, and social anxiety. An interaction model, controlling for demographics, general consumption of healthful foods, and exercise frequency, showed that exercise frequency, neuroticism, and fermented food consumption significantly and independently predicted social anxiety. Moreover, fermented food consumption also interacted with neuroticism in predicting social anxiety. Specifically, for those high in neuroticism, higher frequency of fermented food consumption was associated with fewer symptoms of social anxiety. Taken together with previous studies, the results suggest that fermented foods that contain probiotics may have a protective effect against social anxiety symptoms for those at higher genetic risk, as indexed by trait neuroticism. While additional research is necessary to determine the direction of causality, these results suggest that consumption of fermented foods that contain probiotics may serve as a low-risk intervention for reducing social anxiety. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Franden, Mary Ann; Pienkos, Philip T; Zhang, Min
2009-12-01
Overcoming the effects of hydrolysate toxicity towards ethanologens is a key technical barrier in the biochemical conversion process for biomass feedstocks to ethanol. Despite its importance, the complexity of the hydrolysate toxicity phenomena and the lack of systematic studies, analysis and tools surrounding this issue have blocked a full understanding of relationships involving toxic compounds in hydrolysates and their effects on ethanologen growth and fermentation. In this study, we developed a quantitative, high-throughput biological growth assay using an automated turbidometer to obtain detailed inhibitory kinetics for individual compounds present in lignocellulosic biomass hydrolysate. Information about prolonged lag time and final cell densities can also be obtained. The effects of furfural, hydroxymethylfurfural (HMF), acetate and ethanol on growth rate and final cell densities of Zymomonas mobilis 8b on glucose are presented. This method was also shown to be of value in toxicity studies of hydrolysate itself, despite the highly colored nature of this material. Using this approach, we can generate comprehensive inhibitory profiles with many individual compounds and develop models that predict and examine toxic effects in the complex mixture of hydrolysates, leading to the development of improved pretreatment and conditioning processes as well as fermentation organisms.
High cell density cultivation of probiotics and lactic acid production.
Schiraldi, Chiara; Adduci, Vincenzo; Valli, Vivien; Maresca, Carmelina; Giuliano, Mariateresa; Lamberti, Monica; Cartenì, Maria; De Rosa, Mario
2003-04-20
The commercial interest in functional foods that contain live microorganisms, also named probiotics, is paralleled by the increasing scientific attention to their functionality in the digestive tract. This is especially true of yogurts that contain strains of lactic-acid bacteria of intestinal origin, among these, Lactobacillus delbrueckii ssp. bulgaricus is extensively used in the dairy industry and it has been demonstrated to be a probiotic strain. In this work we describe high cell density cultivations of this microorganism also focusing on the stereospecific production of lactic acid. Key parameters such as medium composition (bactocasitone concentration) and diverse aeration conditions were explored. The results showed that the final concentration of biomass in anaerobic fermentation was lower than the one obtained in microaerophilic conditions, while it gave a very high productivity of lactic acid which was present as a racemic mixture in the permeate. Fermentation experiments carried out with air sparging, even at very low flow-rate, led to the production of the sole L(+) lactic acid giving sevenfold increase in biomass yield in respect to the batch cultivation. Finally, a mathematical model was developed to describe the microfiltration bioprocess applied in this research considering an inhibition kinetic and enucleating a suitable mathematical description for the decrease of the transmembrane flux. Copyright 2003 Wiley Periodicals, Inc.
Habibi Najafi, Mohammad B; Pourfarzad, Amir; Zahedi, Hoda; Ahmadian-Kouchaksaraie, Zahra; Haddad Khodaparast, Mohammad H
2016-01-01
The aim of this work was to study the effects of a novel sourdough system prepared by wheat flour supplemented by combination of pulverized date seed, Lactobacillus plantarum, and/or Lactobacillus brevis as well as Saccharomyces cerevisiae on the sourdough characteristics, quality, sensory, texture, shelf life and image properties of Barbari flat bread. The highest sourdough acidity and bread specific volume was obtained with co-culture of Lb. plantarum + Lb. brevis + S. cerevisiae. The results suggest that fermentation is a potential bioprocessing technology for improving sensory aspects of bread supplemented with pulverized date seed, as a dietary fiber resource. Texture analysis of bread samples during 7 days of storage indicated that the presence of pulverized date seed in sourdough was able to diminish bread staling. The interaction of baker's yeast and lactic acid bacteria (LAB) has led to increase the particle average size of bread crumb and decrease the area fraction than the LAB samples. It was observed that all treatments of sourdough Barbari breads had higher cell wall thickness than the control Barbari bread. Avrami non-linear regression equation was chosen as useful mathematical model to properly study bread hardening kinetics. In addition, principal component analysis (PCA) allowed discriminating among sourdough and bread specialties. Partial least squares regression (PLSR) models were applied to determine the relationships between sensory and instrumental data.
Siroli, Lorenzo; Patrignani, Francesca; Serrazanetti, Diana I.; Parolin, Carola; Ñahui Palomino, Rogers A.; Vitali, Beatrice; Lanciotti, Rosalba
2017-01-01
Functional foods could differently affect human health in relation to the gender. Recent studies have highlighted the anti-Candida and anti-Chlamydia activities of some Lactobacillus strains isolated from the vagina of healthy women. Considering these important beneficial activities on women's health, the preparation of functional food containing active vaginal lactobacilli can represent a great scientific challenge for the female gender. In this context, the aim of this work was to study some functional and technological properties of 17 vaginal strains belonging to the species Lactobacillus crispatus, Lactobacillus gasseri, and Lactobacillus vaginalis in the perspective to include them in dairy products. The antagonistic activities against the pathogenic and spoilage species associated to food products and against the principal etiological agents of the genitourinary tract infections were evaluated. Moreover, the vaginal lactobacilli were characterized for their antibiotic resistance, and for their fermentation kinetics and viability during the refrigerated storage in milk. Finally, the volatile molecule profiles of the obtained fermented milks were determined. The results showed that several strains, mainly belonging to the species Lactobacillus crispatus, exhibited a significant antagonistic activity against spoilage and pathogenic microorganisms of food interest, as well as against urogenital pathogens. All the vaginal lactobacilli showed antimicrobial activity against strains belonging to the foodborne pathogenic species Listeria monocytogenes, Listeria innocua, Eenterococcus faecalis and Escherichia coli. In addition, most of the Lactobacillus strains were active toward the main pathogens responsible of vaginal and urinary tract infections including Staphylococcus aureus, Enterococcus faecium, Gardnerella vaginalis, and Proteus mirabilis. The antimicrobial activity can be attributed to the high production of organic acids. The fermentation kinetics in milk indicated the unsuitability of these lactobacilli as fermentation starters for the industrial production of dairy products. However, some strains, belonging to the species Lactobacillus crispatus and Lactobacillus gasseri, maintained a high viability in pasteurized milk at 4°C for over a month, showing their potential application as adjunct cultures for the production of female gender foods. These data represent a first step for the set-up of a new functional dairy product, directed to the women well-being, contributing also to innovate the dairy sector. PMID:28223974
Haifeng Zhou; J.Y. Zhu; Xiaolin Luo; Shao-Yuan Leu; Xiaolei Wu; Roland Gleisner; Bruce S. Dien; Ronald E. Hector; Dongjie Yang; Xueqing Qiu; Eric Horn; Jose Negron
2013-01-01
Mountain pine beetle killed Lodgepole pine (Pinus contorta Douglas ex Loudon) wood chips were pretreated using an acidic sulfite solution of approximately pH = 2.0 at a liquor to wood ratio of 3 and sodium bisulfite loading of 8 wt % on wood. The combined hydrolysis factor (CHF), formulated from reaction kinetics, was used to design a scale-up...
Olivares-Palma, S. M.; Meale, S. J.; Pereira, L. G. R.; Machado, F. S.; Carneiro, H.; Lopes, F. C. F.; Maurício, R. M.; Chaves, A. V.
2013-01-01
Following the extraction of oil for biodiesel production, oilseed press cakes are high in fat. As the dietary supplementation of fat is currently considered the most promising strategy of consistently depressing methanogenesis, it follows that oilseed press cakes may have a similar potential for CH4 abatement. As such, this study aimed to characterise the nutritive value of several oilseed press cakes, glycerine and soybean meal (SBM) and to examine their effects on in vitro ruminal fermentation, digestion kinetics and CH4 production. Moringa press oil seeds exhibited the greatest in sacco effective degradability (ED) of DM and CP (p<0.05). In vitro gas production (ml/g digested DM) was not affected (p = 0.70) by supplement at 48 h of incubation. In vitro DMD was increased with the supplementation of glycerine and SBM at all levels of inclusion. Moringa oilseed press cakes produced the lowest CH4 (mg/g digested DM) at 6 and 12 h of incubation (p<0.05). The findings suggest that moringa oilseed press cake at 400 g/kg DM has the greatest potential of the oilseed press cakes examined in this study, to reduce CH4 production, without adversely affecting nutrient degradability. PMID:25049890
Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi
2014-03-04
Two mathematical models were developed for studying the effect of main fermentation temperature ( T MF ), immobilized cell mass ( M IC ) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model.
Naydenova, Vessela; Badova, Mariyana; Vassilev, Stoyan; Iliev, Vasil; Kaneva, Maria; Kostov, Georgi
2014-01-01
Two mathematical models were developed for studying the effect of main fermentation temperature (T MF), immobilized cell mass (M IC) and original wort extract (OE) on beer fermentation with alginate-chitosan microcapsules with a liquid core. During the experiments, the investigated parameters were varied in order to find the optimal conditions for beer fermentation with immobilized cells. The basic beer characteristics, i.e. extract, ethanol, biomass concentration, pH and colour, as well as the concentration of aldehydes and vicinal diketones, were measured. The results suggested that the process parameters represented a powerful tool in controlling the fermentation time. Subsequently, the optimized process parameters were used to produce beer in laboratory batch fermentation. The system productivity was also investigated and the data were used for the development of another mathematical model. PMID:26019512
Cost-effective approach to ethanol production and optimization by response surface methodology.
Uncu, Oya Nihan; Cekmecelioglu, Deniz
2011-04-01
Food wastes disposed from residential and industrial kitchens have gained attention as a substrate in microbial fermentations to reduce product costs. In this study, the potential of simultaneously hydrolyzing and subsequently fermenting the mixed carbohydrate components of kitchen wastes were assessed and the effects of solid load, inoculum volume of baker's yeast, and fermentation time on ethanol production were evaluated by response surface methodology (RSM). The enzymatic hydrolysis process was complete within 6h. Fermentation experiments were conducted at pH 4.5, a temperature of 30°C, and agitated at 150 rpm without adding the traditional fermentation nutrients. The statistical analysis of the model developed by RSM suggested that linear effects of solid load, inoculum volume, and fermentation time and the quadratic effects of inoculum volume and fermentation time were significant (P<0.05). The verification experiments indicated that the developed model could be successfully used to predict ethanol concentration at >90% accuracy. An optimum ethanol concentration of 32.2g/l giving a yield of 0.40g/g, comparable to yields reported to date, was suggested by the model with 20% solid load, 8.9% inoculum volume, and 58.8h of fermentation. The results indicated that the production costs can be lowered to a large extent by using kitchen wastes having multiple carbohydrate components and eliminating the use of traditional fermentation nutrients from the recipe. Copyright © 2010 Elsevier Ltd. All rights reserved.
Winter, Gal; Henschke, Paul A; Higgins, Vincent J; Ugliano, Maurizio; Curtin, Chris D
2011-11-02
In winemaking, nutrient supplementation is a common practice for optimising fermentation and producing quality wine. Nutritionally suboptimal grape juices are often enriched with nutrients in order to manipulate the production of yeast aroma compounds. Nutrients are also added to active dry yeast (ADY) rehydration media to enhance subsequent fermentation performance. In this study we demonstrate that nutrient supplementation at rehydration also has a significant effect on the formation of volatile sulfur compounds during wine fermentations. The concentration of the 'fruity' aroma compounds, the polyfunctional thiols 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA), was increased while the concentration of the 'rotten egg' aroma compound, hydrogen sulfide (H2S), was decreased. Nutrient supplementation of the rehydration media also changed the kinetics of H2S production during fermentation by advancing onset of H2S production. Microarray analysis revealed that this was not due to expression changes within the sulfate assimilation pathway, which is known to be a major contributor to H2S production. To gain insight into possible mechanisms responsible for this effect, a component of the rehydration nutrient mix, the tri-peptide glutathione (GSH) was added at rehydration and studied for its subsequent effects on H2S formation. GSH was found to be taken up during rehydration and to act as a source for H2S during the following fermentation. These findings represent a potential approach for managing sulfur aroma production through the use of rehydration nutrients.
Rigoulet, Michel; Salin, Benedicte; Masneuf-Pomarede, Isabelle; de Vienne, Dominique; Sicard, Delphine; Bely, Marina; Marullo, Philippe
2013-01-01
In eukaryotes, mitochondrial DNA (mtDNA) has high rate of nucleotide substitution leading to different mitochondrial haplotypes called mitotypes. However, the impact of mitochondrial genetic variant on phenotypic variation has been poorly considered in microorganisms because mtDNA encodes very few genes compared to nuclear DNA, and also because mitochondrial inheritance is not uniparental. Here we propose original material to unravel mitotype impact on phenotype: we produced interspecific hybrids between S. cerevisiae and S. uvarum species, using fully homozygous diploid parental strains. For two different interspecific crosses involving different parental strains, we recovered 10 independent hybrids per cross, and allowed mtDNA fixation after around 80 generations. We developed PCR-based markers for the rapid discrimination of S. cerevisiae and S. uvarum mitochondrial DNA. For both crosses, we were able to isolate fully isogenic hybrids at the nuclear level, yet possessing either S. cerevisiae mtDNA (Sc-mtDNA) or S. uvarum mtDNA (Su-mtDNA). Under fermentative conditions, the mitotype has no phenotypic impact on fermentation kinetics and products, which was expected since mtDNA are not necessary for fermentative metabolism. Alternatively, under respiratory conditions, hybrids with Sc-mtDNA have higher population growth performance, associated with higher respiratory rate. Indeed, far from the hypothesis that mtDNA variation is neutral, our work shows that mitochondrial polymorphism can have a strong impact on fitness components and hence on the evolutionary fate of the yeast populations. We hypothesize that under fermentative conditions, hybrids may fix stochastically one or the other mt-DNA, while respiratory environments may increase the probability to fix Sc-mtDNA. PMID:24086452
Formation and reduction of furan in a soy sauce model system.
Kim, Min Yeop; Her, Jae-Young; Kim, Mina K; Lee, Kwang-Geun
2015-12-15
The formation and reduction of furan using a soy sauce model system were investigated in the present study. The concentration of furan fermented up to 30 days increased by 211% after sterilization compared to without sterilization. Regarding fermentation temperature, furan level after 30 days' fermentation was the highest at 30°C (86.21 ng/mL). The furan levels in the soy sauce fermentation at 20°C and 40°C were reduced by 45% and 88%, respectively compared to 30°C fermentation. Five metal ions (iron sulfate, zinc sulfate, manganese sulfate, magnesium sulfate, and calcium sulfate), sodium sulfite, ascorbic acid, dibutyl hydroxyl toluene (BHT), and butylated hydroxyanisole (BHA) were added in a soy sauce model system. The addition of metal ions such as magnesium sulfate and calcium sulfate reduced the furan concentration significantly by 36-90% and 27-91%, respectively in comparison to furan level in the control sample (p<0.05). Iron sulfate and ascorbic acid increased the furan level at 30 days' fermentation in the soy sauce model system by 278% and 87%, respectively. In the case of the BHT and BHA, furan formation generally was reduced in the soy sauce model system by 84%, 56%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mouret, Jean-Roch; Sablayrolles, Jean-Marie; Farines, Vincent
2015-04-01
The knowledge of gas-liquid partitioning of aroma compounds during winemaking fermentation could allow optimization of fermentation management, maximizing concentrations of positive markers of aroma and minimizing formation of molecules, such as hydrogen sulfide (H2S), responsible for defects. In this study, the effect of the main fermentation parameters on the gas-liquid partition coefficients (Ki) of H2S was assessed. The Ki for this highly volatile sulfur compound was measured in water by an original semistatic method developed in this work for the determination of gas-liquid partitioning. This novel method was validated and then used to determine the Ki of H2S in synthetic media simulating must, fermenting musts at various steps of the fermentation process, and wine. Ki values were found to be mainly dependent on the temperature but also varied with the composition of the medium, especially with the glucose concentration. Finally, a model was developed to quantify the gas-liquid partitioning of H2S in synthetic media simulating must to wine. This model allowed a very accurate prediction of the partition coefficient of H2S: the difference between observed and predicted values never exceeded 4%.
Mestres, Christian; Bettencourt, Munanga de J C; Loiseau, Gérard; Matignon, Brigitte; Grabulos, Joël; Achir, Nawel
2017-10-01
Gowé is an acidic beverage obtained after simultaneous saccharification and fermentation (SSF) of sorghum. A previous paper focused on modeling the growth of lactic acid bacteria during gowé processing. This paper focuses on modeling starch amylolysis to build an aggregated SSF model. The activity of α-amylase was modeled as a function of temperature and pH, and the hydrolysis rates of both native and soluble starch were modeled via a Michaelis-Menten equation taking into account the maltose and glucose inhibition constants. The robustness of the parameter estimators was ensured by step by step identification in sets of experiments conducted with different proportions of native and gelatinized starch by modifying the pre-cooking temperature. The aggregated model was validated on experimental data and showed that both the pre-cooking and fermentation parameters, particularly temperature, are significant levers for controlling not only acid and sugar contents but also the expected viscosity of the final product. This generic approach could be used as a tool to optimize the sanitary and sensory quality of fermentation of other starchy products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alves, Sergio L; Herberts, Ricardo A; Hollatz, Claudia; Trichez, Debora; Miletti, Luiz C; de Araujo, Pedro S; Stambuk, Boris U
2008-03-01
Incomplete and/or sluggish maltotriose fermentation causes both quality and economic problems in the ale-brewing industry. Although it has been proposed previously that the sugar uptake must be responsible for these undesirable phenotypes, there have been conflicting reports on whether all the known alpha-glucoside transporters in Saccharomyces cerevisiae (MALx1, AGT1, and MPH2 and MPH3 transporters) allow efficient maltotriose utilization by yeast cells. We characterized the kinetics of yeast cell growth, sugar consumption, and ethanol production during maltose or maltotriose utilization by several S. cerevisiae yeast strains (both MAL constitutive and MAL inducible) and by their isogenic counterparts with specific deletions of the AGT1 gene. Our results clearly showed that yeast strains carrying functional permeases encoded by the MAL21, MAL31, and/or MAL41 gene in their plasma membranes were unable to utilize maltotriose. While both high- and low-affinity transport activities were responsible for maltose uptake from the medium, in the case of maltotriose, the only low-affinity (K(m), 36 +/- 2 mM) transport activity was mediated by the AGT1 permease. In conclusion, the AGT1 transporter is required for efficient maltotriose fermentation by S. cerevisiae yeasts, highlighting the importance of this permease for breeding and/or selection programs aimed at improving sluggish maltotriose fermentations.
In vitro methane and gas production with inocula from cows and goats fed an identical diet.
Mengistu, Genet; Hendriks, Wouter H; Pellikaan, Wilbert F
2018-03-01
Fermentative capacity among ruminants can differ depending on the type of ruminant species and the substrate fermented. The aim was to compare in vitro cow and goat rumen inocula in terms of methane (CH 4 ) and gas production (GP), fermentation kinetics and 72 h volatile fatty acids (VFA) production using the browse species Acacia etbaica, Capparis tomentosa, Dichrostachys cinerea, Rhus natalensis, freeze-dried maize silage and grass silage, and a concentrate as substrates. Total GP, CH 4 and VFA were higher (P ≤ 0.008) in goat inoculum than cows across substrates. The half-time for asymptotic GP was lower (P < 0.0001) in phase 1 and higher (P < 0.012) in phase 2, and the maximum rate of GP was higher (P < 0.0001) in phase 1 and phase 3 (P < 0.0001) in goats compared to cows. Methane production and as a percentage of total GP was higher (P < 0.0001) and the half-time tended (P = 0.059) to be at a later time for goats compared to cows. Goat inoculum showed higher fermentative activity with a concomitant higher CH 4 production compared to cows. This difference highlights the ability of goats to better utilise browse species and other roughage types. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Illeghems, Koen; Pelicaen, Rudy; De Vuyst, Luc; Weckx, Stefan
2016-09-01
Acetobacter ghanensis LMG 23848(T) and Acetobacter senegalensis 108B are acetic acid bacteria that originate from a spontaneous cocoa bean heap fermentation process and that have been characterised as strains with interesting functionalities through metabolic and kinetic studies. As there is currently little genetic information available for these species, whole-genome sequencing of A. ghanensis LMG 23848(T) and A. senegalensis 108B and subsequent data analysis was performed. This approach not only revealed characteristics such as the metabolic potential and genomic architecture, but also allowed to indicate the genetic adaptations related to the cocoa bean fermentation process. Indeed, evidence was found that both species possessed the genetic ability to be involved in citrate assimilation and displayed adaptations in their respiratory chain that might improve their competitiveness during the cocoa bean fermentation process. In contrast, other properties such as the dependence on glycerol or mannitol and lactate as energy sources or a less efficient acid stress response may explain their low competitiveness. The presence of a gene coding for a proton-translocating transhydrogenase in A. ghanensis LMG 23848(T) and the genes involved in two aromatic compound degradation pathways in A. senegalensis 108B indicate that these strains have an extended functionality compared to Acetobacter species isolated from other ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Technological Development of Brewing in Domestic Refrigerator Using Freeze-Dried Raw Materials
2017-01-01
Summary Development of a novel directly marketable beer brewed at low temperature in a domestic refrigerator combined with yeast immobilization technology is presented in this study. Separately, freeze-dried wort and immobilized cells of the cryotolerant yeast strain Saccharomyces cerevisiae AXAZ-1 on tubular cellulose were used in low-temperature fermentation (2, 5 and 7 °C). The positive effect of tubular cellulose during low-temperature brewing was examined, revealing that freeze-dried immobilized yeast cells on tubular cellulose significantly reduced the fermentation rates in contrast to freeze-dried free cells, although they are recommended for home-made beer production. Immobilization also enhanced the yeast resistance at low-temperature fermentation, reducing the minimum brewing temperature value from 5 to 2 °C. In the case of high-quality beer production, the effect of temperature and initial sugar concentration on the fermentation kinetics were assessed. Sensory enrichment of the produced beer was confirmed by the analysis of the final products, revealing a low diacetyl concentration, together with improved polyphenol content, aroma profile and clarity. The proposed process for beer production in a domestic refrigerator can easily be commercialized and applied by dissolving the content of two separate packages in tap water; one package containing dried wort and the other dried immobilized cells on tubular cellulose suspended in tap water. PMID:29089847
Microbiological, biochemical, and functional aspects of sugary kefir fermentation - A review.
