Science.gov

Sample records for fermi energy domain

  1. Time-Domain Astronomy with Swift, Fermi and Lobster

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil; Barthelmy, Scott D.; Cannizzo, John K.

    2012-04-01

    The dynamic transient gamma-ray sky is revealing many interesting results, largely due to findings by Fermi and Swift. The list includes new twists on gamma-ray bursts (GRBs), a GeV flare from a symbiotic star, GeV flares from the Crab Nebula, high-energy emission from novae and supernovae, and, within the last year, a new type of object discovered by Swift-a jetted tidal disruption event. In this review we present highlights of these exciting discoveries. A new mission concept called Lobster is also described; it would monitor the X-ray sky at order-of-magnitude higher sensitivity than current missions can.

  2. High energy neutrinos from the Fermi bubbles.

    PubMed

    Lunardini, Cecilia; Razzaque, Soebur

    2012-06-01

    Recently the Fermi-LAT data have revealed two gamma-ray emitting bubble-shaped structures at the Galactic center. If the observed gamma rays have hadronic origin (collisions of accelerated protons), the bubbles must emit high energy neutrinos as well. This new, Galactic, neutrino flux should trace the gamma-ray emission in spectrum and spatial extent. Its highest energy part, above 20-50 TeV, is observable at a kilometer-scale detector in the northern hemisphere, such as the planned KM3NeT, while interesting constraints on it could be obtained by the IceCube Neutrino Observatory at the South Pole. The detection or exclusion of neutrinos from the Fermi bubbles will discriminate between hadronic and leptonic models, thus bringing unique information on the still mysterious origin of these objects and on the time scale of their formation.

  3. Fermi energy instability in resonant tunneling

    NASA Astrophysics Data System (ADS)

    Claro, Francisco; Inkoferer, Jutta; Obermeir, Gustav

    2001-03-01

    In resonant tunneling two different instabilities may arise induced by the electron-electron interaction, depending on whether the conduction channel is at the emitter Fermi energy, or at the bottom of the emitter Fermi sea. The latter leads to a well understood multistable regime in the device characteristics. The former was found in the past for the case when a magnetic field is present in the direction of the current flow*. We shall show that the external field is not required, and that actually the instability can take place in the presence of zero, one and two dimensional quantum wells. Supported in part by FONDECYT 1990425 and Catedra Presidencial en Ciencias *P.Orellana, E.Anda and F.Claro, Phys.Rev.Lett. 79, 1118 (1997)

  4. Domain-averaged Fermi-hole analysis for solids.

    PubMed

    Baranov, Alexey I; Ponec, Robert; Kohout, Miroslav

    2012-12-01

    The domain-averaged Fermi hole (DAFH) orbitals provide highly visual representation of bonding in terms of orbital-like functions with attributed occupation numbers. It was successfully applied on many molecular systems including those with non-trivial bonding patterns. This article reports for the first time the extension of the DAFH analysis to the realm of extended periodic systems. Simple analytical model of DAFH orbital for single-band solids is introduced which allows to rationalize typical features that DAFH orbitals for extended systems may possess. In particular, a connection between Wannier and DAFH orbitals has been analyzed. The analysis of DAFH orbitals on the basis of DFT calculations is applied to hydrogen lattices of different dimensions as well as to the solids diamond, graphite, Na, Cu and NaCl. In case of hydrogen lattices, remarkable similarity is found between the DAFH orbitals evaluated with both the analytical approach and DFT. In case of the selected ionic and covalent solids the DAFH orbitals deliver bonding descriptions, which are compatible with classical orbital interpretation. For metals the DAFH analysis shows essential multicenter nature of bonding.

  5. Fermi level stabilization energy in cadmium oxide

    SciTech Connect

    Speaks, D. T.; Mayer, M. A.; Yu, K. M.; Mao, S. S.; Haller, E. E.; Walukiewicz, W.

    2010-04-08

    We have studied the effects of high concentrations of native point defects on the electrical and optical properties of CdO. The defects were introduced by irradiation with high energy He+, Ne+, Ar+ and C+ ions. Increasing the irradiation damage with particles heavier than He+ increases the electron concentration until a saturation level of 5x1020 cm-3 is reached. In contrast, due to the ionic character and hence strong dynamic annealing of CdO, irradiation with much lighter He+ stabilizes the electron concentration at a much lower level of 1.7x1020 cm-3. A large shift of the optical absorption edge with increasing electron concentration in irradiated samples is explained by the Burstein-Moss shift corrected for electron-electron and electron-ion interactions. The saturation of the electron concentration and the optical absorption edge energy are consistent with a defect induced stabilization of the Fermi energy at 1 eV above the conduction band edge. The result is in a good agreement with previously determined Fermi level pinning energies on CdO surfaces. The results indicate that CdO shares many similarities with InN, as both materials exhibit extremely large electron affinities and an unprecedented propensity for n-type conductivity.

  6. Bosonization of the low energy excitations of Fermi liquids

    SciTech Connect

    Castro Neto, A.H.; Fradkin, E. )

    1994-03-07

    We bosonize the low energy excitations of Fermi liquids in any number of dimensions in the limit of long wavelengths. The bosons are a coherent superposition of electron-hole pairs and are related with the displacements of the Fermi surface in some arbitrary direction. A coherent-state path integral for the bosonized theory is derived and it is shown to represent histories of the shape of the Fermi surface. The Landau theory of Fermi liquids can be obtained from the formalism in the absence of nesting of the Fermi surface and singular interactions. We show that the Landau equation for sound waves is exact in the semiclassical approximation for the bosons.

  7. Angular correlations near the Fermi energy

    SciTech Connect

    Fox, D.; Cebra, D.A.; Karn, J.; Parks, C.; Pradhan, A.; Vander Molen, A.; van der Plicht, J.; Westfall, G.D.; Wilson, W.K.; Tickle, R.S.; and others

    1988-07-01

    Angular correlations between light particles have been studied to probe the extent to which a thermally equilibrated system is formed in heavy ion collisions near the Fermi energy. Single-light-particle inclusive energy spectra and two-particle large-angle correlations were measured for 40 and 50 MeV/nucleon C+C, Ag, and Au. The single-particle inclusive energy spectra are well fit by a three moving source parametrization. Two-particle large-angle correlations are shown to be consistent with emission from a thermally equilibrated source when the effects of momentum conservation are considered. Single-particle inclusive spectra and light-particle correlations at small relative momentum were measured for 35 MeV/nucleon N+Ag. Source radii were extracted from the two-particle correlation functions and were found to be consistent with previous measurements using two-particle correlations and the coalescence model. The temperature of the emitting source was extracted from the relative populations of states using the quantum statistical model and was found to be 4.8/sub -2.4//sup +2.8/ MeV, compared to the 14 MeV temperature extracted from the slopes of the kinetic energy spectra.

  8. The Spectral Energy Distributions of Fermi Blazars

    NASA Astrophysics Data System (ADS)

    Fan, J. H.; Yang, J. H.; Liu, Y.; Luo, G. Y.; Lin, C.; Yuan, Y. H.; Xiao, H. B.; Zhou, A. Y.; Hua, T. X.; Pei, Z. Y.

    2016-10-01

    In this paper, multiwavelength data are compiled for a sample of 1425 Fermi blazars to calculate their spectral energy distributions (SEDs). A parabolic function, {{log}}{(ν {F}ν )={P}1({{log}}ν -{P}2)}2+{P}3, is used for SED fitting. Synchrotron peak frequency ({log}{ν }{{p}}), spectral curvature (P1), peak flux ({ν }{{p}}{F}{ν {{p}}}), and integrated flux (ν {F}ν ) are successfully obtained for 1392 blazars (461 flat-spectrum radio quasars [FSRQs], 620 BL Lacs [BLs], and 311 blazars of uncertain type [BCUs]; 999 sources have known redshifts). Monochromatic luminosity at radio 1.4 GHz, optical R band, X-ray at 1 keV and γ-ray at 1 GeV, peak luminosity, integrated luminosity, and effective spectral indices of radio to optical ({α }{{RO}}) and optical to X-ray ({α }{{OX}}) are calculated. The “Bayesian classification” is employed to log {ν }{{p}} in the rest frame for 999 blazars with available redshift, and the results show that three components are enough to fit the log {ν }{{p}} distribution; there is no ultra-high peaked subclass. Based on the three components, the subclasses of blazars using the acronyms of Abdo et al. are classified, and some mutual correlations are also studied. Conclusions are finally drawn as follows: (1) SEDs are successfully obtained for 1392 blazars. The fitted peak frequencies are compared with common sources from available samples. (2) Blazars are classified as low synchrotron peak sources if log {ν }{{p}}({Hz})≤slant 14.0, intermediate synchrotron peak sources if 14.0\\lt {log} {ν }{{p}}({Hz})≤slant 15.3, and high synchrotron peak sources if {log} {ν }{{p}}({Hz})\\gt 15.3. (3) Gamma-ray emissions are strongly correlated with radio emissions. Gamma-ray luminosity is also correlated with synchrotron peak luminosity and integrated luminosity. (4) There is an anticorrelation between peak frequency and peak luminosity within the whole blazar sample. However, there is a marginally positive correlation for high

  9. Conductors with small Fermi energies and small gap energies

    SciTech Connect

    Thorn, R.J.

    1993-09-01

    If the Fermi energy is of the order of meV`s, the usual treatment of the density of free electrons is not valid, but use can be made of an averaged density of states that depends weakly on temperature, so that the temperature variation of the conductivity can be expressed by the equation: {sigma} {congruent} CT{sup (1-s)} 1n{l_brace}[(exp({beta}E{sub f}) + 1)/2][exp({minus}{beta}(E{sub g} {minus} E{sub f})) + 1)]{r_brace} in which E{sub f} is the Fermi energy, E{sub g} is the top of the energy gap for thermal activation, s is the exponent of the temperature-dependent scattering. This equation serves to define a class of solids consisting of a microcomposite with a narrow conduction band for which E{sub f} of the order of ceV`s or less and a thermal activated conduction for which E{sub g} is of the order of ceV`s. It describes quantitatively the conductivity, {sigma}(T;{Delta}, for YBa{sub 2}Cu{sub 3}O{sub 7-{Delta}} and {sigma}(T;p) as the hydrostatic pressure p is varied for {kappa}-(BEDT-TTF){sub 2}CuN(CN){sub 2}Br.

  10. Fermi energy-dependence of electromagnetic wave absorption in graphene

    NASA Astrophysics Data System (ADS)

    Shoufie Ukhtary, M.; Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Saito, Riichiro

    2015-05-01

    Undoped graphene is known to absorb 2.3% of visible light at a normal angle of incidence. In this paper, we theoretically demonstrate that the absorption of 10-100 GHz of an electromagnetic wave can be tuned from nearly 0 to 100% by varying the Fermi energy of graphene when the angle of incidence of the electromagnetic wave is kept within total internal reflection geometry. We calculate the absorption probability of the electromagnetic wave as a function of the Fermi energy of graphene and the angle of incidence of the wave. These results open up possibilities for the development of simple electromagnetic wave-switching devices operated by gate voltage.

  11. Broad band spectral energy distribution studies of Fermi bright blazars

    NASA Astrophysics Data System (ADS)

    Monte, C.; Giommi, P.; Cavazzuti, E.; Gasparrini, D.; Rainò, S.; Fuhrmann, L.; Angelakis, E.; Villata, M.; Raiteri, C. M.; Perri, M.; Richards, J.

    2011-02-01

    The Fermi Gamma-ray Space Telescope was successfully launched on June 11, 2008 and has already opened a new era for gamma-ray astronomy. The Large Area Telescope (LAT), the main instrument on board Fermi, presents a significant improvement in sensitivity over its predecessor EGRET, due to its large field of view and effective area, combined with its excellent timing capabilities. The preliminary results of the Spectral Energy Distribution Analysis performed on a sample of bright blazars are presented. For this study, the data from the first three months of data collection of Fermi have been used. The analysis is extended down to radio, mm, near-IR, optical, UV and X-ray bands and up to TeV energies based on unprecedented sample of simultaneous multi-wavelength observations by GASP-WEBT.

  12. Energy fluctuations of a finite free-electron Fermi gas.

    PubMed

    Pekola, Jukka P; Muratore-Ginanneschi, Paolo; Kupiainen, Antti; Galperin, Yuri M

    2016-08-01

    We discuss the energy distribution of free-electron Fermi-gas, a problem with a textbook solution of Gaussian energy fluctuations in the limit of a large system. We find that for a small system, characterized solely by its heat capacity C, the distribution can be solved analytically, and it is both skewed and it vanishes at low energies, exhibiting a sharp drop to zero at the energy corresponding to the filled Fermi sea. The results are relevant from the experimental point of view, since the predicted non-Gaussian effects become pronounced when C/k_{B}≲10^{3} (k_{B} is the Boltzmann constant), a regime that can be easily achieved for instance in mesoscopic metallic conductors at sub-kelvin temperatures.

  13. Energy fluctuations of a finite free-electron Fermi gas

    NASA Astrophysics Data System (ADS)

    Pekola, Jukka P.; Muratore-Ginanneschi, Paolo; Kupiainen, Antti; Galperin, Yuri M.

    2016-08-01

    We discuss the energy distribution of free-electron Fermi-gas, a problem with a textbook solution of Gaussian energy fluctuations in the limit of a large system. We find that for a small system, characterized solely by its heat capacity C , the distribution can be solved analytically, and it is both skewed and it vanishes at low energies, exhibiting a sharp drop to zero at the energy corresponding to the filled Fermi sea. The results are relevant from the experimental point of view, since the predicted non-Gaussian effects become pronounced when C /kB≲103 (kB is the Boltzmann constant), a regime that can be easily achieved for instance in mesoscopic metallic conductors at sub-kelvin temperatures.

  14. Energy fluctuations of a finite free-electron Fermi gas.

    PubMed

    Pekola, Jukka P; Muratore-Ginanneschi, Paolo; Kupiainen, Antti; Galperin, Yuri M

    2016-08-01

    We discuss the energy distribution of free-electron Fermi-gas, a problem with a textbook solution of Gaussian energy fluctuations in the limit of a large system. We find that for a small system, characterized solely by its heat capacity C, the distribution can be solved analytically, and it is both skewed and it vanishes at low energies, exhibiting a sharp drop to zero at the energy corresponding to the filled Fermi sea. The results are relevant from the experimental point of view, since the predicted non-Gaussian effects become pronounced when C/k_{B}≲10^{3} (k_{B} is the Boltzmann constant), a regime that can be easily achieved for instance in mesoscopic metallic conductors at sub-kelvin temperatures. PMID:27627262

  15. Modified Fermi energy of electrons in a superhigh magnetic field

    NASA Astrophysics Data System (ADS)

    Zhu, Cui; Gao, Zhi Fu; Li, Xiang Dong; Wang, Na; Yuan, Jian Ping; Peng, Qiu He

    2016-04-01

    In this paper, we investigate the electron Landau level stability and its influence on the electron Fermi energy, EF(e), in the circumstance of magnetars, which are powered by magnetic field energy. In a magnetar, the Landau levels of degenerate and relativistic electrons are strongly quantized. A new quantity gn, the electron Landau level stability coefficient is introduced. According to the requirement that gn decreases with increasing the magnetic field intensity B, the magnetic field index β in the expression of EF(e) must be positive. By introducing the Dirac-δ function, we deduce a general formulae for the Fermi energy of degenerate and relativistic electrons, and obtain a particular solution to EF(e) in a superhigh magnetic field (SMF). This solution has a low magnetic field index of β = 1/6, compared with the previous one, and works when ρ ≥ 107g cm-3 and Bcr ≪ B ≤ 1017 Gauss. By modifying the phase space of relativistic electrons, a SMF can enhance the electron number density ne, and decrease the maximum of electron Landau level number, which results in a redistribution of electrons. According to Pauli exclusion principle, the degenerate electrons will fill quantum states from the lowest Landau level to the highest Landau level. As B increases, more and more electrons will occupy higher Landau levels, though gn decreases with the Landau level number n. The enhanced ne in a SMF means an increase in the electron Fermi energy and an increase in the electron degeneracy pressure. The results are expected to facilitate the study of the weak-interaction processes inside neutron stars and the magnetic-thermal evolution mechanism for magnetars.

  16. Fractional processes and nuclear disassembly in very-heavy-ion collisions in the Fermi energy regime

    SciTech Connect

    Schroeder, W.U.

    1991-01-01

    Exclusive measurements of charged products and neutrons were performed for the reactions {sup 197}Au + (29 MeV/u) {sup 208}Pb and {sup 209}Bi + (28.2 MeV/u) {sup 136}Xe. The multiplicities of neutrons and charged particles are found to indicate collision impact parameters with different sensitivities. Characteristic correlations observed between massive products and light particles suggest the dominance of the damped-reaction mechanism in the Fermi energy domain. For central collisions, massive fragments are no longer observed, and a considerable fraction of the mass of the system is found disassembled into light particles and clusters. 75 refs., 19 figs.

  17. Finite-size Energy of Non-interacting Fermi Gases

    NASA Astrophysics Data System (ADS)

    Gebert, Martin

    2015-12-01

    We study the asymptotics of the difference of the ground-state energies of two non-interacting N-particle Fermi gases in a finite volume of length L in the thermodynamic limit up to order 1/ L. We are particularly interested in subdominant terms proportional to 1/ L, called finite-size energy. In the nineties (Affleck, Nuc. Phys. B 58, 35-41 1997; Zagoskin and Affleck, J. Phys. A 30, 5743-5765 1997) claimed that the finite-size energy is related to the decay exponent occurring in Anderson's orthogonality. We prove that the finite-size energy depends on the details of the thermodynamic limit and is therefore non-universal. Typically, it includes an additional linear term in the scattering phase shift.

  18. 75 FR 20867 - DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... COMMISSION DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1 Environmental Assessment and Finding of No... Plant Unit 1, (Fermi-1) located in Monroe County, Michigan. Environmental Assessment Identification of... historic sites. It does not affect nonradiological plant effluents and has no other environmental...

  19. First Results on the High Energy Cosmic Ray Electron Spectrum from Fermi Lat

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2009-01-01

    This viewgraph presentation addresses energy reconstruction, electron-hadron separation, validation of Monte Carlo with flight data and an assessment of systematic errors from the Fermi Large Area Telescope.

  20. Ferromagnetism of the repulsive atomic Fermi gas: three-body recombination and domain formation

    NASA Astrophysics Data System (ADS)

    Zintchenko, Ilia; Wang, Lei; Troyer, Matthias

    2016-08-01

    The simplest model for itinerant ferromagnetism, the Stoner model, has so far eluded experimental observation in repulsive ultracold fermions due to rapid three-body recombination at large scattering lengths. Here we show that a ferromagnetic phase can be stabilised by imposing a moderate optical lattice. The reduced kinetic energy drop upon formation of a polarized phase in an optical lattice extends the ferromagnetic phase to smaller scattering lengths where three-body recombination is small enough to permit experimental detection of the phase. We also show, using time dependent density functional theory, that in such a setup ferromagnetic domains emerge rapidly from a paramagnetic initial state.

  1. A connection between domain-averaged Fermi hole orbitals and electron number distribution functions in real space

    NASA Astrophysics Data System (ADS)

    Francisco, E.; Martín Pendás, A.; Blanco, M. A.

    2009-09-01

    We show in this article how for single-determinant wave functions the one-electron functions derived from the diagonalization of the Fermi hole, averaged over an arbitrary domain Ω of real space, and expressed in terms of the occupied canonical orbitals, describe coarse-grained statistically independent electrons. With these domain-averaged Fermi hole (DAFH) orbitals, the full electron number distribution function (EDF) is given by a simple product of one-electron events. This useful property follows from the simultaneous orthogonality of the DAFH orbitals in Ω, Ω'=R3-Ω, and R3. We also show how the interfragment (shared electron) delocalization index, δΩ,Ω', transforms into a sum of one-electron DAFH contributions. Description of chemical bonding in terms of DAFH orbitals provides a vivid picture relating bonding and delocalization in real space. DAFH and EDF analyses are performed on several test systems to illustrate the close relationship between both concepts. Finally, these analyses clearly prove how DAFH orbitals well localized in Ω or Ω' can be simply ignored in computing the EDFs and/or δΩ,Ω', and thus do not contribute to the chemical bonding between the two fragments.

  2. A note on the Fermi energy of an ideal Fermi gas trapped under a generic power law potential in d-dimension

    NASA Astrophysics Data System (ADS)

    Mehedi Faruk, Mir

    2015-09-01

    The average energy per fermion in the case of a Fermi gas with any kinematic characteristic, trapped under the most general power law potential in d-dimension has been calculated at zero temperature. In a previous paper (Acharyya M 2010 Eur. J Phys. 31 L89) it was shown, in the case of a free ideal Fermi gas, as the dimension increases the average energy approaches the Fermi energy and in infinite dimension the average energy becomes equal to the Fermi energy at T = 0. In this letter it is shown that, for a trapped system at finite dimension the average energy depends on a power law exponent, but as the dimension tends to infinity the average energy coincides with the Fermi energy for any power law exponent. The result obtained in this manuscript is more general, as we can describe the free system as well as any trapped system with an appropriate choice of power law exponent, and is true for any kinematic parameter.

  3. High Energy Astrophysics with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Hays, Elizabeth

    2009-01-01

    This slide presentation reviews some of the findings of the Large Area Telescope (LAT) aboard the Fermi Observatory. It includes information about the LAT, and the Gamma-Ray Burst Monitor (GBM), detection of the quiet sun and the moon in gamma rays, Pulsars observed by the observatory, Globular Star Clusters, Active Galactic Nucleus, and Gamma-Ray Bursts, with specific information about GRB 080916C.

  4. Fermi Observations of High-energy Gamma-ray Emission from GRB 080825C

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D. L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Chaplin, V.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Connaughton, V.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Gibby, L.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Goldstein, A.; Granot, J.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocevski, D.; Komin, N.; Kouveliotou, C.; Kuehn, F.; Kuss, M.; Latronico, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McBreen, S.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Preece, R.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, O.; Reposeur, T.; Ritz, S.; Rochester, L. S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-12-01

    The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. We also present some theoretical interpretation of GRB 080825C observations as well as some common features observed in other LAT GRBs.

  5. Modeling High-Energy Gamma-Rays from the Fermi Bubbles - Oral Presentation

    SciTech Connect

    Splettstoesser, Megan

    2015-08-25

    In 2010, the Fermi Bubbles were discovered at the galactic center of the Milky Way. These giant gamma-ray structures, extending 50 degrees in galactic latitude and 20-30 degrees in galactic longitude, were not predicted. We wish to develop a model for the gamma-ray emission of the Fermi Bubbles. To do so, we assume that second order Fermi acceleration is responsible for the high-energy emission of the bubbles. Second order Fermi acceleration requires charged particles and irregular magnetic fields—both of which are present in the disk of the Milky Way galaxy. I use the assumption of second order Fermi acceleration in the transport equation, which describes the diffusion of particles. By solving the steady-state case of the transport equation, I compute the proton spectrum due to Fermi second order acceleration and compare this analytical solution to a numerical solution provided by Dr. P. Mertsch. Analytical solutions to the transport equation are taken from Becker, Le, & Dermer and are used to further test the numerical solution. I find that the numerical solution converges to the analytical solution in all cases. Thus, we know the numerical solution accurately calculates the proton spectrum. The gamma-ray spectrum follows the proton spectrum, and will be computed in the future.

  6. Magnetospheric Multiscale Satellite Observations of Parallel Electron Acceleration in Magnetic Field Reconnection by Fermi Reflection from Time Domain Structures.

    PubMed

    Mozer, F S; Agapitov, O A; Artemyev, A; Burch, J L; Ergun, R E; Giles, B L; Mourenas, D; Torbert, R B; Phan, T D; Vasko, I

    2016-04-01

    The same time domain structures (TDS) have been observed on two Magnetospheric Multiscale Satellites near Earth's dayside magnetopause. These TDS, traveling away from the X line along the magnetic field at 4000  km/s, accelerated field-aligned ∼5  eV electrons to ∼200  eV by a single Fermi reflection of the electrons by these overtaking barriers. Additionally, the TDS contained both positive and negative potentials, so they were a mixture of electron holes and double layers. They evolve in ∼10  km of space or 7 ms of time and their spatial scale size is 10-20 km, which is much larger than the electron gyroradius (<1  km) or the electron inertial length (4 km at the observation point, less nearer the X line). PMID:27104714

  7. Modeling high-energy gamma-rays from the Fermi Bubbles

    SciTech Connect

    Splettstoesser, Megan

    2015-09-17

    In 2010, the Fermi Bubbles were discovered at the galactic center of the Milky Way. These giant gamma-ray structures, extending 55° in galactic latitude and 20°-30° in galactic longitude, were not predicted. We wish to develop a model for the gamma-ray emission of the Fermi Bubbles. To do so, we assume that second order Fermi acceleration requires charged particles and irregular magnetic fields- both of which are present in the disk of the Milky Way galaxy. By solving the steady-state case of the transport equation, I compute the proton spectrum due to second order Fermi acceleration. I compare the analytical solutions of the proton spectrum to a numerical solution. I find that the numerical solution to the transport equation converges to the analytical solution in all cases. The gamma-ray spectrum due to proton-proton interaction is compared to Fermi Bubble data (from Ackermann et al. 2014), and I find that second order Fermi acceleration is a good fit for the gamma-ray spectrum of the Fermi Bubbles at low energies with an injection source term of S = 1.5 x 10⁻¹⁰ GeV⁻¹cm⁻³yr⁻¹. I find that a non-steady-state solution to the gamma-ray spectrum with an injection source term of S = 2 x 10⁻¹⁰ GeV⁻¹cm⁻³yr⁻¹ matches the bubble data at high energies.

  8. Fermi γ-ray Pulsars: Towards the Understanding of the Pulsed High-Energy Emission

    NASA Astrophysics Data System (ADS)

    Kalapotharakos, Constantinos; Kust Harding, Alice; Kazanas, Demosthenes; Brambilla, Gabriele

    2016-04-01

    Based on the Fermi observational data we reveal meaningful constraints for the dependence of the macroscopic parameters of dissipative pulsar magnetosphere models on the corresponding spin-down rate. Our models are specifications of the FIDO (Force-Free Inside, Dissipative Outside) model where the dissipative regions are outside the light-cylinder near the equatorial current sheet. These models provide not only the field geometry but also the necessary particle accelerating electric fields. Assuming emission due to curvature radiation, the FIDO models reproduce the observed light-curve phenomenology as depicted in the radio-lag vs peak-separation diagram obtained by Fermi. A direct and detailed comparison of the model spectral properties (cutoff energies and total γ-ray luminosities) with those observed by Fermi reveals the dependence of the macroscopic conductivity parameter on the spin-down rate providing a unique insight for the understanding of the physical mechanisms behind the high-energy emission in pulsar magnetospheres.

  9. Excitation energy sharing in binary peripheral heavy ion reactions at Fermi energies

    NASA Astrophysics Data System (ADS)

    Piantelli, S.; Mangiarotti, A.; Maurenzig, P. R.; Olmi, A.; Bardelli, L.; Bini, M.; Casini, G.; Pasquali, G.; Poggi, G.; Stefanini, A. A.

    2008-12-01

    Evidence for the dependence of excitation energy sharing between two heavy remnants on the difference in the lost mass in two-body peripheral heavy ion reactions at Fermi energy is presented, based on experimental results for the reactions Nb93+Sn116, Sn116+Nb93, and Nb93+Nb93 at 38A MeV. An observable based on the experimental velocities of the heavy residues is used to select reactions with equal preevaporative masses of projectile-like fragments and target-like fragments. The excitation energy, evaluated by means of a complete average calorimetry, is found to be larger for the nucleus that finally retains a larger part of the hot interaction region.

  10. Fermi energy control of vacancy coalescence and dislocation density in melt-grown GaAs

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Gatos, H. C.; Lin, D. G.; Aoyama, T.

    1984-01-01

    A striking effect of the Fermi energy on the dislocation density in melt-grown GaAs has been discovered. Thus, a shift of the Fermi energy from 0.1 eV above to 0.2 eV below its intrinsic value (at high temperature, i.e., near 1100 K) increases the dislocation density by as much as five orders of magnitude. The Fermi energy shift was brought about by n-type and p-type doping at a level of about 10 to the 17th per cu cm (under conditions of optimum partial pressure of As, i.e., under optimum melt stoichiometry). This effect must be associated with the fact that the Fermi energy controls the charge state of vacancies (i.e., the occupancy of the associated electronic states) which in turn must control their tendency to coalesce and thus the dislocation density. It appears most likely that gallium vacancies are the critical species.

  11. A Method for Calculating Fermi Energy and Carrier Concentrations in Semiconducts

    ERIC Educational Resources Information Center

    Gaylord, T. K.; Linxwiler, J. N., Jr.

    1976-01-01

    An efficient numerical method for calculating the Fermi energy, the free electron and free hole concentrations, and the ionized impurity conductors in a semiconductor material is described. The method allows freedom with respect to type of material, temperature, and amount and type of donor and acceptor impurities. (Author/CP)

  12. Fermi LAT detection of a new high-energy transient gamma-ray source Fermi J0751-5136

    NASA Astrophysics Data System (ADS)

    Kocevski, D.; Buson, S.

    2016-08-01

    During the week from 18 July through 25 July, 2016, the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, observed gamma-ray activity from a previously unidentified transient source.

  13. Fractionally Charged Zero-Energy Single-Particle Excitations in a Driven Fermi Sea

    NASA Astrophysics Data System (ADS)

    Moskalets, Michael

    2016-07-01

    A voltage pulse of a Lorentzian shape carrying half of the flux quantum excites out of a zero-temperature Fermi sea an electron in a mixed state, which looks like a quasiparticle with an effectively fractional charge e /2 . A prominent feature of such an excitation is a narrow peak in the energy distribution function lying exactly at the Fermi energy μ . Another spectacular feature is that the distribution function has symmetric tails around μ , which results in a zero-energy excitation. This sounds improbable since at zero temperature all available states below μ are fully occupied. The resolution lies in the fact that such a voltage pulse also excites electron-hole pairs, which free some space below μ and thus allow a zero-energy quasiparticle to exist. I discuss also how to address separately electron-hole pairs and a fractionally charged zero-energy excitation in an experiment.

  14. Fermi observations of high-energy gamma-ray emission from GRB 080916C.

    PubMed

    Abdo, A A; Ackermann, M; Arimoto, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Band, D L; Barbiellini, G; Baring, M G; Bastieri, D; Battelino, M; Baughman, B M; Bechtol, K; Bellardi, F; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Blandford, R D; Bloom, E D; Bogaert, G; Bogart, J R; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burnett, T H; Burrows, D; Busetto, G; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Ceccanti, M; Cecchi, C; Celotti, A; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Costamante, L; Cutini, S; Deklotz, M; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Evans, P A; Fabiani, D; Farnier, C; Favuzzi, C; Finke, J; Fishman, G; Focke, W B; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Goldstein, A; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Haller, G; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hernando Morat, J A; Hoover, A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kavelaars, A; Kawai, N; Kelly, H; Kennea, J; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kocian, M L; Komin, N; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Landriu, D; Larsson, S; Latronico, L; Lavalley, C; Lee, B; Lee, S-H; Lemoine-Goumard, M; Lichti, G G; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marangelli, B; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Meegan, C; Mészáros, P; Meurer, C; Michelson, P F; Minuti, M; Mirizzi, N; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nelson, D; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Perri, M; Pesce-Rollins, M; Petrosian, V; Pinchera, M; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Rapposelli, E; Razzano, M; Razzaque, S; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Reyes, L C; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Segal, K N; Sgrò, C; Shimokawabe, T; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Starck, J-L; Stecker, F W; Steinle, H; Stephens, T E; Strickman, M S; Suson, D J; Tagliaferri, G; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Tenze, A; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Turri, M; Tuvi, S; Usher, T L; van der Horst, A J; Vigiani, L; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Williams, D A; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-03-27

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

  15. 75 FR 24755 - DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... quality of the human environment as documented in Federal Register (FR) notice 75 FR 20867, April 21, 2010... COMMISSION DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste... and holder of Facility Operating License No. DPR-9 issued for Enrico Fermi Atomic Power Plant, Unit...

  16. Numerically fitting the electron Fermi energy and the electron fraction in a neutron star

    NASA Astrophysics Data System (ADS)

    Li, Xing Hu; Gao, Zhi Fu; Li, Xiang Dong; Xu, Yan; Wang, Pei; Wang, Na; Peng, Qiu He

    2016-10-01

    Based on the basic definition of the Fermi energy of degenerate and relativistic electrons, we obtain a special solution to the electron Fermi energy, EF(e), and express EF(e) as a function of the electron fraction, Ye, and matter density, ρ. We obtain several useful analytical formula for Ye and ρ within classical models and the work of Dutra et al. (2014) (Type-2) in relativistic mean-field theory are obtained using numerically fitting. When describing the mean-field Lagrangian, density, we adopt the TMA parameter set, which is remarkably consistent with the updated astrophysical observations of neutron stars (NSs). Due to the importance of the density dependence of the symmetry energy, J, in nuclear astrophysics, a brief discussion on J and its slop is presented. Combining these fitting formula with boundary conditions for different density regions, we can evaluate the value of EF(e) in any given matter density, and obtain a schematic diagram of EF(e) as a continuous function of ρ. Compared with previous studies on the electron Fermi energy in other studies models, our methods of calculating EF(e) are more simple and convenient, and can be universally suitable for the relativistic electron regions in the circumstances of common neutron stars. We have deduced a general expression of EF(e) and ne, which could be used to indirectly test whether one equation of state of a NS is correct in our future studies on neutron star matter properties. Since URCA reactions are expected in the center of a massive star due to high-value electron Fermi energy and electron fraction, this study could be useful in the future studies on the NS thermal evolution.

  17. Constraining sources of ultra high energy cosmic rays using high energy observations with the Fermi satellite

    SciTech Connect

    Pe'er, Asaf; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2012-03-01

    We analyze the conditions that enable acceleration of particles to ultra-high energies, ∼ 10{sup 20} eV (UHECRs). We show that broad band photon data recently provided by WMAP, ISOCAM, Swift and Fermi satellites, yield constraints on the ability of active galactic nuclei (AGN) to produce UHECRs. The high energy (MeV–GeV) photons are produced by Compton scattering of the emitted low energy photons and the cosmic microwave background or extra-galactic background light. The ratio of the luminosities at high and low photon energies can therefore be used as a probe of the physical conditions in the acceleration site. We find that existing data excludes core regions of nearby radio-loud AGN as possible acceleration sites of UHECR protons. However, we show that giant radio lobes are not excluded. We apply our method to Cen A, and show that acceleration of protons to ∼ 10{sup 20} eV can only occur at distances ∼>100 kpc from the core.

  18. Possible Interpretations of the High Energy Cosmic Ray Electron Spectrum Measured with the Fermi Space Telescope

    SciTech Connect

    Grasso, D.; Profumo, S.; Strong, A.W.; Baldini, L.; Bellazzini, R.; Bloom, E.D.; Bregeon, J.; Di Bernardo, G.; Gaggero, D.; Giglietto, N.; Kamae, T.; Latronico, L.; Longo, F.; Mazziotta, M.N.; Moiseev, A.A.; Morselli, A.; Ormes, J.F.; Pesce-Rollins, M.; Pohl, M.; Razzano, M.; Sgro, C.; /INFN, Pisa /INFN, Pisa /NASA, Ames

    2012-04-25

    The Fermi Large Area Telescope has provided the measurement of the high energy (20 GeV to 1 TeV) cosmic ray electrons and positrons spectrum with unprecedented accuracy. This measurement represents a unique probe for studying the origin and diffusive propagation of cosmic rays as well as for looking for possible evidences of Dark Matter. In this contribution we focus mainly on astrophysical sources of cosmic ray electrons and positrons which include the standard primary and secondary diffuse galactic contribution, as well as nearby point-sources which are expected to contribute more significantly to higher energies. In this framework, we discuss possible interpretations of Fermi results in relation with other recent experimental data on energetic electrons and positrons (specifically the most recent ones reported by PAMELA, ATIC, PPB-BETS and H.E.S.S.).

  19. New Results on High Energy Cosmic Ray Electrons Observed with Fermi LAT and Their Implications on the Models of Pulsars

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    This viewgraph presentation describes, in detail, the Fermi Large Area Telescope (LAT) and GLAST Burst Monitor (GBM). Observations made from the June 11, 2008 launch and a discussion of observations made of high energy cosmic ray electrons is also presented.

  20. Beam energy spread in FERMI@elettra gun and linac induced by intrabeam scattering

    SciTech Connect

    Zholents, Alexander A; Zholents, Alexander A; Zolotorev, Max S.; Penco, Giuseppe

    2008-07-11

    Intrabeam scattering (IBS) of electrons in the pre-cathode area in the electron guns know in the literature as Boersh effect is responsible for a growth of the electron beam energy spread there. Albeit most visible within the electron gun where the electron beam density is large and the energy spread is small, the IBS acts all along the entire electron beam pass through the Linac. In this report we calculate the energy spread induced by IBS in the FERMI@elettra electron gun.

  1. Thomas-Fermi approach to density functional theory: binding energy for atomic systems

    NASA Astrophysics Data System (ADS)

    Di Rocco, H. O.; Lanzini, F.; Aguiar, J. C.

    2016-11-01

    In this work, we re-examine the Thomas-Fermi formalism as an approach to the calculation of atomic binding energies. We focus on the concept of electron density as the central magnitude, and the way in which the different contributions to the total energy can be evaluated from it. Total energies of simple atoms (Z = 2 to 10) are calculated using three different analytical approximations for the electronic density, and the results are compared with those obtained within the Hartree-Fock model.

  2. A Multiwavelength Study on the High-energy Behavior of the Fermi/LAT Pulsars

    NASA Astrophysics Data System (ADS)

    Marelli, Martino; De Luca, Andrea; Caraveo, Patrizia A.

    2011-06-01

    Using archival as well as freshly acquired data, we assess the X-ray behavior of the Fermi/Large Area Telescope γ-ray pulsars listed in the First Fermi source catalog. After revisiting the relationships between the pulsars' rotational energy losses and their X-ray and γ-ray luminosities, we focus on the distance-independent γ-to-X-ray flux ratios. When plotting our F γ/F X values as a function of the pulsars' rotational energy losses, one immediately sees that pulsars with similar energetics have F γ/F X spanning three decades. Such spread, most probably stemming from vastly different geometrical configurations of the X-ray and γ-ray emitting regions, defies any straightforward interpretation of the plot. Indeed, while energetic pulsars do have low F γ/F X values, little can be said for the bulk of the Fermi neutron stars. Dividing our pulsar sample into radio-loud and radio-quiet subsamples, we find that, on average, radio-quiet pulsars do have higher values of F γ/F X , implying an intrinsic faintness of their X-ray emission and/or a different geometrical configuration. Moreover, despite the large spread mentioned above, statistical tests show a lower scatter in the radio-quiet data set with respect to the radio-loud one, pointing to a somewhat more constrained geometry for the radio-quiet objects with respect to the radio-loud ones.

  3. Fermi energy 5f spectral weight variation in uranium alloys

    SciTech Connect

    Denlinger, J.D.; Clack, J.; Allen, J.W.

    1997-04-01

    Uranium materials display a wide range of thermal, electrical and magnetic properties, often exotic. For more than a decade there have been efforts to use photoemission spectroscopy to develop a systematic and unified understanding of the 5f electron states giving rise to this behavior. These efforts have been hampered by a paucity of systems where changes in transport properties are accompanied by substantial spectral changes, so as to allow an attempt to correlate the two kinds of properties within some model. The authors have made resonant photoemission measurements to extract the 5f spectral weight in three systems which show varying degrees of promise of permitting such an attempt, Y{sub 1{minus}x}U{sub x}Pd{sub 3}, U(Pd{sub x}Pt{sub 1{minus}x}){sub 3} and U(Pd{sub x}Cu{sub 1{minus}x}){sub 5}. They have also measured U 4f core level spectra. The 4f spectra can be modeled with some success by the impurity Anderson model (IAM), and the 5f spectra are currently being analyzed in that framework. The IAM characterizes the 5f-electrons of a single site by an f binding energy {epsilon}{sub f}, an f Coulomb interaction and a hybridization V to conduction electrons. Latent in the model are the phenomena of 5f mixed valence and the Kondo effect.

  4. Universal low-energy physics in 1D strongly repulsive multi-component Fermi gases

    NASA Astrophysics Data System (ADS)

    Jiang, Yuzhu; He, Peng; Guan, Xi-Wen

    2016-04-01

    It has been shown (Yang and You 2011 Chin. Phys. Lett. 28 020503) that at zero temperature the ground state of the one-dimensional (1D) w-component Fermi gas coincides with that of the spinless Bose gas in the limit ω \\to ∞ . This behavior was experimentally evidenced through quasi-1D tightly trapping ultracold 173Yb atoms in a recent paper (Pagano et al 2014 Nat. Phys. 10 198). However, understanding of low-temperature behavior of Fermi gases with a repulsive interaction requires spin-charge separated conformal field theories of an effective Tomonaga-Luttinger liquid and an antiferromagnetic SU(w) Heisenberg spin chain. Here we analytically derive universal thermodynamics of 1D strongly repulsive fermionic gases with SU(w) symmetry via the Yang-Yang thermodynamic Bethe ansatz method. The analytical free energy and magnetic properties of the systems at low temperature in a weak magnetic field are obtained through the Wiener-Hopf method. In particular, the free energy essentially manifests the spin-charge separated conformal field theories for high-symmetry systems with arbitrary repulsive interaction strength. We also find that the sound velocity of the Fermi gases in the large w limit coincides with that for the spinless Bose gas, whereas the spin velocity vanishes quickly as w becomes large. This indicates strong suppression of the Fermi exclusion statistics by the commutativity feature among the w-component fermions with different spin states in the Tomonaga-Luttinger liquid phase. Moreover, the equations of state and critical behavior of physical quantities at finite temperature are analytically derived in terms of the polylogarithm functions in the quantum critical region.

  5. Fermi energy tuning with light to control doping profiles during epitaxy

    SciTech Connect

    Sanders, C. E.; Beaton, D. A.; Reedy, R. C.; Alberi, K.

    2015-05-04

    The influence of light stimulation and photogenerated carriers on the process of dopant surface segregation during growth is studied in molecular beam epitaxially grown Si-doped GaAs structures. The magnitude of surface segregation decreases under illumination by above-bandgap photons, wherein splitting of the quasi Fermi levels reduces the band bending at the growth surface and raises the formation energy of compensating defects that can enhance atomic diffusion. We further show that light-stimulated epitaxy can be used as a practical approach to diminish dopant carry-forward in device structures and improve the performance of inverted modulation-doped quantum wells.

  6. Fermi Continuous Survey of the High-Energy Sky and Its Serendipitous Results

    NASA Astrophysics Data System (ADS)

    Caraveo, P. A.

    Since more than 6 years, the Fermi gamma-ray telescope operates in scanning mode yielding a new image of the gamma-ray sky every 3 h. Such wealth of high-energy data (all immediately publicly available) has unveiled thousands of gamma-ray sources, steady as well as variable, 1/3 of which lacks even a tentative associations. A number of approaches have been developed exploiting optical surveys, as well as radio observations and readily available X-ray data. The gamma-ray sky provides also plenty of surprises which call for rapid multiwavelength response.

  7. Unveiling Unidentified Fermi Sources

    NASA Astrophysics Data System (ADS)

    Zhang, Lizhong; South Pole Telescope

    2016-01-01

    The Fermi γ-ray Space Telescope (Fermi) has surveyed the entire sky at the highest-energy band of the electromagnetic spectrum. The majority of Fermi sources have counterpart identifications from multi-wavelength large-area surveys, particularly in the radio and x-ray bands. However, around 35% of Fermi sources remain unidentified, a problem exasperated by the low resolution of the telescope. Understanding the nature of unidentified Fermi sources is one of the most pressing problems in γ-ray astronomy. The South Pole Telescope (SPT) has completed a survey covering a 2500 square degrees of the southern extragalactic sky with arcminute resolution at millimeter wavelengths. The mm wavelength is the most efficient means to identify blazars and unidentified Fermi sources. Our analysis shows that the SPT point source catalog provides candidate associations for 40% of the unidentified Fermi sources, showing them to be flat-spectrum radio quasars which are extraordinarily bright at millimeter (mm) wavelengths.

  8. Fermi level pinning and the charge transfer contribution to the energy of adsorption at semiconducting surfaces

    SciTech Connect

    Krukowski, Stanisław; Kempisty, Paweł; Strak, Paweł; Sakowski, Konrad

    2014-01-28

    It is shown that charge transfer, the process analogous to formation of semiconductor p-n junction, contributes significantly to adsorption energy at semiconductor surfaces. For the processes without the charge transfer, such as molecular adsorption of closed shell systems, the adsorption energy is determined by the bonding only. In the case involving charge transfer, such as open shell systems like metal atoms or the dissociating molecules, the energy attains different value for the Fermi level differently pinned. The Density Functional Theory (DFT) simulation of species adsorption at different surfaces, such as SiC(0001) or GaN(0001) confirms these predictions: the molecular adsorption is independent on the coverage, while the dissociative process adsorption energy varies by several electronvolts.

  9. A Method for Localizing Energy Dissipation in Blazars Using Fermi Variability

    NASA Technical Reports Server (NTRS)

    Dotson, Amanda; Georganopoulos, Markos; Kazanas, Demosthenes; Perlman, Eric S.

    2013-01-01

    The distance of the Fermi-detected blazar gamma-ray emission site from the supermassive black hole is a matter of active debate. Here we present a method for testing if the GeV emission of powerful blazars is produced within the sub-pc scale broad line region (BLR) or farther out in the pc-scale molecular torus (MT) environment. If the GeV emission takes place within the BLR, the inverse Compton (IC) scattering of the BLR ultraviolet (UV) seed photons that produces the gamma-rays takes place at the onset of the Klein-Nishina regime. This causes the electron cooling time to become practically energy independent and the variation of the gamma-ray emission to be almost achromatic. If on the other hand the -ray emission is produced farther out in the pc-scale MT, the IC scattering of the infrared (IR) MT seed photons that produces the gamma-rays takes place in the Thomson regime, resulting to energy-dependent electron cooling times, manifested as faster cooling times for higher Fermi energies. We demonstrate these characteristics and discuss the applicability and limitations of our method.

  10. Fermi-LAT Observations of High-Energy Gamma-Ray Emission toward the Galactic Center

    NASA Astrophysics Data System (ADS)

    Ajello, M.; Albert, A.; Atwood, W. B.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caputo, R.; Caragiulo, M.; Caraveo, P. A.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D’Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Ferrara, E. C.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Grenier, I. A.; Guiriec, S.; Gustafsson, M.; Harding, A. K.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Karwin, C.; Knödlseder, J.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Malyshev, D.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Ritz, S.; Sánchez-Conde, M.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Takahashi, H.; Thayer, J. B.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vianello, G.; Winer, B. L.; Wood, K. S.; Zaharijas, G.; Zimmer, S.

    2016-03-01

    The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission toward the Galactic center (GC) in high-energy γ-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1–100 GeV from a 15° × 15° region about the direction of the GC. Specialized interstellar emission models (IEMs) are constructed to enable the separation of the γ-ray emissions produced by cosmic ray particles interacting with the interstellar gas and radiation fields in the Milky Way into that from the inner ∼1 kpc surrounding the GC, and that from the rest of the Galaxy. A catalog of point sources for the 15° × 15° region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy Point Source Catalog (1FIG). The spatial locations, fluxes, and spectral properties of the 1FIG sources are presented, and compared with γ-ray point sources over the same region taken from existing catalogs. After subtracting the interstellar emission and point-source contributions a residual is found. If templates that peak toward the GC are used to model the positive residual the agreement with the data improves, but none of the additional templates tried account for all of its spatial structure. The spectrum of the positive residual modeled with these templates has a strong dependence on the choice of IEM.

  11. Pulsar Astrophysics at Very High Energies in the Fermi-HAWC Era

    NASA Astrophysics Data System (ADS)

    Saz Parkinson, Pablo; Belfiore, A.; HAWC Collaboration; Fermi LAT Collaboration

    2013-04-01

    Pulsar astrophysics has received a major boost in recent years with the tremendous progress achieved in the gamma-ray regime. In the 0.1-100 GeV energy range, where pulsars emit a large fraction of their energy, the Fermi Large Area Telescope (LAT) is providing an abundance of high-quality data, greatly improving our understanding of the pulsar mechanism. In addition to detecting over 120 pulsars, the improved statistics from the LAT have enabled studies of some of the brightest pulsars with exquisite detail, up to unprecedented energies (in some cases above 25 GeV), finally bridging the gap with ground-based instruments. At very high energies (VHE, > 100 GeV), recent detections by VERITAS and MAGIC of pulsations from the Crab pose a serious challenge to pulsar models. It is unclear whether the Crab is unique in this respect, or whether VHE emission is common in other pulsars. Some models predict that such emission should smoothly connect with the standard GeV emission seen by the LAT, while others point instead to a different spectral (e.g. inverse Compton) component altogether. If present in other pulsars, such a component might be found at higher energies (> 1 TeV), but its flux is highly uncertain. Further VHE observations of pulsars are crucial to distinguish between (and constrain) the competing scenarios. The High Altitude Water Cherenkov Observatory (HAWC), currently under construction in Mexico, is well-suited to perform observations of pulsars above 100 GeV. The HAWC detector has a wide field of view, high duty cycle, and excellent sensitivity 15 times better than its predecessor Milagro), and its contemporaneous operation with Fermi should enable it to carry out the first comprehensive survey of northern-hemisphere gamma-ray pulsars above 100 GeV. I will discuss the motivations, goals, timeline, and sensitivity of HAWC searches for VHE emission from pulsars.

  12. Apparent Low-Energy Scale Invariance in Two-Dimensional Fermi Gases

    NASA Astrophysics Data System (ADS)

    Taylor, Edward; Randeria, Mohit

    2012-09-01

    Recent experiments on a 2D Fermi gas find an undamped breathing mode at twice the trap frequency over a wide range of parameters. To understand this seemingly scale-invariant behavior in a system with a scale, we derive two exact results valid across the entire Bardeen-Cooper-Schrieffer-Bose-Einstein condensation (BCS-BEC) crossover at all temperatures. First, we relate the shift of the mode frequency from its scale-invariant value to γd≡(1+2/d)P-ρ(∂P/∂ρ)s in d dimensions. Next, we relate γd to dissipation via a new low-energy bulk viscosity sum rule. We argue that 2D is special, with its logarithmic dependence of the interaction on density, and thus γ2 is small in both the BCS-BEC regimes, even though P-2ɛ/d, sensitive to the dimer binding energy that breaks scale invariance, is not.

  13. Energy of domain walls in ferrite films

    NASA Astrophysics Data System (ADS)

    Gomez, M. E.; Prieto, P.; Mendoza, A.; Guzman, O.

    2007-03-01

    MnZn Ferrite films were deposited by RF sputtering on (001) single crystal MgO substrates. AFM images show an increment in grain size with the film thickness. Grains with diameter between φ ˜ 70 and 700 nm have been observed. The coercive field Hc as a function of the grain size reaches a maximum value of about 80 Oe for φc˜ 300 nm. The existence of a multidomain structure associated with a critical grain size was identified by Magneto-optical Kerr effect technique (MOKE). The transition of the one-domain regime to the two-domain regime was observed at a critical grain size of Dc˜ 530 nm. This value agree with values predicted previously. The Jiles-Atherton model (JAM) was used to discuss the experimental hysteresis loops. The k pinning parameter obtained from JAM shows a maximum value of k/μo = 67 Am^2 for grains with Lc˜ 529 nm. The total energy per unit area E was correlated with k and D. We found a simple phenomenological relationship given by E α kD; where D is the magnetic domain width.

  14. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF MARKARIAN 421: THE MISSING PIECE OF ITS SPECTRAL ENERGY DISTRIBUTION

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Bastieri, D.; Bonamente, E.; Bouvier, A.; Brigida, M.; Bruel, P. E-mail: anita.reimer@uibk.ac.at E-mail: justin.finke@nrl.navy.mil

    2011-08-01

    We report on the {gamma}-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) {gamma}-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index {Gamma} = 1.78 {+-} 0.02 and average photon flux F(> 0.3 GeV) = (7.23 {+-} 0.16) x 10{sup -8} ph cm{sup -2} s{sup -1}. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor {approx}3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in {gamma}-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.

  15. Fermi Large Area Telescope Observations of Markarian 421: The Missing Piece of its Spectral Energy Distribution

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Escande, L.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fuhrmann, L.; Fukazawa, Y.; Fukuyama, T.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Georganopoulos, M.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Max-Moerbeck, W.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pavlidou, V.; Pearson, T. J.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Readhead, A.; Reimer, A.; Reimer, O.; Reyes, L. C.; Richards, J. L.; Ritz, S.; Roth, M.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stawarz, Ł.; Stevenson, M.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wehrle, A. E.; Winer, B. L.; Wood, K. S.; Yang, Z.; Yatsu, Y.; Ylinen, T.; Zensus, J. A.; Ziegler, M.; Fermi LAT Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Dazzi, F.; de Angelis, A.; De Cea del Pozo, E.; Delgado Mendez, C.; De Lotto, B.; De Maria, M.; De Sabata, F.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giavitto, G.; Godinovi, N.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Kranich, D.; Krause, J.; La Barbera, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; López, M.; Lorenz, E.; Majumdar, P.; Makariev, E.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, J.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, T.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Struebig, J. C.; Suric, T.; Takalo, L. O.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Vankov, H.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Villata, M.; Raiteri, C.; Aller, H. D.; Aller, M. F.; Chen, W. P.; Jordan, B.; Koptelova, E.; Kurtanidze, O. M.; Lähteenmäki, A.; McBreen, B.; Larionov, V. M.; Lin, C. S.; Nikolashvili, M. G.; Reinthal, R.; Angelakis, E.; Capalbi, M.; Carramiñana, A.

    2011-08-01

    We report on the γ-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) γ-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Γ = 1.78 ± 0.02 and average photon flux F(> 0.3 GeV) = (7.23 ± 0.16) × 10-8 ph cm-2 s-1. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor ~3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in γ-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.

  16. Enrico Fermi

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Enrico Fermi was, of all the great physicists of the 20th century, among the most respected and admired. He was respected and admired because of his contributions to both theoretical and experimental physics, because of his leadership in discovering for mankind a powerful new source of energy, and above all, because of his personal character. He was always reliable and trustworthy. He had both of his feet on the ground all the time. He had great strength, but never threw his weight around. He did not play to the gallery. He did not practise one-up-manship. He exemplified, I always believe, the perfect Confucian gentleman...

  17. Low-energy effective theory of Fermi surface coupled with U(1) gauge field in 2+1 dimensions

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Sik

    2009-10-01

    We study the low-energy effective theory for a non-Fermi-liquid state in 2+1 dimensions, where a transverse U(1) gauge field is coupled with a patch of Fermi surface with N flavors of fermion in the large N limit. In the low-energy limit, quantum corrections are classified according to the genus of the two-dimensional surface on which Feynman diagrams can be drawn without a crossing in a double line representation and all planar diagrams are important in the leading order. The emerging theory has the similar structure to the four-dimensional SU(N) gauge theory in the large N limit. Because of strong quantum fluctuations caused by the abundant low-energy excitations near the Fermi surface, low-energy fermions remain strongly coupled even in the large N limit. As a result, there are infinitely many quantum corrections that contribute to the leading frequency dependence of the Green’s function of fermion on the Fermi surface. On the contrary, the boson self-energy is not modified beyond the one-loop level and the theory is stable in the large N limit. The nonperturbative nature of the theory also shows up in correlation functions of gauge-invariant operators.

  18. Detection of a flare at Fermi LAT energies during a multiwavelength campaign on Markarian 180

    NASA Astrophysics Data System (ADS)

    Sbarra, C.; Bastieri, D.; Fermi LAT Collaboration

    2012-11-01

    We present the results of the analysis of Markarian 180 (1ES 1133+704), a BL Lac object embedded in a giant elliptical galaxy, obtained for a period of 45 day, during which multi-wavelength observations were ongoing. The multi-wavelength campaign on Mrk180 was in 2008 (from 2008-10-24 to 2008-12-08) and was coordinated by Stefan Rugamer (MAGIC Collaboration). The Mrk 180 is associated with a quasar-like object whose distance can be determined unambiguously, thanks to the measurement of absorption line that gives the redshift (z=0.046; Ulrich 1978). The source was observed by the LAT of the Fermi satellite, and it was possible to discover a change of flux, at the energies 100 MeV-300 GeV, during the multi-wavelength campaign period. Results of the analysis are shown.

  19. GAMMA-RAY BURSTS IN THE FERMI ERA: THE SPECTRAL ENERGY DISTRIBUTION OF THE PROMPT EMISSION

    SciTech Connect

    Massaro, F.; Grindlay, J. E.; Paggi, A.

    2010-05-10

    Gamma-ray bursts (GRBs) show evidence of different light curves, duration, afterglows, and host galaxies and explode within a wide redshift range. However, their spectral energy distributions (SEDs) appear to be very similar, showing a curved shape. Band et al. proposed a phenomenological description of the integrated spectral shape for the GRB prompt emission, the so-called Band function. In this Letter, we suggest an alternative scenario to explain the curved shape of GRB SEDs: the log-parabolic model. In comparison with the Band spectral shape our model is statistically favored because it fits the GRB spectra with one parameter less than the Band function and is motivated by a theoretical acceleration scenario. The new Fermi observations of GRBs will be crucial for disentangling these two models.

  20. Constraining the High-Energy Emission from Gamma-Ray Bursts with Fermi

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Harding, A. K.; Hays, E.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Guirec, S.

