NASA Astrophysics Data System (ADS)
Zhuo, Jing-Mei; Zhao, Li-Hong; Chia, Perq-Jon; Sim, Wee-Sun; Friend, Richard H.; Ho, Peter K. H.
2008-05-01
The infrared absorption spectrum of the polaron charges at the Fermi level EF in a heavily p-doped conducting poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) film has been measured using interferogram-modulated Fourier-transform charge-modulation spectroscopy. The spectrum indicates softer phonons and weaker electron-phonon coupling riding on a strongly redshifted Drude-like electronic transition, different from the population-averaged “bulk” spectrum. This provides direct evidence that the EF holes are sufficiently delocalized even in such disordered materials to reside in an energy continuum (band states) while the rest of the hole population resides in self-localized gap states.
Thermoelectric Properties in Fermi Level Tuned Topological Materials (Bi1-xSnx)2Te3
NASA Astrophysics Data System (ADS)
Lin, Chan-Chieh; Shon, Won Hyuk; Rathnam, Lydia; Rhyee, Jong-Soo
2018-03-01
We investigated the thermoelectric properties of Sn-doped (Bi1-xSnx)2Te3 (x = 0, 0.1, 0.3, 0.5, and 0.7%) compounds, which is known as topological insulators. Fermi level tuning by Sn-doping can be justified by the n- to p-type transition with increasing Sn-doping concentration, as confirmed by Seebeck coefficient and Hall coefficient. Near x = 0.3 and 0.5%, the Fermi level resides inside the bulk band gap, resulting in a low Seebeck coefficient and increase of electrical resistivity. The magnetoconductivity with applying magnetic field showed weak antilocalization (WAL) effect for pristine Bi2Te3 while Sn-doped compounds do not follow the WAL behavior of magneto-conductivity, implying that the topological surface Dirac band contribution in magneto-conductivity is suppressed with decreasing the Fermi level by Sn-doping. This research can be applied to the topological composite of p-type/n-type topological materials by Fermi level tuning via Sn-doping in Bi2Te3 compounds.
NASA Astrophysics Data System (ADS)
Dwivedi, G. D.; Joshi, Amish G.; Kumar, Shiv; Chou, H.; Yang, K. S.; Jhong, D. J.; Chan, W. L.; Ghosh, A. K.; Chatterjee, Sandip
2016-04-01
X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La0.6Pr0.4)0.65Ca0.35MnO3 near Fermi-level. XMCD results indicate that Mn3+ and Mn4+ spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La0.6Pr0.4)0.65Ca0.35MnO3 system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below TC. The valence band UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, G. D.; Chou, H.; Yang, K. S.
2016-04-25
X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} near Fermi-level. XMCD results indicate that Mn{sup 3+} and Mn{sup 4+} spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below T{sub C}. The valence bandmore » UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.« less
Electronic properties of core-shell nanowire resonant tunneling diodes
2014-01-01
The electronic sub-band structure of InAs/InP/InAs/InP/InAs core-shell nanowire resonant tunneling diodes has been investigated in the effective mass approximation by varying the core radius and the thickness of the InP barriers and InAs shells. A top-hat, double-barrier potential profile and optimal energy configuration are obtained for core radii and surface shells >10 nm, InAs middle shells <10 nm, and 5 nm InP barriers. In this case, two sub-bands exist above the Fermi level in the InAs middle shell which belongs to the m = 0 and m = 1 ladder of states that have similar wave functions and energies. On the other hand, the lowest m = 0 sub-band in the core falls below the Fermi level but the m = 1 states do not contribute to the current transport since they reside energetically well above the Fermi level. We compare the case of GaAs/AlGaAs/GaAs/AlGaAs/GaAs which may conduct current with smaller applied voltages due to the larger effective mass of electrons in GaAs and discuss the need for doping. PMID:25288912
Electronic properties of core-shell nanowire resonant tunneling diodes.
Zervos, Matthew
2014-01-01
The electronic sub-band structure of InAs/InP/InAs/InP/InAs core-shell nanowire resonant tunneling diodes has been investigated in the effective mass approximation by varying the core radius and the thickness of the InP barriers and InAs shells. A top-hat, double-barrier potential profile and optimal energy configuration are obtained for core radii and surface shells >10 nm, InAs middle shells <10 nm, and 5 nm InP barriers. In this case, two sub-bands exist above the Fermi level in the InAs middle shell which belongs to the m = 0 and m = 1 ladder of states that have similar wave functions and energies. On the other hand, the lowest m = 0 sub-band in the core falls below the Fermi level but the m = 1 states do not contribute to the current transport since they reside energetically well above the Fermi level. We compare the case of GaAs/AlGaAs/GaAs/AlGaAs/GaAs which may conduct current with smaller applied voltages due to the larger effective mass of electrons in GaAs and discuss the need for doping.
Fermi Level Manipulation through Native Doping in the Topological Insulator Bi2Se3.
Walsh, Lee A; Green, Avery J; Addou, Rafik; Nolting, Westly; Cormier, Christopher R; Barton, Adam T; Mowll, Tyler R; Yue, Ruoyu; Lu, Ning; Kim, Jiyoung; Kim, Moon J; LaBella, Vincent P; Ventrice, Carl A; McDonnell, Stephen; Vandenberghe, William G; Wallace, Robert M; Diebold, Alain; Hinkle, Christopher L
2018-06-08
The topologically protected surface states of three-dimensional (3D) topological insulators have the potential to be transformative for high-performance logic and memory devices by exploiting their specific properties such as spin-polarized current transport and defect tolerance due to suppressed backscattering. However, topological insulator based devices have been underwhelming to date primarily due to the presence of parasitic issues. An important example is the challenge of suppressing bulk conduction in Bi 2 Se 3 and achieving Fermi levels ( E F ) that reside in between the bulk valence and conduction bands so that the topologically protected surface states dominate the transport. The overwhelming majority of the Bi 2 Se 3 studies in the literature report strongly n-type materials with E F in the bulk conduction band due to the presence of a high concentration of selenium vacancies. In contrast, here we report the growth of near-intrinsic Bi 2 Se 3 with a minimal Se vacancy concentration providing a Fermi level near midgap with no extrinsic counter-doping required. We also demonstrate the crucial ability to tune E F from below midgap into the upper half of the gap near the conduction band edge by controlling the Se vacancy concentration using post-growth anneals. Additionally, we demonstrate the ability to maintain this Fermi level control following the careful, low-temperature removal of a protective Se cap, which allows samples to be transported in air for device fabrication. Thus, we provide detailed guidance for E F control that will finally enable researchers to fabricate high-performance devices that take advantage of transport through the topologically protected surface states of Bi 2 Se 3 .
Beyond the Fermi liquid paradigm: Hidden Fermi liquids
Jain, J. K.; Anderson, P. W.
2009-01-01
An intense investigation of possible non-Fermi liquid states of matter has been inspired by two of the most intriguing phenomena discovered in the past quarter century, namely, high-temperature superconductivity and the fractional quantum Hall effect. Despite enormous conceptual strides, these two fields have developed largely along separate paths. Two widely employed theories are the resonating valence bond theory for high-temperature superconductivity and the composite fermion theory for the fractional quantum Hall effect. The goal of this perspective article is to note that they subscribe to a common underlying paradigm: They both connect these exotic quantum liquids to certain ordinary Fermi liquids residing in unphysical Hilbert spaces. Such a relation yields numerous nontrivial experimental consequences, exposing these theories to rigorous and definitive tests. PMID:19506260
Probing topological Fermi-Arcs and bulk boundary correspondence in the Weyl semimetal TaAs
NASA Astrophysics Data System (ADS)
Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim
The relation between surface Fermi-arcs and bulk Weyl cones in a Weyl semimetal, uniquely allows to study the notion of bulk to surface correspondence. We visualize these topological Fermi arc states on the surface of the Weyl semi-metal tantalum arsenide using scanning tunneling spectroscopy. Its surface hosts 12 Fermi arcs amongst several other surface bands of non-topological origin. We detect the possible scattering processes of surface bands in which Fermi arcs are involved including intra- and inter arc scatterings and arc-trivial scatterings. Each of the measured scattering processes entails additional information on the unique nature of Fermi arcs in tantalum arsenide: their contour, their energy-momentum dispersion and its relation with the bulk Weyl nodes. We further identify a sharp distinction between the wave function's spatial distribution of topological versus trivial bands. The non-topological surface bands, which are derived from the arsenic dangling bonds, are tightly bound to the arsenic termination layer. In contrast, the Fermi-arc bands reside on the deeper tantalum layer, penetrating into the bulk, which is predominantly derived from tantalum orbitals.
Direct measurement of Dirac point energy at the graphene/oxide interface.
Xu, Kun; Zeng, Caifu; Zhang, Qin; Yan, Rusen; Ye, Peide; Wang, Kang; Seabaugh, Alan C; Xing, Huili Grace; Suehle, John S; Richter, Curt A; Gundlach, David J; Nguyen, N V
2013-01-09
We report the direct measurement of the Dirac point, the Fermi level, and the work function of graphene by performing internal photoemission measurements on a graphene/SiO(2)/Si structure with a unique optical-cavity enhanced test structure. A complete electronic band alignment at the graphene/SiO(2)/Si interfaces is accurately established. The observation of enhanced photoemission from a one-atom thick graphene layer was possible by taking advantage of the constructive optical interference in the SiO(2) cavity. The photoemission yield was found to follow the well-known linear density-of-states dispersion in the vicinity of the Dirac point. At the flat band condition, the Fermi level was extracted and found to reside 3.3 eV ± 0.05 eV below the bottom of the SiO(2) conduction band. When combined with the shift of the Fermi level from the Dirac point, we are able to ascertain the position of the Dirac point at 3.6 eV ± 0.05 eV with respect to the bottom of the SiO(2) conduction band edge, yielding a work function of 4.5 eV ± 0.05 eV which is in an excellent agreement with theory. The accurate determination of the work function of graphene is of significant importance to the engineering of graphene-based devices, and the measurement technique we have advanced in this Letter will have significant impact on numerous applications for emerging graphene-like 2-dimensional material systems.
Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions
Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim
2016-01-01
Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes. PMID:27551687
Spin-imbalanced pairing and Fermi surface deformation in flat bands
NASA Astrophysics Data System (ADS)
Huhtinen, Kukka-Emilia; Tylutki, Marek; Kumar, Pramod; Vanhala, Tuomas I.; Peotta, Sebastiano; Törmä, Päivi
2018-06-01
We study the attractive Hubbard model with spin imbalance on two lattices featuring a flat band: the Lieb and kagome lattices. We present mean-field phase diagrams featuring exotic superfluid phases, similar to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, whose stability is confirmed by dynamical mean-field theory. The nature of the pairing is found to be richer than just the Fermi surface shift responsible for the usual FFLO state. The presence of a flat band allows for changes in the particle momentum distributions at null energy cost. This facilitates formation of nontrivial superfluid phases via multiband Cooper pair formation: the momentum distribution of the spin component in the flat band deforms to mimic the Fermi surface of the other spin component residing in a dispersive band. The Fermi surface of the unpaired particles that are typical for gapless superfluids becomes deformed as well. The results highlight the profound effect of flat dispersions on Fermi surface instabilities, and provide a potential route for observing spin-imbalanced superfluidity and superconductivity.
Particle transport and stochastic acceleration in the giant lobes of Centaurus A
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Sullivan, Stephen
2011-09-22
The conditions within the giant lobes of Centaurus A are reviewed in light of recent radio and {gamma}-ray observations. Data from WMAP and ground-based telescopes in conjunction with measurements from Fermi-LAT constrain the characteristic field strength and the maximum electron energy. The implications for the transport of energetic particles are discussed in terms of residence times and cooling times within the lobes. Acceleration of electrons and UHECR via the second order Fermi mechanism is discussed.
Investigating Possible Outliers in the Fermi Blazar AGN Sample
NASA Astrophysics Data System (ADS)
Shrader, Chris
2018-01-01
The Fermi Gamma-Ray Space Telescope (Fermi) has cataloged over 3000 gamma-ray (>100 MeV) point sources of which more than 1100 are likely AGN. These AGN are predominantly among the radio-loud “blazar” subclass. Recently however, a significant sample of bright (F_15GHz >1.5 Jy), radio selected AGN was found to overlap with Fermi at only the ~80% level (Lister et. al., 2015). This could be a result of some selection bias or it could be due to deficient Doppler boosting among that ~20%. Additionally, a recent survey of high-latitude gamma-ray sources by Schinzel et al. (2017) reveals a sample of ~100 objects which are not detected in the 4-10 GHz radio band to a limiting flux of about 2mJy. This apparent lack of radio flux is puzzling, and may indicate either an extreme Compton-dominated sample, or copious gamma-ray emission from a heretofore unknown population such as a subclass of radio-quiet AGN. Speculatively, these radio-loud/gamma-quiet and gamma-loud/radio quiet samples could be odd cases of the blazar phenomena which reside outside of the well-known blazar sequence. To explore this problem further we have undertaken a study to construct or constrain individual source SEDs as a first step towards their classification. In this contribution we present results from our search for emission in the Swift-BAT 15-100-keV hard X-ray band for each of these samples.
Solid state cloaking for electrical charge carrier mobility control
Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang
2015-07-07
An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.
Fermi level dependence of hydrogen diffusivity in GaN
NASA Astrophysics Data System (ADS)
Polyakov, A. Y.; Smirnov, N. B.; Pearton, S. J.; Ren, F.; Theys, B.; Jomard, F.; Teukam, Z.; Dmitriev, V. A.; Nikolaev, A. E.; Usikov, A. S.; Nikitina, I. P.
2001-09-01
Hydrogen diffusion studies were performed in GaN samples with different Fermi level positions. It is shown that, at 350 °C, hydrogen diffusion is quite fast in heavily Mg doped p-type material with the Fermi level close to Ev+0.15 eV, considerably slower in high-resistivity p-GaN(Zn) with the Fermi level Ev+0.9 eV, while for conducting and semi-insulating n-GaN samples with the Fermi level in the upper half of the band gap no measurable hydrogen diffusion could be detected. For these latter samples it is shown that higher diffusion temperature of 500 °C and longer times (50 h) are necessary to incorporate hydrogen to appreciable depth. These findings are in line with previously published theoretical predictions of the dependence of hydrogen interstitials formation in GaN on the Fermi level position.
Modeling the instability behavior of thin film devices: Fermi Level Pinning
NASA Astrophysics Data System (ADS)
Moeini, Iman; Ahmadpour, Mohammad; Gorji, Nima E.
2018-05-01
We investigate the underlying physics of degradation/recovery of a metal/n-CdTe Schottcky junction under reverse or forward bias stressing conditions. We used Sah-Noyce-Shockley (SNS) theory to investigate if the swept of Fermi level pinning at different levels (under forward/reverse bias) is the origin of change in current-voltage characteristics of the device. This theory is based on Shockley-Read-Hall recombination within the depletion width and takes into account the interface defect levels. Fermi Level Pinning theory was primarily introduced by Ponpon and developed to thin film solar cells by Dharmadasa's group in Sheffield University-UK. The theory suggests that Fermi level pinning at multiple levels occurs due to high concentration of electron-traps or acceptor-like defects at the interface of a Schottky or pn junction and this re-arranges the recombination rate and charage collection. Shift of these levels under stress conditions determines the change in current-voltage characteristics of the cell. This theory was suggested for several device such as metal/n-CdTe, CdS/CdTe, CIGS/CdS or even GaAs solar cells without a modeling approach to clearly explain it's physics. We have applied the strong SNS modeling approach to shed light on Fermi Level Pinning theory. The modeling confirms that change in position of Fermi Level and it's pining in a lower level close to Valence band increases the recombination and reduces the open-circuit voltage. In contrast, Fermi Level pinning close to conduction band strengthens the electric field at the junction which amplifies the carrier collection and boosts the open-circuit voltage. This theory can well explain the stress effect on device characteristics of various solar cells or Schottky junctions by simply finding the right Fermi level pinning position at every specific stress condition.
The black hole interior and the type II Weyl fermions
NASA Astrophysics Data System (ADS)
Zubkov, M. A.
2018-03-01
It was proposed recently that the black hole may undergo a transition to the state, where inside the horizon the Fermi surface is formed that reveals an analogy with the recently discovered type II Weyl semimetals. In this scenario, the low energy effective theory outside of the horizon is the Standard Model, which describes excitations that reside near a certain point P(0) in momentum space of the hypothetical unified theory. Inside the horizon the low energy physics is due to the excitations that reside at the points in momentum space close to the Fermi surface. We argue that those points may be essentially distant from P(0) and, therefore, inside the black hole the quantum states are involved in the low energy dynamics that are not described by the Standard Model. We analyze the consequences of this observation for the physics of the black holes and present the model based on the direct analogy with the type II Weyl semimetals, which illustrates this pattern.
Spatial modulation of the Fermi level by coherent illumination of undoped GaAs
NASA Astrophysics Data System (ADS)
Nolte, D. D.; Olson, D. H.; Glass, A. M.
1989-11-01
The Fermi level in undoped GaAs has been modulated spatially by optically quenching EL2 defects. The spatial gradient of the Fermi level produces internal electric fields that are much larger than fields generated by thermal diffusion alone. The resulting band structure is equivalent to a periodic modulation-doped p-i-p structure of alternating insulating and p-type layers. The internal fields are detected via the electro-optic effect by the diffraction of a probe laser in a four-wave mixing geometry. The direct control of the Fermi level distinguishes this phenomenon from normal photorefractive behavior and introduces a novel nonlinear optical process.
Observation of an electron band above the Fermi level in FeTe₀.₅₅Se₀.₄₅ from in-situ surface doping
Zhang, P.; Richard, P.; Xu, N.; ...
2014-10-27
We used in-situ potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe₀.₅₅Se₀.₄₅. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tune the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily-electron-doped KFe₂₋ xSe₂ compound.
FermiGrid—experience and future plans
NASA Astrophysics Data System (ADS)
Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; Yocum, D. R.
2008-07-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems.
FermiGrid - experience and future plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chadwick, K.; Berman, E.; Canal, P.
2007-09-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and themore » Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel
2015-09-07
Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi levelmore » is not pinned at the critical value of nitrogen coverage θ{sub N}(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Np{sub z} state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N{sub 2} molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.« less
Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs
NASA Astrophysics Data System (ADS)
Debehets, J.; Homm, P.; Menghini, M.; Chambers, S. A.; Marchiori, C.; Heyns, M.; Locquet, J. P.; Seo, J. W.
2018-05-01
In this paper, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-level pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH4)2S-solutions in an inert atmosphere (N2-gas). Although the (NH4)2S-cleaning in N2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH4)2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.
NASA Astrophysics Data System (ADS)
Kudrawiec, R.; Nair, H. P.; Latkowska, M.; Misiewicz, J.; Bank, S. R.; Walukiewicz, W.
2012-12-01
Contactless electroreflectance (CER) has been applied to study the Fermi-level position on GaSb surface in n-type and p-type GaSb Van Hoof structures. CER resonances, followed by strong Franz-Keldysh oscillation of various periods, were clearly observed for two series of structures. This period was much wider (i.e., the built-in electric field was much larger) for n-type structures, indicating that the GaSb surface Fermi level pinning position is closer to the valence-band than the conduction-band. From analysis of the built-in electric fields in undoped GaSb layers, it was concluded that on GaSb surface the Fermi-level is located ˜0.2 eV above the valence band.
Unified mechanism of the surface Fermi level pinning in III-As nanowires.