Fiorda, Fernanda Assumpção; de Melo Pereira, Gilberto Vinicius; Thomaz-Soccol, Vanete; Rakshit, Sudip Kumar; Pagnoncelli, Maria Giovana Binder; Vandenberghe, Luciana Porto de Souza; Soccol, Carlos Ricardo
2017-09-01
Sugary kefir beverage is produce by fermenting raw sugar solution with kefir grains, the latter consisting of polysaccharide and microorganisms. This beverage, with great consumption in countries such as USA, Japan, France, and Brazil, represents a promising market to functional cultured drinks. This paper reviews the microbial diversity and interaction, kinetics, safety, and bioactivities of sugary kefir fermentation. The literature reviewed here demonstrates that sugary kefir possesses a similar microbial association relative to traditional milk kefir fermentation, especially among lactic acid bacteria and yeast species, such as Lactobacillus, Leuconostoc, Kluyveromyces, Pichia, and Saccharomyces. However, a selective pressure at species level is generally observed, as, for example, the stimulation of Saccharomyces species metabolism, leading to a high content of alcohol in the final product. This also seems to stimulate the growth of acetic acid bacteria that benefit of increased ethanol production to acetic acid metabolism. Existing reports have suggested important bioactivities associated with sugary kefir beverage consumption, such as antimicrobial, antiedematogenic, anti-inflammatory, antioxidant, cicatrizing, and healing activities. Other alternative non-dairy substrates, such as fruits, vegetables, and molasses, have also been tested for adaptation of kefir grains and production of functional beverages with distinct sensory characteristics. This diversification is of crucial importance for the production of new probiotic products to provide people with special needs (lactose intolerance) and vegan consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cos, Oriol; Ramón, Ramón; Montesinos, José Luis; Valero, Francisco
2006-01-01
The methylotrophic yeast Pichia pastoris has been widely reported as a suitable expression system for heterologous protein production. The use of different phenotypes under PAOX promoter, other alternative promoters, culture medium, and operational strategies with the objective to maximize either yield or productivity of the heterologous protein, but also to obtain a repetitive product batch to batch to get a robust process for the final industrial application have been reported. Medium composition, kinetics growth, fermentation operational strategies from fed-batch to continuous cultures using different phenotypes with the most common PAOX promoter and other novel promoters (GAP, FLD, ICL), the use of mixed substrates, on-line monitoring of the key fermentation parameters (methanol) and control algorithms applied to the bioprocess are reviewed and discussed in detail. PMID:16600031
Enzymatic saccharification of brown seaweed for production of fermentable sugars.
Sharma, Sandeep; Horn, Svein Jarle
2016-08-01
This study shows that high drying temperatures negatively affect the enzymatic saccharification yield of the brown seaweed Saccharina latissima. The optimal drying temperature of the seaweed in terms of enzymatic sugar release was found to be 30°C. The enzymatic saccharification process was optimized by investigating factors such as kinetics of sugar release, enzyme dose, solid loading and different blend ratios of cellulases and an alginate lyase. It was found that the seaweed biomass could be efficiently hydrolysed to fermentable sugars using a commercial cellulase cocktail. The inclusion of a mono-component alginate lyase was shown to improve the performance of the enzyme blend, in particular at high solid loadings. At 25% dry matter loading a combined glucose and mannitol concentration of 74g/L was achieved. Copyright © 2016 Elsevier Ltd. All rights reserved.
Glušac, J; Stijepić, M; Đurđević-Milošević, D; Milanović, S; Kanurić, K; Vukić, V
2015-01-01
The ability of whey protein concentrate (WPC) (1% w/v) and/or honey (2% and 4% w⁄v) to improve lactic acid bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) growth and viability in yoghurt during a 21 day period of storage was investigated. Another focus of this study was to examine fermentation kinetics and post-acidification rates through pH and lactic acid content measurements over the 21 day period. The addition of WPC and acacia honey accelerated fermentation and improved lactic acid bacteria (LAB) growth over the 21 days, but honey proportion did not significantly affect the viability of LAB. Moreover, adding honey and WPC did not support the overproduction of lactic acid, which positively influenced yoghurt stability during the 21 day storage period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, J.A.
1982-01-01
Hydrogen plays a central role in the breakdown of organic matter in anaerobic habitats, influencing the nature of the fermentation end products and possibly, rates at which the initial substrates are degraded. The kinetics were examined for H/sub 2/ consumption by samples from natural anaerobic habitats, pure cultures of H/sub 2/-consuming anaerobes, and co-cultures comprised of methanogenic and sulfate-reducing bacteria. These kinetic studies were performed using a gas-recirculation system that allowed precise measurements of gaseous phase H/sub 2/ and CH/sub 4/. Uptake and growth kinetic parameters were estimated for the natural samples and suspensions of H/sub 2/-consumers by fitting H/submore » 2/ depletion (progress curve) data to integrated forms of Michaelis-Menten and Monod equations. Samples included eutrophic lake sediments, anaerobic digestor sludge, and rumen fluid. The bacteria studied were methanospirillum PM1, Methanosarcina barkeri MS, Methanospirillum hungatei JF-1, Methanohbacterium PM2, and Desulfovibrio strains G11 and PS1.« less
Preozonation of primary-treated municipal wastewater for reuse in biofuel feedstock generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondala, Andro H.; Hernandez, Rafael; French, W. Todd
2010-11-09
The results of a laboratory scale investigation on ozone pretreatment of primary-treated municipal wastewater for potential reuse in fermentation processes for the production of biofuels and bio-based feedstock chemicals were presented. Semi-batch preozonation with 3.0% (w/w) ozone at 1 L min -1 resulted into a considerable inactivation of the indigenous heterotrophic bacteria in the wastewater with less than 0.0002% comprising the ozone-resistant fraction of the microbial population. The disinfection process was modeled using first-order inactivation kinetics with a rate constant of 4.39 10 -3 s -1. Chemical oxygen demand (COD) levels were reduced by 30% in 1-h experiments. COD depletionmore » was also modeled using a pseudo-first-order kinetics at a rate constant of 9.50 10 -5 s -1. Biological oxygen demand (BOD 5) values were reduced by 60% up to 20 min of ozonation followed by a plateau and some slight increases attributed to partial oxidation of recalcitrant materials. Ozone also had no substantial effect on the concentration of ammonium and phosphate ions, which are essential for microbial growth and metabolism. Preliminary tests indicated that oleaginous microorganisms could be cultivated in the ozonated wastewater, resulting in relatively higher cell densities than in raw wastewater and comparable results with autoclave-sterilized wastewater. This process could potentially produce significant quantities of oil for biofuel production from municipal wastewater streams.« less
Yilmaz, M T; Dertli, E; Toker, O S; Tatlisu, N B; Sagdic, O; Arici, M
2015-03-01
Exopolysaccharide (EPS)-producing starter cultures are preferred for the manufacture of fermented milk products to improve rheological and technological properties. However, no clear correlation exists between EPS production and the rheological and technological properties of fermented milk products such as the yogurt drink ayran. In this study, 4 different strain conditions (EPS- and EPS+ Streptococcus thermophilus strains) were tested as a function of incubation temperature (32, 37, or 42°C) and time (2, 3, or 4 h) to determine the effect of culture type and in situ EPS production on physicochemical, rheological, sensory, and microstructural properties of ayran. Furthermore, we assessed the effect of fermentation conditions on amounts of EPS production by different EPS-producing strains during ayran production. A multifactorial design of response surface methodology was used to model linear, interaction, and quadratic effects of these variables on steady shear rheological properties of ayran samples and in situ EPS production levels. The physicochemical and microbiological characteristics of ayran samples altered depending on incubation conditions and strain selection. Steady shear tests showed that ayran samples inoculated with EPS+ strains exhibited pseudoplastic flow behavior. Production of ayran with EPS- strain (control sample) resulted in the lowest apparent viscosity values (η50), whereas those produced with the combination of 2 EPS+ strains yielded ayran with notably increased η50 values. We concluded that incubation time was the variable with the greatest effect on η50, consistency coefficient (K), and flow behavior index (n) values. In situ EPS production was also affected by these conditions during ayran fermentation in which strain-specific metabolism conditions were found to be the most important factor for EPS production. In addition, these findings correlated the amount of in situ EPS produced with the rheological properties of ayran. Scanning electron microscopy images of the samples showed differences in structural features, revealing a prominent network strand structure in the ayran samples inoculated with the admixture of 2 EPS-producing strains incubated at 37°C for 3 h. These results provide useful information for large-scale production of ayran by the dairy industry. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rose, Devin J; Venema, Koen; Keshavarzian, Ali; Hamaker, Bruce R
2010-05-01
The purpose of this research was to test the hypothesis that starch-entrapped microspheres would produce favourable fermentation profiles and microbial shifts during in vitro fermentation with the faecal microbiota from patients with inflammatory bowel disease (IBD). In vitro fermentation was carried out using a validated, dynamic, computer-controlled model of the human colon (Toegepast Natuurwetenschappelijk Onderzoek gastro-intestinal model-2) after inoculation with pooled faeces from healthy individuals, patients with inactive IBD (Crohn's disease (CD)) or patients with active IBD (ulcerative colitis (UC)). Starch-entrapped microspheres fermented more slowly and produced more butyrate than fructo-oligosaccharides (FOS) when fermented with the faecal microbiota from patients with active UC. When fermented with the microbiota from patients with inactive CD, starch-entrapped microspheres also fermented more slowly but produced similar amounts of butyrate compared with FOS. Starch-entrapped microspheres showed a greater ability to maintain a low pH during simulated-distal colon conditions compared with FOS. After fermentation with the microbiota from inactive CD patients, starch-entrapped microspheres resulted in lower concentrations of some potentially harmful gut bacteria, included in Bacteroides, Enterococcus, Fusobacterium and Veillonella, compared with FOS. These findings suggest that slow fermenting starch-entrapped microspheres may induce a favourable colonic environment in patients with IBD through high butyrate production, maintenance of low pH in the distal colon and inhibition of the growth of potentially harmful bacteria.
Biological reduction of chlorinated solvents: Batch-scale geochemical modeling
NASA Astrophysics Data System (ADS)
Kouznetsova, Irina; Mao, Xiaomin; Robinson, Clare; Barry, D. A.; Gerhard, Jason I.; McCarty, Perry L.
2010-09-01
Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is able to provide valuable insight into the fundamental processes and their complex interactions during bioremediation of chlorinated ethenes in DNAPL source zones.
Simulation of in situ uranium bioremediation with slow-release organic amendment injection
NASA Astrophysics Data System (ADS)
Zhang, F.; Parker, J.; Ye, M.; Tang, G.; Wu, W.; Mehlhorn, T.; Gihring, T. M.; Schadt, C.; Watson, D. B.; Brooks, S. C.
2010-12-01
In situ bioremediation of a highly uranium-contaminated gravel aquifer with a slow-release electron donor (emulsified edible oil) has been investigated at the US DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site in east Tennessee. Groundwater at the study location has pH ~6.7 and contains high concentrations of U (5-6 μM), sulfate (1.0-1.2) mM and Ca (3-4 mM). Diluted emulsified oil (20% solution) was injected into three injection wells within 1.5 hrs. Geochemical analysis of site groundwater demonstrated the sequential reduction of nitrate, Mn, Fe(III) and sulfate. The oil was degraded by indigenous microorganisms with acetate as a major product. Rapid removal of U(VI) from the aqueous phase occurred concurrently with acetate production and sulfate reduction. The field test data were analyzed using a reaction network with a kinetic model for lipid hydrolysis and glycerol fermentation and equilibrium reactions representing microbial reduction of sulfate, nitrate, iron, uranium, manganese and carbon dioxide based on the thermodynamic approach of Istok et al. (2010) using the parallelized HGC5 code. Model-simulated chemical concentrations and relative abundance of functional microbial populations are compared with field measurements. Application of the thermodynamically-based modeling approach instead of the widely used multi-Monod kinetic rate law to formulate bioreduction reactions substantially reduces the number of reaction parameters that need to be calibrated thus facilitating a more comprehensive representation of microbial community dynamics. The model developed through this study is expected to aid the design of future bioremediation strategies for the site.
Chang, Dongdong; Yu, Zhisheng; Islam, Zia Ul; Zhang, Hongxun
2015-05-01
Pyrolysate from waste cotton was acid hydrolyzed and detoxified to yield pyrolytic sugars, which were fermented to ethanol by the strain Escherichia coli ACCC 11177. Mathematical models based on the fermentation data were also constructed. Pyrolysate containing an initial levoglucosan concentration of 146.34 g/L gave a glucose yield of 150 % after hydrolysis, suggesting that other compounds were hydrolyzed to glucose as well. Ethyl acetate-based extraction of bacterial growth inhibitors with an ethyl acetate/hydrolysate ratio of 1:0.5 enabled hydrolysate fermentation by E. coli ACCC 11177, without a standard absorption treatment. Batch processing in a fermenter exhibited a maximum ethanol yield and productivity of 0.41 g/g and 0.93 g/L·h(-1), respectively. The cell growth rate (r x ) was consistent with a logistic equation [Formula: see text], which was determined as a function of cell growth (X). Glucose consumption rate (r s ) and ethanol formation rate (r p ) were accurately validated by the equations [Formula: see text] and [Formula: see text], respectively. Together, our results suggest that combining mathematical models with fermenter fermentation processes can enable optimized ethanol production from cellulosic pyrolysate with E. coli. Similar approaches may facilitate the production of other commercially important organic substances.
NASA Astrophysics Data System (ADS)
Sun, May Yongmei
This research focuses on two steps of commercial fuel ethanol production processes: the hydrolysis starch process and the fermentation process. The goal of this research is to evaluate the performance of co-immobilized biocatalysts in a fluidized bed reactor with emphasis on economic and engineering aspects and to develop a predictive mathematical model for this system. The productivity of an FBR is higher than productivity of a traditional batch reactor or CSTR. Fluidized beds offer great advantages over packed beds for immobilized cells when small particles are used or when the reactant feed contains suspended solids. Plugging problems, excessive pressure drops (and thus attrition), or crushing risks may be avoided. No mechanical stirring is required as mixing occurs due to the natural turbulence in the fluidized process. Both enzyme and microorganism are immobilized in one catalyst bead which is called co-immobilization. Inside this biocatalyst matrix, starch is hydrolyzed by the enzyme glucoamylase to form glucose and then converted to ethanol and carbon dioxide by microorganisms. Two biocatalysts were evaluated: (1) co-immobilized yeast strain Saccharomyces cerevisiae and glucoamylase. (2) co-immobilized Zymomonas mobilis and glucoamylase. A co-immobilized biocatalyst accomplishes the simultaneous saccharification and fermentation (SSF process). When compared to a two-step process involving separate saccharification and fermentation stages, the SSF process has productivity values twice that given by the pre-saccharified process when the time required for pre-saccharification (15--25 h) was taken into account. The SSF process should also save capital cost. The information about productivity, fermentation yield, concentration profiles along the bed, ethanol inhibition, et al., was obtained from the experimental data. For the yeast system, experimental results showed that: no apparent decrease of productivity occurred after two and half months, the productivity was 25--44g/L-hr (based on reactor volume), the average yield was 0.45 g ethanol/g starch, the biocatalyst retained physical integrity and contamination did not affect fermentation. For the Z. mobilis system the maximum volumetric productivity was 38 g ethanol/L-h, the average yield was 0.51 g ethanol/g starch and the FBR was successfully operated for almost one month. In order to develop, scale-up and economically evaluate this system more efficiently, a predictive mathematical model that is based on fundamental principles was developed and verified. This model includes kinetics of reactions, transport phenomena of the reactant and product by diffusion within the biocatalyst bead, and the hydrodynamics of the three phase fluidized bed. The co-immobilized biocatalyst involves a consecutive reaction mechanism The mathematical descriptions of the effectiveness factors of reactant and the intermediate product were developed. Hydrodynamic literature correlations were used to develop the dispersion coefficient and gas, liquid, and solid holdup. The solutions of coupled non-linear second order equations for biocatalyst bead and reactor together with the boundary conditions were solved numerically. This model gives considerable information about the system, such as concentration profiles inside both the beads and column, flow rate and feed concentration influences on productivity and phase hold up, and the influence of enzyme and cell mass loading in the catalyst. This model is generic in nature such that it can be easily applied to a diverse set of applications and operating conditions.
Metabolic modeling of synthesis gas fermentation in bubble column reactors.
Chen, Jin; Gomez, Jose A; Höffner, Kai; Barton, Paul I; Henson, Michael A
2015-01-01
A promising route to renewable liquid fuels and chemicals is the fermentation of synthesis gas (syngas) streams to synthesize desired products such as ethanol and 2,3-butanediol. While commercial development of syngas fermentation technology is underway, an unmet need is the development of integrated metabolic and transport models for industrially relevant syngas bubble column reactors. We developed and evaluated a spatiotemporal metabolic model for bubble column reactors with the syngas fermenting bacterium Clostridium ljungdahlii as the microbial catalyst. Our modeling approach involved combining a genome-scale reconstruction of C. ljungdahlii metabolism with multiphase transport equations that govern convective and dispersive processes within the spatially varying column. The reactor model was spatially discretized to yield a large set of ordinary differential equations (ODEs) in time with embedded linear programs (LPs) and solved using the MATLAB based code DFBAlab. Simulations were performed to analyze the effects of important process and cellular parameters on key measures of reactor performance including ethanol titer, ethanol-to-acetate ratio, and CO and H2 conversions. Our computational study demonstrated that mathematical modeling provides a complementary tool to experimentation for understanding, predicting, and optimizing syngas fermentation reactors. These model predictions could guide future cellular and process engineering efforts aimed at alleviating bottlenecks to biochemical production in syngas bubble column reactors.
Wang, Lu; Liu, Tao; Chen, Yang; Sun, Yaqin; Xiu, Zhilong
2017-01-25
Biomass is an important parameter reflecting the fermentation dynamics. Real-time monitoring of biomass can be used to control and optimize a fermentation process. To overcome the deficiencies of measurement delay and manual errors from offline measurement, we designed an experimental platform for online monitoring the biomass during a 1,3-propanediol fermentation process, based on using the fourier-transformed near-infrared (FT-NIR) spectra analysis. By pre-processing the real-time sampled spectra and analyzing the sensitive spectra bands, a partial least-squares algorithm was proposed to establish a dynamic prediction model for the biomass change during a 1,3-propanediol fermentation process. The fermentation processes with substrate glycerol concentrations of 60 g/L and 40 g/L were used as the external validation experiments. The root mean square error of prediction (RMSEP) obtained by analyzing experimental data was 0.341 6 and 0.274 3, respectively. These results showed that the established model gave good prediction and could be effectively used for on-line monitoring the biomass during a 1,3-propanediol fermentation process.
Scott, Felipe; Aroca, Germán; Caballero, José Antonio; Conejeros, Raúl
2017-07-01
The aim of this study is to analyze the techno-economic performance of process configurations for ethanol production involving solid-liquid separators and reactors in the saccharification and fermentation stage, a family of process configurations where few alternatives have been proposed. Since including these process alternatives creates a large number of possible process configurations, a framework for process synthesis and optimization is proposed. This approach is supported on kinetic models fed with experimental data and a plant-wide techno-economic model. Among 150 process configurations, 40 show an improved MESP compared to a well-documented base case (BC), almost all include solid separators and some show energy retrieved in products 32% higher compared to the BC. Moreover, 16 of them also show a lower capital investment per unit of ethanol produced per year. Several of the process configurations found in this work have not been reported in the literature. Copyright © 2017 Elsevier Ltd. All rights reserved.
Khedkar, Manisha A; Nimbalkar, Pranhita R; Gaikwad, Shashank G; Chavan, Prakash V; Bankar, Sandip B
2017-02-01
Present investigation explores the use of pineapple peel, a food industry waste, for acetone-butanol-ethanol (ABE) production using Clostridium acetobutylicum B 527. Proximate analysis of pineapple peel shows that it contains 35% cellulose, 19% hemicellulose, and 16% lignin on dry basis. Drying experiments on pineapple peel waste were carried out in the temperature range of 60-120°C and experimental drying data was modeled using moisture diffusion control model to study its effect on ABE production. The production of ABE was further accomplished via acid hydrolysis, detoxification, and fermentation process. Maximum total sugar release obtained by using acid hydrolysis was 97g/L with 95-97% and 10-50% removal of phenolics and acetic acid, respectively during detoxification process. The maximum ABE titer obtained was 5.23g/L with 55.6% substrate consumption when samples dried at 120°C were used as a substrate (after detoxification). Copyright © 2016 Elsevier Ltd. All rights reserved.
Borah, Arup Jyoti; Agarwal, Mayank; Poudyal, Manisha; Goyal, Arun; Moholkar, Vijayanand S
2016-08-01
This study has assessed four invasive weeds, viz. Saccharum spontaneum (SS), Mikania micrantha (MM), Lantana camara (LC) and Eichhornia crassipes (EC) for enzymatic hydrolysis prior to bioalcohol fermentation. Enzymatic hydrolysis of pretreated biomasses of weeds has been conducted with mechanical agitation and sonication under constant (non-optimum) conditions. Profiles of total reducible sugar release have been fitted to HCH-1 model of enzymatic hydrolysis using Genetic Algorithm. Trends in parameters of this model reveal physical mechanism of ultrasound-induced enhancement of enzymatic hydrolysis. Sonication accelerates hydrolysis kinetics by ∼10-fold. This effect is contributed by several causes, attributed to intense micro-convection generated during sonication: (1) increase in reaction velocity, (2) increase in enzyme-substrate affinity, (3) reduction in product inhibition, and (4) enhancement of enzyme activity due to conformational changes in its secondary structure. Enhancement effect of sonication is revealed to be independent of conditions of enzymatic hydrolysis - whether optimum or non-optimum. Copyright © 2016 Elsevier Ltd. All rights reserved.
Feng, Jie; Feng, Na; Yang, Yan; Liu, Fang; Zhang, Jingsong; Jia, Wei; Lin, Chi-Chung
2015-01-01
Triterpenes are important anticancer agents produced by batch submerged liquid fermentation, with the medicinal mushroom Ganoderma lucidum ACCC G0119, which was investigated under various dissolved oxygen levels by varying agitation speeds. Three kinetic parameters were analyzed: specific mycelial growth rate (μsmg), specific glucose consumption rate (qsgc), and specific triterpene production rate (qstp). High concentration, yield, and productivity of triterpenes were achieved by developing a simple and reproducible two-stage agitation speed control strategy. At the first 40 h, agitation speed was controlled at 150 rpm to obtain the quickest peak qstp for triterpene production, subsequently agitation speed was controlled at 100 rpm to maintain high qstp for high triterpene accumulation. The maximum concentration of triterpenes reached 0.086 g/l with the yield of 6.072 g/kg and the productivity of 6.532 × 10-4 g/(l·h), which were 39.61%, 36.48%, and 49.22%, respectively, better than the best results controlled by fixed agitation speeds. Conceivably, such a triterpene fermentation production strategy would be useful for industrial large-scale production of triterpenes with G. lucidum.