    2012-01-01

    We examine 288 GRBs detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field-of-view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the nuF(sub v) spectra (E(sub pk)). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E(sub pk) than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cut-off in their high-energy spectra, which if assumed to be due to gamma gamma attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  1. Constraining the High-energy Emission from Gamma-Ray Bursts with Fermi

    NASA Astrophysics Data System (ADS)

    Fermi Large Area Telescope Team; Ackermann, M.; Ajello, M.; Baldini, L.; Barbiellini, G.; Baring, M. G.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Brigida, M.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cutini, S.; D'Ammando, F.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Granot, J.; Grenier, I. A.; Grove, J. E.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hays, E.; Horan, D.; Jóhannesson, G.; Kataoka, J.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J.; McGlynn, S.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Ritz, S.; Ryde, F.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Stawarz, Łukasz; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Uehara, T.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Fermi Gamma-ray Burst Monitor Team; Connaughton, V.; Briggs, M. S.; Guirec, S.; Goldstein, A.; Burgess, J. M.; Bhat, P. N.; Bissaldi, E.; Camero-Arranz, A.; Fishman, J.; Fitzpatrick, G.; Foley, S.; Gruber, D.; Jenke, P.; Kippen, R. M.; Kouveliotou, C.; McBreen, S.; Meegan, C.; Paciesas, W. S.; Preece, R.; Rau, A.; Tierney, D.; van der Horst, A. J.; von Kienlin, A.; Wilson-Hodge, C.; Xiong, S.

    2012-08-01

    We examine 288 gamma-ray bursts (GRBs) detected by the Fermi Gamma-ray Space Telescope's Gamma-ray Burst Monitor (GBM) that fell within the field of view of Fermi's Large Area Telescope (LAT) during the first 2.5 years of observations, which showed no evidence for emission above 100 MeV. We report the photon flux upper limits in the 0.1-10 GeV range during the prompt emission phase as well as for fixed 30 s and 100 s integrations starting from the trigger time for each burst. We compare these limits with the fluxes that would be expected from extrapolations of spectral fits presented in the first GBM spectral catalog and infer that roughly half of the GBM-detected bursts either require spectral breaks between the GBM and LAT energy bands or have intrinsically steeper spectra above the peak of the νF ν spectra (E pk). In order to distinguish between these two scenarios, we perform joint GBM and LAT spectral fits to the 30 brightest GBM-detected bursts and find that a majority of these bursts are indeed softer above E pk than would be inferred from fitting the GBM data alone. Approximately 20% of this spectroscopic subsample show statistically significant evidence for a cutoff in their high-energy spectra, which if assumed to be due to γγ attenuation, places limits on the maximum Lorentz factor associated with the relativistic outflow producing this emission. All of these latter bursts have maximum Lorentz factor estimates that are well below the minimum Lorentz factors calculated for LAT-detected GRBs, revealing a wide distribution in the bulk Lorentz factor of GRB outflows and indicating that LAT-detected bursts may represent the high end of this distribution.

  2. Data cleaning in the energy domain

    NASA Astrophysics Data System (ADS)

    Akouemo Kengmo Kenfack, Hermine N.

    This dissertation addresses the problem of data cleaning in the energy domain, especially for natural gas and electric time series. The detection and imputation of anomalies improves the performance of forecasting models necessary to lower purchasing and storage costs for utilities and plan for peak energy loads or distribution shortages. There are various types of anomalies, each induced by diverse causes and sources depending on the field of study. The definition of false positives also depends on the context. The analysis is focused on energy data because of the availability of data and information to make a theoretical and practical contribution to the field. A probabilistic approach based on hypothesis testing is developed to decide if a data point is anomalous based on the level of significance. Furthermore, the probabilistic approach is combined with statistical regression models to handle time series data. Domain knowledge of energy data and the survey of causes and sources of anomalies in energy are incorporated into the data cleaning algorithm to improve the accuracy of the results. The data cleaning method is evaluated on simulated data sets in which anomalies were artificially inserted and on natural gas and electric data sets. In the simulation study, the performance of the method is evaluated for both detection and imputation on all identified causes of anomalies in energy data. The testing on utilities' data evaluates the percentage of improvement brought to forecasting accuracy by data cleaning. A cross-validation study of the results is also performed to demonstrate the performance of the data cleaning algorithm on smaller data sets and to calculate an interval of confidence for the results. The data cleaning algorithm is able to successfully identify energy time series anomalies. The replacement of those anomalies provides improvement to forecasting models accuracy. The process is automatic, which is important because many data cleaning processes

  3. Fermi energy dependence of first- and second-order Raman spectra in graphene: Kohn anomaly and quantum interference effect

    NASA Astrophysics Data System (ADS)

    Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-08-01

    Intensities of the first- and the second-order Raman spectra are calculated as a function of the Fermi energy. We show that the Kohn anomaly effect, i.e., phonon frequency renormalization, in the first-order Raman spectra originates from the phonon renormalization by the interband electron-hole excitation, whereas in the second-order Raman spectra, a competition between the interband and intraband electron-hole excitations takes place. By this calculation, we confirm the presence of different dispersive behaviors of the Raman peak frequency as a function of the Fermi energy for the first- and the second-order Raman spectra, as observed in some previous experiments. Moreover, the calculated results of the Raman intensity sensitively depend on the Fermi energy for both the first- and the second-order Raman spectra, indicating the presence of the quantum interference effect. The electron-phonon matrix element plays an important role in the intensity increase (decrease) of the combination (overtone) phonon modes as a function of the Fermi energy.

  4. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; /more authors..

    2012-09-20

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  5. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbielini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B,; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E. J.

    2012-01-01

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron- plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between approx. 6 and approx. 13 GeV with an estimated uncertainty of approx. 2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  6. Observations of gamma-ray pulsars at the highest energies with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Saz Parkinson, Pablo

    2016-07-01

    One of the most exciting developments in pulsar astrophysics in recent years has been the detection, with ground-based instruments (VERITAS, MAGIC), of pulsed gamma-ray emission from the Crab at very high energies (VHE, E>100 GeV). The Large Area Telescope (LAT) on board the Fermi satellite has detected over 160 pulsars above 100 MeV. Twenty-eight of these have been shown to emit pulsations above 10 GeV and approximately a dozen show emission above 25 GeV. While most gamma-ray pulsars are well-fitted in the GeV range by a power law with an exponential cut-off at around a few GeV, some emission models predict emission at energies above 100 GeV, either through a power-law extrapolation of the low-energy spectrum, or via a new (e.g. Inverse Compton) component. We will present results of our search for high-energy emission from LAT-detected gamma-ray pulsars using the latest Pass 8 data and discuss the prospects of finding the next VHE pulsar, providing a good target (or targets) for follow-up observations with current and future ground-based observatories, like CTA.

  7. Fermi Observations of High-energy Gamma-ray Emission from GRB 090217A

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Frailis, M.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Granot, J.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Llena Garde, M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McBreen, S.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mehault, J.; Mészáros, P.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakajima, H.; Nakamori, T.; Naumann-Godo, M.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Preece, R.; Racusin, J. L.; Rainò, S.; Rando, R.; Rau, A.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Ripken, J.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uehara, T.; Usher, T. L.; Vandenbroucke, J.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wood, K. S.; Wu, X. F.; Yamazaki, R.; Yang, Z.; Ylinen, T.; Ziegler, M.; Fermi LAT Collaboration; Fermi GBM Collaboration

    2010-07-01

    The Fermi observatory is advancing our knowledge of gamma-ray bursts (GRBs) through pioneering observations at high energies, covering more than seven decades in energy with the two on-board detectors, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Here, we report on the observation of the long GRB 090217A which triggered the GBM and has been detected by the LAT with a significance greater than 9σ. We present the GBM and LAT observations and on-ground analyses, including the time-resolved spectra and the study of the temporal profile from 8 keV up to ~1 GeV. All spectra are well reproduced by a Band model. We compare these observations to the first two LAT-detected, long bursts GRB 080825C and GRB 080916C. These bursts were found to have time-dependent spectra and exhibited a delayed onset of the high-energy emission, which are not observed in the case of GRB 090217A. We discuss some theoretical implications for the high-energy emission of GRBs.

  8. Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles

    NASA Astrophysics Data System (ADS)

    KM3NeT Collaboration; Adrián-Martínez, S.; Ageron, M.; Aguilar, J. A.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.; Ameli, F.; Anassontzis, E. G.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A.; Aubert, J.-J.; Bakker, R.; Ball, A. E.; Barbarino, G.; Barbarito, E.; Barbato, F.; Baret, B.; de Bel, M.; Belias, A.; Bellou, N.; Berbee, E.; Berkien, A.; Bersani, A.; Bertin, V.; Beurthey, S.; Biagi, S.; Bigongiari, C.; Bigourdan, B.; Billault, M.; de Boer, R.; Boer Rookhuizen, H.; Bonori, M.; Borghini, M.; Bou-Cabo, M.; Bouhadef, B.; Bourlis, G.; Bouwhuis, M.; Bradbury, S.; Brown, A.; Bruni, F.; Brunner, J.; Brunoldi, M.; Busto, J.; Cacopardo, G.; Caillat, L.; Calvo Díaz-Aldagalán, D.; Calzas, A.; Canals, M.; Capone, A.; Carr, J.; Castorina, E.; Cecchini, S.; Ceres, A.; Cereseto, R.; Chaleil, Th.; Chateau, F.; Chiarusi, T.; Choqueuse, D.; Christopoulou, P. E.; Chronis, G.; Ciaffoni, O.; Circella, M.; Cocimano, R.; Cohen, F.; Colijn, F.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Costa, M.; Coyle, P.; Craig, J.; Creusot, A.; Curtil, C.; D'Amico, A.; Damy, G.; De Asmundis, R.; De Bonis, G.; Decock, G.; Decowski, P.; Delagnes, E.; De Rosa, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drogou, J.; Drouhin, D.; Druillole, F.; Drury, L.; Durand, D.; Durand, G. A.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Espinosa, V.; Etiope, G.; Favali, P.; Felea, D.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fotiou, A.; Fritsch, U.; Gajanana, D.; Garaguso, R.; Gasparini, G. P.; Gasparoni, F.; Gautard, V.; Gensolen, F.; Geyer, K.; Giacomelli, G.; Gialas, I.; Giordano, V.; Giraud, J.; Gizani, N.; Gleixner, A.; Gojak, C.; Gómez-González, J. P.; Graf, K.; Grasso, D.; Grimaldi, A.; Groenewegen, R.; Guédé, Z.; Guillard, G.; Guilloux, F.; Habel, R.; Hallewell, G.; van Haren, H.; van Heerwaarden, J.; Heijboer, A.; Heine, E.; Hernández-Rey, J. J.; Herold, B.; Hillebrand, T.; van de Hoek, M.; Hogenbirk, J.; Hößl, J.; Hsu, C. C.; Imbesi, M.; Jamieson, A.; Jansweijer, P.; de Jong, M.; Jouvenot, F.; Kadler, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Karolak, M.; Katz, U. F.; Kavatsyuk, O.; Keller, P.; Kiskiras, Y.; Klein, R.; Kok, H.; Kontoyiannis, H.; Kooijman, P.; Koopstra, J.; Kopper, C.; Korporaal, A.; Koske, P.; Kouchner, A.; Koutsoukos, S.; Kreykenbohm, I.; Kulikovskiy, V.; Laan, M.; La Fratta, C.; Lagier, P.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Leisos, A.; Lenis, D.; Leonora, E.; Le Provost, H.; Lim, G.; Llorens, C. D.; Lloret, J.; Löhner, H.; Lo Presti, D.; Lotrus, P.; Louis, F.; Lucarelli, F.; Lykousis, V.; Malyshev, D.; Mangano, S.; Marcoulaki, E. C.; Margiotta, A.; Marinaro, G.; Marinelli, A.; Mariş, O.; Markopoulos, E.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Marvaldi, J.; Masullo, R.; Maurin, G.; Migliozzi, P.; Migneco, E.; Minutoli, S.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Monmarthe, E.; Morganti, M.; Mos, S.; Motz, H.; Moudden, Y.; Mul, G.; Musico, P.; Musumeci, M.; Naumann, Ch.; Neff, M.; Nicolaou, C.; Orlando, A.; Palioselitis, D.; Papageorgiou, K.; Papaikonomou, A.; Papaleo, R.; Papazoglou, I. A.; Păvălaş, G. E.; Peek, H. Z.; Perkin, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Priede, I. G.; Psallidas, A.; Rabouille, C.; Racca, C.; Radu, A.; Randazzo, N.; Rapidis, P. A.; Razis, P.; Real, D.; Reed, C.; Reito, S.; Resvanis, L. K.; Riccobene, G.; Richter, R.; Roensch, K.; Rolin, J.; Rose, J.; Roux, J.; Rovelli, A.; Russo, A.; Russo, G. V.; Salesa, F.; Samtleben, D.; Sapienza, P.; Schmelling, J.-W.; Schmid, J.; Schnabel, J.; Schroeder, K.; Schuller, J.-P.; Schussler, F.; Sciliberto, D.; Sedita, M.; Seitz, T.; Shanidze, R.; Simeone, F.; Siotis, I.; Sipala, V.; Sollima, C.; Sparnocchia, S.; Spies, A.; Spurio, M.; Staller, T.; Stavrakakis, S.; Stavropoulos, G.; Steijger, J.; Stolarczyk, Th.; Stransky, D.; Taiuti, M.; Taylor, A.; Thompson, L.; Timmer, P.; Tonoiu, D.; Toscano, S.; Touramanis, C.; Trasatti, L.; Traverso, P.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Urbano, F.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Viola, S.; Vivolo, D.; Wagner, S.; Werneke, P.; White, R. J.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zhukov, V.; Zonca, E.; Zornoza, J. D.; Zúñiga, J.

    2013-02-01

    A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E-2 spectrum from two large areas, spanning 50° above and below the Galactic centre (the "Fermi bubbles"). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km3 neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km3 of instrumented volume. The effect of a possible lower cutoff is also considered.

  9. Anatomy of bond formation. Bond length dependence of the extent of electron sharing in chemical bonds from the analysis of domain-averaged Fermi holes.

    PubMed

    Ponec, Robert; Cooper, David L

    2007-01-01

    We demonstrate that domain-average Fermi hole (DAFH) analysis, which has previously been used at the Hartree-Fock level, remains useful after the proper introduction of electron correlation. We perform a systematic investigation of the variation of the picture of bonding with increasing bond length in simple diatomic molecules such as N2 and LiH. Alongside values of a shared-electron distribution index (SEDI), this analysis provides further insight into the geometry dependence of the extent of electron sharing in polar and non-polar systems. We also use DAFH analysis, with correlated wave functions, to evaluate the (potential) multicentre bonding in the electron-deficient and electron-rich molecules CH2Li2 and CH2N2, respectively.

  10. Self-energy of an impurity in an ideal Fermi gas to second order in the interaction strength

    NASA Astrophysics Data System (ADS)

    Trefzger, Christian; Castin, Yvan

    2014-09-01

    We study in three dimensions the problem of a spatially homogeneous zero-temperature ideal Fermi gas of spin-polarized particles of mass m perturbed by the presence of a single distinguishable impurity of mass M. The interaction between the impurity and the fermions involves only the partial s wave through the scattering length a and has negligible range b compared to the inverse Fermi wave number 1/kF of the gas. Through the interactions with the Fermi gas the impurity gives birth to a quasiparticle, which will be here a Fermi polaron (or more precisely a monomeron). We consider the general case of an impurity moving with wave vector K ≠0: Then the quasiparticle acquires a finite lifetime in its initial momentum channel because it can radiate particle-hole pairs in the Fermi sea. A description of the system using a variational approach, based on a finite number of particle-hole excitations of the Fermi sea, then becomes inappropriate around K =0. We rely thus upon perturbation theory, where the small and negative parameter kFa→0- excludes any branches other than the monomeronic one in the ground state (as, e.g., the dimeronic one), and allows us a systematic study of the system. We calculate the impurity self-energy Σ(2)(K,ω) up to second order included in a. Remarkably, we obtain an analytical explicit expression for Σ(2)(K,ω), allowing us to study its derivatives in the plane (K,ω). These present interesting singularities, which in general appear in the third-order derivatives ∂3Σ(2)(K,ω). In the special case of equal masses, M =m, singularities appear already in the physically more accessible second-order derivatives ∂2Σ(2)(K,ω); using a self-consistent heuristic approach based on Σ(2) we then regularize the divergence of the second-order derivative ∂K2ΔE(K) of the complex energy of the quasiparticle found in Trefzger and Castin [Europhys. Lett. 104, 50005 (2013), 10.1209/0295-5075/104/50005] at K =kF, and we predict an interesting scaling

  11. Characterizing high-energy light curves of Fermi/Lat GRBs

    SciTech Connect

    Gillette, Jarred

    2015-08-21

    A systematic analysis of the light curves of Gamma-Ray Burst (GRBs) with redshift and detected at high-energy (> 100 MeV) by Fermi/LAT has never been done before our work, because there were only a handful of detections. Now we have 20 of those, which we can use to characterize the GRBs in their rest frame. We compared a characteristic decay times Tc of GRBs with redshifts using the new “Pass 8” data, and used a Crystal Ball function to parametrize GRB characteristics. An unexpected anti-correlation between Tc and the peak flux was observed. This means that brighter peaked GRBs have shorter durations. There is also no correlation between the Tc and the decay index, which makes the anti-correlation with brightness more clear. This results appears to be consistent with the External Shock model, which is one of the competing hypothesis on the origin of the high-energy emission. We did not observe any bimodality, which is seen in GRBs at lower energies.

  12. Characterizing high-energy light curves of Fermi/LatGRBs - Oral Presentation

    SciTech Connect

    Gillette, Jarred

    2015-08-23

    A systematic analysis of the light curves of Gamma-Ray Burst (GRBs) with redshift and detected at high-energy (> 100 MeV) by Fermi/LAT has never been done before our work, because there were only a handful of detections. Now we have 20 of those, which we can use to characterize the GRBs in their rest frame. We compared a characteristic decay times Tc of GRBs with redshifts using the new "Pass8" data, and used a Crystal Ball function to parametrize GRB characteristics. An unexpected anti-correlation between Tc and the peak flux was observed. This means that brighter peaked GRBs have shorter durations. There is also no correlation between Tc and the decay index, which is one of the competing hypothesis on the origin of the high-energy emission. We did not observe any bimodality, which is seen in GRBs at lower energies.

  13. FERMI CONSTRAINS DARK-MATTER ORIGIN OF HIGH-ENERGY POSITRON ANOMALY

    SciTech Connect

    Pohl, Martin; Eichler, David E-mail: eichler@bgumail.bgu.ac.il

    2010-03-20

    Fermi measurements of the high-latitude {gamma}-ray background strongly constrain a decaying-dark-matter origin for the 1-100 GeV Galactic positron anomaly measured with PAMELA. Inverse Compton scattering of the microwave background by the emergent positrons produces a bump in the diffuse 100-200 MeV {gamma}-ray background that would protrude from the observed background at these energies. The positrons are thus constrained to emerge from the decay process at a typical energy between {approx}100 GeV and {approx}250 GeV. By considering only {gamma}-ray emission of the excess positrons and electrons, we derive a minimum diffuse {gamma}-ray flux that, apart from the positron spectrum assumed, is independent of the actual decay modes. Any {gamma}-rays produced directly by the dark-matter decay leads to an additional signal that makes the observational limits more severe. A similar constraint on the energy of emergent positrons from annihilation in dark-matter substructures is argued to exist, according to recent estimates of enhancement in low-mass dark-matter substructures, and improved simulations of such substructure will further sharpen this constraint.

  14. Quantum shock waves and domain walls in the real-time dynamics of a superfluid unitary Fermi gas.

    PubMed

    Bulgac, Aurel; Luo, Yuan-Lung; Roche, Kenneth J

    2012-04-13

    We show that in the collision of two superfluid fermionic atomic clouds one observes the formation of quantum shock waves as discontinuities in the number density and collective flow velocity. Domain walls, which are topological excitations of the superfluid order parameter, are also generated and exhibit abrupt phase changes by π and slower motion than the shock waves. The domain walls are distinct from the gray soliton train or number density ripples formed in the wake of the shock waves and observed in the collisions of superfluid bosonic atomic clouds. Domain walls with opposite phase jumps appear to collide elastically.

  15. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    NASA Astrophysics Data System (ADS)

    Giroletti, M.; Massaro, F.; D'Abrusco, R.; Lico, R.; Burlon, D.; Hurley-Walker, N.; Johnston-Hollitt, M.; Morgan, J.; Pavlidou, V.; Bell, M.; Bernardi, G.; Bhat, R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Ewall-Rice, A.; Emrich, D.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hindson, L.; Kaplan, D. L.; Kasper, J. C.; Kratzenberg, E.; Feng, L.; Jacobs, D.; Kudryavtseva, N.; Lenc, E.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2016-04-01

    Context. Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. Aims: We characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. Methods: We cross-correlated the 6100 deg2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. Results: We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120-180 MHz) blazar spectral index is ⟨αlow⟩ = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Conclusions: Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population. Tables 5-7 are only available at the CDS via anonymous ftp to http

  16. F IASCO: a multidetector optimized for semiperipheral heavy ion collisions at Fermi energies

    NASA Astrophysics Data System (ADS)

    Bini, M.; Casini, G.; Olmi, A.; Poggi, G.; Stefanini, A. A.; Bardelli, L.; Bartoli, A.; Bidini, L.; Coppi, C.; Del Carmine, P.; Mangiarotti, A.; Maurenzig, P. R.; Pasquali, G.; Piantelli, S.; Poggi, S.; Taccetti, N.; Vanzi, E.

    2003-12-01

    The F IASCO multidetector is a low-threshold apparatus, optimized for the investigation of peripheral to semi-central collisions in heavy ion reactions at Fermi energies. It consists of three types of detectors. The first detector layer is a shell of 24 position-sensitive Parallel Plate Avalanche Detectors (PPADs), covering about 70% of the forward hemisphere, which measure the velocity vectors of the heavy ( Z≳10) reaction products. Below and around the grazing angle, behind the most forward PPADs, there are 96 Δ E-E silicon telescopes (with thickness of 200 and 500 μm, respectively); they are mainly used to measure the energy of the projectile-like fragment and to identify its charge and, via the time-of-flight of the PPADs, also its mass. Finally, behind most of the PPADs there are 158 (or 182, depending on the configuration) scintillation detectors, mostly of the phoswich type, which cover 25-30% of the forward hemisphere; they identify both light charged particles ( Z=1,2) and intermediate mass fragments (3⩽ Z≲20), measuring also their time-of-flight.

  17. PRESTO, the on-line photon energy spectrometer at FERMI: design, features and commissioning results.

    PubMed

    Svetina, Cristian; Cocco, Daniele; Mahne, Nicola; Raimondi, Lorenzo; Ferrari, Eugenio; Zangrando, Marco

    2016-01-01

    Measurement of the emission wavelength and the spectral content of the photon radiation is essential information for both machine and experimental physicists at a free-electron laser (FEL) user facility. Knowledge of the photon beam spectral properties is needed during the machine optimization and for performing machine studies (i.e. monitoring the change of the FEL output as a function of the machine parameters). The experimentalists, on the other hand, need to know the photon beam spectral distribution of the source, shot to shot, to discriminate the acquired data. Consequently, the main requirement for the instrument, supposed to obtain this information, is the capability of working on-line and shot-to-shot, with minimal perturbation of the beam delivered to the experimental stations. Starting from the grating fundamental equations, the conceptual design of the FERMI Pulse-Resolved Energy Spectrometer: Transparent and On-line (PRESTO) is presented, explaining the optical design in detail. The performance of PRESTO, in terms of resolving power, efficiency and spectral response, is also discussed. Finally, some useful features beyond the usual measurement of the energy spectrum are reported, as they have been routinely used by both machine and experimental physicists. PMID:26698043

  18. Isospin transport in 84Kr+112,124Sn reactions at Fermi energies

    NASA Astrophysics Data System (ADS)

    Piantelli, S.; Casini, G.; Olmi, A.; Barlini, S.; Bini, M.; Carboni, S.; Maurenzig, P. R.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Bougault, R.; Le Neindre, N.; Lopez, O.; Parlog, M.; Vient, E.; Bonnet, E.; Chbihi, A.; Frankland, J. D.; Gruyer, D.; Rosato, E.; Spadaccini, G.; Vigilante, M.; Borderie, B.; Rivet, M. F.; Bruno, M.; Morelli, L.; Cinausero, M.; Degerlier, M.; Gramegna, F.; Marchi, T.; Alba, R.; Maiolino, C.; Santonocito, D.; Kozik, T.; Twarog, T.

    2014-03-01

    Isospin transport phenomena in dissipative heavy ion collisions have been investigated at Fermi energies with a beam of 84Kr at 35AMeV. A comparison of the /Z of light and medium products forward-emitted in the centre of mass frame when the beam impinges on two different targets, the n-poor 112Sn and the n-rich 124Sn, is presented. Data were collected by means of a three-layer telescope with very good performances in terms of mass identification (full isotopic resolution up to Z ~ 20 for ions punching through the first detector layer) built by the FAZIA Collaboration and located just beyond the grazing angle for both reactions. The /Z of the products detected when the n-rich target is used is always higher than that associated to the n-poor one; since the detector was able to measure only fragments coming from the QuasiProjectile decay and/or neck emission, the observed behaviour can be ascribed to the isospin diffusion process, driven by the isospin gradient between QuasiProjectile and QuasiTarget. Moreover, for light fragments the /Z as a function of the lab velocity of the fragment is observed to increase when we move from the QuasiProjectile velocity to the centre of mass (neck zone). This effect can be interpreted as an evidence of isospin drift driven by the density gradient between the QuasiProjectile zone (at normal density) and the more diluted neck zone.

  19. Fermi at Six Months

    NASA Technical Reports Server (NTRS)

    Hays, Elizabeth

    2009-01-01

    An overview of the Fermi Gamma-ray Space Telescope's first 6 months in operation is provided. The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy rage 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. It contains a Large Area Telescope capable of viewing the entire sky every 3 hours and a Gamma-ray Burst Monitor for viewing the entire unocculted sky. Since its launch on June 11, 2008 Fermi has provided information on pulsars, gamma ray bursts, relativistic jets, the active galactic nucleus, and a globular star cluster. This presentation describes Fermi's development, mission, instruments and recent findings.

  20. Kinetic-energy density functionals with nonlocal terms with the structure of the Thomas-Fermi functional

    SciTech Connect

    Garcia-Aldea, David; Alvarellos, J. E.

    2007-11-15

    We study two families of approximate nonlocal kinetic-energy functionals that include a full von Weizsaecker functional, and that have nonlocal terms with the mathematical structure of the Thomas-Fermi functional. The functionals recover the exact kinetic energy and the linear response function of a homogeneous electron system. The first family is a generalization of a successful previous nonlocal functional. The second family is proposed in the paper, and is designed to obtain functionals suitable for use in both localized and extended systems. Furthermore, this family has been designed to be evaluated by a single integration in momentum space when a constant reference density is used. The atomic total kinetic energies are in good agreement with the exact calculations. The kinetic-energy density corresponding to each functional has been assessed to control its quality. The results show that, in general, these functionals behave better than both the Thomas-Fermi and all semilocal generalized gradient approximation functionals when describing the kinetic-energy density of atoms, providing a better description of the nonlocal effects of the kinetic energy of electron systems.

  1. Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Nataf, G. F.; Grysan, P.; Guennou, M.; Kreisel, J.; Martinotti, D.; Rountree, C. L.; Mathieu, C.; Barrett, N.

    2016-09-01

    The understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM – electrons reflected) to Low Energy Electron Microscopy (LEEM – electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field.

  2. Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Nataf, G. F.; Grysan, P.; Guennou, M.; Kreisel, J.; Martinotti, D.; Rountree, C. L.; Mathieu, C.; Barrett, N.

    2016-09-01

    The understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM - electrons reflected) to Low Energy Electron Microscopy (LEEM - electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field.

  3. Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate

    PubMed Central

    Nataf, G. F.; Grysan, P.; Guennou, M.; Kreisel, J.; Martinotti, D.; Rountree, C. L.; Mathieu, C.; Barrett, N.

    2016-01-01

    The understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM – electrons reflected) to Low Energy Electron Microscopy (LEEM – electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field. PMID:27608605

  4. Low energy electron imaging of domains and domain walls in magnesium-doped lithium niobate.

    PubMed

    Nataf, G F; Grysan, P; Guennou, M; Kreisel, J; Martinotti, D; Rountree, C L; Mathieu, C; Barrett, N

    2016-01-01

    The understanding of domain structures, specifically domain walls, currently attracts a significant attention in the field of (multi)-ferroic materials. In this article, we analyze contrast formation in full field electron microscopy applied to domains and domain walls in the uniaxial ferroelectric lithium niobate, which presents a large 3.8 eV band gap and for which conductive domain walls have been reported. We show that the transition from Mirror Electron Microscopy (MEM - electrons reflected) to Low Energy Electron Microscopy (LEEM - electrons backscattered) gives rise to a robust contrast between domains with upwards (Pup) and downwards (Pdown) polarization, and provides a measure of the difference in surface potential between the domains. We demonstrate that out-of-focus conditions of imaging produce contrast inversion, due to image distortion induced by charged surfaces, and also carry information on the polarization direction in the domains. Finally, we show that the intensity profile at domain walls provides experimental evidence for a local stray, lateral electric field. PMID:27608605

  5. THE FERMI BUBBLE AS A SOURCE OF COSMIC RAYS IN THE ENERGY RANGE >10{sup 15} eV

    SciTech Connect

    Cheng, K.-S.; Chernyshov, D. O.; Dogiel, V. A.; Ko, C.-M.; Wang, Y.; Ip, W.-H.

    2012-02-20

    The Fermi Large Area Telescope has recently discovered two giant gamma-ray bubbles that extend north and south of the Galactic center with diameters and heights of the order of H {approx} 10 kpc. We suggest that the periodic star capture processes by the Galactic supermassive black hole Sgr A*, with a capture rate of {tau}{sup -1}{sub cap} {approx} 3 Multiplication-Sign 10{sup -5} yr{sup -1} and an energy release of W {approx} 3 Multiplication-Sign 10{sup 52} erg per capture, can result in hot plasma injecting into the Galactic halo at a wind velocity of u {approx} 10{sup 8} cm s{sup -1}. The periodic injection of hot plasma can produce a series of shocks. Energetic protons in the bubble are re-accelerated when they interact with these shocks. We show that for energy larger than E > 10{sup 15} eV, the acceleration process can be better described by the stochastic second-order Fermi acceleration. We propose that hadronic cosmic rays (CRs) within the 'knee' of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Re-acceleration of these particles in the Fermi Bubble produces CRs beyond the knee. With a mean CR diffusion coefficient in this energy range in the bubble D{sub B} {approx} 3 Multiplication-Sign 10{sup 30} cm{sup 2} s{sup -1}, we can reproduce the spectral index of the spectrum beyond the knee and within it. The conversion efficiency from shock energy of the bubble into CR energy is about 10%. This model provides a natural explanation of the observed CR flux, spectral indices, and matching of spectra at the knee.

  6. The Search for High Energy Extended Emission by Fermi-LAT from Swift-Localized Gamma-Ray Bursts

    SciTech Connect

    Chiang, J.; Racusin, J.L.; /NASA, Goddard

    2012-05-01

    The brighter Fermi-LAT bursts have exhibited emission at energies >0.1 GeV that persists as late as {approx}2 ks after the prompt phase has nominally ended. This so-called 'extended emission' could arise from continued activity of the prompt burst mechanism or it could be the start of a high energy afterglow component. The high energy extended emission seen by the LAT has typically followed a t{sup -}{gamma} power-law temporal decay where {gamma} {approx} 1.2-1.7 and has shown no strong indication of spectral evolution. In contrast, the prompt burst emission generally displays strong spectral variability and more complex temporal changes in the LAT band. This differing behavior suggests that the extended emission likely corresponds to an early afterglow phase produced by an external shock. In this study, we look for evidence of high energy extended emission from 145 Swift-localized GRBs that have occurred since the launch of Fermi. A majority of these bursts were either outside of the LAT field-of-view or were otherwise not detected by the LAT during the prompt phase. However, because of the scanning operation of the Fermi satellite, the long-lived extended emission of these bursts may be detectable in the LAT data on the {approx}few ks time scale. We will look for emission from individual bursts and will perform a stacking analysis in order to set bounds on this emission for the sample as a whole. The detection of such emission would have implications for afterglow models and for the overall energy budget of GRBs.

  7. Hydrogen bonding induced enhancement of Fermi resonances: ultrafast vibrational energy flow dynamics in aniline-d₅.

    PubMed

    Costard, Rene; Greve, Christian; Fidder, Henk; Nibbering, Erik T J

    2015-02-12

    With hydrogen bonding of the amino group of aniline-d5 we can identify the roles of Fermi enhanced combination and overtone states in intramolecular vibrational re-distribution (IVR) pathways for N-H stretching excitations. Using linear Fourier transform infrared (FT-IR) spectroscopy, ultrafast one- and two-color IR-pump-IR-probe spectroscopy, and femtosecond two-dimensional IR spectroscopy, we can identify the primary accepting modes for N-H stretching excitations. In particular, a key role is played by the δ(NH2) bending degree of freedom, either via its δ = 2 overtone state or via a combination state with the ν(C═C) ring stretching mode. No significant transient population in these Fermi enhanced combination/overtone states can be observed, a consequence of similar decay rates of these Fermi enhanced combination/overtone states and of the N-H stretching states. A similar magnitude of the transient response of the two fingerprint modes regardless of direct excitation of the Fermi enhanced combination/overtone levels or of the N-H stretching states suggests an underlying coupling mechanism facilitating common IVR pathways. This mechanism is expected to be of general importance for other organic compounds with hydrogen-bonded amino groups, including DNA bases.

  8. Exploring the role of the 3-center-4-electron bond in hypervalent λ(3)-iodanes using the methodology of domain averaged Fermi holes.

    PubMed

    Pinto de Magalhães, Halua; Lüthi, Hans Peter; Bultinck, Patrick

    2016-01-14

    Hypervalent iodine compounds, in particular λ(3)-iodanes, have become important reagents in organic synthesis for the electrophilic transfer of substituents to arenes and other nucleophiles. The structure and reactivity of these compounds are usually described based on a 3-center-4-electron bond model, involving the iodine central atom and its two trans substituents. The goal of this computational study is to explore Fermi correlation in view of a more advanced description of bonding in these compounds. For that matter, we apply the analysis of Domain Averaged Fermi Holes (DAFH). The DAFH analysis reveals a relationship between the occurrence of multicenter bonding and structural parameters which cannot be easily observed based on simple MO theory. Whereas for λ(3)-iodanes carrying electron-rich ligands pairing of electrons over three centers is indeed observed, compounds with electron-withdrawing substituents fall into a different category: the pairing of electrons is restricted to extend over two centers only, thus challenging the multicenter bonding picture in this case. Accordingly, a drastic reduction of the DAFH three center bond index is observed. The establishment of the multicenter bond in λ(3)-iodanes is driven by a pseudo Jahn-Teller (PJT) effect, whose extent is tightly coupled to the reactivity of the corresponding compound. The PJT stabilization scales with the degree of s-p hybridization of the central atom, which, in return, depends on the electron-withdrawing power of the ligands in the trans position. The response of the multicenter bond to the iodine "ligand field" can be expressed quantitatively in terms of DAFH bond indices. These show, for example, that the activation of the reacting hypervalent species by means of protonation results in a weaker 3-center-4-electron bond, thus making the reagent more reactive. In this work we explain a number of experimentally known facts concerning the reactivity of these compounds. We also show that the

  9. Remembering Fermi

    SciTech Connect

    Cronin, James

    2005-03-30

    A combination of the discovery of nuclear fission and the circumstances of the 2nd World War brought Enrico Fermi to Chicago, where he led the team that produced the first controlled, self-sustained nuclear chain reaction. Following the war in 1945 Chancellor Hutchins, William Zachariasen, and Walter Bartky convinced Fermi to accept a professorship at the University of Chicago, where the Institute for Nuclear Studies was established. Fermi served as the leading figure in surely the greatest collection of scientists the world has ever seen. Fermi's tenure at Chicago was cut short by his death in 1954. My talk will concentrate on the years 1945-54. Examples of his research notebooks, his speeches, his teaching, and his correspondence will be discussed.

  10. Nanoscale domain patterns and a concept for an energy harvester

    NASA Astrophysics Data System (ADS)

    Renuka Balakrishna, Ananya; Huber, John E.

    2016-10-01

    The current work employs a phase-field model to test the stability of nanoscale periodic domain patterns, and to explore the application of one pattern in an energy harvester device. At first, the stability of several periodic domain patterns with in-plane polarizations is tested under stress-free and electric field-free conditions. It is found that simple domain patterns with stripe-like features are stable, while patterns with more complex domain configurations are typically unstable at the nanoscale. Upon identifying a stable domain pattern with suitable properties, a conceptual design of a thin film energy harvester device is explored. The harvester is modeled as a thin ferroelectric film bound to a substrate. In the initial state a periodic stripe domain pattern with zero net charge on the top electrode is modeled. On bending the substrate, a mechanical strain is induced in the film, causing polarized domains to undergo ferroelectric switching and thus generate electrical energy. The results demonstrate the working cycle of a conceptual energy harvester which, on operating at kHz frequencies, such as from vibrations in the environment, could produce an area power density of about 40 W m-2.

  11. A new type of vanadium carbide V5C3 and its hardening by tuning Fermi energy

    PubMed Central

    Xing, Wandong; Meng, Fanyan; Yu, Rong

    2016-01-01

    Transition metal compounds usually have various stoichiometries and crystal structures due to the coexistence of metallic, covalent, and ionic bonds in them. This flexibility provides a lot of candidates for materials design. Taking the V-C binary system as an example, here we report the first-principles prediction of a new type of vanadium carbide, V5C3, which has an unprecedented stoichiometry in the V-C system, and is energetically and mechanically stable. The material is abnormally much harder than neighboring compounds in the V-C phase diagram, and can be further hardened by tuning the Fermi energy. PMID:26928719

  12. A new type of vanadium carbide V5C3 and its hardening by tuning Fermi energy.

    PubMed

    Xing, Wandong; Meng, Fanyan; Yu, Rong

    2016-03-01

    Transition metal compounds usually have various stoichiometries and crystal structures due to the coexistence of metallic, covalent, and ionic bonds in them. This flexibility provides a lot of candidates for materials design. Taking the V-C binary system as an example, here we report the first-principles prediction of a new type of vanadium carbide, V5C3, which has an unprecedented stoichiometry in the V-C system, and is energetically and mechanically stable. The material is abnormally much harder than neighboring compounds in the V-C phase diagram, and can be further hardened by tuning the Fermi energy.

  13. A new type of vanadium carbide V5C3 and its hardening by tuning Fermi energy

    NASA Astrophysics Data System (ADS)

    Xing, Wandong; Meng, Fanyan; Yu, Rong

    2016-03-01

    Transition metal compounds usually have various stoichiometries and crystal structures due to the coexistence of metallic, covalent, and ionic bonds in them. This flexibility provides a lot of candidates for materials design. Taking the V-C binary system as an example, here we report the first-principles prediction of a new type of vanadium carbide, V5C3, which has an unprecedented stoichiometry in the V-C system, and is energetically and mechanically stable. The material is abnormally much harder than neighboring compounds in the V-C phase diagram, and can be further hardened by tuning the Fermi energy.

  14. Fermi LAT Results and Perspectives in Measurements of High Energy Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    Real breakthrough during last 1-1.5 years in cosmic ray electrons: ATIC, HESS, Pamela, and finally Fermi-LAT. New quality data have made it possible to start quantitative modeling. With the new data more puzzles than before on CR electrons origin. Need "multi-messenger" campaign: electrons, positrons, gammas, X-ray, radio, neutrino... It is viable that we are dealing with at least two distinct mechanisms of "primary" electron (both signs) production: a softer spectrum of negative electrons, and a harder spectrum of both e(+)+e(-). Exotic (e.g. DM) origin is not ruled out. Upper limits on CR electrons anisotropy are set. Good perspectives to have the Fermi LAT results on proton spectrum and positron fraction.

  15. Millisecond Pulsars at Gamma-Ray Energies: Fermi Detections and Implications

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the discovery of new populations of radio quiet and millisecond gamma-ray pulsars. The Fermi Large Area Telescope has so far discovered approx.20 new gamma-ray millisecond pulsars (MSPs) by both folding at periods of known radio MSPs or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -30 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. Many of the newly discovered MSPs may be suitable for addition to the collection of very stable MSPs used for gravitational wave detection. Detection of such a large number of MSPs was surprising, given that most have relatively low spin-down luminosity and surface field strength. I will discuss their properties and the implications for pulsar particle acceleration and emission, as well as their potential contribution to gamma-ray backgrounds and Galactic cosmic rays.

  16. Lederman wins Fermi award

    SciTech Connect

    Not Available

    1993-09-01

    Leon Lederman has received the 1992 Enrico Fermi Award, presented in recognition of a lifetime of achievement in nuclear energy. This article briefly details Lederman's award-winning work (1988 Nobel Proze in Physics) in high-energy physics -- his discovery of the upsilon particle and the muon neutrino. His leadership in the creation of the superconducting accelerator at Fermilab and his leadership in science education of society are also cited with respect to the Enrico Fermi Award. Specifics on the award and its presentation are included in this article.

  17. A New View of the High Energy Gamma-ray Sky with the Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2010-01-01

    This slide presentation reviews some of the findings that have been made possible by the use of the Fermi Gamma-ray Space Telescope. It describes the current status of the Fermi Telescope and reviews some of the science highlights.

  18. FermiGrid

    SciTech Connect

    Yocum, D.R.; Berman, E.; Canal, P.; Chadwick, K.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; /Fermilab

    2007-05-01

    As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.

  19. Sharper Fermi LAT Images

    NASA Astrophysics Data System (ADS)

    Portillo, Stephen; Finkbeiner, Douglas P.

    2015-01-01

    The Large Area Telescope on the Fermi Gamma-ray Space Telescope has a point spread function with large tails, consisting of events affected by tracker ineffiencies, inactive volumes, and hard scattering; these tails can make source confusion a limiting factor. The parameter CTBCORE, available in the publicly available Extended Fermi LAT data, estimates the quality of each event's direction reconstruction; by implementing a cut in this parameter, the tails of the point spread function can be suppressed at the cost of losing effective area. We implement cuts on CTBCORE and present updated instrument response functions derived from the Fermi LAT data itself, along with all-sky maps generated with these cuts. Having shown the effectiveness of these cuts, especially at low energies, we encourage their use in analyses where angular resolution is more important than Poisson noise.

  20. Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra

    SciTech Connect

    Carraminana, Alberto; Collaboration: HAWC Collaboration

    2013-06-12

    Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing early science results.

  1. Interaction energy and itinerant ferromagnetism in a strongly interacting Fermi gas in the absence of molecule formation

    DOE PAGES

    He, Lianyi

    2014-11-26

    In this study, we investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase-space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interactionmore » energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.« less

  2. Interaction energy and itinerant ferromagnetism in a strongly interacting Fermi gas in the absence of molecule formation

    SciTech Connect

    He, Lianyi

    2014-11-26

    In this study, we investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase-space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interaction energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.

  3. Discussion on the energy content of the galactic dark matter Bose-Einstein condensate halo in the Thomas-Fermi approximation

    SciTech Connect

    De Souza, J.C.C.; Pires, M.O.C. E-mail: marcelo.pires@ufabc.edu.br

    2014-03-01

    We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.

  4. GW approximation study of late transition metal oxides: Spectral function clusters around Fermi energy as the mechanism behind smearing in momentum density

    NASA Astrophysics Data System (ADS)

    Khidzir, S. M.; Ibrahim, K. N.; Wan Abdullah, W. A. T.

    2016-05-01

    Momentum density studies are the key tool in Fermiology in which electronic structure calculations have proven to be the integral underlying methodology. Agreements between experimental techniques such as Compton scattering experiments and conventional density functional calculations for late transition metal oxides (TMOs) prove elusive. In this work, we report improved momentum densities of late TMOs using the GW approximation (GWA) which appears to smear the momentum density creating occupancy above the Fermi break. The smearing is found to be largest for NiO and we will show that it is due to more spectra surrounding the NiO Fermi energy compared to the spectra around the Fermi energies of FeO and CoO. This highlights the importance of the positioning of the Fermi energy and the role played by the self-energy term to broaden the spectra and we elaborate on this point by comparing the GWA momentum densities to their LDA counterparts and conclude that the larger difference at the intermediate level shows that the self-energy has its largest effect in this region. We finally analyzed the quasiparticle renormalization factor and conclude that an increase of electrons in the d-orbital from FeO to NiO plays a vital role in changing the magnitude of electron correlation via the self-energy.

  5. Measurement of the high-energy gamma-ray emission from the Moon with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Costanza, F.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Harding, A. K.; Hewitt, J. W.; Horan, D.; Hou, X.; Iafrate, G.; Jóhannesson, G.; Kamae, T.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Murgia, S.; Nuss, E.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Takahashi, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Winer, B. L.; Wood, K. S.; Yassine, M.; Cerutti, F.; Ferrari, A.; Sala, P. R.; Fermi LAT Collaboration

    2016-04-01

    We have measured the gamma-ray emission spectrum of the Moon using the data collected by the Large Area Telescope onboard the Fermi satellite during its first seven years of operation, in the energy range from 30 MeV up to a few GeV. We have also studied the time evolution of the flux, finding a correlation with the solar activity. We have developed a full Monte Carlo simulation describing the interactions of cosmic rays with the lunar surface. The results of the present analysis can be explained in the framework of this model, where the production of gamma rays is due to the interactions of cosmic-ray proton and helium nuclei with the surface of the Moon. Finally, we have used our simulation to derive the cosmic-ray proton and helium spectra near Earth from the Moon gamma-ray data.

  6. NEW FERMI-LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS

    SciTech Connect

    Atwood, W. B.; Baldini, L.; Bregeon, J.; Pesce-Rollins, M.; Sgro, C.; Tinivella, M.; Bruel, P.; Cohen-Tanugi, J.; Granot, J.; Longo, F.; Razzaque, S.; Zimmer, S. E-mail: nicola.omodei@stanford.edu

    2013-09-01

    Based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Large Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy ({approx}147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.

  7. AHEAD: Integrated Activities in the High Energy Astrophysics Domain

    NASA Astrophysics Data System (ADS)

    Piro, Luigi; Natalucci, Lorenzo; Ahead Consortium

    2015-09-01

    AHEAD (Integrated Activities in the High Energy Astrophysics Domain) is a forthcoming project approved in the framework of the European Horizon 2020 program (Research Infrastructures for High Energy Astrophysics). The overall objective of AHEAD is to integrate national efforts in high-energy Astrophysics and to promote the domain at the European level, to keep its community at the cutting edge of science and technology and ensure that space observatories for high-energy astrophysics, with particular regard to Athena, are at the state of the art. AHEAD will integrate key research infrastructures for on-ground test and calibration of space-based sensors and electronics and promote their coordinated use. In parallel, the best facilities for data analysis of high-energy astrophysical observatories will be made available to the European community. The technological development will focus on the improvement of selected critical technologies, background modeling, cross calibration, and feasibility studies of space-based instrumentation for the benefit of future high energy missions like Athena, and the best exploitation of existing observatories. AHEAD will support the community via grants for collaborative studies, dissemination of results, and promotion of workshops. A strong public outreach package will ensure that the domain is well publicized at national, European and International level. Networking, joint research activities and access to infrastructures as devised in AHEAD, will serve to establish strong connections between institutes and industry to create the basis for a more rapid advancement of high-energy astrophysical science, space oriented instrumentation and cutting-edge sensor technology in Europe. This enables the development of new technologies and the associated growth of the European technology market with a dedicated technology innovation package, as well as the creation of a new generation of researchers.

  8. Search for High-energy Gamma-ray Emission from Tidal Disruption Events with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Peng, Fang-Kun; Tang, Qing-Wen; Wang, Xiang-Yu

    2016-07-01

    Massive black holes at galaxy center may tear apart a star when the star passes occasionally within the disruption radius, which is the so-called tidal disruption event (TDE). Most TDEs radiate with thermal emission resulting from the acceleration disk, but three TDEs have been detected in bright nonthermal X-ray emission, which is interpreted as arising from the relativistic jets. A search for high-energy gamma-ray emission from one relativistic TDE (Swift J164449.3+573451) with the Fermi Large Area Telescope (LAT) has yielded nondetection. In this paper, we report the search for high-energy emission from the other two relativistic TDEs (Swift J2058.4+0516 and Swift J1112.2-8238) during the flare period. No significant GeV emission is found, with an upper limit fluence in the LAT energy range being less than 1% of that in X-rays. Compared with gamma-ray bursts and blazars, these TDEs have the lowest flux ratio between GeV emission and X-ray emission. The nondetection of high-energy emission from relativistic TDEs could be due to the fact that the high-energy emission is absorbed by soft photons in the source. Based on this hypothesis, upper limits on the bulk Lorentz factors, {{Γ }}≲ 30, are then obtained for the jets in these TDEs. We also search for high-energy gamma-ray emission from the nearest TDE discovered to date, ASASSN-14li. No significant GeV emission is found, and an upper limit of L(0.1{--}10 {GeV})≤slant 4.4× {10}42 erg s‑1 (at 95% confidence level) is obtained for the first 107 s after the disruption.

  9. Vibrational analysis of HOCl up to 98{percent} of the dissociation energy with a Fermi resonance Hamiltonian

    SciTech Connect

    Jost, R.; Joyeux, M.; Skokov, S.; Bowman, J.

    1999-10-01

    We have analyzed the vibrational energies and wave functions of HOCl obtained from previous {ital ab initio} calculations [J. Chem. Phys. {bold 109}, 2662 (1998); {bold 109}, 10273 (1998)]. Up to approximately 13&hthinsp;000 cm{sup {minus}1}, the normal modes are nearly decoupled, so that the analysis is straightforward with a Dunham model. In contrast, above 13&hthinsp;000 cm{sup {minus}1} the Dunham model is no longer valid for the levels with no quanta in the OH stretch (v{sub 1}=0). In addition to v{sub 1}, these levels can only be assigned a so-called polyad quantum number P=2v{sub 2}+v{sub 3}, where 2 and 3 denote, respectively, the bending and OCl stretching normal modes. In contrast, the levels with v{sub 1}{ge}2 remain assignable with three v{sub i} quantum numbers up to the dissociation (D{sub 0}=19&hthinsp;290&hthinsp;cm{sup {minus}1}). The interaction between the bending and the OCl stretch ({omega}{sub 2}{congruent}2{omega}{sub 3}) is well described with a simple, fitted Fermi resonance Hamiltonian. The energies and wave functions of this model Hamiltonian are compared with those obtained from {ital ab initio} calculations, which in turn enables the assignment of many additional {ital ab initio} vibrational levels. Globally, among the 809 bound levels calculated below dissociation, 790 have been assigned, the lowest unassigned level, No. 736, being located at 18&hthinsp;885 cm{sup {minus}1} above the (0,0,0) ground level, that is, at about 98{percent} of D{sub 0}. In addition, 84 {open_quotes}resonances{close_quotes} located above D{sub 0} have also been assigned. Our best Fermi resonance Hamiltonian has 29 parameters fitted with 725 {ital ab initio} levels, the rms deviation being of 5.3 cm{sup {minus}1}. This set of 725 fitted levels includes the full set of levels up to No. 702 at 18&hthinsp;650 cm{sup {minus}1}. The {ital ab initio} levels, which are assigned but not included in the fit, are reasonably predicted by the model Hamiltonian, but with a

  10. The Ground State of a Gross-Pitaevskii Energy with General Potential in the Thomas-Fermi Limit

    NASA Astrophysics Data System (ADS)

    Karali, Georgia; Sourdis, Christos

    2015-08-01

    We study the ground state which minimizes a Gross-Pitaevskii energy with general non-radial trapping potential, under the unit mass constraint, in the Thomas-Fermi limit where a small parameter tends to 0. This ground state plays an important role in the mathematical treatment of recent experiments on the phenomenon of Bose-Einstein condensation, and in the study of various types of solutions of nonhomogeneous defocusing nonlinear Schrödinger equations. Many of these applications require delicate estimates for the behavior of the ground state near the boundary of the condensate, as , in the vicinity of which the ground state has irregular behavior in the form of a steep corner layer. In particular, the role of this layer is important in order to detect the presence of vortices in the small density region of the condensate, to understand the superfluid flow around an obstacle, and it also has a leading order contribution in the energy. In contrast to previous approaches, we utilize a perturbation argument to go beyond the classical Thomas-Fermi approximation and accurately approximate the layer by the Hastings-McLeod solution of the Painlevé-II equation. This settles an open problem (cf. Aftalion in Vortices in Bose Einstein Condensates. Birkhäuser Boston, Boston, 2006, pg. 13 or Open Problem 8.1), answered very recently only for the special case of the model harmonic potential (Gallo and Pelinovsky in Asymptot Anal 73:53-96, 2011). In fact, we even improve upon previous results that relied heavily on the radial symmetry of the potential trap. Moreover, we show that the ground state has the maximal regularity available, namely it remains uniformly bounded in the -Hölder norm, which is the exact Hölder regularity of the singular limit profile, as . Our study is highly motivated by an interesting open problem posed recently by A ftalion, Jerrard, and R oyo-L etelier (J Funct Anal 260:2387-2406 2011), and an open question of G allo and P elinovsky (J Math Anal

  11. Dynamical and Statistical Aspects in Nucleus--Nucleus Collisions Around the Fermi Energy

    NASA Astrophysics Data System (ADS)

    Tamain, B.; Assenard, M.; Auger, G.; Bacri, C. O.; Benlliure, J.; Bisquer, E.; Bocage, F.; Borderie, B.; Bougault, R.; Buchet, P.; Charvet, J. L.; Chbihi, A.; Colin, J.; Cussol, D.; Dayras, R.; Demeyer, A.; Dore, D.; Durand, D.; Eudes, P.; Frankland, J.; Galichet, E.; Genouin-Duhamel, E.; Gerlic, E.; Germain, M.; Gourio, D.; Guinet, D.; Gulminelli, F.; Lautesse, P.; Laville, J. L.; Lebrun, C.; Lecolley, J. F.; Lefevre, A.; Lefort, T.; Legrain, R.; Le Neindre, N.; Lopez, O.; Louvel, M.; Lukasik, J.; Marie, N.; Maskay, M.; Metivier, V.; Nalpas, L.; Nguyen, A.; Parlog, M.; Peter, J.; Plagnol, E.; Rahmani, A.; Reposeur, T.; Rivet, M. F.; Rosato, E.; Saint-Laurent, F.; Salou, S.; Squalli, M.; Steckmeyer, J. C.; Stern, M.; Tabacaru, T.; Tassan-Got, L.; Tirel, O.; Vient, E.; Volan, C.; Wieleczko, J. P.

    1998-01-01

    This contribution is devoted to two important aspects of intermediate energy nucleus-nucleus collisions: the competition of dynamical and statistical features, and the origin of the multifragmentation process. These two questions are discussed in focusing on Indra data. It turns out that most of collisions are binary and reminiscent of deep inelastic collisions observed at low energy. However, intermediate velocity emission is a clear signature of dynamical emission and establishes a link with the participant-spectator picture which applies at high bombarding energies. Multifragmentation is observed when the dissipated energy is large and it turns out that expansion occurs at least for central collisions, as it is expected if this phenomenum has a dynamical origin.

  12. Particle and light fragment emission in peripheral heavy ion collisions at Fermi energies

    SciTech Connect

    Piantelli, S.; Maurenzig, P. R.; Olmi, A.; Bardelli, L.; Bartoli, A.; Bini, M.; Casini, G.; Coppi, C.; Mangiarotti, A.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Taccetti, N.; Vanzi, E.

    2006-09-15

    A systematic investigation of the average multiplicities of light charged particles and intermediate mass fragments emitted in peripheral and semiperipheral collisions is presented as a function of the beam energy, violence of the collision, and mass of the system. The data have been collected with the FIASCO setup in the reactions {sup 93}Nb+{sup 93}Nb at (17,23,30,38)A MeV and {sup 116}Sn+{sup 116}Sn at (30,38)A MeV. The midvelocity emission has been separated from the emission of the projectile-like fragment. This last component appears to be compatible with an evaporation from an equilibrated source at normal density, as described by the statistical code GEMINI at the appropriate excitation energy. On the contrary, the midvelocity emission presents remarkable differences in both the dependence of the multiplicities on the energy deposited in the midvelocity region and the isotopic composition of the emitted light charged particles.

  13. Particle and light fragment emission in peripheral heavy ion collisions at Fermi energies

    NASA Astrophysics Data System (ADS)

    Piantelli, S.; Maurenzig, P. R.; Olmi, A.; Bardelli, L.; Bartoli, A.; Bini, M.; Casini, G.; Coppi, C.; Mangiarotti, A.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Taccetti, N.; Vanzi, E.

    2006-09-01

    A systematic investigation of the average multiplicities of light charged particles and intermediate mass fragments emitted in peripheral and semiperipheral collisions is presented as a function of the beam energy, violence of the collision, and mass of the system. The data have been collected with the FIASCO setup in the reactions Nb93+Nb93 at (17,23,30,38)A MeV and Sn116+Sn116 at (30,38)A MeV. The midvelocity emission has been separated from the emission of the projectile-like fragment. This last component appears to be compatible with an evaporation from an equilibrated source at normal density, as described by the statistical code GEMINI at the appropriate excitation energy. On the contrary, the midvelocity emission presents remarkable differences in both the dependence of the multiplicities on the energy deposited in the midvelocity region and the isotopic composition of the emitted light charged particles.

  14. Energetics of Midvelocity Emissions in Peripheral Heavy Ion Collisions at Fermi Energies

    NASA Astrophysics Data System (ADS)

    Mangiarotti, A.; Maurenzig, P. R.; Olmi, A.; Piantelli, S.; Bardelli, L.; Bartoli, A.; Bini, M.; Casini, G.; Coppi, C.; Gobbi, A.; Pasquali, G.; Poggi, G.; Stefanini, A. A.; Taccetti, N.; Vanzi, E.

    2004-11-01

    Peripheral and semiperipheral collisions have been studied in the system 93Nb+93Nb at 38A MeV. The evaporative and midvelocity components of the light charged particle and intermediate mass fragment emissions have been carefully disentangled. In this way it was possible to obtain the average amount not only of charge and mass, but also of energy, pertaining to the midvelocity emission, as a function of an impact parameter estimator. This emission has a very important role in the overall balance of the reaction, as it accounts for a large fraction of the emitted mass and for more than half of the dissipated energy. As such, it may give precious clues on the microscopic mechanism of energy transport from the interaction zone toward the target and projectile remnants.

  15. Magnetic domain walls of relic fermions as Dark Energy

    SciTech Connect

    Yajnik, Urjit A.