Alekseev, Prokhor A; Dunaevskiy, Mikhail S; Cirlin, George E; Reznik, Rodion R; Smirnov, Alexander N; Kirilenko, Demid A; Davydov, Valery Yu; Berkovits, Vladimir L
2018-08-03
Fermi level pinning at the oxidized (110) surfaces of III-As nanowires (GaAs, InAs, InGaAs, AlGaAs) is studied. Using scanning gradient Kelvin probe microscopy, we show that the Fermi level at oxidized cleavage surfaces of ternary Al x Ga 1-x As (0 ≤ x ≤ 0.45) and Ga x In 1-x As (0 ≤ x ≤ 1) alloys is pinned at the same position of 4.8 ± 0.1 eV with regard to the vacuum level. The finding implies a unified mechanism of the Fermi level pinning for such surfaces. Further investigation, performed by Raman scattering and photoluminescence spectroscopy, shows that photooxidation of the Al x Ga 1-x As and Ga x In 1-x As nanowires leads to the accumulation of an excess of arsenic on their crystal surfaces which is accompanied by a strong decrease of the band-edge photoluminescence intensity. We conclude that the surface excess arsenic in crystalline or amorphous forms is responsible for the Fermi level pinning at oxidized (110) surfaces of III-As nanowires.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
... NUCLEAR REGULATORY COMMISSION [Docket No. 50-16; NRC-2009-0073] DTE ENERGY; Enrico Fermi Atomic... License No. DPR-9 issued for Enrico Fermi Atomic Power Plant, Unit 1 (Fermi-1), located in Monroe County... undue hazard to life or property. There are no provisions in the Atomic Energy Act (or in any other...
Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea
NASA Astrophysics Data System (ADS)
Balram, Ajit C.; Jain, J. K.
2017-12-01
The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν <1 /2 but kF*=√{4 π ρh } for ν >1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .
Fermi-Level Pinning of Contacted Single-Wall Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Wu, Shi-Yu; Liu, Lei; Jayanthi, Chakram; Guo, Guang-Yu
2004-03-01
Experimental evidences suggest that the Fermi-level of a contacted SWCNT with an energy gap is pinned in the vicinity of either the top of the valence band or the bottom of the conduction band, depending on the work function of the metallic leads (see, for example, E. D. Minot, Yuval Yaish,Vera Sazonova, Ji-Yong Park, Markus Brink, and Paul L. McEuen, Phys. Rev. Lett. 90, 156401 (2003)). This pinning of the Fermi-level may be attributed to the finite length of the contacted SWCNT. In this presentation, we report the result of our study of the pinning of the Fermi-level of a finite SWCNT, using the single π-orbital theory modified by the inclusion of a self-consistent scheme for the determination of charge transfer. We will also discuss the effect of the Fermi-level pinning on the transport properties of a SWCNT with a gap, either intrinsic or induced by a mechanical deformation. This work is supported by the NSF (Grant Nos: DMR-0112824 and ECS-0224114), the U.S. Department of Energy (Grant No: DE-FG02-00ER45832), and the National Science Council of Taiwan.
The Successful Synergy of Swift and Fermi/GBM in Magnetars
NASA Technical Reports Server (NTRS)
Kouveliotou, Chryssa
2011-01-01
The magnetar rate of discovery has increased dramatically in the last decade. Five sources were discovered in the last three years alone as a result of the very efficient synergy among three X- and .gamma-ray instruments on NASA satellites: the Swift/Burst Alert Telescope (BAT), the Fermi/Gamma ray Burst Monitor (GBM), and the Rossi X-Ray Timing Explorer; RXTE/Proportional Counter Array (PCA). To date, there are approx. 25 magnetar candidates, of which two are (one each) in the Large and Small Magellanic Cloud and the rest reside on the Galactic plane of our Milky Way. I will discuss here the main properties of the Magnetar Population and the common projects that can be achieved with the synergy of Swift and GBM.
Fermi level pinning at epitaxial Si on GaAs(100) interfaces
NASA Astrophysics Data System (ADS)
Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.
1991-12-01
GaAs Schottky barrier contacts and metal-insulator-semiconductor structures that include thin epitaxial Si interfacial layers operate in a manner consistent with an unpinned Fermi level at the GaAs interface. These findings raise the question of whether this effect is an intrinsic property of the epitaxial GaAs(100)-Si interface. We have used x-ray photoemission spectroscopy to monitor the Fermi level position during in situ growth of thin epitaxial Si layers. In particular, films formed on heavily doped n- and p-type substrates were compared so as to use the large depletion layer fields available with high impurity concentration as a field-effect probe of the interface state density. The results demonstrate that epitaxial bonding at the interface alone is insufficient to eliminate Fermi level pinning, indicating that other mechanisms affect the interfacial charge balance in the devices that utilize Si interlayers.
Fermi level pinning at the Ge(001) surface—A case for non-standard explanation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojtaszek, Mateusz; Zuzak, Rafal; Godlewski, Szymon
2015-11-14
To explore the origin of the Fermi level pinning in germanium, we investigate the Ge(001) and Ge(001):H surfaces. The absence of relevant surface states in the case of Ge(001):H should unpin the surface Fermi level. This is not observed. For samples with donors as majority dopants, the surface Fermi level appears close to the top of the valence band regardless of the surface structure. Surprisingly, for the passivated surface, it is located below the top of the valence band allowing scanning tunneling microscopy imaging within the band gap. We argue that the well known electronic mechanism behind band bending doesmore » not apply and a more complicated scenario involving ionic degrees of freedom is therefore necessary. Experimental techniques involve four point probe electric current measurements, scanning tunneling microscopy, and spectroscopy.« less
Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debehets, J.; Homm, P.; Menghini, M.
In this study, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH 4) 2S-solutions in an inert atmosphere (N 2-gas). Although the (NH 4) 2S-cleaning in N 2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH 4) 2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.« less
Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs
Debehets, J.; Homm, P.; Menghini, M.; ...
2018-01-12
In this study, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH 4) 2S-solutions in an inert atmosphere (N 2-gas). Although the (NH 4) 2S-cleaning in N 2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH 4) 2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.« less
Interaction of sodium atoms with stacking faults in silicon with different Fermi levels
NASA Astrophysics Data System (ADS)
Ohno, Yutaka; Morito, Haruhiko; Kutsukake, Kentaro; Yonenaga, Ichiro; Yokoi, Tatsuya; Nakamura, Atsutomo; Matsunaga, Katsuyuki
2018-06-01
Variation in the formation energy of stacking faults (SFs) with the contamination of Na atoms was examined in Si crystals with different Fermi levels. Na atoms agglomerated at SFs under an electronic interaction, reducing the SF formation energy. The energy decreased with the decrease of the Fermi level: it was reduced by more than 10 mJ/m2 in p-type Si, whereas it was barely reduced in n-type Si. Owing to the energy reduction, Na atoms agglomerating at SFs in p-type Si are stable compared with those in n-type Si, and this hypothesis was supported by ab initio calculations.
Stolz, Sebastian; Lemmer, Uli; Hernandez-Sosa, Gerardo; Mankel, Eric
2018-03-14
We investigate three amine-based polymers, polyethylenimine and two amino-functionalized polyfluorenes, as electron injection layers (EILs) in organic light-emitting diodes (OLEDs) and find correlations between the molecular structure of the polymers, the electronic alignment at the emitter/EIL interface, and the resulting device performance. X-ray photoelectron spectroscopy measurements of the emitter/EIL interface indicate that all three EIL polymers induce an upward shift of the Fermi level in the emitting layer close to the interface similar to n-type doping. The absolute value of this Fermi level shift, which can be explained by an electron transfer from the EIL polymers into the emitting layer, correlates with the number of nitrogen-containing groups in the side chains of the polymers. Whereas polyethylenimine (PEI) and one of the investigated polyfluorenes (PFCON-C) have six such groups per monomer unit, the second investigated polyfluorene (PFN) only possesses two. Consequently, we measure Fermi level shifts of 0.5-0.7 eV for PEI and PFCON-C and only 0.2 eV for PFN. As a result of these Fermi level shifts, the energetic barrier for electron injection is significantly lowered and OLEDs which comprise PEI or PFCON-C as an EIL exhibit a more than twofold higher luminous efficacy than OLEDs with PFN.
Zhou, Changjie; Yang, Weihuang; Zhu, Huili
2015-06-07
Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS2 upon adsorption of various gas molecules (H2, O2, H2O, NH3, NO, NO2, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS2 with a low degree of charge transfer and accept charge from the monolayer, except for NH3, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS2 are not significantly altered upon adsorption of H2, H2O, NH3, and CO, whereas the lowest unoccupied molecular orbitals of O2, NO, and NO2 are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS2. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS2. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides.
Formation of copper precipitates in silicon
NASA Astrophysics Data System (ADS)
Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.
1999-12-01
The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.
Yoon, Hoon Hahn; Jung, Sungchul; Choi, Gahyun; Kim, Junhyung; Jeon, Youngeun; Kim, Yong Soo; Jeong, Hu Young; Kim, Kwanpyo; Kwon, Soon-Yong; Park, Kibog
2017-01-11
We report the systematic experimental studies demonstrating that a graphene layer inserted at metal/n-Si(001) interface is efficient to explore interface Fermi-level pinning effect. It is confirmed that an inserted graphene layer prevents atomic interdiffusion to form an atomically abrupt Schottky contact. The Schottky barriers of metal/graphene/n-Si(001) junctions show a very weak dependence on metal work-function, implying that the metal Fermi-level is almost completely pinned at charge neutrality level close to the valence band edge of Si. The atomically impermeable and electronically transparent properties of graphene can be used generally to form an intact Schottky contact for all semiconductors.
Extending the Fermi-LAT data processing pipeline to the grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmer, S.; Arrabito, L.; Glanzman, T.
2015-05-12
The Data Handling Pipeline ("Pipeline") has been developed for the Fermi Gamma-Ray Space Telescope (Fermi) Large Area Telescope (LAT) which launched in June 2008. Since then it has been in use to completely automate the production of data quality monitoring quantities, reconstruction and routine analysis of all data received from the satellite and to deliver science products to the collaboration and the Fermi Science Support Center. Aside from the reconstruction of raw data from the satellite (Level 1), data reprocessing and various event-level analyses are also reasonably heavy loads on the pipeline and computing resources. These other loads, unlike Levelmore » 1, can run continuously for weeks or months at a time. Additionally, it receives heavy use in performing production Monte Carlo tasks.« less
Stabilization of Ag nanostructures by tuning their Fermi levels
NASA Astrophysics Data System (ADS)
Tani, Tadaaki; Kan, Ryota; Yamano, Yuka; Uchida, Takayuki
2018-05-01
The oxidation of Ag nanostructures has been studied as a key step for their degradation under the guiding principle in the previous paper that they are stable when their Fermi level is lower than those of their surroundings. The drop of the Fermi level of a thin Ag layer was caused by the formation of self-assembled monolayers (SAMs) of certain organic compounds including those of photographic interest and a monolayer of AgI, and attributed to the formation of dielectric layers, whose positive charges were closer to the Ag layer than negative charges. A consideration is given on further examinations needed to realize the above guiding principle in individual devices.
A broadband metamaterial absorber based on multi-layer graphene in the terahertz region
NASA Astrophysics Data System (ADS)
Fu, Pan; Liu, Fei; Ren, Guang Jun; Su, Fei; Li, Dong; Yao, Jian Quan
2018-06-01
A broadband metamaterial absorber, composed of the periodic graphene pattern on SiO2 dielectric with the double layer graphene films inserted in it and all of them backed by metal plan, is proposed and investigated. The simulation results reveal that the wide absorption band can be flexibly tuned between the low-frequency band and the high-frequency band by adjusting graphene's Fermi level. The absorption can achieve 90% in 5.50-7.10 THz, with Fermi level of graphene is 0.3 eV, while in 6.98-9.10 THz with Fermi level 0.6 eV. Furthermore, the proposed structure can be switched from reflection (>81%) to absorption (>90%) over the whole operation band, when the Fermi level of graphene varies from 0 to 0.6 eV. Besides, the proposed absorber is insensitive to the polarization and can work over a wide range of incident angle. Compared with the previous broadband absorber, our graphene based wideband terahertz absorber can enable a wide application of high performance terahertz devices, including sensors, imaging devices and electro-optic switches.
Origins of Fermi-level pinning on GaN and InN polar and nonpolar surfaces
NASA Astrophysics Data System (ADS)
Segev, D.; Van de Walle, C. G.
2006-10-01
Using band structure and total energy methods, we study the atomic and electronic structures of the polar (+c and - c plane) and nonpolar (a and m plane) surfaces of GaN and InN. We identify two distinct microscopic origins for Fermi-level pinning on GaN and InN, depending on surface stoichiometry and surface polarity. At moderate Ga/N ratios unoccupied gallium dangling bonds pin the Fermi level on n-type GaN at 0.5 0.7 eV below the conduction-band minimum. Under highly Ga-rich conditions metallic Ga adlayers lead to Fermi-level pinning at 1.8 eV above the valence-band maximum. We also explain the source of the intrinsic electron accumulation that has been universally observed on polar InN surfaces. It is caused by In-In bonds leading to occupied surface states above the conduction-band minimum. We predict that such a charge accumulation will be absent on the nonpolar surfaces of InN, when prepared under specific conditions.
NASA Astrophysics Data System (ADS)
Hwang, J. S.; Tsai, J. T.; Su, I. C.; Lin, H. C.; Lu, Y. T.; Chiu, P. C.; Chyi, J. I.
2012-05-01
The bandgap, surface Fermi level, and surface state density of a series of GaAs1-xSbx surface intrinsic-n+ structures with GaAs as substrate are determined for various Sb mole fractions x by the photoreflectance modulation spectroscopy. The dependence of the bandgap on the mole composition x is in good agreement with previous measurements as well as predictions calculated using the dielectric model of Van Vechten and Bergstresser in Phys. Rev. B 1, 3551 (1970). For a particular composition x, the surface Fermi level is always strongly pinned within the bandgap of GaAs1-xSbx and we find its variation with composition x is well described by a function EF = 0.70 - 0.192 x for 0 ≦ x ≦ 0.35, a result which is notably different from that reported by Chouaib et al. [Appl. Phys. Lett. 93, 041913 (2008)]. Our results suggest that the surface Fermi level is pinned at the midgap of GaAs and near the valence band of the GaSb.
Fermi arc mediated entropy transport in topological semimetals
NASA Astrophysics Data System (ADS)
McCormick, Timothy M.; Watzman, Sarah J.; Heremans, Joseph P.; Trivedi, Nandini
2018-05-01
The low-energy excitations of topological Weyl semimetals are composed of linearly dispersing Weyl fermions that act as monopoles of Berry curvature in the bulk momentum space. Furthermore, on the surface there exist topologically protected Fermi arcs at the projections of these Weyl points. We propose a pathway for entropy transport involving Fermi arcs on one surface connecting to Fermi arcs on the other surface via the bulk Weyl monopoles. We present results for the temperature and magnetic field dependence of the magnetothermal conductance of this conveyor belt channel. The circulating currents result in a net entropy transport without any net charge transport. We provide results for the Fermi arc mediated magnetothermal conductivity in the low-field semiclassical limit as well as in the high-field ultraquantum limit, where only chiral Landau levels are involved. Our work provides a proposed signature of Fermi arc mediated magnetothermal transport and sets the stage for utilizing and manipulating the topological Fermi arcs in thermal applications.
NASA Technical Reports Server (NTRS)
Agrawal, Bal K.; Agrawal, Savitri
1995-01-01
The electronic structure and the hole concentrations in the high Tc superconductor HgBa2CuO(4+delta) (delta = O, 1) has been investigated by employing a first principles full potential self-consistent LMTO method with the local density functional theory. The scalar relativistic effects have been considered. The hole concentrations of the Cu-d and O-p(x,y) orbitals are seen to be larger for the HgBaCuO5 system than those of the HgBaCuO4 solid. However, the van Hove singularity (vHs) induced Cu-d and O-p peak which is seen to lie comparatively away and above the Fermi level in the delta = 1 system shifts towards the Fermi level in the delta = 0 system. Thus, the superconducting behavior appears to originate from the occurrence of the vHs peak at the Fermi level. The Fermi surface nesting area in the delta = 0 compound is seen to be larger than in the delta = 1 compound. The calculation reveals that the increase in pressure on the crystal enhances the hole concentrations but without showing any optimum value, On the other hand, the vHs peak approaches to-wards the Fermi level with pressure and crosses the Fermi surface near V/Vo approximately equals 0.625 (V and Vo are the crystal volumes at high and normal pressures, respectively). Our calculated value of the bulk modulus equal to 0.626 Mbar predicts the occurrence of this crossover at about 24 GPa which is in complete agreement with the experimental value. At this pressure the compound has maximum nesting area and self-doped behavior.
Extracting the temperature of hot carriers in time- and angle-resolved photoemission.
Ulstrup, Søren; Johannsen, Jens Christian; Grioni, Marco; Hofmann, Philip
2014-01-01
The interaction of light with a material's electronic system creates an out-of-equilibrium (non-thermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature. The advent of time- and angle-resolved photoemission spectroscopy (TR-ARPES) experiments has made it possible to track the decay of the temperature of the excited hot electrons in selected states in the Brillouin zone, and to reveal their cooling in unprecedented detail in a variety of emerging materials. It is, however, not a straightforward task to determine the temperature with high accuracy. This is mainly attributable to an a priori unknown position of the Fermi level and the fact that the shape of the Fermi edge can be severely perturbed when the state in question is crossing the Fermi energy. Here, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment.
Anomalous Nernst and thermal Hall effects in tilted Weyl semimetals
NASA Astrophysics Data System (ADS)
Ferreiros, Yago; Zyuzin, A. A.; Bardarson, Jens H.
2017-09-01
We study the anomalous Nernst and thermal Hall effects in a linearized low-energy model of a tilted Weyl semimetal, with two Weyl nodes separated in momentum space. For inversion symmetric tilt, we give analytic expressions in two opposite limits: For a small tilt, corresponding to a type-I Weyl semimetal, the Nernst conductivity is finite and independent of the Fermi level; for a large tilt, corresponding to a type-II Weyl semimetal, it acquires a contribution depending logarithmically on the Fermi energy. This result is in a sharp contrast to the nontilted case, where the Nernst response is known to be zero in the linear model. The thermal Hall conductivity similarly acquires Fermi surface contributions, which add to the Fermi level-independent, zero-tilt result, and is suppressed as one over the tilt parameter at half filling in the type-II phase. In the case of inversion-breaking tilt, with the tilting vector of equal modulus in the two Weyl cones, all Fermi surface contributions to both anomalous responses cancel out, resulting in zero Nernst conductivity. We discuss two possible experimental setups, representing open and closed thermoelectric circuits.
Kongkanand, Anusorn; Kamat, Prashant V
2007-08-01
The use of single wall carbon nanotubes (SWCNTs) as conduits for transporting electrons in a photoelectrochemical solar cell and electronic devices requires better understanding of their electron-accepting properties. When in contact with photoirradiated TiO(2) nanoparticles, SWCNTs accept and store electrons. The Fermi level equilibration with photoirradiated TiO(2) particles indicates storage of up to 1 electron per 32 carbon atoms in the SWCNT. The stored electrons are readily discharged on demand upon addition of electron acceptors such as thiazine and oxazine dyes (reduction potential less negative than that of the SWCNT conduction band) to the TiO(2)-SWCNT suspension. The stepwise electron transfer from photoirradiated TiO(2) nanoparticles --> SWCNT --> redox couple has enabled us to probe the electron equilibration process and determine the apparent Fermi level of the TiO(2)-SWCNT system. A positive shift in apparent Fermi level (20-30 mV) indicates the ability of SWCNTs to undergo charge equilibration with photoirradiated TiO(2) particles. The dependence of discharge capacity on the reduction potential of the dye redox couple is compared for TiO(2) and TiO(2)-SWCNT systems under equilibration conditions.