Boudreau, Thomas F; Peck, Gregory M; O'Keefe, Sean F; Stewart, Amanda C
2018-01-01
Yeast assimilable nitrogen (YAN) is essential for yeast growth and metabolism during apple ( Malus x domestica Borkh.) cider fermentation. YAN concentration and composition can impact cider fermentation kinetics and the formation of volatile aroma compounds by yeast. The YAN concentration and composition of apples grown in Virginia, USA over the course of two seasons was determined through analysis of both free amino nitrogen (FAN) and ammonium ion concentration. FAN was the largest fraction of YAN, with a mean value of 51 mg N L -1 FAN compared to 9 mg N L -1 ammonium. Observed YAN values ranged from nine to 249 mg N L -1 , with a mean value of 59 mg N L -1 . Ninety-four percent of all samples analyzed in this study contained <140 mg N L -1 YAN, a concentration generally considered the minimum level needed in grape-based wines for yeast to fully utilize all of the fermentable sugars. FAN concentration was correlated with total YAN concentration, but ammonium concentration was not. Likewise, there was no correlation between FAN and ammonium concentration.
Albaek, Mads O; Gernaey, Krist V; Hansen, Morten S; Stocks, Stuart M
2011-08-01
The purpose of this article is to demonstrate how a model can be constructed such that the progress of a submerged fed-batch fermentation of a filamentous fungus can be predicted with acceptable accuracy. The studied process was enzyme production with Aspergillus oryzae in 550 L pilot plant stirred tank reactors. Different conditions of agitation and aeration were employed as well as two different impeller geometries. The limiting factor for the productivity was oxygen supply to the fermentation broth, and the carbon substrate feed flow rate was controlled by the dissolved oxygen tension. In order to predict the available oxygen transfer in the system, the stoichiometry of the reaction equation including maintenance substrate consumption was first determined. Mainly based on the biomass concentration a viscosity prediction model was constructed, because rising viscosity of the fermentation broth due to hyphal growth of the fungus leads to significant lower mass transfer towards the end of the fermentation process. Each compartment of the model was shown to predict the experimental results well. The overall model can be used to predict key process parameters at varying fermentation conditions. Copyright © 2011 Wiley Periodicals, Inc.
Stuck fermentation: development of a synthetic stuck wine and study of a restart procedure.
Maisonnave, Pierre; Sanchez, Isabelle; Moine, Virginie; Dequin, Sylvie; Galeote, Virginie
2013-05-15
Stuck fermentation is a major problem in winemaking, resulting in large losses in the wine industry. Specific starter yeasts are used to restart stuck fermentations in conditions determined essentially on the basis of empirical know-how. We have developed a model synthetic stuck wine and an industrial process-based procedure for restarting fermentations, for studies of the conditions required to restart stuck fermentations. We used a basic medium containing 13.5% v/v ethanol and 16 g/L fructose, pH 3.3, to test the effect of various nutrients (vitamins, amino acids, minerals, oligoelements), with the aim of developing a representative and discriminative stuck fermentation model. Cell growth appeared to be a key factor for the efficient restarting of stuck fermentations. Micronutrients, such as vitamins, also strongly affected the efficiency of the restart procedure. For the validation of this medium, we compared the performances of three wine yeast strains in the synthetic stuck fermentation and three naturally stuck wine fermentations. Strain performance was ranked similar in the synthetic medium and in the "Malbec" and "Sauvignon" natural stuck wines. However, two strains were ranked differently in the "Gros Manseng" stuck wine. Nutrient content seemed to be a crucial factor in fermentation restart conditions, generating differences between yeast strains. However, the specific sensitivity of yeast strains to the composition of the wine may also have had an effect. Copyright © 2013 Elsevier B.V. All rights reserved.
chemicals from bio-oils Biomass pretreatment for fermentation Separation of biomass into lignin , hemicellulose, and cellulose Conversion of hemicellulose into higher value products via fermentation routes Design of gas-liquid fermentation reactors Melt spun carbon fibers from lignin Mathematical modeling of
Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation
Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng
2015-01-01
At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864
Shih, Justin; Fanyin-Martin, Ato; Taher, Edris; Chandran, Kartik
2017-01-01
Background. In Ghana, faecal sludge (FS) from on-site sanitation facilities is often discharged untreated into the environment, leading to significant insults to environmental and human health. Anaerobic digestion offers an attractive pathway for FS treatment with the concomitant production of energy in the form of methane. Another innovative option includes separating digestion into acidogenesis (production of volatile fatty acids (VFA)) and methanogenesis (production of methane), which could ultimately facilitate the production of an array of biofuels and biochemicals from the VFA. This work describes the development, implementation and modeling based analysis of a novel multiphase anaerobic fermentation-digestion process aimed at FS treatment in Kumasi, Ghana. Methods. A pilot-scale anaerobic fermentation process was implemented at the Kumasi Metropolitan Assembly’s Oti Sanitary Landfill Site at Adanse Dompoase. The process consisted of six 10 m reactors in series, which were inoculated with bovine rumen and fed with fecal sludge obtained from public toilets. The performance of the fermentation process was characterized in terms of both aqueous and gaseous variables representing the conversion of influent organic carbon to VFA as well as CH 4. Using the operating data, the first-ever process model for FS fermentation and digestion was developed and calibrated, based on the activated sludge model framework. Results and Conclusions. This work represents one of the first systematic efforts at integrated FS characterization and process modeling to enable anaerobic fermentation and digestion of FS. It is shown that owing to pre-fermentation of FS in public septage holding tanks, one could employ significantly smaller digesters (lower capital costs) or increased loading capabilities for FS conversion to biogas or VFA. Further, using the first-ever calibrated process model for FS fermentation and digestion presented herein, we expect improved and more mechanistically informed development and application of different process designs and configurations for global FS management practice. PMID:29528044
Shih, Justin; Fanyin-Martin, Ato; Taher, Edris; Chandran, Kartik
2017-11-06
Background. In Ghana, faecal sludge (FS) from on-site sanitation facilities is often discharged untreated into the environment, leading to significant insults to environmental and human health. Anaerobic digestion offers an attractive pathway for FS treatment with the concomitant production of energy in the form of methane. Another innovative option includes separating digestion into acidogenesis (production of volatile fatty acids (VFA)) and methanogenesis (production of methane), which could ultimately facilitate the production of an array of biofuels and biochemicals from the VFA. This work describes the development, implementation and modeling based analysis of a novel multiphase anaerobic fermentation-digestion process aimed at FS treatment in Kumasi, Ghana. Methods. A pilot-scale anaerobic fermentation process was implemented at the Kumasi Metropolitan Assembly's Oti Sanitary Landfill Site at Adanse Dompoase. The process consisted of six 10 m reactors in series, which were inoculated with bovine rumen and fed with fecal sludge obtained from public toilets. The performance of the fermentation process was characterized in terms of both aqueous and gaseous variables representing the conversion of influent organic carbon to VFA as well as CH 4 . Using the operating data, the first-ever process model for FS fermentation and digestion was developed and calibrated, based on the activated sludge model framework. Results and Conclusions. This work represents one of the first systematic efforts at integrated FS characterization and process modeling to enable anaerobic fermentation and digestion of FS. It is shown that owing to pre-fermentation of FS in public septage holding tanks, one could employ significantly smaller digesters (lower capital costs) or increased loading capabilities for FS conversion to biogas or VFA. Further, using the first-ever calibrated process model for FS fermentation and digestion presented herein, we expect improved and more mechanistically informed development and application of different process designs and configurations for global FS management practice.
Mamhoud, Asma; Nionelli, Luana; Bouzaine, Taroub; Hamdi, Moktar; Gobbetti, Marco; Rizzello, Carlo Giuseppe
2016-05-16
Wheat bread is the most popular staple food consumed in Tunisia and, despite the niche production of some typical breads (e.g. Tabouna, Mlawi, Mtabga), the major part is currently produced with baker's yeast at industrial or, mainly, at artisanal level, while the use of sourdough fermentation is rarely reported. Considering the growing national demand for cereal baked goods, it can be hypothesized that sourdough fermentation through the use of selected lactic acid bacteria as starters could improve the overall quality and the diversification of local products. Different cereal grains were collected from the regions of Ariana, Bizerta, Beja Nabeul, and Seliana, and the autochthonous lactic acid bacteria were isolated, identified, characterized and selected on the basis of the kinetics of acidification, the proteolytic activity, and the quotient of fermentation. Lactobacillus curvatus MA2, Pediococcus pentosaceus OA2, and Pediococcus acidilactici O1A1 were used together as mixed starter to obtain a selected sourdough. According to the backslopping procedure, a type I sourdough was made from a Tunisian flour (spontaneous sourdough). Compared to the use of the spontaneous sourdough, the one obtained with selected and mixed starters by a unique fermentation step, favored the increase of the concentrations of organic acids, phenols, and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities, that increased ca. 20% compared to the control. Moreover, the selected starters improved the in vitro protein digestibility (ca. 82% when selected sourdough was used), textural and sensory features of the breads, as determined by textural profile analysis and panel test, respectively. This study aimed at exploiting the potential of selected autochthonous lactic acid bacteria and extending the use of a sourdough (type II), thanks to the set-up of a two-step fermentation protocol designed for application at the industrial level, and the confirmed nutritional, textural, and sensory advantages of the final product. Copyright © 2016 Elsevier B.V. All rights reserved.
Adler, Philipp; Hugen, Thorsten; Wiewiora, Marzena; Kunz, Benno
2011-03-07
An unstructured model for an integrated fermentation/membrane extraction process for the production of the aroma compounds 2-phenylethanol and 2-phenylethylacetate by Kluyveromyces marxianus CBS 600 was developed. The extent to which this model, based only on data from the conventional fermentation and separation processes, provided an estimation of the integrated process was evaluated. The effect of product inhibition on specific growth rate and on biomass yield by both aroma compounds was approximated by multivariate regression. Simulations of the respective submodels for fermentation and the separation process matched well with experimental results. With respect to the in situ product removal (ISPR) process, the effect of reduced product inhibition due to product removal on specific growth rate and biomass yield was predicted adequately by the model simulations. Overall product yields were increased considerably in this process (4.0 g/L 2-PE+2-PEA vs. 1.4 g/L in conventional fermentation) and were even higher than predicted by the model. To describe the effect of product concentration on product formation itself, the model was extended using results from the conventional and the ISPR process, thus agreement between model and experimental data improved notably. Therefore, this model can be a useful tool for the development and optimization of an efficient integrated bioprocess. Copyright © 2010 Elsevier Inc. All rights reserved.
Nielsen, Tina Skau; Jørgensen, Henry; Knudsen, Knud Erik Bach; Lærke, Helle Nygaard
2017-11-01
The effects of carbohydrate (CHO) source and processing (extrusion cooking) on large intestinal fermentation products were studied in ileo-cannulated pigs as a model for humans. Pigs were fed diets containing barley, pea or a mixture of potato starch:wheat bran (PSWB) either raw or extrusion cooked. Extrusion cooking reduced the amount of starch fermented in the large intestine by 52-96% depending on the CHO source and the total pool of butyrate in the distal small intestine + large intestine by on average 60% across diets. Overall, extrusion cooking caused a shift in the composition of short-chain fatty acids (SCFA) produced towards more acetate and less propionate and butyrate. The CHO source and processing highly affected the fermentation characteristics and extrusion cooking generally reduced large intestinal fermentation and resulted in a less desirable composition of the fermentation products. The latter outcome is non-conducive to a healthy large intestinal environment and its resulting metabolic health.
Monitoring peroxides generation during model wine fermentation by FOX-1 assay.
Bridi, Raquel; González, Alvaro; Bordeu, Edmundo; López-Alarcón, Camilo; Aspée, Alexis; Diethelm, Benjamin; Lissi, Eduardo; Parpinello, Giuseppina Paola; Versari, Andrea
2015-05-15
The quality of wine is mainly determined during the alcoholic fermentation that gradually transforms the grape juice into wine. Along this process the yeast goes through several stressful stages which can affect its fermentative ability and industrial performance, affecting wine quality. Based on their actual application on industrial winemaking, commercial Saccharomyces cerevisiae strains (EC1118, QA23, VIN7 and VL3) were used. They were inoculated in batch laboratory fermentations in a model wine solution for evaluating the production of reactive oxygen species (ROS) during the yeast's alcoholic fermentation. For first time total hydroperoxides were determined by FOX-1 assay to follow ROS generation. The total hydroperoxides accumulated along the 10 days of fermentation peaked up to 10.0 μM in yeast EC1118, of which 1.3 μM was hydrogen peroxide (H2O2). The FOX-1 based analytical approach herein presented is a valuable tool for the quantification of ROS oxidative damage during winemaking. Copyright © 2015. Published by Elsevier Ltd.
[Modeling of lactic acid fermentation of leguminous plant juices].
Shurkhno, R A; Validov, Sh Z; Boronin, A M; Naumova, R P
2006-01-01
Lactic acid fermentation of leguminous plant juices was modeled to provide a comparative efficiency assessment of the previously selected strains of lactic acid bacteria as potential components of starter cultures. Juices of the legumes fodder galega, red clover, and alfalfa were subjected to lactic acid fermentation in 27 variants of experiment. Local strains (Lactobacillus sp. RS 2, Lactobacillus sp. RS 3, and Lactobacillus sp. RS 4) and the collection strain Lactobacillus plantarum BS 933 appeared the most efficient (with reference to the rate and degree of acidogenesis, ratio of lactic and acetic acids, and dynamics of microflora) in fermenting fodder galega juice; Lactobacillus sp. RS 1, Lactobacillus sp. RS 2, Lactobacillus sp. RS 3, Lactobacillus sp. RS 4, and L. plantarum BS 933 were the most efficient for red clover juice. Correction of alfalfa juice fermentation using the tested lactic acid bacterial strains appeared inefficient, which is explainable by its increased protein content and a low level of the acids produced during fermentation.
de la Fuente, Gabriel; Jones, Eleanor; Jones, Shann; Newbold, Charles J.
2017-01-01
Stability in gut ecosystems is an important area of study that impacts on the use of additives and is related with several pathologies. Kefir is a fermented milk drink made with a consortium of yeast and bacteria as a fermentation starter, of which the use as additive in companion and livestock animals has increased in the last few years. To investigate the effect of kefir milk on foregut and hindgut digestive systems, an in vitro approach was followed. Either rumen fluid or horse fecal contents were used as a microbial inoculate and the inclusion of kefir (fresh, autoclaved, or pasteurized) was tested. Gas production over 72 h of incubation was recorded and pH, volatile fatty acids (VFAs), lactate and ammonia concentration as well as lactic acid (LAB) and acetic acid bacteria, and yeast total numbers were also measured. Both direct and indirect (by subtracting their respective blanks) effects were analyzed and a multivariate analysis was performed to compare foregut and hindgut fermentation models. Addition of kefir boosted the fermentation by increasing molar concentration of VFAs and ammonia and shifting the Acetate to Propionate ratio in both models but heat processing techniques like pasteurization or autoclaving influenced the way the kefir is fermented and reacts with the present microbiota. In terms of comparison between both models, the foregut model seems to be less affected by the inclusion of Kefir than the hindgut model. In terms of variability in the response, the hindgut model appeared to be more variable than the foregut model in the way that it reacted indirectly to the addition of different types of kefir. PMID:28702019
de la Fuente, Gabriel; Jones, Eleanor; Jones, Shann; Newbold, Charles J
2017-01-01
Stability in gut ecosystems is an important area of study that impacts on the use of additives and is related with several pathologies. Kefir is a fermented milk drink made with a consortium of yeast and bacteria as a fermentation starter, of which the use as additive in companion and livestock animals has increased in the last few years. To investigate the effect of kefir milk on foregut and hindgut digestive systems, an in vitro approach was followed. Either rumen fluid or horse fecal contents were used as a microbial inoculate and the inclusion of kefir (fresh, autoclaved, or pasteurized) was tested. Gas production over 72 h of incubation was recorded and pH, volatile fatty acids (VFAs), lactate and ammonia concentration as well as lactic acid (LAB) and acetic acid bacteria, and yeast total numbers were also measured. Both direct and indirect (by subtracting their respective blanks) effects were analyzed and a multivariate analysis was performed to compare foregut and hindgut fermentation models. Addition of kefir boosted the fermentation by increasing molar concentration of VFAs and ammonia and shifting the Acetate to Propionate ratio in both models but heat processing techniques like pasteurization or autoclaving influenced the way the kefir is fermented and reacts with the present microbiota. In terms of comparison between both models, the foregut model seems to be less affected by the inclusion of Kefir than the hindgut model. In terms of variability in the response, the hindgut model appeared to be more variable than the foregut model in the way that it reacted indirectly to the addition of different types of kefir.
Wang, Ying; Ryu, Bum Han; Yoo, Wanki; Lee, Chang Woo; Kim, Kyeong Kyu; Lee, Jun Hyuck; Kim, T Doohun
2018-01-01
Lactic acid bacteria, which are involved in the fermentation of vegetables, meats, and dairy products, are widely used for the productions of small organic molecules and bioactive peptides. Here, a novel acetylesterase (LaAcE) from Lactobacillus acidophilus NCFM was identified, functionally characterized, immobilized, and subjected to site-directed mutagenesis for biotechnological applications. The enzymatic properties of LaAcE were investigated using biochemical and biophysical methods including native polyacrylamide gel electrophoresis, acetic acid release, biochemical assays, enzyme kinetics, and spectroscopic methods. Interestingly, LaAcE exhibited the ability to act on a broad range of substrates including glucose pentaacetate, glyceryl tributyrate, fish oil, and fermentation-related compounds. Furthermore, immobilization of LaAcE showed good recycling ability and high thermal stability compared with free LaAcE. A structural model of LaAcE was used to guide mutational analysis of hydrophobic substrate-binding region, which was composed of Leu 156 , Phe 164 , and Val 204 . Five mutants (L156A, F164A, V204A, L156A/F164A, and L156A/V204A) were generated and investigated to elucidate the roles of these hydrophobic residues in substrate specificity. This work provided valuable insights into the properties of LaAcE, and demonstrated that LaAcE could be used as a model enzyme of acetylesterase in lactic acid bacteria, making LaAcE a great candidate for industrial applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Brandam, Cédric; Lai, Quoc Phong; Julien-Ortiz, Anne; Taillandier, Patricia
2013-01-01
Torulaspora delbrueckii metabolism was assessed in a synthetic culture medium similar to grape must under various conditions: no aeration and three different oxygen feeds, in order to determine the effect of oxygen on metabolism. Carbon and nitrogen mass balances were calculated to quantify metabolic fluxes. The effect of oxygen was to decrease the flux of carbon going into the fermentation pathway in favor of growth. In the absence of aeration, higher amounts of glycerol were produced, probably to maintain the redox balance. The oxygen requirement of this strain was high, since even for the highest air supply oxygen became limiting after 24 h. Nevertheless, this strain developed well in the absence of oxygen and consumed 220 g/L of sugars (glucose/fructose) in 166 h at 20 °C, giving a good ethanol yield (0.50 g/g).
Liu, Hui; Cheng, Tao; Xian, Mo; Cao, Yujin; Fang, Fang; Zou, Huibin
2014-01-01
With the depletion of the nonrenewable petrochemical resources and the increasing concerns of environmental pollution globally, biofuels and biobased chemicals produced from the renewable resources appear to be of great strategic significance. The present review described the progress in the biosynthesis of fatty acid and its derivatives from renewable biomass and emphasized the importance of fatty acid serving as the platform chemical and feedstock for a variety of chemicals. Due to the low efficient conversions of lignocellulosic biomass or carbon dioxide to fatty acid, we also put forward that rational strategies for the production of fatty acid and its derivatives should further derive from the consideration of whole bioprocess (pretreatment, saccharification, fermentation, separation), multiscale analysis and interdisciplinary combinations (omics, kinetics, metabolic engineering, synthetic biology, fermentation and so on). Copyright © 2013 Elsevier Inc. All rights reserved.
Synchronization of glycolytic oscillations in a yeast cell population.
Danø, S; Hynne, F; De Monte, S; d'Ovidio, F; Sørensen, P G; Westerhoff, H
2001-01-01
The mechanism of active phase synchronization in a suspension of oscillatory yeast cells has remained a puzzle for almost half a century. The difficulty of the problem stems from the fact that the synchronization phenomenon involves the entire metabolic network of glycolysis and fermentation, and consequently it cannot be addressed at the level of a single enzyme or a single chemical species. In this paper it is shown how this system in a CSTR (continuous flow stirred tank reactor) can be modelled quantitatively as a population of Stuart-Landau oscillators interacting by exchange of metabolites through the extracellular medium, thus reducing the complexity of the problem without sacrificing the biochemical realism. The parameters of the model can be derived by a systematic expansion from any full-scale model of the yeast cell kinetics with a supercritical Hopf bifurcation. Some parameter values can also be obtained directly from analysis of perturbation experiments. In the mean-field limit, equations for the study of populations having a distribution of frequencies are used to simulate the effect of the inherent variations between cells.
Umbreen, Huma; Zia, Muhammad Anjum; Rasul, Samreen
2013-01-01
In the present study enhanced production of glucose aerodehydrogenase from Aspergillus niger has been achieved after optimizing the dose of chemical mutagen ethyl methane sulfonate (EMS) that has not been reported earlier. Different doses of mutagen were applied and a strain was developed basing upon the best production. The selected strain Aspergillus niger EMS-150-F was optimized for nutrient requirements in order to produce enzyme through fermentation and the results showed the best yield at 2% corn steep liquor (CSL), 36 hours fermentation time, pH 5, 30°C temperature, 0.3% KH2PO4, 0.3% urea and 0.06% CaCO3. The enzyme was then purified and resulted in 57.88 fold purification with 52.12% recovery. On kinetic characterization, the enzyme showed optimum activity at pH 6 and temperature 30°C. The Michaelis-Menton constants (Km, Vmax, Kcat and Kcat/Km) were 20 mM, 45.87 U mL−1, 1118.81 s−1 and 55.94 s−1 mM−1, respectively. The enzyme was found to be thermaly stable and the enthalpy and free energy showed an increase with increase in temperature and ΔS* was highly negative proving the enzyme from A. niger EMS-150-F resistant to temperature and showing a very little disorderliness. PMID:24688499
Cherdthong, Anusorn; Wanapat, Metha
2014-04-01
This study aimed to determine the effect of urea-calcium sulphate mixture (U-cas) levels in high-quality feed block (HQFB) on ruminal digestibility, fermentation and gas kinetics in rumen fluid of swamp buffalo by using in vitro techniques. The treatments were seven levels of U-cas incorporated in HQFB at 0, 3, 6, 9, 12, 15 and 18% and the experimental design was a completely randomized design. Gas production rate constants for the insoluble fraction, potential extent of gas and cumulative gas were linearly increased with increasing levels of U-cas in HQFB. The in vitro dry matter digestibility, in vitro organic matter digestibility, true digestibility and microbial mass were altered by treatments and were greatest at 18% U-cas supplementation. Concentrations of propionate were linearly increased with increasing levels of U-cas and was highest with U-cas supplementation at 18%. The NH3 -N concentration was highest when urea was added in the HQFB while NH3 -N concentration tended to be reduced with increasing level of U-cas. The findings suggest supplementation of 18% U-cas in HQFB improves kinetics of gas production, rumen fermentation, digestibility and microbial mass as well as controlling the rate of N degradation in the rumen of swamp buffalo. © 2014 Japanese Society of Animal Science.