    2005-12-02

    We show that relic fermions of the Big Bang can enter a ferromagnetic state if they possess a magnetic moment and satisfy the requirements of Stoner theory of itinerant ferromagnetism. The domain walls of this ferromagnetism can successfully simulate Dark Energy over the observable epoch spanning {approx} 10 billion years. We obtain conditions on the anomalous magnetic moment of such fermions and their masses. Known neutrinos fail to satisfy the requirements thus pointing to the possibility of a new ultralight sector in Particle Physics.

  16. Distinctive features of Coulomb-related emissions in peripheral heavy ion collisions at Fermi energies

    NASA Astrophysics Data System (ADS)

    Piantelli, S.; Maurenzig, P. R.; Olmi, A.; Bardelli, L.; Bini, M.; Casini, G.; Mangiarotti, A.; Pasquali, G.; Poggi, G.; Stefanini, A. A.

    2007-12-01

    Light charged particles emitted at about 90° in the frame of the projectile-like fragment in semiperipheral collisions of Nb93+Nb93 at 38A MeV give evidence for the occurrence, in the same class of events, of two different production mechanisms. This is demonstrated by differences in the kinetic energy spectra and in the isotopic composition of the particles. The emission with a softer kinetic energy spectrum and a low N/Z ratio for the hydrogen isotopes is attributed to an evaporation process. The harder emission, with a much higher N/Z ratio, can be attributed to a midvelocity process consisting of a nonisotropic emission, on a short time-scale, from the projectile-like fragment.

  17. Simulation of coherent energy transfer in an alpha-helical peptide by Fermi resonance.

    PubMed Central

    Clarke, D L; Collins, M A

    1992-01-01

    A mechanism by which NH stretching quanta are coherently transported along a chain of hydrogen bonded peptide groups is demonstrated by classical simulation of a section of the alpha-helical peptide poly(L-alanine). Vibrational motion takes place on a complex energy surface constructed from earlier ab initio and empirical surfaces. A speculative hypothesis of the biological role of this mechanism is presented, and the critical parameters governing the dynamics are identified and discussed. Images FIGURE 1 PMID:1547322

  18. Pulsars at the Highest Energies: Questions for AGILE, Fermi (GLAST) and Atmospheric Cherenkov Telescopes

    NASA Technical Reports Server (NTRS)

    Thompson, D.J.

    2008-01-01

    Observational studies of gamma-ray pulsars languished in recent years, while theoretical studies made significant strides. Now, with new and improved gamma-ray telescopes coming online, opportunities present themselves for dramatic improvements in our understanding of these objects. The new facilities and better modeling of processes at work in high-energy pulsars should address a number of important open questions, some of which are summarized.

  19. Tracing the evolution of temperature in near Fermi energy heavy ion collisions

    SciTech Connect

    Wang, J.; Keutgen, T.; Hagel, K.; Ma, Y.G.; Murray, M.; Qin, L.; Botvina, A.; Kowalski, S.; Materna, T.; Natowitz, J. B.; Keksis, A.; Makeev, A.; Marie, N.; Martin, E.; Ruangma, A.; Shetty, D.V.; Souliotis, G.; Veselsky, M.; Winchester, E.M.; Yennello, S.J.

    2005-08-01

    The kinetic-energy variation of emitted light clusters has been employed as a clock to explore the time evolution of the temperature for thermalizing composite systems produced in the reactions of 26A, 35A, and 47A MeV {sup 64}Zn with {sup 58}Ni, {sup 92}Mo, and {sup 197}Au. For each system investigated, the double-isotope ratio temperature curve exhibits a high maximum apparent temperature, in the range of 10-25 MeV, at high ejectile velocity. These maximum values increase with increasing projectile energy and decrease with increasing target mass. The time at which the maximum in the temperature curve is reached ranges from 80 to 130 fm/c after contact. For each different target, the subsequent cooling curves for all three projectile energies are quite similar. Temperatures comparable with those of limiting temperature systematics are reached 30 to 40 fm/c after the times corresponding to the maxima, at a time when antisymmetrized molecular dynamics transport model calculations predict entry into the final evaporative or fragmentation stage of deexcitation of the hot composite systems. Evidence for the establishment of thermal and chemical equilibrium is discussed.

  20. Anisotropic Non-Fermi Liquids

    NASA Astrophysics Data System (ADS)

    Sur, Shouvik; Lee, Sung-Sik

    We study non-Fermi liquids that arise at quantum critical points associated with spin (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the `codimensional' regularization scheme, where a one-dimensional Fermi surface is embedded in 3 - ɛ dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise at the SDW and CDW critical points. Below three dimensions, a perturbative anisotropic non-Fermi liquid state is realized at the SDW critical point, where not only time but also different spatial coordinates develop distinct anomalous dimensions. The stable non-Fermi liquid exhibits an emergent algebraic nesting as the patches of the Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of spin fluctuations disperse with different power laws in different momentum directions. In contrast, at the CDW critical point, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale.

  1. Intermediate Mass Fragment Emission Pattern in Peripheral Heavy-Ion Collisions at Fermi Energies

    NASA Astrophysics Data System (ADS)

    Piantelli, S.; Bidini, L.; Poggi, G.; Bini, M.; Casini, G.; Maurenzig, P. R.; Olmi, A.; Pasquali, G.; Stefanini, A. A.; Taccetti, N.

    2002-02-01

    The emission pattern in the vperp-vpar plane of intermediate mass fragments with Z = 3-7 (IMF) has been studied in the collision 116Sn+ 93Nb at 29.5A MeV as a function of the total kinetic energy loss of the reaction. This pattern shows that for peripheral reactions most IMF's are emitted at velocities intermediate between those of the projectile- and target-like products. Coulomb trajectory calculations show that these IMF's are produced in the interaction zone in a short time interval at the end of the target-projectile interaction.

  2. Fermi LAT Observation of Diffuse Gamma-Rays Produced through Interactions Between Local Interstellar Matter and High Energy Cosmic Rays

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T.H.; /more authors..

    2012-03-30

    Observations by the Large Area Telescope (LAT) on the Fermi mission of diffuse {gamma}-rays in a mid-latitude region in the third quadrant (Galactic longitude l from 200{sup o} to 260{sup o} and latitude |b| from 22{sup o} to 60{sup o}) are reported. The region contains no known large molecular cloud and most of the atomic hydrogen is within 1 kpc of the solar system. The contributions of {gamma}-ray point sources and inverse Compton scattering are estimated and subtracted. The residual {gamma}-ray intensity exhibits a linear correlation with the atomic gas column density in energy from 100 MeV to 10 GeV. The measured integrated {gamma}-ray emissivity is (1.63 {+-} 0.05) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} and (0.66 {+-} 0.02) x 10{sup -26} photons s{sup -1}sr{sup -1} H-atom{sup -1} above 100 MeV and above 300 MeV, respectively, with an additional systematic error of {approx}10%. The differential emissivity from 100 MeV to 10 GeV agrees with calculations based on cosmic ray spectra consistent with those directly measured, at the 10% level. The results obtained indicate that cosmic ray nuclei spectra within 1 kpc from the solar system in regions studied are close to the local interstellar spectra inferred from direct measurements at the Earth within {approx}10%.

  3. Observation of Fermi surface deformation in a dipolar quantum gas

    NASA Astrophysics Data System (ADS)

    Aikawa, K.; Baier, S.; Frisch, A.; Mark, M.; Ravensbergen, C.; Ferlaino, F.

    2014-09-01

    In the presence of isotropic interactions, the Fermi surface of an ultracold Fermi gas is spherical. Introducing anisotropic interactions can deform the Fermi surface, but the effect is subtle and challenging to observe experimentally. Here, we report on the observation of a Fermi surface deformation in a degenerate dipolar Fermi gas of erbium atoms. The deformation is caused by the interplay between strong magnetic dipole-dipole interaction and the Pauli exclusion principle. We demonstrate the many-body nature of the effect and its tunability with the Fermi energy. Our observation provides a basis for future studies on anisotropic many-body phenomena in normal and superfluid phases.

  4. 75 FR 63867 - DTE Energy; Enrico Fermi Atomic Power Plant Unit 1, Exemption From Certain Security Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ... in Monroe County, Michigan. Fermi 1 is a permanently shutdown nuclear reactor facility. The license... breeder reactor power plant cooled by sodium and operated at essentially atmospheric pressure. In November 1972, the Power Reactor Development Company (PRDC), the licensee at that time, made the decision...

  5. Ultrafast many-body interferometry of impurities coupled to a Fermi sea

    NASA Astrophysics Data System (ADS)

    Cetina, Marko; Jag, Michael; Lous, Rianne S.; Fritsche, Isabella; Walraven, Jook T. M.; Grimm, Rudolf; Levinsen, Jesper; Parish, Meera M.; Schmidt, Richard; Knap, Michael; Demler, Eugene

    2016-10-01

    The fastest possible collective response of a quantum many-body system is related to its excitations at the highest possible energy. In condensed matter systems, the time scale for such “ultrafast” processes is typically set by the Fermi energy. Taking advantage of fast and precise control of interactions between ultracold atoms, we observed nonequilibrium dynamics of impurities coupled to an atomic Fermi sea. Our interferometric measurements track the nonperturbative quantum evolution of a fermionic many-body system, revealing in real time the formation dynamics of quasi-particles and the quantum interference between attractive and repulsive states throughout the full depth of the Fermi sea. Ultrafast time-domain methods applied to strongly interacting quantum gases enable the study of the dynamics of quantum matter under extreme nonequilibrium conditions.

  6. Fermi Pulsar Analysis

    NASA Video Gallery

    This animation illustrates how analysis of Fermi data reveals new pulsars. Fermi's LAT records the precise arrival time and approximate direction of the gamma rays it detects, but to identify a pul...

  7. New Results on High Energy Cosmic Ray Electrons Observed with Fermi LAT and Their Implications on the Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    The Large Area Telescope on-board the Fermi Gamma-Ray Space Telescope has collected more than 10 million cosmic ray electrons with energy above 7 GeV since its science operation on orbit. High energy electrons rapidly lose their energy by synchrotron radiation on Galactic magnetic fields and by inverse Compton scattering on the interstellar radiation field. The typical distance over which a 1 TeV electron loses half its total energy is estimated to be 300-400 pc.This makes them a unique tool for probing nearby Galactic space. Observed spectrum has a harder spectral index than was previously reported and suggests the presence of nearby sources of high energy electrons. One of viable candidates are nearby pulsars, possibly some of recently discovered by Fermi. At the same time the dark matter origin of such sources cannot be ruled out. I will also report our current upper limits on cosmic ray electrons anisotropy which helps to set constraints on their local sources.

  8. Importance of Fermi energy for understanding the intermixing behavior at the LaAlO{sub 3}/SrTiO{sub 3} heterointerface

    SciTech Connect

    Yamamoto, Takashi; Mizoguchi, Teruyasu

    2014-11-17

    We investigated the migration energy and vacancy formation energy of La and Sr ions at a LaAlO{sub 3}/SrTiO{sub 3} heterointerface using first-principles calculations. Our study reveal that the migration energies at the p-type interface are lower than those at the n-type interface, and the formation energies of Sr and La vacancies are relatively high when we assume a reduction atmosphere and insulator conditions. To explain the experimental evidence that intermixing is preferentially taking place at the n-type interface, considering the Fermi energy is critical. We find that the presence of electron carriers plays an important role in the intermixing behaviors at the LaAlO{sub 3}/SrTiO{sub 3} heterointerface.

  9. Fermi surface of YBCO by DHVA

    SciTech Connect

    Smith, J.L.; Fowler, C.M.; Freeman, B.L.; Hults, W.L.; King, J.C.; Mueller, F.M.

    1991-01-01

    These proceedings demonstrate how far scientist have come in the last four years of high temperature superconductivity. Knowledge of the energy bands and Fermi surfaces from experiment has come rather late. Photoemission, first showed proof of the validity of the energy band calculations. Positron annihilation, presented by West, after a rough start, is now giving evidence of the Fermi surface. Both of these techniques involve electronic excitations and hence, although they show the Fermi surface, do not put as severe a constraint on various models for superconductivity as does the de Haas-van Alphen (dHvA) effect. This is a true measurement of the electronic ground state in an applied magnetic field where the frequency of oscillatory magnetization yields extremal cross-sectional areas of the Fermi surface. The authors have already reported some of their Fermi surface work at two conferences but present here discussion of several more important aspects of the work. 11 refs., 2 figs.

  10. Fermi Questions

    NASA Astrophysics Data System (ADS)

    Weinstein, Larry

    2009-11-01

    How much energy would the United States generate per year if we connected all of our stair-steppers, rowing machines, treadmills, etc. to electrical generators? How much money would one person save by generating his or her own electricity that way? Assume that the number of people working out does not change when we do this.

  11. Non-thermal insights on mass and energy flows through the Galactic Centre and into the Fermi bubbles

    NASA Astrophysics Data System (ADS)

    Crocker, R. M.

    2012-07-01

    We construct a simple model of the star-formation- (and resultant supernova-) driven mass and energy flows through the inner ˜200 pc (in diameter) of the Galaxy. Our modelling is constrained, in particular, by the non-thermal radio continuum and γ-ray signals detected from the region. The modelling points to a current star formation rate of 0.04-0.12 M⊙ yr-1 at 2σ confidence within the region with best-fitting value in the range 0.08-0.12 M⊙ yr-1 which - if sustained over 10 Gyr - would fill out the ˜109 M⊙ stellar population of the nuclear bulge. Mass is being accreted on to the Galactic Centre (GC) region at a rate ? yr-1. The region's star formation activity drives an outflow of plasma, cosmic rays and entrained, cooler gas. Neither the plasma nor the entrained gas reaches the gravitational escape speed, however, and all this material fountains back on to the inner Galaxy. The system we model can naturally account for the recently observed ≳106 M⊙'halo' of molecular gas surrounding the Central Molecular Zone out to 100-200 pc heights. The injection of cooler, high-metallicity material into the Galactic halo above the GC may catalyze the subsequent cooling and condensation of hot plasma out of this region and explain the presence of relatively pristine, nuclear-unprocessed gas in the GC. This process may also be an important ingredient in understanding the long-term stability of the GC star formation rate. The plasma outflow from the GC reaches a height of a few kpc and is compellingly related to the recently discovered Fermi bubbles by a number of pieces of evidence. These include that the outflow advects precisely (i) the power in cosmic rays required to sustain the bubbles'γ-ray luminosity in saturation; (ii) the hot gas required to compensate for gas cooling and drop-out from the bubbles and (iii) the magnetic field required to stabilize the walls of these structures. Our modelling demonstrates that ˜109 M⊙ of hot gas is processed through

  12. Itinerant ferromagnetism in ultracold Fermi gases

    SciTech Connect

    Heiselberg, H.

    2011-05-15

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature, a second-order transition is found at ak{sub F}{approx_equal}0.90 compatible with results of quantum-Monte-Carlo (QMC) calculations. Thermodynamic functions and observables, such as the compressibility and spin susceptibility and the resulting fluctuations in number and spin, are calculated. For trapped gases, the resulting cloud radii and kinetic energies are calculated and compared to recent experiments. Spin-polarized systems are recommended for effective separation of large ferromagnetic domains. Collective modes are predicted and tricritical points are calculated for multicomponent systems.

  13. Fermi LAT detection of increasing GeV gamma-ray activity from the high-energy peaked BL Lac object 1ES 1959+650

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano; Fermi Large Area Telescope Collaboration

    2015-10-01

    The Large Area Telescope (LAT), one of two instruments on the Fermi Gamma-ray Space Telescope, has observed increasing gamma-ray emission from a source positionally consistent with the very-high energy peaked BL Lac object 1ES 1959+650 (also known as TXS 1959+650 and 3FGL J2000.0+6509, Acero et al. 2015, ApJS 218, 23) with radio coordinates (J2000) R.A.: 299.999384 deg, Dec.: 65.148514 deg (Beasley et al. 2002, ApJS, 141, 13). This source has a redshift z=0.047 (Schachter et al. 1993, ApJ, 412, 541).

  14. Fermi-LAT, FACT, MAGIC and VERITAS detection of increasing gamma-ray activity from the high-energy peaked BL Lac object 1ES 1959+650

    NASA Astrophysics Data System (ADS)

    Buson, S.; Magill, J. D.; Dorner, D.; Biland, A.; Mirzoyan, R.; Mukherjee, R.

    2016-04-01

    The Fermi-LAT, FACT, MAGIC and VERITAS collaborations report the detection of enhanced gamma-ray activity from a source positionally consistent with the very-high-energy peaked BL Lac object 1ES 1959+650 (a.k.a 3FGL J2000.0+6509, in the 3rd LAT source catalog, 3FGL, Acero et al. 2015, ApJS 218, 23) with radio coordinates (J2000) R.A.: 299.999384 deg, Dec.: 65.148514 deg (Beasley et al. 2002, ApJS, 141, 13). This source has a redshift z=0.047 (Schachter et al. 1993, ApJ, 412, 541).

  15. Optical characterization of semi-insulating GaAs - Determination of the Fermi energy, the concentraion of the midgap EL2 level and its occupancy

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Bugajski, M.; Matsui, M.; Gatos, H. C.

    1987-01-01

    The key electronic characteristics of semiinsulating GaAs, i.e., the Fermi energy, concentration, and occupancy of the midgap donor EL2, and the net concentration of ionized acceptors can all be determined from high-resolution measurements of the EL2 intracenter absorption. The procedure is based on the measurement of zero-phonon line intensity before and after the complete transfer of EL2 to its metastable state followed by thermal recovery. The procedure is quantitative, involves no fitting parameters, and unlike existing methods, is applicable even when a significant part of the EL2 is ionized.

  16. On Possible Interpretations of the High Energy Electron-Positron Spectrum Measured by the Fermi Large Area Telescope

    SciTech Connect

    Grasso, D.; Profumo, S.; Strong, A.W.; Baldini, L.; Bellazzini, R.; Bloom, E.D.; Bregeon, J.; Di Bernardo, G.; Gaggero, D.; Giglietto, N.; Kamae, T.; Latronico, L.; Longo, F.; Mazziotta, M.N.; Moiseev, A.A.; Morselli, A.; Ormes, J.F.; Pesce-Rollins, M.; Pohl, M.; Razzano, M.; Sgro, C.

    2009-05-15

    The Fermi-LAT experiment recently reported high precision measurements of the spectrum of cosmic-ray electrons-plus-positrons (CRE) between 20 GeV and 1 TeV. The spectrum shows no prominent spectral features, and is significantly harder than that inferred from several previous experiments. Here we discuss several interpretations of the Fermi results based either on a single large scale Galactic CRE component or by invoking additional electron-positron primary sources, e.g. nearby pulsars or particle Dark Matter annihilation. We show that while the reported Fermi-LAT data alone can be interpreted in terms of a single component scenario, when combined with other complementary experimental results, specifically the CRE spectrum measured by H.E.S.S. and especially the positron fraction reported by PAMELA between 1 and 100 GeV, that class of models fails to provide a consistent interpretation. Rather, we find that several combinations of parameters, involving both the pulsar and dark matter scenarios, allow a consistent description of those results. We also briefly discuss the possibility of discriminating between the pulsar and dark matter interpretations by looking for a possible anisotropy in the CRE flux.

  17. Fermi level stabilization and band edge energies in Cd{sub x}Zn{sub 1−x}O alloys

    SciTech Connect

    Detert, Douglas M.; Tom, Kyle B.; Dubon, Oscar D.; Battaglia, Corsin; Javey, Ali; Denlinger, Jonathan D.; Lim, Sunnie H. N.; Anders, André; Yu, Kin M.; Walukiewicz, Wladek

    2014-06-21

    We have measured the band edge energies of Cd{sub x}Zn{sub 1−x}O thin films as a function of composition by three independent techniques: we determine the Fermi level stabilization energy by pinning the Fermi level with ion irradiation, measure the binding energy of valence band states and core levels by X-ray photoelectron spectroscopy, and probe shifts in the conduction band and valence band density of states using soft X-ray absorption and emission spectroscopy, respectively. The three techniques find consensus in explaining the origin of compositional trends in the optical-bandgap narrowing upon Cd incorporation in wurtzite ZnO and widening upon Zn incorporation in rocksalt CdO. The conduction band minimum is found to be stationary for both wurtzite and rocksalt alloys, and a significant upward rise of the valence band maximum accounts for the majority of these observed bandgap changes. Given these band alignments, alloy disorder scattering is found to play a negligible role in decreasing the electron mobility for all alloys. These band alignment details, combined with the unique optical and electrical properties of the two phase regimes, make CdZnO alloys attractive candidates for photoelectrochemical water splitting applications.

  18. Effective pinning energy landscape perturbations for propagating magnetic domain walls

    PubMed Central

    Burn, D. M.; Atkinson, D.

    2016-01-01

    The interaction between a magnetic domain wall and a pinning site is explored in a planar nanowire using micromagnetics to reveal perturbations of the pinning energetics for propagating domain walls. Numerical simulations in the high damping ’quasi-static’ and low damping ’dynamic’ regimes are compared and show clear differences in de-pinning fields, indicating that dynamical micromagnetic models, which incorporate precessionally limited magnetization processes, are needed to understand domain wall pinning. Differences in the micromagnetic domain wall structure strongly influence the pinning and show periodic behaviour with increasing applied field associated with Walker breakdown. In the propagating regime pinning is complicated. PMID:27694953

  19. Effective pinning energy landscape perturbations for propagating magnetic domain walls

    NASA Astrophysics Data System (ADS)

    Burn, D. M.; Atkinson, D.

    2016-10-01

    The interaction between a magnetic domain wall and a pinning site is explored in a planar nanowire using micromagnetics to reveal perturbations of the pinning energetics for propagating domain walls. Numerical simulations in the high damping ’quasi-static’ and low damping ’dynamic’ regimes are compared and show clear differences in de-pinning fields, indicating that dynamical micromagnetic models, which incorporate precessionally limited magnetization processes, are needed to understand domain wall pinning. Differences in the micromagnetic domain wall structure strongly influence the pinning and show periodic behaviour with increasing applied field associated with Walker breakdown. In the propagating regime pinning is complicated.

  20. Energy landscape scheme for an intuitive understanding of complex domain dynamics in ferroelectric thin films

    PubMed Central

    Heon Kim, Tae; Yoon, Jong-Gul; Hyub Baek, Seung; Park, Woong-kyu; Mo Yang, Sang; Yup Jang, Seung; Min, Taeyuun; Chung, Jin-Seok; Eom, Chang-Beom; Won Noh, Tae

    2015-01-01

    Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue because of its relevance to many systems and to the design of nanoscale domain-wall devices. Despite many theoretical and experimental studies, a full understanding of domain dynamics still remains incomplete, partly due to complex interactions between domain-walls and disorder. We report domain-shape-preserving deterministic domain-wall motion, which directly confirms microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides new insights into domain dynamics is also mapped based on the breathing motion of domain walls. The evolution of complex domain structure can be understood by the process of occupying the lowest available energy states of polarization in the energy landscape which is determined by defect-induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-wall devices through the engineering of energy landscape using defect-induced internal fields such as flexoelectric fields. PMID:26130159

  1. Energy Fluctuation of Ideal Fermi Gas Trapped under Generic Power Law Potential U=\\sum_{i=1}^{d} c_i\\vert x_{i}/a_{i}\\vert^{n_{i} } in d Dimensions

    NASA Astrophysics Data System (ADS)

    Mehedi Faruk, Mir; Muktadir Rahman, Md.; Debnath, Dwaipayan; Sakhawat Hossain Himel, Md.

    2016-04-01

    Energy fluctuation of ideal Fermi gas trapped under generic power law potential U=\\sumi=1d ci \\vertxi/ai \\vert n_i has been calculated in arbitrary dimensions. Energy fluctuation is scrutinized further in the degenerate limit μ ≫ KBT with the help of Sommerfeld expansion. The dependence of energy fluctuation on dimensionality and power law potential is studied in detail. Most importantly our general result can not only exactly reproduce the recently published result regarding free and harmonically trapped ideal Fermi gas in d = 3 but also can describe the outcome for any power law potential in arbitrary dimension.

  2. Enrico Fermi Awards Ceremony for Dr. Mildred S. Dresselhaus and Dr. Burton Richter, May 2012 (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    SciTech Connect

    Chu, Steven

    2012-05-07

    The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On May 7, 2012 it was conferred upon two exceptional scientists: Dr. Mildred Dresselhaus, 'for her scientific leadership, her major contributions to science and energy policy, her selfless work in science education and the advancement of diversity in the scientific workplace, and her highly original and impactful research,' and Dr. Burton Richter, 'for the breadth of his influence in the multiple disciplines of accelerator physics and particle physics, his profound scientific discoveries, his visionary leadership as SLAC Director, his leadership of science, and his notable contributions in energy and public policy.' Dr. John Holder, Director of the White House Office of Science and Technology Policy, opened the ceremony, and Dr. Bill Brinkman, Director of DOE's Office of Science introduced the main speaker, Dr. Steven Chu, U.S. Energy Secretary.

  3. Enrico Fermi Awards Ceremony for Dr. Mildred S. Dresselhaus and Dr. Burton Richter, May 2012 (Presentations, including remarks by Energy Secretary, Dr. Steven Chu)

    ScienceCinema

    Chu, Steven (U.S. Energy Secretary)

    2016-07-12

    The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On May 7, 2012 it was conferred upon two exceptional scientists: Dr. Mildred Dresselhaus, 'for her scientific leadership, her major contributions to science and energy policy, her selfless work in science education and the advancement of diversity in the scientific workplace, and her highly original and impactful research,' and Dr. Burton Richter, 'for the breadth of his influence in the multiple disciplines of accelerator physics and particle physics, his profound scientific discoveries, his visionary leadership as SLAC Director, his leadership of science, and his notable contributions in energy and public policy.' Dr. John Holder, Director of the White House Office of Science and Technology Policy, opened the ceremony, and Dr. Bill Brinkman, Director of DOE's Office of Science introduced the main speaker, Dr. Steven Chu, U.S. Energy Secretary.

  4. High-Energy Gamma-Ray Emission From Solar Flares: Summary of Fermi LAT Detections and Analysis of Two M-Class Flares

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Brandt, T. J.; Guiriec, S.; Hays, E.; McEnery, J. E.; Nemmen, R.; Perkins, J. S.; Thompson, D. J.

    2013-01-01

    We present the detections of 19 solar flares detected in high-energy gamma rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its rst four years of operation. Interestingly, all ares are associated with fairly fast Coronal Mass Ejections (CMEs) and are not all powerful X-ray ares. We then describe the detailed temporal, spatial and spectral characteristics of the rst two long-lasting events: the 2011 March 7 are, a moderate (M3.7) impulsive are followed by slowly varying gamma-ray emission over 13 hours, and the 2011 June 7 M2.5 are, which was followed by gamma-ray emission lasting for 2 hours. We compare the Fermi-LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that a hadronic origin of the gamma rays is more likely than a leptonic origin and nd that the energy spectrum of the proton distribution softens after the 2011 March 7 are, favoring a scenario with continuous acceleration at the are site. This work suggests that proton acceleration in solar ares is more common than previously thought, occurring for even modest X-ray ares, and for longer durations.

  5. Low-energy physics of the t -J model in d =∞ using extremely correlated Fermi liquid theory: Cutoff second-order equations

    NASA Astrophysics Data System (ADS)

    Shastry, B. Sriram; Perepelitsky, Edward

    2016-07-01

    We present the results for the low-energy properties of the infinite-dimensional t -J model with J =0 , using O (λ2) equations of the extremely correlated Fermi liquid formalism. The parameter λ ∈[0 ,1 ] is analogous to the inverse spin parameter 1 /(2 S ) in quantum magnets. The present analytical scheme allows us to approach the physically most interesting regime near the Mott insulating state n ≲1 . It overcomes the limitation to low densities n ≲0.7 of earlier calculations, by employing a variant of the skeleton graph expansion, and a high-frequency cutoff that is essential for maintaining the known high-T entropy. The resulting quasiparticle weight Z , the low ω ,T self-energy, and the resistivity are reported. These are quite close at all densities to the exact numerical results of the U =∞ Hubbard model, obtained using the dynamical mean field theory. The present calculation offers the advantage of generalizing to finite T rather easily, and allows the visualization of the loss of coherence of Fermi liquid quasiparticles by raising T . The present scheme is generalizable to finite dimensions and a nonvanishing J .

  6. Detection of high-energy gamma-ray emission from the globular cluster 47 Tucanae with Fermi.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Horan, D; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Wang, P; Webb, N; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    We report the detection of gamma-ray emissions above 200 megaelectron volts at a significance level of 17sigma from the globular cluster 47 Tucanae, using data obtained with the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. Globular clusters are expected to emit gamma rays because of the large populations of millisecond pulsars that they contain. The spectral shape of 47 Tucanae is consistent with gamma-ray emission from a population of millisecond pulsars. The observed gamma-ray luminosity implies an upper limit of 60 millisecond pulsars present in 47 Tucanae.

  7. A multi-messenger search for the origin of high-energy astrophysical neutrinos with VERITAS and Fermi

    NASA Astrophysics Data System (ADS)

    Santander, Marcos

    2016-04-01

    The astrophysical flux of TeV-PeV neutrinos discovered by the IceCube observatory is likely to originate in hadronic interactions at or near cosmic-ray accelerators. While no point-sources of neutrinos have been identified so far, it may be possible to detect them indirectly by searching for the emission of pion-decay gamma rays produced in such interactions. The sensitivity of present gamma-ray instruments, such as the Fermi space telescope and the VERITAS air Cherenkov telescope array, can be used to search for a GeV-TeV gamma-ray signature from the neutrino directions. We present preliminary results from 2 years of VERITAS observations of muon-neutrino event positions detected by IceCube and discuss current plans to implement prompt follow-up observations of these events. We also report on the analysis of Fermi-LAT data for these events which enhances the sensitivity of this search to fast transient sources.

  8. Iterative image-domain decomposition for dual-energy CT

    SciTech Connect

    Niu, Tianye; Dong, Xue; Petrongolo, Michael; Zhu, Lei

    2014-04-15

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its capability of material decomposition. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical values of DECT. Existing denoising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. In this work, the authors propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. The regularization term enforces the image smoothness by calculating the square sum of neighboring pixel value differences. To retain the boundary sharpness of the decomposed images, the authors detect the edges in the CT images before decomposition. These edge pixels have small weights in the calculation of the regularization term. Distinct from the existing denoising algorithms applied on the images before or after decomposition, the method has an iterative process for noise suppression, with decomposition performed in each iteration. The authors implement the proposed algorithm using a standard conjugate gradient algorithm. The method performance is evaluated using an evaluation phantom (Catphan©600) and an anthropomorphic head phantom. The results are compared with those generated using direct matrix inversion with no noise suppression, a denoising method applied on the decomposed images, and an existing algorithm with similar formulation as the

  9. Mapping the TeV PWN candidate source HESS J1857+026 down to Fermi-LAT energies with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Stamatescu, V.; Krause, J.; Klepser, S.; Gozzini, R.; Paneque, D.; MAGIC Collaboration

    2012-12-01

    HESS J1857+026 is an extended TeV gamma-ray source that was discovered by H.E.S.S. close to the Galactic plane. Given its spatial coincidence with the young energetic pulsar PSR J1856+0245, the source represents a pulsar wind nebula (PWN) candidate. The source has now also been detected and analyzed using Fermi-LAT data. HESS J1857+026 was observed by MAGIC in 2010, yielding 29 hours of good quality stereoscopic data that resulted in a highly significant detection. We present an updated energy spectrum that ranges from 100 GeV to 10 TeV, together with a detailed analysis of the source morphology, which uses skymaps for two different energy regimes. We outline the evidence for the possible PWN nature of the source based on the spectral and morphological information obtained with MAGIC together with existing multi-wavelength data.

  10. Fermi level pinning characterisation on ammonium fluoride-treated surfaces of silicon by energy-filtered doping contrast in the scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Chee, Augustus K. W.

    2016-08-01

    Two-dimensional dopant profiling using the secondary electron (SE) signal in the scanning electron microscope (SEM) is a technique gaining impulse for its ability to enable rapid and contactless low-cost diagnostics for integrated device manufacturing. The basis is doping contrast from electrical p-n junctions, which can be influenced by wet-chemical processing methods typically adopted in ULSI technology. This paper describes the results of doping contrast studies by energy-filtering in the SEM from silicon p-n junction specimens that were etched in ammonium fluoride solution. Experimental SE micro-spectroscopy and numerical simulations indicate that Fermi level pinning occurred on the surface of the treated-specimen, and that the doping contrast can be explained in terms of the ionisation energy integral for SEs, which is a function of the dopant concentration, and surface band-bending effects that prevail in the mechanism for doping contrast as patch fields from the specimen are suppressed.

  11. Similarity of the leading contributions to the self-energy and the thermodynamics in two- and three-dimensional Fermi Liquids

    SciTech Connect

    Coffey, D.; Bedell, K.S.

    1993-01-01

    We compare the self-energy and entropy of a two- and three-dimensional Fermi Liquids (FLs) using a model with a contact interaction between fermions. For a two-dimensional (2D) FL we find that there are T[sup 2] contributions to the entropy from interactions separate from those due to the collective modes. These T[sup 2] contributions arise from nonanalytic corrections to the real part of the self-energy and areanalogous to T[sup 3]lnT contributions present in the entropy of a three-dimensional (3D) FL. The difference between the 2D and 3D results arises solely from the different phase space factors.

  12. Similarity of the leading contributions to the self-energy and the thermodynamics in two- and three-dimensional Fermi Liquids

    SciTech Connect

    Coffey, D.; Bedell, K.S.

    1993-05-01

    We compare the self-energy and entropy of a two- and three-dimensional Fermi Liquids (FLs) using a model with a contact interaction between fermions. For a two-dimensional (2D) FL we find that there are T{sup 2} contributions to the entropy from interactions separate from those due to the collective modes. These T{sup 2} contributions arise from nonanalytic corrections to the real part of the self-energy and areanalogous to T{sup 3}lnT contributions present in the entropy of a three-dimensional (3D) FL. The difference between the 2D and 3D results arises solely from the different phase space factors.

  13. A possible explanation of low energy γ-ray excess from galactic centre and Fermi bubble by a Dark Matter model with two real scalars

    SciTech Connect

    Modak, Kamakshya Prasad; Majumdar, Debasish

    2015-03-09

    We promote the idea of multi-component Dark Matter (DM) to explain results from both direct and indirect detection experiments. In these models as contribution of each DM candidate to relic abundance is summed up to meet WMAP/Planck measurements of Ω{sub DM}, these candidates have larger annihilation cross-sections compared to the single-component DM models. We illustrate this fact by introducing an extra scalar to the popular single real scalar DM model. We also present detailed calculations for the vacuum stability bounds, perturbative unitarity and triviality constraints on this model. As direct detection experimental results still show some conflict, we kept our options open, discussing different scenarios with different DM mass zones. In the framework of our model we make an interesting observation: the existing direct detection experiments like CDMS II, CoGeNT, CRESST II, XENON 100 or LUX together with the observation of excess low energy γ-ray from galactic centre and Fermi bubble by Fermi Gamma-ray Space Telescope (FGST) already have the capability to distinguish between different DM halo profiles.

  14. Insights into the High-energy γ-ray Emission of Markarian 501 from Extensive Multifrequency Observations in the Fermi Era

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Palma, F.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fuhrmann, L.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guillemot, L.; Guiriec, S.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Max-Moerbeck, W.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pavlidou, V.; Pearson, T. J.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Readhead, A.; Reimer, A.; Reimer, O.; Richards, J. L.; Ripken, J.; Ritz, S.; Roth, M.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Scargle, J. D.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stawarz, Ł.; Stevenson, M.; Strickman, M. S.; Sokolovsky, K. V.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wehrle, A. E.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Zensus, J. A.; Ziegler, M.; Fermi LAT Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Dazzi, F.; de Angelis, A.; De Cea del Pozo, E.; De Lotto, B.; De Maria, M.; De Sabata, F.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giavitto, G.; Godinovi, N.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Kranich, D.; Krause, J.; La Barbera, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; López, M.; Lorenz, E.; Majumdar, P.; Makariev, E.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, J.; Pochon, J.; Prada Moroni, P. G.; Prada, F.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, T.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Struebig, J. C.; Suric, T.; Takalo, L. O.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Vankov, H.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Acciari, V. A.; Arlen, T.; Aune, T.; Benbow, W.; Boltuch, D.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Dickherber, R.; Errando, M.; Falcone, A.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gillanders, G. H.; Godambe, S.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Holder, J.; Huang, D.; Hui, C. M.; Humensky, T. B.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; McCutcheon, M.; Moriarty, P.; Mukherjee, R.; Ong, R.; Otte, A. N.; Pandel, D.; Perkins, J. S.; Pichel, A.; Pohl, M.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Rovero, A. C.; Schroedter, M.; Sembroski, G. H.; Senturk, G. D.; Steele, D.; Swordy, S. P.; Tešić, G.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vincent, S.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; Weisgarber, T.; Williams, D. A.; Wood, M.; Zitzer, B.; VERITAS Collaboration; Villata, M.; Raiteri, C. M.; Aller, H. D.; Aller, M. F.; Arkharov, A. A.; Blinov, D. A.; Calcidese, P.; Chen, W. P.; Efimova, N. V.; Kimeridze, G.; Konstantinova, T. S.; Kopatskaya, E. N.; Koptelova, E.; Kurtanidze, O. M.; Kurtanidze, S. O.; Lähteenmäki, A.; Larionov, V. M.; Larionova, E. G.; Larionova, L. V.; Ligustri, R.; Morozova, D. A.; Nikolashvili, M. G.; Sigua, L. A.; Troitsky, I. S.; Angelakis, E.; Capalbi, M.; Carramiñana, A.; Carrasco, L.; Cassaro, P.; de la Fuente, E.; Gurwell, M. A.; Kovalev, Y. Y.; Kovalev, Yu. A.; Krichbaum, T. P.; Krimm, H. A.; Leto, P.; Lister, M. L.; Maccaferri, G.; Moody, J. W.; Mori, Y.; Nestoras, I.; Orlati, A.; Pagani, C.; Pace, C.; Pearson, R., III; Perri, M.; Piner, B. G.; Pushkarev, A. B.; Ros, E.; Sadun, A. C.; Sakamoto, T.; Tornikoski, M.; Yatsu, Y.; Zook, A.

    2011-02-01

    We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15—August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size lsim0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (sime1044 erg s-1) constitutes only a small fraction (~10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk

  15. INSIGHTS INTO THE HIGH-ENERGY {gamma}-RAY EMISSION OF MARKARIAN 501 FROM EXTENSIVE MULTIFREQUENCY OBSERVATIONS IN THE FERMI ERA

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Baring, M. G.; Bastieri, D.; Bonamente, E.; Brandt, T. J. E-mail: stawarz@astro.isas.jaxa.jp

    2011-02-01

    We report on the {gamma}-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) {gamma}-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 {+-} 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 {+-} 0.14, and the softest one is 2.51 {+-} 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size {approx}<0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power ({approx_equal}10{sup 44} erg s{sup -1}) constitutes only a small fraction ({approx}10{sup -3}) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a

  16. Transients with the Fermi GBM

    NASA Astrophysics Data System (ADS)

    Hui, Michelle; Fermi GBM Team

    2016-03-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky monitoring instrument sensitive to energies from 8 keV to 40 MeV. Its primary science objective is observing gamma-ray bursts (GRBs) in support of the Large Area Telescope, which are both part of the Fermi Gamma-ray Space Telescope. Over the past 7 years of operation, the GBM has detected over 240 GRBs per year and provided timely GCN notices for follow-up observations. In addition to GRBs, Galactic transients, solar flares, and terrestrial gamma-ray flashes have also been observed. With several instruments coming online recently, such as the gravitational wave detectors Advanced LIGO/Virgo and the very high energy surveying instrument HAWC, now is an opportune time for multi-messenger collaboration in counterpart search of gravitational waves and GRBs.

  17. VizieR Online Data Catalog: The second Fermi-LAT >50GeV catalog (2FHL) (Ackermann+, 2016)

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caputo, R.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen, J. M.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; di Mauro, M.; di Venere, L.; Dominguez, A.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Furniss, A. K.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Iafrate, G.; Hartmann, D.; Jogler, T.; Johannesson, G.; John Son, A. S.; Kamae, T.; Kataoka, J.; Knodlseder, J.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mirabal, N.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Porter, T. A.; Raino, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Romani, R. W.; Sanchez-Conde, M.; Parkinson, P. M. S.; Schmid, J.; Schulz, A.; Sgro, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, M.; Takahashi, T.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.; Yassine, M.; Zaharijas, G.; Zimmer, S.

    2016-02-01

    The Large Area Telescope (LAT) on board the Fermi gamma-ray space telescope has been surveying the whole sky since 2008 August. In this paper we use 80 months of Pass 8 data to produce a catalog of sources detected by the LAT at energies between 50GeV and 2TeV. This constitutes the second catalog of hard Fermi-LAT sources, named 2FHL, which allows a thorough study of the properties of the whole sky in the sub-TeV domain. (4 data files).

  18. Fermi's Conundrum: Proliferation and Closed Societies

    NASA Astrophysics Data System (ADS)

    Teller, Wendy; Westfall, Catherine

    2007-04-01

    On January 1, 1946 Emily Taft Douglas, a freshman Representative at Large for Illinois, sent a letter to Enrico Fermi. She wanted to know whether, if atomic energy was used for peaceful purposes, it might be possible to clandestinely divert some material for bombs. Douglas first learned about the bomb not quite five months before when Hiroshima was bombed. Even though she was not a scientist she identified a key problem of the nuclear age. Fermi responded with requirements to allow peaceful uses of atomic energy and still outlaw nuclear weapons. First, free interchange of information between people was required, and second, people who reported possible violations had to be protected. Fermi had lived in Mussolini's Italy and worked under the war time secrecy restrictions of the Manhattan Project. He was not optimistic that these conditions could be met. This paper discusses how Douglas came to recognize the proliferation issue and what led Fermi to his solution and his pessimism about its practicality.

  19. High-energy gamma-ray emission from solar flares: Summary of Fermi large area telescope detections and analysis of two M-class flares

    SciTech Connect

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Bechtol, K.; Bottacini, E.; Buehler, R.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bissaldi, E.; Bonamente, E.; Bouvier, A.; Brandt, T. J.; Brigida, M.; Bruel, P.; and others

    2014-05-20

    We present the detections of 18 solar flares detected in high-energy γ-rays (above 100 MeV) with the Fermi Large Area Telescope (LAT) during its first 4 yr of operation. This work suggests that particle acceleration up to very high energies in solar flares is more common than previously thought, occurring even in modest flares, and for longer durations. Interestingly, all these flares are associated with fairly fast coronal mass ejections (CMEs). We then describe the detailed temporal, spatial, and spectral characteristics of the first two long-lasting events: the 2011 March 7 flare, a moderate (M3.7) impulsive flare followed by slowly varying γ-ray emission over 13 hr, and the 2011 June 7 M2.5 flare, which was followed by γ-ray emission lasting for 2 hr. We compare the Fermi LAT data with X-ray and proton data measurements from GOES and RHESSI. We argue that the γ-rays are more likely produced through pion decay than electron bremsstrahlung, and we find that the energy spectrum of the proton distribution softens during the extended emission of the 2011 March 7 flare. This would disfavor a trapping scenario for particles accelerated during the impulsive phase of the flare and point to a continuous acceleration process at play for the duration of the flares. CME shocks are known for accelerating the solar energetic particles (SEPs) observed in situ on similar timescales, but it might be challenging to explain the production of γ-rays at the surface of the Sun while the CME is halfway to the Earth. A stochastic turbulence acceleration process occurring in the solar corona is another likely scenario. Detailed comparison of characteristics of SEPs and γ-ray-emitting particles for several flares will be helpful to distinguish between these two possibilities.

  20. A Fermi golden rule for quantum graphs

    NASA Astrophysics Data System (ADS)

    Lee, Minjae; Zworski, Maciej

    2016-09-01

    We present a Fermi golden rule giving rates of decay of states obtained by perturbing embedded eigenvalues of a quantum graph. To illustrate the procedure in a notationally simpler setting, we first describe a Fermi golden rule for boundary value problems on surfaces with constant curvature cusps. We also provide a resonance existence result which is uniform on compact sets of energies and metric graphs. The results are illustrated by numerical experiments.

  1. Large Fermi energy modulation in graphene transistors with high-pressure O{sub 2}-annealed Y{sub 2}O{sub 3} topgate insulators

    SciTech Connect

    Kanayama, Kaoru; Nagashio, Kosuke Nishimura, Tomonori; Toriumi, Akira

    2014-02-24

    We demonstrate a considerable suppression of the low-field leakage through a Y{sub 2}O{sub 3} topgate insulator on graphene by applying high-pressure O{sub 2} at 100 atm during post-deposition annealing (HP-PDA). Consequently, the quantum capacitance measurement for the monolayer graphene reveals the largest Fermi energy modulation (E{sub F} = ∼0.52 eV, i.e., the carrier density of ∼2 × 10{sup 13} cm{sup −2}) in the solid-state topgate insulators reported so far. HP-PDA is the robust method to improve the electrical quality of high-k insulators on graphene.

  2. Enrico Fermi Awards Ceremony for Dr. Allen J. Bard and Dr. Andrew Sessler, February 2014 (Presentations, including remarks by Energy Secretary, Dr. Ernest Moniz)

    ScienceCinema

    Moniz, Ernest [U.S. Energy Secretary

    2016-07-12

    The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On February 3, 2014 it was conferred upon two exceptional scientists. The first to be recognized is Dr. Allen J. Bard, 'for international leadership in electrochemical science and technology, for advances in photoelectrochemistry and photocatalytic materials, processes, and devices, and for discovery and development of electrochemical methods including electrogenerated chemiluminescence and scanning electrochemical microscopy.' The other honoree is Dr. Andrew Sessler, 'for advancing accelerators as powerful tools of scientific discovery, for visionary direction of the research enterprise focused on challenges in energy and the environment, and for championing outreach and freedom of scientific inquiry worldwide.' Dr. Patricia Dehmer opened the ceremony, and Dr. Ernest Moniz presented the awards.

  3. Enrico Fermi Awards Ceremony for Dr. Allen J. Bard and Dr. Andrew Sessler, February 2014 (Presentations, including remarks by Energy Secretary, Dr. Ernest Moniz)

    SciTech Connect

    Moniz, Ernest

    2014-02-03

    The Fermi Award is a Presidential award and is one of the oldest and most prestigious science and technology honors bestowed by the U.S. Government. On February 3, 2014 it was conferred upon two exceptional scientists. The first to be recognized is Dr. Allen J. Bard, 'for international leadership in electrochemical science and technology, for advances in photoelectrochemistry and photocatalytic materials, processes, and devices, and for discovery and development of electrochemical methods including electrogenerated chemiluminescence and scanning electrochemical microscopy.' The other honoree is Dr. Andrew Sessler, 'for advancing accelerators as powerful tools of scientific discovery, for visionary direction of the research enterprise focused on challenges in energy and the environment, and for championing outreach and freedom of scientific inquiry worldwide.' Dr. Patricia Dehmer opened the ceremony, and Dr. Ernest Moniz presented the awards.

  4. Bright gamma-ray flares of the quasars 3C 279 and PKS 1222+216 observed at the highest energies with Fermi-LAT and VERITAS

    NASA Astrophysics Data System (ADS)

    Errando, Manel

    2014-08-01

    Flat spectrum radio quasars (FSRQs) are the most powerful sources continuously detected at gamma-ray energies, with luminosities exceeding 1048 erg s-1. The high-energy emission of quasars peaks in the MeV-GeV band, and only a few episodic detections have been reported at very high energies (VHE, E>100 GeV). We will present the first results from an observing campaign on the FSRQ 3C 279 in April 2014 during the brightest gamma-ray outburst ever recorded for this object, with flux exceeding the historic 1991 flare seen by EGRET. Observations include simultaneous coverage with the Fermi-LAT satellite and the VERITAS ground-based array spanning four decades in energy from 100 MeV to 1 TeV with unprecedented sensitivity. We will also report on the detection of persistent VHE emission from the quasar PKS 1222+216 over a week-long period in March 2014. These observations present strong challenges to current models of energy dissipation in relativistic jets. The implications of the absence/presence of VHE emission in connection with flaring activity in the MeV-GeV regime will be discussed, especially concerning the role of ambient photon fields in the radiation mechanisms, and the size and location of the gamma-ray emission region.

  5. Simultaneous Observations of PKS 2155--304 with H.E.S.S., Fermi, RXTE and ATOM: Spectral Energy Distributions and Variability in a Low State

    SciTech Connect

    Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; Bernlohr, K.; Boisson, C.; Bochow, A.; Borrel, V.; Brion, E.; Brucker, J.; Brun, P.; Buhler, R.; Bulik, T.; Busching, I.; Boutelier, T.; Chadwick, P.M.; Charbonnier, A.; Chaves, R.C.G.; /more authors..

    2009-05-07

    We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of {gamma}-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; >100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little ({approx}30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.

  6. SIMULTANEOUS OBSERVATIONS OF PKS 2155-304 WITH HESS, FERMI, RXTE, AND ATOM: SPECTRAL ENERGY DISTRIBUTIONS AND VARIABILITY IN A LOW STATE

    SciTech Connect

    Aharonian, F.; Bernloehr, K.; Bochow, A.; Buehler, R.; Akhperjanian, A. G.; Anton, G.; Brucker, J.; Barres de Almeida, U.; Chadwick, P. M.; Bazer-Bachi, A. R.; Borrel, V.; Behera, B.; Boisson, C.; Brion, E.; Brun, P.; Buesching, I.; Boutelier, T. E-mail: berrie@in2p3.fr E-mail: jchiang@slac.stanford.edu

    2009-05-10

    We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of {gamma}-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; >100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little ({approx}30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.

  7. Fermi resonance in optical microcavities.

    PubMed

    Yi, Chang-Hwan; Yu, Hyeon-Hye; Lee, Ji-Won; Kim, Chil-Min

    2015-04-01

    Fermi resonance is a phenomenon of quantum mechanical superposition, which most often occurs between normal and overtone modes in molecular systems that are nearly coincident in energy. We find that scarred resonances in deformed dielectric microcavities are the very phenomenon of Fermi resonance, that is, a pair of quasinormal modes interact with each other due to coupling and a pair of resonances are generated through an avoided resonance crossing. Then the quantum number difference of a pair of quasinormal modes, which is a consequence of quantum mechanical superposition, equals periodic orbits, whereby the resonances are localized on the periodic orbits. We derive the relation between the quantum number difference and the periodic orbits and confirm it in an elliptic, a rectangular, and a stadium-shaped dielectric microcavity.

  8. Fermi, Szilard and Trinity

    ERIC Educational Resources Information Center

    Anderson, Herbert L.

    1974-01-01

    The final installment of the author's recollections of his work with physicists Enrico Fermi, Leo Szilard and others in developing the first controlled nuclear chain reaction and in preparing the test explosion of the first atomic bomb. (GS)

  9. Fermi Galactic Center Zoom

    NASA Video Gallery

    This animation zooms into an image of the Milky Way, shown in visible light, and superimposes a gamma-ray map of the galactic center from NASA's Fermi. Raw data transitions to a view with all known...

  10. A new approach for modelling lattice energy in finite crystal domains

    NASA Astrophysics Data System (ADS)

    Bilotsky, Y.; Gasik, M.

    2015-09-01

    Evaluation of internal energy in a crystal lattice requires precise calculation of lattice sums. Such evaluation is a problem in the case of small (nano) particles because the traditional methods are usually effective only for infinite lattices and are adapted to certain specific potentials. In this work, a new method has been developed for calculation of lattice energy. The method is a generalisation of conventional geometric probability techniques for arbitrary fixed lattices in a finite crystal domain. In our model, the lattice energy for wide range of two- body central interaction potentials (including long-range Coulomb potential) has been constructed using absolutely convergent sums. No artificial cut-off potential or periodical extension of the domain (which usually involved for such calculations) have been made for calculation of the lattice energy under this approach. To exemplify the applications of these techniques, the energy of Coulomb potential has been plotted as the function of the domain size.

  11. Investigations of the output energy deviation and other parameters during commissioning of the four-rod radio frequency quadrupole at the Fermi National Accelerator Laboratory

    SciTech Connect

    Schmidt, J. S.; et al.,

    2014-03-01

    After 30 years of operation, the Cockcroft-Walton based injector at FNAL (Fermi National Accelerator Laboratory) has been replaced by a new beam line including a dimpled magnetron 35 keV source in combination with a 750 keV 4-rod Radio Frequency Quadrupole (RFQ). The new injector is followed by the existing drift tube linac (DTL). Prior to installation, a test beam line was built which included the magnetron source and the 4-rod RFQ with a number of beam measurement instrumentation. The first beam test with the RFQ showed an output energy deviation greater than 2.5%. Other problems also showed up which led to investigations of the output energy, power consumption and transmission properties using RF simulations which were complemented with additional beam measurements. The sources of this deviation and the mechanical modifications of the RFQ to solve this matter will be presented in this paper. Meanwhile, the nominal output energy of 750 keV has been confirmed and the new injector with the 4-rod RFQ is in full operation.

  12. Investigations of the output energy deviation and other parameters during commissioning of the four-rod radio frequency quadrupole at the Fermi National Accelerator Laboratory

    NASA Astrophysics Data System (ADS)

    Schmidt, J. S.; Koubek, B.; Schempp, A.; Tan, C. Y.; Bollinger, D. S.; Duel, K. L.; Karns, P. R.; Pellico, W. A.; Scarpine, V. E.; Schupbach, B. A.; Kurennoy, S. S.

    2014-03-01

    After 30 years of operation, the Cockcroft-Walton based injector at the Fermi National Accelerator Laboratory has been replaced by a new beam line including a dimpled magnetron 35 keV source in combination with a 750 keV four-rod radio frequency quadrupole (RFQ). The new injector is followed by the existing drift tube linac. Prior to installation, a test beam line was built which included the magnetron source and the four-rod RFQ with a number of beam measurement instrumentation. The first beam test with the RFQ showed an output energy deviation greater than 2.5%. Other problems also showed up which led to investigations of the output energy, power consumption and transmission properties using rf simulations which were complemented with additional beam measurements. The sources of this deviation and the mechanical modifications of the RFQ to solve this matter will be presented in this paper. Meanwhile, the nominal output energy of 750 keV has been confirmed and the new injector with the four-rod RFQ is in full operation.

  13. Fermi level pinning characterisation on ammonium fluoride-treated surfaces of silicon by energy-filtered doping contrast in the scanning electron microscope

    PubMed Central

    Chee, Augustus K. W.

    2016-01-01

    Two-dimensional dopant profiling using the secondary electron (SE) signal in the scanning electron microscope (SEM) is a technique gaining impulse for its ability to enable rapid and contactless low-cost diagnostics for integrated device manufacturing. The basis is doping contrast from electrical p-n junctions, which can be influenced by wet-chemical processing methods typically adopted in ULSI technology. This paper describes the results of doping contrast studies by energy-filtering in the SEM from silicon p-n junction specimens that were etched in ammonium fluoride solution. Experimental SE micro-spectroscopy and numerical simulations indicate that Fermi level pinning occurred on the surface of the treated-specimen, and that the doping contrast can be explained in terms of the ionisation energy integral for SEs, which is a function of the dopant concentration, and surface band-bending effects that prevail in the mechanism for doping contrast as patch fields from the specimen are suppressed. PMID:27576347

  14. Fermi level pinning characterisation on ammonium fluoride-treated surfaces of silicon by energy-filtered doping contrast in the scanning electron microscope.

    PubMed

    Chee, Augustus K W

    2016-01-01

    Two-dimensional dopant profiling using the secondary electron (SE) signal in the scanning electron microscope (SEM) is a technique gaining impulse for its ability to enable rapid and contactless low-cost diagnostics for integrated device manufacturing. The basis is doping contrast from electrical p-n junctions, which can be influenced by wet-chemical processing methods typically adopted in ULSI technology. This paper describes the results of doping contrast studies by energy-filtering in the SEM from silicon p-n junction specimens that were etched in ammonium fluoride solution. Experimental SE micro-spectroscopy and numerical simulations indicate that Fermi level pinning occurred on the surface of the treated-specimen, and that the doping contrast can be explained in terms of the ionisation energy integral for SEs, which is a function of the dopant concentration, and surface band-bending effects that prevail in the mechanism for doping contrast as patch fields from the specimen are suppressed. PMID:27576347

  15. Induced interactions in a superfluid Bose-Fermi mixture

    NASA Astrophysics Data System (ADS)

    Kinnunen, J. J.; Bruun, G. M.

    2015-04-01

    We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single-particle and collective excitations of the Fermi gas give rise to an induced interaction between the bosons, which varies strongly with momentum and frequency. It diverges at the sound mode of the Fermi superfluid, resulting in a sharp avoided crossing feature and a corresponding sign change of the interaction energy shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, we can use these prominent effects to systematically probe the strongly interacting Fermi gas.

  16. Nonlocal Poisson-Fermi model for ionic solvent.

    PubMed

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution. PMID:27575084

  17. Nonlocal Poisson-Fermi model for ionic solvent

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  18. Wind energy system time-domain (WEST) analyzers

    NASA Technical Reports Server (NTRS)

    Dreier, M. E.; Hoffman, J. A.

    1981-01-01

    A portable analyzer which simulates in real time the complex nonlinear dynamics of horizontal axis wind energy systems was constructed. Math models for an aeroelastic rotor featuring nonlinear aerodynamic and inertial terms were implemented with high speed digital controllers and analog calculation. This model was combined with other math models of elastic supports, control systems, a power train and gimballed rotor kinematics. A stroboscopic display system graphically depicting distributed blade loads, motion, and other aerodynamic functions on a cathode ray tube is included. Limited correlation efforts showed good comparison between the results of this analyzer and other sophisticated digital simulations. The digital simulation results were successfully correlated with test data.