NASA Astrophysics Data System (ADS)
Reddy, Pramod; Kaess, Felix; Tweedie, James; Kirste, Ronny; Mita, Seiji; Collazo, Ramon; Sitar, Zlatko
2017-10-01
Compensating point defect reduction in wide bandgap semiconductors is possible by above bandgap illumination based defect quasi Fermi level (dQFL) control. The point defect control technique employs excess minority carriers that influence the dQFL of the compensator, increase the corresponding defect formation energy, and consequently are responsible for point defect reduction. Previous studies on various defects in GaN and AlGaN have shown good agreement with the theoretical model, but no direct evidence for the role of minority carriers was provided. In this work, we provide direct evidence for the role of minority carriers in reducing point defects by studying the predicted increase in work done against defect (CN-1) formation with the decrease in the Fermi level (free carrier concentration) in Si doped GaN at a constant illumination intensity. Comparative defect photoluminescence measurements on illuminated and dark regions of GaN show an excellent quantitative agreement with the theory by exhibiting a greater reduction in yellow luminescence attributed to CN-1 at lower doping, thereby providing conclusive evidence for the role of the minority carriers in Fermi level control-based point defect reduction.
NASA Astrophysics Data System (ADS)
Kempisty, Pawel; Strak, Pawel; Sakowski, Konrad; Krukowski, Stanislaw
2017-08-01
Comprehensive analysis of GaN(0001) surface in equilibrium with ammonia/hydrogen mixture was undertaken using results of ab initio calculations. Adsorption energies of the species derived from ammonia and molecular hydrogen and their stable sites were obtained. It was shown that the adsorption process type and energy depend on the position of Fermi level at the surface. Hydrogen decomposes into two separate H atoms, always adsorbed in the positions on top of the surface Ga atoms (On-top). Ammonia adsorption at GaN(0001) surface proceeds molecularly to ammonia in the On-top position or dissociatively into NH2 radicals in bridge (NH2-bridge) or On-top positions or into NH radicals in H3 (NH-H3) site. Presence of these species affects Fermi level pinning at the surface due to creation of new surface states. The Fermi level pinning in function of the surface attached species concentration was determined using extended electron counting rule (EECR). Results of ab initio calculations fully proved validity of the EECR predictions. Thermodynamic analysis of the surface in equilibrium with molecular hydrogen and ammonia vapor mixture is made giving the range of ammonia and hydrogen pressures, corresponding to Fermi level pinned at Ga-broken bond state for NH-H3&H and NH3&H and NH2-bridge&H coverage and at VBM for NH3 & H coverage. As the region of Fermi level pinned at Ga broken bond state corresponds to very low pressures, at pressures close to normal, GaN(0001) surface is almost totally covered by H, NH3 and NH2 located in On-top positions. It is also shown however that dominant portion of the hydrogen and ammonia pressures corresponds to Fermi level not pinned. Among them are these corresponding to MOVPE and HVPE growth conditions in which the surface is almost fully covered by NH3, NH2 and H species in On-top positions.
Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu2Su2
NASA Astrophysics Data System (ADS)
Yamagami, Hiroshi
2011-01-01
In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu2Si2 are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu2Si2 crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like "curing-stone", "rugby-ball " and "ball". The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.
Topological semimetal in honeycomb lattice LnSI
NASA Astrophysics Data System (ADS)
Nie, Simin; Xu, Gang; Prinz, Fritz B.; Zhang, Shou-cheng
2017-10-01
Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs.
Topological semimetal in honeycomb lattice LnSI.
Nie, Simin; Xu, Gang; Prinz, Fritz B; Zhang, Shou-Cheng
2017-10-03
Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs.
Topological semimetal in honeycomb lattice LnSI
Nie, Simin; Xu, Gang; Prinz, Fritz B.; Zhang, Shou-cheng
2017-01-01
Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs. PMID:28928149
Dirac dispersion generates unusually large Nernst effect in Weyl semimetals
NASA Astrophysics Data System (ADS)
Watzman, Sarah J.; McCormick, Timothy M.; Shekhar, Chandra; Wu, Shu-Chun; Sun, Yan; Prakash, Arati; Felser, Claudia; Trivedi, Nandini; Heremans, Joseph P.
2018-04-01
Weyl semimetals contain linearly dispersing electronic states, offering interesting features in transport yet to be thoroughly explored thermally. Here we show how the Nernst effect, combining entropy with charge transport, gives a unique signature for the presence of Dirac bands and offers a diagnostic to determine if trivial pockets play a role in this transport. The Nernst thermopower of NbP exceeds its conventional thermopower by a 100-fold, and the temperature dependence of the Nernst effect has a pronounced maximum. The charge-neutrality condition dictates that the Fermi level shifts with increasing temperature toward the energy that has the minimum density of states (DOS). In NbP, the agreement of the Nernst and Seebeck data with a model that assumes this minimum DOS resides at the Dirac points is taken as strong experimental evidence that the trivial (non-Dirac) bands play no role in high-temperature transport.
A numerical testbed for hypotheses of extraterrestrial life and intelligence
NASA Astrophysics Data System (ADS)
Forgan, D. H.
2009-04-01
The search for extraterrestrial intelligence (SETI) has been heavily influenced by solutions to the Drake Equation, which returns an integer value for the number of communicating civilizations resident in the Milky Way, and by the Fermi Paradox, glibly stated as: ‘If they are there, where are they?’. Both rely on using average values of key parameters, such as the mean signal lifetime of a communicating civilization. A more accurate answer must take into account the distribution of stellar, planetary and biological attributes in the galaxy, as well as the stochastic nature of evolution itself. This paper outlines a method of Monte Carlo realization that does this, and hence allows an estimation of the distribution of key parameters in SETI, as well as allowing a quantification of their errors (and the level of ignorance therein). Furthermore, it provides a means for competing theories of life and intelligence to be compared quantitatively.
NMR study of B-2p Fermi-level density of states in the transition metal diborides
NASA Astrophysics Data System (ADS)
Lue, C. S.; Lai, W. J.
2005-04-01
We present a systematic study of the AlB2-type transition metal diborides by measuring the 11B NMR spin-lattice relaxation rate on TiB2, VB2, ZrB2, NbB2, HfB2, as well as TaB2. For all studied materials, the observed relaxation at B nuclei is mainly due to the p-electrons. The comparison with theoretical calculations allows the experimental determination of the partial B-2p Fermi-level density of states (DOS). In addition, the extracted B-2p Fermi-level DOS values in TiB2, ZrB2, and HfB are consistently smaller than in VB2, NbB2, and TaB2. We connect this trend to the rigid-band scenario raised by band structure calculations.
Fermi Level Control of Point Defects During Growth of Mg-Doped GaN
NASA Astrophysics Data System (ADS)
Bryan, Zachary; Hoffmann, Marc; Tweedie, James; Kirste, Ronny; Callsen, Gordon; Bryan, Isaac; Rice, Anthony; Bobea, Milena; Mita, Seiji; Xie, Jinqiao; Sitar, Zlatko; Collazo, Ramón
2013-05-01
In this study, Fermi level control of point defects during metalorganic chemical vapor deposition (MOCVD) of Mg-doped GaN has been demonstrated by above-bandgap illumination. Resistivity and photoluminescence (PL) measurements are used to investigate the Mg dopant activation of samples with Mg concentration of 2 × 1019 cm-3 grown with and without exposure to ultraviolet (UV) illumination. Samples grown under UV illumination have five orders of magnitude lower resistivity values compared with typical unannealed GaN:Mg samples. The PL spectra of samples grown with UV exposure are similar to the spectra of those grown without UV exposure that were subsequently annealed, indicating a different incorporation of compensating defects during growth. Based on PL and resistivity measurements we show that Fermi level control of point defects during growth of III-nitrides is feasible.
Polaron-to-Polaron Transitions in the Radio-Frequency Spectrum of a Quasi-Two-Dimensional Fermi Gas
NASA Astrophysics Data System (ADS)
Zhang, Y.; Ong, W.; Arakelyan, I.; Thomas, J. E.
2012-06-01
We measure radio-frequency spectra for a two-component mixture of a Li6 atomic Fermi gas in a quasi-two-dimensional regime with the Fermi energy comparable to the energy level spacing in the tightly confining potential. Near the Feshbach resonance, we find that the observed resonances do not correspond to transitions between confinement-induced dimers. The spectral shifts can be fit by assuming transitions between noninteracting polaron states in two dimensions.
Magnetotransport properties of MoP 2
Wang, Aifeng; Graf, D.; Stein, Aaron; ...
2017-11-02
We report magnetotransport and de Haas–van Alphen (dHvA) effect studies on MoP 2 single crystals, predicted to be a type- II Weyl semimetal with four pairs of robust Weyl points located below the Fermi level and long Fermi arcs. The temperature dependence of resistivity shows a peak before saturation, which does not move with magnetic field. Large nonsaturating magnetoresistance (MR) was observed, and the field dependence of MR exhibits a crossover from semiclassical weak-field B 2 dependence to the high-field linear-field dependence, indicating the presence of Dirac linear energy dispersion. In addition, a systematic violation of Kohler's rule was observed,more » consistent with multiband electronic transport. Strong spin-orbit coupling splitting has an effect on dHvA measurements whereas the angular-dependent dHvA orbit frequencies agree well with the calculated Fermi surface. The cyclotron effective mass ~1.6m e indicates the bands might be trivial, possibly since the Weyl points are located below the Fermi level.« less
Composite Fermi surface in the half-filled Landau level with anisotropic electron mass
NASA Astrophysics Data System (ADS)
Ippoliti, Matteo; Geraedts, Scott; Bhatt, Ravindra
We study the problem of interacting electrons in the lowest Landau level at half filling in the quantum Hall regime, when the electron dispersion is given by an anisotropic mass tensor. Based on experimental observations and theoretical arguments, the ground state of the system is expected to consist of composite Fermions filling an elliptical Fermi sea, with the anisotropy of the ellipse determined by the competing effects of the isotropic Coulomb interaction and anisotropic electron mass tensor. We test this idea quantitatively by using a numerical density matrix renormalization group method for quantum Hall systems on an infinitely long cylinder. Singularities in the structure factor allow us to map the Fermi surface of the composite Fermions. We compute the composite Fermi surface anisotropy for several values of the electron mass anisotropy which allow us to deduce the functional dependence of the former on the latter. This research was supported by Department of Energy Office of Basic Energy Sciences through Grant No. DE-SC0002140.
1977-05-15
February through 15 May 1977 PUBLISHED REPORTS Journal Articles JA No. 4621 Minority Carriers in Graphite and the H- Point Magnetoreflec- tion... point , the light at the output face must emerge from the coupled guide. In principle, both switch states can be achieved us- ing the A/3...Fermi level moves downward with increasing proton dose until it becomes pinned at a position designated as the high-dose Fermi level. At this point
Electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP
NASA Astrophysics Data System (ADS)
Ferrandis, Philippe; Billaud, Mathilde; Duvernay, Julien; Martin, Mickael; Arnoult, Alexandre; Grampeix, Helen; Cassé, Mikael; Boutry, Hervé; Baron, Thierry; Vinet, Maud; Reimbold, Gilles
2018-04-01
To overcome the Fermi-level pinning in III-V metal-oxide-semiconductor capacitors, attention is usually focused on the choice of dielectric and surface chemical treatments prior to oxide deposition. In this work, we examined the influence of the III-V material surface cleaning and the semiconductor growth technique on the electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP(100) substrates. By means of the capacitance-voltage measurements, we demonstrated that samples do not have the same total oxide charge density depending on the cleaning solution used [(NH4)2S or NH4OH] prior to oxide deposition. The determination of the interface trap density revealed that a Fermi-level pinning occurs for samples grown by metalorganic chemical vapor deposition but not for similar samples grown by molecular beam epitaxy. Deep level transient spectroscopy analysis explained the Fermi-level pinning by an additional signal for samples grown by metalorganic chemical vapor deposition, attributed to the tunneling effect of carriers trapped in oxide toward interface states. This work emphasizes that the choice of appropriate oxide and cleaning treatment is not enough to prevent a Fermi-level pinning in III-V metal-oxide-semiconductor capacitors. The semiconductor growth technique needs to be taken into account because it impacts the trapping properties of the oxide.
Fermi Blobs and the Symplectic Camel: A Geometric Picture of Quantum States
NASA Astrophysics Data System (ADS)
Gossona, Maurice A. De
We have explained in previous work the correspondence between the standard squeezed coherent states of quantum mechanics, and quantum blobs, which are the smallest phase space units compatible with the uncertainty principle of quantum mechanics and having the symplectic group as a group of symmetries. In this work, we discuss the relation between quantum blobs and a certain level set (which we call "Fermi blob") introduced by Enrico Fermi in 1930. Fermi blobs allows us to extend our previous results not only to the excited states of the generalized harmonic oscillator in n dimensions, but also to arbitrary quadratic Hamiltonians. As is the case for quantum blobs, we can evaluate Fermi blobs using a topological notion, related to the uncertainty principle, the symplectic capacity of a phase space set. The definition of this notion is made possible by Gromov's symplectic non-squeezing theorem, nicknamed the "principle of the symplectic camel".
Charnukha, A; Evtushinsky, D V; Matt, C E; Xu, N; Shi, M; Büchner, B; Zhigadlo, N D; Batlogg, B; Borisenko, S V
2015-12-18
In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.
NASA Astrophysics Data System (ADS)
Charnukha, A.; Evtushinsky, D. V.; Matt, C. E.; Xu, N.; Shi, M.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Borisenko, S. V.
2015-12-01
In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.
Localized-to-extended-states transition below the Fermi level
NASA Astrophysics Data System (ADS)
Tito, M. A.; Pusep, Yu. A.
2018-05-01
Time-resolved photoluminescence is employed to examine a transition from localized to extended electron states below the Fermi level in multiple narrow quantum well GaAs/AlGaAs heterostructures, where disorder was generated by interface roughness. Such a transition resembles the metal-insulator transition profoundly investigated by electric transport measurements. An important distinction distinguishes the localized-to-extended-states transition studied here: it takes place below the Fermi level in an electron system with a constant concentration, which implies unchanging Coulomb correlations. Moreover, for such a localized-to-extended-states transition the temperature is shown to be irrelevant. In the insulating regime the magnetic field was found to cause an additional momentum relaxation which considerably enhanced the recombination rate. Thus, we propose a method to explore the evolution of the localized electron states in a system with a fixed disorder and Coulomb interaction.
Graphene patterns supported terahertz tunable plasmon induced transparency.
He, Xiaoyong; Liu, Feng; Lin, Fangting; Shi, Wangzhou
2018-04-16
The tunable plasmonic induced transparency has been theoretically investigated based on graphene patterns/SiO 2 /Si/polymer multilayer structure in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that obvious Fano peak can be observed and efficiently modulated because of the strong coupling between incident light and graphene pattern structures. As Fermi level increases, the peak amplitude of Fano resonance increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 40% on condition that the Fermi level changes in the scope of 0.2-1.0 eV. With the distance between cut wire and double semi-circular patterns increases, the peak amplitude and figure of merit increases. The results are very helpful to develop novel graphene plasmonic devices (e.g. sensors, modulators, and antenna) and find potential applications in the fields of biomedical sensing and wireless communications.
NASA Astrophysics Data System (ADS)
Bano, Amreen; Gaur, N. K.
2018-05-01
Ab-initio calculations are carried out to study the electronic and chemical bonding properties of Intermetallic full Heusler compound Pd2HfIn which crystallizes in F-43m structure. All calculations are performed by using density functional theory (DFT) based code Quantum Espresso. Generalized gradient approximations (GGA) of Perdew- Burke- Ernzerhof (PBE) have been adopted for exchange-correlation potential. Calculated electronic band structure reveals the metallic character of the compound. From partial density of states (PDoS), we found the presence of relatively high intensity electronic states of 4d-Pd atom at Fermi level. We have found a pseudo-gap just abouve the Fermi level and N(E) at Fermi level is observed to be 0.8 states/eV, these finding indicates the existence of superconducting character in Pd2HfIn.
Madelung and Hubbard interactions in polaron band model of doped organic semiconductors
Png, Rui-Qi; Ang, Mervin C.Y.; Teo, Meng-How; Choo, Kim-Kian; Tang, Cindy Guanyu; Belaineh, Dagmawi; Chua, Lay-Lay; Ho, Peter K.H.
2016-01-01
The standard polaron band model of doped organic semiconductors predicts that density-of-states shift into the π–π* gap to give a partially filled polaron band that pins the Fermi level. This picture neglects both Madelung and Hubbard interactions. Here we show using ultrahigh workfunction hole-doped model triarylamine–fluorene copolymers that Hubbard interaction strongly splits the singly-occupied molecular orbital from its empty counterpart, while Madelung (Coulomb) interactions with counter-anions and other carriers markedly shift energies of the frontier orbitals. These interactions lower the singly-occupied molecular orbital band below the valence band edge and give rise to an empty low-lying counterpart band. The Fermi level, and hence workfunction, is determined by conjunction of the bottom edge of this empty band and the top edge of the valence band. Calculations are consistent with the observed Fermi-level downshift with counter-anion size and the observed dependence of workfunction on doping level in the strongly doped regime. PMID:27582355
Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveals Fermi Level Pinning on Au(111)
2017-01-01
We report the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4″-dibromo-para-terphenyl as the molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can subsequently be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbon’s band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in GNR-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbate’s band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate. PMID:29049879
The effects of deep-level defects on the electrical properties of Cd0.9Zn0.1Te crystals
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Nan, Ruihua; Jian, Zengyun
2017-06-01
The deep-level defects of CdZnTe (CZT) crystals grown by the modified vertical Bridgman (MVB) method act as trapping centers or recombination centers in the band gap, which have significant effects on its electrical properties. The resistivity and electron mobility-lifetime product of high resistivity Cd0.9Zn0.1Te wafer marked CZT1 and low resistivity Cd0.9Zn0.1Te wafer marked CZT2 were tested respectively. Their deep-level defects were identified by thermally stimulated current (TSC) spectroscopy and thermoelectric effect spectroscopy (TEES) respectively. Then the trap-related parameters were characterized by the simultaneous multiple peak analysis (SIMPA) method. The deep donor level ({E}{{DD}}) dominating dark current was calculated by the relationship between dark current and temperature. The Fermi-level was characterized by current-voltage measurements of temperature dependence. The width of the band gap was characterized by ultraviolet-visible-infrared transmittance spectroscopy. The results show the traps concentration and capture cross section of CZT1 are lower than CZT2, so its electron mobility-lifetime product is greater than CZT2. The Fermi-level of CZT1 is closer to the middle gap than CZT2. The degree of Fermi-level pinned by {E}{{DD}} of CZT1 is larger than CZT2. It can be concluded that the resistivity of CZT crystals increases as the degree of Fermi-level pinned near the middle gap by the deep donor level enlarges. Project supported by the National Natural Science Foundation of China (No. 51502234) and the Scientific Research Plan Projects of Shaanxi Provincial Department of Education of China (No. 15JS040).
Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan
2012-04-24
Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.
Level density inputs in nuclear reaction codes and the role of the spin cutoff parameter
Voinov, A. V.; Grimes, S. M.; Brune, C. R.; ...
2014-09-03
Here, the proton spectrum from the 57Fe(α,p) reaction has been measured and analyzed with the Hauser-Feshbach model of nuclear reactions. Different input level density models have been tested. It was found that the best description is achieved with either Fermi-gas or constant temperature model functions obtained by fitting them to neutron resonance spacing and to discrete levels and using the spin cutoff parameter with much weaker excitation energy dependence than it is predicted by the Fermi-gas model.