Papagianni, Maria
2007-01-01
Citric acid is regarded as a metabolite of energy metabolism, of which the concentration will rise to appreciable amounts only under conditions of substantive metabolic imbalances. Citric acid fermentation conditions were established during the 1930s and 1940s, when the effects of various medium components were evaluated. The biochemical mechanism by which Aspergillus niger accumulates citric acid has continued to attract interest even though its commercial production by fermentation has been established for decades. Although extensive basic biochemical research has been carried out with A. niger, the understanding of the events relevant for citric acid accumulation is not completely understood. This review is focused on citric acid fermentation by A. niger. Emphasis is given to aspects of fermentation biochemistry, membrane transport in A. niger and modeling of the production process.
Bassi, Ana Paula Guarnieri; da Silva, Jéssica Carolina Gomes; Reis, Vanda Renata; Ceccato-Antonini, Sandra Regina
2013-09-01
The alcoholic fermentation in Brazil displays some peculiarities because the yeast used is recycled in a non-aseptic process. After centrifugation, the cells are treated with acid to control the bacterial growth. However, it is difficult to manage the indigenous yeasts without affecting the main culture of Saccharomyces cerevisiae. This work evaluated how the cell treatment could be modified to combat contaminant yeasts based on the differential sensitivities to low pH and high concentrations of ethanol displayed by an industrial strain of S. cerevisiae and three strains of Dekkera bruxellensis, which are common contaminant yeasts in Brazilian fermentation processes. The tests were initially performed in rich medium with a low pH or a high concentration of ethanol to analyse the yeast growth profile. Then, the single and combined effects of low pH and ethanol concentration on the yeast cell viability were evaluated under non-proliferative conditions. The effects on the fermentation parameters were also verified. S. cerevisiae grew best when not subjected to the stresses, but this yeast and D. bruxellensis had similar growth kinetics when exposed to a low pH or increased ethanol concentrations. However, the combined treatments of low pH (2.0) and ethanol (11 or 13 %) resulted in a decrease of D. bruxellensis cell viability almost three times higher than of S. cerevisiae, which was only slightly affected by all cell treatments. The initial viability of the treated cells was restored within 8 h of growth in sugar cane juice, with the exception of the combined treatment for D. bruxellensis. The ethanol-based cell treatment, in despite of slowing the fermentation, could decrease and maintain D. bruxellensis population under control while S. cerevisiae was taking over the fermentation along six fermentative cycles. These results indicate that it may be possible to control the growth of D. bruxellensis without major effects on S. cerevisiae. The cells could be treated between the fermentation cycles by the parcelled addition of 13 % ethanol to the tanks in which the yeast cream is treated with sulphuric acid at pH 2.0.
2014-01-01
Background Saccharomyces cerevisiae is the most relevant yeast species conducting the alcoholic fermentation that takes place during winemaking. Although the physiology of this model organism has been extensively studied, systematic quantitative physiology studies of this yeast under winemaking conditions are still scarce, thus limiting the understanding of fermentative metabolism of wine yeast strains and the systematic description, modelling and prediction of fermentation processes. In this study, we implemented and validated the use of chemostat cultures as a tool to simulate different stages of a standard wine fermentation, thereby allowing to implement metabolic flux analyses describing the sequence of metabolic states of S. cerevisae along the wine fermentation. Results Chemostat cultures mimicking the different stages of standard wine fermentations of S. cerevisiae EC1118 were performed using a synthetic must and strict anaerobic conditions. The simulated stages corresponded to the onset of the exponential growth phase, late exponential growth phase and cells just entering stationary phase, at dilution rates of 0.27, 0.04, 0.007 h−1, respectively. Notably, measured substrate uptake and product formation rates at each steady state condition were generally within the range of corresponding conversion rates estimated during the different batch fermentation stages. Moreover, chemostat data were further used for metabolic flux analysis, where biomass composition data for each condition was considered in the stoichiometric model. Metabolic flux distributions were coherent with previous analyses based on batch cultivations data and the pseudo-steady state assumption. Conclusions Steady state conditions obtained in chemostat cultures reflect the environmental conditions and physiological states of S. cerevisiae corresponding to the different growth stages of a typical batch wine fermentation, thereby showing the potential of this experimental approach to systematically study the effect of environmental relevant factors such as temperature, sugar concentration, C/N ratio or (micro) oxygenation on the fermentative metabolism of wine yeast strains. PMID:24928139
Glaser, Robert; Venus, Joachim
2017-07-25
Three Bacillus coagulans strains were characterised in terms of their ability to grow in lignin-containing fermentation media and to consume the lignocellulose-related sugars glucose, xylose, and arabinose. An optical-density high-throughput screening was used for precharacterisation by means of different mathematical models for comparison (Logistic, Gompertz, Baranyi, Richards & Stannard, and Schnute). The growth response was characterised by the maximum growth rate and lag time. For a comparison of the screening and fermentation results, an unstructured mathematical model was proposed to characterise the lactate production, bacterial growth and substrate consumption. The growth model was then applied to fermentation procedures using wheat straw hydrolysates. The results indicated that the unstructured growth model can be used to evaluate lactate producing fermentation. Under the experimental fermentation conditions, one strain showed the ability to tolerate a high lignin concentration (2.5g/L) but lacked the capacity for sufficient pentose uptake. The lactate yield of the strains that were able to consume all sugar fractions of glucose, xylose and arabinose was ∼83.4%. A photometric measurement at 280nm revealed a dynamic change in alkali-lignin concentrations during lactate producing fermentation. A test of decolourisation of vanillin, ferulic acid, and alkali-lignin samples also showed the decolourisation performance of the B. coagulans strains under study. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Impact of Saccharomyces cerevisiae strains on traditional sparkling wines production.
Di Gianvito, Paola; Perpetuini, Giorgia; Tittarelli, Fabrizia; Schirone, Maria; Arfelli, Giuseppe; Piva, Andrea; Patrignani, Francesca; Lanciotti, Rosalba; Olivastri, Lino; Suzzi, Giovanna; Tofalo, Rosanna
2018-07-01
Sparkling wine fermentation is a challenge for yeasts due to the hostile conditions. A phenotype sought in starters is flocculation, because it reduces riddling time. For this reason, six flocculent Saccharomyces cerevisiae wine strains with different flocculation degree and autolytic activity and two commercial strains were tested for traditional sparkling wine production in a winery. Yeast viability, free aminoacids and high molecular weight nitrogen release and physico-chemical composition of sparkling wines were evaluated. Moreover, strains were tested for their aromatic potential. Obtained data revealed that flocculent yeasts presented oenological performances (in terms of fermentation rate, maximum pressure reached, free aminoacids - AAN and high molecular weight nitrogen - HMWN release) similar to the commercial strains. All considered strains were able to complete fermentation and viable cells of all strains were detected in all sparkling wines produced even after 6 months. F6789 and F10471 strains showed slow fermentation kinetics reaching the maximum of pressure at 180 days. Regarding nitrogen compounds release, FI strain was characterized by the highest amount of AAN and HMWN released, followed by F6789. Strains showed a considerable diversification in terms of number and amount of aroma molecules produced and sparkling wines obtained with autochthonous flocculent strains presented a higher amount of alcohols and esters already after 3 months. Further studies are necessary to select starter strains to improve traditional sparkling wines production. Copyright © 2018 Elsevier Ltd. All rights reserved.
González-Quijano, Génesis Karendash; Dorantes-Alvarez, Lidia; Hernández-Sánchez, Humberto; Jaramillo-Flores, María Eugenia; de Jesús Perea-Flores, María; Vera-Ponce de León, Arturo; Hernández-Rodríguez, César
2014-08-01
The microbiota associated with spontaneous fermentation of vegetables in a saline substrate may represent an important group of bacteria in the food industry. In this work, the lactic acid bacteria (LAB) Weissella cibaria, Lactobacillus plantarum, Lactobacillus paraplantarum, and Leuconostoc citreum were identified by partial 16S rRNA gene sequence analysis. In addition, entophytic bacteria such as Pantoea eucalypti, Pantoea anthophila, Enterobacter cowanii, and Enterobacter asburiae were detected, but they were irrelevant for the fermentation process and were inhibited after 12 h of fermentation when the pH decreased from 6.5 to 4.9. Moreover, 2 species of yeast were isolated and identified as Hanseniaspora pseudoguilliermondii and Kodamaea ohmeri by their partial 26S rRNA gene sequence. The growth of LAB was evaluated at different sodium chloride contents. L. citreum was the most halotolerant species followed by L. plantarum and W. cibaria with a concentration index to obtain a 50% population reduction (IC(50)) of 7.2%, 6.6%, and 5.2%, respectively. Furthermore, the growth of LAB and Escherichia coli O157:H7 was evaluated in the presence of the main phenylpropanoids from chilli peppers such as p-coumaric and ferulic acid. It was determined that LAB can grow in both acids at 4 mM, unlike E. coli O157:H7, whose growth is inhibited in the presence of these acids. © 2014 Institute of Food Technologists®
Pontonio, Erica; Nionelli, Luana; Curiel, José Antonio; Sadeghi, Alireza; Di Cagno, Raffaella; Gobbetti, Marco; Rizzello, Carlo Giuseppe
2015-05-01
This study aimed at describing the main chemical and technology features of eight Iranian wheat flours collected from industrial and artisanal mills. Their suitability for bread making was investigated using autochthonous sourdough starters. Chemical analyses showed high concentration of fibers and ash, and technology aptitude for making breads. As shown through 2-DE analyses, gliadin and glutenin subunits were abundant and varied among the flours. According to the back slopping procedure, type I sourdoughs were prepared from Iranian flours, and lactic acid bacteria were typed and identified. Strains of Pediococcus pentosaceus, Weissella cibaria, Weissella confusa, and Leuconostoc citreum were the most abundant. Based on the kinetics of growth and acidification, quotient of fermentation and concentration of total free amino acids, lactic acid bacteria were selected and used as sourdough mixed starters for bread making. Compared to spontaneous fermentation, sourdoughs fermented with selected and mixed starters favored the increase of the concentrations of organic acids and total free amino acids, the most suitable quotient of fermentation, and the most intense phytase and antioxidant activities. Although the high concentration of fibers, selected and mixed starters improved the textural features of the breads. This study might had contribute to the exploitation of the potential of Iranian wheat flours and to extend the use of sourdough, showing positive technology, nutritional and, probably, economic repercussions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Restiawaty, E.; Grinanda, D.
2017-07-01
Clostridium acetobutylicum B530 has ability to convert sugar into biobutanol through two phases, i.e. acidogenic and solventogenic. This fermentation process is often hampered by high raw material cost and low product yield. In order to suppress the production cost, the molasses, a byproduct of sugar cane process production, was used as carbon source in this research. Molasses has nitrogen content in a small amount, thus could be negating the beef extract component, which is expected not to affect the growth of C. acetobutylicum B530 and also can reduce the production cost. In addition, a certain amount of Fe2+ (ferrous ion), a precursor in the formation of the enzyme ferredoxin, was added to the fermentation medium to contribute in the synthesis of acetyl-CoA, so that the formation of acidogenic products such as butyric acid and acetic acid is affected. This study aimed to investigate the effect of ferrous ion and the medium composition in acidogenic phase. The addition of 20 ppm FeSO4.7H2O in the fermentation medium without beef extract can increase the concentration of butyric acid by 20% at a temperature of 35°C, while acetic acid concentration decreased by 6%. According to those results, it is expected that the product selectivity of butanol will increase in solventogenic phase. In addition, the removal of beef extract in the fermentation medium does not affect the kinetics of growth of C. acetobutylicum B530.
Hendriks, A T W M; van Lier, J B; de Kreuk, M K
Fermentation and anaerobic digestion of organic waste and wastewater is broadly studied and applied. Despite widely available results and data for these processes, comparison of the generated results in literature is difficult. Not only due to the used variety of process conditions, but also because of the many different growth media that are used. Composition of growth media can influence biogas production (rates) and lead to process instability during anaerobic digestion. To be able to compare results of the different studies reported, and to ensure nutrient limitation is not influencing observations ascribed to process dynamics and/or reaction kinetics, a standard protocol for creating a defined growth medium for anaerobic digestion and mixed culture fermentation is proposed. This paper explains the role(s) of the different macro- and micronutrients, as well as the choices for a growth medium formulation strategy. In addition, the differences in nutrient requirements between mesophilic and thermophilic systems are discussed as well as the importance of specific trace metals regarding specific conversion routes and the possible supplementary requirement of vitamins. The paper will also give some insight into the bio-availability and toxicity of trace metals. A remarkable finding is that mesophilic and thermophilic enzymes are quite comparable at their optimum temperatures. This has consequences for the trace metal requirements of thermophiles under certain conditions. Under non-limiting conditions, the trace metal requirement of thermophilic systems is about 3 times higher than for mesophilic systems. Copyright © 2017 Elsevier Inc. All rights reserved.
Hunaefi, Dase; Akumo, Divine N.; Riedel, Heidi; Smetanska, Iryna
2012-01-01
High rosmarinic acid (RA) productivity has been achieved by applying jasmonic acid and yeast extract elicitors to the in vitro sprout culture of Orthosiphon aritatus (IOSC). The highest RA accumulation from three solvents was detected in IOSC after treatment with yeast extract (5 g/L). HPLC analysis clearly confirmed a drastic increase in RA subjected to yeast extract elicitation. Therefore, this yeast extract elicited IOSC was chosen for a lactic acid bacteria (LAB) fermentation study as a model system. This selected IOSC was subjected to different types of LAB fermentations (Lactobacillus plantarum ATCC 8014 and Lactobacillus acidophilus NCFM) for different periods of time 24, 48 and 72 h. The LAB fermentations consisted of solid state fermentations (SSF) and liquid state fermentations (LSF) in a Digital Control Unit (DCU) fermenter system. The aim was to determine the effect of fermentation on the antioxidant properties of the plant extract. Results indicated that all types of LAB fermentation decreased the level of RA and total phenolics, however, a slight increase in total flavonoids and flavonols was observed in SSF samples. HPLC results confirmed that the longer the fermentation, the greater the reduction in RA content. The highest reduction was obtained in the sample of LSF inoculated with L. plantarum for a period of 72 h. The temperature of fermentation (37 °C) was predicted as contributing to the declining level in RA content. The loss in RA was concomitant with a loss of total antioxidant activity (1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, Trolox Equivalent Antioxidant Capacity (TEAC), and Superoxide Dismutase (SOD)-like activity). These results indicate that RA is the major contributor to the antioxidant activity of this plant. PMID:26787613
Changes in Bacterial Composition of Zucchini Flowers Exposed to Refrigeration Temperatures
Baruzzi, F.; Cefola, M.; Carito, A.; Vanadia, S.; Calabrese, N.
2012-01-01
Microbial spoilage is one of the main factors affecting the quality of fresh fruits and vegetables, leading to off-flavor, fermented aroma, and tissue decay. The knowledge of microbial growth kinetics is essential for estimating a correct risk assessment associated with consuming raw vegetables and better managing the development of spoilage microorganisms. This study shows, for the first time, that only a part of total microbial community, originally present on fresh harvested female zucchini flowers, was able to adapt itself to refrigerated conditions. Through the study of microbial growth kinetics it was possible to isolate forty-four strains belonging to twenty-two species of the genera Acinetobacter, Arthrobacter, Bacillus, Enterobacter, Erwinia, Klebsiella, Pantoea, Pseudoclavibacter, Pseudomonas, Serratia, Staphylococcus, and Weissella, suggesting Enterobacteriaceae as potentially responsible for pistil spoilage. PMID:22566759
Sorption Isotherm Modelling Of Fermented Cassava Flour by Red Yeast Rice
NASA Astrophysics Data System (ADS)
Cahyanti, M. N.; Alfiah, M. N.; Hartini, S.
2018-04-01
The objective of the study is to determine the characteristic of moisture sorption isotherm from fermented cassava flour by red yeast rice using various modeling. This research used seven salt solutions and storage temperature of 298K, 303K, and 308K. The models used were Brunauer-Emmet-Teller (BET), Guggenheim-Anderson-de Boer (GAB) and Caurie model. The monolayer moisture content was around 4.51 – 5.99% db. Constant related to absorption heat in the multilayer area of [GAB model was around 0.86-0,91. Constant related to absorption heat in the monolayer area of GAB model was around 4.67-5.97. Constant related to absorption heat in the monolayer area of BET model was around 4.83-7.04. Caurie constant was around 1.25-1.59. The equilibrium and monolayer moisture content on fermented cassava flour by red yeast rice was decreasing as increasing temperature. GAB constant value indicated that the process of moisture absorption on the fermented cassava flour by red yeast rice categorized in type II.
Kim, Minji; Kim, Won-Baek; Koo, Kyoung Yoon; Kim, Bo Ram; Kim, Doohyun; Lee, Seoyoun; Son, Hong Joo; Hwang, Dae Youn; Kim, Dong Seob; Lee, Chung Yeoul; Lee, Heeseob
2017-04-28
This study was conducted to evaluate the hyaluronidase (HAase) inhibition activity of Asparagus cochinchinesis (AC) extracts following fermentation by Weissella cibaria through response surface methodology. To optimize the HAase inhibition activity, a central composite design was introduced based on four variables: the concentration of AC extract ( X 1 : 1-5%), amount of starter culture ( X 2 : 1-5%), pH ( X 3 : 4-8), and fermentation time ( X 4 : 0-10 days). The experimental data were fitted to quadratic regression equations, the accuracy of the equations was analyzed by ANOVA, and the regression coefficients for the surface quadratic model of HAase inhibition activity in the fermented AC extract were estimated by the F test and the corresponding p values. The HAase inhibition activity indicated that fermentation time was most significant among the parameters within the conditions tested. To validate the model, two different conditions among those generated by the Design Expert program were selected. Under both conditions, predicted and experimental data agreed well. Moreover, the content of protodioscin (a well-known compound related to anti-inflammation activity) was elevated after fermentation of the AC extract at the optimized fermentation condition.
Pandey, Kavita R; Joshi, Chetan; Vakil, Babu V
2016-01-01
Probiotics are microorganisms which when administered in adequate amounts confer health benefits to the host. A leading pharmaceutical company producing Bacillus coagulans as a probiotic was facing the problem of recurring phage attacks. Two mutants viz. B. co PIII and B. co MIII that were isolated as phage resistant mutants after UV irradiation and MMS treatment of phage sensitive B. coagulans parental culture were characterized at functional and molecular level and were noted to have undergone interesting genetic changes. The non-specific genetic alterations induced by mutagenesis can also lead to alterations in cell performance. Hence, in the current study the parental strain and the two mutants were selected for shake flask optimization. Plackett-Burman design was used to select the significant culture variables affecting biomass production. Evolutionary operation method was applied for further optimization. The study showed wide variations in the nutritional requirements of phage resistant mutants, post exposure to mutagens. An increment of 150, 134 and 152 % was observed in the biomass productions of B. coagulans (parental type) and mutants B.co PIII and B.co MIII respectively, compared to the yield from one-factor-at-a-time technique. Using Logistic and modified Leudeking-Piret equations, biomass accumulation and substrate utilization efficiency of the bioprocess were determined. The experimental data was in agreement with the results predicted by statistical analysis and modelling. The developed model may be useful for controlling the growth and substrate consumption kinetics in large scale fermentation using B. coagulans .
Khanal, Som N; Lucey, John A
2017-09-01
The yield and chemical structures of exopolysaccharides (EPS) produced by many strains of Streptococcus thermophilus have been characterized. However, the kinetics (or production profile) for EPS during milk fermentation is not clear. In this study, we investigated whether any differences existed in the yield and molar mass of EPS when milk was fermented at the same acidification rate by 2 strains of S. thermophilus (St-143 and ST-10255y). The type of EPS produced by these 2 strains is different. Milk samples were analyzed for EPS concentration every 30 min during a fermentation period of 270 min (final pH 4.5) by using a modified quantification method, which was faster and validated for its recovery of added EPS. Rheological properties of milks during fermentation were also analyzed using small-strain dynamic oscillatory rheology. For the determination of molar mass, EPS extracts were isolated by ultrafiltration of whey obtained during fermentation of milk to pH values 5.2, 4.9, 4.7, and 4.5, and molar mass was analyzed using size-exclusion chromatography-multi-angle laser light scattering. During fermentation, both strains appeared to start producing significant amounts of EPS after about ∼150 min, which corresponded to pH ∼5.3, which was close to the point of gelation. During the remainder of the fermentation process (150-270 min), the EPS concentration from strains St-143 and ST-10255y significantly increased from 30 to 72 mg/L and from 26 to 56 mg/L, respectively. The quantity of EPS recovered by our modified method was estimated to represent ∼60% of the total EPS added to milk. The molar mass of EPS produced by both strains appeared to slightly decrease during fermentation. At pH 5.2, EPS from St-143 and ST-10255y had molar masses of 2.9 × 10 6 and 1.4 × 10 6 g/mol, respectively, which decreased to 1.6 × 10 6 and 0.8 × 10 6 g/mol, respectively, when the pH of milk was 4.5. Distinct differences were apparent in the rheological properties of gels fermented by the 2 strains. At the end of fermentation, St-143 fermented milk had weaker gels with storage modulus (G') value at pH 4.6 of 26 Pa, whereas gels made with ST-10255y were stiffer with a G' value at pH 4.6 of 82 Pa. For St-143 gels, maximum loss tangent (LT max ) values were higher (0.50) and occurred earlier (at a higher pH value) than the LT max values (0.46) for gels from ST-10255y strain. Because the fermentation conditions were identical for both strains, the observed changes in rheological properties could be due to the differences in chemical structures and molar mass of the EPS produced by these 2 S. thermophilus strains. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Process simulation of ethanol production from biomass gasification and syngas fermentation.