  19. Upgrading Fermi Without Traveling to Space

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope has received an upgrade that increased its sensitivity by a whopping 40% and nobody had to travel to space to make it happen! The difference instead stems from remarkable improvement to the software used to analyze Fermi-LATs data, and it has resulted in a new high-energy map of our sky.Animation (click to watch!) comparing the Pass 7 to the Pass 8 Fermi-LAT analysis, in a region in the constellation Carina. Pass 8 provides more accurate directions for incoming gamma rays, so more of them fall closer to their sources, creating taller spikes and a sharper image. [NASA/DOE/Fermi LAT Collaboration]Pass 8Fermi-LAT has been surveying the whole sky since August 2008. It detects gamma-ray photons by converting them into electron-positron pairs and tracking the paths of these charged particles. But differentiating this signal from the charged cosmic rays that also pass through the detector with a flux that can be 10,000 times larger! is a challenging process. Making this distinction and rebuilding the path of the original gamma ray relies on complex analysis software.Pass 8 is a complete reprocessing of all data collected by Fermi-LAT. The software has gone through many revisions before now, but this is the first revision that has taken into account all of the experience that the Fermi team has gained operating the LAT in its orbital environment.The improvements made in Pass 8 include better background rejection of misclassified charged particles, improvements to the point spread function and effective area of the detector, and an extension of the effective energy range from below 100 MeV to beyond a few hundred GeV. The changes made in Pass 8 have increased the sensitivity of Fermi-LAT by an astonishing 40%.Map of the High-Energy SkySky map of the sources in the 2FHL catalog, classified by their most likely association. Click for a better look! [Ackermann et al. 2016]The first result from the

  20. An intelligent inter-domain routing scheme under the consideration of diffserv QoS and energy saving in multi-domain software-defined flexible optical networks

    NASA Astrophysics Data System (ADS)

    Zhao, Jijun; Li, Fengyun; Ren, Danping; Hu, Jinhua; Yao, Qiuyan; Li, Wei

    2016-05-01

    Large scale multi-domain software-defined optical networks (SDON) provisioning has become a key area with increased scalable bandwidth services across wider network regions. Although distributed schemes could achieve lightpath routing by the ergodic process of domain boundary nodes, it increases the complexity of the signaling procedure and deployment of the interface. Moreover, the physical impairments are always the main factor of the infrastructure layer in SDON, which affect the transmission quality of the signal. Meanwhile, with increasing energy consumption of the Internet, it is imperative to design energy-efficient networks. To address the above issues, in this paper, an intelligent inter-domain routing scheme, which is supported by hierarchical control plane architecture, is presented based on sub-topology graph under the consideration of diffserv quality-of-service (QoS) and energy saving. The proposed scheme could achieve multi-domain quality of transmission (QoT), energy aware routing and spectrum assignment (RSA). We explore the scenarios where the multi-domain SDON achieve energy efficiency on the basis of meeting the QoT requirement. The blocking, energy consumption and average set up delay performances of the proposed schemes are estimated. The results indicate that the introduction of sub-topology in multi-domain RSA scheme has the better performance comparing with the distributed scheme.

  1. On the repulsion of energy eigenstates in the time domain.

    PubMed Central

    Levine, R D; Kinsey, J L

    1991-01-01

    The rate and extent of the exploration of the available phase space of a bound quantum mechanical system are shown to depend on the repulsion of energy eigenstates. Central to the argument is the Fourier transform relating the survival probability (in time) of an initially prepared nonstationary state and the (frequency) autocorrelation function of the excitation spectrum. Strong repulsion of states, as in the Wigner surmise, leads to a rapid dephasing of the initially coherently prepared state. The rate and extent of sampling of phase space depend not only on the spacing distribution but also on the intensity fluctuations. The rate of dephasing is equal to that inferred from the width of the spectral autocorrelation function. PMID:11607247

  2. Energy Band Gap, Intrinsic Carrier Concentration and Fermi Level of CdTe Bulk Crystal between 304 K and 1067 K

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2007-01-01

    Optical transmission measurements were performed on CdTe bulk single crystal. It was found that when a sliced and polished CdTe wafer was used, a white film started to develop when the sample was heated above 530 K and the sample became opaque. Therefore, a bulk crystal of CdTe was first grown in the window area by physical vapor transport; the optical transmission was then measured and from which the energy band gap was derived between 304 and 1067 K. The band gaps of CdTe can be fit well as a function of temperature using the Varshini expression: Eg (e V) = 1.5860 - 5.9117xl0(exp -4) T(sup 2)/(T + 160). Using the band gap data, the high temperature electron-hole equilibrium was calculated numerically by assuming the Kane's conduction band structure and a heavy-hole parabolic valance band. The calculated intrinsic carrier concentrations agree well with the experimental data reported previously. The calculated intrinsic Fermi levels between 270 and 1200 K were also presented.

  3. Quantum gases. Observation of Fermi surface deformation in a dipolar quantum gas.

    PubMed

    Aikawa, K; Baier, S; Frisch, A; Mark, M; Ravensbergen, C; Ferlaino, F

    2014-09-19

    In the presence of isotropic interactions, the Fermi surface of an ultracold Fermi gas is spherical. Introducing anisotropic interactions can deform the Fermi surface, but the effect is subtle and challenging to observe experimentally. Here, we report on the observation of a Fermi surface deformation in a degenerate dipolar Fermi gas of erbium atoms. The deformation is caused by the interplay between strong magnetic dipole-dipole interaction and the Pauli exclusion principle. We demonstrate the many-body nature of the effect and its tunability with the Fermi energy. Our observation provides a basis for future studies on anisotropic many-body phenomena in normal and superfluid phases. PMID:25237096

  4. Evolution of electron Fermi surface with doping in cobaltates

    NASA Astrophysics Data System (ADS)

    Ma, Xixiao; Lan, Yu; Qin, Ling; Kuang, Lülin; Feng, Shiping

    2016-08-01

    The notion of the electron Fermi surface is one of the characteristic concepts in the field of condensed matter physics, and it plays a crucial role in the understanding of the physical properties of doped Mott insulators. Based on the t-J model, we study the nature of the electron Fermi surface in the cobaltates, and qualitatively reproduce the essential feature of the evolution of the electron Fermi surface with doping. It is shown that the underlying hexagonal electron Fermi surface obeys Luttinger’s theorem. The theory also predicts a Fermi-arc phenomenon at the low-doped regime, where the region of the hexagonal electron Fermi surface along the Γ -K direction is suppressed by the electron self-energy, and then six disconnected Fermi arcs located at the region of the hexagonal electron Fermi surface along the Γ -M direction emerge. However, this Fermi-arc phenomenon at the low-doped regime weakens with the increase of doping.

  5. Fermi TGF detection map

    NASA Video Gallery

    Fermi’s Gamma-ray Burst Monitor detected 130 TGFs from August 2008 to the end of 2010. Thanks to instrument tweaks, the team has been able to improve the detection rate to several TGFs per week. ...

  6. Interaction quenches of Fermi gases

    SciTech Connect

    Uhrig, Goetz S.

    2009-12-15

    It is shown that the jump in the momentum distribution of Fermi gases evolves smoothly for small and intermediate times once an interaction between the fermions is suddenly switched on. The jump does not vanish abruptly. The loci in momentum space where the jumps occur are those of the noninteracting Fermi sea. No relaxation of the Fermi surface geometry takes place.

  7. Fermi Observations of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.

    2010-05-01

    We report on observations of the Large Magellanic Cloud (LMC) with the Fermi Gamma-Ray Space Telescope. The LMC is clearly detected with the Large Area Telescope (LAT) and for the first time the emission is spatially well resolved in gamma-rays. Our observations reveal that the bulk of the gamma-ray emission arises from the 30 Doradus region. We discuss this result in light of the massive star populations that are hosted in this area and address implications for cosmic ray physics. We conclude by exploring the scientific potential of the ongoing Fermi observations on the study of high-energy phenomena in massive stars.

  8. Traveling dark solitons in superfluid Fermi gases

    SciTech Connect

    Liao Renyuan; Brand, Joachim

    2011-04-15

    Families of dark solitons exist in superfluid Fermi gases. The energy-velocity dispersion and number of depleted particles completely determine the dynamics of dark solitons on a slowly varying background density. For the unitary Fermi gas, we determine these relations from general scaling arguments and conservation of local particle number. We find solitons to oscillate sinusoidally at the trap frequency reduced by a factor of 1/{radical}(3). Numerical integration of the time-dependent Bogoliubov-de Gennes equation determines spatial profiles and soliton-dispersion relations across the BEC-BCS crossover, and proves consistent with the scaling relations at unitarity.

  9. Controlling the topology of Fermi surfaces in metal nanofilms.

    PubMed

    Ogawa, M; Gray, A; Sheverdyaeva, P M; Moras, P; Hong, H; Huang, L-C; Tang, S-J; Kobayashi, K; Carbone, C; Chiang, T-C; Matsuda, I

    2012-07-13

    The properties of metal crystals are governed by the electrons of the highest occupied states at the Fermi level and determined by Fermi surfaces, the Fermi energy contours in momentum space. Topological regulation of the Fermi surface has been an important issue in synthesizing functional materials, which we found to be realized at room temperature in nanometer-thick films. Reducing the thickness of a metal thin film down to its electron wavelength scale induces the quantum size effect and the electronic system changes from three to two-dimensional, transforming the Fermi surface topology. Such an ultrathin film further changes its topology through one-dimensional (1D) structural deformation of the film when it is grown on a 1D substrate. In particular, when the interface has 1D metallic bands, the system is additionally stabilized by forming an electron energy gap by hybridization between 1D states of the film and substrate.

  10. Universal Pinning Energy Barrier for Driven Domain Walls in Thin Ferromagnetic Films.

    PubMed

    Jeudy, V; Mougin, A; Bustingorry, S; Savero Torres, W; Gorchon, J; Kolton, A B; Lemaître, A; Jamet, J-P

    2016-07-29

    We report a comparative study of magnetic field driven domain wall motion in thin films made of different magnetic materials for a wide range of field and temperature. The full thermally activated creep motion, observed below the depinning threshold, is shown to be described by a unique universal energy barrier function. Our findings should be relevant for other systems whose dynamics can be modeled by elastic interfaces moving on disordered energy landscapes. PMID:27517790

  11. Nested-Fermi-liquid theory

    SciTech Connect

    Virosztek, A.; Ruvalds, J. )

    1990-09-01

    The susceptibility and quasiparticle self-energy are found to exhibit anomalous behavior in nested-Fermi-liquid (NFL) systems that have nearly parallel sections of the Fermi surface. Electron-electron scattering yields damping much stronger than the conventional electron-gas result and predicts a linear temperature variation of the resistivity. The susceptibility {chi}{sub NFL}{sup {prime}{prime}}({bold q},{omega}) for nested fermions is calculated at {bold q}{approx equal}{bold Q}, where {bold Q} is a typical nesting wave vector. The NFL susceptibility is linear in frequency up to a crossover region near {omega}{approx equal}4{ital T} where a saturation to a constant value occurs. The above features, as well as various theoretical constraints, are highly sensitive to the strength of the electron-electron coupling and to the degree of nesting. The relevance of the NFL results to superconducting oxides is briefly examined, with emphasis on the resistivity and the photoemission data, which supports the calculated damping {Gamma}({omega}{gt}{ital T}){approx equal}{alpha}{omega} with an intermediate on-site Coulomb coupling.

  12. Fermi Gamma-Ray Space Telescope Science Overview

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    After more than 2 years of science operations, the Fermi Gamma-ray Space Telescope continues to survey the high-energy sky on a daily basis. In addition to the more than 1400 sources found in the first Fermi Large Area Telescope Catalog (I FGL), new results continue to emerge. Some of these are: (1) Large-scale diffuse emission suggests possible activity from the Galactic Center region in the past; (2) a gamma-ray nova was found, indicating particle acceleration in this binary system; and (3) the Crab Nebula, long thought to be a steady source, has varied in the energy ranges seen by both Fermi instruments.

  13. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    SciTech Connect

    Nolan, P. L.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Abdo, A. A.; Ackermann, M.; Antolini, E.; Bonamente, E.; Atwood, W. B.; Belfiore, A.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Ballet, J.; Bastieri, D.; Bignami, G. F. E-mail: Gino.Tosti@pg.infn.it E-mail: tburnett@u.washington.edu; and others

    2012-04-01

    We present the second catalog of high-energy {gamma}-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely {gamma}-ray-producing source classes.

  14. Fermi Large Area Telescope Second Source Catalog

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M; Allafort, A.; Antolini, E; Bonnell, J.; Cannon, A.; Celik O.; Corbet, R.; Davis, D. S.; DeCesar, M. E.; Ferrara, E. C.; Gehrels, N.; Harding, A. K.; Hays, E.; Johnson, T. E.; McConville, W.; McEnery, J. E; Perkins, J. S.; Racusin, J. L; Scargle, J. D.; Stephens, T. E.; Thompson, D. J.; Troja, E.

    2012-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in 5 energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 11eV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes.

  15. [Effect on Fermi Resonance by Some External Fields: Investigation of Fermi Resonance According to Raman Spectra].

    PubMed

    Jiang, Xiu-lan; Sun, Cheng-lin; Zhou, Mi; Li, Dong-fei; Men, Zhi-wei; Li, Zuo-wei; Gao, Shu-qin

    2015-03-01

    Fermi resonance is a phenomenon of molecular vibrational coupling and energy transfer occurred between different groups of a single molecule or neighboring molecules. Many properties of Fermi resonance under different external fields, the investigation method of Raman spectroscopy as well as the application of Fermi resonance, etc need to be developed and extended further. In this article the research results and development about Fermi resonance obtained by Raman spectral technique were introduced systematically according to our work and the results by other researchers. Especially, the results of the behaviors of intramolecular and intermolecular Fermi resonance of some molecules under some external fields such as molecular field, pressure field and temperature field, etc were investigated and demonstrated in detail according to the Raman spectra obtained by high pressure DAC technique, temperature variation technique as well as the methods we planed originally in our group such as solution concentration variation method and LCOF resonance Raman spectroscopic technique, and some novel properties of Fermi resonance were found firstly. Concretely, (1) Under molecular field. a. The Raman spectra of C5H5 N in CH3 OH and H2O indicates that solvent effect can influence Fermi resonance distinctly; b. The phenomena of the asymmetric movement of the Fermi resonance doublets as well as the fundamental involved is tuned by the Fermi resonance which had not been found by other methods were found firstly by our variation solution concentration method; c. The Fermi resonance properties can be influenced distinctly by the molecular group reorganization induced by the hydrogen bond and anti-hydrogen bond in solution; d. Fermi resonance can occurred between C7 H8 and m-C8H10, and the Fermi resonance properties behave quite differently with the solution concentration; (2) Under pressure field. a. The spectral lines shift towards high wavenumber with increasing pressure, and

  16. Interaction Energy of Domain Walls in a Nonlocal Ginzburg-Landau Type Model from Micromagnetics

    NASA Astrophysics Data System (ADS)

    Ignat, Radu; Moser, Roger

    2016-07-01

    We study a variational model from micromagnetics involving a nonlocal Ginzburg-Landau type energy for {S1}-valued vector fields. These vector fields form domain walls, called Néel walls, that correspond to one-dimensional transitions between two directions within the unit circle {S1}. Due to the nonlocality of the energy, a Néel wall is a two length scale object, comprising a core and two logarithmically decaying tails. Our aim is to determine the energy differences leading to repulsion or attraction between Néel walls. In contrast to the usual Ginzburg-Landau vortices, we obtain a renormalised energy for Néel walls that shows both a tail-tail interaction and a core-tail interaction. This is a novel feature for Ginzburg-Landau type energies that entails attraction between Néel walls of the same sign and repulsion between Néel walls of opposite signs.

  17. Fermi acceleration of auroral particles.

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.; Heikkila, W. J.

    1972-01-01

    Review of a number of nighttime acceleration mechanisms proposed in the literature for the role of producing the keV nighttime auroral-particle fluxes. Parallel electric fields are rejected for several reasons, but particularly because of the observed simultaneous precipitation of electrons and protons. Acceleration in the neutral sheet is inadequate for producing the particle energies, the observed field-aligned pitch-angle distribution at high latitudes, and the spectral hardening toward lower latitudes. Neutral point mechanisms, although often suggested in principle, have never been demonstrated satisfactorily in theory or in practice. Pitch-angle scattering from a trapped population produced by transverse adiabatic compression is also incapable of producing the field-aligned distribution. It is therefore suggested that longitudinal or Fermi acceleration, which results from the known magnetospheric convection, is the main nighttime auroral acceleration mechanism. The argument is supported by data obtained with the soft-particle spectrometer on Isis 1.

  18. Pair Excitations in Fermi Fluids

    NASA Astrophysics Data System (ADS)

    Böhm, Helga M.; Krotscheck, Eckhard; Schörkhuber, Karl; Springer, Josef

    2006-09-01

    We present a theory of multi-pair excitations in strongly interacting Fermi systems. Based on an equations-of-motion approach for time-dependent pair correlations it leads to a qualitatively new structure of the density-density response function. Our theory reduces to both, i) the "correlated" random-phase approximation (RPA) for fermions if the two-pair excitations are ignored, and ii) the correlated Brillouin-Wigner perturbation theory for bosons in the appropriate limit. The theory preserves the two first energy-weighted sum rules. A familiar problem of the standard RPA is that its zero-sound mode is energetically much higher than found in experiments. The popular cure of introducing an average effective mass in the Lindhard function violates sum rules and describes the physics incorrectly. We demonstrate that the inclusion of correlated pair excitations gives the correct dispersion. As in 4He, a modification of the effective mass is unnecessary also in 3He.

  19. Effective field theories for superconducting systems with multiple Fermi surfaces

    NASA Astrophysics Data System (ADS)

    Braga, P. R.; Granado, D. R.; Guimaraes, M. S.; Wotzasek, C.

    2016-11-01

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defects and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.

  20. GRB Studies with Fermi

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    2008-01-01

    This slide presentation reviews the studies of Gamma Ray Bursts (GRB) with the Fermi Gamma Ray Space Telescope. Included are pictures of the observatory, with illustrations of the Large Area Telescope (LAT), and the Gamma-ray Burst Monitor (GBM) including information about both their capabilities. Graphs showing the GBM count rate over time after the GBM trigger for three GRBs, preliminary charts showing the multiple detector light curves the spectroscopy of the main LAT peak and the spectral evolution of GRB 080916C Burst Temporally-extended LAT emission.

  1. Theory of ultracold atomic Fermi gases

    SciTech Connect

    Giorgini, Stefano; Pitaevskii, Lev P.; Stringari, Sandro

    2008-10-15

    The physics of quantum degenerate atomic Fermi gases in uniform as well as in harmonically trapped configurations is reviewed from a theoretical perspective. Emphasis is given to the effect of interactions that play a crucial role, bringing the gas into a superfluid phase at low temperature. In these dilute systems, interactions are characterized by a single parameter, the s-wave scattering length, whose value can be tuned using an external magnetic field near a broad Feshbach resonance. The BCS limit of ordinary Fermi superfluidity, the Bose-Einstein condensation (BEC) of dimers, and the unitary limit of large scattering length are important regimes exhibited by interacting Fermi gases. In particular, the BEC and the unitary regimes are characterized by a high value of the superfluid critical temperature, on the order of the Fermi temperature. Different physical properties are discussed, including the density profiles and the energy of the ground-state configurations, the momentum distribution, the fraction of condensed pairs, collective oscillations and pair-breaking effects, the expansion of the gas, the main thermodynamic properties, the behavior in the presence of optical lattices, and the signatures of superfluidity, such as the existence of quantized vortices, the quenching of the moment of inertia, and the consequences of spin polarization. Various theoretical approaches are considered, ranging from the mean-field description of the BCS-BEC crossover to nonperturbative methods based on quantum Monte Carlo techniques. A major goal of the review is to compare theoretical predictions with available experimental results.

  2. Optimizing organic optoelectronic materials in both space and energy/time domains

    NASA Astrophysics Data System (ADS)

    Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Haliburton, James H.; Wang, Meina; Winston, Kizzy; Bonner, Carl E.

    2005-01-01

    Optimizations of organic/polymeric optoelectronic materials and devices in both space and energy/time domains have been studied, both experimentally and theoretically, in order to achieve high efficiency photoelectric conversion. Specifically, at spatial domain, a 'tertiary' block copolymer supra-molecular nano structure has been designed, and a series of -DBAB- type of block copolymers, where D is a conjugated donor block, A is a conjugated acceptor block, and B is a non-conjugated and flexible bridge unit, have been synthesized, characterized, and preliminarily examined for photoelectric conversions. In comparison to simple donor/acceptor (D/A) blends, -DBAB- block copolymers exhibited much better photoluminescence quenching and photoconductivity. These are mainly attributed to improvement in spatial domain for charge carrier generation and transportation in -DBAB- block copolymers then in simple D/A blends. In materials energy levels and electron transfer dynamic regime, theoretical analysis revealed that, the photo (or thermal) excitation induced charge separation appears to be most efficient when the corresponding donor/acceptor frontier orbital level offset is equal to the sum of the charge separation reorganization energy and the exciton binding energy. Other donor/acceptor frontier orbital energy offsets were also identified where the charge recombination becomes most severe, and where the charge separation rate constant over charge recombination rate constant become largest. This dynamically favored charge separation mechanism is also proposed to explain the general 'doping' induced charge carrier generation. Implications of these findings and future approaches are also discussed in order to achieve inexpensive, lightweight, flexible, and high efficiency 'plastic' solar cells or photo detectors.

  3. Fermi arcs vs. fermi pockets in electron-doped perovskite iridates

    DOE PAGES

    He, Junfeng; Hafiz, H.; Mion, Thomas R.; Hogan, T.; Dhital, C.; Chen, X.; Lin, Qisen; Hashimoto, M.; Lu, D. H.; Zhang, Y.; et al

    2015-02-23

    We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr1-xLax)₃Ir₂O₇. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr₂IrO₄. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.

  4. Fermi arcs vs. fermi pockets in electron-doped perovskite iridates

    SciTech Connect

    He, Junfeng; Hafiz, H.; Mion, Thomas R.; Hogan, T.; Dhital, C.; Chen, X.; Lin, Qisen; Hashimoto, M.; Lu, D. H.; Zhang, Y.; Markiewicz, R. S.; Bansil, A.; Wilson, S. D.; He, Rui -Hua

    2015-02-23

    We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr1-xLax)₃Ir₂O₇. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr₂IrO₄. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.

  5. New physics of metals: fermi surfaces without Fermi liquids.

    PubMed Central

    Anderson, P W

    1995-01-01

    I relate the historic successes, and present difficulties, of the renormalized quasiparticle theory of metals ("AGD" or Fermi liquid theory). I then describe the best-understood example of a non-Fermi liquid, the normal metallic state of the cuprate superconductors. PMID:11607559

  6. Landau's quasiparticle mapping: Fermi liquid approach and Luttinger liquid behavior.

    PubMed

    Heidbrink, Caspar P; Uhrig, Götz S

    2002-04-01

    A continuous unitary transformation is introduced which realizes Landau's mapping of the elementary excitations (quasiparticles) of an interacting Fermi liquid system to those of the system without interaction. The conservation of the number of quasiparticles is important. The transformation is performed numerically for a one-dimensional system, i.e., the worst case for a Fermi liquid approach. Yet evidence for Luttinger liquid behavior is found. Such an approach may open a route to a unified description of Fermi and Luttinger liquids on all energy scales.

  7. Fermi Large Area Telescope Bright Gamma-ray Source List

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, Guido; Bastieri, Denis; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bignami, G.F.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  8. The TeraFERMI terahertz source at the seeded FERMI free-electron-laser facility

    SciTech Connect

    Perucchi, A.; Di Mitri, S.; Penco, G.; Allaria, E.; Lupi, S.

    2013-02-15

    We describe the project for the construction of a terahertz (THz) beamline to be called TeraFERMI at the seeded FERMI free electron laser (FEL) facility in Trieste, Italy. We discuss topics as the underlying scientific case, the choice of the source, the expected performance, and THz beam propagation. Through electron beam dynamics simulations we show that the installation of the THz source in the beam dump section provides a new approach for compressing the electron bunch length without affecting FEL operation. Thanks to this further compression of the FEL electron bunch, the TeraFERMI facility is expected to provide THz pulses with energies up to the mJ range during normal FEL operation.

  9. Conformal Fermi Coordinates

    SciTech Connect

    Dai, Liang; Pajer, Enrico; Schmidt, Fabian E-mail: Enrico.pajer@gmail.com

    2015-11-01

    Fermi Normal Coordinates (FNC) are a useful frame for isolating the locally observable, physical effects of a long-wavelength spacetime perturbation. Their cosmological application, however, is hampered by the fact that they are only valid on scales much smaller than the horizon. We introduce a generalization that we call Conformal Fermi Coordinates (CFC). CFC preserve all the advantages of FNC, but in addition are valid outside the horizon. They allow us to calculate the coupling of long- and short-wavelength modes on all scales larger than the sound horizon of the cosmological fluid, starting from the epoch of inflation until today, by removing the complications of the second order Einstein equations to a large extent, and eliminating all gauge ambiguities. As an application, we present a calculation of the effect of long-wavelength tensor modes on small scale density fluctuations. We recover previous results, but clarify the physical content of the individual contributions in terms of locally measurable effects and ''projection'' terms.

  10. Mathematical methods for restricted domain ternary liquid mixture free energy determination using light scattering.

    PubMed

    Wahle, Chris W; Ross, David S; Thurston, George M

    2013-09-28

    We extend methods of solution of a light scattering partial differential equation for the free energy of mixing to apply to connected, isotropic ternary liquid composition domains that do not touch all three binary axes. To do so we mathematically analyze the problem of inferring needed Dirichlet boundary data, and solving for the free energy, with use of hypothetical static light scattering measurements that correspond to dielectric composition gradient vectors that have distinct directions. The physical idea behind the technique is that contrasting absorption properties of mixture components can result in such distinctly directed dielectric composition gradient vectors, due to their differing wavelength dependences of dielectric response. At suitably chosen wavelengths, contrasting light scattering efficiency patterns in the ternary composition triangle can then correspond to the same underlying free energy, and enlarge the scope of available information about the free energy, as shown here. We show how to use distinctly directed dielectric gradients to measure the free energy on both straight lines and curves within the ternary composition triangle, so as to provide needed Dirichlet conditions for light scattering partial differential equation solution. With use of Monte Carlo simulations of noisy light scattering data, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, for various angles between the assumed dielectric gradient vectors, and indicate how the measurement time depends on instrumental throughput parameters. The present analysis methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain such restricted liquid domains, including aqueous solutions of biological macromolecules, micellar mixtures and microemulsions, and many small molecule systems that are important in separation technology.

  11. Mathematical methods for restricted domain ternary liquid mixture free energy determination using light scattering

    NASA Astrophysics Data System (ADS)

    Wahle, Chris W.; Ross, David S.; Thurston, George M.

    2013-09-01

    We extend methods of solution of a light scattering partial differential equation for the free energy of mixing to apply to connected, isotropic ternary liquid composition domains that do not touch all three binary axes. To do so we mathematically analyze the problem of inferring needed Dirichlet boundary data, and solving for the free energy, with use of hypothetical static light scattering measurements that correspond to dielectric composition gradient vectors that have distinct directions. The physical idea behind the technique is that contrasting absorption properties of mixture components can result in such distinctly directed dielectric composition gradient vectors, due to their differing wavelength dependences of dielectric response. At suitably chosen wavelengths, contrasting light scattering efficiency patterns in the ternary composition triangle can then correspond to the same underlying free energy, and enlarge the scope of available information about the free energy, as shown here. We show how to use distinctly directed dielectric gradients to measure the free energy on both straight lines and curves within the ternary composition triangle, so as to provide needed Dirichlet conditions for light scattering partial differential equation solution. With use of Monte Carlo simulations of noisy light scattering data, we provide estimates of the overall system measurement time and sample spacing needed to determine the free energy to a desired degree of accuracy, for various angles between the assumed dielectric gradient vectors, and indicate how the measurement time depends on instrumental throughput parameters. The present analysis methods provide a way to use static light scattering to measure, directly, mixing free energies of many systems that contain such restricted liquid domains, including aqueous solutions of biological macromolecules, micellar mixtures and microemulsions, and many small molecule systems that are important in separation technology.

  12. Fermi LARGE AREA TELESCOPE DETECTION OF TWO VERY-HIGH-ENERGY (E > 100 GeV) γ-RAY PHOTONS FROM THE z = 1.1 BLAZAR PKS 0426–380

    SciTech Connect

    Tanaka, Y. T.; Mizuno, T.; Cheung, C. C.; Dermer, C. D.; Inoue, Y.; Stawarz, Ł.; Ajello, M.; Wood, D. L.; Chekhtman, A.; Fukazawa, Y.; Ohno, M.; Paneque, D.; Thompson, D. J.

    2013-11-01

    We report the Fermi Large Area Telescope (LAT) detection of two very-high-energy (VHE, E > 100 GeV) γ-ray photons from the directional vicinity of the distant (redshift, z = 1.1) blazar PKS 0426–380. The null hypothesis that both the 134 and 122 GeV photons originate from unrelated sources can be rejected at the 5.5σ confidence level. We therefore claim that at least one of the two VHE photons is securely associated with PKS 0426–380, making it the most distant VHE emitter known to date. The results are in agreement with recent Fermi-LAT constraints on the extragalactic background light (EBL) intensity, which imply a z ≅ 1 horizon for ≅ 100 GeV photons. The LAT detection of the two VHE γ-rays coincided roughly with flaring states of the source, although we did not find an exact correspondence between the VHE photon arrival times and the flux maxima at lower γ-ray energies. Modeling the γ-ray continuum of PKS 0426–380 with daily bins revealed a significant spectral hardening around the time of the first VHE event detection (LAT photon index Γ ≅ 1.4) but on the other hand no pronounced spectral changes near the detection time of the second one. This combination implies a rather complex variability pattern of the source in γ-rays during the flaring epochs. An additional flat component is possibly present above several tens of GeV in the EBL-corrected Fermi-LAT spectrum accumulated over the ∼8 month high state.

  13. Energy of the interaction between membrane lipid domains calculated from splay and tilt deformations

    NASA Astrophysics Data System (ADS)

    Galimzyanov, T. R.; Molotkovsky, R. J.; Kheyfets, B. B.; Akimov, S. A.

    2013-01-01

    Specific domains, called rafts, are formed in cell membranes. Similar lipid domains can be formed in model membranes as a result of phase separation with raft size may remaining small (˜10-100 nm) for a long time. The characteristic lifetime of a nanoraft ensemble strongly depends on the nature of mutual raft interactions. The interaction energy between the boundaries of two rafts has been calculated under the assumption that the thickness of the raft bilayer is greater than that of the surrounding membrane, and elastic deformations appear in order to smooth the thickness mismatch at the boundary. When rafts approach each other, deformations from their boundaries overlap, making interaction energy profile sophisticated. It has been shown that raft merger occurs in two stages: rafts first merge in one monolayer of the lipid bilayer and then in another monolayer. Each merger stage requires overcoming of an energy barrier of about 0.08-0.12 k BT per 1 nm of boundary length. These results allow us to explain the stability of the ensemble of finite sized rafts.

  14. Fermi-Teller theory of low-velocity ionization losses applied to monopoles

    SciTech Connect

    Ritson, D.M.

    1982-07-01

    The Fermi-Teller theory was originally used to predict the stopping, by ionization losses, of slow charged particles in materials. The theory is based on a calculation of the energy cost to a uniform Fermi sea. However, the Fermi velocity cancels out in the derivation, so the calculated results also apply to a Thomas-Fermi atom, in which each volume element is considered to be a Fermi sea filled to the top of the potential well with atomic electrons. An outline is presented of the modifications required to make the Fermi-Teller theory valid for a slow monopole traversing an insulator using the Thomas-Fermi model of the atom. (GHT)

  15. Transformation Optics: A Time- and Frequency-Domain Analysis of Electron-Energy Loss Spectroscopy.

    PubMed

    Kraft, Matthias; Luo, Yu; Pendry, J B

    2016-08-10

    Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) play a pivotal role in many of the cutting edge experiments in plasmonics. EELS and CL experiments are usually supported by numerical simulations, which-though accurate-may not provide as much physical insight as analytical calculations do. Fully analytical solutions to EELS and CL systems in plasmonics are rare and difficult to obtain. This paper aims to narrow this gap by introducing a new method based on transformation optics that allows to calculate the quasistatic frequency- and time-domain response of plasmonic particles under electron beam excitation. We study a nonconcentric annulus (and ellipse in the Supporting Information ) as an example.

  16. Fermi Large Area Telescope Second Source Catalog

    NASA Astrophysics Data System (ADS)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Belfiore, A.; Bellazzini, R.; Berenji, B.; Bignami, G. F.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Bonnell, J.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Campana, R.; Cañadas, B.; Cannon, A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Ceccanti, M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chipaux, R.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Corbet, R.; Cutini, S.; D'Ammando, F.; Davis, D. S.; de Angelis, A.; DeCesar, M. E.; DeKlotz, M.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Enoto, T.; Escande, L.; Fabiani, D.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Iafrate, G.; Itoh, R.; Jóhannesson, G.; Johnson, R. P.; Johnson, T. E.; Johnson, A. S.; Johnson, T. J.; Kamae, T.; Katagiri, H.; Kataoka, J.; Katsuta, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Landriu, D.; Latronico, L.; Lemoine-Goumard, M.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Marelli, M.; Massaro, E.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Minuti, M.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Mongelli, M.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Pinchera, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rochester, L. S.; Romani, R. W.; Roth, M.; Rousseau, R.; Ryde, F.; Sadrozinski, H. F.-W.; Salvetti, D.; Sanchez, D. A.; Saz Parkinson, P. M.; Sbarra, C.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Shaw, M. S.; Shrader, C.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stephens, T. E.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Tinebra, F.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Van Etten, A.; Van Klaveren, B.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wallace, E.; Wang, P.; Werner, M.; Winer, B. L.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.

    2012-04-01

    We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes. We dedicate this paper to the memory of our colleague Patrick Nolan, who died on 2011 November 6. His career spanned much of the history of high-energy astronomy from space and his work on the Large Area Telescope (LAT) began nearly 20 years ago when it was just a concept. Pat was a central member in the operation of the LAT collaboration and he is greatly missed.

  17. Reaching Fermi degeneracy via universal dipolar scattering.

    PubMed

    Aikawa, K; Frisch, A; Mark, M; Baier, S; Grimm, R; Ferlaino, F

    2014-01-10

    We report on the creation of a degenerate dipolar Fermi gas of erbium atoms. We force evaporative cooling in a fully spin-polarized sample down to temperatures as low as 0.2 times the Fermi temperature. The strong magnetic dipole-dipole interaction enables elastic collisions between identical fermions even in the zero-energy limit. The measured elastic scattering cross section agrees well with the predictions from the dipolar scattering theory, which follow a universal scaling law depending only on the dipole moment and on the atomic mass. Our approach to quantum degeneracy proceeds with very high cooling efficiency and provides large atomic densities, and it may be extended to various dipolar systems. PMID:24483874

  18. Dilute spin-orbit Fermi gases

    NASA Astrophysics Data System (ADS)

    Maldonado-Mundo, Daniel; He, Lianyi; Öhberg, Patrik; Valiente, Manuel

    2014-03-01

    We study repulsive Fermi gases with Rashba spin-orbit coupling in two and three dimensions when they are dilute enough that a single branch of the spectrum is occupied in the non-interacting ground state. We develop an effective renormalizable theory for fermions in the lower branch and obtain the energy of the system in three dimensions to second order in the renormalized coupling constant. We then exploit the non-Galilean-relativistic nature of spin-orbit coupled gases. We find that at finite momentum, the two-dimensional Fermi sea is deformed in a non-trivial way. Using mean-field theory to include interactions, we show that the ground-state of the system acquires a finite momentum, and is consequently deformed, when the interaction is stronger than a critical value. Heriot-Watt University. CM-DTC. SUPA. EPSRC.

  19. GRBs in the Era of Swift and Fermi

    NASA Technical Reports Server (NTRS)

    Racusin, Judy

    2011-01-01

    Utilizing both Swift and Fermi to study GRBs provides us with a unique broad spectral and temporal window into both prompt emission and afterglow studies. Swift has provided key information from GRB follow-up of LAT detected bursts) that has led to ground-based redshift measurements and afterglow broadband light curves and SEDs. We study the X-ray and optical afterglows of Fermi-LAT detected bursts in the context of the hundreds of GRBs discovered by Swift over the last 7 years) in order to better understand the origin of the high-energy gamma-rays. We also briefly describe the efforts to best facilitate joint Swift-Fermi observations. These initial results demonstrate the synergy between Swift and Fermi) and hint at the many interesting discoveries to come.

  20. Revisiting the Fermi Surface in Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Das, Mukunda P.; Green, Frederick

    2016-06-01

    The Fermi surface is an abstract object in the reciprocal space of a crystal lattice, enclosing the set of all those electronic band states that are filled according to the Pauli principle. Its topology is dictated by the underlying lattice structure and its volume is the carrier density in the material. The Fermi surface is central to predictions of thermal, electrical, magnetic, optical and superconducting properties in metallic systems. Density functional theory is a first-principles method used to estimate the occupied-band energies and, in particular, the isoenergetic Fermi surface. In this review we survey several key facts about Fermi surfaces in complex systems, where a proper theoretical understanding is still lacking. We address some critical difficulties.

  1. Renormalization group and the superconducting susceptibility of a Fermi liquid

    SciTech Connect

    Parameswaran, S. A.; Sondhi, S. L.; Shankar, R.

    2010-11-15

    A free Fermi gas has, famously, a superconducting susceptibility that diverges logarithmically at zero temperature. In this paper we ask whether this is still true for a Fermi liquid and find that the answer is that it does not. From the perspective of the renormalization group for interacting fermions, the question arises because a repulsive interaction in the Cooper channel is a marginally irrelevant operator at the Fermi liquid fixed point and thus is also expected to infect various physical quantities with logarithms. Somewhat surprisingly, at least from the renormalization group viewpoint, the result for the superconducting susceptibility is that two logarithms are not better than one. In the course of this investigation we derive a Callan-Symanzik equation for the repulsive Fermi liquid using the momentum-shell renormalization group, and use it to compute the long-wavelength behavior of the superconducting correlation function in the emergent low-energy theory. We expect this technique to be of broader interest.

  2. Radio-Frequency Spectroscopy of strongly interacting Fermi gases

    NASA Astrophysics Data System (ADS)

    Schirotzek, Andre; Wu, Cheng-Hsun; Sommer, Ariel; Zwierlein, Martin

    2009-05-01

    Strongly interacting Fermi gases exhibit a rich phase diagram in the BEC-BCS crossover. In recent experiments we have used radio frequency spectroscopy to probe two physically very different regimes: 1.) We have observed Spin-Polarons in a highly imbalanced Fermi mixture. A single spin down atom immersed in a spin up Fermi sea dresses itself with a cloud of majority atoms, thus forming a Spin-Polaron. rf spectroscopy can directly reveal the polaron and allows for an experimental measure of the quasiparticle residue Z and the chemical potential μ of this Fermi liquid. At a critical interaction strength, the transition to two-particle molecular binding is observed. 2.) rf spectroscopy of quasiparticles in a polarized superfluid allowed us to determine the superfluid gap δ and has demonstrated the importance of the Hartree energy U in rf spectra [1]. [1] Andre Schirotzek, Yong-il Shin, Christian H. Schunck and Wolfgang Ketterle, Phys. Rev. Lett. 101, 140403 (2008)

  3. Domain-averaged exchange-correlation energies as a physical underpinning for chemical graphs.

    PubMed

    García-Revilla, M; Francisco, E; Popelier, Paul L A; Martín Pendás, Angel

    2013-04-15

    A novel solution to the problem of assigning a molecular graph to a collection of nuclei (i.e. how to draw a molecular structure) is presented. Molecules are universally understood as a set of nuclei linked by bonds, but establishing which nuclei are bonded and which are not is still an empirical matter. Our approach borrows techniques from quantum chemical topology, which showed for the first time the construction of chemical graphs from wave functions, shifting the focus on energetics. This new focus resolves issues surrounding previous topological analyses, in which domain-averaged exchange-correlation energies (V(xc)), quantities defined in real space between each possible atom pair, hold the key. Exponential decay of V(xc) in non-metallic systems as the intercenter distance increases guarantees a well-defined hierarchy for all possible V(xc) values in a molecule. Herein, we show that extracting the set of atom pairs that display the largest V(xc) values in the hierarchy is equivalent to retrieving the molecular graph itself. Notably, domain-averaged exchange-correlation energies are transferable, and they can be used to calculate bond strengths. Fine-grained details resulted to be related to simple stereoelectronic effects. These ideas are demonstrated in a set of simple pilot molecules.

  4. The Statistical Fermi Paradox

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    In this paper is provided the statistical generalization of the Fermi paradox. The statistics of habitable planets may be based on a set of ten (and possibly more) astrobiological requirements first pointed out by Stephen H. Dole in his book Habitable planets for man (1964). The statistical generalization of the original and by now too simplistic Dole equation is provided by replacing a product of ten positive numbers by the product of ten positive random variables. This is denoted the SEH, an acronym standing for “Statistical Equation for Habitables”. The proof in this paper is based on the Central Limit Theorem (CLT) of Statistics, stating that the sum of any number of independent random variables, each of which may be ARBITRARILY distributed, approaches a Gaussian (i.e. normal) random variable (Lyapunov form of the CLT). It is then shown that: 1. The new random variable NHab, yielding the number of habitables (i.e. habitable planets) in the Galaxy, follows the log- normal distribution. By construction, the mean value of this log-normal distribution is the total number of habitable planets as given by the statistical Dole equation. 2. The ten (or more) astrobiological factors are now positive random variables. The probability distribution of each random variable may be arbitrary. The CLT in the so-called Lyapunov or Lindeberg forms (that both do not assume the factors to be identically distributed) allows for that. In other words, the CLT "translates" into the SEH by allowing an arbitrary probability distribution for each factor. This is both astrobiologically realistic and useful for any further investigations. 3. By applying the SEH it is shown that the (average) distance between any two nearby habitable planets in the Galaxy may be shown to be inversely proportional to the cubic root of NHab. This distance is denoted by new random variable D. The relevant probability density function is derived, which was named the "Maccone distribution" by Paul Davies in

  5. Nodal to nodeless superconducting energy-gap structure change concomitant with Fermi-surface reconstruction in the heavy-fermion compound CeCoIn5

    DOE PAGES

    Kim, Hyunsoo; Tanatar, M. A.; Flint, R.; Petrovic, C.; Hu, Rongwei; White, B. D.; Lum, I. K.; Maple, M. B.; Prozorov, R.

    2015-01-15

    The London penetration depth λ(T) was measured in single crystals of Ce1–xRxCoIn₅, R=La, Nd, and Yb down to Tmin ≈ 50 mK (Tc/Tmin ~50) using a tunnel-diode resonator. In the cleanest samples Δλ(T) is best described by the power law, Δλ(T) ∝ Tn, with n ~ 1, consistent with line nodes. Substitutions of Ce with La, Nd, and Yb lead to similar monotonic suppressions of Tc, however, the effects on Δλ(T) differ. While La and Nd dopings lead to increase of the exponent n and saturation at n ~ 2, as expected for a dirty nodal superconductor, Yb doping leadsmore » to n > 3, suggesting a change from nodal to nodeless superconductivity. As a result, this superconducting gap structure change happens in the same doping range where changes of the Fermi surface topology were reported, implying that the nodal structure and Fermi surface topology are closely linked.« less

  6. The fermi paradox is neither Fermi's nor a paradox.

    PubMed

    Gray, Robert H

    2015-03-01

    The so-called Fermi paradox claims that if technological life existed anywhere else, we would see evidence of its visits to Earth--and since we do not, such life does not exist, or some special explanation is needed. Enrico Fermi, however, never published anything on this topic. On the one occasion he is known to have mentioned it, he asked "Where is everybody?"--apparently suggesting that we do not see extraterrestrials on Earth because interstellar travel may not be feasible, but not suggesting that intelligent extraterrestrial life does not exist or suggesting its absence is paradoxical. The claim "they are not here; therefore they do not exist" was first published by Michael Hart, claiming that interstellar travel and colonization of the Galaxy would be inevitable if intelligent extraterrestrial life existed, and taking its absence here as proof that it does not exist anywhere. The Fermi paradox appears to originate in Hart's argument, not Fermi's question. Clarifying the origin of these ideas is important, because the Fermi paradox is seen by some as an authoritative objection to searching for evidence of extraterrestrial intelligence--cited in the U.S. Congress as a reason for killing NASA's SETI program on one occasion. But evidence indicates that it misrepresents Fermi's views, misappropriates his authority, deprives the actual authors of credit, and is not a valid paradox. PMID:25719510

  7. The fermi paradox is neither Fermi's nor a paradox.

    PubMed

    Gray, Robert H

    2015-03-01

    The so-called Fermi paradox claims that if technological life existed anywhere else, we would see evidence of its visits to Earth--and since we do not, such life does not exist, or some special explanation is needed. Enrico Fermi, however, never published anything on this topic. On the one occasion he is known to have mentioned it, he asked "Where is everybody?"--apparently suggesting that we do not see extraterrestrials on Earth because interstellar travel may not be feasible, but not suggesting that intelligent extraterrestrial life does not exist or suggesting its absence is paradoxical. The claim "they are not here; therefore they do not exist" was first published by Michael Hart, claiming that interstellar travel and colonization of the Galaxy would be inevitable if intelligent extraterrestrial life existed, and taking its absence here as proof that it does not exist anywhere. The Fermi paradox appears to originate in Hart's argument, not Fermi's question. Clarifying the origin of these ideas is important, because the Fermi paradox is seen by some as an authoritative objection to searching for evidence of extraterrestrial intelligence--cited in the U.S. Congress as a reason for killing NASA's SETI program on one occasion. But evidence indicates that it misrepresents Fermi's views, misappropriates his authority, deprives the actual authors of credit, and is not a valid paradox.

  8. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds.

  9. Fermi's New Pulsar Detection Technique

    NASA Video Gallery

    To locate a pulsar in Fermi LAT data requires knowledge of the object’s sky position, its pulse period, and how the pulse rate slows over time. Computers check many different combinations of posi...

  10. Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates

    NASA Astrophysics Data System (ADS)

    Godin, Kyle; Kang, Kyungnam; Fu, Shichen; Yang, Eui-Hyeok

    2016-08-01

    We report a surface energy-controlled low-pressure chemical vapor deposition growth of WS2 monolayers on SiO2 using pre-growth oxygen plasma treatment of substrates, facilitating increased monolayer surface coverage and patterned growth without lithography. Oxygen plasma treatment of the substrate caused an increase in the average domain size of WS2 monolayers by 78%  ±  2% while having a slight reduction in nucleation density, which translates to increased monolayer surface coverage. This substrate effect on growth was exploited to grow patterned WS2 monolayers by patterned plasma treatment on patterned substrates and by patterned source material with resolutions less than 10 µm. Contact angle-based surface energy measurements revealed a dramatic increase in polar surface energy. A growth model was proposed with lowered activation energies for growth and increased surface diffusion length consistent with the range of results observed. WS2 samples grown with and without oxygen plasma were similar high quality monolayers verified through transmission electron microscopy, selected area electron diffraction, atomic force microscopy, Raman, and photoluminescence measurements. This technique enables the production of large-grain size, patterned WS2 without a post-growth lithography process, thereby providing clean surfaces for device applications.

  11. ORIGIN OF THE FERMI BUBBLE

    SciTech Connect

    Cheng, K.-S.; Chernyshov, D. O.; Dogiel, V. A.; Ko, C.-M.; Ip, W.-H.

    2011-04-10

    Fermi has discovered two giant gamma-ray-emitting bubbles that extend nearly 10 kpc in diameter north and south of the Galactic center. The existence of the bubbles was first evidenced in X-rays detected by ROSAT and later WMAP detected an excess of radio signals at the location of the gamma-ray bubbles. We propose that periodic star capture processes by the galactic supermassive black hole, Sgr A*, with a capture rate 3 x 10{sup -5} yr{sup -1} and energy release {approx}3 x 10{sup 52} erg per capture can produce very hot plasma {approx}10 keV with a wind velocity {approx}10{sup 8} cm s{sup -1} injected into the halo and heat up the halo gas to {approx}1 keV, which produces thermal X-rays. The periodic injection of hot plasma can produce shocks in the halo and accelerate electrons to {approx}TeV, which produce radio emission via synchrotron radiation and gamma rays via inverse Compton scattering with the relic and the galactic soft photons.

  12. Solar System Gamma Ray observations using Fermi-LAT detector

    SciTech Connect

    Giglietto, N.

    2009-04-08

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an international space mission dedicated to the study of the high-energy gamma rays from the Universe. The main instrument aboard Fermi is the Large Area Telescope (LAT), a pair conversion telescope equipped with the state-of-the art in gamma-ray detectors technology, and operating at energies >30 MeV. During first two months of data taking, Fermi has detected high-energy gamma rays from the quiet Sun and the Moon. This emission is produced by interactions of cosmic rays; by nucleons with the solar and lunar surface, and electrons with solar photons in the heliosphere. While the Moon was detected by EGRET on CGRO with low statistics, Fermi provides high-sensitivity measurements on a daily basis allowing both short- and long-term variability to be studied. Since Galactic cosmic rays are at their maximum flux at solar minimum we expect that the quiescent solar and lunar emission to be a maximum during the period covered by this report. Fermi is the only mission capable of monitoring the Sun at energies above several hundred MeV over the full 24th solar cycle. We present first analysis showing images of Moon and the quiet emission of the solar disk, giving a description of the analysis tools used.

  13. Probing the conformation of the fibronectin III1-2 domain by fluorescence resonance energy transfer.

    PubMed

    Karuri, Nancy W; Lin, Zong; Rye, Hays S; Schwarzbauer, Jean E

    2009-02-01

    Fibronectin (FN) matrix is crucial for cell and tissue functions during embryonic development, wound healing, and oncogenesis. Assembly of FN matrix fibrils requires FN domains that mediate interactions with integrin receptors and with other FN molecules. In addition, regulation of FN matrix assembly depends on the first two FN type III modules, III(1) and III(2), which harbor FN-binding sites. We propose that interactions between these two modules sequester FN-binding sites in soluble FN and that these sites become exposed by FN conformational changes during assembly. To test the idea that III(1-2) has a compact conformation, we constructed CIIIY, a conformational sensor of III(1-2) based on fluorescent resonance energy transfer between cyan and yellow fluorescent proteins conjugated at its N and C termini. We demonstrate energy transfer in CIIIY and show that fluorescent resonance energy transfer was eliminated by proteolysis and by treatment with mild denaturants that disrupted intramolecular interactions between the two modules. We also show that mutations of key charged residues resulted in conformational changes that exposed binding sites for the N-terminal 70-kDa FN fragment. Collectively, these results support a conformation-dependent mechanism for the regulation of FN matrix assembly by III(1-2).

  14. Full-waveform inversion in the time domain with an energy-weighted gradient

    SciTech Connect

    Zhang, Zhigang; Huang, Lianjie; Lin, Youzuo

    2011-01-01

    When applying full-waveform inversion to surface seismic reflection data, one difficulty is that the deep region of the model is usually not reconstructed as well as the shallow region. We develop an energy-weighted gradient method for the time-domain full-waveform inversion to accelerate the convergence rate and improve reconstruction of the entire model without increasing the computational cost. Three different methods can alleviate the problem of poor reconstruction in the deep region of the model: the layer stripping, depth-weighting and pseudo-Hessian schemes. The first two approaches need to subjectively choose stripping depths and weighting functions. The third one scales the gradient with only the forward propagation wavefields from sources. However, the Hessian depends on wavefields from both sources and receivers. Our new energy-weighted method makes use of the energies of both forward and backward propagated wavefields from sources and receivers as weights to compute the gradient. We compare the reconstruction of our new method with those of the conjugate gradient and pseudo-Hessian methods, and demonstrate that our new method significantly improves the reconstruction of both the shallow and deep regions of the model.

  15. Superconductivity versus bound-state formation in a two-band superconductor with small Fermi energy: Applications to Fe pnictides/chalcogenides and doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey V.; Eremin, Ilya; Efremov, Dmitri V.

    2016-05-01

    We analyze the interplay between superconductivity and the formation of bound pairs of fermions (BCS-BEC crossover) in a 2D model of interacting fermions with small Fermi energy EF and weak attractive interaction, which extends to energies well above EF. The 2D case is special because a two-particle bound state forms at arbitrary weak interaction, and already at weak coupling, one has to distinguish between the bound-state formation and superconductivity. We briefly review the situation in the one-band model and then consider two different two-band models: one with one hole band and one electron band and another with two hole or two electron bands. In each case, we obtain the bound-state energy 2 E0 for two fermions in a vacuum and solve the set of coupled equations for the pairing gaps and the chemical potentials to obtain the onset temperature of the pairing Tins and the quasiparticle dispersion at T =0 . We then compute the superfluid stiffness ρs(T =0 ) and obtain the actual Tc. For definiteness, we set EF in one band to be near zero and consider different ratios of E0 and EF in the other band. We show that at EF≫E0 , the behavior of both two-band models is BCS-like in the sense that Tc≈Tins≪EF and Δ ˜Tc . At EF≪E0 , the two models behave differently: in the model with two hole/two electron bands, Tins˜E0/lnE/0EF , Δ ˜(E0EF) 1 /2 , and Tc˜EF , like in the one-band model. In between Tins and Tc, the system displays a preformed pair behavior. In the model with one hole and one electron bands, Tc remains of order Tins, and both remain finite at EF=0 and of the order of E0. The preformed pair behavior still does exist in this model because Tc is numerically smaller than Tins. For both models, we reexpress Tins in terms of the fully renormalized two-particle scattering amplitude by extending to the two-band case (the method pioneered by Gorkov and Melik-Barkhudarov back in 1961). We apply our results for the model with a hole and an electron band to

  16. Anomalous minimum in the shear viscosity of a Fermi gas.

    PubMed

    Elliott, E; Joseph, J A; Thomas, J E

    2014-07-11

    We measure the static shear viscosity η in a two-component Fermi gas near a broad collisional (Feshbach) resonance, as a function of interaction strength and energy. We find that η has both a quadratic and a linear dependence on the interaction strength 1/(k(FI)a), where a is the s-wave scattering length and k(FI) is the Fermi wave vector for an ideal gas at the trap center. For energies above the superfluid transition, the minimum in η as a function of interaction strength is significantly shifted toward the BEC side of resonance, to 1/(k(FI)a)≃0.25.

  17. Fermi-LAT Observations of Galactic Transients

    NASA Technical Reports Server (NTRS)

    Hays, Elizabeth

    2011-01-01

    This slide presentation reviews the observations of Galactic transients by the Large Area Telescope (LAT) on the Fermi Gamma Ray Space Telescope. The LAT is producing spectacular results for the GeV transient sky, some of which are shown and reviewed. Some of the results in the GeV range that are discussed in this presentation are: (1) New blazars and unidentified transients (2) the jet of the Cygnus X-3 microquasar (3) gamma rays from V407 Cygni nova (4) Fast high-energy gamma-ray flares from the Crab Nebula

  18. Fermi GBM: Highlights from the First Year

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2009-01-01

    The Fermi Gamma ray Burst Monitor is an all-sky instrument sensitive to photons from about 8 keV to 40 MeV. I will summarize highlights from the first year, including triggered observations of gamma ray bursts, soft gamma ray repeaters, and terrestrial gamma flashes, and observations in the continuous data of X-ray binaries and accreting X-ray pulsars. GBM provides complementary observations to Swift/BAT, observing many of the same sources, but over a wider energy range.

  19. TU-F-18A-02: Iterative Image-Domain Decomposition for Dual-Energy CT

    SciTech Connect

    Niu, T; Dong, X; Petrongolo, M; Zhu, L

    2014-06-15

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its material decomposition capability. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical value. Existing de-noising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. We propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimation with smoothness regularization. It includes the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Performance is evaluated using an evaluation phantom (Catphan 600) and an anthropomorphic head phantom. Results are compared to those generated using direct matrix inversion with no noise suppression, a de-noising method applied on the decomposed images, and an existing algorithm with similar formulation but with an edge-preserving regularization term. Results: On the Catphan phantom, our method retains the same spatial resolution as the CT images before decomposition while reducing the noise standard deviation of decomposed images by over 98%. The other methods either degrade spatial resolution or achieve less low-contrast detectability. Also, our method yields lower electron density measurement error than direct matrix inversion and reduces error variation by over 97%. On the head phantom, it reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusion: We propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative

  20. Ferromagnetism in a repulsive atomic Fermi gas with correlated disorder

    NASA Astrophysics Data System (ADS)

    Pilati, S.; Fratini, E.

    2016-05-01

    We investigate the zero-temperature ferromagnetic behavior of a two-component repulsive Fermi gas in the presence of a correlated random field that represents an optical speckle pattern. The density is tuned so that the (noninteracting) Fermi energy is close to the mobility edge of the Anderson localization transition. We employ quantum Monte Carlo simulations to determine various ground-state properties, including the equation of state, the magnetic susceptibility, and the energy of an impurity immersed in a polarized Fermi gas (repulsive polaron). In the weakly interacting limit, the magnetic susceptibility is found to be suppressed by disorder. However, it rapidly increases with the interaction strength, and it diverges at a much weaker interaction strength compared to the clean gas. Both the transition from the paramagnetic phase to the partially ferromagnetic phase, and the one from the partially to the fully ferromagnetic phase, are strongly favored by disorder, indicating a case of order induced by disorder.

  1. Fermi Observations of TeV-Selected Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, T. H.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Di Bernardo, G.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Foschini, L.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giavitto, G.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hanabata, Y.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocian, M. L.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Reyes, L. C.; Ritz, S.; Rochester, L. S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Saz Parkinson, P. M.; Scargle, J. D.; Schalk, T. L.; Sellerholm, A.; Sgrò, C.; Shaw, M. S.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Tanaka, Y.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-12-01

    We report on observations of TeV-selected active galactic nuclei (AGNs) made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGNs were selected for study, each being either (1) a source detected at TeV energies (28 sources) or (2) an object that has been studied with TeV instruments and for which an upper limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources, and 29 were not in the third EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Evidence for systematic evolution of the γ-ray spectrum with redshift is presented and discussed in the context of interaction with the extragalactic background light.