The gamma-ray luminosity function of millisecond pulsars and implications for the GeV excess
Hooper, Dan; Mohlabeng, Gopolang
2016-03-29
It has been proposed that a large population of unresolved millisecond pulsars (MSPs) could potentially account for the excess of GeV-scale gamma-rays observed from the region surrounding the Galactic Center. The viability of this scenario depends critically on the gamma-ray luminosity function of this source population, which determines how many MSPs Fermi should have already detected as resolved point sources. In this paper, we revisit the gamma-ray luminosity function of MSPs, without relying on uncertain distance measurements. Our determination, based on a comparison of models with the observed characteristics of the MSP population, suggests that Fermi should have already detectedmore » a significant number of sources associated with such a hypothesized Inner Galaxy population. As a result, we cannot rule out a scenario in which the MSPs residing near the Galactic Center are systematically less luminous than those present in the Galactic Plane or within globular clusters.« less
2010-02-19
UHV- deposited Al2O3(3nm)/ Ga2O3 (Gd2O3)(8.5nm) on n- and p-In0.2Ga0.8As/GaAs. The results exhibit very high-quality interface and free-moving Fermi...κ Ga2O3 (Gd2O3) [GGO] and Gd2O3 on InGaAs, without an interfacial layer. InxGa1−xAs MOSFETs have been successfully demonstrated with excellent device... Ga2O3 (Gd2O3)/In0.2Ga0.8As and high temperature (850°C) stability Scaling high κ oxides to nanometer range as well as unpinning surface Fermi level
2015-03-20
In the bandstructure of graphene which is dominated by Dirac description, valence and conduction bands cross the Fermi level at a single point (K...of energy bands and appearance of Dirac cones near the ‘K’ point and Fermi level the electrons behave like massless Dirac fermions. For applications...results. Introduction Graphene, the super carbon , is now accepted as wonder material with new physics and it has caused major
Ab initio study of gold-doped zigzag graphene nanoribbons
NASA Astrophysics Data System (ADS)
Srivastava, Pankaj; Dhar, Subhra; Jaiswal, Neeraj K.
2014-12-01
The electronic transport properties of zigzag graphene nanoribbons (ZGNRs) through covalent functionalization of gold (Au) atoms is investigated by using non-equilibrium Green's function combined with density functional theory. It is revealed that the electronic properties of Au-doped ZGNRs vary significantly due to spin and its non-inclusion. We find that the DOS profiles of Au-adsorbed ZGNR due to spin reveal very less number of states available for conduction, whereas non-inclusion of spin results in higher DOS across the Fermi level. Edge Au-doped ribbons exhibit stable structure and are energetically more favorable than the center Au-doped ZGNRs. Though the chemical interaction at the ZGNR-Au interface modifies the Fermi level, Au-adsorbed ZGNR reveals semimetallic properties. A prominent qualitative change of the I-V curve from linear to nonlinear is observed as the Au atom shifts from center toward the edges of the ribbon. Number of peaks present near the Fermi level ensures conductance channels available for charge transport in case of Au-center-substituted ZGNR. We predict semimetallic nature of the Au-adsorbed ZGNR with a high DOS peak distributed over a narrow energy region at the Fermi level and fewer conductance channels. Our calculations for the magnetic properties predict that Au functionalization leads to semiconducting nature with different band gaps for spin up and spin down. The outcomes are compared with the experimental and theoretical results available for other materials.
Quantum oscillations in the type-II Dirac semi-metal candidate PtSe2
NASA Astrophysics Data System (ADS)
Yang, Hao; Schmidt, Marcus; Süss, Vicky; Chan, Mun; Balakirev, Fedor F.; McDonald, Ross D.; Parkin, Stuart S. P.; Felser, Claudia; Yan, Binghai; Moll, Philip J. W.
2018-04-01
Three-dimensional topological semi-metals carry quasiparticle states that mimic massless relativistic Dirac fermions, elusive particles that have never been observed in nature. As they appear in the solid body, they are not bound to the usual symmetries of space-time and thus new types of fermionic excitations that explicitly violate Lorentz-invariance have been proposed, the so-called type-II Dirac fermions. We investigate the electronic spectrum of the transition-metal dichalcogenide PtSe2 by means of quantum oscillation measurements in fields up to 65 T. The observed Fermi surfaces agree well with the expectations from band structure calculations, that recently predicted a type-II Dirac node to occur in this material. A hole- and an electron-like Fermi surface dominate the semi-metal at the Fermi level. The quasiparticle mass is significantly enhanced over the bare band mass value, likely by phonon renormalization. Our work is consistent with the existence of type-II Dirac nodes in PtSe2, yet the Dirac node is too far below the Fermi level to support free Dirac–fermion excitations.
The impact of the Fermi-Dirac distribution on charge injection at metal/organic interfaces.
Wang, Z B; Helander, M G; Greiner, M T; Lu, Z H
2010-05-07
The Fermi level has historically been assumed to be the only energy-level from which carriers are injected at metal/semiconductor interfaces. In traditional semiconductor device physics, this approximation is reasonable as the thermal distribution of delocalized states in the semiconductor tends to dominate device characteristics. However, in the case of organic semiconductors the weak intermolecular interactions results in highly localized electronic states, such that the thermal distribution of carriers in the metal may also influence device characteristics. In this work we demonstrate that the Fermi-Dirac distribution of carriers in the metal has a much more significant impact on charge injection at metal/organic interfaces than has previously been assumed. An injection model which includes the effect of the Fermi-Dirac electron distribution was proposed. This model has been tested against experimental data and was found to provide a better physical description of charge injection. This finding indicates that the thermal distribution of electronic states in the metal should, in general, be considered in the study of metal/organic interfaces.
Van Hove singularities in the paramagnetic phase of the Hubbard model: DMFT study
NASA Astrophysics Data System (ADS)
Žitko, Rok; Bonča, Janez; Pruschke, Thomas
2009-12-01
Using the dynamical mean-field theory (DMFT) with the numerical renormalization-group impurity solver we study the paramagnetic phase of the Hubbard model with the density of states (DOS) corresponding to the three-dimensional (3D) cubic lattice and the two-dimensional (2D) square lattice, as well as a DOS with inverse square-root singularity. We show that the electron correlations rapidly smooth out the square-root van Hove singularities (kinks) in the spectral function for the 3D lattice and that the Mott metal-insulator transition (MIT) as well as the magnetic-field-induced MIT differ only little from the well-known results for the Bethe lattice. The consequences of the logarithmic singularity in the DOS for the 2D lattice are more dramatic. At half filling, the divergence pinned at the Fermi level is not washed out, only its integrated weight decreases as the interaction is increased. While the Mott transition is still of the usual kind, the magnetic-field-induced MIT falls into a different universality class as there is no field-induced localization of quasiparticles. In the case of a power-law singularity in the DOS at the Fermi level, the power-law singularity persists in the presence of interaction, albeit with a different exponent, and the effective impurity model in the DMFT turns out to be a pseudogap Anderson impurity model with a hybridization function which vanishes at the Fermi level. The system is then a generalized Fermi liquid. At finite doping, regular Fermi-liquid behavior is recovered.
Ackermann, M.; Ajello, M.; Baldini, L.; ...
2017-07-10
The spatial extension of a γ-ray source is an essential ingredient to determine its spectral properties, as well as its potential multiwavelength counterpart. The capability to spatially resolve γ-ray sources is greatly improved by the newly delivered Fermi-Large Area Telescope (LAT) Pass 8 event-level analysis, which provides a greater acceptance and an improved point-spread function, two crucial factors for the detection of extended sources. Here, we present a complete search for extended sources located within 7° from the Galactic plane, using 6 yr of Fermi-LAT data above 10 GeV. We find 46 extended sources and provide their morphological and spectralmore » characteristics. As a result, this constitutes the first catalog of hard Fermi-LAT extended sources, named the Fermi Galactic Extended Source Catalog, which allows a thorough study of the properties of the Galactic plane in the sub-TeV domain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Buehler, R.; Ajello, M.
The spatial extension of a γ -ray source is an essential ingredient to determine its spectral properties, as well as its potential multiwavelength counterpart. The capability to spatially resolve γ -ray sources is greatly improved by the newly delivered Fermi -Large Area Telescope (LAT) Pass 8 event-level analysis, which provides a greater acceptance and an improved point-spread function, two crucial factors for the detection of extended sources. Here, we present a complete search for extended sources located within 7° from the Galactic plane, using 6 yr of Fermi -LAT data above 10 GeV. We find 46 extended sources and providemore » their morphological and spectral characteristics. This constitutes the first catalog of hard Fermi -LAT extended sources, named the Fermi Galactic Extended Source Catalog, which allows a thorough study of the properties of the Galactic plane in the sub-TeV domain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Baldini, L.
The spatial extension of a γ-ray source is an essential ingredient to determine its spectral properties, as well as its potential multiwavelength counterpart. The capability to spatially resolve γ-ray sources is greatly improved by the newly delivered Fermi-Large Area Telescope (LAT) Pass 8 event-level analysis, which provides a greater acceptance and an improved point-spread function, two crucial factors for the detection of extended sources. Here, we present a complete search for extended sources located within 7° from the Galactic plane, using 6 yr of Fermi-LAT data above 10 GeV. We find 46 extended sources and provide their morphological and spectralmore » characteristics. As a result, this constitutes the first catalog of hard Fermi-LAT extended sources, named the Fermi Galactic Extended Source Catalog, which allows a thorough study of the properties of the Galactic plane in the sub-TeV domain.« less
NASA Astrophysics Data System (ADS)
Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Castro, D.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Cohen, J. M.; Costantin, D.; Costanza, F.; Cutini, S.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Green, D.; Grenier, I. A.; Grondin, M.-H.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Horan, D.; Hou, X.; Jóhannesson, G.; Kamae, T.; Kuss, M.; La Mura, G.; Larsson, S.; Lemoine-Goumard, M.; Li, J.; Longo, F.; Loparco, F.; Lubrano, P.; Magill, J. D.; Maldera, S.; Malyshev, D.; Manfreda, A.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paliya, V. S.; Paneque, D.; Perkins, J. S.; Persic, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Principe, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tak, D.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.
2017-07-01
The spatial extension of a γ-ray source is an essential ingredient to determine its spectral properties, as well as its potential multiwavelength counterpart. The capability to spatially resolve γ-ray sources is greatly improved by the newly delivered Fermi-Large Area Telescope (LAT) Pass 8 event-level analysis, which provides a greater acceptance and an improved point-spread function, two crucial factors for the detection of extended sources. Here, we present a complete search for extended sources located within 7° from the Galactic plane, using 6 yr of Fermi-LAT data above 10 GeV. We find 46 extended sources and provide their morphological and spectral characteristics. This constitutes the first catalog of hard Fermi-LAT extended sources, named the Fermi Galactic Extended Source Catalog, which allows a thorough study of the properties of the Galactic plane in the sub-TeV domain.
Fermi energy control of vacancy coalescence and dislocation density in melt-grown GaAs
NASA Technical Reports Server (NTRS)
Lagowski, J.; Gatos, H. C.; Lin, D. G.; Aoyama, T.
1984-01-01
A striking effect of the Fermi energy on the dislocation density in melt-grown GaAs has been discovered. Thus, a shift of the Fermi energy from 0.1 eV above to 0.2 eV below its intrinsic value (at high temperature, i.e., near 1100 K) increases the dislocation density by as much as five orders of magnitude. The Fermi energy shift was brought about by n-type and p-type doping at a level of about 10 to the 17th per cu cm (under conditions of optimum partial pressure of As, i.e., under optimum melt stoichiometry). This effect must be associated with the fact that the Fermi energy controls the charge state of vacancies (i.e., the occupancy of the associated electronic states) which in turn must control their tendency to coalesce and thus the dislocation density. It appears most likely that gallium vacancies are the critical species.
NASA Astrophysics Data System (ADS)
Choi, W. H.; Koh, H.; Rotenberg, E.; Yeom, H. W.
2007-02-01
Dense Pb overlayers on Si(111) are important as the wetting layer for anomalous Pb island growth as well as for their own complex “devil’s-staircase” phases. The electronic structures of dense Pb overlayers on Si(111) were investigated in detail by angle-resolved photoemission. Among the series of ordered phases found recently above one monolayer, the low-coverage 7×3 and the high-coverage 14×3 phases are studied; they are well ordered and form reproducibly in large areas. The band dispersions and Fermi surfaces of the two-dimensional (2D) electronic states of these overlayers are mapped out. A number of metallic surface-state bands are identified for both phases with complex Fermi contours. The basic features of the observed Fermi contours can be explained by overlapping 2D free-electron-like Fermi circles. This analysis reveals that the 2D electrons near the Fermi level of the 7×3 and 14×3 phases are mainly governed by strong 1×1 and 3×3 potentials, respectively. The origins of the 2D electronic states and their apparent Fermi surface shapes are discussed based on recent structure models.
Possible origin of photoconductivity in La0.7Ca0.3MnO3
NASA Astrophysics Data System (ADS)
Sagdeo, P. R.; Choudhary, R. J.; Phase, D. M.
2010-01-01
The effect of photon energy on the density of states near Fermi level of pulsed laser deposited La0.7Ca0.3MnO3 thin film has been studied to investigate the possible origin of change in the conductivity of these manganites upon photon exposure. For this purpose the photoelectron spectroscopy measurements were carried out using CSR beamline (BL-2) on Indus-1 synchrotron radiation source. The valance band spectra were measured at room temperature with photon energy ranging from 40 to 60 eV. We could see huge change in the density of states near Fermi level and this change is observed to be highest at 56 eV which is due to the resonance between Mn 3p to Mn 3d level. Our results suggest that the probability of electron transfer from deep Mn 3p level to Mn 3d-eg level is higher than that of Mn 3d-t2g level. It appears that this transfer of electron from deep Mn level to Mn 3d-eg level not only modifies the density of state near Fermi level but also changes the mobility of electrons by modifying the electron lattice coupling due to presence of Mn+3 Jahn-Teller ion.
Anomalous Nernst effect in type-II Weyl semimetals
NASA Astrophysics Data System (ADS)
Saha, Subhodip; Tewari, Sumanta
2018-01-01
Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.
Crystal growth of Dirac semimetal ZrSiS with high magnetoresistance and mobility.
Sankar, Raman; Peramaiyan, G; Muthuselvam, I Panneer; Butler, Christopher J; Dimitri, Klauss; Neupane, Madhab; Rao, G Narsinga; Lin, M-T; Chou, F C
2017-01-18
High quality single crystal ZrSiS as a theoretically predicted Dirac semimetal has been grown successfully using a vapor phase transport method. The single crystals of tetragonal structure are easy to cleave into perfect square-shaped pieces due to the van der Waals bonding between the sulfur atoms of the quintuple layers. Physical property measurement results including resistivity, Hall coefficient (R H ), and specific heat are reported. The transport and thermodynamic properties suggest a Fermi liquid behavior with two Fermi pockets at low temperatures. At T = 3 K and magnetic field of Hǁc up to 9 Tesla, large magneto-resistance up to 8500% and 7200% for Iǁ (100) and Iǁ (110) were found. Shubnikov de Haas (SdH) oscillations were identified from the resistivity data, revealing the existence of two Fermi pockets at the Fermi level via the fast Fourier transform (FFT) analysis. The Hall coefficient (R H ) showed hole-dominated carriers with a high mobility of 3.05 × 10 4 cm 2 V -1 s -1 at 3 K. ZrSiS has been confirmed to be a Dirac semimetal by the Dirac cone mapping near the X-point via angle resolved photoemission spectroscopy (ARPES) with a Dirac nodal line near the Fermi level identified using scanning tunneling spectroscopy (STS).
Electronic structures of of PuX (X=S, Se, Te)
NASA Astrophysics Data System (ADS)
Maehira, Takahiro; Sakai, Eijiro; Tatetsu, Yasutomi
2013-08-01
We have calculated the energy band structures and the Fermi surfaces of PuS, PuSe, and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in the local density approximation. In general, the energy bands near the Fermi level are mainly caused by the hybridization between the Pu 5 f and the monochalcogenide p electrons. The obtained main Fermi surfaces consisted of two hole sheets and one electron sheet, which were constructed from the band having both the Pu 5 f state and the monochalcogenide p state.
Thomas-Fermi approximation for a condensate with higher-order interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thoegersen, M.; Jensen, A. S.; Zinner, N. T.
We consider the ground state of a harmonically trapped Bose-Einstein condensate within the Gross-Pitaevskii theory including the effective-range corrections for a two-body zero-range potential. The resulting nonlinear Schroedinger equation is solved analytically in the Thomas-Fermi approximation neglecting the kinetic-energy term. We present results for the chemical potential and the condensate profiles, discuss boundary conditions, and compare to the usual Thomas-Fermi approach. We discuss several ways to increase the influence of effective-range corrections in experiment with magnetically tunable interactions. The level of tuning required could be inside experimental reach in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakke, Knut
2010-05-15
We will show that when a neutral particle with permanent electric dipole moment interacts with a specific field configuration when the local reference frames of the observers are Fermi-Walker transported, the Landau quantization analog to the He-McKellar-Wilkens setup arises in the nonrelativistic quantum dynamics of the neutral particle due the noninertial effects of the Fermi-Walker reference frame. We show that the noninertial effects do not break the infinity degeneracy of the energy levels, but in this case, the cyclotron frequency depends on the angular velocity.
Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debehets, J.; Homm, P.; Menghini, M.
In this paper, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate detector and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-level. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH4)2S-solutions in an inert atmosphere (N2-gas). Although the (NH4)2S-cleaning in N2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH4)2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs. This work has been funded by J.D.'s PhD fellowship of the Fund of Scientific Research-Flanders (FWO-V) (Dossier No. 11U4516N). P.H. acknowledges support from Becas Chile-CONICYT. This research was also supported by the FWO Odysseus Program, the Belgian Hercules Stichting with the Project No. Her/08/25 and AKUL/13/19 and the KU Leuven project GOA "Fundamental challenges in Semiconductor Research". The authors would also like to thank Bastiaan Opperdoes and Ludwig Henderix for technical support. The work was supported by the U.S. Department of Energy (USDOE), Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). Battelle operates PNNL for the USDOE under contract DE-AC05-76RL01830.« less
Study of sulfur bonding on gallium arsenide (100) surfaces using supercritical fluid extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabauy, P.; Darici, Y.; Furton, K.G.
1995-12-01
In the last decades Gallium Arsenide (GaAs) has been considered the semiconductor that will replace silicon because of its direct band gap and high electron mobility. Problems with GaAs Fermi level pinning has halted its widespread use in the electronics industry. The formation of oxides on GaAs results in a high density of surface states that effectively pin the surface Fermi level at the midgap. Studies on sulfur passivation have eliminated oxidation and virtually unpinned the Fermi level on the GaAs surface. This has given rise to interest in sulfur-GaAs bonds. In this presentation, we will discuss the types ofmore » sulfur bonds extracted from a sulfur passivated GaAs (100) using Supercritical Fluid (CO2) Extraction (SFE). SFE can be a valuable tool in the study of chemical speciations on semiconductor surfaces. The variables evaluated to effectively study the sulfur species from the GaAs surface include passivation techniques, supercritical fluid temperatures, densities, and extraction times.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xinfang; White, Ralph E.; Huang, Kevin
With the assumption that the Fermi level (electrochemical potential of electrons) is uniform across the thickness of a mixed ionic and electronic conducting (MIEC) electrode, the charge-transport model in the electrode domain can be reduced to the modified Fick’s first law, which includes a thermodynamic factor A. A transient numerical solution of the Nernst-Planck theory was obtained for a symmetric cell with MIEC electrodes to illustrate the validity of the assumption of a uniform Fermi level. Subsequently, an impedance numerical solution based on the modified Fick’s first law is compared with that from the Nernst-Planck theory. The results show thatmore » Nernst-Planck charge-transport model is essentially the same as the modified Fick’s first law model as long as the MIEC electrodes have a predominant electronic conductivity. However, because of the invalidity of the uniform Fermi level assumption for aMIEC electrolyte with a predominant ionic conductivity, Nernst-Planck theory is needed to describe the charge transport behaviors.« less
Ning, Xingkun; Wang, Zhanjie; Zhang, Zhidong
2015-01-01
A large magnetic coupling has been observed at the La0.7Ca0.3MnO3/LaNiO3 (LCMO/LNO) interface. The x-ray photoelectron spectroscopy (XPS) study results show that Fermi level continuously shifted across the LCMO/LNO interface in the interface region. In addition, the charge transfer between Mn and Ni ions of the type Mn3+ − Ni3+ → Mn4+ − Ni2+ with the oxygen vacancies are observed in the interface region. The intrinsic interfacial charge transfer can give rise to itinerant electrons, which results in a “shoulder feature” observed at the low binding energy in the Mn 2p core level spectra. Meanwhile, the orbital reconstruction can be mapped according to the Fermi level position and the charge transfer mode. It can be considered that the ferromagnetic interaction between Ni2+ and Mn4+ gives rise to magnetic regions that pin the ferromagnetic LCMO and cause magnetic coupling at the LCMO/LNO interface. PMID:25676088
The LLRF System for the S-Band RF Plants of the FERMI Linac
NASA Astrophysics Data System (ADS)
Fabris, A.; Byrd, J.; D'Auria, G.; Doolittle, L.; Gelmetti, F.; Huang, G.; Jones, J.; Milloch, M.; Predonzani, M.; Ratti, A.; Rohlev, T.; Salom, A.; Serrano, C.; Stettler, M.