Pardo-Planas, Oscar; Atiyeh, Hasan K; Phillips, John R; Aichele, Clint P; Mohammad, Sayeed
2017-12-01
The hybrid gasification-syngas fermentation platform can produce more bioethanol utilizing all biomass components compared to the biochemical conversion technology. Syngas fermentation operates at mild temperatures and pressures and avoids using expensive pretreatment processes and enzymes. This study presents a new process simulation model developed with Aspen Plus® of a biorefinery based on a hybrid conversion technology for the production of anhydrous ethanol using 1200tons per day (wb) of switchgrass. The simulation model consists of three modules: gasification, fermentation, and product recovery. The results revealed a potential production of about 36.5million gallons of anhydrous ethanol per year. Sensitivity analyses were also performed to investigate the effects of gasification and fermentation parameters that are keys for the development of an efficient process in terms of energy conservation and ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cappannella, Elena; Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Bavaro, Teodora; Esti, Marco
2016-11-01
Lysozyme from hen egg white (HEWL) was covalently immobilized on spherical supports based on microbial chitosan in order to develop a system for the continuous, efficient and food-grade enzymatic lysis of lactic bacteria (Oenococcus oeni) in white and red wine. The objective is to limit the sulfur dioxide dosage required to control malolactic fermentation, via a cell concentration typical during this process. The immobilization procedure was optimized in batch mode, evaluating the enzyme loading, the specific activity, and the kinetic parameters in model wine. Subsequently, a bench-scale fluidized-bed reactor was developed, applying the optimized process conditions. HEWL appeared more effective in the immobilized form than in the free one, when the reactor was applied in real white and red wine. This preliminary study suggests that covalent immobilization renders the enzyme less sensitive to the inhibitory effect of wine flavans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Keim, Juan P; Alvarado-Gilis, Christian; Arias, Rodrigo A; Gandarillas, Mónica; Cabanilla, Jaime
2017-10-01
The aim of this study was to evaluate the effect of different sources of variation in gas production technique on the in vitro gas production kinetics of feedstuffs. Triplicates of commercial concentrate, grass silage, grass hay and grass pasture were incubated in three experiments: experiment 1 assessed two agitation methods; experiment 2 evaluated different rumen inocula (pooled or different donor cows for each incubation run); and experiment 3 used Goering-Van Soest or Mould buffers for media preparation. Gas production data were fitted into the Michaelis-Menten model and then subjected to analysis of variance. Gas production (GP) at 48 h and asymptote gas production (A) were lower when bottles were continuously under horizontal movement. Time to produce half and 75% of A, and A were affected by rumen inocula, while buffer type affected time to produce half and 25% of A and GP. No interactions between substrates and sources of variation were observed, suggesting that the effects of substrates on GP parameters were not modified. It is concluded that comparison of numerical data from in vitro experiments that follow different protocols must be done carefully. However, the ranking of different substrates is more robust and less affected by the sources of variation. © 2017 Japanese Society of Animal Science.
Hwang, Cheng-An; Porto-Fett, Anna C S; Juneja, Vijay K; Ingham, Steven C; Ingham, Barbara H; Luchansky, John B
2009-02-28
This study quantified and modeled the survival of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Typhimurium in soudjouk-style fermented sausage during fermentation, drying, and storage. Batter prepared from ground beef (20% fat), seasonings, starter culture, and dextrose was separately inoculated with a multi-strain mixture of each pathogen to an initial inoculum of ca. 6.5 log(10) CFU/g in the batter. The sausages were subsequently fermented at 24 degrees C with a relative humidity (RH) of 90% to 95% for 3 to 5 days to ca. pH 5.2, pH 4.9 or pH 4.6, then dried at 22 degrees C to a(w) 0.92, a(w) 0.89, or a(w) 0.86, respectively, and then stored at 4, 21, or 30 degrees C for up to 60 days. Lethality of the three pathogens was modeled as a function of pH, a(w) and/or storage temperature. During fermentation to pH 5.2 to pH 4.6, cell reductions ranged from 0 to 0.9 log(10) CFU/g for E. coli O157:H7, 0.1 to 0.5 log(10) CFU/g for L. monocytogenes, and 0 to 2.2 log(10) CFU/g for S. Typhimurium. Subsequent drying of sausages of pH 5.2 to pH 4.6 at 22 degrees C with 80% to 85% RH for 3 to 7 days to a(w) of 0.92 to a(w) 0.86 resulted in additional reductions that ranged from 0 to 3.5 log(10) CFU/g for E. coli O157:H7, 0 to 0.4 log(10) CFU/g for L. monocytogenes, and 0.3 to 2.4 log(10) CFU/g for S. Typhimurium. During storage at 4, 21, or 30 degrees C the reduction rates of the three pathogens were generally higher (p<0.05) in sausages with lower pH and lower a(w) that were stored at higher temperatures. Polynomial equations were developed to describe the inactivation of the three pathogens during fermentation, drying, and storage. The applicability of the resulting models for fermented sausage was evaluated by comparing model predictions with published data. Pathogen reductions estimated by the models for E. coli O157:H7 and S. Typhimurium were comparable to 67% and 73% of published data, respectively. Due to limited published data for L. monocytogenes, the models for L. monocytogenes would need additional validations. Results of pathogen reductions from this study may be used as a reference to assist manufacturers of soudjouk-style sausages to adopt manufacturing processes that meet the regulatory requirements. The resulting models may also be used for estimating the survival of E. coli O157:H7 and S. Typhimurium in other similar fermented sausage during fermentation and storage.
Tanino, Takanori; Nara, Youhei; Tsujiguchi, Takuya; Ohshima, Takayuki
2013-08-01
The coproduction of a useful material and electricity via a novel application of microbial fuel cell (MFC) technology to oxidative fermentation was investigated. We focused on vinegar production, i.e., acetic acid fermentation, as an initial and model useful material that can be produced by oxidative fermentation in combination with MFC technology. The coproduction of acetic acid and electricity by applying MFC technology was successfully demonstrated by the simultaneous progress of acetic acid fermentation and electricity generation through a series of repeated batch fermentations. Although the production rate of acetic acid was very small, it increased with the number of repeated batch fermentations that were conducted. We obtained nearly identical (73.1%) or larger (89.9%) acetic acid yields than that typically achieved by aerated fermentation (75.8%). The open-cycle voltages measured before and after fermentation increased with the total fermentation time and reached a maximum value of 0.521 V prior to the third batch fermentation. The maximum current and power densities measured in this study (19.1 μA/cm² and 2.47 μW/cm², respectively) were obtained after the second batch fermentation. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.
Gonçalves, B J; Pereira, C G; Lago, A M T; Gonçalves, C S; Giarola, T M O; Abreu, L R; Resende, J V
2017-05-01
This study aimed to evaluate the rheological behavior and thermal conductivity of dairy products, composed of the same chemical components but with different formulations, as a function of temperature. Subsequently, thermal conductivity was related to the apparent viscosity of yogurt, fermented dairy beverage, and fermented milk. Thermal conductivity measures and rheological tests were performed at 5, 10, 15, 20, and 25°C using linear probe heating and an oscillatory rheometer with concentric cylinder geometry, respectively. The results were compared with those calculated using the parallel, series, and Maxwell-Eucken models as a function of temperature, and the discrepancies in the results are discussed. Linear equations were fitted to evaluate the influence of temperature on the thermal conductivity of the dairy products. The rheological behavior, specifically apparent viscosity versus shear rate, was influenced by temperature. Herschel-Bulkley, power law, and Newton's law models were used to fit the experimental data. The Herschel-Bulkley model best described the adjustments for yogurt, the power law model did so for fermented dairy beverages, and Newton's law model did so for fermented milk and was then used to determine the rheological parameters. Fermented milk showed a Newtonian trend, whereas yogurt and fermented dairy beverage were shear thinning. Apparent viscosity was correlated with temperature by the Arrhenius equation. The formulation influenced the effective thermal conductivity. The relationship between the 2 properties was established by fixing the temperature and expressing conductivity as a function of apparent viscosity. Thermal conductivity increased with viscosity and decreased with increasing temperature. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Linear programming model can explain respiration of fermentation products.
Möller, Philip; Liu, Xiaochen; Schuster, Stefan; Boley, Daniel
2018-01-01
Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the "Warburg effect". The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited.
Linear programming model can explain respiration of fermentation products
Möller, Philip; Liu, Xiaochen; Schuster, Stefan
2018-01-01
Many differentiated cells rely primarily on mitochondrial oxidative phosphorylation for generating energy in the form of ATP needed for cellular metabolism. In contrast most tumor cells instead rely on aerobic glycolysis leading to lactate to about the same extent as on respiration. Warburg found that cancer cells to support oxidative phosphorylation, tend to ferment glucose or other energy source into lactate even in the presence of sufficient oxygen, which is an inefficient way to generate ATP. This effect also occurs in striated muscle cells, activated lymphocytes and microglia, endothelial cells and several mammalian cell types, a phenomenon termed the “Warburg effect”. The effect is paradoxical at first glance because the ATP production rate of aerobic glycolysis is much slower than that of respiration and the energy demands are better to be met by pure oxidative phosphorylation. We tackle this question by building a minimal model including three combined reactions. The new aspect in extension to earlier models is that we take into account the possible uptake and oxidation of the fermentation products. We examine the case where the cell can allocate protein on several enzymes in a varying distribution and model this by a linear programming problem in which the objective is to maximize the ATP production rate under different combinations of constraints on enzymes. Depending on the cost of reactions and limitation of the substrates, this leads to pure respiration, pure fermentation, and a mixture of respiration and fermentation. The model predicts that fermentation products are only oxidized when glucose is scarce or its uptake is severely limited. PMID:29415045
NASA Astrophysics Data System (ADS)
Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning
2009-11-01
The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.
Khuat, Hoang Bao Truc; Kaboré, Abdoul Karim; Olmos, Eric; Fick, Michel; Boudrant, Joseph; Goergen, Jean-Louis; Delaunay, Stéphane; Guedon, Emmanuel
2014-01-01
The fermentative properties of thermo-sensitive strain Corynebacterium glutamicum 2262 were investigated in processes coupling aerobic cell growth and the anaerobic fermentation phase. In particular, the influence of two modes of fermentation on the production of lactate, the fermentation product model, was studied. In both processes, lactate was produced in significant amount, 27 g/L in batch culture, and up to 55.8 g/L in fed-batch culture, but the specific production rate in the fed-batch culture was four times lower than that in the batch culture. Compared to other investigated fermentation processes, our strategy resulted in the highest yield of lactic acid from biomass. Lactate production by C. glutamicum 2262 thus revealed the capability of the strain to produce various fermentation products from pyruvate.
Extent and Persistence of Secondary Water Quality Impacts after Enhanced Reductive Bioremediation
2015-09-01
7 2.3.5 Substrate Fermentation ...Conceptual Model of SWQI Production and Attenuation During ERB, large amounts of easily fermented organic substrates are added to the target treatment...area to degrade or immobilize the contaminants of concern (CoC). These substrates are fermented to hydrogen (H2), acetate, and other volatile
Regulation mechanisms in mixed and pure culture microbial fermentation.
Hoelzle, Robert D; Virdis, Bernardino; Batstone, Damien J
2014-11-01
Mixed-culture fermentation is a key central process to enable next generation biofuels and biocommodity production due to economic and process advantages over application of pure cultures. However, a key limitation to the application of mixed-culture fermentation is predicting culture product response, related to metabolic regulation mechanisms. This is also a limitation in pure culture bacterial fermentation. This review evaluates recent literature in both pure and mixed culture studies with a focus on understanding how regulation and signaling mechanisms interact with metabolic routes and activity. In particular, we focus on how microorganisms balance electron sinking while maximizing catabolic energy generation. Analysis of these mechanisms and their effect on metabolism dynamics is absent in current models of mixed-culture fermentation. This limits process prediction and control, which in turn limits industrial application of mixed-culture fermentation. A key mechanism appears to be the role of internal electron mediating cofactors, and related regulatory signaling. This may determine direction of electrons towards either hydrogen or reduced organics as end-products and may form the basis for future mechanistic models. © 2014 Wiley Periodicals, Inc.
Metabolic pathway analysis and kinetic studies for production of nattokinase in Bacillus subtilis.
Unrean, Pornkamol; Nguyen, Nhung H A
2013-01-01
We have constructed a reaction network model of Bacillus subtilis. The model was analyzed using a pathway analysis tool called elementary mode analysis (EMA). The analysis tool was used to study the network capabilities and the possible effects of altered culturing conditions on the production of a fibrinolytic enzyme, nattokinase (NK) by B. subtilis. Based on all existing metabolic pathways, the maximum theoretical yield for NK synthesis in B. subtilis under different substrates and oxygen availability was predicted and the optimal culturing condition for NK production was identified. To confirm model predictions, experiments were conducted by testing these culture conditions for their influence on NK activity. The optimal culturing conditions were then applied to batch fermentation, resulting in high NK activity. The EMA approach was also applied for engineering B. subtilis metabolism towards the most efficient pathway for NK synthesis by identifying target genes for deletion and overexpression that enable the cell to produce NK at the maximum theoretical yield. The consistency between experiments and model predictions proves the feasibility of EMA being used to rationally design culture conditions and genetic manipulations for the efficient production of desired products.
Echevarria, R; Bautista-Gallego, J; Arroyo-López, F N; Garrido-Fernández, A
2010-04-15
The goal of this work was to apply the Quasi-chemical primary model (a system of four ordinary differential equations that derives from a hypothetical four-step chemical mechanism involving an antagonistic metabolite) in the study of the evolution of yeast and lactic acid bacteria populations during the storage of Manzanilla-Aloreña table olives subjected to different mixtures of ascorbic acid, sodium metabisulphite and NaCl. Firstly, the Quasi-chemical model was applied to microbial count data to estimate the growth-decay biological parameters. The model accurately described the evolution of both populations during storage, providing detailed information on the microbial behaviour. Secondly, these parameters were used as responses and analysed according to a mixture design experiment (secondary model). The contour lines of the corresponding response surfaces clearly disclosed the relationships between growth and environmental conditions, showing the stimulating and inhibitory effect of ascorbic acid and sodium metabisulphite, respectively, on both populations of microorganisms. This work opens new possibilities for the potential use of the Quasi-chemical primary model in the study of table olive fermentations. (c) 2010 Elsevier B.V. All rights reserved.
Tanner, Sabine A.; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe
2014-01-01
In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation. PMID:24709947
Tanner, Sabine A; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe
2014-01-01
In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation.
Kamminga, Tjerko; Slagman, Simen-Jan; Bijlsma, Jetta J E; Martins Dos Santos, Vitor A P; Suarez-Diez, Maria; Schaap, Peter J
2017-10-01
Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
González-Sáiz, José-María; Esteban-Díez, Isabel; Rodríguez-Tecedor, Sofía; Pizarro, Consuelo
2008-11-01
The overall purpose of the project, of which this study is a part, was to examine the feasibility of onion waste as a support-substrate for the profitable production of food-grade products. This study focused on the efficient production of ethanol from worthless onions by transforming the onion juice into onion liquor via alcoholic fermentation with the yeast Saccharomyces cerevisiae. The onion bioethanol produced could be later used as a favorable substrate for acetic fermentation to finally obtain onion vinegar. Near-infrared spectroscopy (NIRS), coupled with the multivariate curve resolution-alternating least squares (MCR-ALS) method, has been used to reveal the compositional and spectral profiles for both substrates and products of alcoholic fermentation runs, that is, total sugars, ethanol, and biomass concentration. The ambiguity associated with the ALS calculation was resolved by applying suitable inequality and equality constraints. The quality of the results provided by the NIR-based MCR-ALS methodology adopted was evaluated by several performance indicators, including the variance explained by the model, the lack of fit and the agreement between the MCR-ALS achieved solution and the results computed by applying previously validated PLS reference models. An additional fermentation run was employed to test the actual predictive ability of the ALS model developed. For all the components resolved in the fermentation system studied (i.e., total sugars, ethanol, and biomass), the final model obtained showed a high predictive ability and suitable accuracy and precision, both in calibration and external validation, confirmed by the very good agreement between the ALS responses and the reference values (the coefficient of determination was, in all cases, very close to 1, and the statistics confirmed that no significant difference was found between PLS reference models and the MCR-ALS methodology applied). Thus, the proven reliability of the MCR-ALS model presented in this study, based only on NIR measurements, makes it suitable for monitoring of the key species involved in the alcoholic fermentation of onion juice, allowing the process to be modeled and controlled in real time.
Varrone, C; Heggeset, T M B; Le, S B; Haugen, T; Markussen, S; Skiadas, I V; Gavala, H N
2015-01-01
Objective of this study was the selection and adaptation of mixed microbial cultures (MMCs), able to ferment crude glycerol generated from animal fat-based biodiesel and produce building-blocks and green chemicals. Various adaptation strategies have been investigated for the enrichment of suitable and stable MMC, trying to overcome inhibition problems and enhance substrate degradation efficiency, as well as generation of soluble fermentation products. Repeated transfers in small batches and fed-batch conditions have been applied, comparing the use of different inoculum, growth media, and Kinetic Control. The adaptation of activated sludge inoculum was performed successfully and continued unhindered for several months. The best results showed a substrate degradation efficiency of almost 100% (about 10 g/L glycerol in 21 h) and different dominant metabolic products were obtained, depending on the selection strategy (mainly 1,3-propanediol, ethanol, or butyrate). On the other hand, anaerobic sludge exhibited inactivation after a few transfers. To circumvent this problem, fed-batch mode was used as an alternative adaptation strategy, which led to effective substrate degradation and high 1,3-propanediol and butyrate production. Changes in microbial composition were monitored by means of Next Generation Sequencing, revealing a dominance of glycerol consuming species, such as Clostridium, Klebsiella, and Escherichia.
Miller, Laurence G; Baesman, Shaun M; Oremland, Ronald S
2015-11-01
We report the first study of stable carbon isotope fractionation during microbial fermentation of acetylene (C2H2) in sediments, sediment enrichments, and bacterial cultures. Kinetic isotope effects (KIEs) averaged 3.7 ± 0.5‰ for slurries prepared with sediment collected at an intertidal mudflat in San Francisco Bay and 2.7 ± 0.2‰ for a pure culture of Pelobacter sp. isolated from these sediments. A similar KIE of 1.8 ± 0.7‰ was obtained for methanogenic enrichments derived from sediment collected at freshwater Searsville Lake, California. However, C2H2 uptake by a highly enriched mixed culture (strain SV7) obtained from Searsville Lake sediments resulted in a larger KIE of 9.0 ± 0.7‰. These are modest KIEs when compared with fractionation observed during oxidation of C1 compounds such as methane and methyl halides but are comparable to results obtained with other C2 compounds. These observations may be useful in distinguishing biologically active processes operating at distant locales in the Solar System where C2H2 is present. These locales include the surface of Saturn's largest moon Titan and the vaporous water- and hydrocarbon-rich jets emanating from Enceladus. Acetylene-Fermentation-Isotope fractionation-Enceladus-Life detection.
Inoculation of Torulaspora delbrueckii as a bio-protection agent in winemaking.
Simonin, Scott; Alexandre, Hervé; Nikolantonaki, Maria; Coelho, Christian; Tourdot-Maréchal, Raphaëlle
2018-05-01
In oenology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites. More particularly, non-Saccharomyces yeasts are used as a total or partial alternative to sulphites. However, scientific data capable of proving the effectiveness of adding these yeasts on grape must is lacking. This study reports the analysis of antimicrobial and antioxidant effects of one non-Saccharomyces yeast, Torulaspora delbrueckii, inoculated at the beginning of the white winemaking process in two Burgundian wineries as an alternative to sulphiting. The implantation of the T. delbrueckii strain was successful in both wineries and had no impact on fermentation kinetics. Adding T. delbrueckii reduced biodiversity during the pre-fermentation stages compared to sulphited controls and it also effectively limited the development of spoilage microorganisms in the same way as the addition of sulphites. T. delbrueckii could protect must and wine from oxidation as demonstrated by the analysis of colour and phenolic compounds. This is the first evidence that early addition of T. delbrueckii during winemaking can be a microbiogical and chemical alternative to sulphites. However, its contribution seems to be matrix dependent. Copyright © 2018 Elsevier Ltd. All rights reserved.
Vukić, Dajana V; Vukić, Vladimir R; Milanović, Spasenija D; Ilicić, Mirela D; Kanurić, Katarina G
2018-06-01
Tree different fermented dairy products obtained by conventional and non-conventional starter cultures were investigated in this paper. Textural and rheological characteristics as well as chemical composition during 21 days of storage were analysed and subsequent data processing was performed by principal component analysis. The analysis of samples` flow behaviour was focused on their time dependent properties. Parameters of Power law model described flow behaviour of samples depended on used starter culture and days of storage. The Power law model was applied successfully to describe the flow of the fermented milk, which had characteristics of shear thinning and non-Newtonian fluid behaviour.
Research on On-Line Modeling of Fed-Batch Fermentation Process Based on v-SVR
NASA Astrophysics Data System (ADS)
Ma, Yongjun
The fermentation process is very complex and non-linear, many parameters are not easy to measure directly on line, soft sensor modeling is a good solution. This paper introduces v-support vector regression (v-SVR) for soft sensor modeling of fed-batch fermentation process. v-SVR is a novel type of learning machine. It can control the accuracy of fitness and prediction error by adjusting the parameter v. An on-line training algorithm is discussed in detail to reduce the training complexity of v-SVR. The experimental results show that v-SVR has low error rate and better generalization with appropriate v.
Prediction of problematic wine fermentations using artificial neural networks.
Román, R César; Hernández, O Gonzalo; Urtubia, U Alejandra
2011-11-01
Artificial neural networks (ANNs) have been used for the recognition of non-linear patterns, a characteristic of bioprocesses like wine production. In this work, ANNs were tested to predict problems of wine fermentation. A database of about 20,000 data from industrial fermentations of Cabernet Sauvignon and 33 variables was used. Two different ways of inputting data into the model were studied, by points and by fermentation. Additionally, different sub-cases were studied by varying the predictor variables (total sugar, alcohol, glycerol, density, organic acids and nitrogen compounds) and the time of fermentation (72, 96 and 256 h). The input of data by fermentations gave better results than the input of data by points. In fact, it was possible to predict 100% of normal and problematic fermentations using three predictor variables: sugars, density and alcohol at 72 h (3 days). Overall, ANNs were capable of obtaining 80% of prediction using only one predictor variable at 72 h; however, it is recommended to add more fermentations to confirm this promising result.
Peng, Jiansheng; Meng, Fanmei; Ai, Yuncan
2013-06-01
The artificial neural network (ANN) and genetic algorithm (GA) were combined to optimize the fermentation process for enhancing production of marine bacteriocin 1701 in a 5-L-stirred-tank. Fermentation time, pH value, dissolved oxygen level, temperature and turbidity were used to construct a "5-10-1" ANN topology to identify the nonlinear relationship between fermentation parameters and the antibiotic effects (shown as in inhibition diameters) of bacteriocin 1701. The predicted values by the trained ANN model were coincided with the observed ones (the coefficient of R(2) was greater than 0.95). As the fermentation time was brought in as one of the ANN input nodes, fermentation parameters could be optimized by stages through GA, and an optimal fermentation process control trajectory was created. The production of marine bacteriocin 1701 was significantly improved by 26% under the guidance of fermentation control trajectory that was optimized by using of combined ANN-GA method. Copyright © 2013 Elsevier Ltd. All rights reserved.