  2. The First Fermi LAT Supernova Remnant Catalog

    NASA Astrophysics Data System (ADS)

    Acero, F.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caputo, R.; Caragiulo, M.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen, J. M.; Cohen-Tanugi, J.; Cominsky, L. R.; Condon, B.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Grenier, I. A.; Grondin, M.-H.; Guillemot, L.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Harding, A. K.; Hayashida, M.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Hou, X.; Iafrate, G.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Katsuta, J.; Kerr, M.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Laffon, H.; Lande, J.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nemmen, R.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Renaud, M.; Reposeur, T.; Rousseau, R.; Saz Parkinson, P. M.; Schmid, J.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Strong, A. W.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vianello, G.; Wells, B.; Wood, K. S.; Wood, M.; Yassine, M.; den Hartog, P. R.; Zimmer, S.

    2016-05-01

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.

  3. Spiraling Fermi arcs in Weyl materials

    NASA Astrophysics Data System (ADS)

    Li, Songci; Andreev, Anton

    In Weyl materials the valence and conduction electron bands touch at an even number of isolated points in the Brillouin zone. In the vicinity of these points the electron dispersion is linear and may be described by the massless Dirac equation. This results in nontrivial topology of Berry connection curvature. One of its consequences is the existence of peculiar surface electron states whose Fermi surfaces form arcs connecting projections of the Weyl points onto the surface plane. Band bending near the boundary of the crystal also produces surface states. We show that in Weyl materials band bending near the crystal surface gives rise to spiral structure of energy surfaces of arc states. The corresponding Fermi surface has the shape of a spiral that winds about the projection of the Weyl point onto the surface plane. The direction of the winding is determined by the helicity of the Weyl point and the sign of the band bending potential. For close valleys arc state morphology may be understood in terms of avoided crossing of oppositely winding spirals. This work is supported by the U.S. Department of Energy Office of Science, Basic Energy Sciences under Award Number DE-FG02-07ER46452.

  4. The first Fermi LAT supernova remnant catalog

    DOE PAGES

    Acero, F.

    2016-05-16

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope. Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude, allows us to determine an upper limit of 22% on the number of GeV candidatesmore » falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, demonstrates the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. As a result, we model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.« less

  5. Free-energy landscape of ion-channel voltage-sensor-domain activation.

    PubMed

    Delemotte, Lucie; Kasimova, Marina A; Klein, Michael L; Tarek, Mounir; Carnevale, Vincenzo

    2015-01-01

    Voltage sensor domains (VSDs) are membrane-bound protein modules that confer voltage sensitivity to membrane proteins. VSDs sense changes in the transmembrane voltage and convert the electrical signal into a conformational change called activation. Activation involves a reorganization of the membrane protein charges that is detected experimentally as transient currents. These so-called gating currents have been investigated extensively within the theoretical framework of so-called discrete-state Markov models (DMMs), whereby activation is conceptualized as a series of transitions across a discrete set of states. Historically, the interpretation of DMM transition rates in terms of transition state theory has been instrumental in shaping our view of the activation process, whose free-energy profile is currently envisioned as composed of a few local minima separated by steep barriers. Here we use atomistic level modeling and well-tempered metadynamics to calculate the configurational free energy along a single transition from first principles. We show that this transition is intrinsically multidimensional and described by a rough free-energy landscape. Remarkably, a coarse-grained description of the system, based on the use of the gating charge as reaction coordinate, reveals a smooth profile with a single barrier, consistent with phenomenological models. Our results bridge the gap between microscopic and macroscopic descriptions of activation dynamics and show that choosing the gating charge as reaction coordinate masks the topological complexity of the network of microstates participating in the transition. Importantly, full characterization of the latter is a prerequisite to rationalize modulation of this process by lipids, toxins, drugs, and genetic mutations.

  6. Free-energy landscape of ion-channel voltage-sensor–domain activation

    PubMed Central

    Delemotte, Lucie; Kasimova, Marina A.; Klein, Michael L.; Tarek, Mounir; Carnevale, Vincenzo

    2015-01-01

    Voltage sensor domains (VSDs) are membrane-bound protein modules that confer voltage sensitivity to membrane proteins. VSDs sense changes in the transmembrane voltage and convert the electrical signal into a conformational change called activation. Activation involves a reorganization of the membrane protein charges that is detected experimentally as transient currents. These so-called gating currents have been investigated extensively within the theoretical framework of so-called discrete-state Markov models (DMMs), whereby activation is conceptualized as a series of transitions across a discrete set of states. Historically, the interpretation of DMM transition rates in terms of transition state theory has been instrumental in shaping our view of the activation process, whose free-energy profile is currently envisioned as composed of a few local minima separated by steep barriers. Here we use atomistic level modeling and well-tempered metadynamics to calculate the configurational free energy along a single transition from first principles. We show that this transition is intrinsically multidimensional and described by a rough free-energy landscape. Remarkably, a coarse-grained description of the system, based on the use of the gating charge as reaction coordinate, reveals a smooth profile with a single barrier, consistent with phenomenological models. Our results bridge the gap between microscopic and macroscopic descriptions of activation dynamics and show that choosing the gating charge as reaction coordinate masks the topological complexity of the network of microstates participating in the transition. Importantly, full characterization of the latter is a prerequisite to rationalize modulation of this process by lipids, toxins, drugs, and genetic mutations. PMID:25535341

  7. Finite-Size and Confinement Effects in Spin-Polarized Trapped Fermi Gases

    SciTech Connect

    Ku, Mark; Braun, Jens; Schwenk, Achim

    2009-06-26

    We calculate the energy of a single fermion interacting resonantly with a Fermi sea of different-species fermions in anisotropic traps, and show that finite particle numbers and the trap geometry impact the phase structure and the critical polarization. Our findings contribute to understanding some experimental discrepancies in spin-polarized Fermi gases as finite-size and confinement effects.

  8. Pulsars above 10 GeV: Fermi LAT Observations and Questions

    NASA Technical Reports Server (NTRS)

    Thomson, Dave

    2012-01-01

    The success of the Fermi Large Area Telescope in studying gamma-ray pulsars offers hints about future work above 10 GeV. The infrastructure for discovering pulsars will be similar between LAT and any future telescope. Some of the Fermi LAT results suggest intriguing questions about the future of high-energy pulsar studies.

  9. Thomas-Fermi molecular dynamics

    SciTech Connect

    Clerouin, J.; Pollock, E.L. ); Zerah, G. )

    1992-10-15

    A three-dimensional density-functional molecular-dynamics code is developed for the Thomas-Fermi density functional as a prototype for density functionals using only the density. Following Car and Parrinello (Phys. Rev. Lett. 55, 2471 (1985)), the electronic density is treated as a dynamical variable. The electronic densities are verified against a multi-ion Thomas-Fermi algorithm due to Parker (Phys. Rev. A 38, 2205 (1988)). As an initial application, the effect of electronic polarization in enhancing ionic diffusion in strongly coupled plasmas is demonstrated.

  10. Rugged Energy Landscapes in Multiphase Porous Media Flow: A Discrete-Domain Description

    NASA Astrophysics Data System (ADS)

    Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Immiscible displacements in porous media involve a complex sequence of pore-scale events, from the smooth, reversible displacement of interfaces to abrupt interfacial reconfigurations and rapid pore invasion cascades. Discontinuous changes in pressure or saturation have been referred to as Haines jumps, and they emerge as a key mechanism to understand the origin of hysteresis in porous media flow. Hysteresis persists at the many-pore scale: when multiple cycles of drainage and imbibition of a porous sample are conducted, a dense hysteresis diagram emerges. The interpretation of hysteresis as a consequence of irreversible transitions and multistability is at the heart of early hysteresis models, and in recent experiments, and points to an inherently non-equilibrium behavior. For a given volume fraction of fluids occupying the pore space, many stable configurations are possible, due to the tortuous network of nonuniform pores and throats that compose the porous medium, and to complex wetting and capillary transitions. Multistability indicates that porous media systems exhibit rugged energy landscapes, where the system may remain pinned at local energy minima for long times. We address the question of developing a zero-dimensional model that inherits the path-dependence and `'bursty'' behavior of immiscible displacements, and propose a discrete-domain model that captures the role of metastability and local equilibria in the origin of hysteresis. We describe the porous medium and fluid system as a discrete set of weakly connected, multistable compartments, charaterized by a unique free energy function. This description does not depend explicitly on past saturations, turning points, or drainage/imbibition labels. The system behaves hysteretically, and we rationalize its behavior as sweeping a complex metastability diagram, with dissipation arising from discrete switches among metastable branches. The hysteretic behavior of the pressure-saturation curve is controlled by

  11. Fermi Finds Youthful Pulsar Among Ancient Stars

    NASA Video Gallery

    In three years, NASA's Fermi has detected more than 100 gamma-ray pulsars, but something new has appeared. Among a type of pulsar with ages typically numbering a billion years or more, Fermi has fo...

  12. Fermi GBM Observations of Terrestrial Gamma Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; von Kienlin, A.; Dwyer, J. R.; Smith, D. M.; Holzworth, R.

    2010-01-01

    In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed more than 77 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds. The energy spectra of some TGFs have strong 511 keV positron annihilation lines, indicating that these TGFs contain a large fraction of positrons

  13. Representing situation awareness in collaborative systems: a case study in the energy distribution domain.

    PubMed

    Salmon, P M; Stanton, N A; Walker, G H; Jenkins, D; Baber, C; McMaster, R

    2008-03-01

    The concept of distributed situation awareness (DSA) is currently receiving increasing attention from the human factors community. This article investigates DSA in a collaborative real-world industrial setting by discussing the results derived from a recent naturalistic study undertaken within the UK energy distribution domain. The results describe the DSA-related information used by the networks of agents involved in the scenarios analysed, the sharing of this information between the agents and the salience of different information elements used. Thus, the structure, quality and content of each network's DSA is discussed, along with the implications for DSA theory. The findings reinforce the notion that when viewing situation awareness (SA) in collaborative systems, it is useful to focus on the coordinated behaviour of the system itself, rather than on the individual as the unit of analysis and suggest that the findings from such assessments can potentially be used to inform system, procedure and training design. SA is a critical commodity for teams working in industrial systems and systems, procedures and training programmes should be designed to facilitate efficient system SA acquisition and maintenance. This article presents approaches for describing and understanding SA during real-world collaborative tasks, the outputs from which can potentially be used to inform system, training programmes and procedure design.

  14. An empirical energy function for structural assessment of protein transmembrane domains.

    PubMed

    Postic, Guillaume; Ghouzam, Yassine; Gelly, Jean-Christophe

    2015-08-01

    Knowing the structure of a protein is essential to characterize its function and mechanism at the molecular level. Despite major advances in solving structures experimentally, most membrane protein native conformations remain unknown. This lack of available structures, along with the physical constraints imposed by the lipid bilayer environment, constitutes a difficulty for the modeling of membrane protein structures. Assessing the quality of membrane protein models is therefore critical. Using a non-redundant set of 66 membrane protein structures (41 alpha and 25 beta), we have developed an empirical energy function for the structural assessment of alpha-helical and beta-sheet transmembrane domains. This statistical potential quantifies the interatomic distance between residues located in the lipid bilayer. To minimize the problem of insufficient sampling, we have used kernel density estimations of the distance distributions. Following a leave-one-out cross-validation procedure, we show that our method outperforms current statistical potentials in discriminating correct from incorrect membrane protein models. Furthermore, the comparison of our distance-dependent statistical potential with one optimized on globular proteins provides insights into the rules by which residues interact within the lipid bilayer. PMID:26044650

  15. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Harrison, N.

    2016-08-01

    We provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high Tc superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a "large" starting Fermi surface comprising 1 +p hole carriers, as predicted by band structure calculations, and a "small" starting Fermi surface comprising p hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa2Cu3O6 +x and HgBa2CuO4 +x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.

  16. The core dominance parameter and Fermi detection of extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Kuo; Wu, Zhong-Zu; Gu, Min-Feng

    2016-08-01

    By cross-correlating an archive sample of 542 extragalactic radio sources with the Fermi-LAT Third Source Catalog (3FGL), we have compiled a sample of 80 γ-ray sources and 462 non-Fermi sources with available core dominance parameter (R CD), and core and extended radio luminosity; all the parameters are directly measured or derived from available data in the literature. We found that R CD has significant correlations with radio core luminosity, γ-ray luminosity and γ-ray flux; the Fermi sources have on average higher R CD than non-Fermi sources. These results indicate that the Fermi sources should be more compact, and the beaming effect should play a crucial role in the detection of γ-ray emission. Moreover, our results also show Fermi sources have systematically larger radio flux than non-Fermi sources at fixed R CD, indicating larger intrinsic radio flux in Fermi sources. These results show a strong connection between radio and γ-ray flux for the present sample and indicate that the non-Fermi sources are likely due to the low beaming effect, and/or the low intrinsic γ-ray flux. This supports a scenario that has been published in the literature: a co-spatial origin of the activity for the radio and γ-ray emission, suggesting that the origin of the seed photons for the high-energy γ-ray emission is within the jet.

  17. Solving the Mystery of the Fermi Bubbles?

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.; Cumalat, John Perry

    2015-05-01

    The Fermi Bubbles are large structures that stretch symmetrically between galactic latitudes of -55 degrees and +55 degress and between galactic longitudes of -45 degrees and +45 degrees. For almost a decade they have been under the intense scrutiny of the Fermi-Large Area Telescope, a gamma-ray detector in orbit about the earth. The Bubbles remain mysterious: Are the gamma-rays - with energies up to a few hundred GeV - produced by hadrons or do they come from Inverse Compton scattering of galactic electrons with the low energy interstellar radiation field? Why are the edges of the bubbles only 3 degree wide? How old are the bubbles.For some time we have been considering a non-Newtonian Cosinusoidal potential U=-G M Cos[ko r]/r, and its complement, a non-Coulombic electric potential U=Q Exp[-ko r]. In both cases, ko =2 pi/400 pc. In this talk we present evidence that our putative potentials acting in concert can help answer the mysteries of the Bubbles.

  18. Fermi (nee GLAST) at Six Months

    NASA Technical Reports Server (NTRS)

    Ritz, Steve

    2009-01-01

    The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to >300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.

  19. Fermi (Formerly GLAST) at Six Months

    NASA Technical Reports Server (NTRS)

    Ritz, Steven M.

    2009-01-01

    The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.

  20. THE FERMI GAMMA-RAY BURST MONITOR

    SciTech Connect

    Meegan, Charles; Lichti, Giselher; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Von Kienlin, Andreas; Steinle, Helmut; Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Paciesas, W. S.; Preece, Robert; Wilson, Robert B.; Fishman, Gerald; Kouveliotou, Chryssa; Van der Horst, Alexander J.; McBreen, Sheila

    2009-09-01

    The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from {approx}8 keV to {approx}40 MeV over the full unocculted sky. The onboard trigger threshold is {approx}0.7 photons cm{sup -2} s{sup -1} (50-300 keV, 1 s peak). GBM generates onboard triggers for {approx}250 GRBs per year.

  1. Lectures of Fermi liquid theory

    SciTech Connect

    Bedell, K.S.

    1993-07-01

    The Fermi liquid theory was first introduced by Landau in 1956 to provide a theoretical basis for the properties of strongly correlated Fermi systems. This theory has proven to be crucial for our understanding of a broad range of materials. These include liquid {sup 3}He, {sup 3}He-{sup 4}He mixtures, simple metals, heavy-fermions, and nuclear matter to name a few. In the high temperature superconductors questions have been raised regarding the applicability of Fermi liquid theory to the normal state behavior of these materials. I will not address this issue in these lectures. My focus will be to summarize the foundations of this theory and to explore the consequences. These lectures are in part a summary of the excellent review article by Baym and Pethick and the books by Pines and Nozieres and Baym and Pethick. They include as well a summary of some articles that I have authored and co-authored. In the main body of the lectures I will not make any additional references to the books or articles. In the absence of reading the original materials, my lectures should provide the essentials of a mini-course in Fermi liquid theory.

  2. Lectures of Fermi liquid theory

    SciTech Connect

    Bedell, K.S.

    1993-01-01

    The Fermi liquid theory was first introduced by Landau in 1956 to provide a theoretical basis for the properties of strongly correlated Fermi systems. This theory has proven to be crucial for our understanding of a broad range of materials. These include liquid [sup 3]He, [sup 3]He-[sup 4]He mixtures, simple metals, heavy-fermions, and nuclear matter to name a few. In the high temperature superconductors questions have been raised regarding the applicability of Fermi liquid theory to the normal state behavior of these materials. I will not address this issue in these lectures. My focus will be to summarize the foundations of this theory and to explore the consequences. These lectures are in part a summary of the excellent review article by Baym and Pethick and the books by Pines and Nozieres and Baym and Pethick. They include as well a summary of some articles that I have authored and co-authored. In the main body of the lectures I will not make any additional references to the books or articles. In the absence of reading the original materials, my lectures should provide the essentials of a mini-course in Fermi liquid theory.

  3. Fermi's Large Area Telescope (LAT)

    NASA Video Gallery

    Fermi’s Large Area Telescope (LAT) is the spacecraft’s main scientificinstrument. This animation shows a gamma ray (purple) entering the LAT,where it is converted into an electron (red) and a...

  4. CCC and the Fermi paradox

    NASA Astrophysics Data System (ADS)

    Gurzadyan, V. G.; Penrose, R.

    2016-01-01

    Within the scheme of conformal cyclic cosmology (CCC), information can be transmitted from aeon to aeon. Accordingly, the "Fermi paradox" and the SETI programme --of communication by remote civilizations-- may be examined from a novel perspective: such information could, in principle, be encoded in the cosmic microwave background. The current empirical status of CCC is also discussed.

  5. Fermi, Enrico (1901-54)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Italian physicist, created the first controlled chain reaction, founded Argonne National Laboratory. His work on the properties of electrons (spin-half particles like electrons are called fermions after him, and the study of their properties is called Fermi-Dirac statistics) enabled the pressure source in white dwarf stars to be identified, and white dwarf star properties to be calculated by CHAN...

  6. Fermi's β-DECAY Theory

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Throughout his lifetime Enrico Fermi (1901-1954) had considered his 1934 β-decay theory as his most important contribution to theoretical physics. E. Segrè (1905-1989) had vividly written about an episode at the inception of that paper:1...

  7. From fractional exclusion statistics back to Bose and Fermi distributions

    NASA Astrophysics Data System (ADS)

    Anghel, Dragoş-Victor

    2013-12-01

    Fractional exclusion statistics (FES) is a generalization of the Bose and Fermi statistics. Typically, systems of interacting particles are described as ideal FES systems and the properties of the FES systems are calculated from the properties of the interacting systems. In this Letter I reverse the process and I show that a FES system may be described in general as a gas of quasiparticles which obey Bose or Fermi distributions; the energies of the newly defined quasiparticles are calculated starting from the FES equations for the equilibrium particle distribution. In the end I use a system in the effective mass approximation as an example to show how the procedure works.

  8. Harper Operator, Fermi Curves and Picard-Fuchs Equation

    NASA Astrophysics Data System (ADS)

    Li, Dan

    2014-05-01

    This paper is a continuation of the work on the spectral problem of the Harper operator using algebraic geometry. We continue to discuss the local monodromy of algebraic Fermi curves based on Picard-Lefschetz formula. The density of states over approximating components of Fermi curves satisfies a Picard-Fuchs equation. By the property of Landen transformation, the density of states has a Lambert series as the quarter period. A q-expansion of the energy is derived from a mirror map as in the B-model.

  9. Large N expansion for superfluid Fermi gases at unitarity

    NASA Astrophysics Data System (ADS)

    Veillette, Martin Y.; Sheehy, Daniel E.; Radzihovsky, Leo

    2007-03-01

    We study an s-wave resonant Fermi gas near the unitarity point. We treat this problem by generalizing the Fermi gas to a model with 2N hyperfine states (with Sp(2N) symmetry). We show that for N=∞, the model can be solved exactly by the BEC-BCS mean field solution. In order to address the physically relevant problem (N=1), we perform a systematic 1/N loop expansion around the BEC-BCS solution. For N=1, we obtain a variety of thermodynamic quantities, including the energy, the pairing gap, and the upper critical polarization. We compare our results to experimental data and other theoretical approaches.

  10. Superfluidity of heated Fermi systems in the static fluctuation approximation

    SciTech Connect

    Khamzin, A. A.; Nikitin, A. S.; Sitdikov, A. S.

    2015-10-15

    Superfluidity properties of heated finite Fermi systems are studied in the static fluctuation approximation, which is an original method. This method relies on a single and controlled approximation, which permits taking correctly into account quasiparticle correlations and thereby going beyond the independent-quasiparticle model. A closed self-consistent set of equations for calculating correlation functions at finite temperature is obtained for a finite Fermi system described by the Bardeen–Cooper–Schrieffer Hamiltonian. An equation for the energy gap is found with allowance for fluctuation effects. It is shown that the phase transition to the supefluid state is smeared upon the inclusion of fluctuations.

  11. A search for neutrino emission from the Fermi bubbles with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; Al Samarai, I.; André, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Classen, F.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Dekeyser, I.; Deschamps, A.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Flaminio, V.; Folger, F.; Fritsch, U.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Michael, T.; Montaruli, T.; Morganti, M.; Müller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Perrina, C.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Shanidze, R.; Sieger, C.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J. D.; Zúñiga, J.

    2014-02-01

    Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source.

  12. Fermi Large Area Telescope Third Source Catalog

    NASA Astrophysics Data System (ADS)

    Acero, F.; Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Bonino, R.; Bottacini, E.; Bregeon, J.; Britto, R. J.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caputo, R.; Caragiulo, M.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; DeKlotz, M.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Dubois, R.; Dumora, D.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Finke, J.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Iafrate, G.; Jogler, T.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Kataoka, J.; Katsuta, J.; Kuss, M.; La Mura, G.; Landriu, D.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev, A. A.; Mongelli, M.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Rochester, L. S.; Romani, R. W.; Salvetti, D.; Sánchez-Conde, M.; Saz Parkinson, P. M.; Schulz, A.; Siskind, E. J.; Smith, D. A.; Spada, F.; Spandre, G.; Spinelli, P.; Stephens, T. E.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Torres, D. F.; Torresi, E.; Tosti, G.; Troja, E.; Van Klaveren, B.; Vianello, G.; Winer, B. L.; Wood, K. S.; Wood, M.; Zimmer, S.; Fermi-LAT Collaboration

    2015-06-01

    We present the third Fermi Large Area Telescope (LAT) source catalog (3FGL) of sources in the 100 MeV-300 GeV range. Based on the first 4 yr of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the Second Fermi LAT catalog, the 3FGL catalog incorporates twice as much data, as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse γ-ray emission, a refined procedure for source detection, and improved methods for associating LAT sources with potential counterparts at other wavelengths. The 3FGL catalog includes 3033 sources above 4σ significance, with source location regions, spectral properties, and monthly light curves for each. Of these, 78 are flagged as potentially being due to imperfections in the model for Galactic diffuse emission. Twenty-five sources are modeled explicitly as spatially extended, and overall 238 sources are considered as identified based on angular extent or correlated variability (periodic or otherwise) observed at other wavelengths. For 1010 sources we have not found plausible counterparts at other wavelengths. More than 1100 of the identified or associated sources are active galaxies of the blazar class; several other classes of non-blazar active galaxies are also represented in the 3FGL. Pulsars represent the largest Galactic source class. From source counts of Galactic sources we estimate that the contribution of unresolved sources to the Galactic diffuse emission is ˜3% at 1 GeV.

  13. Breakdown of the Fermi Liquid Description for Strongly Interacting Fermions

    NASA Astrophysics Data System (ADS)

    Sagi, Yoav; Drake, Tara E.; Paudel, Rabin; Chapurin, Roman; Jin, Deborah S.

    2015-02-01

    The nature of the normal state of an ultracold Fermi gas in the BCS-BEC crossover regime is an intriguing and controversial topic. While the many-body ground state remains a condensate of paired fermions, the normal state must evolve from a Fermi liquid to a Bose gas of molecules as a function of the interaction strength. How this occurs is still largely unknown. We explore this question with measurements of the distribution of single-particle energies and momenta in a nearly homogeneous gas above Tc . The data fit well to a function that includes a narrow, positively dispersing peak that corresponds to quasiparticles and an "incoherent background" that can accommodate broad, asymmetric line shapes. We find that the quasiparticle's spectral weight vanishes abruptly as the strength of interactions is modified, which signals the breakdown of a Fermi liquid description. Such a sharp feature is surprising in a crossover.

  14. FERMI@Elettra FEL Design Technical Optimization Final Report

    SciTech Connect

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno,Giovanni; Graves, William

    2006-07-31

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI{at}ELETTRA project. The FERMI{at}ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn.

  15. Spin-Orbit Coupled Fermi Gases across a Feshbach Resonance

    NASA Astrophysics Data System (ADS)

    Yu, Zeng-Qiang; Zhai, Hui

    2011-11-01

    In this Letter we study both ground state properties and the superfluid transition temperature of a spin-1/2 Fermi gas across a Feshbach resonance with a synthetic spin-orbit coupling, using the mean-field theory and the exact solution of two-body problem. We show that a strong spin-orbit coupling can significantly enhance the pairing gap for negative scattering length as, due to increased density of state at Fermi surface. Strong spin-orbit coupling can also significantly enhance the superfluid transition temperature Tc to a sizable fraction of Fermi temperature when as≲0, while it suppresses Tc slightly for positive as. The interaction energy and pair size at resonance are also discussed.

  16. Fractionalized Fermi liquid in a Kondo-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Tsvelik, A. M.

    2016-10-01

    The Kondo-Heisenberg model is used as a controllable tool to demonstrate the existence of a peculiar metallic state with unbroken translational symmetry where the Fermi surface volume is not controlled by the total electron density. I use a nonperturbative approach where the strongest interactions are taken into account by means of exact solution, and corrections are controllable. In agreement with the general requirements formulated by T. Senthil et al. [Phys. Rev. Lett. 90, 216403 (2003), 10.1103/PhysRevLett.90.216403], the resulting metallic state represents a fractionalized Fermi liquid where well defined quasiparticles coexist with gapped fractionalized collective excitations. The system undergoes a phase transition to an ordered phase (charge density wave or superconducting), at the transition temperature which is parametrically small in comparison to the quasiparticle Fermi energy.

  17. Self-annihilation of inversion domains by high energy defects in III-Nitrides

    SciTech Connect

    Koukoula, T.; Kioseoglou, J. Kehagias, Th.; Komninou, Ph.; Ajagunna, A. O.; Georgakilas, A.

    2014-04-07

    Low-defect density InN films were grown on Si(111) by molecular beam epitaxy over an ∼1 μm thick GaN/AlN buffer/nucleation layer. Electron microscopy observations revealed the presence of inverse polarity domains propagating across the GaN layer and terminating at the sharp GaN/InN (0001{sup ¯}) interface, whereas no inversion domains were detected in InN. The systematic annihilation of GaN inversion domains at the GaN/InN interface is explained in terms of indium incorporation on the Ga-terminated inversion domains forming a metal bonded In-Ga bilayer, a structural instability known as the basal inversion domain boundary, during the initial stages of InN growth on GaN.

  18. Fluctuations and phase transitions in Larkin-Ovchinnikov liquid-crystal states of a population-imbalanced resonant Fermi gas

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo

    2011-08-01

    Motivated by a realization of imbalanced Feshbach-resonant atomic Fermi gases, we formulate a low-energy theory of the Fulde-Ferrell and the Larkin-Ovchinnikov (LO) states and use it to analyze fluctuations, stability, and phase transitions in these enigmatic finite momentum-paired superfluids. Focusing on the unidirectional LO pair-density-wave state, which spontaneously breaks the continuous rotational and translational symmetries, we show that it is characterized by two Goldstone modes, corresponding to a superfluid phase and a smectic phonon. Because of the liquid-crystalline “softness” of the latter, at finite temperature the three-dimensional state is characterized by a vanishing LO order parameter, quasi-Bragg peaks in the structure and momentum distribution functions, and a “charge”-4, paired-Cooper-pairs, off-diagonal long-range order, with a superfluid-stiffness anisotropy that diverges near a transition into a nonsuperfluid state. In addition to conventional integer vortices and dislocations, the LO superfluid smectic exhibits composite half-integer vortex-dislocation defects. A proliferation of defects leads to a rich variety of descendant states, such as the charge-4 superfluid and Fermi-liquid nematics and topologically ordered nonsuperfluid states, that generically intervene between the LO state and the conventional superfluid and the polarized Fermi liquid at low and high imbalance, respectively. The fermionic sector of the LO gapless superconductor is also quite unique, exhibiting a Fermi surface of Bogoliubov quasiparticles associated with the Andreev band of states, localized on the array of the LO domain walls.

  19. Fluctuations and phase transitions in Larkin-Ovchinnikov liquid-crystal states of a population-imbalanced resonant Fermi gas

    SciTech Connect

    Radzihovsky, Leo

    2011-08-15

    Motivated by a realization of imbalanced Feshbach-resonant atomic Fermi gases, we formulate a low-energy theory of the Fulde-Ferrell and the Larkin-Ovchinnikov (LO) states and use it to analyze fluctuations, stability, and phase transitions in these enigmatic finite momentum-paired superfluids. Focusing on the unidirectional LO pair-density-wave state, which spontaneously breaks the continuous rotational and translational symmetries, we show that it is characterized by two Goldstone modes, corresponding to a superfluid phase and a smectic phonon. Because of the liquid-crystalline ''softness'' of the latter, at finite temperature the three-dimensional state is characterized by a vanishing LO order parameter, quasi-Bragg peaks in the structure and momentum distribution functions, and a ''charge''-4, paired-Cooper-pairs, off-diagonal long-range order, with a superfluid-stiffness anisotropy that diverges near a transition into a nonsuperfluid state. In addition to conventional integer vortices and dislocations, the LO superfluid smectic exhibits composite half-integer vortex-dislocation defects. A proliferation of defects leads to a rich variety of descendant states, such as the charge-4 superfluid and Fermi-liquid nematics and topologically ordered nonsuperfluid states, that generically intervene between the LO state and the conventional superfluid and the polarized Fermi liquid at low and high imbalance, respectively. The fermionic sector of the LO gapless superconductor is also quite unique, exhibiting a Fermi surface of Bogoliubov quasiparticles associated with the Andreev band of states, localized on the array of the LO domain walls.

  20. Beyond the Fermi liquid paradigm: hidden Fermi liquids.

    PubMed

    Jain, J K; Anderson, P W

    2009-06-01

    An intense investigation of possible non-Fermi liquid states of matter has been inspired by two of the most intriguing phenomena discovered in the past quarter century, namely, high-temperature superconductivity and the fractional quantum Hall effect. Despite enormous conceptual strides, these two fields have developed largely along separate paths. Two widely employed theories are the resonating valence bond theory for high-temperature superconductivity and the composite fermion theory for the fractional quantum Hall effect. The goal of this perspective article is to note that they subscribe to a common underlying paradigm: They both connect these exotic quantum liquids to certain ordinary Fermi liquids residing in unphysical Hilbert spaces. Such a relation yields numerous nontrivial experimental consequences, exposing these theories to rigorous and definitive tests.

  1. The Mirage of the Fermi Scale

    NASA Astrophysics Data System (ADS)

    Antipin, Oleg; Sannino, Francesco; Tuominen, Kimmo

    2013-09-01

    The discovery of a light Higgs boson at Large Hadron Collider may be suggesting that we need to revise our model building paradigms to understand the origin of the weak scale. We explore the possibility that the Fermi scale is not fundamental but rather a derived one, i.e. a low energy mirage. We show that this scenario emerges in a very natural way in models previously used to break the electroweak symmetry dynamically and suggest a simple dynamical framework for this idea. In our model the electroweak scale results from the interplay between two very high energy scales, one typically of the order of ΛUV 1010GeV and the other around MU 1016GeV, although other values are also possible.

  2. Detecting Dark Matter annihilation lines with Fermi

    SciTech Connect

    Ylinen, Tomi; Edmonds, Yvonne; Bloom, Elliott D.; Conrad, Jan; /Royal Inst. Tech., Stockholm /Kalmar U. /KIPAC, Menlo Park /SLAC /Stockholm U.

    2009-05-15

    Dark matter constitutes one of the most intriguing but so far unresolved issues in physics today. In many extensions of the Standard Model the existence of a stable Weakly Interacting Massive Particle (WIMP) is predicted. The WIMP is an excellent dark matter particle candidate and one of the most interesting scenarios include an annihilation of two WIMPs into two gamma-rays. If the WIMPs are assumed to be non-relativistic, the resulting photons will both have an energy equal to the mass of the WIMP and manifest themselves as a monochromatic spectral line in the energy spectrum. This type of signal would represent a 'smoking gun' for dark matter, since no other known astrophysical process should be able to produce it. In these proceedings we give an overview of the different approaches to a search for dark matter lines that the Fermi-LAT collaboration is pursuing and the various challenges involved.

  3. Constraining decaying dark matter with Fermi LAT gamma-rays

    SciTech Connect

    Zhang, Le; Sigl, Günter; Weniger, Christoph; Maccione, Luca; Redondo, Javier E-mail: christoph.weniger@desy.de E-mail: redondo@mppmm.mpg.de

    2010-06-01

    High energy electrons and positrons from decaying dark matter can produce a significant flux of gamma rays by inverse Compton off low energy photons in the interstellar radiation field. This possibility is inevitably related with the dark matter interpretation of the observed PAMELA and FERMI excesses. The aim of this paper is providing a simple and universal method to constrain dark matter models which produce electrons and positrons in their decay by using the Fermi LAT gamma-ray observations in the energy range between 0.5 GeV and 300 GeV. We provide a set of universal response functions that, once convolved with a specific dark matter model produce the desired constraints. Our response functions contain all the astrophysical inputs such as the electron propagation in the galaxy, the dark matter profile, the gamma-ray fluxes of known origin, and the Fermi LAT data. We study the uncertainties in the determination of the response functions and apply them to place constraints on some specific dark matter decay models that can well fit the positron and electron fluxes observed by PAMELA and Fermi LAT. To this end we also take into account prompt radiation from the dark matter decay. We find that with the available data decaying dark matter cannot be excluded as source of the PAMELA positron excess.

  4. Fermi LAT Observations of LS 5039

    SciTech Connect

    Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; /more authors..

    2012-03-29

    The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 {+-} 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300 GeV) of 4.9 {+-} 0.5(stat) {+-} 1.8(syst) x 10{sup -7} photon cm{sup -2} s{sup -1}, with a cutoff at 2.1 {+-} 0.3(stat) {+-} 1.1(syst) GeV and photon index {Gamma} = 1.9 {+-} 0.1(stat) {+-} 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.

  5. FERMI/LAT OBSERVATIONS OF LS 5039

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Bastieri, D.; Baughman, B. M.; Bonamente, E.; Brigida, M. E-mail: ttanaka@slac.stanford.ed E-mail: adam.hill@obs.ujf-grenoble.f

    2009-11-20

    The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 +- 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300 GeV) of 4.9 +- 0.5(stat) +- 1.8(syst) x10{sup -7} photon cm{sup -2} s{sup -1}, with a cutoff at 2.1 +- 0.3(stat) +- 1.1(syst) GeV and photon index GAMMA = 1.9 +- 0.1(stat) +- 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.

  6. Evidence of Fermi bubbles around M31

    NASA Astrophysics Data System (ADS)

    Pshirkov, M. S.; Vasiliev, V. V.; Postnov, K. A.

    2016-06-01

    Gamma-ray haloes can exist around galaxies due to the interaction of escaping galactic cosmic rays with the surrounding gas. We have searched for such a halo around the nearby giant spiral Andromeda galaxy M31 using almost 7 yr of Fermi LAT data at energies above 300 MeV. The presence of a diffuse gamma-ray halo with total photon flux 2.6 ± 0.6 × 10-9 cm-2 s-1, corresponding to a luminosity (0.3-100 GeV) of (3.2 ± 0.6) × 1038 erg s-1 (for a distance of 780 kpc) was found at a 5.3σ confidence level. The halo form does not correspond to the extended baryonic H I disc of M31, as would be expected in hadronic production of gamma photons from cosmic ray interaction, nor it is spherically symmetric, as could be in the case of dark matter annihilation. The best-fitting halo template corresponds to two 6-7.5 kpc bubbles symmetrically located perpendicular to the M31 galactic disc, similar to the `Fermi bubbles' found around the Milky Way centre, which suggests the past activity of the central supermassive black hole or a star formation burst in M31.

  7. Experimental Fermi surface of Mo(011)

    NASA Astrophysics Data System (ADS)

    Jeong, K.; Gaylord, R. H.; Kevan, S. D.

    1989-02-01

    High-resolution angle-resolved photoemission results are presented which allow us to determine the complete Fermi surfaces for the surface-localized electronic levels on the clean and hydrogen-covered Mo(011) surfaces. Similar to previously presented data for W(011), we observe a total of three distinct closed hole orbits and one closed electron orbit. The hole orbits are elliptical and are centered on different projections of the same bulk Fermi-surface ellipsoid. They are located at the center and along each of the edges of the surface Brillouin zone. The surface electron pocket is closed but has a very complex shape which is somewhat different from the one observed on W(011). It orbits the projection of a bulk electron pocket which is traditionally called a jack, and is centered in the surface Brillouin zone. As was observed for W(011), these orbits are affected to different extents by hydrogen adsorption. The hole pockets are rapidly quenched by hydrogen, while the electron pocket grows in area until it merges with its image in the second Brillouin zone. At saturation there exist two hole pockets which are the remnants of the clean-surface electron pocket. These results are discussed in terms of the dynamical response of the surface. Electronic damping mechanisms for low-energy surface excitations are discussed. Some of the possible vibrational Kohn anomalies are enumerated.

  8. Spiraling Fermi arcs in Weyl materials

    NASA Astrophysics Data System (ADS)

    Li, Songci; Andreev, A. V.

    2015-11-01

    In Weyl materials the valence and conduction electron bands touch at an even number of isolated points in the Brillouin zone. In the vicinity of these points the electron dispersion is linear and may be described by the massless Dirac equation. This results in nontrivial topology of the Berry connection curvature. One of its consequences is the existence of peculiar surface electron states whose Fermi surfaces form arcs connecting projections of the Weyl points onto the surface plane. Band bending near the boundary of the crystal also produces surface states. We show that in Weyl materials band bending near the crystal surface gives rise to a spiral structure of energy surfaces of arc states. The corresponding Fermi surface has the shape of a spiral that winds about the projection of the Weyl point onto the surface plane. The direction of the winding is determined by the helicity of the Weyl point and the sign of the band-bending potential. For close valleys the arc state morphology may be understood in terms of the avoided crossing of oppositely winding spirals.

  9. Fermi Timing and Synchronization System

    SciTech Connect

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D'Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  10. Enrico Fermi and the Dolomites

    NASA Astrophysics Data System (ADS)

    Battimelli, Giovanni; de Angelis, Alessandro

    2014-11-01

    Summer vacations in the Dolomites were a tradition among the professors of the Faculty of Mathematical and Physical Sciences at the University of Roma since the end of the XIX century. Beyond the academic walls, people like Tullio Levi-Civita, Federigo Enriques and Ugo Amaldi sr., together with their families, were meeting friends and colleagues in Cortina, San Vito, Dobbiaco, Vigo di Fassa and Selva, enjoying trekking together with scientific discussions. The tradition was transmitted to the next generations, in particular in the first half of the XX century, and the group of via Panisperna was directly connected: Edoardo Amaldi, the son of the mathematician Ugo sr., rented at least during two summers, in 1925 and in 1949, and in the winter of 1960, a house in San Vito di Cadore, and almost every year in the Dolomites; Enrico Fermi was a frequent guest. Many important steps in modern physics, in particular the development of the Fermi-Dirac statistics and the Fermi theory of beta decay, are related to scientific discussions held in the region of the Dolomites.

  11. Fermi GRB Spectra and the Crisis of the Band Model

    NASA Astrophysics Data System (ADS)

    Vianello, G.

    2015-01-01

    The Fermi/LAT gamma-ray telescope has observed 36 GRBs in 4 years of operations. Among them, the bursts with the largest number of LAT-detected photons have spectra which are not well described by the widely used Band model, independently of their energy fluences. High-energy and low-energy excesses have been detected and modeled by an additional power law component and/or by an additional thermal component; high-energy cutoffs have been observed as well. These results point towards a "Band model crisis": the unprecedented spectral coverage of Fermi (8 keV - 100 GeV) shows the need for an improved modeling of GRB spectra, opening new exciting perspectives and challenges for interpretation and theoretical development. I will review these results, with particular regard to the connected data-analysis challenges.

  12. Fermi-Level Tuning of Topological Insulator Thin Films

    NASA Astrophysics Data System (ADS)

    Aitani, Masaki; Sakamoto, Yusuke; Hirahara, Toru; Yamada, Manabu; Miyazaki, Hidetoshi; Matsunami, Masaharu; Kimura, Shin-ichi; Hasegawa, Shuji

    2013-11-01

    Topological insulators are insulating materials but have metallic edge states with peculiar properties. They are considered to be promising for the development of future low energy consumption nano-electronic devices. However, there is a major problem: Naturally grown materials are not truly insulating owing to defects in their crystal structure. In the present study, we have examined the electronic structure and transport properties of topological insulator ultrathin Bi2Te3 films by angle-resolved photoemission spectroscopy and in situ transport measurements. To realize a truly bulk insulating film, we tried to tune the Fermi-level position using two methods. The first of these, i.e., changing the Si substrate temperature during film growth (350-450 K) to reduce the defects in the grown films, had some effect in reducing the bulk residual carriers, but we could not fabricate a film that showed only the surface states crossing the Fermi level. The second method we employed was to incorporate Pb atoms during film growth since Pb has one less electron than Bi. When the films were grown at around 350 K, we observed a systematic shift in the Fermi level and obtained a bulk insulating film, although it was not possible to move the Dirac point just at the Fermi level. The change in the measured film conductivity was consistent with the shift in the Fermi level and suggested the detection of the surface-state conductivity. For films grown at a higher substrate temperature (450 K), the Fermi level could be tuned only slightly and a bulk n-type film was obtained. Pb incorporation changes the shape of the Dirac cone, suggesting the formation of a stoichiometric ternary alloy of Bi, Pb, and Te, which is another topological insulator.

  13. Thomas-Fermi theory for atomic nuclei revisited

    SciTech Connect

    Centelles, M. . E-mail: mario@ecm.ub.es; Schuck, P.; Vinas, X.

    2007-02-15

    The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme interactions and from relativistic mean field theory. VWK consists of the Thomas-Fermi part plus a pure, perturbative h {sup 2} correction. In external potentials, VWK passes through the average of the quantal values of the accumulated level density and total energy as a function of the Fermi energy. However, there is a problem of overbinding when the energy per particle is displayed as a function of the particle number. The situation is analyzed comparing spherical and deformed harmonic oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding energies are very close to those obtained from extended Thomas-Fermi functionals of h {sup 4} order, pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not cure the overbinding problem, i.e., the semiclassical energies show more binding than they should. This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field approach. However, even in the latter case the shell correction energy for e.g., {sup 208}Pb turns out to be only {approx}-6 MeV what is about a factor two or three off the generally accepted value. As an ad hoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable throughout the periodic table. The general importance of the present studies for other finite Fermi systems, self-bound or in external potentials, is pointed out.

  14. Split Fermi Surface Properties based on the Relativistic Effect in Superconductor PdBiSe with the Cubic Chiral Crystal Structure

    NASA Astrophysics Data System (ADS)

    Kakihana, Masashi; Nakamura, Ai; Teruya, Atsushi; Harima, Hisatomo; Haga, Yoshinori; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2015-03-01

    We grew single crystals of PdBiSe with the ullmannite-type cubic chiral structure and carried out de Haas-van Alphen (dHvA) experiments to clarify the Fermi surface properties. The Fermi surfaces are found to split into two different Fermi surfaces, reflecting the non-centrosymmetric crystal structure. A splitting energy between two nearly spherical Fermi surfaces named α and α' is determined as 1050-1260 K. These Fermi surfaces are identified to be due the band-149 and -150 electron Fermi surfaces centered at the Γ point from the results of full-potential linearized augmented plane wave (FLAPW) energy band calculations under consideration of a mass correction in the spin-orbit interaction for Bi-6p electrons based on the relativistic effect. The theoretical splitting energy between these Fermi surfaces is 1080-1150 K, which is in good agreement with the experimental value.

  15. Intradomain distances in the regulatory domain of the myosin head in prepower and postpower stroke states: fluorescence energy transfer.

    PubMed

    Palm, T; Sale, K; Brown, L; Li, H; Hambly, B; Fajer, P G

    1999-10-01

    The relative movement of the catalytic and regulatory domains of the myosin head (S1) is likely to be the force generating conformational change in the energy transduction of muscle [Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C., and Milligan, R. A. (1993) Science 261, 58-65]. To test this model we have measured, using frequency-modulated FRET, three distances between the catalytic domain and regulatory domains and within the regulatory domain of myosin. The donor/acceptor pairs included MHC cys707 and ELC cys177; ELC cys177 and RLC cys154; and ELC cys177 and gizzard RLC cys108. The IAEDANS (donor) or acceptor (DABMI or IAF) labeled light chains (ELC and RLC) were exchanged into monomeric myosin and the distances were measured in the putative prepower stroke states (in the presence of MgATP or ADP/AlF(4-)) and the postpower stroke states (ADP and the absence of nucleotides). For each of the three distances, the donor/acceptor pairs were reversed to minimize uncertainty in the distance measured, arising from probe orientational factors. The distances obtained from FRET were in close agreement with the distances in the crystal structure. Importantly, none of the measured distances varied by more than 2 A, putting a strong constraint on the extent of conformational changes within S1. The maximum axial movement of the distal part of myosin head was modeled using FRET distance changes within the myosin head reported here and previously. These models revealed an upper bound of 85 A for a swing of the regulatory domain with respect to the catalytic domain during the power stroke. Additionally, an upper bound of 22 A could be contributed to the power stroke by a reorientation of RLC with respect to the ELC during the power stroke.

  16. Numerical Investigation and Experimental Reproduction of Fermi Acceleration in Laboratory Scale

    NASA Astrophysics Data System (ADS)

    Zhou, M.; Zhai, C.

    2015-12-01

    Fermi acceleration is widely accepted as the mechanism to explain power law of cosmic ray spectrum. Now this mechanism has been developed to first order Fermi acceleration and second order Fermi acceleration. In first order Fermi acceleration, also known as diffusive shock acceleration, particles are confined around the shock through scattering and accelerated by repeatedly crossing shock front. In second order Fermi acceleration, particles gain energy through statistical collisions with interstellar clouds. In this proposed work, we plan to carefully study these two kinds of acceleration numerically and experimentally. We first consider a single relativistic particle and investigate how it gains energy in Fermi-Ulam model and shock wave acceleration model respectively. We investigate collective behavior of particles with different kinds of wall-oscillation functions and try to find an optimal one in terms of efficiency of acceleration. Then, we plan to go further and consider a group of particles statistically, during which we borrow the correct generalization of Maxwell's velocity distribution in special relativity and compare the results with those in cases where we simply use Maxwell-Boltzmann distribution. To this end, we try to provide a scheme to build an accelerator applying both laser technology and mirror effect in Laboratory to reproduce Fermi acceleration, which might be a promising source to obtain high energy particles and further study the mechanism of cosmic rays acceleration.

  17. Domain organization of the ATP-sensitive potassium channel complex examined by fluorescence resonance energy transfer.

    PubMed

    Wang, Shizhen; Makhina, Elena N; Masia, Ricard; Hyrc, Krzysztof L; Formanack, Mary Lynn; Nichols, Colin G

    2013-02-01

    K(ATP) channels link cell metabolism to excitability in many cells. They are formed as tetramers of Kir6.2 subunits, each associated with a SUR1 subunit. We used mutant GFP-based FRET to assess domain organization in channel complexes. Full-length Kir6.2 subunits were linked to YFP or cyan fluorescent protein (CFP) at N or C termini, and all such constructs, including double-tagged YFP-Kir6.2-CFP (Y6.2C), formed functional K(ATP) channels. In intact COSm6 cells, background emission of YFP excited by 430-nm light was ∼6%, but the Y6.2C construct expressed alone exhibited an apparent FRET efficiency of ∼25%, confirmed by trypsin digestion, with or without SUR1 co-expression. Similar FRET efficiency was detected in mixtures of CFP- and YFP-tagged full-length Kir6.2 subunits and transmembrane domain only constructs, when tagged at the C termini but not at the N termini. The FRET-reported Kir6.2 tetramer domain organization was qualitatively consistent with Kir channel crystal structures: C termini and M2 domains are centrally located relative to N termini and M1 domains, respectively. Additional FRET analyses were performed on cells in which tagged full-length Kir6.2 and tagged SUR1 constructs were co-expressed. These analyses further revealed that 1) NBD1 of SUR1 is closer to the C terminus of Kir6.2 than to the N terminus; 2) the Kir6.2 cytoplasmic domain is not essential for complexation with SUR1; and 3) the N-terminal half of SUR1 can complex with itself in the absence of either the C-terminal half or Kir6.2.

  18. Bosonic Analogue of Dirac Composite Fermi Liquid

    NASA Astrophysics Data System (ADS)

    Mross, David F.; Alicea, Jason; Motrunich, Olexei I.

    2016-09-01

    We introduce a particle-hole-symmetric metallic state of bosons in a magnetic field at odd-integer filling. This state hosts composite fermions whose energy dispersion features a quadratic band touching and corresponding 2 π Berry flux protected by particle-hole and discrete rotation symmetries. We also construct an alternative particle-hole symmetric state—distinct in the presence of inversion symmetry—without Berry flux. As in the Dirac composite Fermi liquid introduced by Son [Phys. Rev. X 5, 031027 (2015)], breaking particle-hole symmetry recovers the familiar Chern-Simons theory. We discuss realizations of this phase both in 2D and on bosonic topological insulator surfaces, as well as signatures in experiments and simulations.

  19. Momentum sharing in imbalanced Fermi systems

    DOE PAGES

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less

  20. Momentum sharing in imbalanced Fermi systems

    SciTech Connect

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron stars and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.

  1. Landau Theory of Helical Fermi Liquids.

    PubMed

    Lundgren, Rex; Maciejko, Joseph

    2015-08-01

    We construct a phenomenological Landau theory for the two-dimensional helical Fermi liquid found on the surface of a three-dimensional time-reversal invariant topological insulator. In the presence of rotation symmetry, interactions between quasiparticles are described by ten independent Landau parameters per angular momentum channel, by contrast with the two (symmetric and antisymmetric) Landau parameters for a conventional spin-degenerate Fermi liquid. We project quasiparticle states onto the Fermi surface and obtain an effectively spinless, projected Landau theory with a single projected Landau parameter per angular momentum channel that captures the spin-momentum locking or nontrivial Berry phase of the Fermi surface. As a result of this nontrivial Berry phase, projection to the Fermi surface can increase or lower the angular momentum of the quasiparticle interactions. We derive equilibrium properties, criteria for Fermi surface instabilities, and collective mode dispersions in terms of the projected Landau parameters. We briefly discuss experimental means of measuring projected Landau parameters.

  2. Large- N expansion for unitary superfluid Fermi gases

    NASA Astrophysics Data System (ADS)

    Veillette, Martin Y.; Sheehy, Daniel E.; Radzihovsky, Leo

    2007-04-01

    We analyze strongly interacting Fermi gases in the unitary regime by considering the generalization to an arbitrary number N of spin- 1/2 fermion flavors with Sp(2N) symmetry. For N→∞ this problem is exactly solved by the Bardeen-Cooper-Schrieffer-Bose-Einstein condensate mean-field theory, with corrections small in the parameter 1/N . The large- N expansion provides a systematic way to determine corrections to mean-field predictions, allowing the calculation of a variety of thermodynamic quantities at (and in proximity to) unitarity, including the energy, the pairing gap, and the upper-critical polarization (in the case of a polarized gas) for the normal to superfluid instability. For the physical case of N=1 , among other quantities, we predict in the unitarity regime, the energy of the gas to be ξ=0.28 times that for the noninteracting gas and the pairing gap to be 0.52 times the Fermi energy.

  3. Fermi Observations of GRB 090510: A Short-Hard Gamma-ray Burst with an Additional, Hard Power-law Component from 10 keV TO GeV Energies

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Dermer, C. D.; de Palma, F.; Dingus, B. L.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Granot, J.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kouveliotou, C.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Mészáros, P.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakajima, H.; Nakamori, T.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Preece, R.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Ritz, S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Stecker, F. W.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Toma, K.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Uehara, T.; Usher, T. L.; van der Horst, A. J.; Vasileiou, V.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Wang, P.; Wilson-Hodge, C.; Winer, B. L.; Wu, X. F.; Yamazaki, R.; Yang, Z.; Ylinen, T.; Ziegler, M.

    2010-06-01

    We present detailed observations of the bright short-hard gamma-ray burst GRB 090510 made with the Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) on board the Fermi observatory. GRB 090510 is the first burst detected by the LAT that shows strong evidence for a deviation from a Band spectral fitting function during the prompt emission phase. The time-integrated spectrum is fit by the sum of a Band function with E peak = 3.9 ± 0.3 MeV, which is the highest yet measured, and a hard power-law component with photon index -1.62 ± 0.03 that dominates the emission below ≈20 keV and above ≈100 MeV. The onset of the high-energy spectral component appears to be delayed by ~0.1 s with respect to the onset of a component well fit with a single Band function. A faint GBM pulse and a LAT photon are detected 0.5 s before the main pulse. During the prompt phase, the LAT detected a photon with energy 30.5+5.8 -2.6 GeV, the highest ever measured from a short GRB. Observation of this photon sets a minimum bulk outflow Lorentz factor, Γgsim 1200, using simple γγ opacity arguments for this GRB at redshift z = 0.903 and a variability timescale on the order of tens of ms for the ≈100 keV-few MeV flux. Stricter high confidence estimates imply Γ >~ 1000 and still require that the outflows powering short GRBs are at least as highly relativistic as those of long-duration GRBs. Implications of the temporal behavior and power-law shape of the additional component on synchrotron/synchrotron self-Compton, external-shock synchrotron, and hadronic models are considered.

  4. Animating Fermi - Science Outreach through Art

    NASA Astrophysics Data System (ADS)

    Corbet, Robin; Arcadias, Laurence

    2014-08-01

    Animation students at the Maryland Institute College of Art working with scientists in the Fermi team at the NASA Goddard Space Flight Center produced five short animations (and an associated game) related to science discoveries and operations of the Fermi satellite. The topics animated were the Fermi bubbles, dark matter, binary stars, the discovery of cosmic rays, and space debris. We describe the process, show examples of the animations, and discuss the potential of art/science collaborations for public outreach and education.

  5. A Fermi model for electron acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Drake, J. F.; Swisdak, M.; Che, H.; Shay, M. A.

    2006-12-01

    A Fermi-like model for energetic electron production during magnetic reconnection is described that explains key observations in the magnetosphere and solar corona [1]. Magnetic reconnection with a guide field leads to the growth and dynamics of multiple magnetic islands rather than a single large x-line. Above a critical energy electron acceleration is dominated by the Fermi-like reflection of electrons within the resulting magnetic islands rather than by the parallel electric fields associated with the x-line. Particles trapped within islands gain energy as they reflect from ends of contracting magnetic islands. The pressure from energetic electrons rises rapidly until the rate of electron energy gain balances the rate of magnetic energy release. The energetic particle pressure therefore throttles the rate of reconnection. A transport equation for the distribution of energetic particles, including their feedback on island contraction, is obtained by averaging over the particle interaction with many islands. The steady state solutions in reconnection geometry result from convective losses balancing the Fermi drive. At high energy distribution functions take the form of a powerlaw whose spectral index depends only on the initial electron β, lower (higher) β producing harder (softer) spectra. The spectral index matches that seen in recent Wind spacecraft observations in the magnetotail. Harder spectra are predicted for the low β conditions of the solar corona. 1. Drake et al., Nature, in press.

  6. Fermi Acceleration---From Cosmic Rays to Discharge Heating

    NASA Astrophysics Data System (ADS)

    Lieberman, M. A.

    1998-11-01

    The motion of a ball bouncing between a fixed and an oscillating wall was originally proposed by Fermifootnote E. Fermi, Phys. Rev. 75, 1169 (1949) in 1949 as a model for cosmic ray acceleration. Expectations that the ball could be heated to very high energies gave way to the realization that while the motion is chaotic at low energies, the phase space has an intricate fractal structure and there is an adiabatic limit to the heating. The application of these ideas to ``collisionless,'' ``anomalous,'' or ``stochastic'' electron heating in discharges has been fruitful. Electrons are heated collisionlessly by repeated interaction with time-periodic fields that are localized within a sheath, skin depth layer, or resonance layer inside the discharge. However, generation and loss processes and interparticle collisions dominate the purely dynamical phase randomization in most discharges. A phase-averaged Fokker-Planck description of the motion can be used to determine the heating rate. Collisionless heating has been found to be important in radio frequency (rf)-driven capacitive discharges, in microwave-driven electron cyclotron resonance (ECR) discharges, and in rf-driven inductive discharges. The latter application harks back to the discovery by Pippardfootnote A.B. Pippard, Physica 15, 45 (1949) also in 1949, of the anomalous high frequency skin resistance in metals at low temperatures. In this talk, the discovery of cosmic rays, Fermi's proposal for their origin, and the dynamics of Fermi acceleration are reviewed. Then Fermi acceleration is used as a paradigm to describe collisionless heating in discharges(M.A. Lieberman and V.A. Godyak, IEEE Trans. Plasma Sci.) 26, 955 (1998), with illustrations drawn from experiments, computer simulations and analysis of capacitive, inductive, and ECR discharges. The relation of Fermi acceleration to ``collisionless absorption by Landau damping'' is discussed. Recent studies of novel collisionless heating effects, such as negative

  7. Berry curvature on the fermi surface: anomalous Hall effect as a topological fermi-liquid property.

    PubMed

    Haldane, F D M

    2004-11-12

    The intrinsic anomalous Hall effect in metallic ferromagnets is shown to be controlled by Berry phases accumulated by adiabatic motion of quasiparticles on the Fermi surface, and is purely a Fermi-liquid property, not a bulk Fermi sea property like Landau diamagnetism, as has been previously supposed. Berry phases are a new topological ingredient that must be added to Landau Fermi-liquid theory in the presence of broken inversion or time-reversal symmetry.