2016-04-01
Specifications on electron beam quality for the operation of a linac-based free-electron laser (FEL), as FERMI in Trieste (Italy), impose stringent requirements on the stability of the electromagnetic fields of the accelerating sections. These specifications can be met only with state-of-the-art low-level RF (LLRF) systems based on advanced digital technologies. Design considerations, construction, and performance results of the FERMI digital LLRF are presented in this paper. The stability requirements derived by simulations are better than 0.1% in amplitude and 0.1° S-band in phase. The system installed in the FERMI Linac S-band RF plants has met these specifications and is in operation on a 24-h basis as a user facility. Capabilities of the system allow planning for new developments that are also described here.
Hydrodynamic flows of non-Fermi liquids: Magnetotransport and bilayer drag
NASA Astrophysics Data System (ADS)
Patel, Aavishkar A.; Davison, Richard A.; Levchenko, Alex
2017-11-01
We consider a hydrodynamic description of transport for generic two-dimensional electron systems that lack Galilean invariance and do not fall into the category of Fermi liquids. We study magnetoresistance and show that it is governed only by the electronic viscosity provided that the wavelength of the underlying disorder potential is large compared to the microscopic equilibration length. We also derive the Coulomb drag transresistance for double-layer non-Fermi-liquid systems in the hydrodynamic regime. As an example, we consider frictional drag between two quantum Hall states with half-filled lowest Landau levels, each described by a Fermi surface of composite fermions coupled to a U (1 ) gauge field. We contrast our results to prior calculations of drag of Chern-Simons composite particles and place our findings in the context of available experimental data.
On the important role of the anti-Jahn-Teller effect in underdoped cuprate superconductors
NASA Astrophysics Data System (ADS)
Kamimura, Hiroshi; Matsuno, Shunichi; Mizokawa, Takashi; Sasaoka, Kenji; Shiraishi, Kenji; Ushio, Hideki
2013-04-01
In this paper it is shown that the "anti-Jahn-Teller effect" plays an essential role in giving rise to a small Fermi surface of Fermi pockets above Tc and d-wave superconductivity below Tc in underdoped cuprates. In the first part of the present paper, we review the latest developments of the model proposed by Kamimura and Suwa, which bears important characteristics born from the interplay of Jahn-Teller Physics and Mott Physics. It is shown that the feature of Fermi surfaces in underdoped LSCO is the Fermi pockets in the nodal region constructed by doped holes under the coexistence of a metallic state and of the local antiferromagnetic order. In the antinodal region in the momentum space, there are no Fermi surfaces. Then it is discussed that the phonon-involved mechanism based on the Kamimura-Suwa model leads to the d-wave superconductivity. In particular, it is shown that the origin of strong electron-phonon interactions in cuprates is due to the anti-Jahn-Teller effect. In the second part a recent theoretical result on the energy distribution curves (EDCs) of angle-resolved photoemission spectroscopy (ARPES) below Tc is discussed. It is shown that the feature of ARPES profiles of underdoped cuprates consists of a coherent peak in the nodal region and the real transitions of photoexcited electrons from occupied states below the Fermi level to a free-electron state above the vacuum level in the antinodal region, where the latter transitions form a broad hump. From this feature, the origin of the two distinct gaps observed by ARPES is elucidated without introducing the concept of the pseudogap. Finally, a remark is made on the phase diagram of underdoped cuprates.
Transport and NMR characteristics of the skutterudite-related compound Ca3Rh4Sn13
NASA Astrophysics Data System (ADS)
Tseng, C. W.; Kuo, C. N.; Li, B. S.; Wang, L. M.; Gippius, A. A.; Kuo, Y. K.; Lue, C. S.
2018-02-01
We report the electronic properties of the Yb3Rh4Sn13-type single crystalline Ca3Rh4Sn13 by means of the electrical resistivity, Hall coefficient, Seebeck coefficient, thermal conductivity, as well as 119Sn nuclear magnetic resonance (NMR) measurements. The negative sign of the Hall coefficient and Seebeck coefficient at low temperatures suggests that the n-type carriers dominate the electrical transport in Ca3Rh4Sn13, in contrast to the observations in Sr3Rh4Sn13 which has a p-type conduction. Such a finding indicates a significant difference in the electronic features between these two stannides. Furthermore, we analyzed the temperature-dependent 119Sn NMR spin-lattice relaxation rate for Ca3Rh4Sn13, (Sr0.7Ca0.3)3Rh4Sn13, and Sr3Rh4Sn13 to examine the change of the electronic Fermi-level density of states (DOS) in (Sr1-xCax)3Rh4Sn13. It indicates that the Sn 5s partial Fermi-level DOS enhances with increasing the Ca content, being consistent with the trend of the superconducting temperature. Since the total Fermi-level DOS usually obeys the same trend of the partial Fermi-level DOS, the NMR analysis provides microscopic evidence for the correlation between the electronic DOS and superconductivity of the (Sr1-xCax)3Rh4Sn13 system.
Li, Houfen; Yu, Hongtao; Quan, Xie; Chen, Shuo; Zhang, Yaobin
2016-01-27
Z-scheme photocatalytic system shows superiority in degradation of refractory pollutants and water splitting due to the high redox capacities caused by its unique charge transfer behaviors. As a key component of Z-scheme system, the electron mediator plays an important role in charge carrier migration. According to the energy band theory, we believe the interfacial energy band bendings facilitate the electron transfer via Z-scheme mechanism when the Fermi level of electron mediator is between the Fermi levels of Photosystem II (PS II) and Photosystem I (PS I), whereas charge transfer is inhibited in other cases as energy band barriers would form at the semiconductor-metal interfaces. Here, this inference was verified by the increased hydroxyl radical generation and improved photocurrent on WO3-Cu-gC3N4 (with the desired Fermi level structure), which were not observed on either WO3-Ag-gC3N4 or WO3-Au-gC3N4. Finally, photocatalytic degradation rate of 4-nonylphenol on WO3-Cu-gC3N4 was proved to be as high as 11.6 times than that of WO3-gC3N4, further demonstrating the necessity of a suitable electron mediator in Z-scheme system. This study provides scientific basis for rational construction of Z-scheme photocatalytic system.
NASA Astrophysics Data System (ADS)
Chen, C.-H.; Tan, T. Y.
1995-10-01
Using the theoretically calculated point-defect total-energy values of Baraff and Schlüter in GaAs, an amphoteric-defect model has been proposed by Walukiewicz to explain a large number of experimental results. The suggested amphoteric-defect system consists of two point-defect species capable of transforming into each other: the doubly negatively charged Ga vacancy V {Ga/2-} and the triply positively charged defect complex (ASGa+ V As)3+, with AsGa being the antisite defect of an As atom occupying a Ga site and V As being an As vacancy. When present in sufficiently high concentrations, the amphoteric defect system V {Ga/2-}/(AsGa+ V As)3+ is supposed to be able to pin the GaAs Fermi level at approximately the E v +0.6 eV level position, which requires that the net free energy of the V Ga/(AsGa+ V As) defect system to be minimum at the same Fermi-level position. We have carried out a quantitative study of the net energy of this defect system in accordance with the individual point-defect total-energy results of Baraff and Schlüter, and found that the minimum net defect-system-energy position is located at about the E v +1.2 eV level position instead of the needed E v +0.6 eV position. Therefore, the validity of the amphoteric-defect model is in doubt. We have proposed a simple criterion for determining the Fermi-level pinning position in the deeper part of the GaAs band gap due to two oppositely charged point-defect species, which should be useful in the future.
Triply degenerate nodal points and topological phase transitions in NaCu3Te2
NASA Astrophysics Data System (ADS)
Xia, Yunyouyou; Li, Gang
2017-12-01
Quasiparticle excitations of free electrons in condensed-matter physics, characterized by the dimensionality of the band crossing, can find their elementary-particle analogs in high-energy physics, such as Majorana, Weyl, and Dirac fermions, while crystalline symmetry allows more quasiparticle excitations and exotic fermions to emerge. Using symmetry analysis and ab initio calculations, we propose that the three-dimensional honeycomb crystal NaCu3Te2 hosts triply degenerate nodal points (TDNPs) residing at the Fermi level. Furthermore, in this system we find a tunable phase transition between a trivial insulator, a TDNP phase, and a weak topological insulator (TI), triggered by a symmetry-allowed perturbation and the spin-orbital coupling (SOC). Such a topological nontrivial ternary compound not only serves as a perfect candidate for studying three-component fermions, but also provides an excellent playground for understanding the topological phase transitions between TDNPs, TIs, and trivial insulators, which distinguishes this system from other TDNP candidates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jun; Park, G. Barratt; Field, Robert W.
A new quartic force field for the SO 2 C ~ 1B 2 state has been derived, based on high resolution data from S 16O 2 and S 18O 2. Included are eight b 2 symmetry vibrational levels of S 16O 2 reported in the first paper of this series [G. B. Park, et al., J. Chem. Phys. 144, 144311 (2016)]. Many of the experimental observables not included in the fit, such as the Franck-Condon intensities and the Coriolis-perturbed effective C rotational constants of highly anharmonic C ~ state vibrational levels, are well reproduced using our force field. Because themore » two stretching modes of the C ~ state are strongly coupled via Fermi-133 interaction, the vibrational structure of the C state is analyzed in a Fermi-system basis set, constructed explicitly in this work via partial diagonalization of the vibrational Hamiltonian. The physical significance of the Fermi-system basis is discussed in terms of semiclassical dynamics, based on study of Fermi-resonance systems by Kellman and coworkers [M. E. Kellman and L. Xiao, J. Chem. Phys. 93, 5821 (1990)]. By diagonalizing the vibrational Hamiltonian in the Fermi-system basis, the vibrational characters of all vibrational levels can be determined unambiguously. It is shown that the bending mode cannot be treated separately from the coupled stretching modes, particularly at vibrational energies of more than 2000 cm –1. Based on our force field, the structure of the Coriolis interactions in the C ~ state of SO 2 is also discussed. As a result, we identify the origin of the alternating patterns in the effective C rotational constants of levels in the vibrational progressions of the symmetry-breaking mode, ν β (which correlates with the antisymmetric stretching mode in our assignment scheme).« less
Jiang, Jun; Park, G. Barratt; Field, Robert W.
2016-04-14
A new quartic force field for the SO 2 C ~ 1B 2 state has been derived, based on high resolution data from S 16O 2 and S 18O 2. Included are eight b 2 symmetry vibrational levels of S 16O 2 reported in the first paper of this series [G. B. Park, et al., J. Chem. Phys. 144, 144311 (2016)]. Many of the experimental observables not included in the fit, such as the Franck-Condon intensities and the Coriolis-perturbed effective C rotational constants of highly anharmonic C ~ state vibrational levels, are well reproduced using our force field. Because themore » two stretching modes of the C ~ state are strongly coupled via Fermi-133 interaction, the vibrational structure of the C state is analyzed in a Fermi-system basis set, constructed explicitly in this work via partial diagonalization of the vibrational Hamiltonian. The physical significance of the Fermi-system basis is discussed in terms of semiclassical dynamics, based on study of Fermi-resonance systems by Kellman and coworkers [M. E. Kellman and L. Xiao, J. Chem. Phys. 93, 5821 (1990)]. By diagonalizing the vibrational Hamiltonian in the Fermi-system basis, the vibrational characters of all vibrational levels can be determined unambiguously. It is shown that the bending mode cannot be treated separately from the coupled stretching modes, particularly at vibrational energies of more than 2000 cm –1. Based on our force field, the structure of the Coriolis interactions in the C ~ state of SO 2 is also discussed. As a result, we identify the origin of the alternating patterns in the effective C rotational constants of levels in the vibrational progressions of the symmetry-breaking mode, ν β (which correlates with the antisymmetric stretching mode in our assignment scheme).« less
Berry phase and anomalous transport of the composite fermions at the half-filled Landau level
NASA Astrophysics Data System (ADS)
Pan, W.; Kang, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.
2017-12-01
The fractional quantum Hall effect (FQHE) in two-dimensional electron systems is an exotic, superfluid-like matter with an emergent topological order. From the consideration of the Aharonov-Bohm interaction between electrons and magnetic field, the ground state of a half-filled lowest Landau level is mathematically transformed to a Fermi sea of composite objects of electrons bound to two flux quanta, termed composite fermions (CFs). A strong support for the CF theories comes from experimental confirmation of the predicted Fermi surface at ν = 1/2 (where ν is the Landau level filling factor) from the detection of the Fermi wavevector in semi-classical geometrical resonance experiments. Recent developments in the theory of CFs have led to the prediction of a π Berry phase for the CF circling around the Fermi surface at half-filling. In this paper we provide experimental evidence for the detection of the Berry phase of CFs in the fractional quantum Hall effect. Our measurements of the Shubnikov-de Haas oscillations of CFs as a function carrier density at a fixed magnetic field provide strong support for the existence of a π Berry phase at ν = 1/2. We also discover that the conductivity of composite fermions at ν = 1/2 displays an anomalous linear density dependence, whose origin remains mysterious yet tantalizing.
Anta, Juan A; Mora-Seró, Iván; Dittrich, Thomas; Bisquert, Juan
2008-08-14
We make use of the numerical simulation random walk (RWNS) method to compute the "jump" diffusion coefficient of electrons in nanostructured materials via mean-square displacement. First, a summary of analytical results is given that relates the diffusion coefficient obtained from RWNS to those in the multiple-trapping (MT) and hopping models. Simulations are performed in a three-dimensional lattice of trap sites with energies distributed according to an exponential distribution and with a step-function distribution centered at the Fermi level. It is observed that once the stationary state is reached, the ensemble of particles follow Fermi-Dirac statistics with a well-defined Fermi level. In this stationary situation the diffusion coefficient obeys the theoretical predictions so that RWNS effectively reproduces the MT model. Mobilities can be also computed when an electrical bias is applied and they are observed to comply with the Einstein relation when compared with steady-state diffusion coefficients. The evolution of the system towards the stationary situation is also studied. When the diffusion coefficients are monitored along simulation time a transition from anomalous to trap-limited transport is observed. The nature of this transition is discussed in terms of the evolution of electron distribution and the Fermi level. All these results will facilitate the use of RW simulation and related methods to interpret steady-state as well as transient experimental techniques.
Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair
NASA Astrophysics Data System (ADS)
Čubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad
2011-10-01
We provide evidence that the holographic dual to a strongly coupled charged Fermi liquid has a non-zero fermion density in the bulk. We show that the pole-strength of the stable quasiparticle characterizing the Fermi surface is encoded in the AdS probability density of a single normalizable fermion wavefunction in AdS. Recalling Migdal's theorem which relates the pole strength to the Fermi-Dirac characteristic discontinuity in the number density at ω F , we conclude that the AdS dual of a Fermi liquid is described by occupied on-shell fermionic modes in AdS. Encoding the occupied levels in the total spatially averaged probability density of the fermion field directly, we show that an AdS Reissner-Nordström black holein a theory with charged fermions has a critical temperature, at which the system undergoes a first-order transition to a black hole with a non-vanishing profile for the bulk fermion field. Thermodynamics and spectral analysis support that the solution with non-zero AdS fermion-profile is the preferred ground state at low temperatures.
First-principles study of electronic structure and Fermi surface in semimetallic YAs
Swatek, Przemys?aw Wojciech
2018-03-23
In the course of searching for new systems, which exhibit nonsaturating and extremely large positive magnetoresistance, electronic structure, Fermi surface, and de Haas-van Alphen characteristics of the semimetallic YAs compound were studied using the all-electron full-potential linearized augmented-plane wave (FP–LAPW) approach in the framework of the generalized gradient approximation (GGA). In the scalar-relativistic calculation, the cubic symmetry splits fivefold degenerate Y- d orbital into low-energy threefold-degenerate and twofold degenerate doublet states at point around the Fermi energy. Furthermore one of them, together with the threefold degenerate character of As-p orbital, render the YAs semimetal with a topologically trivial band ordermore » and fairly low density of states at the Fermi level. Including spin–orbit (SO) coupling into the calculation leads to pronounced splitting of the state and shifting the bands in the energy scale. Consequently, the determined four different 3-dimensional Fermi surface sheets of YAs consists of three concentric hole-like bands at and one ellipsoidal electron-like sheet centred at the X points. In full accordance with the previous first-principles calculations for isostructural YSb and YBi, the calculated Fermi surface of YAs originates from fairly compensated multi-band electronic structures.« less
First-principles study of electronic structure and Fermi surface in semimetallic YAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swatek, Przemys?aw Wojciech
In the course of searching for new systems, which exhibit nonsaturating and extremely large positive magnetoresistance, electronic structure, Fermi surface, and de Haas-van Alphen characteristics of the semimetallic YAs compound were studied using the all-electron full-potential linearized augmented-plane wave (FP–LAPW) approach in the framework of the generalized gradient approximation (GGA). In the scalar-relativistic calculation, the cubic symmetry splits fivefold degenerate Y- d orbital into low-energy threefold-degenerate and twofold degenerate doublet states at point around the Fermi energy. Furthermore one of them, together with the threefold degenerate character of As-p orbital, render the YAs semimetal with a topologically trivial band ordermore » and fairly low density of states at the Fermi level. Including spin–orbit (SO) coupling into the calculation leads to pronounced splitting of the state and shifting the bands in the energy scale. Consequently, the determined four different 3-dimensional Fermi surface sheets of YAs consists of three concentric hole-like bands at and one ellipsoidal electron-like sheet centred at the X points. In full accordance with the previous first-principles calculations for isostructural YSb and YBi, the calculated Fermi surface of YAs originates from fairly compensated multi-band electronic structures.« less
Electronic structures of Plutonium compounds with the NaCl-type monochalcogenides structure
NASA Astrophysics Data System (ADS)
Maehira, Takahiro; Tatetsu, Yasutomi
2012-12-01
We calculate the energy band structure and the Fermi surface of PuS, PuSe and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in a local density approximation. It is found in common that the energy bands in the vicinity of the Fermi level are mainly due to the hybridization between Pu 5/ and monochalcogenide p electrons. The obtained main Fermi surfaces are composed of two hole sheets and one electron sheet, all of which are constructed from the band having the Pu 5/ state and the monochalcogenide p state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koryazhkina, M. N., E-mail: mahavenok@mail.ru; Tikhov, S. V.; Gorshkov, O. N.
It is shown that the formation of Au nanoparticles at the insulator–silicon interface in structures with a high density of surface states results in a shift of the Fermi-level pinning energy at this interface towards the valence-band ceiling in silicon and in increasing the surface-state density at energies close to the Fermi level. In this case, a band with a peak at 0.85 eV arises on the photosensivity curves of the capacitor photovoltage, which is explained by the photoemission of electrons from the formed Au-nanoparticle electron states near the valence-band ceiling in silicon.
Three-component fermions with surface Fermi arcs in tungsten carbide
NASA Astrophysics Data System (ADS)
Ma, J.-Z.; He, J.-B.; Xu, Y.-F.; Lv, B. Q.; Chen, D.; Zhu, W.-L.; Zhang, S.; Kong, L.-Y.; Gao, X.; Rong, L.-Y.; Huang, Y.-B.; Richard, P.; Xi, C.-Y.; Choi, E. S.; Shao, Y.; Wang, Y.-L.; Gao, H.-J.; Dai, X.; Fang, C.; Weng, H.-M.; Chen, G.-F.; Qian, T.; Ding, H.