Guo, Wei-Liang; Du, Yi-Ping; Zhou, Yong-Can; Yang, Shuang; Lu, Jia-Hui; Zhao, Hong-Yu; Wang, Yao; Teng, Li-Rong
2012-03-01
An analytical procedure has been developed for at-line (fast off-line) monitoring of 4 key parameters including nisin titer (NT), the concentration of reducing sugars, cell concentration and pH during a nisin fermentation process. This procedure is based on near infrared (NIR) spectroscopy and Partial Least Squares (PLS). Samples without any preprocessing were collected at intervals of 1 h during fifteen batch of fermentations. These fermentation processes were implemented in 3 different 5 l fermentors at various conditions. NIR spectra of the samples were collected in 10 min. And then, PLS was used for modeling the relationship between NIR spectra and the key parameters which were determined by reference methods. Monte Carlo Partial Least Squares (MCPLS) was applied to identify the outliers and select the most efficacious methods for preprocessing spectra, wavelengths and the suitable number of latent variables (n (LV)). Then, the optimum models for determining NT, concentration of reducing sugars, cell concentration and pH were established. The correlation coefficients of calibration set (R (c)) were 0.8255, 0.9000, 0.9883 and 0.9581, respectively. These results demonstrated that this method can be successfully applied to at-line monitor of NT, concentration of reducing sugars, cell concentration and pH during nisin fermentation processes.
Calderon Santoyo, M; Loiseau, G; Rodriguez Sanoja, R; Guyot, J P
2003-01-15
Lactobacillus fermentum Ogi E1 is an amylolytic heterofermentative lactic acid bacterium previously isolated from ogi, a Benin maize sourdough. In the present study, the effect of different pH between 3.5 and 6.0 on starch fermentation products and alpha-amylase production was investigated. Whereas a pH of 5.0 was optimum for specific growth rate and lactic acid production, growth was only slightly affected at suboptimal pH of 4.0 and 6.0. Over a pH range of 6.0 to 3.5, yields of product formation from substrate and of biomass relative to ATP were constant. These results showed that L. fermentum Ogi E1 was particularly acid tolerant, and well adapted to the acid conditions that develop during natural fermentation of cereal doughs. This acid tolerance may partly explain the dominance of L. fermentum in various traditional African sourdoughs. Surprisingly, alpha-amylase production, unlike growth, dropped dramatically when the strain was cultivated at pH 4.0 with starch. With maltose as substrate, the yield of alpha-amylase relative to biomass remained unchanged at pH 4.0 and 5.0, unlike that observed with starch. Based on the distribution of enzyme activity between extra- and intracellular fractions and fermentation kinetics, it appears that starch was first hydrolyzed into dextrins by alpha-amylase activity, and maltose was produced from dextrins by extracellular enzyme activity, transferred into the cell and then hydrolyzed into glucose by intracellular alpha-glucosidase.
NASA Astrophysics Data System (ADS)
Miller, L. G.; Baesman, S. M.; Oremland, R. S.
2014-12-01
The search for biosignatures of life on Earth includes measurement of the stable isotope fractionation of reactants and products attributed to enzymatic processes and comparison with the often smaller chemical (abiotic) fractionation. We propose that this approach might be applied to study the origin and fate of organic compounds contained in water vapor plumes emanating from Enceladus or other icy bodies, perhaps revealing information about the potential for biology occurring within a sub-surface "habitable" zone. Methanol and C2-hydrocarbons including ethylene, ethane and acetylene (C2H2) have been identified in the plumes of Enceladus. Biological degradation of acetylene proceeds by anaerobic fermentation via acetylene hydratase through acetaldehyde, with a second enzyme (acetaldehyde dismutase) forming acetate and ethanol. We found that incubation of cultures of acetylene-fermenting bacteria exhibit a kinetic isotope effect (KIE) associated with the net removal of C2H2. Consumption of acetylene by both growing and washed-cell cultures of bacteria closely related to Pelobacter acetylenicus (e.g, strain SFB93) was accompanied by a carbon isotopic fractionation of about 2 per mil (KIE = 1.8-2.7 ‰), a result we are examining with other cultures of acetylene fermenters. In addition, we are measuring the carbon isotopic composition of acetaldehyde, ethanol and acetate during fermentation to learn whether these products are fractionated sufficiently, relative to their substrate, to warrant measurement of their isotopic composition in Enceladus (or Europa) plumes to indicate enzymatic activity in liquid environments below the crust of these moons.
Prévoteau, Antonin; Geirnaert, Annelies; Arends, Jan B A; Lannebère, Sylvain; Van de Wiele, Tom; Rabaey, Korneel
2015-07-01
Monitoring in vitro the metabolic activity of microorganisms aids bioprocesses and enables better understanding of microbial metabolism. Redox mediators can be used for this purpose via different electrochemical techniques that are either complex or only provide non-continuous data. Hydrodynamic chronoamperometry using a rotating disc electrode (RDE) can alleviate these issues but was seldom used and is poorly characterized. The kinetics of Faecalibacterium prausnitzii A2-165, a beneficial gut microbe, were determined using a RDE with riboflavin as redox probe. This butyrate producer anaerobically ferments glucose and reduces riboflavin whose continuous monitoring on a RDE provided highly accurate kinetic measurements of its metabolism, even at low cell densities. The metabolic reaction rate increased linearly over a broad range of cell concentrations (9 × 10(4) to 5 × 10(7) cells.mL(-1)). Apparent Michaelis-Menten kinetics was observed with respect to riboflavin (KM = 6 μM; kcat = 5.3 × 10(5) s(-1), at 37 °C) and glucose (KM = 6 μM; kcat = 2.4 × 10(5) s(-1)). The short temporal resolution allows continuous monitoring of fast cellular events such as kinetics inhibition with butyrate. Furthermore, we detected for the first time riboflavin reduction by another potential probiotic, Butyricicoccus pullicaecorum. The ability of the RDE for fast, accurate, simple and continuous measurements makes it an ad hoc tool for assessing bioprocesses at high resolution.
Mathematical modelling of clostridial acetone-butanol-ethanol fermentation.
Millat, Thomas; Winzer, Klaus
2017-03-01
Clostridial acetone-butanol-ethanol (ABE) fermentation features a remarkable shift in the cellular metabolic activity from acid formation, acidogenesis, to the production of industrial-relevant solvents, solventogensis. In recent decades, mathematical models have been employed to elucidate the complex interlinked regulation and conditions that determine these two distinct metabolic states and govern the transition between them. In this review, we discuss these models with a focus on the mechanisms controlling intra- and extracellular changes between acidogenesis and solventogenesis. In particular, we critically evaluate underlying model assumptions and predictions in the light of current experimental knowledge. Towards this end, we briefly introduce key ideas and assumptions applied in the discussed modelling approaches, but waive a comprehensive mathematical presentation. We distinguish between structural and dynamical models, which will be discussed in their chronological order to illustrate how new biological information facilitates the 'evolution' of mathematical models. Mathematical models and their analysis have significantly contributed to our knowledge of ABE fermentation and the underlying regulatory network which spans all levels of biological organization. However, the ties between the different levels of cellular regulation are not well understood. Furthermore, contradictory experimental and theoretical results challenge our current notion of ABE metabolic network structure. Thus, clostridial ABE fermentation still poses theoretical as well as experimental challenges which are best approached in close collaboration between modellers and experimentalists.
Jang, Sun-Hee; Park, Jisang; Kim, Sae-Hae; Choi, Kyung-Min; Ko, Eun-Sil; Cha, Jeong-Dan; Lee, Young-Ran; Jang, Hyonseok; Jang, Yong-Suk
2017-12-01
Red ginseng (heat-processed Panax ginseng) is a well-known alternative medicine with pharmacological antidiabetic activity. It exerts pharmacological effects through the transformation of saponin into metabolites by the intestinal microbiota. Given that intestinal conditions and intestinal microflora vary among individuals, the pharmacological effects of orally administered red ginseng likely may vary among individuals. To overcome this variation and produce homogeneously effective red ginseng, we evaluated the antidiabetic effects of probiotic-fermented red ginseng in a mouse model. The antidiabetic efficacy of orally administered probiotic-fermented red ginseng was assessed in ICR mice after induction of diabetes using streptozotocin (170 mg/kg body weight). Samples were given orally for 8 weeks, and indicators involved in diabetic disorders such as body weight change, water intake, blood glucose, glucose tolerance and various biochemical parameters were determined. Oral administration of probiotic-fermented red ginseng significantly decreased the level of blood glucose of about 62.5% in the fasting state and induced a significant increase in glucose tolerance of about 10.2% compared to the control diabetic mice. Additionally, various indicators of diabetes and biochemical data (e.g., blood glycosylated haemoglobin level, serum concentrations of insulin, and α-amylase activity) showed a significant improvement in the diabetic conditions of the mice treated with probiotic-fermented red ginseng in comparison with those of control diabetic mice. Our results demonstrate the antidiabetic effects of probiotic-fermented red ginseng in the streptozotocin-induced mouse diabetes model and suggest that probiotic-fermented red ginseng may be a uniformly effective red ginseng product.
Predictive modelling of Lactobacillus casei KN291 survival in fermented soy beverage.
Zielińska, Dorota; Dorota, Zielińska; Kołożyn-Krajewska, Danuta; Danuta, Kołożyn-Krajewska; Goryl, Antoni; Antoni, Goryl; Motyl, Ilona
2014-02-01
The aim of the study was to construct and verify predictive growth and survival models of a potentially probiotic bacteria in fermented soy beverage. The research material included natural soy beverage (Polgrunt, Poland) and the strain of lactic acid bacteria (LAB) - Lactobacillus casei KN291. To construct predictive models for the growth and survival of L. casei KN291 bacteria in the fermented soy beverage we design an experiment which allowed the collection of CFU data. Fermented soy beverage samples were stored at various temperature conditions (5, 10, 15, and 20°C) for 28 days. On the basis of obtained data concerning the survival of L. casei KN291 bacteria in soy beverage at different temperature and time conditions, two non-linear models (r(2)= 0.68-0.93) and two surface models (r(2)=0.76-0.79) were constructed; these models described the behaviour of the bacteria in the product to a satisfactory extent. Verification of the surface models was carried out utilizing the validation data - at 7°C during 28 days. It was found that applied models were well fitted and charged with small systematic errors, which is evidenced by accuracy factor - Af, bias factor - Bf and mean squared error - MSE. The constructed microbiological growth and survival models of L. casei KN291 in fermented soy beverage enable the estimation of products shelf life period, which in this case is defined by the requirement for the level of the bacteria to be above 10(6) CFU/cm(3). The constructed models may be useful as a tool for the manufacture of probiotic foods to estimate of their shelf life period.
Jang, Sun-Hee; Park, Jisang; Kim, Sae-Hae; Choi, Kyung-Min; Ko, Eun-Sil; Cha, Jeong-Dan; Lee, Young-Ran; Jang, Hyonseok; Jang, Yong-Suk
2017-03-01
Red ginseng is a well-known alternative medicine with anti-inflammatory activity. It exerts pharmacological effects through the transformation of saponin into metabolites by intestinal microbiota. Given that intestinal microflora vary among individuals, the pharmacological effects of red ginseng likely vary among individuals. In order to produce homogeneously effective red ginseng, we prepared probiotic-fermented red ginseng and evaluated its activity using a dextran sulfate sodium (DSS)-induced colitis model in mice. Initial analysis of intestinal damage indicated that the administration of probiotic-fermented red ginseng significantly decreased the severity of colitis, compared with the control and the activity was higher than that induced by oral administration of ginseng powder or probiotics only. Subsequent analysis of the levels of serum IL-6 and TNF-α, inflammatory biomarkers that are increased at the initiation stage of colitis, were significantly decreased in probiotic-fermented red ginseng-treated groups in comparison to the control group. The levels of inflammatory cytokines and mRNAs for inflammatory factors in colorectal tissues were also significantly decreased in probiotic-fermented red ginseng-treated groups. Collectively, oral administration of probiotic-fermented red ginseng reduced the severity of colitis in a mouse model, suggesting that it can be used as a uniformly effective red ginseng product. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
McCully, Alexandra L.; LaSarre, Breah
2017-01-01
ABSTRACT Many mutualistic microbial relationships are based on nutrient cross-feeding. Traditionally, cross-feeding is viewed as being unidirectional, from the producer to the recipient. This is likely true when a producer’s waste, such as a fermentation product, has value only for a recipient. However, in some cases the cross-fed nutrient holds value for both the producer and the recipient. In such cases, there is potential for nutrient reacquisition by producer cells in a population, leading to competition against recipients. Here, we investigated the consequences of interpartner competition for cross-fed nutrients on mutualism dynamics by using an anaerobic coculture pairing fermentative Escherichia coli and phototrophic Rhodopseudomonas palustris. In this coculture, E. coli excretes waste organic acids that provide a carbon source for R. palustris. In return, R. palustris cross-feeds E. coli ammonium (NH4+), a compound that both species value. To explore the potential for interpartner competition, we first used a kinetic model to simulate cocultures with varied affinities for NH4+ in each species. The model predicted that interpartner competition for NH4+ could profoundly impact population dynamics. We then experimentally tested the predictions by culturing mutants lacking NH4+ transporters in both NH4+ competition assays and mutualistic cocultures. Both theoretical and experimental results indicated that the recipient must have a competitive advantage in acquiring cross-fed NH4+ to sustain the mutualism. This recipient-biased competitive advantage is predicted to be crucial, particularly when the communally valuable nutrient is generated intracellularly. Thus, the very metabolites that form the basis for mutualistic cross-feeding can also be subject to competition between mutualistic partners. PMID:29184014
Sabah snake grass extract pre-processing: Preliminary studies in drying and fermentation
NASA Astrophysics Data System (ADS)
Solibun, A.; Sivakumar, K.
2016-06-01
Clinacanthus nutans (Burm. F.) Lindau which also known as ‘Sabah Snake Grass’ among Malaysians have been studied in terms of its medicinal and chemical properties in Asian countries which is used to treat various diseases from cancer to viral-related diseases such as varicella-zoster virus lesions. Traditionally, this plant has been used by the locals to treat insect and snake bites, skin rashes, diabetes and dysentery. In Malaysia, the fresh leaves of this plant are usually boiled with water and consumed as herbal tea. The objectives of this study are to determine the key process parameters for Sabah Snake Grass fermentation which affect the chemical and biological constituent concentrations within the tea, extraction kinetics of fermented and unfermented tea and the optimal process parameters for the fermentation of this tea. Experimental methods such as drying, fermenting and extraction of C.nutans leaves were conducted before subjecting them to analysis of antioxidant capacity. Conventional oven- dried (40, 45 and 50°C) and fermented (6, 12 and 18 hours) whole C.nutans leaves were subjected to tea infusion extraction (water temperature was 80°C, duration was 90 minutes) and the sample liquid was extracted for every 5th, 10th, 15th, 25th, 40th, 60th and 90th minute. Analysis for antioxidant capacity and total phenolic content (TPC) were conducted by using 2, 2-diphenyl-1-pycryl-hydrazyl (DPPH) and Folin-Ciocaltheu reagent, respectively. The 40°C dried leaves sample produced the highest phenolic content at 0.1344 absorbance value in 15 minutes of extraction while 50°C dried leaves sample produced 0.1298 absorbance value in 10 minutes of extraction. The highest antioxidant content was produced by 50°C dried leaves sample with absorbance value of 1.6299 in 5 minutes of extraction. For 40°C dried leaves sample, the highest antioxidant content could be observed in 25 minutes of extraction with the absorbance value of 1.1456. The largest diameter of disc that could be observed at 18 hours of fermentation sample had a pile size of 3 cm that had expanded to 5.9 cm of diameter which indicated the microbe's growth.
Ethanol fermentation integrated with PDMS composite membrane: An effective process.
Fu, Chaohui; Cai, Di; Hu, Song; Miao, Qi; Wang, Yong; Qin, Peiyong; Wang, Zheng; Tan, Tianwei
2016-01-01
The polydimethylsiloxane (PDMS) membrane, prepared in water phase, was investigated in separation ethanol from model ethanol/water mixture and fermentation-pervaporation integrated process. Results showed that the PDMS membrane could effectively separate ethanol from model solution. When integrated with batch ethanol fermentation, the ethanol productivity was enhanced compared with conventional process. Fed-batch and continuous ethanol fermentation with pervaporation were also performed and studied. 396.2-663.7g/m(2)h and 332.4-548.1g/m(2)h of total flux with separation factor of 8.6-11.7 and 8-11.6, were generated in the fed-batch and continuous fermentation with pervaporation scenario, respectively. At the same time, high titre ethanol production of ∼417.2g/L and ∼446.3g/L were also achieved on the permeate side of membrane in the two scenarios, respectively. The integrated process was environmental friendly and energy saving, and has a promising perspective in long-terms operation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Smith, Aaron D; Holtzapple, Mark T
2010-12-01
The MixAlco process is a biorefinery based on the production of carboxylic acids via mixed-culture fermentation. Nitrogen is essential for microbial growth and metabolism, and may exist in soluble (e.g., ammonia) or insoluble forms (e.g., cells). Understanding the dynamics of nitrogen flow in a countercurrent fermentation is necessary to develop control strategies to maximize performance. To estimate nitrogen concentration profiles in a four-stage fermentation train, a mass balance-based segregated-nitrogen model was developed, which uses separate balances for solid- and liquid-phase nitrogen with nitrogen reaction flux between phases assumed to be zero. Comparison of predictions with measured nitrogen profiles from five trains, each with a different nutrient contacting pattern, shows the segregated-nitrogen model captures basic behavior and is a reasonable tool for estimating nitrogen profiles. The segregated-nitrogen model may be used to (1) estimate optimal nitrogen loading patterns, (2) develop a reaction-based model, (3) understand influence of model inputs (e.g., operating parameters, feedstock properties, nutrient loading pattern) on the steady-state nitrogen profile, and (4) determine the direction of the nitrogen reaction flux between liquid and solid phases. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
2014-01-01
Background Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. Results In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. Conclusions This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as a first step in a combined method employing long-term continuous fermentation of acid-production processes. PMID:24533663
Zhou, Xiang; Lu, Xi-Hong; Li, Xue-Hu; Xin, Zhi-Jun; Xie, Jia-Rong; Zhao, Mei-Rong; Wang, Liang; Du, Wen-Yue; Liang, Jian-Ping
2014-02-18
Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as a first step in a combined method employing long-term continuous fermentation of acid-production processes.
Keyzers, Robert A; Boss, Paul K
2010-01-27
Wine is a complex consumer product produced predominately by the action of yeast upon grape juice. Model must systems have proven to be ideal for studies into the effects of fermentation conditions on the production of certain wine volatiles. To clarify the contribution of grape juice to the production of wine volatiles, we have employed a model must system spiked with increasing amounts of grape juice (Riesling or Cabernet Sauvignon). The resulting fermented wines were analyzed by SPME-GC-MS and the data obtained grouped using ANOVA and cluster analyses to reveal those compounds that varied in concentration with reproducible trends relative to juice concentration. Such grouping highlights those compounds that are grape-dependent or for which production is modulated by grape composition. In some cases, increasing the proportion of grape juice in the fermentations stimulated the production of certain esters to levels between 2- and 140-fold higher than those seen in fermentations made with model grape juice media alone. The identification of the grape components responsible for the increased production of these wine volatiles will have implications for the impact of grape production and enology on wine flavor and aroma.
Creating Economic Incentives for Waste Disposal in Developing Countries Using the MixAlco Process.
Lonkar, Sagar; Fu, Zhihong; Wales, Melinda; Holtzapple, Mark
2017-01-01
In rapidly growing developing countries, waste disposal is a major challenge. Current waste disposal methods (e.g., landfills and sewage treatment) incur costs and often are not employed; thus, wastes accumulate in the environment. To address this challenge, it is advantageous to create economic incentives to collect and process wastes. One approach is the MixAlco process, which uses methane-inhibited anaerobic fermentation to convert waste biomass into carboxylate salts, which are chemically converted to industrial chemicals and fuels. In this paper, humanure (raw human feces and urine) is explored as a possible nutrient source for fermentation. This work focuses on fermenting municipal solid waste (energy source) and humanure (nutrient source) in batch fermentations. Using the Continuum Particle Distribution Model (CPDM), the performance of continuous countercurrent fermentation was predicted at different volatile solid loading rates (VSLR) and liquid residence times (LRT). For a four-stage countercurrent fermentation system at VSLR = 4 g/(L∙day), LRT = 30 days, and solids concentration = 100 g/L liquid, the model predicts carboxylic acid concentration of 68 g/L and conversion of 78.5 %.
Sanz-Penella, Juan Mario; Laparra, José Moisés; Haros, Monika
2014-09-01
Nowadays, the use of enzymes has become a common practice in the bakery industry, as they can improve dough quality and texture of final product. However, the use of α-amylases could have a negative effect in the glycaemic load of product, due to the released sugars from the starch hydrolysis that are not used by yeasts during the fermentation process. This study evaluated the effect of the addition of α-amylase in bakery products with bran on in vitro kinetics of starch hydrolysis. The use of flour with a high degree of extraction or high bran amount could decrease the GI even with the inclusion of α-amylase in the formulation. It should be taken into account the amount of bran and α-amylase when formulating breads in order to obtain products with lower GI than white bread. However, the fact that kinetics of starch hydrolysis remained unaltered indicates that the use of α-amylase in bread-making processes could provide technological advantages improving quality of breads without markedly changes in their glycaemic index.
Effects of pH and Temperature on Recombinant Manganese Peroxidase Production and Stability
NASA Astrophysics Data System (ADS)
Jiang, Fei; Kongsaeree, Puapong; Schilke, Karl; Lajoie, Curtis; Kelly, Christine
The enzyme manganese peroxidase (MnP) is produced by numerous white-rot fungi to overcome biomass recalcitrance caused by lignin. MnP acts directly on lignin and increases access of the woody structure to synergistic wood-degrading enzymes such as cellulases and xylanases. Recombinant MnP (rMnP) can be produced in the yeast Pichia pastoris αMnP1-1 in fed-batch fermentations. The effects of pH and temperature on recombinant manganese peroxidase (rMnP) production by P. pastoris αMnP1-1 were investigated in shake flask and fed-batch fermentations. The optimum pH and temperature for a standardized fed-batch fermentation process for rMnP production in P. pastoris ctMnP1-1 were determined to be pH 6 and 30 °C, respectively. P. pastoris αMnP1-1 constitutively expresses the manganese peroxidase (mnp1) complementary DNA from Phanerochaete chrysosporium, and the rMnP has similar kinetic characteristics and pH activity and stability ranges as the wild-type MnP (wtMnP). Cultivation of P. chrysosporium mycelia in stationary flasks for production of heme peroxidases is commonly conducted at low pH (pH 4.2). However, shake flask and fed-batch fermentation experiments with P. pastoris αMnP1-1 demonstrated that rMnP production is highest at pH 6, with rMnP concentrations in the medium declining rapidly at pH less than 5.5, although cell growth rates were similar from pH 4-7. Investigations of the cause of low rMnP production at low pH were consistent with the hypothesis that intracellular proteases are released from dead and lysed yeast cells during the fermentation that are active against rMnP at pH less than 5.5.