  8. Evaluation of turbulent magnetic energy spectra in the three-dimensional wave vector domain in the solar wind

    SciTech Connect

    Gary, S Peter; Narita, Y; Glassmeier, K H; Goldstein, M L; Safraoui, F; Treumann, R A

    2009-01-01

    Using four-point measurements of the CLUSTER spacecraft, the energy distribution of magnetic field fluctuations in the solar wind is determined directly in the three-dimensional wave vector domain in the range 3 x 10{sup -4} rad/km < k < 3 x 10{sup -3} rad/km. The analysis method takes account of a regular tetrahedron configuration of CLUSTER and the Doppler effect. The energy distribution in the flow rest frame is anisotropic, characterized by two distinct extended structures perpendicular to the mean magnetic field and furthermore perpendicular to the flow direction. The three-dimensional distribution is averaged around the direction of the mean magnetic field direction, and then is further reduced to one-dimensional distributions in the wave number domain parallel and perpendicular to the mean magnetic field. The one-dimensional energy spectra are characterized by the power law with the index -5/3 and furthermore very close energy density between parallel and perpendicular directions to the mean magnetic field at the same wave numbers. Though the distributions and the spectra are not covered in a wide range of wave vectors, our measurements suggest that the solar wind fluctuation is anisotropic in the three-dimensional wave vector space. It is, however, rather isotropic when reduced into the parallel and perpendicular wave vector geometries due to the second anisotropy imposed by the flow direction.

  9. Bioterrorism and the Fermi Paradox

    NASA Astrophysics Data System (ADS)

    Cooper, Joshua

    2013-04-01

    We proffer a contemporary solution to the so-called Fermi Paradox, which is concerned with conflict between Copernicanism and the apparent paucity of evidence for intelligent alien civilizations. In particular, we argue that every community of organisms that reaches its space-faring age will (1) almost immediately use its rocket-building computers to reverse-engineer its genetic chemistry and (2) self-destruct when some individual uses said technology to design an omnicidal pathogen. We discuss some of the possible approaches to prevention with regard to Homo sapiens' vulnerability to bioterrorism, particularly on a short-term basis.

  10. The VELA-X-Pulsar Wind Nebula Revisited with Four Years of Fermi Large Area Telescope Observations

    NASA Technical Reports Server (NTRS)

    Grondin, M. -H.; Romani, R. W.; Lemoine-Goumard, M.; Guillemot, L.; Harding, Alice K.; Reposeur, T.

    2013-01-01

    The Vela supernova remnant (SNR) is the closest SNR to Earth containing an active pulsar, the Vela pulsar (PSR B0833-45). This pulsar is an archetype of the middle-aged pulsar class and powers a bright pulsar wind nebula (PWN), Vela-X, spanning a region of 2deg × 3deg south of the pulsar and observed in the radio, X-ray, and very high energy ?-ray domains. The detection of the Vela-X PWN by the Fermi Large Area Telescope (LAT) was reported in the first year of the mission. Subsequently, we have reinvestigated this complex region and performed a detailed morphological and spectral analysis of this source using 4 yr of Fermi-LAT observations. This study lowers the threshold for morphological analysis of the nebula from 0.8 GeV to 0.3 GeV, allowing for the inspection of distinct energy bands by the LAT for the first time. We describe the recent results obtained on this PWN and discuss the origin of the newly detected spatial features.

  11. THE VELA-X PULSAR WIND NEBULA REVISITED WITH FOUR YEARS OF FERMI LARGE AREA TELESCOPE OBSERVATIONS

    SciTech Connect

    Grondin, M.-H.; Romani, R. W.; Lemoine-Goumard, M.; Reposeur, T.; Harding, A. K.

    2013-09-10

    The Vela supernova remnant (SNR) is the closest SNR to Earth containing an active pulsar, the Vela pulsar (PSR B0833-45). This pulsar is an archetype of the middle-aged pulsar class and powers a bright pulsar wind nebula (PWN), Vela-X, spanning a region of 2 Degree-Sign Multiplication-Sign 3 Degree-Sign south of the pulsar and observed in the radio, X-ray, and very high energy {gamma}-ray domains. The detection of the Vela-X PWN by the Fermi Large Area Telescope (LAT) was reported in the first year of the mission. Subsequently, we have reinvestigated this complex region and performed a detailed morphological and spectral analysis of this source using 4 yr of Fermi-LAT observations. This study lowers the threshold for morphological analysis of the nebula from 0.8 GeV to 0.3 GeV, allowing for the inspection of distinct energy bands by the LAT for the first time. We describe the recent results obtained on this PWN and discuss the origin of the newly detected spatial features.

  12. Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.

    PubMed

    Cramer, M; Eisert, J; Illuminati, F

    2004-11-01

    We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices.

  13. Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.

    PubMed

    Cramer, M; Eisert, J; Illuminati, F

    2004-11-01

    We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices. PMID:15600816

  14. THE FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST TWO YEARS

    SciTech Connect

    Paciesas, William S.; Bhat, P. N.; Briggs, Michael S.; Burgess, J. Michael; Chaplin, Vandiver; Connaughton, Valerie; Goldstein, Adam; Guiriec, Sylvain; Meegan, Charles A.; Van der Horst, Alexander J.; Von Kienlin, Andreas; Diehl, Roland; Foley, Suzanne; Greiner, Jochen; Gruber, David; Bissaldi, Elisabetta; Fishman, Gerald J.; Gibby, Melissa; Giles, Misty; and others

    2012-03-01

    The Fermi Gamma-ray Burst Monitor (GBM) is designed to enhance the scientific return from Fermi in studying gamma-ray bursts (GRBs). In its first two years of operation GBM triggered on 491 GRBs. We summarize the criteria used for triggering and quantify the general characteristics of the triggered GRBs, including their locations, durations, peak flux, and fluence. This catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  15. The Fermi GBM Gamma-Ray Burst Catalog: The First Two Years

    NASA Astrophysics Data System (ADS)

    Paciesas, William S.; Meegan, Charles A.; von Kienlin, Andreas; Bhat, P. N.; Bissaldi, Elisabetta; Briggs, Michael S.; Burgess, J. Michael; Chaplin, Vandiver; Connaughton, Valerie; Diehl, Roland; Fishman, Gerald J.; Fitzpatrick, Gerard; Foley, Suzanne; Gibby, Melissa; Giles, Misty; Goldstein, Adam; Greiner, Jochen; Gruber, David; Guiriec, Sylvain; van der Horst, Alexander J.; Kippen, R. Marc; Kouveliotou, Chryssa; Lichti, Giselher; Lin, Lin; McBreen, Sheila; Preece, Robert D.; Rau, Arne; Tierney, Dave; Wilson-Hodge, Colleen

    2012-03-01

    The Fermi Gamma-ray Burst Monitor (GBM) is designed to enhance the scientific return from Fermi in studying gamma-ray bursts (GRBs). In its first two years of operation GBM triggered on 491 GRBs. We summarize the criteria used for triggering and quantify the general characteristics of the triggered GRBs, including their locations, durations, peak flux, and fluence. This catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center.

  16. String-theory-based predictions for nonhydrodynamic collective modes in strongly interacting Fermi gases

    NASA Astrophysics Data System (ADS)

    Bantilan, H.; Brewer, J. T.; Ishii, T.; Lewis, W. E.; Romatschke, P.

    2016-09-01

    Very different strongly interacting quantum systems such as Fermi gases, quark-gluon plasmas formed in high-energy ion collisions, and black holes studied theoretically in string theory are known to exhibit quantitatively similar damping of hydrodynamic modes. It is not known if such similarities extend beyond the hydrodynamic limit. Do nonhydrodynamic collective modes in Fermi gases with strong interactions also match those from string theory calculations? In order to answer this question, we use calculations based on string theory to make predictions for modes outside the hydrodynamic regime in trapped Fermi gases. These predictions are amenable to direct testing with current state-of-the-art cold atom experiments.

  17. Vibrational lifetime and Fermi resonance in polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Fendt, A.; Fischer, S. F.; Kaiser, W.

    1981-05-01

    The energy decay of CH-stretching modes of the molecules CHCl 3 ,CH 2Cl 2, CH 3COCH 3, CH 3OH, and CH 3CH 2OH is measured in the liquid state. The observed lifetime very between 1.5 and 65 ps. A theoretical analysis points to the importance of Fermi resonance in the vibrational relaxation process. Quantitative comparison between theory and experiments is presented for the individual molecules. The strong variation of the lifetime for CH-stretching modes of various molecules may be understood if several effects are taken into account. First and most important is the influence of the Fermi resonances. Without the anharmonic mixing of the initial state, the overtone of the CH-bending modes and/or a higher order combination tone, one would predict lifetimes which are more than an order of magnitude longer than the observed lifetimes. This effect has been discussed earlier in detail for methylhalides by Zygan-Maus and Fischer [11] and, more recently, it has been incorporated in elaborate discussions for triatomic molecules like CO 2 by several authors [12]. A second factor to be considered for the interpretation is the rapi energy redistribution between different CH-stretching states was found theoretically to be faster than the further decay process by an order of magnitude [6, 11]. Experimentally, this effect was verified in this note for CH 2Cl 2 by the observation that the decay time was the same regardl whether the symmetric or the asymmetric CH-stretching mode was excited. This effect leads to a lengthening of the observed decay process. There is a bottleneck effect. Finally, we have shown that location and width of the final state are important parameters for the interpretation of the depopulatio lifetime. The empirical determination of these effects is not free of uncertainties. Very strong Fermi resonance can lead to rapid energy exchange during the exc process. In this case there is no bottleneck effect and it is difficult to detect the pathway of the energy

  18. An improved Thomas--Fermi treatment of nuclei

    SciTech Connect

    Swiatecki, W.J.

    1992-08-18

    I want to tell you about an improved Thomas-Fermi method for calculating shell-averaged nuclear properties, such as density distributions, binding energies, etc. A shell-averaged statistical theory is useful as the macroscopic component of microscopic-macroscopic theories of nuclei, such as the Strutinsky method, as well as in theories of nuclear matter in the bulk, relevant in astrophysical applications. In nuclear physics, as well as in atomic and molecular problems, the following question often has to be answered: you are given a potential well, say a deformed Woods-Saxon potential, into which you put N quantized fermions into the lowest N eigenstates, up to a Fermi energy'' To. You square the wave functions of the particles and add them up to get the total density [rho]([sub r][sup [yields

  19. Fermi Science Support Center Data Servers and Archive

    NASA Astrophysics Data System (ADS)

    Reustle, Alexander; FSSC, LAT Collaboration

    2016-01-01

    The Fermi Science Support Center (FSSC) provides the scientific community with access to Fermi data and other products. The Gamma-Ray Burst Monitor (GBM) data is stored at NASA's High Energy Astrophysics Science Archive Research Center (HEASARC) and is accessible through their searchable Browse web interface. The Large Area Telescope (LAT) data is distributed through a custom FSSC interface where users can request all photons detected from a region on the sky over a specified time and energy range. Through its website the FSSC also provides planning and scheduling products, such as long and short term observing timelines, spacecraft position and attitude histories, and exposure maps. We present an overview of the different data products provided by the FSSC, how they can be accessed, and statistics on the archive usage since launch.

  20. Assessment of Energy Removal Impacts on Physical Systems: Hydrodynamic Model Domain Expansion and Refinement, and Online Dissemination of Model Results

    SciTech Connect

    Yang, Zhaoqing; Khangaonkar, Tarang; Wang, Taiping

    2010-08-01

    In this report we describe the 1) the expansion of the PNNL hydrodynamic model domain to include the continental shelf along the coasts of Washington, Oregon, and Vancouver Island; and 2) the approach and progress in developing the online/Internet disseminations of model results and outreach efforts in support of the Puget Sound Operational Forecast System (PS-OPF). Submittal of this report completes the work on Task 2.1.2, Effects of Physical Systems, Subtask 2.1.2.1, Hydrodynamics, for fiscal year 2010 of the Environmental Effects of Marine and Hydrokinetic Energy project.

  1. Generalized charge-screening in relativistic Thomas-Fermi model

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2014-10-01

    In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, the variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, ( N s ∝ r T F 3 / r d 3 where rTF and rd are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar objects.

  2. Two-Fermi-Surface Superconducting State and a Nodal d-Wave Energy Gap of the Electron-Doped Sm1.85Ce0.15CuO4-δ Cuprate Superconductor

    NASA Astrophysics Data System (ADS)

    Santander-Syro, A. F.; Ikeda, M.; Yoshida, T.; Fujimori, A.; Ishizaka, K.; Okawa, M.; Shin, S.; Greene, R. L.; Bontemps, N.

    2011-05-01

    We report on laser-excited angle-resolved photoemission spectroscopy in the electron-doped cuprate Sm1.85Ce0.15CuO4-δ. The data show the existence of a nodal hole-pocket Fermi surface both in the normal and superconducting states. We prove that its origin is long-range antiferromagnetism by an analysis of the coherence factors in the main and folded bands. This coexistence of long-range antiferrmagnetism and superconductivity implies that electron-doped cuprates are two-Fermi-surface superconductors. The measured superconducting gap in the nodal hole pocket is compatible with a d-wave symmetry.

  3. Dark Matter Searches with the Fermi Large Area Telescope

    SciTech Connect

    Meurer, Christine

    2008-12-24

    The Fermi Gamma-Ray Space Telescope, successfully launched on June 11th, 2008, is the next generation satellite experiment for high-energy gamma-ray astronomy. The main instrument, the Fermi Large Area Telescope (LAT), with a wide field of view (>2 sr), a large effective area (>8000 cm{sup 2} at 1 GeV), sub-arcminute source localization, a large energy range (20 MeV-300 GeV) and a good energy resolution (close to 8% at 1 GeV), has excellent potential to either discover or to constrain a Dark Matter signal. The Fermi LAT team pursues complementary searches for signatures of particle Dark Matter in different search regions such as the galactic center, galactic satellites and subhalos, the milky way halo, extragalactic regions as well as the search for spectral lines. In these proceedings we examine the potential of the LAT to detect gamma-rays coming from Weakly Interacting Massive Particle annihilations in these regions with special focus on the galactic center region.

  4. Annihilation Lines from Dark Matter with the Fermi-LAT

    SciTech Connect

    Ylinen, Tomi

    2010-06-23

    Dark matter is today one of the most intriguing but so far unresolved issues in physics. Many extensions of the Standard Model of particle physics predict a stable Weakly Interacting Massive Particle (WIMP) that may annihilate directly into two gamma-rays. If the WIMPs are non-relativistic, the gamma-rays from this channel will have an energy equal to the mass of the WIMP. The signature caused by this annihilation is a spectral line, smeared out only by the energy resolution of the detector. The signal would be a ''smoking gun'' for dark matter, since no other astrophysical source should be able to produce it. We present here the preliminary results from the search for a dark matter line on a limited data set from the Fermi Large Area Telescope (LAT), the main instrument onboard the Fermi Gamma-ray Space Telescope, which was successfully launched on June 11, 2008. The Fermi-LAT is a pair-conversion detector for gamma-rays with an energy range from 20 MeV to 300 GeV and has an unprecedented resolution and sensitivity.

  5. Fermi: The Gamma-Ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  6. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10 seconds of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  7. Fermi: The Gamma-Ray Large Area Telescope Mission Status

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  8. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2015-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  9. Universal Fermi liquid crossover and quantum criticality in a mesoscopic system.

    PubMed

    Keller, A J; Peeters, L; Moca, C P; Weymann, I; Mahalu, D; Umansky, V; Zaránd, G; Goldhaber-Gordon, D

    2015-10-01

    Quantum critical systems derive their finite-temperature properties from the influence of a zero-temperature quantum phase transition. The paradigm is essential for understanding unconventional high-Tc superconductors and the non-Fermi liquid properties of heavy fermion compounds. However, the microscopic origins of quantum phase transitions in complex materials are often debated. Here we demonstrate experimentally, with support from numerical renormalization group calculations, a universal crossover from quantum critical non-Fermi liquid behaviour to distinct Fermi liquid ground states in a highly controllable quantum dot device. Our device realizes the non-Fermi liquid two-channel Kondo state, based on a spin-1/2 impurity exchange-coupled equally to two independent electronic reservoirs. On detuning the exchange couplings we observe the Fermi liquid scale T*, at energies below which the spin is screened conventionally by the more strongly coupled channel. We extract a quadratic dependence of T* on gate voltage close to criticality, and validate an asymptotically exact description of the universal crossover between strongly correlated non-Fermi liquid and Fermi liquid states. PMID:26450057

  10. Chiral Weyl Pockets and Fermi Surface Topology of the Weyl Semimetal TaAs

    NASA Astrophysics Data System (ADS)

    Arnold, F.; Naumann, M.; Wu, S.-C.; Sun, Y.; Schmidt, M.; Borrmann, H.; Felser, C.; Yan, B.; Hassinger, E.

    2016-09-01

    Tantalum arsenide is a member of the noncentrosymmetric monopnictides, which are putative Weyl semimetals. In these materials, three-dimensional chiral massless quasiparticles, the so-called Weyl fermions, are predicted to induce novel quantum mechanical phenomena, such as the chiral anomaly and topological surface states. However, their chirality is only well defined if the Fermi level is close enough to the Weyl points that separate Fermi surface pockets of opposite chirality exist. In this Letter, we present the bulk Fermi surface topology of high quality single crystals of TaAs, as determined by angle-dependent Shubnikov-de Haas and de Haas-van Alphen measurements combined with ab initio band-structure calculations. Quantum oscillations originating from three different types of Fermi surface pockets were found in magnetization, magnetic torque, and magnetoresistance measurements performed in magnetic fields up to 14 T and temperatures down to 1.8 K. Of these Fermi pockets, two are pairs of topologically nontrivial electron pockets around the Weyl points and one is a trivial hole pocket. Unlike the other members of the noncentrosymmetric monopnictides, TaAs is the first Weyl semimetal candidate with the Fermi energy sufficiently close to both types of Weyl points to generate chiral quasiparticles at the Fermi surface.

  11. Fermi acceleration in the randomized driven Lorentz gas and the Fermi-Ulam model.

    PubMed

    Karlis, A K; Papachristou, P K; Diakonos, F K; Constantoudis, V; Schmelcher, P

    2007-07-01

    Fermi acceleration of an ensemble of noninteracting particles evolving in a stochastic two-moving wall variant of the Fermi-Ulam model (FUM) and the phase randomized harmonically driven periodic Lorentz gas is investigated. As shown in [A. K. Karlis, P. K. Papachristou, F. K. Diakonos, V. Constantoudis, and P. Schmelcher, Phys. Rev. Lett. 97, 194102 (2006)], the static wall approximation, which ignores scatterer displacement upon collision, leads to a substantial underestimation of the mean energy gain per collision. In this paper, we clarify the mechanism leading to the increased acceleration. Furthermore, the recently introduced hopping wall approximation is generalized for application in the randomized driven Lorentz gas. Utilizing the hopping approximation the asymptotic probability distribution function of the particle velocity is derived. Moreover, it is shown that, for harmonic driving, scatterer displacement upon collision increases the acceleration in both the driven Lorentz gas and the FUM by the same amount. On the other hand, the investigation of a randomized FUM, comprising one fixed and one moving wall driven by a sawtooth force function, reveals that the presence of a particular asymmetry of the driving function leads to an increase of acceleration that is different from that gained when symmetrical force functions are considered, for all finite number of collisions. This fact helps open up the prospect of designing accelerator devices by combining driving laws with specific symmetries to acquire a desired acceleration behavior for the ensemble of particles.

  12. Sensitivity of the KM3NeT detector to a neutrino flux from the Fermi bubbles

    SciTech Connect

    Coniglione, R.; Piattelli, P.; Sapienza, P.; Trovato, A.; Collaboration: KM3NeT Collaboration

    2014-11-18

    The Fermi Large Area Telescope data has provided evidence for a high-intensity emission of high-energy gamma rays with a E{sup −2} spectrum from two large bubbles above and below the Galactic Center. Hadronic mechanisms were proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work preliminary simulation results regarding the detectability of high-energy neutrinos from the Fermi bubbles with the future multi-km{sup 3} neutrino telescope KM3NeT are presented.

  13. Wavelet domain analysis of EEG data for emotion recognition: evaluation of recoursing energy efficiency

    NASA Astrophysics Data System (ADS)

    Aspiras, Theus H.; Asari, Vijayan K.

    2011-06-01

    In this paper, we evaluate the feature extraction technique of Recoursing Energy Efficiency on electroencephalograph data for human emotion recognition. A protocol has been established to elicit five distinct emotions (joy, sadness, disgust, fear, surprise, and neutral). EEG signals are collected using a 256-channel system, preprocessed using band-pass filters and Laplacian Montage, and decomposed into five frequency bands using Discrete Wavelet Transform. The Recoursing Energy Efficiency (REE) is calculated and applied to a Multi-Layer Perceptron network for classification. We compare the performance of REE features with conventional energy based features.

  14. Twelve Years of Education and Public Outreach with the Fermi Gamma-ray Space Telescope

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn R.; McLin, K. M.; Simonnet, A.; Fermi E/PO Team

    2013-04-01

    During the past twelve years, NASA's Fermi Gamma-ray Space Telescope has supported a wide range of Education and Public Outreach (E/PO) activities, targeting K-14 students and the general public. The purpose of the Fermi E/PO program is to increase student and public understanding of the science of the high-energy Universe, through inspiring, engaging and educational activities linked to the mission’s science objectives. The E/PO program has additional more general goals, including increasing the diversity of students in the Science, Technology, Engineering and Mathematics (STEM) pipeline, and increasing public awareness and understanding of Fermi science and technology. Fermi's multi-faceted E/PO program includes elements in each major outcome category: ● Higher Education: Fermi E/PO promotes STEM careers through the use of NASA data including research experiences for students and teachers (Global Telescope Network), education through STEM curriculum development projects (Cosmology curriculum) and through enrichment activities (Large Area Telescope simulator). ● Elementary and Secondary education: Fermi E/PO links the science objectives of the Fermi mission to well-tested, customer-focused and NASA-approved standards-aligned classroom materials (Black Hole Resources, Active Galaxy Education Unit and Pop-up book, TOPS guides, Supernova Education Unit). These materials have been distributed through (Educator Ambassador and on-line) teacher training workshops and through programs involving under-represented students (after-school clubs and Astro 4 Girls). ● Informal education and public outreach: Fermi E/PO engages the public in sharing the experience of exploration and discovery through high-leverage multi-media experiences (Black Holes planetarium and PBS NOVA shows), through popular websites (Gamma-ray Burst Skymap, Epo's Chronicles), social media (Facebook, MySpace), interactive web-based activities (Space Mysteries, Einstein@Home) and activities by

  15. Poisson Noise Removal in Spherical Multichannel Images: Application to Fermi data

    NASA Astrophysics Data System (ADS)

    Schmitt, Jérémy; Starck, Jean-Luc; Fadili, Jalal; Digel, Seth

    2012-03-01

    The Fermi Gamma-ray Space Telescope, which was launched by NASA in June 2008, is a powerful space observatory which studies the high-energy gamma-ray sky [5]. Fermi's main instrument, the Large Area Telescope (LAT), detects photons in an energy range between 20MeV and >300 GeV. The LAT is much more sensitive than its predecessor, the energetic gamma ray experiment telescope (EGRET) telescope on the Compton Gamma-ray Observatory, and is expected to find several thousand gamma-ray point sources, which is an order of magnitude more than its predecessor EGRET [13]. Even with its relatively large acceptance (∼2m2 sr), the number of photons detected by the LAT outside the Galactic plane and away from intense sources is relatively low and the sky overall has a diffuse glow from cosmic-ray interactions with interstellar gas and low energy photons that makes a background against which point sources need to be detected. In addition, the per-photon angular resolution of the LAT is relatively poor and strongly energy dependent, ranging from>10° at 20MeV to ∼0.1° above 100 GeV. Consequently, the spherical photon count images obtained by Fermi are degraded by the fluctuations on the number of detected photons. This kind of noise is strongly signal dependent : on the brightest parts of the image like the galactic plane or the brightest sources, we have a lot of photons per pixel, and so the photon noise is low. Outside the galactic plane, the number of photons per pixel is low, which means that the photon noise is high. Such a signal-dependent noise cannot be accurately modeled by a Gaussian distribution. The basic photon-imaging model assumes that the number of detected photons at each pixel location is Poisson distributed. More specifically, the image is considered as a realization of an inhomogeneous Poisson process. This statistical noise makes the source detection more difficult, consequently it is highly desirable to have an efficient denoising method for spherical

  16. The First FERMI-LAT Gamma-Ray Burst Catalog

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bhat, P. N.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bonnell, J.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Burgess, J. Michael; Buson, S.; Byrne, D.; Caliandro, G. A.; Ferrara, E. C.; Gehrels, N.; Guiriec, S.; McEnery, J. E.; Nemmen, R.; Perkins, J. S.; Racusin, J. L.; Thompson, D. J.; Kouveliotou, C.

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy great than (20 MeV) gamma-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above approximately 20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  17. THE FIRST FERMI-LAT GAMMA-RAY BURST CATALOG

    SciTech Connect

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Bastieri, D.; Bechtol, K.; Bloom, E. D.; Bellazzini, R.; Bregeon, J.; Bhat, P. N.; Bissaldi, E.; Bonamente, E.; Bonnell, J.; Brandt, T. J.; Bouvier, A. E-mail: giacomov@slac.stanford.edu; and others

    2013-11-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (∼> 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above ∼20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  18. The First Fermi-LAT Gamma-Ray Burst Catalog

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bhat, P. N.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bonnell, J.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burgess, J. Michael; Buson, S.; Byrne, D.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Connaughton, V.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Desiante, R.; Digel, S. W.; Dingus, B. L.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Ferrara, E. C.; Fitzpatrick, G.; Foley, S.; Franckowiak, A.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Goldstein, A.; Granot, J.; Grenier, I. A.; Grove, J. E.; Gruber, D.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Horan, D.; Hou, X.; Hughes, R. E.; Inoue, Y.; Jackson, M. S.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Kataoka, J.; Kawano, T.; Kippen, R. M.; Knödlseder, J.; Kocevski, D.; Kouveliotou, C.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Lee, S.-H.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Massaro, F.; Mayer, M.; Mazziotta, M. N.; McBreen, S.; McEnery, J. E.; McGlynn, S.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Murgia, S.; Nemmen, R.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Pelassa, V.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Preece, R.; Racusin, J. L.; Rainò, S.; Rando, R.; Rau, A.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Romoli, C.; Roth, M.; Ryde, F.; Saz Parkinson, P. M.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takeuchi, Y.; Tanaka, Y.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tierney, D.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Tronconi, V.; Usher, T. L.; Vandenbroucke, J.; van der Horst, A. J.; Vasileiou, V.; Vianello, G.; Vitale, V.; von Kienlin, A.; Winer, B. L.; Wood, K. S.; Wood, M.; Xiong, S.; Yang, Z.

    2013-11-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (gsim 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above ~20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  19. Observation of Weyl nodes and Fermi arcs in tantalum phosphide

    PubMed Central

    Xu, N.; Weng, H. M.; Lv, B. Q.; Matt, C. E.; Park, J.; Bisti, F.; Strocov, V. N.; Gawryluk, D.; Pomjakushina, E.; Conder, K.; Plumb, N. C.; Radovic, M.; Autès, G.; Yazyev, O. V.; Fang, Z.; Dai, X.; Qian, T.; Mesot, J.; Ding, H.; Shi, M.

    2016-01-01

    A Weyl semimetal possesses spin-polarized band-crossings, called Weyl nodes, connected by topological surface arcs. The low-energy excitations near the crossing points behave the same as massless Weyl fermions, leading to exotic properties like chiral anomaly. To have the transport properties dominated by Weyl fermions, Weyl nodes need to locate nearly at the chemical potential and enclosed by pairs of individual Fermi surfaces with non-zero Fermi Chern numbers. Combining angle-resolved photoemission spectroscopy and first-principles calculation, here we show that TaP is a Weyl semimetal with only a single type of Weyl fermions, topologically distinguished from TaAs where two types of Weyl fermions contribute to the low-energy physical properties. The simple Weyl fermions in TaP are not only of fundamental interests but also of great potential for future applications. Fermi arcs on the Ta-terminated surface are observed, which appear in a different pattern from that on the As-termination in TaAs and NbAs. PMID:26983910

  20. Observation of Weyl nodes and Fermi arcs in tantalum phosphide.

    PubMed

    Xu, N; Weng, H M; Lv, B Q; Matt, C E; Park, J; Bisti, F; Strocov, V N; Gawryluk, D; Pomjakushina, E; Conder, K; Plumb, N C; Radovic, M; Autès, G; Yazyev, O V; Fang, Z; Dai, X; Qian, T; Mesot, J; Ding, H; Shi, M

    2016-01-01

    A Weyl semimetal possesses spin-polarized band-crossings, called Weyl nodes, connected by topological surface arcs. The low-energy excitations near the crossing points behave the same as massless Weyl fermions, leading to exotic properties like chiral anomaly. To have the transport properties dominated by Weyl fermions, Weyl nodes need to locate nearly at the chemical potential and enclosed by pairs of individual Fermi surfaces with non-zero Fermi Chern numbers. Combining angle-resolved photoemission spectroscopy and first-principles calculation, here we show that TaP is a Weyl semimetal with only a single type of Weyl fermions, topologically distinguished from TaAs where two types of Weyl fermions contribute to the low-energy physical properties. The simple Weyl fermions in TaP are not only of fundamental interests but also of great potential for future applications. Fermi arcs on the Ta-terminated surface are observed, which appear in a different pattern from that on the As-termination in TaAs and NbAs. PMID:26983910

  1. Dipole Polarizability of a Trapped Superfluid Fermi Gas

    SciTech Connect

    Recati, A.; Carusotto, I.; Lobo, C.; Stringari, S.

    2006-11-10

    The polarization produced by the relative displacement of the potentials trapping two spin species of a dilute Fermi gas with N{sub {up_arrow}}=N{sub {down_arrow}} is calculated at unitarity by assuming phase separation between the superfluid and a polarized phase at zero temperature. Because of the energy cost associated with pair breaking, the dipole polarizability is strongly quenched and exhibits important deviations from the ideal gas behavior even for nonlinear displacements of the order of the size of the atomic cloud. The behavior in the presence of different trapping frequencies (monopole polarization) for the two spin species is also discussed. Our results suggest new experimental perspectives to explore the quantum phases of interacting Fermi gases.

  2. Momentum-resolved spectroscopy of a Fermi liquid.

    PubMed

    Doggen, Elmer V H; Kinnunen, Jami J

    2015-01-01

    We consider a recent momentum-resolved radio-frequency spectroscopy experiment, in which Fermi liquid properties of a strongly interacting atomic Fermi gas were studied. Here we show that by extending the Brueckner-Goldstone model, we can formulate a theory that goes beyond basic mean-field theories and that can be used for studying spectroscopies of dilute atomic gases in the strongly interacting regime. The model hosts well-defined quasiparticles and works across a wide range of temperatures and interaction strengths. The theory provides excellent qualitative agreement with the experiment. Comparing the predictions of the present theory with the mean-field Bardeen-Cooper-Schrieffer theory yields insights into the role of pair correlations, Tan's contact, and the Hartree mean-field energy shift. PMID:25941948

  3. Cooling without contact in bilayer dipolar Fermi gases

    NASA Astrophysics Data System (ADS)

    Tanatar, Bilal; Renklioglu, Basak; Oktel, M. Ozgur

    2016-05-01

    We consider two parallel layers of dipolar ultracold Fermi gases at different temperatures and calculate the heat transfer between them. The effective interactions describing screening and correlation effects between the dipoles in a single layer are modelled within the Euler-Lagrange Fermi-hypernetted chain approximation. The random-phase approximation is employed for the interactions across the layers. We investigate the amount of transferred power between the layers as a function of the temperature difference. Energy transfer proceeds via the long-range dipole-dipole interactions. A simple thermal model is developed to investigate the feasibility of using the contactless sympathetic cooling of the ultracold polar atoms/molecules. Our calculations indicate that dipolar heat transfer is effective for typical polar molecule experiments and may be utilized as a cooling process. Supported by TUBA and TUBITAK (112T974).

  4. FERMI view of the TeV blazar Markarian 421

    SciTech Connect

    Paneque, D; Raino, S.; Chiang, J.; Mazziotta, M.N.; Tramacere, A.; /SLAC /KIPAC, Menlo Park /CIFS, Turin

    2010-08-26

    The high energy component of the TeV blazar Markarian 421 has been extensively studied since the beginning of the 90s, when the source was first detected at gamma-rays with EGRET and the Whipple Telescope, yet the source is still far from being understood. The high sensitivity, large dynamic range, and excellent time coverage of the Fermi Large Area Telescope (LAT), all representing significant advances over previous gamma-ray observations, will play a key role in the elucidation of the physical processes underlying the high energy emission of this blazar. In this presentation we show the results from almost 6 months (4 August 2008 to 20 January 2009) of observation with LAT. We report significant flux/spectral variability on a range of time scales from weeks to days, and an energy spectrum from 0.1 GeV to 300 GeV, overlapping with the energy ranges covered by the current generation of Cherenkov Telescopes. Results on the observations of the BLLac object Markarian 421 collected in the first months of operation of the Fermi satellite have been presented. Light curves on weekly and daily timescales have been shown, as well as the results of the spectral analysis in the energy range between 100 MeV and 300 GeV, covered for the first time by a satellite experiment overlapping the lower energy observations from Cherenkov telescopes on earth. These results are still preliminary and will be enriched and completed soon by a forthcoming publication. The results shown here demonstrate the great performance of Fermi-LAT to study the gamma-emission from Mrk421 (and blazars in general) over a large dynamic range and also on short timescales, which is expected to be of key importance for the study of the emission of the source in a coordinated way with other instruments covering other energy ranges.

  5. Virial expansion for a strongly correlated Fermi gas with imbalanced spin populations

    SciTech Connect

    Liu Xiaji; Hu Hui

    2010-10-15

    Quantum virial expansion provides an ideal tool to investigate the high-temperature properties of a strongly correlated Fermi gas. Here, we construct the virial expansion in the presence of spin-population imbalance. Up to the third order, we calculate the high-temperature free energy of a unitary Fermi gas as a function of spin imbalance, with infinitely large attractive or repulsive interactions. In the latter repulsive case, we show that there is no itinerant ferromagnetism when quantum virial expansion is applicable. We therefore estimate an upper bound for the ferromagnetic transition temperature T{sub c}. For a harmonically trapped Fermi gas at unitarity, we find that (T{sub c}){sub upper}Fermi temperature at the center of the trap. Our result for the high-temperature equations of state may confront future high-precision thermodynamic measurements.

  6. Emergence of a Metallic Quantum Solid Phase in a Rydberg-Dressed Fermi Gas

    NASA Astrophysics Data System (ADS)

    Li, Wei-Han; Hsieh, Tzu-Chi; Mou, Chung-Yu; Wang, Daw-Wei

    2016-07-01

    We examine possible low-temperature phases of a repulsively Rydberg-dressed Fermi gas in a three-dimensional free space. It is shown that the collective density excitations develop a roton minimum, which is softened at a wave vector smaller than the Fermi wave vector when the particle density is above a critical value. The mean field calculation shows that, unlike the insulating density wave states often observed in conventional condensed matters, a self-assembled metallic density wave state emerges at low temperatures. In particular, the density wave state supports a Fermi surface and a body-centered-cubic crystal order at the same time with the estimated critical temperature being about one tenth of the noninteracting Fermi energy. Our results suggest the emergence of a fermionic quantum solid that should be observable in the current experimental setup.

  7. Sharper Fermi LAT images: instrument response functions for an improved event selection

    SciTech Connect

    Portillo, Stephen K. N.; Finkbeiner, Douglas P.

    2014-11-20

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope has a point-spread function (PSF) with large tails, consisting of events affected by tracker inefficiencies, inactive volumes, and hard scattering; these tails can make source confusion a limiting factor. The parameter CTBCORE, available in the publicly available Extended Fermi LAT data (available at http://fermi.gsfc.nasa.gov/ssc/data/access/), estimates the quality of each event's direction reconstruction; by implementing a cut in this parameter, the tails of the PSF can be suppressed at the cost of losing effective area. We implement cuts on CTBCORE and present updated instrument response functions derived from the Fermi LAT data itself, along with all-sky maps generated with these cuts. Having shown the effectiveness of these cuts, especially at low energies, we encourage their use in analyses where angular resolution is more important than Poisson noise.

  8. Emergence of a Metallic Quantum Solid Phase in a Rydberg-Dressed Fermi Gas.

    PubMed

    Li, Wei-Han; Hsieh, Tzu-Chi; Mou, Chung-Yu; Wang, Daw-Wei

    2016-07-15

    We examine possible low-temperature phases of a repulsively Rydberg-dressed Fermi gas in a three-dimensional free space. It is shown that the collective density excitations develop a roton minimum, which is softened at a wave vector smaller than the Fermi wave vector when the particle density is above a critical value. The mean field calculation shows that, unlike the insulating density wave states often observed in conventional condensed matters, a self-assembled metallic density wave state emerges at low temperatures. In particular, the density wave state supports a Fermi surface and a body-centered-cubic crystal order at the same time with the estimated critical temperature being about one tenth of the noninteracting Fermi energy. Our results suggest the emergence of a fermionic quantum solid that should be observable in the current experimental setup. PMID:27472121

  9. Sharper Fermi LAT Images: Instrument Response Functions for an Improved Event Selection

    NASA Astrophysics Data System (ADS)

    Portillo, Stephen K. N.; Finkbeiner, Douglas P.

    2014-11-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope has a point-spread function (PSF) with large tails, consisting of events affected by tracker inefficiencies, inactive volumes, and hard scattering; these tails can make source confusion a limiting factor. The parameter CTBCORE, available in the publicly available Extended Fermi LAT data (available at http://fermi.gsfc.nasa.gov/ssc/data/access/), estimates the quality of each event's direction reconstruction; by implementing a cut in this parameter, the tails of the PSF can be suppressed at the cost of losing effective area. We implement cuts on CTBCORE and present updated instrument response functions derived from the Fermi LAT data itself, along with all-sky maps generated with these cuts. Having shown the effectiveness of these cuts, especially at low energies, we encourage their use in analyses where angular resolution is more important than Poisson noise.

  10. Modeling of piezoelectric energy extraction in a thermoacoustic engine with multi-pole time-domain impedance

    NASA Astrophysics Data System (ADS)

    Lin, Jeffrey; Scalo, Carlo; Hesselink, Lambertus

    2015-11-01

    We have carried out the first high-fidelity Navier-Stokes simulation of a complete thermoacoustic engine with piezoelectric energy extraction. The standing-wave thermoacoustic piezoelectric (TAP) engine model comprises a 51 cm long cylindrical resonator, containing a thermoacoustic stack on one end and capped by a PZT-5A piezoelectric diaphragm on the other end, tuned to the frequency of the thermoacoustically-amplified mode (388 Hz). A multi-pole broadband time-domain impedance model has been adopted to accurately simulate the measured electromechanical properties of the piezoelectric diaphragm. Simulations are first carried out from quasi-quiescent conditions to a limit cycle, with varying temperature gradients and stack configurations. Stack geometry and boundary layers are fully resolved. Acoustic energy extraction is then activated, achieving a new limit cycle at lower pressure amplitudes. The scaling of the modeled electrical power output and attainable thermal-to-electric energy conversion efficiencies are discussed. Limitations of extending a quasi-one-dimensional linear approximation based on Rott's theory to a (low amplitude) limit cycle are discussed, as well as nonlinear effects such as thermoacoustic energy transport and viscous dissipation.

  11. Free Energy Landscape of Lipid Interactions with Regulatory Binding Sites on the Transmembrane Domain of the EGF Receptor.

    PubMed

    Hedger, George; Shorthouse, David; Koldsø, Heidi; Sansom, Mark S P

    2016-08-25

    Lipid molecules can bind to specific sites on integral membrane proteins, modulating their structure and function. We have undertaken coarse-grained simulations to calculate free energy profiles for glycolipids and phospholipids interacting with modulatory sites on the transmembrane helix dimer of the EGF receptor within a lipid bilayer environment. We identify lipid interaction sites at each end of the transmembrane domain and compute interaction free energy profiles for lipids with these sites. Interaction free energies ranged from ca. -40 to -4 kJ/mol for different lipid species. Those lipids (glycolipid GM3 and phosphoinositide PIP2) known to modulate EGFR function exhibit the strongest binding to interaction sites on the EGFR, and we are able to reproduce the preference for interaction with GM3 over other glycolipids suggested by experiment. Mutation of amino acid residues essential for EGFR function reduce the binding free energy of these key lipid species. The residues interacting with the lipids in the simulations are in agreement with those suggested by experimental (mutational) studies. This approach provides a generalizable tool for characterizing the interactions of lipids that bind to specific sites on integral membrane proteins.

  12. Free Energy Landscape of Lipid Interactions with Regulatory Binding Sites on the Transmembrane Domain of the EGF Receptor

    PubMed Central

    2016-01-01

    Lipid molecules can bind to specific sites on integral membrane proteins, modulating their structure and function. We have undertaken coarse-grained simulations to calculate free energy profiles for glycolipids and phospholipids interacting with modulatory sites on the transmembrane helix dimer of the EGF receptor within a lipid bilayer environment. We identify lipid interaction sites at each end of the transmembrane domain and compute interaction free energy profiles for lipids with these sites. Interaction free energies ranged from ca. −40 to −4 kJ/mol for different lipid species. Those lipids (glycolipid GM3 and phosphoinositide PIP2) known to modulate EGFR function exhibit the strongest binding to interaction sites on the EGFR, and we are able to reproduce the preference for interaction with GM3 over other glycolipids suggested by experiment. Mutation of amino acid residues essential for EGFR function reduce the binding free energy of these key lipid species. The residues interacting with the lipids in the simulations are in agreement with those suggested by experimental (mutational) studies. This approach provides a generalizable tool for characterizing the interactions of lipids that bind to specific sites on integral membrane proteins. PMID:27109430

  13. Potential to kinetic energy conversion in wave number domain for the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Huang, H.-J.; Vincent, D. G.

    1984-01-01

    Preliminary results of a wave number study conducted for the South Pacific Convergence Zone (SPCZ) using FGGE data for the period January 10-27, 1979 are reported. In particular, three variables (geomagnetic height, z, vertical p-velocity, omega, and temperature, T) and one energy conversion quantity, omega-alpha (where alpha is the specific volume), are shown. It is demonstrated that wave number 4 plays an important role in the conversion from available potential energy to kinetic energy in the Southern Hemisphere tropics, particularly in the vicinity of the SPCZ. It is therefore suggested that the development and movement of wave number 4 waves be carefully monitored in making forecasts for the South Pacific region.

  14. REFINING THE ASSOCIATIONS OF THE FERMI LARGE AREA TELESCOPE SOURCE CATALOGS

    SciTech Connect

    Massaro, F.; D’Abrusco, R.; Paggi, A.; Smith, Howard A.; Landoni, M.; Masetti, N.; Giroletti, M.; Otí-Floranes, H.; Jiménez-Bailón, E.; Chavushyan, V.; Patiño-Álvarez, V.; Digel, S. W.; Tosti, G.

    2015-03-15

    The Fermi-Large Area Telescope (LAT) First Source Catalog (1FGL) was released in 2010 February and the Fermi-LAT 2-Year Source Catalog (2FGL) appeared in 2012 April, based on data from 24 months of operation. Since they were released, many follow up observations of unidentified γ-ray sources have been performed and new procedures for associating γ-ray sources with potential counterparts at other wavelengths have been developed. Here we review and characterize all of the associations as published in the 1FGL and 2FGL catalogs on the basis of multifrequency archival observations. In particular, we located 177 spectra for the low-energy counterparts that were not listed in the previous Fermi catalogs, and in addition we present new spectroscopic observations of eight γ-ray blazar candidates. Based on our investigations, we introduce a new counterpart category of “candidate associations” and propose a refined classification for the candidate low-energy counterparts of the Fermi sources. We compare the 1FGL-assigned counterparts with those listed in 2FGL to determine which unassociated sources became associated in later releases of the Fermi catalogs. We also search for potential counterparts to all of the remaining unassociated Fermi sources. Finally, we prepare a refined and merged list of all of the associations of 1FGL plus 2FGL that includes 2219 unique Fermi objects. This is the most comprehensive and systematic study of all the associations collected for the γ-ray sources available to date. We conclude that 80% of the Fermi sources have at least one known plausible γ-ray emitter within their positional uncertainty regions.

  15. Energy Drinks: Topical Domain in the Emerging Literature and Neglected Areas of Research

    ERIC Educational Resources Information Center

    Piotrowski, Chris

    2014-01-01

    Prevalence statistics indicate that consumption of Energy drinks (EDs), often in combination with alcohol, is quite popular in the younger generation and particularly with college students. As literature on this topic is advancing at a rapid pace, it seemed instructive to examine which topics are emphasized in emerging EDs research. To that end, a…

  16. The Energy Retrofit of a Building: A Journey Through Bloom's Learning Domains

    ERIC Educational Resources Information Center

    Morgenstern, Mark; Meyer, Sally; Whitten, Barbara; Reuer, Matt

    2008-01-01

    At Colorado College, the energy retrofit of a building is used as a service-learning research project to teach physics and chemistry in a variety of courses. In introductory courses for nonscience majors, the project helps students appreciate the scientific method and quantitative reasoning. Within the physical-chemistry course, students see that…

  17. Engineering quantum magnetism in one-dimensional trapped Fermi gases with p -wave interactions

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Guan, Xiwen; Cui, Xiaoling

    2016-05-01

    The highly controllable ultracold atoms in a one-dimensional (1D) trap provide a new platform for the ultimate simulation of quantum magnetism. In this regard, the Néel antiferromagnetism and the itinerant ferromagnetism are of central importance and great interest. Here we show that these magnetic orders can be achieved in the strongly interacting spin-1/2 trapped Fermi gases with additional p -wave interactions. In this strong-coupling limit, the 1D trapped Fermi gas exhibits an effective Heisenberg spin X X Z chain in the anisotropic p -wave scattering channels. For a particular p -wave attraction or repulsion within the same species of fermionic atoms, the system displays ferromagnetic domains with full spin segregation or the antiferromagnetic spin configuration in the ground state. Such engineered magnetisms are likely to be probed in a quasi-1D trapped Fermi gas of 40K atoms with very close s -wave and p -wave Feshbach resonances.

  18. Wind Energy Potential: Current representation and projections for the European domain

    NASA Astrophysics Data System (ADS)

    Davy, Richard; Gnatiuk, Natalia; Bobylev, Leonid; Pettersson, Lasse

    2016-04-01

    We have used the publically available CORDEX datasets to quantify the ability of a current regional climate model (SMHI-RCA4) to simulate the wind energy potential in the Black sea region using 5 different global climate models for the boundary conditions. The regional climate model results are compared to the ERA-Interim reanalyses over a common period, 1979-2005, and we use Taylor plots to demonstrate the effect of different global climate models on the regional climate simulations. Wind energy potential is calculated from the daily hub-height (120 m) wind speeds by extrapolating the available 10 m wind speeds using a power-law wind profile approximation. In general we find that the regional climate model produces stronger surface winds over the Black Sea region as compared to the ERA-Interim reanalysis, which we relate to the difference in model resolution. We also assess the projected changes to the wind energy potential in the CORDEX EUR-11 region from the current period to the near future (2021-2050), and to the late 21st century (2061-2090). We use a single model ensemble approach to assess the robustness of the projected changes, depending upon the choice of global climate model used for the boundary conditions. To understand the context of the changes in wind energy potential in the region, we include the changing climatology of the upper level (850 hPa) winds over these periods. This work was supported by the EU FP7 Project, Grant agreement No.: 287844. "Towards COast to COast NETworks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential (CoCoNet)".

  19. Controlling Spin Current in a Trapped Fermi Gas

    SciTech Connect

    Du, X.; Zhang, Y.; Petricka, J.; Thomas, J. E.

    2009-07-03

    We study fundamental features of spin current in a very weakly interacting Fermi gas of {sup 6}Li. By creating a spin current and then reversing its flow, we demonstrate control of the spin current. This reversal is predicted by a spin vector evolution equation in energy representation, which shows how the spin and energy of individual atoms become correlated in the nearly undamped regime of the experiments. The theory provides a simple physical description of the spin current and explains both the large amplitude and the slow temporal evolution of the data. Our results have applications in studying and controlling fundamental spin interactions and spin currents in ultracold gases.

  20. Condensate fraction of a two-dimensional attractive Fermi gas

    SciTech Connect

    Salasnich, Luca

    2007-07-15

    We investigate the Bose-Einstein condensation of fermionic pairs in a two-dimensional uniform two-component Fermi superfluid obtaining an explicit formula for the condensate density as a function of the chemical potential and the energy gap. By using the mean-field extended Bardeen-Cooper-Schrieffer theory, we analyze, as a function of the bound-state energy, the off-diagonal long-range order in the crossover from the Bardeen-Cooper-Schrieffer state of weakly bound Cooper pairs to the Bose-Einstein condensate of strongly-bound molecular dimers.

  1. Dependence of Kambersky damping on Fermi level and spin orientation

    SciTech Connect

    Qu, T.; Victora, R. H.

    2014-05-07

    Kambersky damping represents the loss of magnetic energy from the electrons to the lattice through the spin orbit interaction. It is demonstrated that, for bcc Fe-based transition metal alloys, the logarithm of the energy loss is proportional to the density of states at the Fermi level. Both inter and intraband damping are calculated for spins at arbitrary angle to the previously examined [001] direction. Although the easy axis 〈100〉 shows isotropic relaxation and achieves the minimum damping value of 0.002, other directions, such as 〈110〉, show substantial anisotropic damping.

  2. Fermi Sees Antimatter-Hurling Thunderstorms

    NASA Video Gallery

    NASA's Fermi Gamma-ray Space Telescope has detected beams of antimatter launched by thunderstorms. Acting like enormous particle accelerators, the storms can emit gamma-ray flashes, called TGFs, an...

  3. Fermi Proves Supernova Remnants Make Cosmic Rays

    NASA Video Gallery

    The husks of exploded stars produce some of the fastest particles in the cosmos. New findings by NASA's Fermi show that two supernova remnants accelerate protons to near the speed of light. The pro...

  4. RF Spectroscopy on a Homogeneous Fermi Gas

    NASA Astrophysics Data System (ADS)

    Yan, Zhenjie; Mukherjee, Biswaroop; Patel, Parth; Struck, Julian; Zwierlein, Martin

    2016-05-01

    Over the last two decades RF spectroscopy has been established as an indispensable tool to probe a large variety of fundamental properties of strongly interacting Fermi gases. This ranges from measurement of the pairing gap over tan's contact to the quasi-particle weight of Fermi polarons. So far, most RF spectroscopy experiments have been performed in harmonic traps, resulting in an averaged response over different densities. We have realized an optical uniform potential for ultracold Fermi gases of 6 Li atoms, which allows us to avoid the usual problems connected to inhomogeneous systems. Here we present recent results on RF spectroscopy of these homogeneous samples with a high signal to noise ratio. In addition, we report progress on measuring the contact of a unitary Fermi gas across the normal to superfluid transition.

  5. Fermi discovers giant bubbles in Milky Way

    NASA Video Gallery

    Using data from NASA's Fermi Gamma-ray Space Telescope, scientists have recently discovered a gigantic, mysterious structure in our galaxy. This feature looks like a pair of bubbles extending above...

  6. Interplay between electrical and mechanical domains in a high performance nonlinear energy harvester

    NASA Astrophysics Data System (ADS)

    Mallick, Dhiman; Amann, Andreas; Roy, Saibal

    2015-12-01

    This paper reports a comprehensive experimental characterization and modeling of a compact nonlinear energy harvester for low frequency applications. By exploiting the interaction between the electrical circuitry and the mechanical motion of the device, we are able to improve the power output over a large frequency range. This improvement is quantified using a new figure of merit based on a suitably defined ‘power integral (P f)’ for nonlinear vibrational energy harvesters. The developed device consists of beams with fixed-guided configuration which produce cubic monostable nonlinearity due to stretching strain. Using a high efficiency magnetic circuit a maximum output power of 488.47 μW across a resistive load of 4000 Ω under 0.5g input acceleration at 77 Hz frequency with 9.55 Hz of bandwidth is obtained. The dynamical characteristics of the device are theoretically reproduced and explained by a modified nonlinear Duffing oscillator model.

  7. Fermi LAT Observation of Centaurus a Radio Galaxy

    NASA Astrophysics Data System (ADS)

    Sahakyan, N. V.

    2013-01-01

    The results of analysis of approximately 3 year gamma-ray observations (August 2008-July 2011) of the core of radio galaxy Centaurus A with the Fermi Large Area Telescope (Fermi LAT) are presented. Binned likelihood analysis method applying to the data shows that below several GeV the spectrum can be described by a single power-law with photon index Γ = 2.73 ± 0.06. However, at higher energies the new data show significant excess above the extrapolation of the energy spectrum from low energies. The comparison of the corresponding Spectral Energy Distribution (SED) at GeV energies with the SED in the TeV energy band reported by the H.E.S.S. collaboration shows that we deal with two or perhaps even three components of gamma-radiation originating from different regions located within the central 10 kpc of Centaurus A. The analysis of gamma-ray data of Centaurus A lobe accumulated from the beginning of the operation until November 14, 2011 show extension of the HE gamma-ray emission beyond the WMAP radio image in the case of the Northern lobe [9]. The possible origins of gamma-rays from giant radio lobes of Centaurus A are discussed in the context of hadronic and leptonic scenarios.

  8. Low-energy planar magnetic defects in BaFe2As2: Nanotwins, twins, antiphase, and domain boundaries

    SciTech Connect

    Khan, Suffian N.; Alam, Aftab; Johnson, Duane D.

    2013-11-27

    In BaFe2As2, structural and magnetic planar defects begin to proliferate below the structural phase transition, affecting descriptions of magnetism and superconductivity. We study, using density-functional theory, the stability and magnetic properties of competing antiphase and domain boundaries, twins and isolated nanotwins (twin nuclei), and spin excitations proposed and/or observed. These nanoscale defects have a very low surface energy (22–210 m Jm−2), with twins favorable to the mesoscale. Defects exhibit smaller moments confined near their boundaries—making a uniform-moment picture inappropriate for long-range magnetic order in real samples. Nanotwins explain features in measured pair distribution functions so should be considered when analyzing scattering data. All these defects can be weakly mobile and/or can have fluctuations that lower assessed “ordered” moments from longer spatial and/or time averaging and should be considered directly.

  9. Nonhydrodynamic Transport in Trapped Unitary Fermi Gases

    NASA Astrophysics Data System (ADS)

    Brewer, Jasmine; Romatschke, Paul

    2015-11-01

    Many strongly coupled fluids are known to share similar hydrodynamic transport properties. In this work we argue that this similarity could extend beyond hydrodynamics to transient dynamics through the presence of nonhydrodynamic modes. We review nonhydrodynamic modes in kinetic theory and gauge-gravity duality and discuss their signatures in trapped Fermi gases close to unitarity. Reanalyzing previously published experimental data we find hints of nonhydrodynamic modes in cold Fermi gases in two and three dimensions.

  10. Energy-efficient optical network units for OFDM PON based on time-domain interleaved OFDM technique.

    PubMed

    Hu, Xiaofeng; Cao, Pan; Zhang, Liang; Jiang, Lipeng; Su, Yikai

    2014-06-01

    We propose and experimentally demonstrate a new scheme to reduce the energy consumption of optical network units (ONUs) in orthogonal frequency division multiplexing passive optical networks (OFDM PONs) by using time-domain interleaved OFDM (TI-OFDM) technique. In a conventional OFDM PON, each ONU has to process the complete downstream broadcast OFDM signal with a high sampling rate and a large FFT size to retrieve its required data, even if it employs a portion of OFDM subcarriers. However, in our scheme, the ONU only needs to sample and process one data group from the downlink TI-OFDM signal, effectively reducing the sampling rate and the FFT size of the ONU. Thus, the energy efficiency of ONUs in OFDM PONs can be greatly improved. A proof-of-concept experiment is conducted to verify the feasibility of the proposed scheme. Compared to the conventional OFDM PON, our proposal can save 17.1% and 26.7% energy consumption of ONUs by halving and quartering the sampling rate and the FFT size of ONUs with the use of the TI-OFDM technology.

  11. Probing the Conformation of the Fibronectin III1–2 Domain by Fluorescence Resonance Energy Transfer*S⃞

    PubMed Central

    Karuri, Nancy W.; Lin, Zong; Rye, Hays S.; Schwarzbauer, Jean E.

    2009-01-01

    Fibronectin (FN) matrix is crucial for cell and tissue functions during embryonic development, wound healing, and oncogenesis. Assembly of FN matrix fibrils requires FN domains that mediate interactions with integrin receptors and with other FN molecules. In addition, regulation of FN matrix assembly depends on the first two FN type III modules, III1 and III2, which harbor FN-binding sites. We propose that interactions between these two modules sequester FN-binding sites in soluble FN and that these sites become exposed by FN conformational changes during assembly. To test the idea that III1–2 has a compact conformation, we constructed CIIIY, a conformational sensor of III1–2 based on fluorescent resonance energy transfer between cyan and yellow fluorescent proteins conjugated at its N and C termini. We demonstrate energy transfer in CIIIY and show that fluorescent resonance energy transfer was eliminated by proteolysis and by treatment with mild denaturants that disrupted intramolecular interactions between the two modules. We also show that mutations of key charged residues resulted in conformational changes that exposed binding sites for the N-terminal 70-kDa FN fragment. Collectively, these results support a conformation-dependent mechanism for the regulation of FN matrix assembly by III1–2. PMID:19064996

  12. The nuclear Thomas-Fermi model

    SciTech Connect

    Myers, W.D.; Swiatecki, W.J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

  13. A Hadronic Model of the Fermi Bubbles

    NASA Astrophysics Data System (ADS)

    Giacinti, Gwenael; Taylor, Andrew

    2016-07-01

    We present a self-consistent model of the Fermi Bubbles, described as a decelerating outflow of gas and non-thermal particles produced within the Galactic center region, on a O(100) Myr timescale. Motivated by observations, we use an outflow with velocity O(100) km/s, which is slower than velocities used in models describing the Bubbles as a recent outburst (˜Myr ago). We take into account cosmic ray (CR) energy losses due to pp interactions, and calculate the resulting γ-ray emission. Our model can reproduce both the spatial morphology and the spectra of the Bubbles, on a range of different scales. Finally, we study which imprints a local outflow (or Galactic wind) would leave on the CR spectrum and boron-to-carbon ratio at Earth. We investigate the different types of breaks and/or inflections that can be generated in the CR spectrum, for different wind velocity profiles. Both accelerating and decelerating outflows are considered.