2018-04-01
Topological Dirac and Weyl semimetals not only host quasiparticles analogous to the elementary fermionic particles in high-energy physics, but also have a non-trivial band topology manifested by gapless surface states, which induce exotic surface Fermi arcs1,2. Recent advances suggest new types of topological semimetal, in which spatial symmetries protect gapless electronic excitations without high-energy analogues3-11. Here, using angle-resolved photoemission spectroscopy, we observe triply degenerate nodal points near the Fermi level of tungsten carbide with space group
Mahns, Benjamin; Roth, Friedrich; Knupfer, Martin
2012-04-07
The electronic structure of potassium intercalated picene and coronene films has been studied using photoemission spectroscopy. Picene has additionally been intercalated using sodium. Upon alkali metal addition core level as well as valence band photoemission data signal a filling of previously unoccupied states of the two molecular materials due to charge transfer from potassium. In contrast to the observation of superconductivity in K(x)picene and K(x)coronene (x ~ 3), none of the films studied shows emission from the Fermi level, i.e., we find no indication for a metallic ground state. Several reasons for this observation are discussed.
Five New Millisecond Pulsars From A Radio Survey Of 14 Unidentified Fermi -Lat Gamma-Ray Sources
Kerr, M.; Camilo, F.; Johnson, T. J.; ...
2012-02-27
We have discovered five millisecond pulsars (MSPs) in a survey of 14 unidentified Fermi-LAT sources in the southern sky using the Parkes radio telescope. PSRs J0101–6422, J1514–4946, and J1902–5105 reside in binaries, while PSRs J1658–5324 and J1747–4036 are isolated. Using an ephemeris derived from timing observations of PSR J0101–6422 (P=2.57ms, DM=12 pc cm -3), we have detected γ-ray pulsations and measured its proper motion. Its γ-ray spectrum (a power law of Γ = 0.9 with a cutoff at 1.6GeV) and efficiency are typical of other MSPs, but its radio and γ-ray light curves challenge simple geometric models of emission. Themore » high success rate of this survey—enabled by selecting γ- ray sources based on their detailed spectral characteristics—and other similarly successful searches indicate that a substantial fraction of the local population of MSPs may soon be known.« less
Geometrically frustrated trimer-based Mott insulator
NASA Astrophysics Data System (ADS)
Nguyen, Loi T.; Halloran, T.; Xie, Weiwei; Kong, Tai; Broholm, C. L.; Cava, R. J.
2018-05-01
The crystal structure of B a4NbR u3O12 is based on triangular planes of elongated R u3O12 trimers oriented perpendicular to the plane. We report that it is semiconducting, that its Weiss temperature and effective magnetic moment are -155 K and 2.59 μB/f .u . , respectively, and that the magnetic susceptibility and specific-heat data indicate that it exhibits magnetic ordering near 4 K. The presence of a high density of low energy states is evidenced by a substantial Sommerfeld-like T-linear term [ γ =31 (2 ) mJ mo l-1K-2 ] in the specific heat. Electronic-structure calculations reveal that the electronic states at the Fermi energy reside on the R u3O12 trimers and that the calculated density of electronic states is high and continuous around the Fermi energy—in other words density functional theory calculates the material to be a metal. The results imply that B a4NbR u3O12 is a geometrically frustrated trimer-based Mott insulator.
Systems Engineering Challenges for GSFC Space Science Mission Operations
NASA Technical Reports Server (NTRS)
Thienel, Julie; Harman, Richard R.
2017-01-01
The NASA Goddard Space Flight Center Space Science Mission Operations (SSMO) project currently manages19 missions for the NASA Science Mission Directorate, within the Planetary, Astrophysics, and Heliophysics Divisions. The mission lifespans range from just a few months to more than20 years. The WIND spacecraft, the oldest SSMO mission, was launched in 1994. SSMO spacecraft reside in low earth, geosynchronous,highly elliptical, libration point, lunar, heliocentric,and Martian orbits. SSMO spacecraft range in size from 125kg (Aeronomy of Ice in the Mesosphere (AIM)) to over 4000kg (Fermi Gamma-Ray Space Telescope (Fermi)). The attitude modes include both spin and three-axis stabilized, with varying requirements on pointing accuracy. The spacecraft are operated from control centers at Goddard and off-site control centers;the Lunar Reconnaissance Orbiter (LRO), the Solar Dynamics Observatory (SDO) and Magnetospheric MultiScale (MMS)mission were built at Goddard. The Advanced Composition Explorer (ACE) and Wind are operated out of a multi-mission operations center, which will also host several SSMO-managed cubesats in 2017. This paper focuses on the systems engineeringchallenges for such a large and varied fleet of spacecraft.
FIVE NEW MILLISECOND PULSARS FROM A RADIO SURVEY OF 14 UNIDENTIFIED FERMI-LAT GAMMA-RAY SOURCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, M.; Camilo, F.; Johnson, T. J.
2012-03-20
We have discovered five millisecond pulsars (MSPs) in a survey of 14 unidentified Fermi Large Area Telescope sources in the southern sky using the Parkes radio telescope. PSRs J0101-6422, J1514-4946, and J1902-5105 reside in binaries, while PSRs J1658-5324 and J1747-4036 are isolated. Using an ephemeris derived from timing observations of PSR J0101-6422 (P = 2.57 ms, DM = 12 pc cm{sup -3}), we have detected {gamma}-ray pulsations and measured its proper motion. Its {gamma}-ray spectrum (a power law of {Gamma} = 0.9 with a cutoff at 1.6 GeV) and efficiency are typical of other MSPs, but its radio and {gamma}-raymore » light curves challenge simple geometric models of emission. The high success rate of this survey-enabled by selecting {gamma}-ray sources based on their detailed spectral characteristics-and other similarly successful searches indicate that a substantial fraction of the local population of MSPs may soon be known.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, X.Q.
1992-01-01
The authors have studied a simple model consisting of a chain of atoms with two atoms per unit cell. This model develops two bands when the inter-cell and intra-cell hopping amplitudes are different. They have found that superconductivity predominantly occurs when the Fermi level is close to the top of the upper band where the wavefunction has antibonding feature both inside the unit cell and between unit cells. Superconductivity occurs only in a restricted parameter range when the Fermi level is close to the top of the lower band because of the repulsive interaction within the unit cell. They findmore » that pair expectation values that 'mix' carriers of both bands can exist when interband interactions other than V12 of Suhl et al are present. But the magnitude of the 'mixed pairs' order parameters is much smaller than that of the intra-band pairs. The V12 of Suhl et al is the most important interband interaction that gives rise to the main features of a two-band model: a single transition temperature and two different gaps. They have used the model of hole superconductivity to study the variation of T(sub c) among transition metal series--the Matthias rules. They have found that the observed T(sub c)'s are consistent with superconductivity of a metal with multiple bands at the Fermi level being caused by the single band with strongest antibonding character at the Fermi level. When the Fermi level is the lower part of a band, there is no T(sub c). As the band is gradually filled, T(sub c) rises, passes through a maximum, then drops to zero when the band is full. This characteristic feature is independent of any fine structure of the band. The position of the peak and the width of the peak are correlated. Quantitative agreement with the experimental results is obtained by choosing parameters of onsite Coulomb interaction U, modulated hopping term Delta-t, and nearest neighbor repulsion V to fit the magnitude of T(sub c) and the positions of experimental peaks.« less
Detection of a Fermi-level crossing in Si(557)-Au with inverse photoemission
NASA Astrophysics Data System (ADS)
Lipton-Duffin, J. A.; MacLeod, J. M.; McLean, A. B.
2006-06-01
The unoccupied energy bands of the quasi-one-dimensional (1D) Si(557)-Au system have been studied with momentum-resolved inverse photoemission. A band is found that lies (0.4±0.4)eV above the Fermi level at the center of the surface Brillouin zone (Γ¯) . It disperses to higher binding energy, along the Γ Kmacr direction, and crosses the Fermi level at k‖=0.5±0.1Å-1 . The corresponding direction in real space is parallel to both the rows of silicon adatoms and the rows of embedded gold atoms that are distinctive features of this surface reconstruction. The location of the crossing is in good agreement with previously published photoemission data [Altmann , Phys. Rev. B 64, 035406 (2001); Ahn , Phys. Rev. Lett. 91, 196403 (2003)], where two closely spaced bands were found to disperse from the Kmacr zone boundary to lower binding energy and then cross the Fermi level. In addition to the band mentioned above, a band was found that has parabolic dispersion along Γ Kmacr , the direction that is parallel to the rows of embedded gold atoms. The band minimum for the parabolic band lies (0.8±0.4)eV below the vacuum level and it has an effective mass m*=(1.0±0.1)me , where me is the free electron mass. Perpendicular to the rows of gold atoms, as expected for a state with quasi-1D symmetry, it has flat dispersion. This band may be an image state resonance, overlapping the silicon conduction band continuum, and it is spatially localized to the edge of the silicon terraces.
Secondary electron emission yield dependence on the Fermi level in Silicon
NASA Astrophysics Data System (ADS)
Urrabazo, David; Goeckner, Matthew; Overzet, Lawrence
2013-09-01
Secondary Electron Emission (SEE) by ion bombardment plays a key role in determining the properties of many plasmas. As a result, significant efforts have been expended to control the SEE coefficient (increasing or decreasing it) by tailoring the electron work function of surfaces. A few recent publications point to the possibility of controlling the SEE coefficient of semiconductor surfaces in real time through controlling the numbers of electrons in the conduction band near the surface. Large control over the plasma was achieved by injecting electrons into the semiconductor just under the cathode surface via a subsurface PN junction. The hypothesis was that SEE is dependent on the numbers of electrons in the conduction band near the surface (which is related to the position of the Fermi level near the surface). We are testing the validity of this hypothesis. We have begun fundamental ion beam studies to explore this possible dependence of SEE on the Fermi energy level using Si. Various doping levels and dopants are being evaluated and the results of these tests will be presented. This work was supported in part by US Dept. of Energy. Acknowledgement to Dr. L. Raja at UT Austin.
Partially filled Landau level at even denominators: A vortex metal with a Berry phase
NASA Astrophysics Data System (ADS)
You, Yizhi
2018-04-01
We develop a vortex metal theory for a partially filled Landau level at ν =1/2 n whose ground state contains a composite Fermi surface formed by the vortex of electrons. In the projected Landau-level limit, the composite Fermi surface contains a -π/n Berry phase. Such a fractional Berry phase is a consequence of Landau-level projection which produces the Girvin-MacDonald-Platzman [S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev. B 33, 2481 (1986), 10.1103/PhysRevB.33.2481] guiding center algebra and embellishes an anomalous velocity to the equation of motion for the vortex metal. Further, we investigate a particle-hole symmetric bilayer system with ν1=1/2 n and ν2=1 -1/2 n at each layer, and demonstrate that the -π/n Berry phase on the composite Fermi surface leads to the suppression of 2 kf backscattering between the particle-hole partner bilayer, which could be a smoking gun to detect the fractional Berry phase. We also mention various instabilities and competing orders in such bilayer systems, including a Z4 n topological order phase driven by quantum criticality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoerzinger, Kelsey A.; Hong, Wesley T.; Wang, Xiao Renshaw
Understanding the interaction between oxides and water is critical to design many of their functionalities, including the electrocatalysis of molecular oxygen reduction. In this study, we probed the hydroxylation of model (001)-oriented La(1-x)SrxMnO3 (LSMO) perovskite surfaces, where the electronic structure and manganese valence was controlled by five substitution levels of lanthanum with strontium, using ambient pressure X-ray photoelectron spectroscopy in a humid environment. The degree of hydroxyl formation on the oxide surface correlated with the proximity of the valence band center relative to the Fermi level. LSMO perovskites with a valence band center closer to the Fermi level were moremore » reactive toward water, forming more hydroxyl species at a given relative humidity. More hydroxyl species correlate with greater electron-donating character to the surface free energy in wetting, and reduce the activity to catalyze oxygen reduction reaction (ORR) kinetics in basic solution. New strategies to design more active catalysts should include design of electronically conducting oxides with lower valence band centers relative to the Fermi level at ORR-relevant potentials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi-Feng; Zhou, Wen-Qian; Hong, Xue-Kun
2015-01-14
Ab initio calculations combining density-functional theory and nonequilibrium Green’s function are performed to investigate the effects of either single B atom or single N atom dopant in zigzag-edged graphene nanoribbons (ZGNRs) with the ferromagnetic state on the spin-dependent transport properties and thermospin performances. A spin-up (spin-down) localized state near the Fermi level can be induced by these dopants, resulting in a half-metallic property with 100% negative (positive) spin polarization at the Fermi level due to the destructive quantum interference effects. In addition, the highly spin-polarized electric current in the low bias-voltage regime and single-spin negative differential resistance in the highmore » bias-voltage regime are also observed in these doped ZGNRs. Moreover, the large spin-up (spin-down) Seebeck coefficient and the very weak spin-down (spin-up) Seebeck effect of the B(N)-doped ZGNRs near the Fermi level are simultaneously achieved, indicating that the spin Seebeck effect is comparable to the corresponding charge Seebeck effect.« less
Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.
Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R
2016-08-24
Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.
NASA Astrophysics Data System (ADS)
Liu, Hongliang; Zhang, Xin; Xiao, Yixin; Zhang, Jiuxing
2018-03-01
The density function theory been used to calculate the electronic structures of binary and doped rare earth hexaborides (REB6), which exhibits the large density of states (DOS) near Fermi level. The d orbital elections of RE element contribute the electronic states of election emission near the Fermi level, which imply that the REB6 (RE = La, Ce, Gd) with wide distribution of high density d orbital electrons could provide a lower work function and excellent emission properties. Doping RE elements into binary REB6 can adjust DOS and the position of the Fermi energy level. The calculated work functions of considered REB6 (100) surface show that the REB6 (RE = La, Ce, Gd) have lower work function and doping RE elements with active d orbital electrons can significantly reduce work function of binary REB6. The thermionic emission test results are basically accordant with the calculated value, proving the first principles calculation could provide a good theoretical guidance for the study of electron emission properties of REB6.
Tunable graphene-based mid-infrared plasmonic multispectral and narrow band-stop filter
NASA Astrophysics Data System (ADS)
Wang, Xianjun; Meng, Hongyun; Liu, Shuai; Deng, Shuying; Jiao, Tao; Wei, Zhongchao; Wang, Faqiang; Tan, Chunhua; Huang, Xuguang
2018-04-01
In this paper, we numerically investigate the band-stop properties of single- or few-layers doped graphene ribbon arrays operating in the mid-infrared region by finite-difference time-domain method (FDTD). A perfect band-stop filter with extinction ratio (ER) ∼17 dB, 3 dB bandwidth ∼200 nm and the resonance notch located at 6.64 μm can be achieved. And desired working regions can be obtained by tuning the Fermi level (E f ) of the graphene ribbons and the geometrical parameters of the structure. Besides, by tuning the Fermi level of odd or even graphene ribbons with terminal gate voltage, we can achieve a dual-circuit switch with four states combinations of on-to-off. Furthermore, the multiple filter notches can be achieved by stacking few-layers structure, and the filter dips can be dynamically tuned to achieve the tunability and selective characteristics by tuning the Fermi-level of the graphene ribbons in the system. We believe that our proposal has the potential applications in selective filters and active plasmonic switching in the mid-infrared region.
Jin, Xinfang; White, Ralph E.; Huang, Kevin
2016-10-04
With the assumption that the Fermi level (electrochemical potential of electrons) is uniform across the thickness of a mixed ionic and electronic conducting (MIEC) electrode, the charge-transport model in the electrode domain can be reduced to the modified Fick’s first law, which includes a thermodynamic factor A. A transient numerical solution of the Nernst-Planck theory was obtained for a symmetric cell with MIEC electrodes to illustrate the validity of the assumption of a uniform Fermi level. Subsequently, an impedance numerical solution based on the modified Fick’s first law is compared with that from the Nernst-Planck theory. The results show thatmore » Nernst-Planck charge-transport model is essentially the same as the modified Fick’s first law model as long as the MIEC electrodes have a predominant electronic conductivity. However, because of the invalidity of the uniform Fermi level assumption for aMIEC electrolyte with a predominant ionic conductivity, Nernst-Planck theory is needed to describe the charge transport behaviors.« less
NASA Astrophysics Data System (ADS)
Benecha, E. M.; Lombardi, E. B.
2018-05-01
We present a first principles study of Cu in diamond using DFT+U electronic structure methods, by carefully considering the impact of co-doping, charge state, and Fermi level position on its stability, lattice location, spin states, and electronic properties. We show that the energetic stability and spin states of Cu are strongly dependent on the Fermi level position and the type of diamond co-doping, with Cu being energetically more favorable in n-type or p-type co-doped diamond compared to intrinsic diamond. Since Cu has been predicted to order magnetically in a number of other wide band-gap semiconductors, we have also evaluated this possibility for Cu doped diamond. We show that while Cu exhibits strong spin interactions at specific interatomic separations in diamond, a detailed consideration of the impact of Fermi level position and Cu aggregation precludes magnetic ordering, with Cu forming non-magnetic, antiferromagnetic, or paramagnetic clusters. These results have important implications in the understanding of the properties of transition metal dopants in diamond for device applications.
Fermi-level tuning of the Dirac surface state in (Bi1-x Sb x )2Se3 thin films
NASA Astrophysics Data System (ADS)
Satake, Yosuke; Shiogai, Junichi; Takane, Daichi; Yamada, Keiko; Fujiwara, Kohei; Souma, Seigo; Sato, Takafumi; Takahashi, Takashi; Tsukazaki, Atsushi
2018-02-01
We report on the electronic states and the transport properties of three-dimensional topological insulator (Bi1-x Sb x )2Se3 ternary alloy thin films grown on an isostructural Bi2Se3 buffer layer on InP substrates. By angle-resolved photoemission spectroscopy, we clearly detected Dirac surface states with a large bulk band gap of 0.2-0.3 eV in the (Bi1-x Sb x )2Se3 film with x = 0.70. In addition, we observed by Hall effect measurements that the dominant charge carrier converts from electron (n-type) to hole (p-type) at around x = 0.7, indicating that the Fermi level can be controlled across the Dirac point. Indeed, the carrier transport was shown to be governed by Dirac surface state in 0.63 ⩽ x ⩽ 0.75. These features suggest that Fermi-level tunable (Bi1-x Sb x )2Se3-based heterostructures provide a platform for extracting exotic topological phenomena.
NASA Astrophysics Data System (ADS)
Zhuravlev, Vladimir; Duan, Wenye; Maniv, Tsofar
2017-10-01
The Nambu-Gorkov Green's function approach is applied to strongly type-II superconductivity in a 2D spin-momentum-locked (Weyl) Fermi gas model at high perpendicular magnetic fields. The resulting phase diagram can be mapped onto that derived for the standard, parabolic band-structure model, having the same Fermi surface parameters, E F and v, but with cyclotron effective mass m\\ast=EF/2v2 . Significant deviations from the predicted mapping are found only for very small E F , when the Landau-Level filling factors are smaller than unity, and E F shrinks below the cutoff energy.
Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katahara, John K.; Hillhouse, Hugh W., E-mail: h2@uw.edu
A unified model for the direct gap absorption coefficient (band-edge and sub-bandgap) is developed that encompasses the functional forms of the Urbach, Thomas-Fermi, screened Thomas-Fermi, and Franz-Keldysh models of sub-bandgap absorption as specific cases. We combine this model of absorption with an occupation-corrected non-equilibrium Planck law for the spontaneous emission of photons to yield a model of photoluminescence (PL) with broad applicability to band-band photoluminescence from intrinsic, heavily doped, and strongly compensated semiconductors. The utility of the model is that it is amenable to full-spectrum fitting of absolute intensity PL data and yields: (1) the quasi-Fermi level splitting, (2) themore » local lattice temperature, (3) the direct bandgap, (4) the functional form of the sub-bandgap absorption, and (5) the energy broadening parameter (Urbach energy, magnitude of potential fluctuations, etc.). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se){sub 2} (CIGSSe) and Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) to reveal the nature of their tail states. For GaAs, the model fit is excellent, and fitted parameters match literature values for the bandgap (1.42 eV), functional form of the sub-bandgap states (purely Urbach in nature), and energy broadening parameter (Urbach energy of 9.4 meV). For CIGSSe and CZTSSe, the model fits yield quasi-Fermi leveling splittings that match well with the open circuit voltages measured on devices made from the same materials and bandgaps that match well with those extracted from EQE measurements on the devices. The power of the exponential decay of the absorption coefficient into the bandgap is found to be in the range of 1.2 to 1.6, suggesting that tunneling in the presence of local electrostatic potential fluctuations is a dominant factor contributing to the sub-bandgap absorption by either purely electrostatic (screened Thomas-Fermi) or a photon-assisted tunneling mechanism (Franz-Keldysh). A Gaussian distribution of bandgaps (local E{sub g} fluctuation) is found to be inconsistent with the data. The sub-bandgap absorption of the CZTSSe absorber is found to be larger than that for CIGSSe for materials that yield roughly equivalent photovoltaic devices (8% efficient). Further, it is shown that fitting only portions of the PL spectrum (e.g., low energy for energy broadening parameter and high energy for quasi-Fermi level splitting) may lead to significant errors for materials with substantial sub-bandgap absorption and emission.« less
NASA Astrophysics Data System (ADS)
Panda, Saswati; Sahoo, D. D.; Rout, G. C.
2018-04-01
We report here a tight binding model for colossal magnetoresistive (CMR) manganites to study the pseudo gap (PG) behavior near Fermi level. In the Kubo-Ohata type DE model, we consider first and second nearest neighbor interactions for transverse spin fluctuations in core band and hopping integrals in conduction band, in the presence of static band Jahn-Teller distortion. The model Hamiltonian is solved using Zubarev's Green's function technique. The electron density of states (DOS) is found out from the Green's functions. We observe clear PG near Fermi level in the electron DOS.
2FHL: The Second Catalog of Hard Fermi-LAT Sources
Ackermann, M.; Ajello, M.; Atwood, W. B.; ...
2016-01-14
We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass 8 event-level analysis allows the detection and characterization of sources in the 50 GeV–2TeV energy range. In this energy band, Fermi - LAT has detected 360 sources, which constitute the second catalog of hard Fermi -LAT sources (2FHL). The improved angular resolution enables the precise localization of point sources (~1.'7 radius at 68 % C. L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associatedmore » with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHL sources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi -LAT on orbit and the observations performed at higher energies by Cherenkov telescopes from the ground.« less
2FHL- The Second Catalog of Hard Fermi-LAT Sources
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Gonzalez, J. Becerra; Bellazzini, R.; Bissaldi, E.;
2016-01-01
We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass8 event-level analysis allows the detection and characterization of sources in the 50 GeV-2 TeV energy range. In this energy band, Fermi-LAT has detected 360 sources, which constitute the second catalog of hard Fermi-LAT sources (2FHL). The improved angular resolution enables the precise localization of point sources (1.7 radius at 68% C.L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associated with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHLsources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi-LAT on orbit and the observations performed at higher energies byCherenkov telescopes from the ground.
2FHL: The Second Catalog of Hard Fermi-LAT Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; Atwood, W. B.
We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass 8 event-level analysis allows the detection and characterization of sources in the 50 GeV–2TeV energy range. In this energy band, Fermi - LAT has detected 360 sources, which constitute the second catalog of hard Fermi -LAT sources (2FHL). The improved angular resolution enables the precise localization of point sources (~1.'7 radius at 68 % C. L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associatedmore » with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHL sources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi -LAT on orbit and the observations performed at higher energies by Cherenkov telescopes from the ground.« less
Friedel oscillation near a van Hove singularity in two-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Lu, Chi-Ken
2016-02-01
We consider Friedel oscillation in the two-dimensional Dirac materials when the Fermi level is near the van Hove singularity. Twisted graphene bilayer and the surface state of topological crystalline insulator are the representative materials which show low-energy saddle points that are feasible to probe by gating. We approximate the Fermi surface near saddle point with a hyperbola and calculate the static Lindhard response function. Employing a theorem of Lighthill, the induced charge density δ n due to an impurity is obtained and the algebraic decay of δ n is determined by the singularity of the static response function. Although a hyperbolic Fermi surface is rather different from a circular one, the static Lindhard response function in the present case shows a singularity similar with the response function associated with circular Fermi surface, which leads to the δ n\\propto {{R}-2} at large distance R. The dependences of charge density on the Fermi energy are different. Consequently, it is possible to observe in twisted graphene bilayer the evolution that δ n\\propto {{R}-3} near Dirac point changes to δ n\\propto {{R}-2} above the saddle point. Measurements using scanning tunnelling microscopy around the impurity sites could verify the prediction.
Temperature-driven Topological Phase Transition in MoTe2
NASA Astrophysics Data System (ADS)
Notis Berger, Ayelet; Andrade, Erick; Kerelsky, Alex; Cheong, Sang-Wook; Li, Jian; Bernevig, B. Andrei; Pasupathy, Abhay
The discovery of several candidates predicted to be weyl semimetals has made it possible to experimentally study weyl fermions and their exotic properties. One example is MoTe2, a transition metal dichalcogenide. At temperatures below 240 K it is predicted to be a type II Weyl semimetal with four Weyl points close to the fermi level. As with most weyl semimetals, the complicated band structure causes difficulty in distinguishing features related to bulk states and those related to topological fermi arc surface states characteristic of weyl semimetals. MoTe2 is unique because of its temperature-driven phase change. At high temperatures, MoTe2 is monoclinic, with trivial surface states. When cooled below 240K, it undergoes a first order phase transition to become an orthorhombic weyl semimetal with topologically protected fermi arc surface states. We present STM and STS measurements on MoTe2 crystals in both states. In the orthorhombic phase, we observe scattering that is consistent with the presence of the Fermi-arc surface states. Upon warming into the monoclinic phase, these features disappear in the observed interference patterns, providing direct evidence of the topological nature of the fermi arcs in the Weyl phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erika Bailey
2011-10-27
The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in Decembermore » 1960 and criticality was achieved in August 1963. The reactor was tested at low power during the first couple years of operation. Power ascension testing above 1 MW commenced in December 1965 immediately following the receipt of a high-power operating license. In October 1966 during power ascension, zirconium plates at the bottom of the reactor vessel became loose and blocked sodium coolant flow to some fuel subassemblies. Two subassemblies started to melt and the reactor was manually shut down. No abnormal releases to the environment occurred. Forty-two months later after the cause had been determined, cleanup completed, and the fuel replaced, Fermi 1 was restarted. However, in November 1972, PRDC made the decision to decommission Fermi 1 as the core was approaching its burn-up limit. The fuel and blanket subassemblies were shipped off-site in 1973. Following that, the secondary sodium system was drained and sent off-site. The radioactive primary sodium was stored on-site in storage tanks and 55 gallon (gal) drums until it was shipped off-site in 1984. The initial decommissioning of Fermi 1 was completed in 1975. Effective January 23, 1976, DPR-9 was transferred to the Detroit Edison Company (DTE) as a 'possession only' license (DTE 2010a). This report details the confirmatory activities performed during the second Oak Ridge Institute for Science and Education (ORISE) site visit to Fermi 1 in November 2010. The survey was strategically planned during a Unit 2 (Fermi 2) outage to take advantage of decreased radiation levels that were observed and attributed to Fermi 2 from the operating unit during the first site visit. However, during the second visit there were elevated radiation levels observed and attributed to the partially dismantled Fermi 1 reactor vessel and a waste storage box located on the 3rd floor of the Fermi 1 Turbine Building. Confirmatory surveys (unshielded) performed directly in the line of sight of these areas were affected. The objective of the confirmatory survey was to verify that the final radiological conditions were accurately and adequately described in Final Status Survey (FSS) documentation, relative to the established release criteria. This objective was achieved by performing document reviews, as well as independent measurements and sampling. Specifically, documentation of the planning, implementation, and results of the FSS were evaluated; side-by-side FSS measurement and source comparisons were performed; site areas were evaluated relative to appropriate FSS classification; and areas were assessed for residual, undocumented contamination.« less
Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S
2014-02-28
Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.
Cinema, Fermi problems and general education
NASA Astrophysics Data System (ADS)
Efthimiou, C. J.; Llewellyn, R. A.
2007-05-01
During the past few years the authors have developed a new approach to the teaching of physical science, a general education course typically found in the curricula of nearly every college and university. This approach, called Physics in Films (Efthimiou and Llewellyn 2006 Phys. Teach. 44 28-33), uses scenes from popular films to illustrate physical principles and has excited student interest and improved student performance. A similar approach at the senior/high-school level, nicknamed Hollywood Physics, has been developed by Chandler (2006 Phys. Teach. 44 290-2 2002 Phys. Teach. 40 420-4). The two approaches may be considered complementary as they target different student groups. The analyses of many of the scenes in Physics in Films are a direct application of Fermi calculations—estimates and approximations designed to make solutions of complex and seemingly intractable problems understandable to the student non-specialist. The intent of this paper is to provide instructors with examples they can use to develop skill in recognizing Fermi problems and making Fermi calculations in their own courses.
A Mobile Data Application for the Fermi Mission
NASA Astrophysics Data System (ADS)
Stephens, Thomas E.; Science Support Center, Fermi
2014-01-01
With the ever increasing use of smartphones and tablets among scientists and the world at large, it becomes increasingly important for projects and missions to have mobile friendly access to their data. This access could come in the form of mobile friendly websites and/or native mobile applications that allow the users to explore or access the data. The Fermi Gamma-ray Space Telescope mission has begun work along the latter path. In this poster I present the current version of the Fermi Data Portal, a native mobile application for both Android and iOS devices that allows access to various high level public data products from the Fermi Science Support Center (FSSC), the Gamma-ray Coordinate Network (GCN), and other sources. While network access is required to download data, most of the data served by the app are stored locally and are available even when a network connection is not available. This poster discusses the application's features as well as the development experience and lessons learned so far along the way.
A Mobile Data Application for the Fermi Mission
NASA Astrophysics Data System (ADS)
Stephens, T. E.
2013-10-01
With the ever increasing use of smartphones and tablets among scientists and the world at large, it becomes increasingly important for projects and missions to have mobile friendly access to their data. This access could come in the form of mobile friendly websites and/or native mobile applications that allow the users to explore or access the data. The Fermi Gamma-ray Space Telescope Mission has begun work along the latter path. In this poster I present the initial version of the Fermi Mobile Data Portal, a native application for both Android and iOS devices that allows access to various high level public data products from the Fermi Science Support Center (FSSC), the Gamma-ray Coordinate Network (GCN), and other sources. While network access is required to download data, most of the data served by the app are stored locally and are available even when a network connection is not available. This poster discusses the application's features as well as the development experience and lessons learned so far along the way.
Pseudogap Regime of a Two-dimensional Uniform Fermi Gas
NASA Astrophysics Data System (ADS)
Matsumoto, Morio; Hanai, Ryo; Inotani, Daisuke; Ohashi, Yoji
2018-01-01
We investigate pseudogap phenomena in a two-dimensional Fermi gas. Including pairing fluctuations within a self-consistent T-matrix approximation, we determine the pseudogap temperature T* below which a dip appears in the density of states ρ(ω) around the Fermi level. Evaluating T*, we identify the pseudogap region in the phase diagram of this system. We find that, while the observed Berezinskii-Kosterlitz-Thouless (BKT) transition temperature TBKTexp in a 6Li Fermi gas is in the pseudogap regime, the detailed pseudogap structure in ρ(ω) at TBKTexp still differs from a fully-gapped one, indicating the importance of amplitude fluctuations in the Cooper channel there. Since the observed TBKTexp in the weak-coupling regime cannot be explained by the recent BKT theory which only includes phase fluctuations, our results may provide a hint about how to improve this BKT theory. Although ρ(ω) has not been measured in this system, we show that the assessment of our results is still possible by using the observable Tan's contact.
Poole-Frenkel effect on electrical characterization of Al-doped ZnO films deposited on p-type GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Bohr-Ran; Liao, Chung-Chi; Ke, Wen-Cheng, E-mail: wcke@saturn.yzu.edu.tw
2014-03-21
This paper presents the electrical properties of Al-doped ZnO (AZO) films directly grown on two types of p-type GaN thin films. The low-pressure p-GaN thin films (LP-p-GaN) exhibited structural properties of high-density edge-type threading dislocations (TDs) and compensated defects (i.e., nitrogen vacancy). Compared with high-pressure p-GaN thin films (HP-p-GaN), X-ray photoemission spectroscopy of Ga 3d core levels indicated that the surface Fermi-level shifted toward the higher binding-energy side by approximately 0.7 eV. The high-density edge-type TDs and compensated defects enabled surface Fermi-level shifting above the intrinsic Fermi-level, causing the surface of LP-p-GaN thin films to invert to n-type semiconductor. A highlymore » nonlinear increase in leakage current regarding reverse-bias voltage was observed for AZO/LP-p-GaN. The theoretical fits for the reverse-bias voltage region indicated that the field-assisted thermal ionization of carriers from defect associated traps, which is known as the Poole-Frenkel effect, dominated the I-V behavior of AZO/LP-p-GaN. The fitting result estimated the trap energy level at 0.62 eV below the conduction band edge. In addition, the optical band gap increased from 3.50 eV for as-deposited AZO films to 3.62 eV for 300 °C annealed AZO films because of the increased carrier concentration. The increasing Fermi-level of the 300 °C annealed AZO films enabled the carrier transport to move across the interface into the LP-p-GaN thin films without any thermal activated energy. Thus, the Ohmic behavior of AZO contact can be achieved directly on the low-pressure p-GaN films at room temperature.« less
Poole-Frenkel effect on electrical characterization of Al-doped ZnO films deposited on p-type GaN
NASA Astrophysics Data System (ADS)
Huang, Bohr-Ran; Liao, Chung-Chi; Ke, Wen-Cheng; Chang, Yuan-Ching; Huang, Hao-Ping; Chen, Nai-Chuan
2014-03-01
This paper presents the electrical properties of Al-doped ZnO (AZO) films directly grown on two types of p-type GaN thin films. The low-pressure p-GaN thin films (LP-p-GaN) exhibited structural properties of high-density edge-type threading dislocations (TDs) and compensated defects (i.e., nitrogen vacancy). Compared with high-pressure p-GaN thin films (HP-p-GaN), X-ray photoemission spectroscopy of Ga 3d core levels indicated that the surface Fermi-level shifted toward the higher binding-energy side by approximately 0.7 eV. The high-density edge-type TDs and compensated defects enabled surface Fermi-level shifting above the intrinsic Fermi-level, causing the surface of LP-p-GaN thin films to invert to n-type semiconductor. A highly nonlinear increase in leakage current regarding reverse-bias voltage was observed for AZO/LP-p-GaN. The theoretical fits for the reverse-bias voltage region indicated that the field-assisted thermal ionization of carriers from defect associated traps, which is known as the Poole-Frenkel effect, dominated the I-V behavior of AZO/LP-p-GaN. The fitting result estimated the trap energy level at 0.62 eV below the conduction band edge. In addition, the optical band gap increased from 3.50 eV for as-deposited AZO films to 3.62 eV for 300 °C annealed AZO films because of the increased carrier concentration. The increasing Fermi-level of the 300 °C annealed AZO films enabled the carrier transport to move across the interface into the LP-p-GaN thin films without any thermal activated energy. Thus, the Ohmic behavior of AZO contact can be achieved directly on the low-pressure p-GaN films at room temperature.
Carroll, Gerard M; Schimpf, Alina M; Tsui, Emily Y; Gamelin, Daniel R
2015-09-02
Electronically doped colloidal semiconductor nanocrystals offer valuable opportunities to probe the new physical and chemical properties imparted by their excess charge carriers. Photodoping is a powerful approach to introducing and controlling free carrier densities within free-standing colloidal semiconductor nanocrystals. Photoreduced (n-type) colloidal ZnO nanocrystals possessing delocalized conduction-band (CB) electrons can be formed by photochemical oxidation of EtOH. Previous studies of this chemistry have demonstrated photochemical electron accumulation, in some cases reaching as many as >100 electrons per ZnO nanocrystal, but in every case examined to date this chemistry maximizes at a well-defined average electron density of ⟨Nmax⟩ ≈ (1.4 ± 0.4) × 10(20) cm(-3). The origins of this maximum have never been identified. Here, we use a solvated redox indicator for in situ determination of reduced ZnO nanocrystal redox potentials. The Fermi levels of various photodoped ZnO nanocrystals possessing on average just one excess CB electron show quantum-confinement effects, as expected, but are >600 meV lower than those of the same ZnO nanocrystals reduced chemically using Cp*2Co, reflecting important differences between their charge-compensating cations. Upon photochemical electron accumulation, the Fermi levels become independent of nanocrystal volume at ⟨N⟩ above ∼2 × 10(19) cm(-3), and maximize at ⟨Nmax⟩ ≈ (1.6 ± 0.3) × 10(20) cm(-3). This maximum is proposed to arise from Fermi-level pinning by the two-electron/two-proton hydrogenation of acetaldehyde, which reverses the EtOH photooxidation reaction.
The multiple Coulomb scattering of very heavy charged particles.
Wong, M; Schimmerling, W; Phillips, M H; Ludewigt, B A; Landis, D A; Walton, J T; Curtis, S B
1990-01-01
An experiment was performed at the Lawrence Berkeley Laboratory BEVALAC to measure the multiple Coulomb scattering of 650-MeV/A uranium nuclei in 0.19 radiation lengths of a Cu target. Differential distributions in the projected multiple scattering angle were measured in the vertical and horizontal planes using silicon position-sensitive detectors to determine particle trajectories before and after target scattering. The results were compared with the multiple Coulomb scattering theories of Fermi and Molière, and with a modification of the Fermi theory, using a Monte Carlo simulation. These theories were in excellent agreement with experiment at the 2 sigma level. The best quantitative agreement is obtained with the Gaussian distribution predicted by the modified Fermi theory.
Is BaCr 2 As 2 symmetrical to BaFe 2 As 2 with respect to half 3 d shell filling?
Richard, P.; van Roekeghem, A.; Lv, B. Q.; ...
2017-05-25
We have performed an angle-resolved photoemission spectroscopy study of BaCr 2As 2, which has the same crystal structure as BaFe2As2, a parent compound BaFe 2As 2 of Fe-based superconductors. We determine the Fermi surface of this material and its band dispersion down to 5 eV below the Fermi level. Very moderate band renormalization (1.35) is observed for only two bands. We attribute this small renormalization to enhanced direct exchange as compared to Fe in BaFe 2As 2, and to a larger contribution of the eg orbitals in the composition of the bands forming the Fermi surface.
Electronic structure basis for the extraordinary magnetoresistance in WTe 2
Pletikosić, I.; Ali, Mazhar N.; Fedorov, A. V.; ...
2014-11-19
The electronic structure basis of the extremely large magnetoresistance in layered non-magnetic tungsten ditelluride has been investigated by angle-resolved photoelectron spectroscopy. Hole and electron pockets of approximately the same size were found at the Fermi level, suggesting that carrier compensation should be considered the primary source of the effect. The material exhibits a highly anisotropic, quasi one-dimensional Fermi surface from which the pronounced anisotropy of the magnetoresistance follows. As a result, a change in the Fermi surface with temperature was found and a high-density-of-states band that may take over conduction at higher temperatures and cause the observed turn-on behavior ofmore » the magnetoresistance in WTe₂ was identified.« less
Quantum oscillations in nodal line systems
NASA Astrophysics Data System (ADS)
Yang, Hui; Moessner, Roderich; Lim, Lih-King
2018-04-01
We study signatures of magnetic quantum oscillations in three-dimensional nodal line semimetals at zero temperature. The extended nature of the degenerate bands can result in a Fermi surface geometry with topological genus one, as well as a Fermi surface of electron and hole pockets encapsulating the nodal line. Moreover, the underlying two-band model to describe a nodal line is not unique, in that there are two classes of Hamiltonian with distinct band topology giving rise to the same Fermi-surface geometry. After identifying the extremal cyclotron orbits in various magnetic field directions, we study their concomitant Landau levels and resulting quantum oscillation signatures. By Landau-fan-diagram analyses, we extract the nontrivial π Berry phase signature for extremal orbits linking the nodal line.