Velázquez, Rocío; Zamora, Emiliano; Álvarez, María L.; Hernández, Luis M.; Ramírez, Manuel
2015-01-01
Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii–dominated wines, most of the compounds with fresh fruit odor descriptors, including those with the greatest odor activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate), were more abundant in the S. cerevisiae–dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii–dominated wines the low-relative-concentration compounds with dried fruit and pastry odors. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S. cerevisiae. PMID:26579114
Velázquez, Rocío; Zamora, Emiliano; Álvarez, María L; Hernández, Luis M; Ramírez, Manuel
2015-01-01
Torulaspora delbrueckii is becoming widely recommended for improving some specific characteristics of wines. However, its impact on wine quality is still far from satisfactory at the winery level, mostly because it is easily replaced by Saccharomyces cerevisiae-like yeasts during must fermentation. New T. delbrueckii killer strains were here isolated and selected for winemaking. They killed S. cerevisiae yeasts and were able to dominate and complete the fermentation of sterile grape must. Sequential yeast inoculation of non-sterile white must with T. delbrueckii followed by S. cerevisiae did not ensure T. delbrueckii dominance or wine quality improvement. Only a single initial must inoculation at high cell concentrations allowed the T. delbrueckii killer strains to dominate and complete the must fermentation to reach above 11% ethanol, but not the non-killer strains. None of the wines underwent malolactic fermentation as long as the must had low turbidity and pH. Although no statistically significant differences were found in the wine quality score, the S. cerevisiae-dominated wines were preferred over the T. delbrueckii-dominated ones because the former had high-intensity fresh fruit aromas while the latter had lower intensity, but nevertheless nice and unusual dried fruit/pastry aromas. Except for ethyl propanoate and 3-ethoxy-1-propanol, which were more abundant in the T. delbrueckii-dominated wines, most of the compounds with fresh fruit odor descriptors, including those with the greatest odor activity values (isoamyl acetate, ethyl hexanoate, and ethyl octanoate), were more abundant in the S. cerevisiae-dominated wines. The low relative concentrations of these fruity compounds made it possible to detect in the T. delbrueckii-dominated wines the low-relative-concentration compounds with dried fruit and pastry odors. An example was γ-ethoxy-butyrolactone which was significantly more abundant in these wines than in those dominated by S. cerevisiae.
Jia, Bo; Liu, Xingyan; Zhan, Jicheng; Li, Jingyuan; Huang, Weidong
2015-06-01
Proanthocyanidins (PAs) derived from the grape skin, as well as from grape seeds, grape stems, are an important group of polyphenols in wine. The aim of this study was to understand the effect of PAs (0.1, 1.0 g/L) on growth and alcoholic fermentation of 2 strains of Saccharomyces cerevisiae (commercial strain FREDDO and newly selected strain BH8) during copper-stress fermentation, using a simple model fermentation system. Our results showed that both PAs and Cu(2+) could pose significant inhibition effects on the growth of yeast cells, CO2 release, sugar consumption, and ethanol production during the initial phase of the fermentation. Compared to PAs, Cu(2+) performed more obvious inhibition on the yeast growth and fermentation. However, adding 1.0 g/L PAs increased in the vitality and metabolism activity of yeast cells at the mid-exponential phase of fermentation in the mediums with no copper and 0.1 mM Cu(2+) added, shortened the period of wine fermentation, and decreased the copper residues. It indicated that PAs could improve the ability of wine yeast to resist detrimental effects under copper-stress fermentation condition, maintaining cells metabolic activity, and fermentation could be controlled by manipulating PAs supplementation. © 2015 Institute of Food Technologists®
Kritzinger, E C; Stander, M A; Du Toit, W J
2013-01-01
A novel, robust and fast ultra-high performance liquid chromatography-MS method has been developed for the simultaneous quantification of reduced glutathione (GSH) and oxidised glutathione (GSSG) in grape juice, wine and model wine solution. Sample preparation is minimal and does not require derivatisation. The method has very good performance in terms of sensitivity and selectivity. The limit of detection was 0.002 and 0.001 mg L(-1) for GSH and GSSG, respectively. The amount of GSH and GSSG released by commercial glutathione-enriched inactivated dry yeast preparations (GSH-IDYs) into a model solution was assessed. Significant differences in the amount of GSH and/or GSSG released into a model wine by different GSH-IDYs were observed, with ethanol influencing this release under certain conditions. The GSH and GSSG levels in grape juice fermentations supplemented with GSH-IDY were also assessed in relation to different addition times during fermentation. GSH-IDY addition can lead to elevated wine GSH levels, provided the supplementation is done early during alcoholic fermentation.
Liu, Chen-Guang; Li, Zhi-Yang; Hao, Yue; Xia, Juan; Bai, Feng-Wu; Mehmood, Muhammad Aamer
2018-05-01
Flocculation plays an important role in the immobilized fermentation of biofuels and biochemicals. It is essential to understand the flocculation phenomenon at physical and molecular scale; however, flocs cannot be studied directly due to fragile nature. Hence, the present study is focused on the morphological specificities of yeast flocs formation and sedimentation via the computer simulation by a single floc growth model, based on Diffusion-Limited Aggregation (DLA) model. The impact of shear force, adsorption, and cell propagation on porosity and floc size is systematically illustrated. Strong shear force and weak adsorption reduced floc size but have little impact on porosity. Besides, cell propagation concreted the compactness of flocs enabling them to gain a larger size. Later, a multiple flocs growth model is developed to explain sedimentation at various initial floc sizes. Both models exhibited qualitative agreements with available experimental data. By regulating the operation constraints during fermentation, the present study will lead to finding optimal conditions to control the floc size distribution for efficient fermentation and harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fermented food in the context of a healthy diet: how to produce novel functional foods?
Leroy, Frédéric; De Vuyst, Luc
2014-11-01
This review presents an overview of recent studies on the production of functional fermented foods, of both traditional and innovative natures, and the mapping of the functional compounds involved. The functional aspects of fermented foods are mostly related to the concept of probiotic bacteria or the targeted microbial generation of functional molecules, such as bioactive peptides, during food fermentation. Apart from conventional yoghurt and fermented milks, several fermented nondairy foods are globally gaining in interest, in particular from soy or cereal origin, sometimes novel but often originating from ethnic (Asian) diets. In addition, a range of functional nonmicrobial compounds may be added to the fermented food matrix. Overall, a wide variety of potential health benefits is being claimed, yet often poorly supported by mechanistic insights and rarely demonstrated with clinical trials or even animal models. Although functional foods offer considerable market potential, several issues still need to be addressed. As most of the studies on functional fermented foods are of a rather descriptive and preliminary nature, there is a clear need for mechanistic studies and well controlled in-vivo experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrana, D.L.; Meagher, M.M.; Hutkins, R.W.
1993-10-01
A pervaporation apparatus was designed and tested in an effort to develop an integrated fermentation and product recovery process for acetone-butanol-ethanol(ABE) fermentation. A crossflow membrane module able to accommodate flat sheet hydrophobic membranes was used for the experiments. Permeate vapors were collected under vacuum and condensed in a dry ice/ethanol cold trap. The apparatus containing polytetrafluoroethylene membranes was tested using butanol-water and model solutions of ABE products. Parameters such as product concentration, component effect, temperature, and permeate side pressure were examined. 25 refs., 3 figs., 5 tabs.
Sun, Zhongyu; Li, Can; Li, Lian; Nie, Lei; Dong, Qin; Li, Danyang; Gao, Lingling; Zang, Hengchang
2018-08-05
N-acetyl-d-glucosamine (GlcNAc) is a microbial fermentation product, and NIR spectroscopy is an effective process analytical technology (PAT) tool in detecting the key quality attribute: the GlcNAc content. Meanwhile, the design of NIR spectrometers is under the trend of miniaturization, portability and low-cost nowadays. The aim of this study was to explore a portable micro NIR spectrometer with the fermentation process. First, FT-NIR spectrometer and Micro-NIR 1700 spectrometer were compared with simulated fermentation process solutions. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal FT-NIR and Micro-NIR 1700 models were 0.999, 0.999, 3.226 g/L, 1.388 g/L and 0.999, 0.999, 1.821 g/L, 0.967 g/L. Passing-Bablok regression method and paired t-test results showed there were no significant differences between the two instruments. Then the Micro-NIR 1700 was selected for the practical fermentation process, 135 samples from 10 batches were collected. Spectral pretreatment methods and variables selection methods (BiPLS, FiPLS, MWPLS and CARS-PLS) for PLS modeling were discussed. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal GlcNAc content PLS model of the practical fermentation process were 0.994, 0.995, 2.792 g/L and 1.946 g/L. The results have a positive reference for application of the Micro-NIR spectrometer. To some extent, it could provide theoretical supports in guiding the microbial fermentation or the further assessment of bioprocess. Copyright © 2018. Published by Elsevier B.V.
Liu, Guo-hai; Jiang, Hui; Xiao, Xia-hong; Zhang, Dong-juan; Mei, Cong-li; Ding, Yu-han
2012-04-01
Fourier transform near-infrared (FT-NIR) spectroscopy was attempted to determine pH, which is one of the key process parameters in solid-state fermentation of crop straws. First, near infrared spectra of 140 solid-state fermented product samples were obtained by near infrared spectroscopy system in the wavelength range of 10 000-4 000 cm(-1), and then the reference measurement results of pH were achieved by pH meter. Thereafter, the extreme learning machine (ELM) was employed to calibrate model. In the calibration model, the optimal number of PCs and the optimal number of hidden-layer nodes of ELM network were determined by the cross-validation. Experimental results showed that the optimal ELM model was achieved with 1040-1 topology construction as follows: R(p) = 0.961 8 and RMSEP = 0.104 4 in the prediction set. The research achievement could provide technological basis for the on-line measurement of the process parameters in solid-state fermentation.
Huhtanen, P; Seppälä, A; Ahvenjärvi, S; Rinne, M
2008-10-01
Eleven 1-pool, seven 2-pool, and three 3-pool models were compared in fitting gas production data and predicting in vivo NDF digestibility and effective first-order digestion rate of potentially digestible NDF (pdNDF). Isolated NDF from 15 grass silages harvested at different stages of maturity was incubated in triplicate in rumen fluid-buffer solution for 72 h to estimate the digestion kinetics from cumulative gas production profiles. In vivo digestibility was estimated by the total fecal collection method in sheep fed at a maintenance level of feeding. The concentration of pdNDF was estimated by a 12-d in situ incubation. The parameter values from gas production profiles and pdNDF were used in a 2-compartment rumen model to predict pdNDF digestibility using 50 h of rumen residence time distributed in a ratio of 0.4:0.6 between the non-escapable and escapable pools. The effective first-order digestion rate was computed both from observed in vivo and model-predicted pdNDF digestibility assuming the passage kinetic model described above. There were marked differences between the models in fitting the gas production data. The fit improved with increasing number of pools, suggesting that silage pdNDF is not a homogenous substrate. Generally, the models predicted in vivo NDF digestibility and digestion rate accurately. However, a good fit of gas production data was not necessarily translated into improved predictions of the in vivo data. The models overestimating the asymptotic gas volumes tended to underestimate the in vivo digestibility. Investigating the time-related residuals during the later phases of fermentation is important when the data are used to estimate the first-order digestion rate of pdNDF. Relatively simple models such as the France model or even a single exponential model with discrete lag period satisfied the minimum criteria for a good model. Further, the comparison of feedstuffs on the basis of parameter values is more unequivocal than in the case of multiple-pool models.
Mathematical model of CO2 release during milk fermentation using natural kefir grains.
Goršek, Andreja; Ritonja, Jožef; Pečar, Darja
2018-03-12
Milk fermentation takes place in the presence of various micro-organisms, producing a variety of dairy products. The oldest of them is kefir, which is usually produced by the fermentation of milk with kefir grains. Carbon dioxide (CO 2 ), as one of the process products, also contributes to the characteristic flavor of kefir. The amount of CO 2 generated during fermentation depends on bioprocessing conditions and may change, which is not desirable at the industrial level. In this study we developed a simplified mathematical model of CO 2 release in the milk-fermentation process. An intuitive approach based on superposition and experimental analysis was used for the modeling. The chemical system studied was considered as a two-input (temperature, rotational frequency of the stirrer) one-output (CO 2 concentration) dynamic system. Based on an analysis of CO 2 release transients in the case of non-simultaneous stepwise changed input quantities, two differential equations were defined that describe the influence of the two input quantities on the output quantity. The simulation results were verified by experiments. The proposed model can be used for a comprehensive analysis of the process that is being studied and for the design and synthesis of advanced control systems, which will ensure a controlled CO 2 release at the industrial level. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai
2015-01-01
The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai
2015-10-01
The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree.
Guo, Hui; Zhu, Changxiong; Geng, Bing; Liu, Xue; Ye, Jing; Tian, Yunlong; Peng, Xiawei
2015-12-01
Previous research showed that ectopic fermentation system (EFS) inoculated with thermophilic bacteria is an excellent alternative for cow wastewater treatment. In this study, the effects of thermophilic bacterial consortium on the efficiency and quality of the fermentation process in EFS were evaluated by measuring physicochemical and environmental factors and the changes in organic matter composition. In parallel, the microbial communities correlated with fermentation performance were identified. Inoculation of EFS with thermophilic bacterial consortium led to higher temperatures, increased wastewater requirements for continuous fermentation, and improved quality of the litters in terms of physicochemical factors, security test, functional group analysis, and bacterial community composition. The relationship between the transformation of organic component and the dominant bacteria species indicated that environmental factors contributed to strain growth, which subsequently promoted the fermentation process. The results highlight the great potential of EFS model for wide application in cow wastewater treatment and re-utilization as bio-fertilizer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rheology of corn stover slurries during fermentation to ethanol
NASA Astrophysics Data System (ADS)
Ghosh, Sanchari; Epps, Brenden; Lynd, Lee
2017-11-01
In typical processes that convert cellulosic biomass into ethanol fuel, solubilization of the biomass is carried out by saccharolytic enzymes; however, these enzymes require an expensive pretreatment step to make the biomass accessible for solubilization (and subsequent fermentation). We have proposed a potentially-less-expensive approach using the bacterium Clostridium thermocellum, which can initiate fermentation without pretreatment. Moreover, we have proposed a ``cotreatment'' process, in which fermentation and mechanical milling occur alternately so as to achieve the highest ethanol yield for the least milling energy input. In order to inform the energetic requirements of cotreatment, we experimentally characterized the rheological properties of corn stover slurries at various stages of fermentation. Results show that a corn stover slurry is a yield stress fluid, with shear thinning behavior well described by a power law model. Viscosity decreases dramatically upon fermentation, controlling for variables such as solids concentration and particle size distribution. To the authors' knowledge, this is the first study to characterize the changes in the physical properties of biomass during fermentation by a thermophilic bacterium.
Yuan, Dawei; Rao, Kripa; Varanasi, Sasidhar; Relue, Patricia
2012-08-01
A system that incorporates a packed bed reactor for isomerization of xylose and a hollow fiber membrane fermentor (HFMF) for sugar fermentation by yeast was developed for facile recovery of the xylose isomerase enzyme pellets and reuse of the cartridge loaded with yeast. Fermentation of pre-isomerized poplar hydrolysate produced using ionic liquid pretreatment in HFMF resulted in ethanol yields equivalent to that of model sugar mixtures of xylose and glucose. By recirculating model sugar mixtures containing partially isomerized xylose through the packed bed and the HFMF connected in series, 39 g/l ethanol was produced within 10h with 86.4% xylose utilization. The modular nature of this configuration has the potential for easy scale-up of the simultaneous isomerization and fermentation process without significant capital costs. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Davis, Rebecca Anne
The increase in waste disposal and energy costs has provided an incentive to convert carbohydrate-rich food waste streams into fuel. For example, dining halls and restaurants discard foods that require tipping fees for removal. An effective use of food waste may be the enzymatic hydrolysis of the waste to simple sugars and fermentation of the sugars to ethanol. As these wastes have complex compositions which may change day-to-day, experiments were carried out to test fermentability of two different types of food waste at 27° C using Saccharomyces cerevisiae yeast (ATCC4124) and Genencor's STARGEN™ enzyme in batch simultaneous saccharification and fermentation (SSF) experiments. A mathematical model of SSF based on experimentally matched rate equations for enzyme hydrolysis and yeast fermentation was developed in Matlab Simulink®. Using Simulink® parameter estimation 1.1.3, parameters for hydrolysis and fermentation were estimated through modified Michaelis-Menten and Monod-type equations with the aim of predicting changes in the levels of ethanol and glycerol from different initial concentrations of glucose, fructose, maltose, and starch. The model predictions and experimental observations agree reasonably well for the two food waste streams and a third validation dataset. The approach of using Simulink® as a dynamic visual model for SSF represents a simple method which can be applied to a variety of biological pathways and may be very useful for systems approaches in metabolic engineering in the future.
Modeling Lactic Fermentation of Gowé Using Lactobacillus Starter Culture.
de J C Munanga, Bettencourt; Loiseau, Gérard; Grabulos, Joël; Mestres, Christian
2016-12-01
A global model of the lactic fermentation step of gowé was developed by assembling blocks hosting models for bacterial growth, lactic acid production, and the drop of pH during fermentation. Commercial strains of Lactobacillus brevis and of Lactobacillus plantarum were used; their growth was modeled using Rosso's primary model and the gamma concept as a secondary model. The optimum values of pH and temperature were 8.3 ± 0.3, 44.6 ± 1.2 °C and 8.3 ± 0.3, 3.2 ± 37.1 °C with μ max values of 1.8 ± 0.2 and 1.4 ± 0.1 for L. brevis and L. plantarum respectively. The minimum inhibitory concentration of undissociated lactic acid was 23.7 mM and 35.6 mM for L. brevis and L. plantarum , respectively. The yield of lactic acid was five times higher for L. plantarum than for L. brevis , with a yield of glucose conversion to lactic acid close to 2.0 for the former and 0.8 for the latter. A model was developed to predict the pH drop during gowé fermentation. The global model was partially validated during manufacturing of gowé. The global model could be a tool to aid in the choice of suitable starters and to determine the conditions for the use of the starter.
Modeling Lactic Fermentation of Gowé Using Lactobacillus Starter Culture
de J. C. Munanga, Bettencourt; Loiseau, Gérard; Grabulos, Joël; Mestres, Christian
2016-01-01
A global model of the lactic fermentation step of gowé was developed by assembling blocks hosting models for bacterial growth, lactic acid production, and the drop of pH during fermentation. Commercial strains of Lactobacillus brevis and of Lactobacillus plantarum were used; their growth was modeled using Rosso’s primary model and the gamma concept as a secondary model. The optimum values of pH and temperature were 8.3 ± 0.3, 44.6 ± 1.2 °C and 8.3 ± 0.3, 3.2 ± 37.1 °C with μmax values of 1.8 ± 0.2 and 1.4 ± 0.1 for L. brevis and L. plantarum respectively. The minimum inhibitory concentration of undissociated lactic acid was 23.7 mM and 35.6 mM for L. brevis and L. plantarum, respectively. The yield of lactic acid was five times higher for L. plantarum than for L. brevis, with a yield of glucose conversion to lactic acid close to 2.0 for the former and 0.8 for the latter. A model was developed to predict the pH drop during gowé fermentation. The global model was partially validated during manufacturing of gowé. The global model could be a tool to aid in the choice of suitable starters and to determine the conditions for the use of the starter. PMID:27916901
Effects of seasonings on the stability of ascorbic acid in a cooking model system.
Kishida, Etsu; Maeda, Tomoko; Nishihama, Akiko; Kojo, Shosuke; Masuzawa, Yasuo
2004-12-01
The thermolability of ascorbic acid (AA) in aqueous solution at 100 degrees C was assessed in the presence of various seasonings commonly used in Japanese-style cooking. A model system approximated Japanese cooking with regard to the concentrations of AA and seasonings and the heating time. The decrease of AA in the reaction system of this experiment was a first-order reaction with respect to the concentration of AA loss. Although kinetic constants for AA loss decreased with increasing concentrations of AA (25-400 microg/mL), the absolute amounts degraded were almost the same for all AA concentrations, suggesting that dissolved oxygen is one of main factors affecting the stability of AA solutions during heating at 100 degrees C. When each seasoning was added to AA solution, salt stabilized AA and Japanese alcohol-containing admixtures, such as sake and sweet sake (mirin), did not have a significant effect on the stability. Conversely, soy sauce, miso (fermented soybean paste) and broth powder from skipjack accelerated the decrease of AA in a concentration-dependent manner. The kinetic study suggested that oxygen was rapidly consumed and AA loss accelerated by addition of soy sauce or miso to AA solution. Consequently it is likely that a reaction mechanism shifts from aerobic to anaerobic and the forward reactions proceed. Of the constituents of Japanese seasonings, not only iron but also amino acids are involved in the acceleration of AA degradation. The presence of amino acids should be taken into account when considering the levels of AA in soups.
Impact of Fermented Foods on Human Cognitive Function-A Review of Outcome of Clinical Trials.
Sivamaruthi, Bhagavathi Sundaram; Kesika, Periyanaina; Chaiyasut, Chaiyavat
2018-05-31
Food is an essential need for all living creatures which provides the energy to maintain life and grow further. Fermentation is a process used to preserve and advance the quality of foods, and those foods are known as fermented foods. Some foods offer health benefits to consumers apart from nutrition, and such foods are called as functional foods. Most functional foods are fermented foods, and the fermenting microorganism plays a precious role in the functional property of the food. Cognitive decline is closely associated with the productivity of an individual and the society. Even though cognitive decline is connected to aging, dietary pattern influences memory, anxiety and other social behaviors. Many scientific studies have explained the link between food habits and cognitive functions by in vitro and in vivo models. The present review compiled the clinical data on the impact of fermented foods on human cognitive function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinches, A.; Pallent, L.J.
1986-10-01
Rate and yield information relating to biomass and product formation and to nitrogen, glucose and oxygen consumption are described for xanthan gum batch fermentations in which both chemically defined (glutamate nitrogen) and complex (peptone nitrogen) media are employed. Simple growth and product models are used for data interpretation. For both nitrogen sources, rate and yield parameter estimates are shown to be independent of initial nitrogen concentrations. For stationary phases, specific rates of gum production are shown to be independent of nitrogen source but dependent on initial nitrogen concentration. The latter is modeled empirically and suggests caution in applying simple productmore » models to xanthan gum fermentations. 13 references.« less
Optimization of fermentation conditions for alcohol production.
Bowman, L; Geiger, E
1984-12-01
The quantitative effects of carbohydrate levels, degree of initial saccharification, glucoamylase dosage, temperature, and fermentation time were investigated using a Box-Wilson central composite design protocol. With Saccharomyces cerevisiae ATCC 4126, it was found that the use of a partially saccharified starch substrate markedly increased yields and attainable alcohol levels. Balancing the degree of initial saccharification with the level of glucoamylase used to complete hydrolysis was found necessary to obtain optimum yields. The temperature optimum was found to be 36 degrees C. The regression equations obtained were used to model the fermentation in order to determine optimum fermentation conditions.