  14. The Nuclear Thomas-Fermi Model

    DOE R&D Accomplishments Database

    Myers, W. D.; Swiatecki, W. J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

  15. No indications of axionlike particles from Fermi

    SciTech Connect

    Belikov, Alexander V.; Goodenough, Lisa; Hooper, Dan

    2011-03-15

    As very high energy (> or approx. 100 GeV) gamma rays travel over cosmological distances, their flux is attenuated through interactions with the extragalactic background light. Observations of distant gamma ray sources at energies between {approx}200 GeV and a few TeV by ground-based gamma-ray telescopes such as HESS, however, have motivated the possibility that the universe is more transparent to very high energy photons than had been anticipated. One proposed explanation for this is the existence of axionlike particles (ALPs) which gamma rays can efficiently oscillate into, enabling them to travel cosmological distances without attenuation. In this article, we use a state-of-the-art model for the extragalactic background light (which is somewhat lower at {approx}{mu}m wavelengths than in previous models) and data from the Fermi Gamma Ray Space Telescope to calculate the spectra at 1-100 GeV of two gamma-ray sources, 1ES1101-232 at redshift z=0.186 and H2356-309 at z=0.165, in conjunction with the measurements of ground-based telescopes, to test the ALP hypothesis. We find that these observations can be well fit by an intrinsic power-law source spectrum with indices of -1.72 and -2.1 for 1ES1101-232 and H2356-309, respectively, and that no ALPs or other exotic physics is necessary to explain the observed degree of attenuation. While this does not exclude the possibility that ALPs are involved in the cosmological propagation of gamma rays, it does reduce the motivation for such new physics.

  16. Quadratic Fermi node in a 3D strongly correlated semimetal.

    PubMed

    Kondo, Takeshi; Nakayama, M; Chen, R; Ishikawa, J J; Moon, E-G; Yamamoto, T; Ota, Y; Malaeb, W; Kanai, H; Nakashima, Y; Ishida, Y; Yoshida, R; Yamamoto, H; Matsunami, M; Kimura, S; Inami, N; Ono, K; Kumigashira, H; Nakatsuji, S; Balents, L; Shin, S

    2015-12-07

    Strong spin-orbit coupling fosters exotic electronic states such as topological insulators and superconductors, but the combination of strong spin-orbit and strong electron-electron interactions is just beginning to be understood. Central to this emerging area are the 5d transition metal iridium oxides. Here, in the pyrochlore iridate Pr2Ir2O7, we identify a non-trivial state with a single-point Fermi node protected by cubic and time-reversal symmetries, using a combination of angle-resolved photoemission spectroscopy and first-principles calculations. Owing to its quadratic dispersion, the unique coincidence of four degenerate states at the Fermi energy, and strong Coulomb interactions, non-Fermi liquid behaviour is predicted, for which we observe some evidence. Our discovery implies that Pr2Ir2O7 is a parent state that can be manipulated to produce other strongly correlated topological phases, such as topological Mott insulator, Weyl semimetal, and quantum spin and anomalous Hall states.

  17. [The Effects of Complex of Benzoquinone on Fermi Resonance].

    PubMed

    Li, Shuai-peng; Zhang, Feng-qin; Jiang, Li-tong; Lin, Xiao-long; Jiang, Yong-heng; Zhang Liu-yang; Lin, Bo; Gu, Hao

    2015-07-01

    Fermi resonance phenomenon exists in simple compounds and it also widely exists in vibration spectra of complex. The complex can be formed by adding up simple compounds. As a result, the characteristic parameters of some parts of molecule will make changes, and the molecular spectra have a significant change along with it. Benzoquinone and proline in the solution form charge-transfer complex under certain conditions, but the spectra intensity is weak, our research uses Teflon liquid-core optical fiber technology to gain high quality resonance Raman spectra. We acquire Raman spectra of Benzoquinone and its complex in experiments, and analyze the characteristic parameters of Fermi resonance according to J. F. Bertran quantum theory. The results shows that, because of the formation of complex, Fermi resonance peak of C==0 bond shifts to high wavelength, the spectra intensity decreases, the frequency space increases, the coupling coefficient increases. The explanation is that, in the solution of complex, proline is donor, while benzoquinone is acceptor, the non-bonding electron of N atom which is belong to proline transfers to the pi anti-bonding orbital of benzoquinone, then n-pi* charge transfer complex is produced. That causes the change of molecular energy level, changes the Raman spectra. All these researches provide new idea and clue for spectral line certification and attribution of complex molecules, complexes and polymer. PMID:26717725

  18. Quadratic Fermi node in a 3D strongly correlated semimetal

    DOE PAGES

    Kondo, Takeshi; Nakayama, M.; Chen, R.; Ishikawa, J. J.; Moon, E. -G.; Yamamoto, T.; Ota, Y.; Malaeb, W.; Kanai, H.; Nakashima, Y.; et al

    2015-12-07

    We report that strong spin–orbit coupling fosters exotic electronic states such as topological insulators and superconductors, but the combination of strong spin–orbit and strong electron–electron interactions is just beginning to be understood. Central to this emerging area are the 5d transition metal iridium oxides. Here, in the pyrochlore iridate Pr2Ir2O7, we identify a non-trivial state with a single-point Fermi node protected by cubic and time-reversal symmetries, using a combination of angle-resolved photoemission spectroscopy and first-principles calculations. Owing to its quadratic dispersion, the unique coincidence of four degenerate states at the Fermi energy, and strong Coulomb interactions, non-Fermi liquid behaviour ismore » predicted, for which we observe some evidence. Lastly, our discovery implies that Pr2Ir2O7 is a parent state that can be manipulated to produce other strongly correlated topological phases, such as topological Mott insulator, Weyl semimetal, and quantum spin and anomalous Hall states.« less

  19. Quadratic Fermi node in a 3D strongly correlated semimetal

    SciTech Connect

    Kondo, Takeshi; Nakayama, M.; Chen, R.; Ishikawa, J. J.; Moon, E. -G.; Yamamoto, T.; Ota, Y.; Malaeb, W.; Kanai, H.; Nakashima, Y.; Ishida, Y.; Yoshida, R.; Yamamoto, H.; Matsunami, M.; Kimura, S.; Inami, N.; Ono, K.; Kumigashira, H.; Nakatsuji, S.; Balents, L.; Shin, S.

    2015-12-07

    We report that strong spin–orbit coupling fosters exotic electronic states such as topological insulators and superconductors, but the combination of strong spin–orbit and strong electron–electron interactions is just beginning to be understood. Central to this emerging area are the 5d transition metal iridium oxides. Here, in the pyrochlore iridate Pr2Ir2O7, we identify a non-trivial state with a single-point Fermi node protected by cubic and time-reversal symmetries, using a combination of angle-resolved photoemission spectroscopy and first-principles calculations. Owing to its quadratic dispersion, the unique coincidence of four degenerate states at the Fermi energy, and strong Coulomb interactions, non-Fermi liquid behaviour is predicted, for which we observe some evidence. Lastly, our discovery implies that Pr2Ir2O7 is a parent state that can be manipulated to produce other strongly correlated topological phases, such as topological Mott insulator, Weyl semimetal, and quantum spin and anomalous Hall states.

  20. Quadratic Fermi node in a 3D strongly correlated semimetal

    PubMed Central

    Kondo, Takeshi; Nakayama, M.; Chen, R.; Ishikawa, J. J.; Moon, E.-G.; Yamamoto, T.; Ota, Y.; Malaeb, W.; Kanai, H.; Nakashima, Y.; Ishida, Y.; Yoshida, R.; Yamamoto, H.; Matsunami, M.; Kimura, S.; Inami, N.; Ono, K.; Kumigashira, H.; Nakatsuji, S.; Balents, L.; Shin, S.

    2015-01-01

    Strong spin–orbit coupling fosters exotic electronic states such as topological insulators and superconductors, but the combination of strong spin–orbit and strong electron–electron interactions is just beginning to be understood. Central to this emerging area are the 5d transition metal iridium oxides. Here, in the pyrochlore iridate Pr2Ir2O7, we identify a non-trivial state with a single-point Fermi node protected by cubic and time-reversal symmetries, using a combination of angle-resolved photoemission spectroscopy and first-principles calculations. Owing to its quadratic dispersion, the unique coincidence of four degenerate states at the Fermi energy, and strong Coulomb interactions, non-Fermi liquid behaviour is predicted, for which we observe some evidence. Our discovery implies that Pr2Ir2O7 is a parent state that can be manipulated to produce other strongly correlated topological phases, such as topological Mott insulator, Weyl semimetal, and quantum spin and anomalous Hall states. PMID:26640114

  1. Wind Energy System Time-domain (WEST) analyzers using hybrid simulation techniques

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1979-01-01

    Two stand-alone analyzers constructed for real time simulation of the complex dynamic characteristics of horizontal-axis wind energy systems are described. Mathematical models for an aeroelastic rotor, including nonlinear aerodynamic and elastic loads, are implemented with high speed digital and analog circuitry. Models for elastic supports, a power train, a control system, and a rotor gimbal system are also included. Limited correlation efforts show good comparisons between results produced by the analyzers and results produced by a large digital simulation. The digital simulation results correlate well with test data.

  2. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE ACTIVE GALAXY 4C +55.17: STEADY, HARD GAMMA-RAY EMISSION AND ITS IMPLICATIONS

    SciTech Connect

    McConville, W.; McEnery, J. E.; Ostorero, L.; Moderski, R.; Stawarz, L.; Cheung, C. C.; Ajello, M.; Monzani, M. E.; Bouvier, A.; Bregeon, J.; Donato, D.; Finke, J.; Furniss, A.; Williams, D. A.; Orienti, M.; Reyes, L. C.; Rossetti, A. E-mail: stawarz@astro.isas.jaxa.jp

    2011-09-10

    We report Fermi Large Area Telescope (LAT) observations and broadband spectral modeling of the radio-loud active galaxy 4C +55.17 (z = 0.896), formally classified as a flat-spectrum radio quasar. Using 19 months of all-sky survey Fermi-LAT data, we detect a {gamma}-ray continuum extending up to an observed energy of 145 GeV, and furthermore we find no evidence of {gamma}-ray variability in the source over its observed history. We illustrate the implications of these results in two different domains. First, we investigate the origin of the steady {gamma}-ray emission, where we re-examine the common classification of 4C +55.17 as a quasar-hosted blazar and consider instead its possible nature as a young radio source. We analyze and compare constraints on the source physical parameters in both blazar and young radio source scenarios by means of a detailed multiwavelength analysis and theoretical modeling of its broadband spectrum. Second, we show that the {gamma}-ray spectrum may be formally extrapolated into the very high energy (VHE, {>=}100 GeV) range at a flux level detectable by the current generation of ground-based Cherenkov telescopes. This enables us to place constraints on models of extragalactic background light within LAT energies and features the source as a promising candidate for VHE studies of the universe at an unprecedented redshift of z = 0.896.

  3. Fully discrete energy stable high order finite difference methods for hyperbolic problems in deforming domains

    NASA Astrophysics Data System (ADS)

    Nikkar, Samira; Nordström, Jan

    2015-06-01

    A time-dependent coordinate transformation of a constant coefficient hyperbolic system of equations which results in a variable coefficient system of equations is considered. By applying the energy method, well-posed boundary conditions for the continuous problem are derived. Summation-by-Parts (SBP) operators for the space and time discretization, together with a weak imposition of boundary and initial conditions using Simultaneously Approximation Terms (SATs) lead to a provable fully-discrete energy-stable conservative finite difference scheme. We show how to construct a time-dependent SAT formulation that automatically imposes boundary conditions, when and where they are required. We also prove that a uniform flow field is preserved, i.e. the Numerical Geometric Conservation Law (NGCL) holds automatically by using SBP-SAT in time and space. The developed technique is illustrated by considering an application using the linearized Euler equations: the sound generated by moving boundaries. Numerical calculations corroborate the stability and accuracy of the new fully discrete approximations.

  4. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions.

    PubMed

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    2016-08-01

    Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes. PMID:27551687

  5. Strain-induced Fermi contour anisotropy of GaAs (311)A 2D holes

    NASA Astrophysics Data System (ADS)

    Shabani, Javad; Shayegan, Mansour; Winkler, Roland

    2008-03-01

    There is considerable current interest in electronic properties of two-dimensional (2D) carriers whose energy bands are spin-split at finite values of in-plane wave vector, thanks to the spin-orbit interaction and the lack of inversion symmetry. We report experimental and theoretical results revealing that the spin-subband Fermi contours of the heavy and light heavy-holes (HHh and HHl) can be tuned in high mobility GaAs (311)A 2D hole systems via the application of symmetry-breaking in-plane strain. Our calculations show that the HHl spin-subband Fermi contour is circular but the HHh spin-subband Fermi contour is distorted. Experimentally, we probe the Fermi contour anisotropy by measuring the magneto-resistance commensurability peaks induced by square arrays of antidots. When the spin splitting is sufficiently large, the magneto-resistance trace exhibits two peaks, providing clear evidence for spin-resolved ballistic transport. The experimental results are in good agreement with the calculations, and confirm that the majority spin-subband (HHh) has a severely distorted Fermi contour whose anisotropy can be tuned with strain while Fermi contour of the minority spin-subband (HHl) remains nearly isotropic.

  6. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions

    PubMed Central

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    2016-01-01

    Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes. PMID:27551687

  7. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions.

    PubMed

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    2016-08-01

    Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes.

  8. Limits on the extragalactic background light in the Fermi era

    NASA Astrophysics Data System (ADS)

    Meyer, Manuel; Raue, Martin; Mazin, Daniel; Horns, Dieter

    2012-12-01

    Very high energy (VHE, energy >~ 100 GeV) γ-rays from cosmological sources are attenuated due to the interaction with photons of the extragalactic background light (EBL) in the ultraviolet to infrared wavelength bands. The EBL, thus, leaves an imprint on the observed energy spectra of these objects. In the last four years, the number of extragalactic VHE sources discovered with imaging atmospheric Cherenkov telescopes (IACTs), such as MAGIC, H.E.S.S., and VERITAS, has doubled. Furthermore, the measurements with the Fermi satellite brought new insights into the intrinsic spectra of the sources at GeV energies. Here, we present upper limits on the EBL intensity that are derived by considering the most extensive VHE source sample ever used in this context. This is accomplished by constructing a large number of generic EBL shapes and combining spectral information from Fermi and IACTs together with minimal assumptions about the source physics at high and very high gamma-ray energies. In addition to previous studies, the evolution of the EBL with redshift is accounted for and the possibility of the formation of an electromagnetic cascade and the implications on the upper limits are explored. The EBL density at z = 0 is constrained over more than two orders of magnitude in wavelength, i.e., between 0.4 and 100 μm. The resulting upper limits constitute the strongest ever reported over such a broad wavelength range.

  9. Some aspects of singular interactions in condensed Fermi systems

    NASA Astrophysics Data System (ADS)

    Stamp, P. C. E.

    1993-02-01

    This article gives a fairly detailed survey of some of the problems raised when the interaction energy f^{σ σ'}_{k k'} between 2 fermionic quasiparticles (in 2 dimensions) is singular when |k-k'|to 0. Before dealing with singular interactions, it is shown how a non-singular f^{σ σ'}_{k k'} leads to a 2-dimensional Fermi liquid theory, which is internally consistent, at least as far as its infrared properties are concerned. The quasiparticle properties are calculated in detail. The question of whether singular interactions arise for the dilute Fermi gas, with short-range repulsive interactions, is investigated perturbatively. One finds a weak singularity in f^{σ σ'}_{k k'}, when the dimensionality D = 2, but it does not destabilize the Fermi liquid. A more sophisticated analysis is then given, to all orders in the interaction, using the Lippman-Schwinger equation as well as a phase shift analysis for a finite box. The conclusion is that any breakdown of Fermi liquid theory must come from non-perturbative effects. An examination is then made of some of the consequences arising if a singular interaction is introduced — the form proposed by Anderson is used as an example. A hierarchy of singular terms arise in all quantities — this is shown for the self-energy, and also the 3 point and 4 point scattering functions. These may be summed in a perfectly consistent manner. Most attention is given to the particle-hole channel, since it appears to lead to results different from those of Anderson. Nevertheless it appears that it is possible to derive a sensible theory starting from a singular effective Hamiltonian — although Fermi Liquid theory breaks down, all fermionic quantities may be calculated consistently. Finally, the effect of a magnetic field (which cuts off the infrared divergences) is investigated, and the de Haas-van Alphen amplitude calculated, for such a singular Fermionic system.

  10. First-principles determination of free energies of ferroelectric phase transitions and domains in BaTiO3 and PbTiO3

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Waghmare, Umesh V.

    2010-03-01

    We present a powerful method based on a combination of (a) constrained polarization molecular dynamics and (b) thermodynamic integration to determine the free energy landscape relevant to structural phase transitions and related phenomena in ferroelectric materials, bridging the gap between first-principles calculations and phenomenological Landau-like theories. We illustrate it using first-principles effective Hamiltonians of BaTiO3 and PbTiO3 to (a) uncover the quantitative features of the free energy function that are responsible for its first-order ferroelectric transitions, and (b) calculate the minimum free energy pathway for the polarization switching and (c) evaluate temperature dependent domain wall free energy and pathways of the formation of domains. Our method can be readily generalized to any classical microscopic Hamiltonian and ensembles characterized with a given constraint. We show that certain terms have to be added to the phenomenological Landau-Devonshire free energy functions to capture the physics of ferroelectric materials.

  11. Log-Gabor Energy Based Multimodal Medical Image Fusion in NSCT Domain

    PubMed Central

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-01-01

    Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT), the fast discrete curvelet transform (FDCT), and the dual tree complex wavelet transform (DTCWT) based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images. PMID:25214889

  12. Distance distributions of short polypeptides recovered by fluorescence resonance energy transfer in the 10 A domain.

    PubMed

    Sahoo, Harekrushna; Roccatano, Danilo; Zacharias, Martin; Nau, Werner M

    2006-06-28

    Fluorescence resonance energy transfer (FRET) between tryptophan (Trp) as donor and 2,3-diazabicyclo[2.2.2]oct-2-ene (Dbo) as acceptor was studied by steady-state and time-resolved fluorescence spectroscopy. The unique feature of this FRET pair is its exceptionally short Förster radius (10 A), which allows one to recover distance distributions in very short structureless peptides. The technique was applied to Trp-(GlySer)n-Dbo-NH2 peptides with n = 0-10, for which the average probe/quencher distance ranged between 8.7 and 13.7 A experimentally (in propylene glycol, analysis according to wormlike chain model) and 8.6-10.2 A theoretically (for n = 0-6, GROMOS96 molecular dynamics simulations). The larger FRET efficiency in steady-state compared to time-resolved fluorescence experiments was attributed to a static quenching component, suggesting that a small but significant part (ca. 10%) of the conformations are already in van der Waals contact when excitation occurs.

  13. Log-Gabor energy based multimodal medical image fusion in NSCT domain.

    PubMed

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-01-01

    Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT), the fast discrete curvelet transform (FDCT), and the dual tree complex wavelet transform (DTCWT) based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images. PMID:25214889

  14. Transdimensional equivalence of universal constants for Fermi gases at unitarity.

    PubMed

    Endres, Michael G

    2012-12-21

    I present lattice Monte Carlo calculations for a universal four-component Fermi gas confined to a finite box and to a harmonic trap in one spatial dimension. I obtain the values ξ(1D) = 0.370(4) and ξ(1D) = 0.372(1), respectively, for the Bertsch parameter, a nonperturbative universal constant defined as the (square of the) energy of the untrapped (trapped) system measured in units of the free gas energy. The Bertsch parameter obtained for the one-dimensional system is consistent to within ~1% uncertainties with the most recent numerical and experimental estimates of the analogous Bertsch parameter for a three-dimensional spin-1/2 Fermi gas at unitarity. The finding suggests the intriguing possibility that there exists a universality between two conformal theories in different dimensions. To lend support to this study, I also compute ground state energies for four and five fermions confined to a harmonic trap and demonstrate the restoration of a virial theorem in the continuum limit. The continuum few-body energies obtained are consistent with exact analytical calculations to within ~1.0% and ~0.3% statistical uncertainties, respectively.

  15. Transdimensional equivalence of universal constants for Fermi gases at unitarity.

    PubMed

    Endres, Michael G

    2012-12-21

    I present lattice Monte Carlo calculations for a universal four-component Fermi gas confined to a finite box and to a harmonic trap in one spatial dimension. I obtain the values ξ(1D) = 0.370(4) and ξ(1D) = 0.372(1), respectively, for the Bertsch parameter, a nonperturbative universal constant defined as the (square of the) energy of the untrapped (trapped) system measured in units of the free gas energy. The Bertsch parameter obtained for the one-dimensional system is consistent to within ~1% uncertainties with the most recent numerical and experimental estimates of the analogous Bertsch parameter for a three-dimensional spin-1/2 Fermi gas at unitarity. The finding suggests the intriguing possibility that there exists a universality between two conformal theories in different dimensions. To lend support to this study, I also compute ground state energies for four and five fermions confined to a harmonic trap and demonstrate the restoration of a virial theorem in the continuum limit. The continuum few-body energies obtained are consistent with exact analytical calculations to within ~1.0% and ~0.3% statistical uncertainties, respectively. PMID:23368437

  16. Fermi/LAT search for counterpart to the IceCube event 67093193 (run 127853)

    NASA Astrophysics Data System (ADS)

    Vianello, G.; Magill, J. D.; Omodei, N.; Kocevski, D.; Ajello, M.; Buson, S.; Krauss, F.; Chiang, J.

    2016-04-01

    on behalf of the Fermi-LAT team: We have searched the Fermi Large Area Telescope data for a high-energy gamma-ray counterpart for the IceCube High Energy Starting Event (HESE) 67093193, detected in run 127853 on 2016-04-27 05:52:32.00 UT (AMON GCN notice rev. 2, http://gcn.gsfc.nasa.gov/notices_amon/67093193_127853.amon . See http://gcn.gsfc.nasa.gov/doc/Public_Doc_AMON_IceCube_GCN_Alerts_v2.pdf for a description of HESE events and related GCN notices).

  17. Mapping of the Signal Peptide-Binding Domain of Escherichia coli SecA Using Förster Resonance Energy Transfer†

    PubMed Central

    Auclair, Sarah M.; Moses, Julia P.; Musial-Siwek, Monika; Kendall, Debra A.; Oliver, Donald B.; Mukerji, Ishita

    2010-01-01

    Identification of the signal peptide-binding domain within SecA ATPase is an important goal for understanding the molecular basis of SecA preprotein recognition as well as elucidating the chemo-mechanical cycle of this nanomotor during protein translocation. In this study, Förster resonance energy transfer methodology was employed to map the location of the SecA signal peptide-binding domain using a collection of functional monocysteine SecA mutants and alkaline phosphatase signal peptides labeled with appropriate donor–acceptor fluorophores. Fluorescence anisotropy measurements yielded an equilibrium binding constant of 1.4 or 10.7 μM for the alkaline phosphatase signal peptide labeled at residue 22 or 2, respectively, with SecA, and a binding stoichiometry of one signal peptide bound per SecA monomer. Binding affinity measurements performed with a monomer-biased mutant indicate that the signal peptide binds equally well to SecA monomer or dimer. Distance measurements determined for 13 SecA mutants show that the SecA signal peptide-binding domain encompasses a portion of the preprotein cross-linking domain but also includes regions of nucleotide-binding domain 1 and particularly the helical scaffold domain. The identified region lies at a multidomain interface within the heart of SecA, surrounded by and potentially responsive to domains important for binding nucleotide, mature portions of the preprotein, and the SecYEG channel. Our FRET-mapped binding domain, in contrast to the domain identified by NMR spectroscopy, includes the two-helix finger that has been shown to interact with the preprotein during translocation and lies at the entrance to the protein-conducting channel in the recently determined SecA–SecYEG structure. PMID:20025247

  18. Understanding and Using the Fermi Science Tools

    NASA Astrophysics Data System (ADS)

    Asercion, Joseph; Fermi Science Support Center

    2015-01-01

    The Fermi Science Support Center (FSSC) provides information, documentation, and tools for the analysis of Fermi science data, including both the Large-Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Source and binary versions of the Fermi Science Tools can be downloaded from the FSSC website, and are supported on multiple platforms. An overview document, the Cicerone, provides details of the Fermi mission, the science instruments and their response functions, the science data preparation and analysis process, and interpretation of the results. Analysis Threads provide the user with step-by-step instructions for many different types of data analysis: point source analysis - generating maps, spectra, and light curves, pulsar timing analysis, source identification, and the use of python for scripting customized analysis chains. The reference manual gives details of the options available for each tool. We present an overview of the structure of the Fermi science tools and documentation, and how to acquire them. We also provide information on recent updates incorporated in the Science Tools as well as upcoming changes that will be included in the upcoming release of the Science Tools in early 2015.

  19. Generalized charge-screening in relativistic Thomas–Fermi model

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-10-15

    In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, the variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}∝r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar

  20. The Planetarium Hypothesis - A Resolution of the Fermi Paradox

    NASA Astrophysics Data System (ADS)

    Baxter, S.

    A possible resolution to the Fermi Paradox is that we are living in an artificial universe, perhaps a form of virtual- reality `planetarium', designed to give us the illusion that the universe is empty. Quantum-physical and thermo- dynamic considerations inform estimates of the energy required to generate such simulations of varying sizes and quality. The perfect simulation of a world containing our present civilisation is within the scope of a Type K3 extraterrestrial culture. However the containment of a coherent human culture spanning ~100 light years within a perfect simulation would exceed the capacities of any conceivable virtual-reality generator.

  1. Fermi-Pasta-Ulam phenomenon for generic initial data.

    PubMed

    Carati, A; Galgani, L; Giorgilli, A; Paleari, S

    2007-08-01

    The well-known Fermi-Pasta-Ulam (FPU) phenomenon (lack of attainment of equipartition of the mode energies at low energies for some exceptional initial data) suggests that the FPU model does not have the mixing property at low energies. We give numerical indications that this is actually the case. This we show by computing orbits for sets of initial data of full measure, sampled out from the microcanonical ensemble by standard Monte Carlo techniques. Mixing is tested by looking at the decay of the autocorrelations of the mode energies, and it is found that the high-frequency modes have autocorrelations that tend instead to positive values. Indications are given that such a nonmixing property survives in the thermodynamic limit. It is left as an open problem whether mixing actually occurs, i.e., whether the autocorrelations vanish as time tends to infinity.

  2. 2FHL: The Second Catalog of Hard Fermi-LAT Sources

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caputo, R.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen, J. M.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Cuoco, A.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Di Mauro, M.; Di Venere, L.; Domínguez, A.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Furniss, A. K.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Iafrate, G.; Hartmann, Dieter; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Kataoka, J.; Knödlseder, J.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Lemoine-Goumard, M.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mirabal, N.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Romani, R. W.; Sánchez-Conde, M.; Saz Parkinson, P. M.; Schmid, J.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, M.; Takahashi, T.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.; Yassine, M.; Zaharijas, G.; Zimmer, S.

    2016-01-01

    We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass 8 event-level analysis allows the detection and characterization of sources in the 50 GeV-2 TeV energy range. In this energy band, Fermi-LAT has detected 360 sources, which constitute the second catalog of hard Fermi-LAT sources (2FHL). The improved angular resolution enables the precise localization of point sources (˜1.‧7 radius at 68% C. L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associated with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHL sources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi-LAT on orbit and the observations performed at higher energies by Cherenkov telescopes from the ground.

  3. Measurement techniques for the characterization in the frequency domain of regulated energy-storage DC-to-DC converters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bahler, D. D.

    1978-01-01

    Procedures are presented for obtaining valid frequency-domain transfer functions of regulated reactor energy-storage dc-to-dc converters. These procedures are for measuring loop gain, closed loop gain, output impedance, and audio susceptibility. The applications of these measurements are discussed.

  4. Fermi Liquid in a Torsional Oscillator

    NASA Astrophysics Data System (ADS)

    Virtanen, T. H.; Thuneberg, E. V.

    2012-12-01

    We study the transverse acoustic impedance of normal Fermi liquid inside a torsionally oscillating cylindrical container. We use Landau's Fermi liquid theory, and our approach is applicable to both normal 3He and mixtures of 3He in superfluid 4He. The fluid causes dissipation and a change of the resonant frequency of the oscillator. Usually, a liquid medium increases the moment of inertia of the oscillator, but we show that for a suitable choice of container radius and driving frequency, the Fermi liquid can actually decrease the inertia and increase the resonant frequency. Results of numerical calculations for all values of mean free path l are shown and comparison is made to both hydrodynamic theory and simple kinetic theory in the ballistic limit.

  5. The evolutionary sequence of Fermi blazars

    NASA Astrophysics Data System (ADS)

    Cha, Yongjuan; Zhang, Haojing; Zhang, Xiong; Xiong, Dingrong; Li, Bijun; Dong, Xia; Li, Jin

    2014-02-01

    Using γ-ray data ( α γ , F γ ) detected by Fermi Large Area Telescope (LAT) and black hole mass which has been compiled from literatures for 116 Fermi blazars, we calculated intrinsic γ-ray luminosity, intrinsic bolometric luminosity, intrinsic Eddington ratio and studied the relationships between all above parameters and redshift, between α γ and L γ . Furthermore, we obtained the histograms of key parameters. Our results are the following: (1) The main reason for the evolutionary sequence of three subclasses (HBLs, LBLs, FSRQs) may be Eddington ratio rather than black hole mass; (2) FSRQs occupy in the earlier, high-luminosity, high Eddington ratio, violent phase of the galactic evolution sequence, while BL Lac objects occur in the low luminosity, low Eddington ratio, late phase of the galactic evolution sequence; (3) These results imply that the evolutionary track of Fermi blazars is FSRQs ⟶ LBLs ⟶ HBLs.

  6. Pairing in a dry Fermi sea.

    PubMed

    Maier, T A; Staar, P; Mishra, V; Chatterjee, U; Campuzano, J C; Scalapino, D J

    2016-01-01

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability. PMID:27312569

  7. Pseudogap Pairing in Ultracold Fermi Atoms

    SciTech Connect

    Hu Hui; Liu Xiaji; Drummond, Peter D.; Dong Hui

    2010-06-18

    The Bose-Einstein condensate to Bardeen-Cooper-Schrieffer crossover in ultracold Fermi gases creates an ideal environment to enrich our knowledge of many-body systems. It is relevant to a wide range of fields from condensed matter to astrophysics. The nature of pairing in strongly interacting Fermi gases can be readily studied. This aids our understanding of related problems in high-T{sub c} superconductors, whose mechanism is still under debate due to the large interaction parameter. Here, we calculate the dynamical properties of a normal, trapped strongly correlated Fermi gas, by developing a quantum cluster expansion. Our calculations for the single-particle spectral function agree with recent rf spectroscopy measurements, and clearly demonstrate pseudogap pairing in the strongly interacting regime.

  8. Pairing in a dry Fermi sea

    NASA Astrophysics Data System (ADS)

    Maier, T. A.; Staar, P.; Mishra, V.; Chatterjee, U.; Campuzano, J. C.; Scalapino, D. J.

    2016-06-01

    In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. Here we report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. In contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin-fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.

  9. Exciting Quantized Vortex Rings in a Superfluid Unitary Fermi Gas

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel

    2014-03-01

    In a recent article, Yefsah et al., Nature 499, 426 (2013) report the observation of an unusual quantum excitation mode in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe collective oscillations of the superfluid atomic cloud with a period almost an order of magnitude larger than that predicted by any theory of domain walls, which they interpret as a possible new quantum phenomenon dubbed ``a heavy soliton'' with an inertial mass some 50 times larger than one expected for a domain wall. We present compelling evidence that this ``heavy soliton'' is instead a quantized vortex ring by showing that the main aspects of the experiment can be naturally explained within an extension of the time-dependent density functional theory (TDDFT) to superfluid systems. The numerical simulations required the solution of some 260,000 nonlinear coupled time-dependent 3-dimensional partial differential equations and was implemented on 2048 GPUs on the Cray XK7 supercomputer Titan of the Oak Ridge Leadership Computing Facility.

  10. Revised Thomas-Fermi approximation for singular potentials

    NASA Astrophysics Data System (ADS)

    Dufty, James W.; Trickey, S. B.

    2016-08-01

    Approximations for the many-fermion free-energy density functional that include the Thomas-Fermi (TF) form for the noninteracting part lead to singular densities for singular external potentials (e.g., attractive Coulomb). This limitation of the TF approximation is addressed here by a formal map of the exact Euler equation for the density onto an equivalent TF form characterized by a modified Kohn-Sham potential. It is shown to be a "regularized" version of the Kohn-Sham potential, tempered by convolution with a finite-temperature response function. The resulting density is nonsingular, with the equilibrium properties obtained from the total free-energy functional evaluated at this density. This new representation is formally exact. Approximate expressions for the regularized potential are given to leading order in a nonlocality parameter, and the limiting behavior at high and low temperatures is described. The noninteracting part of the free energy in this approximation is the usual Thomas-Fermi functional. These results generalize and extend to finite temperatures the ground-state regularization by R. G. Parr and S. Ghosh [Proc. Natl. Acad. Sci. U.S.A. 83, 3577 (1986), 10.1073/pnas.83.11.3577] and by L. R. Pratt, G. G. Hoffman, and R. A. Harris [J. Chem. Phys. 88, 1818 (1988), 10.1063/1.454105] and formally systematize the finite-temperature regularization given by the latter authors.

  11. Detecting superlight dark matter with Fermi-degenerate materials

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Pyle, Matt; Zhao, Yue; Zurek, Kathryn M.

    2016-08-01

    We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O (keV). Detection of suc light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O (meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ˜ 10-3. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in order to detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.

  12. Non-Fermi liquid phase in metallic Skyrmion crystals

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruki; Parameswaran, Siddharth; Raghu, Srinivas; Vishwanath, Ashvin

    2014-03-01

    Motivated by reports of a non-Fermi liquid state in MnSi, we examine the effect of coupling phonons of an incommensurate skyrmion crystal (SkX) to conduction electrons. We find that non-Fermi liquid behavior emerges in both two and three dimensions over the entire phase, due to an anomalous electron-phonon coupling that is linked to the net skyrmion density. A small parameter, the spiral wave vector in lattice units, allows us to exercise analytic control and ignore Landau damping of phonons over a wide energy range. At the lowest energy scales the problem is similar to electrons coupled to a gauge field. The best prospects for realizing these effects is in short period skyrmion lattice systems such as MnGe or epitaxial MnSi films. We also compare our results with the unusual T 3 / 2 scaling of temperature dependent resistivity seen in high pressure experiments on MnSi. We acknowledge support from the NSF via Grant DMR-0645691, the DOE Office of Basic Energy Sciences via contract DE-AC02-76SF00515, and the Simons, Templeton, and Alfred P. Sloan Foundations.

  13. Estimated and forecasted trends in domain specific time-use and energy expenditure among adults in Russia

    PubMed Central

    2014-01-01

    Background Examination of historical trends and projections in estimated energy expenditure in Russia is important given the country’s economic downturns and growth. Methods Nationally representative data from the Russia Longitudinal Monitoring Survey (RLMS) from 1995–2011 was used to determine the metabolic equivalents of task (MET)-hours per week from occupational, domestic, travel, and active leisure physical activity (PA) domains, as well as sedentary leisure time (hours per week) among adults 18–60 years. Additionally, we projected what these values would be like in 2020 and 2030 if observed trends continue. Results Among male adults, the largest contributor to total PA was occupational PA followed by travel PA. In contrast, domestic PA followed by occupational PA contributed most to total PA among female adults. Total PA was 282.9 MET-hours per week in 1995 and declined to 231.7 in 2011. Total PA is projected to decrease to 216.5 MET-hours per week in 2020 and to 193.0 MET-hours per week in 2030. The greatest relative declines are occurring in travel PA. Female adults are also exhibiting significant declines in domestic PA. Changes in occupational and active leisure PA are less distinct. Conclusions Policies and initiatives are needed to counteract the long-term decline of overall physical activity linked with a modernizing lifestyle and economy among Russian adults. PMID:24475868

  14. Modeling a thermionic energy converter using finite-difference time-domain particle-in-cell simulations

    SciTech Connect

    Lo, F. S.; Lee, T. H.; Lu, P. S.; Ragan-Kelley, B.; Minnich, A.; Lin, M. C.; Verboncoeur, J. P.

    2014-02-15

    A thermionic energy converter (TEC) is a static device that converts heat directly into electricity by boiling electrons off a hot emitter surface across a small inter-electrode gap to a cooler collector surface. The main challenge in TECs is overcoming the space charge limit, which limits the current transmitted across a gap of a given voltage and width. We have verified the feasibility of studying and developing a TEC using a bounded finite-difference time-domain particle-in-cell plasma simulation code, OOPD1, developed by Plasma Theory and Simulation Group, formerly at UC Berkeley and now at Michigan State University. In this preliminary work, a TEC has been modeled kinetically using OOPD1, and the accuracy has been verified by comparing with an analytically solvable case, giving good agreement. With further improvement of the code, one will be able to quickly and cheaply analyze space charge effects, and seek designs that mitigate the space charge effect, allowing TECs to become more efficient and cost-effective.

  15. Electron Energy-Loss Spectroscopy (EELS)Calculation in Finite-Difference Time-Domain (FDTD) Package: EELS-FDTD

    NASA Astrophysics Data System (ADS)

    Large, Nicolas; Cao, Yang; Manjavacas, Alejandro; Nordlander, Peter

    2015-03-01

    Electron energy-loss spectroscopy (EELS) is a unique tool that is extensively used to investigate the plasmonic response of metallic nanostructures since the early works in the '50s. To be able to interpret and theoretically investigate EELS results, a myriad of different numerical techniques have been developed for EELS simulations (BEM, DDA, FEM, GDTD, Green dyadic functions). Although these techniques are able to predict and reproduce experimental results, they possess significant drawbacks and are often limited to highly symmetrical geometries, non-penetrating trajectories, small nanostructures, and free standing nanostructures. We present here a novel approach for EELS calculations using the Finite-difference time-domain (FDTD) method: EELS-FDTD. We benchmark our approach by direct comparison with results from the well-established boundary element method (BEM) and published experimental results. In particular, we compute EELS spectra for spherical nanoparticles, nanoparticle dimers, nanodisks supported by various substrates, and gold bowtie antennas on a silicon nitride substrate. Our EELS-FDTD implementation can be easily extended to more complex geometries and configurations and can be directly implemented within other numerical methods. Work funded by the Welch Foundation (C-1222, L-C-004), and the NSF (CNS-0821727, OCI-0959097).

  16. Fermi Acceleration -- From Cosmic Rays to Discharge Heating

    NASA Astrophysics Data System (ADS)

    Lieberman, Michael A.

    2006-10-01

    Low pressure, radio frequency (rf) driven discharges are widely used for materials processing in the microelectronics industry. Electrons in these discharges can be heated ``collisionlessly'' by repeated interaction with the fields near the plasma skin. The physical description of this ``collisionless'' heating harks back to two seminal ideas originating over fifty years ago in the disparate fields of astrophysics and condensed matter physics. The motion of a ball bouncing between a fixed and an oscillating wall was originally proposed by E.Fermi [Phys. Rev. 75 1169 (1949)] in April 1949 as a model for cosmic ray acceleration. Expectations that the ball could be heated to very high energies gave way to the realization that while the motion is chaotic at low energies, the phase space has an intricate fractal structure and there is an adiabatic limit to the heating. Also in April 1949, A.B. Pippard [Physica 15 45 (1949)] proposed an explanation for the anomalous high frequency skin resistance of metals at low temperatures, in which he divided electrons into two classes that ``interacted with'' and ``did not interact with'' the skin layer fields. The application of these ideas to collisionless electron heating in discharges has been fruitful [M.A. Lieberman and V.A. Godyak, IEEE Trans. Plasma Sci. 26 955 (1998); E. Kawamura, M.A. Lieberman, and A.J. Lichtenberg, Phys. Plasmas 13 053506 (2006)]. In this talk, Fermi's proposal for the origin of cosmic rays is reviewed. The Fermi acceleration model is used to describe collisionless heating in radio frequency-driven discharges, with illustrations drawn from experiments, computer simulations and analysis. The re-discovery of Pippard's model of the anomalous skin effect in metals, in the context of collisionless heating in discharges, is described.

  17. Critical Zeeman splitting of a unitary Fermi superfluid

    SciTech Connect

    He Lianyi; Zhuang Pengfei

    2011-05-01

    We determine the critical Zeeman energy splitting of a homogeneous Fermi superfluid at unitary in terms of the Fermi energy {epsilon}{sub F} according to recent experimental results in Laboratoire Kastler Brossel (LKB)-Lhomond. Based on the universal equations of state for the superfluid and normal phases, we show that there exist two critical fields H{sub c1} and H{sub c2}, between which a superfluid-normal mixed phase is energetically favored. Universal formulas for the critical fields and the critical population imbalance P{sub c} are derived. We have found a universal relation between the critical fields and the critical imbalances: H{sub c1}={gamma}{xi}{epsilon}{sub F} and H{sub c2}=(1+{gamma}P{sub c}){sup 2/3}H{sub c1}, where {xi} is the universal constant and {gamma} is the critical value of the chemical potential imbalance in the grand canonical ensemble. Since {xi}, {gamma}, and P{sub c} have been measured in the experiments, we can determine the critical Zeeman fields without the detailed information of the equation of state for the polarized normal phase. Using the experimental data from LKB-Lhomond, we have found H{sub c1{approx_equal}}0.37{epsilon}{sub F} and H{sub c2{approx_equal}}0.44{epsilon}{sub F}. Our result of the polarization P as a function of the Zeeman field H/{epsilon}{sub F} is in good agreement with the data extracted from the experiments. We also give an estimation of the critical magnetic field for dilute neutron matter at which the matter gets spin polarized, assuming the properties of the dilute neutron matter are close to those of the unitary Fermi gas.

  18. Atomic Fermi gases in optical lattices

    SciTech Connect

    Modugno, G.; De Mirandes, E.; Ferlando, F.; Ott, H.; Roati, G.; Inguscio, M.

    2005-05-05

    We report on the first experiments with atomic Fermi gases in optical lattices. We have studied the properties of non interacting fermions and of an interacting boson-fermion mixture in a 1D lattice in presence of additional linear or harmonic potentials. These systems have allowed to study for the first time the fundamental quantum transport properties of a perfect crystal and to confirm the role of interactions in real crystals. We have found that the combination of Fermi gases and optical lattices can also have important applications, such as high-resolution force sensing.

  19. Holographic Metals and the Fractionalized Fermi Liquid

    SciTech Connect

    Sachdev, Subir

    2010-10-08

    We show that there is a close correspondence between the physical properties of holographic metals near charged black holes in anti-de Sitter (AdS) space, and the fractionalized Fermi liquid phase of the lattice Anderson model. The latter phase has a ''small'' Fermi surface of conduction electrons, along with a spin liquid of local moments. This correspondence implies that certain mean-field gapless spin liquids are states of matter at nonzero density realizing the near-horizon, AdS{sub 2}xR{sup 2} physics of Reissner-Nordstroem black holes.

  20. Holographic metals and the fractionalized fermi liquid.

    PubMed

    Sachdev, Subir

    2010-10-01

    We show that there is a close correspondence between the physical properties of holographic metals near charged black holes in anti-de Sitter (AdS) space, and the fractionalized Fermi liquid phase of the lattice Anderson model. The latter phase has a "small" Fermi surface of conduction electrons, along with a spin liquid of local moments. This correspondence implies that certain mean-field gapless spin liquids are states of matter at nonzero density realizing the near-horizon, AdS₂ × R² physics of Reissner-Nordström black holes. PMID:21230891

  1. CHARACTERIZING THE OPTICAL VARIABILITY OF BRIGHT BLAZARS: VARIABILITY-BASED SELECTION OF FERMI ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Davenport, James R. A.; Ivezic, Zeljko; Burnett, T. H.; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott

    2012-11-20

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the {approx}30% of {gamma}-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability {tau}, and driving amplitudes on short timescales {sigma}-circumflex. Imposing cuts on minimum {tau} and {sigma}-circumflex allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of {gamma}-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E {>=} 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other {gamma}-ray blazars and is likely to be the {gamma}-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is {approx}3 years in the rest frame of the jet, in contrast with the {approx}320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  2. Characterizing the Optical Variability of Bright Blazars: Variability-based Selection of Fermi Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Burnett, T. H.; Davenport, James R. A.; Ivezić, Željko; Kochanek, Christopher S.; Plotkin, Richard M.; Sesar, Branimir; Stuart, J. Scott

    2012-11-01

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of γ-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ, and driving amplitudes on short timescales \\hat{\\sigma }. Imposing cuts on minimum τ and \\hat{\\sigma } allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of γ-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E >= 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other γ-ray blazars and is likely to be the γ-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ~3 years in the rest frame of the jet, in contrast with the ~320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  3. Competing orders in a dipolar Bose-Fermi mixture on a square optical lattice: mean-field perspective

    NASA Astrophysics Data System (ADS)

    Scaramazza, Jasen A.; Kain, Ben; Ling, Hong Y.

    2016-07-01

    We consider a mixture of a two-component Fermi gas and a single-component dipolar Bose gas in a square optical lattice and reduce it into an effective Fermi system where the Fermi-Fermi interaction includes the attractive interaction induced by the phonons of a uniform dipolar Bose-Einstein condensate. Focusing on this effective Fermi system in the parameter regime that preserves the symmetry of D4, the point group of a square, we explore, within the Hartree-Fock-Bogoliubov mean-field theory, the phase competition among density wave orderings and superfluid pairings. We construct the matrix representation of the linearized gap equation in the irreducible representations of D4. We show that in the weak coupling regime, each matrix element, which is a four-dimensional (4D) integral in momentum space, can be put in a separable form involving a 1D integral, which is only a function of temperature and the chemical potential, and a pairing-specific "effective" interaction, which is an analytical function of the parameters that characterize the Fermi-Fermi interactions in our system. We analyze the critical temperatures of various competing orders as functions of different system parameters in both the absence and presence of the dipolar interaction. We find that close to half filling, the dx2 - y2-wave pairing with a critical temperature in the order of a fraction of Fermi energy (at half filling) may dominate all other phases, and at a higher filling factor, the p-wave pairing with a critical temperature in the order of a hundredth of Fermi energy may emerge as a winner. We find that tuning a dipolar interaction can dramatically enhance the pairings with dxy- and g-wave symmetries but not enough for them to dominate other competing phases.

  4. Domain Engineering

    NASA Astrophysics Data System (ADS)

    Bjørner, Dines

    Before software can be designed we must know its requirements. Before requirements can be expressed we must understand the domain. So it follows, from our dogma, that we must first establish precise descriptions of domains; then, from such descriptions, “derive” at least domain and interface requirements; and from those and machine requirements design the software, or, more generally, the computing systems.

  5. Bimodal intramolecular excitation energy transfer in a multichromophore photosynthetic model system: hybrid fusion proteins comprising natural phycobilin- and artificial chlorophyll-binding domains.

    PubMed

    Zeng, Xiao-Li; Tang, Kun; Zhou, Nan; Zhou, Ming; Hou, Harvey J M; Scheer, Hugo; Zhao, Kai-Hong; Noy, Dror

    2013-09-11

    The phycobilisomes of cyanobacteria and red-algae are highly efficient peripheral light-harvesting complexes that capture and transfer light energy in a cascade of excitation energy transfer steps through multiple phycobilin chromophores to the chlorophylls of core photosystems. In this work, we focus on the last step of this process by constructing simple functional analogs of natural phycobilisome-photosystem complexes that are based on bichromophoric protein complexes comprising a phycobilin- and a chlorophyll- or porphyrin-binding domain. The former is based on ApcE(1-240), the N-terminal chromophore-binding domain of the phycobilisome's L(CM) core-membrane linker, and the latter on HP7, a de novo designed four-helix bundle protein that was originally planned as a high-affinity heme-binding protein, analogous to b-type cytochromes. We fused a modified HP7 protein sequence to ApcEΔ, a water-soluble fragment of ApcE(1-240) obtained by excising a putative hydrophobic loop sequence of residues 77-153. HP7 was fused either to the N- or the C-terminus of ApcEΔ or inserted between residues 76 and 78, thereby replacing the native hydrophobic loop domain. We describe the assembly, spectral characteristics, and intramolecular excitation energy transfer of two unique systems: in the first, the short-wavelength absorbing zinc-mesoporphyrin is bound to the HP7 domain and serves as an excitation-energy donor to the long-wavelength absorbing phycocyanobilin bound to the ApcE domain; in the second, the short-wavelength absorbing phycoerythrobilin is bound to the ApcE domain and serves as an excitation energy donor to the long-wavelength absorbing zinc-bacteriochlorophyllide bound to the HP7 domain. All the systems that were constructed and tested exhibited significant intramolecular fluorescence resonance energy transfer with yields ranging from 21% to 50%. This confirms that our modular, covalent approach for studying EET between the cyclic and open chain tetrapyrroles is

  6. Enrico: Python package to simplify Fermi-LAT analysis

    NASA Astrophysics Data System (ADS)

    Sanchez, David; Deil, Christoph

    2015-01-01

    Enrico analyzes Fermi data. It produces spectra (model fit and flux points), maps and lightcurves for a target by editing a config file and running a python script which executes the Fermi science tool chain.

  7. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations

    PubMed Central

    2016-01-01

    The epidermal growth factor receptor (EGFR) is a dimeric membrane protein that regulates key aspects of cellular function. Activation of the EGFR is linked to changes in the conformation of the transmembrane (TM) domain, brought about by changes in interactions of the TM helices of the membrane lipid bilayer. Using an advanced computational approach that combines Coarse-Grained molecular dynamics and well-tempered MetaDynamics (CG-MetaD), we characterize the large-scale motions of the TM helices, simulating multiple association and dissociation events between the helices in membrane, thus leading to a free energy landscape of the dimerization process. The lowest energy state of the TM domain is a right-handed dimer structure in which the TM helices interact through the N-terminal small-X3-small sequence motif. In addition to this state, which is thought to correspond to the active form of the receptor, we have identified further low-energy states that allow us to integrate with a high level of detail a range of previous experimental observations. These conformations may lead to the active state via two possible activation pathways, which involve pivoting and rotational motions of the helices, respectively. Molecular dynamics also reveals correlation between the conformational changes of the TM domains and of the intracellular juxtamembrane domains, paving the way for a comprehensive understanding of EGFR signaling at the cell membrane. PMID:27459426

  8. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-01

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  9. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-01

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields. PMID:20360067

  10. Radiative signatures of Fermi acceleration at relativistic shocks .

    NASA Astrophysics Data System (ADS)

    Reville, B.; Kirk, J. G.

    The first-order Fermi process at relativistic shocks requires the generation of strong turbulence in the vicinity of the shock front. Recent particle in cell simulations have demonstrated that this mechanism can be studied self-consistently at weakly magnetised shocks. The radiative signature of this first-order Fermi acceleration mechanism is important for models of both the prompt and afterglow emission in gamma-ray bursts and depends on the strength parameter a=lambda e|delta B|/mc2 of the fluctuations (lambda is the length-scale and |delta B| the magnitude of the fluctuations.) For electrons (and positrons), acceleration saturates when the radiative losses produced by the scattering cannot be compensated by the energy gained on crossing the shock. For Weibel mediated shocks, this sets an upper limit on the energy of the photons radiated during the scattering process: hbar omega_max < 40 Max(a,1) left (n/1 textrm {cm}-3right )1/6{bar {gamma }}-1/6 textrm {eV}, where n is the number density of the plasma and {bar {gamma }} the thermal Lorentz factor of the downstream plasma, provided a6. For shocks mediated by the synchrotron maser instability, this upper limit can be considerably higher, although this depends on the strength of the magnetic field, which has a large uncertainty.

  11. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Bartelt, J.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Atwood, W. B.; Bagagli, R.; Baldini, L.; Bellardi, F.; Bellazzini, R.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bisello, D.; Baughman, B. M. E-mail: massimiliano.razzano@pi.infn.it

    2009-05-10

    The Vela pulsar is the brightest persistent source in the GeV sky and thus is the traditional first target for new {gamma}-ray observatories. We report here on initial Fermi Large Area Telescope observations during verification phase pointed exposure and early sky survey scanning. We have used the Vela signal to verify Fermi timing and angular resolution. The high-quality pulse profile, with some 32,400 pulsed photons at E {>=} 0.03 GeV, shows new features, including pulse structure as fine as 0.3 ms and a distinct third peak, which shifts in phase with energy. We examine the high-energy behavior of the pulsed emission; initial spectra suggest a phase-averaged power-law index of {gamma} = 1.51{sup +0.05} {sub -0.04} with an exponential cutoff at E{sub c} = 2.9 {+-} 0.1 GeV. Spectral fits with generalized cutoffs of the form e{sup -(E/E{sub c}){sup b}} require b {<=} 1, which is inconsistent with magnetic pair attenuation, and thus favor outer-magnetosphere emission models. Finally, we report on upper limits to any unpulsed component, as might be associated with a surrounding pulsar wind nebula.

  12. Pairing, pseudogap and Fermi arcs in cuprates

    DOE PAGES

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scatteringmore » creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.« less

  13. Pairing, pseudogap and Fermi arcs in cuprates

    SciTech Connect

    Kaminski, Adam; Kondo, Takeshi; Takeuchi, Tsunehiro; Gu, Genda

    2014-04-29

    We use Angle Resolved Photoemission Spectroscopy (ARPES) to study the relationship between the pseudogap, pairing and Fermi arcs in cuprates. High quality data measured over a wide range of dopings reveals a consistent picture of Fermiology and pairing in these materials. The pseudogap is due to an ordered state that competes with superconductivity rather than preformed pairs. Pairing does occur below Tpair ~ 150K and significantly above Tc, but well below T* and the doping dependence of this temperature scale is distinct from that of the pseudogap. The d-wave gap is present below Tpair, and its interplay with strong scattering creates “artificial” Fermi arcs for Tc ≤ T ≤ Tpair. However, above Tpair, the pseudogap exists only at the antipodal region. This leads to presence of real, gapless Fermi arcs close to the node. The length of these arcs remains constant up to T*, where the full Fermi surface is recovered. As a result, we demonstrate that these findings resolve a number of seemingly contradictory scenarios.

  14. Probing and Manipulating Ultracold Fermi Superfluids

    NASA Astrophysics Data System (ADS)

    Jiang, Lei

    Ultracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi

  15. Radio core dominance of Fermi blazars

    NASA Astrophysics Data System (ADS)

    Pei, Zhi-Yuan; Fan, Jun-Hui; Liu, Yi; Yuan, Yi-Hai; Cai, Wei; Xiao, Hu-Bing; Lin, Chao; Yang, Jiang-He

    2016-07-01

    During the first 4 years of mission, Fermi/LAT detected 1444 blazars (3FGL) (Ackermann et al. in Astrophys. J. 810:14, 2015). Fermi/LAT observations of blazars indicate that Fermi blazars are luminous and strongly variable with variability time scales, for some cases, as short as hours. Those observations suggest a strong beaming effect in Fermi/LAT blazars. In the present work, we will investigate the beaming effect in Fermi/LAT blazars using a core-dominance parameter, R = S_{core}/ S_{ext.}, where S_{core} is the core emission, while S_{ext.} is the extended emission. We compiled 1335 blazars with available core-dominance parameter, out of which 169 blazars have γ-ray emission (from 3FGL). We compared the core-dominance parameters, log R, between the 169 Fermi-detected blazars (FDBs) and the rest non-Fermi-detected blazars (non-FDBs), and we found that the averaged values are < log Rrangle = 0.99±0.87 for FDBs and < log Rrangle = -0.62±1.15 for the non-FDBs. A K-S test shows that the probability for the two distributions of FDBs and non-FDBs to come from the same parent distribution is near zero (P =9.12×10^{-52}). Secondly, we also investigated the variability index (V.I.) in the γ-ray band for FDBs, and we found V.I.=(0.12 ±0.07) log R+(2.25±0.10), suggesting that a source with larger log R has larger V.I. value. Thirdly, we compared the mean values of radio spectral index for FDBs and non-FDBs, and we obtained < α_{radio}rangle =0.06±0.35 for FDBs and < α_{radio}rangle =0.57±0.46 for non-FDBs. If γ-rays are composed of two components like radio emission (core and extended components), then we can expect a correlation between log R and the γ-ray spectral index. When we used the radio core-dominance parameter, log R, to investigate the relationship, we found that the spectral index for the core component is α_{γ}|_{core} = 1.11 (a photon spectral index of α_{γ}^{ph}|_{core} = 2.11) and that for the extended component is α_{γ}|_{ext.} = 0

  16. The low temperature Fermi surface of IrTe2 probed by quantum oscillations.

    NASA Astrophysics Data System (ADS)

    Blake, Samuel; Coldea, Amalia; Watson, Matthew; Narayanan, Arjun; McCollam, Alix; Kasahara, Shigeru; Yamashita, Takuya; Watanabe, Daiki; Shibauchi, Takasada; Matsuda, Yuju; Schoonmaker, Robert

    2014-03-01

    The transition metal dichalcogenide IrTe2 undergoes a structural transition at 280K; doping on the Ir site suppresses this transition and induces superconductivity with Tc of about 3K. The nature of the structural transition is possibly driven by charge disproportionation and the effect this has on the electronic structure of the superconducting state is not fully understood. We report a low temperature investigation of the Fermi surface of IrTe2 from quantum oscillations, using torque measurements performed in magnetic fields up to 33T and temperatures down to 0.3K. The observed extremal areas of the Fermi surface likely correspond to frequencies of a reconstructed Fermi surface, with light effective masses below 0.8me. The angular dependence of these frequencies across multiple crystals of IrTe2 suggests these materials are prone to domain formation upon cooling. We compare our measured Fermi surface with those predicted by electronic structure calculations, based upon the existing structural models, for both above and below the structural transition. This work was supported by EPSRC (UK) and partly by EuroMagnet (EU contract number 228043).

  17. Indirect searches for dark matter with the Fermi large area telescope

    DOE PAGES

    Albert, Andrea

    2015-03-24

    There is overwhelming evidence that non-baryonic dark matter constitutes ~ 27% of the energy density of the Universe. Weakly Interacting Massive Particles (WIMPs) are promising dark matter candidates that may produce γ rays via annihilation or decay detectable by the Fermi Large Area Telescope (LAT). A detection of WIMPs would also indicate the existence of physics beyond the Standard Model. We present recent results from the two cleanest indirect WIMP searches by the Fermi-LAT Collaboration: searches for γ-ray spectral lines and γ-ray emission associated with Milky Way dwarf spheroidal satellite galaxies.

  18. VizieR Online Data Catalog: Fermi sources with massive YSO associations (Munar-Adrover+, 2011)

    NASA Astrophysics Data System (ADS)

    Munar-Adrover, P.; Paredes, J. M.; Romero, G. E.

    2011-09-01

    Massive protostars have associated bipolar outflows that can produce strong shocks when they interact with the surrounding medium. At these shocks, particles can be accelerated up to relativistic energies. Relativistic electrons and protons can then produce gamma-ray emission, as some theoretical models predict. To identify young galactic objects that may emit gamma rays, we crossed the Fermi First Year Catalog with some catalogs of known massive young stellar objects (MYSOs), early type stars, and OB associations, and we implemented Monte Carlo simulations to find the probability of chance coincidences. We obtained a list of massive MYSOs that are spatially coincident with Fermi sources. (4 data files).

  19. Nonequilibrium dynamics and thermodynamics of a degenerate fermi gas across a feshbach resonance.

    PubMed

    Andreev, A V; Gurarie, V; Radzihovsky, L

    2004-09-24

    We consider a two-species degenerate Fermi gas coupled by a diatomic Feshbach resonance. We show that the resulting superfluid can exhibit a form of coherent BEC-to-BCS oscillations in response to a nonadiabatic change in the system's parameters, such as, for example, a sudden shift in the position of the Feshbach resonance. In the narrow resonance limit, the resulting solitonlike collisionless dynamics can be calculated analytically. In equilibrium, the thermodynamics can be accurately computed across the full range of BCS-BEC crossover, with corrections controlled by the ratio of the resonance width to the Fermi energy. PMID:15524684

  20. Nonequilibrium Dynamics and Thermodynamics of a Degenerate Fermi Gas Across a Feshbach Resonance

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Gurarie, V.; Radzihovsky, L.

    2004-09-01

    We consider a two-species degenerate Fermi gas coupled by a diatomic Feshbach resonance. We show that the resulting superfluid can exhibit a form of coherent BEC-to-BCS oscillations in response to a nonadiabatic change in the system’s parameters, such as, for example, a sudden shift in the position of the Feshbach resonance. In the narrow resonance limit, the resulting solitonlike collisionless dynamics can be calculated analytically. In equilibrium, the thermodynamics can be accurately computed across the full range of BCS-BEC crossover, with corrections controlled by the ratio of the resonance width to the Fermi energy.

  1. Thermodynamics of Ideal Fermi Gas Under Generic Power Law Potential in d-dimensions

    NASA Astrophysics Data System (ADS)

    Faruk, M. M.; Bhuiyan, G. M.

    Thermodynamics of ideal Fermi gas trapped in an external generic power law potential $U=\\sum_{i=1} ^d c_i |\\frac{x_i}{a_i}|^{n_i}$ are investigated systematically from the grand thermodynamic potential in $d$ dimensional space. These properties are explored deeply in the degenerate limit ($\\mu>> K_BT$), where the thermodynamic properties are greatly dominated by Pauli exclusion principle. Pressure and energy along with the isothermal compressibilty is non zero at $T=0K$, denoting trapped Fermi system is quite live even at absolute zero temperature. The nonzero value of compressibilty denotes zero point pressure is not just a constant but depends on volume.

  2. Indirect searches for dark matter with the Fermi large area telescope

    SciTech Connect

    Albert, Andrea

    2015-03-24

    There is overwhelming evidence that non-baryonic dark matter constitutes ~ 27% of the energy density of the Universe. Weakly Interacting Massive Particles (WIMPs) are promising dark matter candidates that may produce γ rays via annihilation or decay detectable by the Fermi Large Area Telescope (LAT). A detection of WIMPs would also indicate the existence of physics beyond the Standard Model. We present recent results from the two cleanest indirect WIMP searches by the Fermi-LAT Collaboration: searches for γ-ray spectral lines and γ-ray emission associated with Milky Way dwarf spheroidal satellite galaxies.

  3. Spin Polarization and Texture of the Fermi Arcs in the Weyl Fermion Semimetal TaAs.

    PubMed

    Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S; Neupane, Madhab; Chang, Guoqing; Yaji, Koichiro; Yuan, Zhujun; Zhang, Chenglong; Kuroda, Kenta; Bian, Guang; Guo, Cheng; Lu, Hong; Chang, Tay-Rong; Alidoust, Nasser; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Hsu, Chuang-Han; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Komori, Fumio; Kondo, Takeshi; Shin, Shik; Lin, Hsin; Jia, Shuang; Hasan, M Zahid

    2016-03-01

    A Weyl semimetal is a new state of matter that hosts Weyl fermions as quasiparticle excitations. The Weyl fermions at zero energy correspond to points of bulk-band degeneracy, called Weyl nodes, which are separated in momentum space and are connected only through the crystal's boundary by an exotic Fermi arc surface state. We experimentally measure the spin polarization of the Fermi arcs in the first experimentally discovered Weyl semimetal TaAs. Our spin data, for the first time, reveal that the Fermi arcs' spin-polarization magnitude is as large as 80% and lies completely in the plane of the surface. Moreover, we demonstrate that the chirality of the Weyl nodes in TaAs cannot be inferred by the spin texture of the Fermi arcs. The observed nondegenerate property of the Fermi arcs is important for establishing its exact topological nature, which reveals that spins on the arc form a novel type of 2D matter. Additionally, the nearly full spin polarization we observed (∼80%) may be useful in spintronic applications. PMID:26991191

  4. Non-Fermi liquid phase and non-Gaussian itinerant quantum criticality of Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab

    A Weyl semimetal is a gapless topological phase in three dimensions, for which the touching points between two nondegenerate bands act as monopoles and antimonopoles of Abelian Berry curvature, with monopole strength m. Such a gapless phase can support m Fermi arcs as the protected, zero energy surface states. We consider the stability of a generalized Weyl semimetal with m > 1 in the presence of interaction and disorder by employing a renormalization group analysis, which is controlled by the parameter ɛ = 1 -1/m . For any m > 1 , we show how the long range Coulomb interaction gives rise to an infra-red stable, non-Fermi liquid phase without any sharp quasiparticle pole. In the presence of sufficiently strong short range interactions, the non-Fermi liquid can transform into a translational symmetry breaking, axionic insulator. We demonstrate that the associated itinerant quantum critical point possesses non-Gaussian scaling properties. We establish the stability of the emergent non-Fermi liquid phase and the itinerant quantum critical point against weak disorder. Finally, we discuss the scaling properties of physical quantities, the fate of the Fermi arcs, and the experimental relevance of our results for some candidate materials. NSF.

  5. A generic method to constrain the dark matter model parameters from Fermi observations of dwarf spheroids

    NASA Astrophysics Data System (ADS)

    Sming Tsai, Yue-Lin; Yuan, Qiang; Huang, Xiaoyuan

    2013-03-01

    Observation of γ-rays from dwarf galaxies is an effective way to search for particle dark matter. Using 4-year data of Fermi-LAT observations on a series of Milky Way satellites, we develop a general way to search for the signals from dark matter annihilation in such objects. Instead of giving prior information about the energy spectrum of dark matter annihilation, we bin the Fermi-LAT data into several energy bins and build a likelihood map in the ``energy bin - flux'' plane. The final likelihood of any spectrum can be easily derived through combining the likelihood of all the energy bins. It gives consistent result with that directly calculated using the Fermi Scientific Tool. This method is very efficient for the study of any specific dark matter models with γ-rays. We use the new likelihood map with Fermi-LAT 4 year data to fit the parameter space in three representative dark matter models: i) toy dark matter model, ii) effective dark matter operators, and iii) supersymmetric neutralino dark matter.

  6. A generic method to constrain the dark matter model parameters from Fermi observations of dwarf spheroids

    SciTech Connect

    Tsai, Yue-Lin Sming; Yuan, Qiang; Huang, Xiaoyuan E-mail: yuanq@ihep.ac.cn

    2013-03-01

    Observation of γ-rays from dwarf galaxies is an effective way to search for particle dark matter. Using 4-year data of Fermi-LAT observations on a series of Milky Way satellites, we develop a general way to search for the signals from dark matter annihilation in such objects. Instead of giving prior information about the energy spectrum of dark matter annihilation, we bin the Fermi-LAT data into several energy bins and build a likelihood map in the ''energy bin - flux'' plane. The final likelihood of any spectrum can be easily derived through combining the likelihood of all the energy bins. It gives consistent result with that directly calculated using the Fermi Scientific Tool. This method is very efficient for the study of any specific dark matter models with γ-rays. We use the new likelihood map with Fermi-LAT 4 year data to fit the parameter space in three representative dark matter models: i) toy dark matter model, ii) effective dark matter operators, and iii) supersymmetric neutralino dark matter.

  7. Fermi LAT Gamma-ray Observations of IceCube-160731

    NASA Astrophysics Data System (ADS)

    Cheung, C. C.; Toomey, M. W.; Kocevski, D.; Buson, S.

    2016-08-01

    We report follow-up of the extremely high-energy (EHE) IceCube-160731 neutrino event (AMON GCN notice; http://gcn.gsfc.nasa.gov/notices_amon/6888376_128290.amon) with all-sky survey data from the Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope.

  8. FermiGrid - experience and future plans

    SciTech Connect

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

    2007-09-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

  9. FermiGrid—experience and future plans

    NASA Astrophysics Data System (ADS)

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; Yocum, D. R.

    2008-07-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems.

  10. Spin-fluctuation induced non-Fermi-liquid behaviour with suppressed superconductivity in LiFe1-xCoxAs

    NASA Astrophysics Data System (ADS)

    Miao, Hu; Dai, Yaomin; Xing, Lingyi; Wang, Xiancheng; Wang, Pengshuai; Xiao, Hong; Qian, Tian; Richard, Pierre; Qiu, Xianggang; Yu, Weiqiang; Jin, Changqing; Wang, Ziqiang; Johnson, P. D.; Homes, C. C.; Ding, Hong

    We study a series of LiFe1-xCoxAs compounds with different Co concentrations by transport, optical spectroscopy, angle-resolved photoemission spectroscopy, and nuclear magnetic resonance. We observe a Fermi-liquid to non-Fermi-liquid to Fermi-liquid (FL-NFL-FL) crossover alongside a monotonic suppression of the superconductivity with increasing Co content. In parallel to the FL-NFL-FL crossover, we find that both the low-energy spin fluctuations and Fermi surface nesting are enhanced and then diminished, strongly suggesting that the NFL behaviour in LiFe1-xCoxAs is induced by low-energy spin fluctuations that are very likely tuned by Fermi surface nesting. Our study reveals a unique phase diagram of LiFe1-xCoxAs where the region of NFL is moved to the boundary of the superconducting phase, implying that they are probably governed by different mechanisms.

  11. Spin-Fluctuation-Induced Non-Fermi-Liquid Behavior with Suppressed Superconductivity in LiFe1 -xCoxAs

    NASA Astrophysics Data System (ADS)

    Dai, Y. M.; Miao, H.; Xing, L. Y.; Wang, X. C.; Wang, P. S.; Xiao, H.; Qian, T.; Richard, P.; Qiu, X. G.; Yu, W.; Jin, C. Q.; Wang, Z.; Johnson, P. D.; Homes, C. C.; Ding, H.

    2015-07-01

    We study a series of LiFe1 -xCox As compounds with different Co concentrations by transport, optical spectroscopy, angle-resolved photoemission spectroscopy, and nuclear magnetic resonance. We observe a Fermi-liquid to non-Fermi-liquid to Fermi-liquid (FL-NFL-FL) crossover alongside a monotonic suppression of the superconductivity with increasing Co content. In parallel to the FL-NFL-FL crossover, we find that both the low-energy spin fluctuations and Fermi surface nesting are enhanced and then diminished, strongly suggesting that the NFL behavior in LiFe1 -xCox As is induced by low-energy spin fluctuations that are very likely tuned by Fermi surface nesting. Our study reveals a unique phase diagram of LiFe1 -xCox As where the region of NFL is moved to the boundary of the superconducting phase, implying that they are probably governed by different mechanisms.

  12. Optical properties and Fermi-surface nesting in superconducting oxides

    SciTech Connect

    Ruvalds, J.; Virosztek, A. )

    1991-03-01

    Fermi-surface nesting is found to modify the electron-electron scattering and therefore yields an unusual variation of the optical reflectivity. At long wavelengths a Drude form of the dielectric function is derived with a relaxation rate for a nested Fermi liquid (NFL) that is linear in frequency for {omega}{gt}{ital T}. The corresponding Drude mass is also frequency and temperature dependent. Remarkably good fits to the reflectivity of YBa{sub 2}Cu{sub 3}O{sub 7}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, and La{sub 2{minus}{ital x}}Sr{sub {ital x}}CuO{sub 4} are achieved using an on-site Coulomb interaction of intermediate strength. The static limit for the NFL conductivity is compatible with the temperature-dependent resistivity of the high-temperature superconductors. Self-energy and vertex corrections yield a long-wavelength susceptibility that is much weaker and different in structure from the response at the nesting wave vector {bold Q}, and the distinctions are relevant to the Raman spectrum. In cases of imperfect nesting, a crossover to conventional Fermi-liquid behavior is possible at a temperature {ital T}{sup *} determined by the quasiparticle orbits. Predictions for the optical response as a function of chemical composition are discussed, with attention to the anomalous resistivity of Nd{sub 2{minus}{ital x}}Ce{sub {ital x}}CuO{sub 4}.

  13. CLUSTERING OF γ-RAY-SELECTED 2LAC FERMI BLAZARS

    SciTech Connect

    Allevato, V.; Finoguenov, A.; Cappelluti, N.

    2014-12-20

    We present the first measurement of the projected correlation function of 485 γ-ray-selected blazars, divided into 175 BL Lacertae (BL Lacs) and 310 flat-spectrum radio quasars (FSRQs) detected in the 2 year all-sky survey by the Fermi-Large Area Telescope. We find that Fermi BL Lacs and FSRQs reside in massive dark matter halos (DMHs) with log M{sub h} = 13.35{sub −0.14}{sup +0.20} and log M{sub h} = 13.40{sub −0.19}{sup +0.15} h {sup –1} M {sub ☉}, respectively, at low (z ∼ 0.4) and high (z ∼ 1.2) redshift. In terms of clustering properties, these results suggest that BL Lacs and FSRQs are similar objects residing in the same dense environment typical of galaxy groups, despite their different spectral energy distributions, power, and accretion rates. We find no difference in the typical bias and hosting halo mass between Fermi blazars and radio-loud active galactic nuclei (AGNs), supporting the unification scheme simply equating radio-loud objects with misaligned blazar counterparts. This similarity in terms of the typical environment they preferentially live in, suggests that blazars tend to occupy the center of DMHs, as already pointed out for radio-loud AGNs. This implies, in light of several projects looking for the γ-ray emission from DM annihilation in galaxy clusters, a strong contamination from blazars to the expected signal from DM annihilation.

  14. The Spectrum and Morphology of the Fermi Bubbles

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazini, R.; Bissaldi, E.; Brandt, T. J.; Ferrara, E. C.; Guiriec, S.; Harding, A. K.; Hayes, E.; Kocevski, D.; McEnery, J. E.; Nemmen, R.; Perkins, J. S.; Troja, E.

    2014-01-01

    The Fermi bubbles are two large structures in the gamma-ray sky extending to 55 deg above and below the Galactic center. We analyze 50 months of Fermi Large Area Telescope data between 100 MeV and 500 GeV above 10 deg in Galactic latitude to derive the spectrum and morphology of the Fermi bubbles. We thoroughly explore the systematic uncertainties that arise when modeling the Galactic diffuse emission through two separate approaches. The gamma-ray spectrum is well described by either a log parabola or a power law with an exponential cutoff. We exclude a simple power law with more than 7 sigma significance. The power law with an exponential cutoff has an index of 1.90+/-0.2 and a cutoff energy of 110+/- 50 GeV. We find that the gamma-ray luminosity of the bubbles is 4.4(+)2.4(-0.9 ) 10(exp 37) erg s-1. We confirm a significant enhancement of gamma-ray emission in the south-eastern part of the bubbles, but we do not find significant evidence for a jet. No significant variation of the spectrum across the bubbles is detected. The width of the boundary of the bubbles is estimated to be 3.4(+)3.7(-)2.6 deg. Both inverse Compton (IC) models and hadronic models including IC emission from secondary leptons t the gamma-ray data well. In the IC scenario, the synchrotron emission from the same population of electrons can also explain the WMAP and Planck microwave haze with a magnetic field between 5 and 20 micro-G.

  15. The spectrum and morphology of the Fermi bubbles

    SciTech Connect

    Ackermann, M.; Buehler, R.; Albert, A.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A.; Atwood, W. B.; Baldini, L.; Bellazzini, R.; Ballet, J.; Bastieri, D.; Buson, S.; Bissaldi, E.; Brandt, T. J.; Bregeon, J.; and others

    2014-09-20

    The Fermi bubbles are two large structures in the gamma-ray sky extending to 55° above and below the Galactic center. We analyze 50 months of Fermi Large Area Telescope data between 100 MeV and 500 GeV above 10° in Galactic latitude to derive the spectrum and morphology of the Fermi bubbles. We thoroughly explore the systematic uncertainties that arise when modeling the Galactic diffuse emission through two separate approaches. The gamma-ray spectrum is well described by either a log parabola or a power law with an exponential cutoff. We exclude a simple power law with more than 7σ significance. The power law with an exponential cutoff has an index of 1.9 ± 0.2 and a cutoff energy of 110 ± 50 GeV. We find that the gamma-ray luminosity of the bubbles is 4.4{sub −0.9}{sup +2.4}×10{sup 37} erg s{sup –1}. We confirm a significant enhancement of gamma-ray emission in the southeastern part of the bubbles, but we do not find significant evidence for a jet. No significant variation of the spectrum across the bubbles is detected. The width of the boundary of the bubbles is estimated to be 3.4{sub −2.6}{sup +3.7} deg. Both inverse Compton (IC) models and hadronic models including IC emission from secondary leptons fit the gamma-ray data well. In the IC scenario, synchrotron emission from the same population of electrons can also explain the WMAP and Planck microwave haze with a magnetic field between 5 and 20 μG.

  16. Separating the effects of internal friction and transition state energy to explain the slow, frustrated folding of spectrin domains.

    PubMed

    Wensley, Beth G; Kwa, Lee Gyan; Shammas, Sarah L; Rogers, Joseph M; Browning, Stuart; Yang, Ziqi; Clarke, Jane

    2012-10-30

    The elongated three-helix bundle domains spectrin R16 and R17 fold some two to three orders of magnitude more slowly than their homologue R15. We have shown that this slow folding is due, at least in part, to roughness in the free-energy landscape of R16 and R17. We have proposed that this roughness is due to a frustrated search for the correct docking of partly preformed helices. However, this accounts for only a small part of the slowing of folding and unfolding. Five residues on the A helix of R15, when inserted together into R16 or R17, increase the folding rate constants, reduce landscape roughness, and alter the folding mechanism to one resembling R15. The effect of each of these mutations individually is investigated here. No one mutation causes the behavior seen for the five in combination. However, two mutations, E18F and K25V, significantly increase the folding and unfolding rates of both R16 and R17 but without a concomitant loss in landscape roughness. E18F has the greatest effect on the kinetics, and a Φ-value analysis of the C helix reveals that the folding mechanism is unchanged. For both E18F and K25V the removal of the charge and resultant transition state stabilization is the main origin of the faster folding. Consequently, the major cause of the unusually slow folding of R16 and R17 is the non-native burial of the two charged residues in the transition state. The slowing due to landscape roughness is only about fivefold. PMID:22711800

  17. FFLO Superfluids in 2D Spin-Orbit Coupled Fermi Gases

    PubMed Central

    Zheng, Zhen; Gong, Ming; Zhang, Yichao; Zou, Xubo; Zhang, Chuanwei; Guo, Guangcan

    2014-01-01

    We show that the combination of spin-orbit coupling and in-plane Zeeman field in a two-dimensional degenerate Fermi gas can lead to a larger parameter region for Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases than that using spin-imbalanced Fermi gases. The resulting FFLO superfluids are also more stable due to the enhanced energy difference between FFLO and conventional Bardeen-Cooper-Schrieffer (BCS) excited states. We clarify the crucial role of the symmetry of Fermi surface on the formation of finite momentum pairing. The phase diagram for FFLO superfluids is obtained in the BCS-BEC crossover region and possible experimental observations of FFLO phases are discussed. PMID:25288379

  18. Pauli blocking in low-dimensional Fermi systems at finite temperatures

    NASA Astrophysics Data System (ADS)

    Sevilla, Francisco J.; Fortes, M.; Solis, M. A.

    2010-03-01

    The chemical potential of an ideal Fermi gas for dimensions d<2 increases with temperature up to a maximum value [1], in sharp contrast with the monotonic decreasing behavior in the d=3 case [2]. The origin of this anomaly is examined in systems of non interacting fermions described by a more general energy-momentum dispersion relation ɛk^s. We show that the abnormal behavior is caused by the interplay of the density of states as a function of d/s and the exclusion principle producing a Pauli-blocking effect at finite temperatures. In the one-dimensional ideal Fermi gas, the effect is manifest up to temperatures as large as the Fermi temperature.[4pt] [1] M. Grether, M. de Llano, and M.A. Sol'is, Eur. Phys. J. D 25, 287 (2003).[0pt] [2] G. Cook and R.H. Dickerson, Am. J. Phys. 63 (8), 737 (1995).

  19. Coherent quasiparticles with a small fermi surface in lightly doped Sr(3)Ir(2)O(7).

    PubMed

    de la Torre, A; Hunter, E C; Subedi, A; McKeown Walker, S; Tamai, A; Kim, T K; Hoesch, M; Perry, R S; Georges, A; Baumberger, F

    2014-12-19

    We characterize the electron doping evolution of (Sr_{1-x}La_{x})_{3}Ir_{2}O_{7} by means of angle-resolved photoemission. Concomitant with the metal insulator transition around x≈0.05 we find the emergence of coherent quasiparticle states forming a closed small Fermi surface of volume 3x/2, where x is the independently measured La concentration. The quasiparticle weight Z remains large along the entire Fermi surface, consistent with the moderate renormalization of the low-energy dispersion, and no pseudogap is observed. This indicates a conventional, weakly correlated Fermi liquid state with a momentum independent residue Z≈0.5 in lightly doped Sr_{3}Ir_{2}O_{7}. PMID:25554897

  20. Relativistic equation of state at subnuclear densities in the Thomas-Fermi approximation

    SciTech Connect

    Zhang, Z. W.; Shen, H.

    2014-06-20

    We study the non-uniform nuclear matter using the self-consistent Thomas-Fermi approximation with a relativistic mean-field model. The non-uniform matter is assumed to be composed of a lattice of heavy nuclei surrounded by dripped nucleons. At each temperature T, proton fraction Y{sub p} , and baryon mass density ρ {sub B}, we determine the thermodynamically favored state by minimizing the free energy with respect to the radius of the Wigner-Seitz cell, while the nucleon distribution in the cell can be determined self-consistently in the Thomas-Fermi approximation. A detailed comparison is made between the present results and previous calculations in the Thomas-Fermi approximation with a parameterized nucleon distribution that has been adopted in the widely used Shen equation of state.

  1. Fermi Surface and Van Hove Singularities in the Itinerant Metamagnet Sr(3)Ru(2)O(7)

    SciTech Connect

    Tamai, A.; Allan, M.P.; Mercure, J.F.; Meevasana, W.; Dunkel, R.; Lu, D.H.; Perry, R.S.; Mackenzie, A.P.; Singh, D.J.; Shen, Z.-X.; Baumberger, F.; /Scottish U. Research Reactor Ctr. /St. Andrews U.

    2011-01-04

    The low-energy electronic structure of the itinerant metamagnet Sr{sub 3}Ru{sub 2}O{sub 7} is investigated by angle resolved photoemission and density functional calculations. We find well-defined quasiparticle bands with resolution limited line widths and Fermi velocities up to an order of magnitude lower than in single layer Sr{sub 2}RuO{sub 4}. The complete topography, the cyclotron masses and the orbital character of the Fermi surface are determined, in agreement with bulk sensitive de Haas - van Alphen measurements. An analysis of the dxy band dispersion reveals a complex density of states with van Hove singularities (vHs) near the Fermi level; a situation which is favorable for magnetic instabilities.

  2. Coherent quasiparticles with a small fermi surface in lightly doped Sr(3)Ir(2)O(7).

    PubMed

    de la Torre, A; Hunter, E C; Subedi, A; McKeown Walker, S; Tamai, A; Kim, T K; Hoesch, M; Perry, R S; Georges, A; Baumberger, F

    2014-12-19

    We characterize the electron doping evolution of (Sr_{1-x}La_{x})_{3}Ir_{2}O_{7} by means of angle-resolved photoemission. Concomitant with the metal insulator transition around x≈0.05 we find the emergence of coherent quasiparticle states forming a closed small Fermi surface of volume 3x/2, where x is the independently measured La concentration. The quasiparticle weight Z remains large along the entire Fermi surface, consistent with the moderate renormalization of the low-energy dispersion, and no pseudogap is observed. This indicates a conventional, weakly correlated Fermi liquid state with a momentum independent residue Z≈0.5 in lightly doped Sr_{3}Ir_{2}O_{7}.

  3. Quantum Oscillations, Thermoelectric Coefficients, and the Fermi Surface of Semimetallic WTe2

    NASA Astrophysics Data System (ADS)

    Zhu, Zengwei; Lin, Xiao; Liu, Juan; Fauqué, Benoît; Tao, Qian; Yang, Chongli; Shi, Youguo; Behnia, Kamran

    2015-05-01

    We present a study of angle-resolved quantum oscillations of electric and thermoelectric transport coefficients in semimetallic WTe2, which has the particularity of displaying a large B2 magnetoresistance. The Fermi surface consists of two pairs of electronlike and holelike pockets of equal volumes in a "Russian doll" structure. The carrier density, Fermi energy, mobility, and the mean-free path of the system are quantified. An additional frequency is observed above a threshold field and attributed to the magnetic breakdown across two orbits. In contrast to all other dilute metals, the Nernst signal remains linear in the magnetic field even in the high-field (ωcτ ≫1 ) regime. Surprisingly, none of the pockets extend across the c axis of the first Brillouin zone, making the system a three-dimensional metal with moderate anisotropy in Fermi velocity, yet a large anisotropy in the mean-free path.

  4. Topological crystalline insulator Pb{sub x}Sn{sub 1-x}Te thin films on SrTiO{sub 3} (001) with tunable Fermi levels

    SciTech Connect

    Guo, Hua; Liu, Jun-Wei; Wang, Zhen-Yu; Wu, Rui; Ji, Shuai-Hua; Duan, Wen-Hui; Chen, Xi Xue, Qi-Kun; Yan, Chen-Hui; Zhang, Zhi-Dong; Wang, Li-Li; He, Ke; Ma, Xu-Cun

    2014-05-01

    In this letter, we report a systematic study of topological crystalline insulator Pb{sub x}Sn{sub 1-x}Te (0 < x < 1) thin films grown by molecular beam epitaxy on SrTiO{sub 3}(001). Two domains of Pb{sub x}Sn{sub 1-x}Te thin films with intersecting angle of α ≈ 45° were confirmed by reflection high energy diffraction, scanning tunneling microscopy, and angle-resolved photoemission spectroscopy (ARPES). ARPES study of Pb{sub x}Sn{sub 1-x}Te thin films demonstrated that the Fermi level of PbTe could be tuned by altering the temperature of substrate whereas SnTe cannot. An M-shaped valance band structure was observed only in SnTe but PbTe is in a topological trivial state with a large gap. In addition, co-evaporation of SnTe and PbTe results in an equivalent variation of Pb concentration as well as the Fermi level of Pb{sub x}Sn{sub 1-x}Te thin films.

  5. Influence of modulation instability on the operation of phase-sensitive optical time domain reflectometers

    NASA Astrophysics Data System (ADS)

    Nikitin, S. P.; Ulanovskiy, P. I.; Kuzmenkov, A. I.; Nanii, O. E.; Treshchikov, V. N.

    2016-10-01

    Modulation instability (MI) in optical fibers adversely affects performance of phase-sensitive optical time domain reflectometers causing reduction of statistical visibility of the coherent reflectograms and corresponding degradation of the phase sensitive signal. This effect limits intensity of the probing pulse and imposes limits on the reflectometer operational range. Intensity limits imposed by the MI development were quantified for different positive dispersion fibers using nearly rectangular ~200 ns pulses at 1.5 µm wavelengths. MI development and reversible character of energy exchange between narrowband probing pulse and wideband optical noise known as Fermi-Pasta-Ulam energy recursion were observed. It is demonstrated both experimentally and numerically that the operational range of coherent reflectometers can be extended by increasing probing pulse energy if negative (normal) dispersion fibers are used, where MI development is suppressed.

  6. Spectral probes of the holographic Fermi ground state: Dialing between the electron star and AdS Dirac hair

    SciTech Connect

    Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad; Sun Yawen; Zaanen, Jan

    2011-10-15

    We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces. As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.

  7. Linear response of a one-dimensional conductor coupled to a dynamical impurity with a Fermi edge singularity

    NASA Astrophysics Data System (ADS)

    Snyman, I.

    2014-02-01

    I study the dynamical correlations that a quantum impurity induces in the Fermi sea to which it is coupled. I consider a quantum transport setup in which the impurity can be realized in a double quantum dot. The same Hamiltonian describes tunneling states in metallic glasses, and can be mapped onto the Ohmic spin-boson model. It exhibits a Fermi edge singularity, i.e., many fermion correlations result in an impurity decay rate with a nontrivial power-law energy dependence. I show that there is a simple relation between temporal impurity correlations on the one hand and the linear response of the Fermi sea to external perturbations on the other. This results in a power-law singularity in the space and time dependence of the nonlocal polarizability of the Fermi sea, which can be detected in transport experiments.

  8. Detroit Edison's Fermi 1 - Preparation for Reactor Removal

    SciTech Connect

    Swindle, Danny

    2008-01-15

    This paper is intended to provide information about the ongoing decommissioning tasks at Detroit Edison's Fermi 1 plant, and in particular, the work being performed to prepare the reactor for removal and disposal. In 1972 Fermi 1 was shutdown and the fuel returned to the Atomic Energy Commission. By the end of 1975, a retirement plan was prepared, the bulk sodium removed, and the plant placed in a safe store condition. The plant systems were left isolated with the sodium containing systems inert with carbon dioxide in an attempt to form a carbonate layer, thus passivating the underlying reactive sodium. In 1996, Detroit Edison determined to evaluate the condition of the plant and to make recommendations in relation to the Fermi 1 future plans. At the end of 1997 approval was obtained to remove the bulk asbestos and residual alkali-metals (i.e., sodium and sodium potassium (NaK)). In 2000, full nuclear decommissioning of the plant was approved. To date, the bulk asbestos insulation has been removed, and the only NaK remaining is located in six capillary instrument tubes. The remaining sodium is contained within the reactor, two of the three primary loops, and miscellaneous removed pipes and equipment to be processed. The preferred method for removing or reacting sodium at Fermi 1 is by injecting superheated steam into a heated, nitrogen inert system. The byproducts of this reaction are caustic sodium hydroxide, hydrogen gas, and heat. The decision was made to separate the three primary loops from the reactor for better control prior to processing each loop and the reactor separately. The first loop has already been processed. The main focus is now to process the reactor to allow removal and disposal of the Class C waste prior to the anticipated June 2008 closure of the Barnwell radioactive waste disposal facility located in South Carolina. Lessons learnt are summarized and concern: the realistic schedule and adherence to the schedule, time estimates, personnel

  9. Instabilities in a simplified Fermi-like model with Krook-type collisions, intrinsic damping, and a source

    SciTech Connect

    Zaleśny, J.

    2013-08-15

    Plasma micro-instabilities have been investigated numerically using a simplified Fermi-like model extended to include also a Krook-type collision operator containing a source plus collisions and a phenomenologically introduced intrinsic damping. In this simplified Fermi-like model, the wave is modeled as a single potential well. The resonant wave-particle interaction occurs due to bounces of the particles trapped between the well barriers, the height of which depends on the energy exchange between the particles and the wave. A fast numerical algorithm is used for solving the simplified Fermi-like model with the source and the relaxation processes and is briefly described and the obtained numerical results are presented and discussed. The main observation is that the presence of the source and the Krook-type collisions tends to suppress the process of filamentation in phase space and to restore the initial distribution function with free energy. In the Fermi like model including source and collisions, the steady state of the wave amplitude is achieved only due to the presence of the damping in the system. This is different from the collisionless case, when the steady state is achieved due to phase mixing. Some remarks in the end of the paper compare the results of the Fermi-like model with those of the analytical Berk-Breizman model, which inspired the extension of the Fermi-like model to include a source, collisions, and damping.

  10. SLAC All Access: Fermi Gamma-ray Space Telescope

    ScienceCinema

    Romani, Roger

    2016-07-12

    Three hundred and fifty miles overhead, the Fermi Gamma-ray Space Telescope silently glides through space. From this serene vantage point, the satellite's instruments watch the fiercest processes in the universe unfold. Pulsars spin up to 700 times a second, sweeping powerful beams of gamma-ray light through the cosmos. The hyperactive cores of distant galaxies spew bright jets of plasma. Far beyond, something mysterious explodes with unfathomable power, sending energy waves crashing through the universe. Stanford professor and KIPAC member Roger W. Romani talks about this orbiting telescope, the most advanced ever to view the sky in gamma rays, a form of light at the highest end of the energy spectrum that's created in the hottest regions of the universe.

  11. The Fermi Gamma-ray Burst Monitor Instrument

    SciTech Connect

    Bhat, P. N.; Briggs, M. S.; Connaughton, V.; Paciesas, W. S.; Preece, R. D.; Meegan, C. A.; Lichti, G. G.; Diehl, R.; Greiner, J.; Kienlin, A. von; Fishman, G. J.; Kouveliotou, C.; Kippen, R. M.

    2009-05-25

    The Fermi Gamma-ray Space Telescope launched on June 11, 2008 carries two experiments onboard--the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The primary mission of the GBM instrument is to support the LAT in observing {gamma}-ray bursts (GRBs) by providing low-energy measurements with high temporal and spectral resolution as well as rapid burst locations over a large field-of-view ({>=}8 sr). The GBM will complement the LAT measurements by observing GRBs in the energy range 8 keV to 40 MeV, the region of the spectral turnover in most GRBs. The GBM detector signals are processed by the onboard digital processing unit (DPU). We describe some of the hardware features of the DPU and its expected limitations during intense triggers.

  12. Ab initio Lattice Results for Fermi Polarons in Two Dimensions.

    PubMed

    Bour, Shahin; Lee, Dean; Hammer, H-W; Meißner, Ulf-G

    2015-10-30

    We investigate the attractive Fermi polaron problem in two dimensions using nonperturbative Monte Carlo simulations. We introduce a new Monte Carlo algorithm called the impurity lattice Monte Carlo method. This algorithm samples the path integral in a computationally efficient manner and has only small sign oscillations for systems with a single impurity. As a benchmark of the method, we calculate the universal polaron energy in three dimensions in the scale-invariant unitarity limit and find agreement with published results. We then present the first fully nonperturbative calculations of the polaron energy in two dimensions and density correlations between the impurity and majority particles in the limit of zero-range interactions. We find evidence for a smooth crossover transition from fermionic quasiparticle to molecular state as a function of the interaction strength. PMID:26565472

  13. SLAC All Access: Fermi Gamma-ray Space Telescope

    SciTech Connect

    Romani, Roger

    2013-05-31

    Three hundred and fifty miles overhead, the Fermi Gamma-ray Space Telescope silently glides through space. From this serene vantage point, the satellite's instruments watch the fiercest processes in the universe unfold. Pulsars spin up to 700 times a second, sweeping powerful beams of gamma-ray light through the cosmos. The hyperactive cores of distant galaxies spew bright jets of plasma. Far beyond, something mysterious explodes with unfathomable power, sending energy waves crashing through the universe. Stanford professor and KIPAC member Roger W. Romani talks about this orbiting telescope, the most advanced ever to view the sky in gamma rays, a form of light at the highest end of the energy spectrum that's created in the hottest regions of the universe.

  14. Structure of a Quantized Vortex in Fermi Atom Gas

    SciTech Connect

    Machida, Masahiko; Koyama, Tomio

    2006-09-07

    In atomic Fermi gases, the pairing character changes from BCS-like to BEC-like when one decreases the threshold energy of the Feshbach resonance. With this crossover, the system enters the strong-coupling regime through the population enhancement of diatom molecules, and the vortex structure becomes much different from well-known core structures in BCS superfluid since the superfluid order parameter is given by a sum of BCS pairs and BEC molecular condensates. In this paper, we study the structure of a vortex by numerically solving the generalized Bogoliubov-de Gennes equation derived from the fermion-boson model and clarify how the vortex structure changes with the threshold energy of the Feshbach resonance. We find that the diatom boson condensate enhances the matter density depletion inside the vortex core and the discreteness of localized quasi-particle spectrum.

  15. Non-Fermi liquids in two and three-dimensional doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Mikheev, Evgeny; Raghavan, Santosh; Zhang, Jack; Marshall, Patrick; Kajdos, Adam; Balents, Leon; Stemmer, Susanne

    A remarkable feature of transport in doped SrTiO3 is the temperature dependence of the electrical resistivity that is proportional to Tn with n <= 2. This power law suggests electron-electron scattering is the dominant scattering mechanism. It extends to room temperature and above in both three-dimensional, uniformly doped SrTiO3 and in two-dimensional electron liquids (2DELs) at oxide interfaces. In case of n = 2, the behavior is traditionally identified as that of a Landau Fermi liquid. Here we argue that Landau Fermi liquid theory does not apply to the electron liquid in SrTiO3, even when n = 2. Using electrostatic gating and chemical doping, we demonstrate that this regime is associated with a scattering rate and an energy scale that are independent of carrier density. This is in fundamental conflict with the premise of the Fermi liquid theory, where this energy scale is the Fermi energy. This work raises important questions in terms of microscopic scattering mechanism. It appears to be relevant for understanding of transport in many other strongly correlated systems, which also show very robust Tn regimes with carrier density independent scattering rates.

  16. Criterion for stability of Goldstone modes and Fermi liquid behavior in a metal with broken symmetry

    PubMed Central

    Watanabe, Haruki; Vishwanath, Ashvin

    2014-01-01

    There are few general physical principles that protect the low-energy excitations of a quantum phase. Of these, Goldstone’s theorem and Landau–Fermi liquid theory are the most relevant to solids. We investigate the stability of the resulting gapless excitations—Nambu–Goldstone bosons (NGBs) and Landau quasiparticles—when coupled to one another, which is of direct relevance to metals with a broken continuous symmetry. Typically, the coupling between NGBs and Landau quasiparticles vanishes at low energies, leaving the gapless modes unaffected. If, however, the low-energy coupling is nonvanishing, non-Fermi liquid behavior and overdamped bosons are expected. Here we prove a general criterion that specifies when the coupling is nonvanishing. It is satisfied by the case of a nematic Fermi fluid, consistent with earlier microscopic calculations. In addition, the criterion identifies a new kind of symmetry breaking—of magnetic translations—where nonvanishing couplings should arise, opening a previously unidentified route to realizing non-Fermi liquid phases. PMID:25349386

  17. First-principles free energies and Ginzburg-Landau theory of domains and ferroelectric phase transitions in BaTiO3

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Waghmare, Umesh V.

    2010-08-01

    We present a method based on combination of (a) constrained polarization molecular dynamics and (b) thermodynamic integration to determine the free-energy landscape relevant to structural phase transitions and related phenomena in ferroelectric materials, bridging the gap between first-principles calculations and phenomenological Landau-type theories. We illustrate it using a first-principles effective Hamiltonian of BaTiO3 to (a) uncover the quantitative features of the free-energy function that are responsible for its first-order ferroelectric transitions, (b) calculate the minimum free-energy pathways for the polarization switching and (c) evaluate temperature-dependent free energy of domain walls, and a minimum free-energy pathway to formation of ferroelectric domains. We use our method within a variational mean-field theory to connect with Landau theory and show through comparison with numerically exact simulations that (a) the state constrained to have vanishing order (away from the equilibrium) below the transition temperature is highly degenerate due to fluctuations that drive the phase transition first order, and (b) certain terms need to be added to the phenomenological Landau-Devonshire free-energy functions to capture the physics of spatial fluctuation in order parameter. Our method can be readily generalized to any classical microscopic Hamiltonian and ensembles characterized with a given constraint.

  18. Normal State of a Polarized Fermi Gas at Unitarity

    SciTech Connect

    Lobo, C.; Recati, A.; Giorgini, S.; Stringari, S.

    2006-11-17

    We study the Fermi gas at unitarity and at T=0 by assuming that, at high polarizations, it is a normal Fermi liquid composed of weakly interacting quasiparticles associated with the minority spin atoms. With a quantum Monte Carlo approach we calculate their effective mass and binding energy, as well as the full equation of state of the normal phase as a function of the concentration x=n{sub {down_arrow}}/n{sub {up_arrow}} of minority atoms. We predict a first order phase transition from normal to superfluid at x{sub c}=0.44 corresponding, in the presence of harmonic trapping, to a critical polarization P{sub c}=(N{sub {up_arrow}}-N{sub {down_arrow}})/(N{sub {up_arrow}}+N{sub {down_arrow}})=77%. We calculate the radii and the density profiles in the trap and predict that the frequency of the spin dipole mode will be increased by a factor of 1.23 due to interactions.

  19. The likely Fermi detection of the supernova remnant RCW 103

    SciTech Connect

    Xing, Yi; Wang, Zhongxiang; Zhang, Xiao; Chen, Yang

    2014-02-01

    We report on the results from our γ-ray analysis of the supernova remnant (SNR) RCW 103 region. The data were taken with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. An extended source is found at a position consistent with that of RCW 103 and its emission was only detected above 1 GeV (10σ significance), with a power-law spectrum with a photon index of 2.0 ± 0.1. We obtain its 1-300 GeV spectrum and the total flux gives a luminosity of 8.3 × 10{sup 33} erg s{sup –1} at a source distance of 3.3 kpc. Given the positional coincidence and property similarities of this source with other SNRs, we identify it as the likely Fermi γ-ray counterpart to RCW 103. Including radio measurements of RCW 103, the spectral energy distribution (SED) is modeled by considering emission mechanisms based on both hadronic and leptonic scenarios. We find that models in the two scenarios can reproduce the observed SED, while in the hadronic scenario the existence of SNR-molecular cloud interactions is suggested as a high density of the target protons is required.

  20. Universal properties of Fermi gases in one dimension

    NASA Astrophysics Data System (ADS)

    He, Wen-Bin; Chen, Yang-Yang; Zhang, Shizhong; Guan, Xi-Wen

    2016-09-01

    In this Rapid Communication, we investigate the universal properties of a spin-polarized two-component Fermi gas in one dimension (1D) using the Bethe ansatz. We discuss the quantum phases and phase transitions by obtaining exact results for the equation of state, the contact, the magnetic susceptibility, and the contact susceptibility, giving a precise understanding of the 1D analog of the Bose-Einstein condensation and Bardeen-Cooper-Schrieffer crossover in three dimensions (3D) and the associated universal magnetic properties. In particular, we obtain the exact form of the magnetic susceptibility χ ˜1 /√{T }exp(-Δ /T ) at low temperatures, where Δ is the energy gap and T is the temperature. Moreover, we establish exact upper and lower bounds for the relation between polarization P and the contact C for both repulsive and attractive Fermi gases. Our findings emphasize the role of pair fluctuations in strongly interacting 1D fermion systems that can shed light on higher dimensions.

  1. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, J. L.; Oates, S. R.; Schady, P.; Burrows, D. N.; de Pasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; Roming, P.; Sakamoto, T.; Swenson, C.; Virgili, F.; Wanderman, D.; Zhang, B.

    2011-01-01

    The new and extreme population of GRBs detected by Fermi-LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT GRBs and the well studied, fainter, less energetic GRBs detected by Swift-BAT is only beginning to be explored by multiwavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi-GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  2. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, Judith I.

    2011-01-01

    The new and extreme population of GRBs detected by Fermi-LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT GRBs and the well studied, fainter, less energetic GRBs detected by Swift-BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi-GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  3. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, Judith L.; Oates, S. R.; Schady, P.; Burrows, D. N.; dePasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; Roming, P.; Sakamoto, T.; Swenson, C.; Troja, E.; Vasileiou, V.; Virgili, F.; Wanderman, D.; Zhang, B.

    2011-01-01

    The new and extreme population of GRBs detected by Fermi -LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust dataset of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT detected GRBs and the well studied, fainter, less energetic GRBs detected by Swift -BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi -GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  4. Low-lying excitations in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Vale, Christopher; Hoinka, Sascha; Dyke, Paul; Lingham, Marcus

    2016-05-01

    We present measurements of the low-lying excitation spectrum of a strongly interacting Fermi gas across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover using Bragg spectroscopy. By focussing the Bragg lasers onto the central volume of the cloud we can probe atoms at near-uniform density allowing measurement of the homogeneous density-density response function. The Bragg wavevector is set to be approximately half of the Fermi wavevector to probe the collective response. Below the superfluid transition temperature the Bragg spectra dominated by the Bogoliubov-Anderson phonon mode. Single particle excitations become visible at energies greater than twice the pairing gap. As interactions are tuned from the BCS to BEC regime the phonon and single particle modes separate apart and both the pairing gap and speed of sound can be directly read off in certain regions of the crossover. Single particle pair-breaking excitations become heavily suppressed as interactions are tuned from the BCS to BEC regimes.

  5. Exploring the Variability Characteristics of the Fermi AGN Sample

    NASA Astrophysics Data System (ADS)

    Shrader, Chris R.

    2016-04-01

    The Fermi Gamma-Ray Space Telescope (Fermi) has cataloged over 3000 gamma-ray (>100 MeV) point sources of which ~70% are likely AGN. The AGN are predominantly representative of the radio-loud “blazar” subclass. The emission from these objects is known to be dominated by relativistic beaming and is almost always variable, often exhibiting high-amplitude flaring. To date there have been numerous studies of individual objects including multi-wavelength campaigns with some including parsec-scale radio jet morphological studies. These studies have led to new insight in to our understanding of the blazar phenomena and jet propagation. However, there remains a dearth of statistical information on the variability characteristics of the population in aggregate. What, for example, are the distributions of flare amplitudes, durations, temporal profiles and recurrence histories among the gamma-ray blazar subclasses? We present some results of our study of a large ( ~103) set of gamma-ray light curves. For the brightest subset we explore in greater detail their properties such as morphologies and their rise and decay timescales. We include where plausible the associated energy dependencies of these rise and decay profiles. We discuss our results in terms of the possible implications on the scale and location of jet structures associated with the emission sites and the cooling timescales of the electron population producing the gamma rays.

  6. High-resolution Compton line shapes: Fermi break of beryllium

    SciTech Connect

    Huotari, S.; Monaco, G.; Sternemann, C.; Volmer, M.; Schuelke, W.

    2007-12-15

    The Be[110] Compton profile was measured with high resolution utilizing x rays with energy of 16-18 keV. The momentum resolution due to the experimental factors was set to 0.018 atomic units of momentum (a.u.). Electron final-state effects were estimated to have an approximate broadening effect of the spectral features equivalent to 0.028 a.u., resulting in a total momentum resolution of 0.033 a.u., i.e., more than a factor of 2 better than in previous Compton scattering studies. In this way, it was possible to study the ground-state momentum density of the electrons in metallic beryllium with a very high accuracy. As a result, the Fermi-surface-related fine structure is well observed in the experimental Compton profile and its derivative. However, the observed features are broader and less pronounced than anticipated by theoretical estimates. The remaining difference may be due to a non-negligible ground-state correlation and its effects on the momentum density and the Fermi surface of beryllium metal.

  7. Remarks on Fermi liquid from holography

    SciTech Connect

    Kulaxizi, Manuela; Parnachev, Andrei

    2008-10-15

    We investigate the signatures of Fermi liquid formation in the N=4 super Yang-Mills theory coupled to fundamental hypermultiplet at nonvanishing chemical potential for the global U(1) vector symmetry. At strong 't Hooft coupling the system can be analyzed in terms of the D7-brane dynamics in the AdS{sub 5}xS{sup 5} background. The phases with vanishing and finite charge density are separated at zero temperature by a quantum phase transition. In the case of vanishing hypermultiplet mass, Karch, Son, and Starinets discovered a gapless excitation whose speed equals the speed of sound. We find that this zero sound mode persists to all values of the hypermultiplet mass, and its speed vanishes at the point of phase transition. The value of critical exponent and the ratio of the velocities of zero and first sounds are consistent with the predictions of Landau Fermi liquid theory at strong coupling.

  8. Magnetar Observations in the Fermi Era

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2009-01-01

    NASA s Fermi Observatory was launched June 11, 2009; the Fermi Gamma Ray Burst Monitor (GBM) began normal operations on July 14, about a month after launch, when the trigger algorithms were enabled. In the first 8 months of operations we recorded emission of three magnetar sources; of these, only one was an old magnetar: SGR 1806+20. The other two detections were: SGR J0501+4516, newly discovered with Swift and extensively monitored with both Swift and GBM, and SGR J1550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP). I report below on the current status of the analyses efforts of all these GBM data sets, combined with data from other satellites (Spitzer, RXTE, Chandra, Swift).

  9. Magnetar Observations with Fermi/GBM

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2009-01-01

    NASA's Fermi Observatory was launched June 11, 2009; the Fermi Gamma Ray Burst Monitor (GBM) began normal operations on July 14, about a month after launch, when the trigger algorithms were enabled. In the first year of operations we recorded emission from four magnetar sources; of these, only one was an old magnetar: SGR 1806+20. The other three detections were: SGR J0501+4516, newly discovered with Swift and extensively monitored with both Swift and GBM, SGR J1550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP) and a very recently discovered new source, SGR 0418+5729. I report below on the current status of the analyses efforts of the GBM data.

  10. Unconventional Fermi surface in an insulating state

    SciTech Connect

    Harrison, Neil; Tan, B. S.; Hsu, Y. -T.; Zeng, B.; Hatnean, M. Ciomaga; Zhu, Z.; Hartstein, M.; Kiourlappou, M.; Srivastava, A.; Johannes, M. D.; Murphy, T. P.; Park, J. -H.; Balicas, L.; Lonzarich, G. G.; Balakrishnan, G.; Sebastian, Suchitra E.

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  11. Study of superfluid Bose-Fermi mixture

    NASA Astrophysics Data System (ADS)

    Laurent, Sebastien; Delehaye, Marion; Jin, Shuwei; Pierce, Matthieu; Yefsah, Tarik; Chevy, Frederic; Salomon, Christophe

    2016-05-01

    Using fermionic and bosonic isotopes of lithium we produce and study ultracold Bose-Fermi mixtures. First in a low temperature counterflow experiment, we measure the critical velocity of the system in the BEC-BCS crossover. Around unitarity, we observe a remarkably high superfluid critical velocity which reaches the sound velocity of the strongly interacting Fermi gas. Second, when we increase the temperature of the system slightly above the superfluid transitions we observe an unexpected phase locking of the oscillations of the clouds induced by dissipation. Finally, as suggested in, we explore the nature of the superfluid phase when we impose a spin polarization in the situation where the mean field potential created by the bosons on the fermions tends to cancel out the trapping potential of the latter.

  12. Relativistic Beaming Effect in Fermi Blazars

    NASA Astrophysics Data System (ADS)

    Fan, J. H.; Bastieri, D.; Yang, J. H.; Liu, Y.; Wu, D. X.; Li, S. H.

    2014-09-01

    The most identified sources observed by Fermi/LAT are blazars, based on which we can investigate the emission mechanisms and beaming effect in the γ-ray bands for blazars. Here, we used the compiled around 450 Fermi blazars with the available X-ray observations to estimate their Doppler factors and compared them with the integral γ-ray luminosity in the range of 1-100 GeV. It is interesting that the integral γ-ray luminosity is closely correlated with the estimated Doppler factor, for the whole sample. When the dependence of the correlation between them and the X-ray luminosity is removed, the correlation is still strong, which suggests that the γ-ray emissions are strongly beamed.

  13. "Permanence" - An Adaptationist Solution to Fermi's Paradox?

    NASA Astrophysics Data System (ADS)

    Cirkovic, Milan M.

    A new solution of Fermi's paradox sketched by SF writer Karl Schroeder in his 2002. novel Permanence is investigated. It is argued that this solution is tightly connected with adaptationism - a widely discussed working hypothesis in evolutionary biology. Schroeder's hypothesis has important ramifications for astrobiology, SETI projects, and future studies. Its weaknesses should be explored without succumbing to the emotional reactions often accompanying adaptationist explanations.

  14. Ideas by Szilard, physics by Fermi

    SciTech Connect

    Lanouette, W.

    1992-12-01

    An excerpt from William Lanouette's book Genius in the shadows: A biography of Leo Szilard, the man behind the bomb (with Bela Silard). This article covers Szilard's life from early 1933, when he first began contemplating fleeing Germany, to the first self-sustaining nuclear chain reaction on December 2, 1942, and includes a description of his partnership with Enrico Fermi. Part of a series of articles in this magazine commemorating the 50th anniversary of the first controlled chain reaction.

  15. Fractal generalization of Thomas-Fermi model

    NASA Astrophysics Data System (ADS)

    Rekhviashvili, S. Sh.; Sokurov, A. A.

    2016-05-01

    The Thomas-Fermi model is developed for a multielectron neutral atom at an arbitrary metric dimension of the electron cloud. It has been shown that the electron cloud with the reduced dimension should be located in the close vicinity of the nucleus. At a metric dimension of the electron cloud of 2, the differential equation of the model admits an analytical solution. In this case, the screening parameter does not depend on the charge of the nucleus.

  16. ON THE THOMAS-FERMI EQUATION*

    PubMed Central

    Hille, Einar

    1969-01-01

    A study has been made of some mathematical aspects of the Thomas-Fermi equation. This is a preliminary report on the results obtained, including (1) convergence of relevant series, (2) existence of unbounded solutions, (3) existence of solutions having an arbitrary branch point, (4) determination of a class of solutions bounded for large values of the variable, and (5) determination of a class of solutions unbounded for small values. PMID:16591731

  17. A Probabilistic Analysis of the Fermi Paradox

    NASA Astrophysics Data System (ADS)

    Solomonides, Evan; Terzian, Yervant

    2016-06-01

    The Fermi paradox uses an appeal to the mediocrity principle to make it seem counterintuitive that humanity has not been contacted by extraterrestrial intelligence. A numerical, statistical analysis was conducted to determine whether this apparent loneliness is, in fact, unexpected. An inequality was derived to relate the frequency of life arising and developing technology on a suitable planet in the galaxy; the average length of time since the first broadcast of such a civilization; and a constant term. An analysis of the sphere reached thus far by human communication was also conducted, considering our local neighborhood and planets of particular interest. These analyses both conclude that the Fermi paradox is not, in fact, unexpected. By the mediocrity principle and numerical modeling, it is actually unlikely that the Earth would have been reached by extraterrestrial communication at this point. We predict that under 1% of the galaxy has been reached at all thus far, and we do not anticipate to be reached until approximately 50% of stars/planets have been reached. We offer a prediction that we should not expect this until at least 1,500 years in the future. Thus the Fermi paradox is not a shocking observation- or lack thereof- and humanity may very well be contacted within our species’ lifespan (we can begin to expect to be contacted 1,500 years in the future).

  18. The Sustainability Solution To The Fermi Paradox

    NASA Astrophysics Data System (ADS)

    Haqq-Misra, J. D.; Baum, S. D.

    No present observations suggest a technologically advanced extraterrestrial intelligence (ETI) has spread through the galaxy. However, under commonplace assumptions about galactic civilization formation and expansion, this absence of observation is highly unlikely. This improbability is the heart of the Fermi Paradox. The Fermi Paradox leads some to conclude that humans have the only advanced civilization in this galaxy, either because civilization formation is very rare or because intelligent civilizations inevitably destroy themselves. In this paper, we argue that this conclusion is premature by introducing the “Sustainability Solution” to the Fermi Paradox, which questions the Paradox's assumption of faster ( e.g. exponential) civilization growth. Drawing on insights from the sustainability of human civilization on Earth, we propose that faster-growth may not be sustainable on the galactic scale. If this is the case, then there may exist ETI that have not expanded throughout the galaxy or have done so but collapsed. These possibilities have implications for both searches for ETI and for human civilization management.

  19. Pairing in a dry Fermi sea

    DOE PAGES

    Maier, Thomas A.; Staar, Peter; Mishra, V.; Chatterjee, Utpal; Campuzano, J. C.; Scalapino, Douglas J.

    2016-06-17

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  20. Fermi/GBM Results of Magnetars

    NASA Technical Reports Server (NTRS)

    Kouveliotou, chryssa

    2011-01-01

    Magnetars are magnetically powered rotating neutron stars with extreme magnetic fields (over 10(exp 14) Gauss). They were discovered in the X- and gamma-rays where they predominantly emit their radiation. Very few sources (roughly 18) have been found since their discovery in 1987. NASA's Fermi Gamma-ray Space Telescope was launched June 11,2009; since then the Fermi Gamma-ray Burst Monitor (GBM) recorded emission from four magnetar sources. Two of these were brand new sources, SGR J0501 +4516, discovered with Swift and extensively monitored with Swift and GBM, SGR J0418+5729, discovered with GBM and the Interplanetary Network (IPN). A third was SGR Jl550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP IEI547.0-5408), but exhibiting a very prolific outburst with over 400 events recorded in January 2009. In my talk I will give a short history of magnetars and describe how this, once relatively esoteric field, has emerged as a link between several astrophysical areas including Gamma-Ray Bursts. Finally, I will describe the exciting new results of Fermi in this field and the current status of our knowledge of the magnetar population properties and magnetic fields.