Huh, Eugene; Lim, Soonmin; Kim, Hyo Geun; Ha, Sang Keun; Park, Ho-Young; Huh, Youngbuhm; Oh, Myung Sook
2018-01-24
Ginger, which has been widely used for dietary condiment, has been reported to improve memory dysfunction in an animal model of Alzheimer's disease (AD). Recently, a few trials have been carried out to enhance the effects of ginger by improving the bioavailability of its relevant components via fermentation. Some reports have suggested that the fermented ginger has the ability to affect the AD in vitro systems; however, its anti-amnesic effects on an in vivo model still remain to be investigated. In the present study, we aimed to investigate the neuroprotective effects of ginger fermented with Schizosaccharomyces pombe (FG) in the in vivo models of AD. The neuroprotective effects were investigated by employing behavioral, western blotting, and immunohistochemical assays. The administration of FG improved recognition memory, impaired by scopolamine injection, than that of non-fermented ginger. In addition, FG ameliorated memory impairment in amyloid beta 1-42 (Aβ 1-42 ) plaque-injected mice via protecting neuronal cells in the CA3 area of the mouse hippocampus. Moreover, FG reinstated the pre- and postsynaptic protein levels decreased by Aβ 1-42 plaque-toxicity. Overall, these data suggest that FG attenuates memory impairment in Aβ 1-42 plaque-induced AD mice through inhibition of neuronal cell loss and synaptic disruption.
Fehlbaum, Sophie; Chassard, Christophe; Haug, Martina C.; Fourmestraux, Candice; Derrien, Muriel; Lacroix, Christophe
2015-01-01
In vitro gut modeling is a useful approach to investigate some factors and mechanisms of the gut microbiota independent of the effects of the host. This study tested the use of immobilized fecal microbiota to develop different designs of continuous colonic fermentation models mimicking elderly gut fermentation. Model 1 was a three-stage fermentation mimicking the proximal, transverse and distal colon. Models 2 and 3 were based on the new PolyFermS platform composed of an inoculum reactor seeded with immobilized fecal microbiota and used to continuously inoculate with the same microbiota different second-stage reactors mounted in parallel. The main gut bacterial groups, microbial diversity and metabolite production were monitored in effluents of all reactors using quantitative PCR, 16S rRNA gene 454-pyrosequencing, and HPLC, respectively. In all models, a diverse microbiota resembling the one tested in donor’s fecal sample was established. Metabolic stability in inoculum reactors seeded with immobilized fecal microbiota was shown for operation times of up to 80 days. A high microbial and metabolic reproducibility was demonstrated for downstream control and experimental reactors of a PolyFermS model. The PolyFermS models tested here are particularly suited to investigate the effects of environmental factors, such as diet and drugs, in a controlled setting with the same microbiota source. PMID:26559530
Fehlbaum, Sophie; Chassard, Christophe; Haug, Martina C; Fourmestraux, Candice; Derrien, Muriel; Lacroix, Christophe
2015-01-01
In vitro gut modeling is a useful approach to investigate some factors and mechanisms of the gut microbiota independent of the effects of the host. This study tested the use of immobilized fecal microbiota to develop different designs of continuous colonic fermentation models mimicking elderly gut fermentation. Model 1 was a three-stage fermentation mimicking the proximal, transverse and distal colon. Models 2 and 3 were based on the new PolyFermS platform composed of an inoculum reactor seeded with immobilized fecal microbiota and used to continuously inoculate with the same microbiota different second-stage reactors mounted in parallel. The main gut bacterial groups, microbial diversity and metabolite production were monitored in effluents of all reactors using quantitative PCR, 16S rRNA gene 454-pyrosequencing, and HPLC, respectively. In all models, a diverse microbiota resembling the one tested in donor's fecal sample was established. Metabolic stability in inoculum reactors seeded with immobilized fecal microbiota was shown for operation times of up to 80 days. A high microbial and metabolic reproducibility was demonstrated for downstream control and experimental reactors of a PolyFermS model. The PolyFermS models tested here are particularly suited to investigate the effects of environmental factors, such as diet and drugs, in a controlled setting with the same microbiota source.
Petrov, Kaloyan; Popova, Luiza; Petrova, Penka
2017-06-01
Lactobacillus paracasei DSM 23505 is able to produce high amounts of lactic acid (LA) by simultaneous saccharification and fermentation (SSF) of inulin. Aiming to obtain the highest possible amounts of LA and fructose, the present study is devoted to evaluate the impact of bivalent metal ions on the process of inulin conversion. It was shown that Mn 2+ strongly increases the activity of the purified key enzyme β-fructosidase. In vivo, batch fermentation kinetics revealed that the high Mn 2+ concentrations accelerated inulin hydrolysis by raise of the inulinase activity, and increased sugars conversion to LA through enhancement of the whole glycolytic flux. The highest LA concentration and yield were reached by addition of 15 mM Mn 2+ -151 g/L (corresponding to 40% increase) and 0.83 g/g, respectively. However, the relative quantification by real-time reverse transcription assay showed that the presence of Mn 2+ decreases the expression levels of fosE gene encoding β-fructosidase. Contrariwise, the full exclusion of metal ions resulted in fosE gene expression enhancement, blocked fructose transport, and hindered fructose conversion thus leading to huge fructose accumulation. During fed-batch with optimized medium and fermentation parameters, the fructose content reached 35.9% (w/v), achieving yield of 467 g fructose from 675 g inulin containing chicory flour powder (0.69 g/g). LA received in course of the batch fermentation and fructose gained by the fed-batch are the highest amounts ever obtained from inulin, thus disclosing the key role of Mn 2+ as a powerful tool to guide inulin conversion to targeted bio-chemicals.
Di Cagno, Raffaella; Surico, Rosalinda F; Minervini, Giovanna; De Angelis, Maria; Rizzello, Carlo G; Gobbetti, Marco
2009-03-31
Strains of Lactobacillus curvatus, Leuconostoc mesenteroides, Lactobacillus plantarum and Weissella confusa were identified from raw red and yellow peppers (RYPs) by partial 16S rRNA gene sequence and subjected to typing by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) analysis. L. plantarum PE21, L. curvatus PE4 and W. confusa PE36 were selected based on the kinetics of growth and acidification, and used as the autochthonous mixed starter for the fermentation of RYPs. A protocol which included blanching at 85 degrees C for 2 min, fermentation at 35 degrees C for 15 h in brine (1%, w/v), and heat treatment at 85 degrees C for 15 min, followed by storage at room temperature for 30 days with and without sunflower seeds oil was set up. Unstarted RYPs subjected to the same treatments were used as the control. Cell numbers of autochthonous starter in the RYPs were ca. 1000 times higher than presumptive lactic acid bacteria in unstarted RYPs. As shown by RAPD-PCR analysis, all three autochthonous strains persisted during processing and storage. Presumptive lactic acid bacteria found in started RYPs progressively decreased during storage, leading to a microbiota mainly consisting of autochthonous starters. Started RYPs showed rapid decrease of pH (<3.7), marked consumption of fermentable carbohydrates, and inhibition of total enterobacteria and yeasts. Unstarted RYPs were subjected to slight acidification (pH ca. 4.87) and considerable contamination by total enterobacteria and yeasts throughout storage. After 30 days of storage, started RYPs had significantly (P<0.05) higher firmness and colour indexes with respect to unstarted RYPs. The microbial and sensory features of started RYPs stored with sunflower seeds oil were almost similar to those of RYPs stored without suspending liquid.
Kang, Sungchhang; Wanapat, Metha; Viennasay, Bounnaxay
2016-12-01
The objective of this study was to evaluate the effects of banana flower power pellet (BAFLOP-pellet) and plant oil source on in vitro gas production, fermentation efficiency, and methane (CH 4 ) production. Rumen fluid was collected from two rumen-fistulated dairy steers fed on rice straw-based diet with concentrate supplement to maintain normal rumen ecology. All supplemented feed were added to respective treatments in the 30:70 roughage to concentrate-based substrate. The treatments were arranged according to a 3 × 3 factorial arrangement in a completely randomized design. First factor was different levels of BAFLOP-pellet supplementation (0, 30, and 60 g/kg of dietary substrate) and second factor was plant oil source supplementation [non-supplemented, 20 g/kg krabok seed oil (KSO), and 20 g/kg coconut oil (CO) of dietary substrate, respectively]. Under this investigation, BAFLOP-pellet supplementation increased gas production kinetics and in vitro digestibility (P < 0.05). Ruminal pH was dropped post incubation time in the non-supplemented group but was enhanced in BAFLOP-pellet-supplemented treatments. On the other hand, supplementation of KSO and CO depressed gas production and digestibility, but did not influence ruminal pH. In addition, protozoal population and CH 4 production were decreased by BAFLOP-pellet and plant oil addition (P < 0.05). Based on this study, it could be concluded that supplementation of BAFLOP-pellet and plant oil source could enhance the in vitro fermentation efficiency while reduced protozoal population and CH 4 production. It is suggested that BAFLOP-pellet (60 g/kg of dietary substrate) and KSO/CO (20 g/kg of dietary substrate) could be used to manipulate rumen fermentation characteristics fed on high-concentrate diet.
de Morais, Wilson Galvão; Kamimura, Eliana Setsuko; Ribeiro, Eloízio Júlio; Pessela, Benevides Costa; Cardoso, Vicelma Luiz; de Resende, Miriam Maria
2016-07-01
This present work describes the production and biochemical characterization of lipase by Candida rugosa and Geotrichum candidum in a culture supplemented with soybean molasses. After optimizing the fermentation times for both microorganisms, the effects of changing the soybean molasses concentration, the fermentative medium pH and the fermentation temperature were evaluated using the Central Composite Planning. When soybean molasses was used at a concentration of 200 g/L at 27 ± 1 °C and pH 3.5, the lipolytic activity measured in the broth was 12.3 U/mL after 12 h for C. rugosa and 11.48 U/mL after 24 h for G. candidum. The molecular masses were 38.3 kDa to G. candidum lipase and 59.7 kDa to C. rugosa lipase, determined by SDS-PAGE. The lipase from both microorganisms exhibited maximal hydrolytic activity at a temperature of 40 °C and were inhibited at pH 10.0. Using different concentration of p-nitrophenylbutyrate (p-NPB), the kinetic parameters were calculated, as follows: the Km of lipase from G. candidum was 465.44 μM and the Vmax 0.384 μmol/min; the Km and Vmax of lipase from C. rugosa were 129.21 μM and 0.034 μmol/min, respectively. Lipases activity were increased by metallic ions Mg(2+) and Na(+) and inhibited by metallic ion Cu(3+). Copyright © 2016 Elsevier Inc. All rights reserved.
Miele, Nicoletta A; Cabisidan, Erliza K; Blaiotta, Giuseppe; Leone, Serena; Masi, Paolo; Di Monaco, Rossella; Cavella, Silvana
2017-12-01
Sweeteners and flavors are generally added to yogurt to make them more palatable. However, the addition of these ingredients may affect the fermentation process of yogurt as well as its physical and sensory characteristics. Consumers prioritize yogurt products that are "natural." A modified single-chain form of the natural sweet protein monellin extracted from the fruit of Dioscoreophyllum cumminsii, called MNEI, could be a useful alternative to artificial sweeteners. The aim of the present work was to evaluate new rapid sensory methods in combination with rheology to assess the viability of using MNEI to develop sweetened yogurts without the calories of sugar. We studied the gelation and cooling kinetics of 4 yogurt samples (unsweetened or sweetened with MNEI, aspartame, or sucrose) by using a rheometer. Furthermore, the 4 yogurts, with and without addition of a flavoring agent, were characterized from a sensory perspective using a combination of 2 rapid sensory methods, ultra flash profile and flash profile. Rheological results showed that, when added at typical usage levels, aspartame, sucrose, and MNEI did not generally affect the yogurt fermentation process or its rheological properties. Sensory results demonstrated that texture attributes of yogurts with aspartame and sucrose were strongly linked to sweetness and flavor perception, but this was not true for MNEI-sweetened yogurts. In contrast to results obtained from samples sweetened with sucrose and aspartame, MNEI protein did not sweeten the yogurt when added before fermentation. This study highlights the enhancing effect of flavor on sweetness perception, supporting previous reports that noted synergistic effects between sucrose or aspartame and flavors. Hence, future studies should be conducted to determine how sweet proteins behave in yogurt when added after fermentation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Effect of flash release treatment on phenolic extraction and wine composition.
Morel-Salmi, Cécile; Souquet, Jean-Marc; Bes, Magali; Cheynier, Véronique
2006-06-14
The flash release (FR) process, consisting of rapidly heating the grapes and then applying strong vacuum, has been proposed to increase the polyphenol content of red wines. Its impact on polyphenol extraction kinetics and on the polyphenol composition of red juice and wines was studied over two seasons on different grape varieties (Grenache, Mourvedre, Carignan). The FR process allows fast extraction of all phenolic compounds (hydroxycinnamic acids, flavonols, anthocyanins, catechins, proanthocyanidins) and can be used to produce polyphenol-enriched grape juices. However, the concentration of all polyphenols dramatically decreased throughout fermentation when pressing was achieved immediately after FR. The FR wines made with pomace maceration were also enriched in polyphenols compared to the corresponding control wines. Increasing the duration of high-temperature exposure in the FR treatment further increased extraction of phenolic compounds but also accelerated their conversion to derived species. The tannin-to-anthocyanin ratio was particularly low in the wine fermented in the liquid phase, higher after FR than in the control, and even higher after longer heating. FR resulted in an increased tannin-to-anthocyanin ratio and an increased conversion of anthocyanins to tannin-anthocyanin adducts showing the same color properties as anthocyanins. The tannin-to-anthocyanin ratio was particularly low in the wine fermented in the liquid phase that also contained larger amounts of orange sulfite bleaching-resistant pigments.
Fan, Rong; Ebrahimi, Mehrdad; Quitmann, Hendrich; Aden, Matthias; Czermak, Peter
2016-01-01
Accurate real-time process control is necessary to increase process efficiency, and optical sensors offer a competitive solution because they provide diverse system information in a noninvasive manner. We used an innovative scattered light sensor for the online monitoring of biomass during lactic acid production in a membrane bioreactor system because biomass determines productivity in this type of process. The upper limit of the measurement range in fermentation broth containing Bacillus coagulans was ~2.2 g·L−1. The specific cell growth rate (µ) during the exponential phase was calculated using data representing the linear range (cell density ≤ 0.5 g·L−1). The results were consistently and reproducibly more accurate than offline measurements of optical density and cell dry weight, because more data were gathered in real-time over a shorter duration. Furthermore, µmax was measured under different filtration conditions (transmembrane pressure 0.3–1.2 bar, crossflow velocity 0.5–1.5 m·s−1), showing that energy input had no significant impact on cell growth. Cell density was monitored using the sensor during filtration and was maintained at a constant level by feeding with glucose according to the fermentation kinetics. Our novel sensor is therefore suitable for integration into control strategies for continuous fermentation in membrane bioreactor systems. PMID:27007380
Di Cagno, Raffaella; Cardinali, Gainluigi; Minervini, Giovanna; Antonielli, Livio; Rizzello, Carlo Giuseppe; Ricciuti, Patrizia; Gobbetti, Marco
2010-05-01
Pichia guilliermondii was the only identified yeast in pineapple fruits. Lactobacillus plantarum and Lactobacillus rossiae were the main identified species of lactic acid bacteria. Typing of lactic acid bacteria differentiated isolates depending on the layers. L. plantarum 1OR12 and L. rossiae 2MR10 were selected within the lactic acid bacteria isolates based on the kinetics of growth and acidification. Five technological options, including minimal processing, were considered for pineapple: heating at 72 degrees C for 15 s (HP); spontaneous fermentation without (FP) or followed by heating (FHP), and fermentation by selected autochthonous L. plantarum 1OR12 and L. rossiae 2MR10 without (SP) or preceded by heating (HSP). After 30 days of storage at 4 degrees C, HSP and SP had a number of lactic acid bacteria 1000 to 1,000,000 times higher than the other processed pineapples. The number of yeasts was the lowest in HSP and SP. The Community Level Catabolic Profiles of processed pineapples indirectly confirmed the capacity of autochthonous starters to dominate during fermentation. HSP and SP also showed the highest antioxidant activity and firmness, the better preservation of the natural colours and were preferred for odour and overall acceptability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerem, Z.; Friesem, D.; Hadar, Y.
Lignocellulose degradation and activities related to lignin degradation were studied in the solid-state fermentation of cotton stalks by comparison two white rot fungi, Pleurotus ostreatus and Phanerochaete chrysosporium. P. chrysosporium grew vigorously, resulting in rapid, nonselective degradation of 55% of the organic components of the cotton stalks within 15 days. In contrast, P. ostreatus grew more slowly with obvious selectivity for lignin degradation and resulting in the degradation of only 20% of the organic matter after 30 days of incubation. The kinetics of {sup 14}C-lignin mineralization exhibited similar differences. In cultures of P. chrysosporium, mineralization ceased after 18 days, resultingmore » in the release of 12% of the total radioactivity as {sup 14}CO{sub 2}. In P. ostreatus, on the other hand, 17% of the total radioactivity was released in a steady rate throughout a period of 60 days of incubation. Laccase activity was only detected in water extracts of the P. ostreatus fermentation. No lignin peroxidase activity was detected in either the water extract or liquid cultures of this fungus. 2-Keto-4-thiomethyl butyric acid cleavage to ethylene correlated to lignin degradation in both fungi. A study of fungal activity under solid-state conditions, in contrast to those done under defined liquid culture, may help to better understand the mechanism involved in lignocellulose degradation.« less
Tran, T H T; Boudry, C; Everaert, N; Théwis, A; Portetelle, D; Daube, G; Nezer, C; Taminiau, B; Bindelle, J
2016-02-01
Adding mucus to in vitro fermentation models of the large intestine shows that some genera, namely lactobacilli, are dependent on host-microbiota interactions and that they rely on mucosal layers to increase their activity. This study investigated whether this dependence on mucus is substrate dependent and to what extent other genera are impacted by the presence of mucus. Inulin and cellulose were fermented in vitro by a fecal inoculum from pig in the presence or not of mucin beads in order to compare fermentation patterns and bacterial communities. Mucins increased final gas production with inulin and shifted short-chain fatty acid molar ratios (P < 0.001). Quantitative real-time PCR analyses revealed that Lactobacillus spp. and Bifidobacterium spp. decreased with mucins, but Bacteroides spp. increased when inulin was fermented. A more in-depth community analysis indicated that the mucins increased Proteobacteria (0.55 vs 0.25%, P = 0.013), Verrucomicrobia (5.25 vs 0.03%, P = 0.032), Ruminococcaceae, Bacteroidaceae and Akkermansia spp. Proteobacteria (5.67 vs 0.55%, P < 0.001) and Lachnospiraceae (33 vs 10.4%) were promoted in the mucus compared with the broth, while Ruminococcaceae decreased. The introduction of mucins affected many microbial genera and fermentation patterns, but from PCA results, the impact of mucus was independent of the fermentation substrate. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qureshi, N.; Blaschek, H.P.
1999-07-01
A silicone membrane was used to study butanol separation from model butanol solutions and fermentation broth. Depending upon the butanol feed concentration in the model solution and pervaporation conditions, butanol selectivities of 20.88--68.32 and flux values of 158.7--215.4 g m{sup {minus}2} h{sup {minus}1} were achieved. Higher flux values were obtained at higher butanol concentrations using air as sweep gas. In an integrated process of butanol fermentation--recovery, solvent productivities were improved to 200% of the control batch fermentation productivities. In a batch reactor the hyper-butanol-producing mutant strain C. beijerinckii BA101 utilized 57.3 g/L glucose and produced 24.2 g/L total solvents, whilemore » in the integrated process it produced 51.5 g/L (culture volume) total solvents. Concentrated glucose medium was also fermented. The C. beijerinckii BA101 mutant strain was not negatively affected by the pervaporative conditions. In the integrated experiment, acids were not produced. With the active fermentation broth, butanol selectivity was reduced by a factor of 2--3. However, the membrane flux was not affected by the active fermentation broth. The butanol permeate concentration ranged from 26.4 to 95.4 g/L, depending upon butanol concentration in the fermentation broth. Since the permeate of most membranes contains acetone, butanol, and ethanol, it is suggested that distillation be used for further purification.« less
NASA Astrophysics Data System (ADS)
Prévoteau, Antonin; Geirnaert, Annelies; Arends, Jan B. A.; Lannebère, Sylvain; van de Wiele, Tom; Rabaey, Korneel
2015-07-01
Monitoring in vitro the metabolic activity of microorganisms aids bioprocesses and enables better understanding of microbial metabolism. Redox mediators can be used for this purpose via different electrochemical techniques that are either complex or only provide non-continuous data. Hydrodynamic chronoamperometry using a rotating disc electrode (RDE) can alleviate these issues but was seldom used and is poorly characterized. The kinetics of Faecalibacterium prausnitzii A2-165, a beneficial gut microbe, were determined using a RDE with riboflavin as redox probe. This butyrate producer anaerobically ferments glucose and reduces riboflavin whose continuous monitoring on a RDE provided highly accurate kinetic measurements of its metabolism, even at low cell densities. The metabolic reaction rate increased linearly over a broad range of cell concentrations (9 × 104 to 5 × 107 cells.mL-1). Apparent Michaelis-Menten kinetics was observed with respect to riboflavin (KM = 6 μM kcat = 5.3×105 s-1, at 37 °C) and glucose (KM = 6 μM kcat = 2.4 × 105 s-1). The short temporal resolution allows continuous monitoring of fast cellular events such as kinetics inhibition with butyrate. Furthermore, we detected for the first time riboflavin reduction by another potential probiotic, Butyricicoccus pullicaecorum. The ability of the RDE for fast, accurate, simple and continuous measurements makes it an ad hoc tool for assessing bioprocesses at high resolution.
Zhang, Qiuzhuo; Weng, Chen; Huang, Huiqin; Achal, Varenyam; Wang, Duanchao
2016-01-01
Water hyacinth was used as substrate for bioethanol production in the present study. Combination of acid pretreatment and enzymatic hydrolysis was the most effective process for sugar production that resulted in the production of 402.93 mg reducing sugar at optimal condition. A regression model was built to optimize the fermentation factors according to response surface method in saccharification and fermentation (SSF) process. The optimized condition for ethanol production by SSF process was fermented at 38.87°C in 81.87 h when inoculated with 6.11 ml yeast, where 1.291 g/L bioethanol was produced. Meanwhile, 1.289 g/L ethanol was produced during experimentation, which showed reliability of presented regression model in this research. The optimization method discussed in the present study leading to relatively high bioethanol production could provide a promising way for Alien Invasive Species with high cellulose content. PMID:26779125
Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes
NASA Technical Reports Server (NTRS)
Wiencek, John M.
2002-01-01
The overall goal of this project was to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, was used to remove inhibitory byproducts during fermentation; thus, improve the yield while reducing the need for fresh water. The key objectives of this study were: (1) Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems. (2) Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system. (3) Investigate the effect of gravity on emulsion coalescence within the membrane unit. (4) Access the effect of water re-use on fermentation yields in a model microbial system. and (5) Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts (not completed due to lack of funds)