Anisotropies in the diffuse gamma-ray background from dark matter with Fermi LAT: A closer look
Cuoco, A.; Sellerholm, A.; Conrad, J.; ...
2011-06-21
We perform a detailed study of the sensitivity to the anisotropies related to dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) as measured by the Fermi Large Area Telescope ( Fermi LAT). For the first time, we take into account the effects of the Galactic foregrounds and use a realistic representation of the Fermi LAT. We implement an analysis pipeline which simulates Fermi LAT data sets starting from model maps of the Galactic foregrounds, the Fermi-resolved point sources, the extragalactic diffuse emission and the signal from DM annihilation. The effects of the detector are taken into account bymore » convolving the model maps with the Fermi LAT instrumental response. We then use the angular power spectrum to characterize the anisotropy properties of the simulated data and to study the sensitivity to DM. We consider DM anisotropies of extragalactic origin and of Galactic origin (which can be generated through annihilation in the Milky Way substructures) as opposed to a background of anisotropies generated by sources of astrophysical origin, blazars for example. We find that with statistics from 5 yr of observation, Fermi is sensitive to a DM contribution at the level of 1–10 per cent of the measured IGRB depending on the DM mass m χ and annihilation mode. In terms of the thermally averaged cross-section , this corresponds to ~10 –25 cm 3 s –1, i.e. slightly above the typical expectations for a thermal relic, for low values of the DM mass m χ≲ 100 GeV. As a result, the anisotropy method for DM searches has a sensitivity comparable to the usual methods based only on the energy spectrum and thus constitutes an independent and complementary piece of information in the DM puzzle.« less
Starting points for the study of non-Fermi liquid-like properties of FeCrAs
NASA Astrophysics Data System (ADS)
O'Brien, Patrick James
FeCrAs exhibits non-Fermi liquid-like behavior because of its odd combination of thermodynamic, transport, and magnetic properties. In particular, the resistivity of FeCrAs is not characteristic of a metal or an insulator and so remains a mystery. In this thesis, we seek a model to describe its properties. In FeCrAs, local moments reside on the Cr sites, and there is some conduction. We study the simplest possible model on the kagome lattice that features local moments and itinerant electrons, the kagome Kondo Lattice Model. We present the phase diagram of this model, which features a host of complex spin orders, one of which is the √3 x √3, the experimentally observed magnetic ground state in FeCrAs. The kagome Kondo Lattice Model, having one itinerant d-orbital band on the kagome lattice, does not fully capture the microscopic physics of FeCrAs. The kagome Kondo Lattice Model also will not de- scribe the mutilation of the Fermi surface. To investigate the microscopic properties, we calculated LDA and LDA+U results. These results and GGA results from another group all exhibit high d-orbital density of states at the Fermi energy as well as low p-orbital density of states at the Fermi energy. The DFT results motivated us to construct a model based on the chemistry and full geometry of the FeCrAs crystal. The model we construct is an effective hopping model consisting of only d-orbital operators that we call the Optimal Overlap Hopping Model (OOHM). We calculate the band structure that results from the OOHM, and this band structure can be compared to ARPES measurements. As an example of how one can use the OOHM, we calculate a dynamic spin structure factor from within the OOHM, and we compare it to neutron scattering data. We consider both the OOHM and the Kondo Lattice Model on the kagome lattice as starting points from which we can launch studies of FeCrAs, and we present the existing theories for FeCrAs on a metallicity spectrum to illustrate the various perspectives from which FeCrAs is studied.
Fermi-surface reconstruction by stripe order in cuprate superconductors
NASA Astrophysics Data System (ADS)
Laliberté, Francis
2012-02-01
The origin of pairing in a superconductor resides in the underlying normal state. In the cuprate high-temperature superconductor YBCO, application of a magnetic field to suppress superconductivity reveals a ground state that appears to break the translational symmetry of the lattice, pointing to some density-wave order [1,2,3]. In another cuprate, Eu-LSCO, the onset of stripe order - a modulation of spin and charge densities - at low temperature is well established [4]. By a comparative study of thermoelectric transport in the cuprates YBCO and Eu-LSCO, we show that the two materials exhibit a very similar process of Fermi-surface reconstruction as a function of temperature and doping [5,6]. This strongly suggests that Fermi-surface reconstruction is caused by stripe order in both cases, compelling evidence that stripe order is a generic tendency of hole-doped cuprates.[4pt] Work done in collaboration with J. Chang, N. Doiron-Leyraud, E. Hassinger, R. Daou, D. LeBoeuf, M. Rondeau, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, S. Pyon, T. Takayama, H. Takagi, I. Sheikin, L. Malone, C. Proust, K. Behnia and L. Taillefer.[4pt] [1] N. Doiron-Leyraud et al., Nature 447, 565 (2007).[0pt] [2] D. LeBoeuf et al., Nature 450, 533 (2007).[0pt] [3] D. LeBoeuf et al., Phys. Rev. B 83, 054506 (2011).[0pt] [4] J. Fink et al., Phys. Rev. B 83, 092503 (2011).[0pt] [5] J. Chang et al., Phys. Rev. Lett. 104, 057005 (2010).[0pt] [6] F. Lalibert'e et al., Nat. Commun. 2, 432 (2011).
NASA Astrophysics Data System (ADS)
Zhuravlev, A. K.; Anokhin, A. O.; Irkhin, V. Yu.
2018-02-01
Simple scaling consideration and NRG solution of the one- and two-channel Kondo model in the presence of a logarithmic Van Hove singularity at the Fermi level is given. The temperature dependences of local and impurity magnetic susceptibility and impurity entropy are calculated. The low-temperature behavior of the impurity susceptibility and impurity entropy turns out to be non-universal in the Kondo sense and independent of the s-d coupling J. The resonant level model solution in the strong coupling regime confirms the NRG results. In the two-channel case the local susceptibility demonstrates a non-Fermi-liquid power-law behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chenggong; Wang, Congcong; Kauppi, John
2015-08-28
Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.
Electronic properties of GeTe and Ag- or Sb-substituted GeTe studied by low-temperature Te 125 NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, J.; Levin, E. M.; Lee, Y.
We have carried out 125Te nuclear magnetic resonance (NMR) in a wide temperature range of 1.5–300 K to investigate the electronic properties of Ge 50 Te 50, Ag 2 Ge 48Te 50 , and Sb 2 Ge 48 Te 50 from a microscopic point of view. From the temperature dependence of the NMR shift (K) and nuclear spin lattice relaxation rate (1/T 1), we found that two bands contribute to the physical properties of the materials. One band overlaps the Fermi level providing the metallic state where no strong electron correlations are revealed by Korringa analysis. The other band ismore » separated from the Fermi level by an energy gap of E g/k B ~67 K, which gives rise to semiconductorlike properties. First-principles calculation reveals that the metallic band originates from the Ge vacancy while the semiconductorlike band is related to the fine structure of the density of states near the Fermi level. We find low-temperature Te125 NMR data for the materials studied here clearly show that Ag substitution increases hole concentration while Sb substitution decreases it.« less
Electronic properties of GeTe and Ag- or Sb-substituted GeTe studied by low-temperature Te 125 NMR
Cui, J.; Levin, E. M.; Lee, Y.; ...
2016-08-18
We have carried out 125Te nuclear magnetic resonance (NMR) in a wide temperature range of 1.5–300 K to investigate the electronic properties of Ge 50 Te 50, Ag 2 Ge 48Te 50 , and Sb 2 Ge 48 Te 50 from a microscopic point of view. From the temperature dependence of the NMR shift (K) and nuclear spin lattice relaxation rate (1/T 1), we found that two bands contribute to the physical properties of the materials. One band overlaps the Fermi level providing the metallic state where no strong electron correlations are revealed by Korringa analysis. The other band ismore » separated from the Fermi level by an energy gap of E g/k B ~67 K, which gives rise to semiconductorlike properties. First-principles calculation reveals that the metallic band originates from the Ge vacancy while the semiconductorlike band is related to the fine structure of the density of states near the Fermi level. We find low-temperature Te125 NMR data for the materials studied here clearly show that Ag substitution increases hole concentration while Sb substitution decreases it.« less
Electronic structures of U X3 (X =Al , Ga, and In) studied by photoelectron spectroscopy
NASA Astrophysics Data System (ADS)
Fujimori, Shin-ichi; Kobata, Masaaki; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika
2017-09-01
The electronic structures of U X3 (X =Al , Ga , and In ) were studied by photoelectron spectroscopy to understand the relationship between their electronic structures and magnetic properties. The band structures and Fermi surfaces of UAl3 and UGa3 were revealed experimentally by angle-resolved photoelectron spectroscopy (ARPES), and they were compared with the result of band-structure calculations. The topologies of the Fermi surfaces and the band structures of UAl3 and UGa3 were explained reasonably well by the calculation, although bands near the Fermi level (EF) were renormalized owing to the finite electron correlation effect. The topologies of the Fermi surfaces of UAl3 and UGa3 are very similar to each other, except for some minor differences. Such minor differences in their Fermi surface or electron correlation effect might take an essential role in their different magnetic properties. No significant changes were observed between the ARPES spectra of UGa3 in the paramagnetic and antiferromagnetic phases, suggesting that UGa3 is an itinerant weak antiferromagnet. The effect of chemical pressure on the electronic structures of U X3 compounds was also studied by utilizing the smaller lattice constants of UAl3 and UGa3 than that of UIn3. The valence band spectrum of UIn3 is accompanied by a satellitelike structure on the high-binding-energy side. The core-level spectrum of UIn3 is also qualitatively different from those of UAl3 and UGa3. These findings suggest that the U 5 f states in UIn3 are more localized than those in UAl3 and UGa3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Junfeng; Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt; Liao, Cheng, E-mail: Cliao@pku.edu.cn
2011-02-15
Graphical abstract: From XPS core level spectras, compared with as-depositing CdS (sample A), the Fermi level is shifting closer to the conduction band after annealing treatment in the oxygen (sample B) while it is shifting closer to the valence band after annealing treatment in the argon-hydrogen (sample C). That might be the main reason of the different performance of the final devices. The open circuit voltage of the CdS/CdTe solar cell increases when the CBD CdS is annealed with oxygen, while the performance of the solar cell decreases when the CBD CdS is annealed with argon-hydrogen. Research highlights: {yields} Twomore » different methods (oxidation and reduction) were used to anneal CdS films for CdTe solar cells. {yields} Electrical properties were analyzed by XPS (Fermi levels of CdS films). {yields} Annealing treatment in oxidation atmosphere could shift Fermi level of CdS film to higher position and consequently improve the CdS/CdTe junction and performance of solar cells. -- Abstract: CdS layers grown by chemical bath deposition (CBD) are annealed in the oxygen and argon-hydrogen atmosphere respectively. It has been found that the open circuit voltage of the CdS/CdTe solar cell increases when the CBD CdS is annealed with oxygen before the deposition of CdTe by close spaced sublimation (CSS), while the performance of the solar cell decreases when the CBD CdS is annealed with argon-hydrogen. Electronic properties of the CdS films are investigated using X-ray photo-electron spectroscopy (XPS), which indicates that the Fermi level is shifting closer to the conduction band after annealing in the oxygen and consequently a higher open circuit voltage of the solar cell can be obtained.« less
VizieR Online Data Catalog: Fermi/non-Fermi blazars jet power and accretion (Chen+, 2015)
NASA Astrophysics Data System (ADS)
Chen, Y. Y.; Zhang, X.; Zhang, H. J.; Yu, X. L.
2017-11-01
We selected the sample using radio catalogues to get the widest possible sample of blazars based on their radio properties. We split them into Fermi-detected sources and non-Fermi detections. Massaro et al. (2009, J/A+A/495/691) created the "Multifrequency Catalogue of Blazars" (Roma-BZCAT), which classifies blazars into three main groups based on their spectral properties. In total, we have a sample containing 177 clean Fermi blazars (96 Fermi FSRQs and 81 Fermi BL Lacs) and 133 non-Fermi blazars (105 non-Fermi FSRQs and 28 non-Fermi BL Lacs). (2 data files).
Holographic non-Fermi liquid in a background magnetic field
NASA Astrophysics Data System (ADS)
Basu, Pallab; He, Jianyang; Mukherjee, Anindya; Shieh, Hsien-Hang
2010-08-01
We study the effects of a nonzero magnetic field on a class of 2+1 dimensional non-Fermi liquids, recently found in [Hong Liu, John McGreevy, and David Vegh, arXiv:0903.2477.] by considering properties of a Fermionic probe in an extremal AdS4 black hole background. Introducing a similar fermionic probe in a dyonic AdS4 black hole geometry, we find that the effect of a magnetic field could be incorporated in a rescaling of the probe fermion’s charge. From this simple fact, we observe interesting effects like gradual disappearance of the Fermi surface and quasiparticle peaks at large magnetic fields and changes in other properties of the system. We also find Landau level like structures and oscillatory phenomena similar to the de-Haas-van Alphen effect.
Experimental Observation of Fermi-Pasta-Ulam Recurrence in a Nonlinear Feedback Ring System
NASA Astrophysics Data System (ADS)
Wu, Mingzhong; Patton, Carl E.
2007-01-01
Fermi-Pasta-Ulam recurrence through soliton dynamics has been realized. The experiment used a magnetic film strip-based active feedback ring. At some ring gain level, a wide spin wave pulse is self-generated in the ring. As the pulse circulates, it separates into two envelop solitons with different speeds. When the fast soliton catches up and collides with the slow soliton, the initial wide pulse is perfectly reconstructed. The repetition of this process leads to periodic recurrences of the initial pulse.
Magnetotransport study of Dirac fermions in YbMnBi 2 antiferromagnet
Wang, Aifeng; Zaliznyak, I.; Ren, Weijun; ...
2016-10-15
We report quantum transport and Dirac fermions in YbMnBi 2 single crystals. YbMnBi 2 is a layered material with anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, and small cyclotron mass indicate the presence of Dirac fermions. Lastly, angular-dependent magnetoresistance indicates a possible quasi-two-dimensional Fermi surface, whereas the deviation from the nontrivial Berry phase expected for Dirac states suggests the contribution of parabolic bands at the Fermi level or spin-orbit coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boiko, V. M.; Brudnii, V. N., E-mail: brudnyi@mail.tsu.ru; Ermakov, V. S.
2015-06-15
The electronic properties and the limiting position of the Fermi level in p-GaSb crystals irradiated with full-spectrum reactor neutrons at up to a fluence of 8.6 × 10{sup 18} cm{sup −2} are studied. It is shown that the irradiation of GaSb with reactor neutrons results in an increase in the concentration of free holes to p{sub lim} = (5−6) × 10{sup 18} cm{sup −3} and in pinning of the Fermi level at the limiting position F{sub lim} close to E{sub V} + 0.02 eV at 300 K. The effect of the annealing of radiation defects in the temperature range 100–550°Cmore » is explored.« less
NASA Astrophysics Data System (ADS)
Ippoliti, Matteo; Geraedts, Scott D.; Bhatt, R. N.
2017-07-01
We investigate the relation between the Fermi sea (FS) of zero-field carriers in two-dimensional systems and the FS of the corresponding composite fermions which emerge in a high magnetic field at filling ν =1/2 , as the kinetic energy dispersion is varied. We study cases both with and without rotational symmetry and find that there is generally no straightforward relation between the geometric shapes and topologies of the two FSs. In particular, we show analytically that the composite Fermi liquid (CFL) is completely insensitive to a wide range of changes to the zero-field dispersion which preserve rotational symmetry, including ones that break the zero-field FS into multiple disconnected pieces. In the absence of rotational symmetry, we show that the notion of "valley pseudospin" in many-valley systems is generically not transferred to the CFL, in agreement with experimental observations. We also discuss how a rotationally symmetric band structure can induce a reordering of the Landau levels, opening interesting possibilities of observing higher-Landau-level physics in the high-field regime.
Manifestation of intra-atomic 5d6s-4f exchange coupling in photoexcited gadolinium
NASA Astrophysics Data System (ADS)
Zhang, G. P.; Jenkins, T.; Bennett, M.; Bai, Y. H.
2017-12-01
Intra-atomic exchange couplings (IECs) between 5d6s and 4f electrons are ubiquitous in rare-earth metals and play a critical role in spin dynamics. However, detecting them in real time domain has been difficult. Here we show the direct evidence of IEC between 5d6s and 4f electrons in gadolinium. Upon femtosecond laser excitation, 5d6s electrons are directly excited; their majority bands shift toward the Fermi level while their minority bands do the opposite. For the first time, our first-principles minority shift now agrees with the experiment quantitatively. Excited 5d6s electrons lower the exchange potential barrier for 4f electrons, so the 4f states are also shifted in energy, a prediction that can be tested experimentally. Although a significant number of 5d6s electrons, some several eV below the Fermi level, are excited out of the Fermi sea, there is no change in the 4f states, a clear manifestation of intra-atomic exchange coupling.
NASA Astrophysics Data System (ADS)
Dong, Xiao; Fang, Xiuxiu; Wang, Yongyong; Song, Xiaohui; Lu, Zhansheng
2018-06-01
Hyperdoped group-III elements can lower the Fermi energy in the band structures of Co-hyperdoped silicon. When the Co-to-X (X = B, Al, Ga) ratio is 2:1, the intermediate band (IB) in the bandgap includes the Fermi energy and is partially filled by electrons, which is in accordance with the requirement of an IB material. The hyperdoped X atoms can cause the blueshift of the sub-bandgap absorption of the compound compared with the material with no shallow-level elements, which is due to the enlargement of the electronic excitation energy of the Co,X-co-doped silicon.
Properties of {sup 112}Cd from the (n,n'{gamma}) reaction: Levels and level densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, P. E.; Lehmann, H.; Jolie, J.
2001-08-01
Levels in {sup 112}Cd have been studied through the (n,n'{gamma}) reaction with monoenergetic neutrons. An extended set of experiments that included excitation functions, {gamma}-ray angular distributions, and {gamma}{gamma} coincidence measurements was performed. A total of 375 {gamma} rays were placed in a level scheme comprising 200 levels (of which 238 {gamma}-ray assignments and 58 levels are newly established) up to 4 MeV in excitation. No evidence to support the existence of 47 levels as suggested in previous studies was found, and these have been removed from the level scheme. From the results, a comparison of the level density is mademore » with the constant temperature and back-shifted Fermi gas models. The back-shifted Fermi gas model with the Gilbert-Cameron spin cutoff parameter provided the best overall fit. Without using the neutron resonance information and only fitting the cumulative number of low-lying levels, the level density parameters extracted are a sensitive function of the maximum energy used in the fit.« less
Extending the Fermi-LAT Data Processing Pipeline to the Grid
NASA Astrophysics Data System (ADS)
Zimmer, S.; Arrabito, L.; Glanzman, T.; Johnson, T.; Lavalley, C.; Tsaregorodtsev, A.
2012-12-01
The Data Handling Pipeline (“Pipeline”) has been developed for the Fermi Gamma-Ray Space Telescope (Fermi) Large Area Telescope (LAT) which launched in June 2008. Since then it has been in use to completely automate the production of data quality monitoring quantities, reconstruction and routine analysis of all data received from the satellite and to deliver science products to the collaboration and the Fermi Science Support Center. Aside from the reconstruction of raw data from the satellite (Level 1), data reprocessing and various event-level analyses are also reasonably heavy loads on the pipeline and computing resources. These other loads, unlike Level 1, can run continuously for weeks or months at a time. In addition it receives heavy use in performing production Monte Carlo tasks. In daily use it receives a new data download every 3 hours and launches about 2000 jobs to process each download, typically completing the processing of the data before the next download arrives. The need for manual intervention has been reduced to less than 0.01% of submitted jobs. The Pipeline software is written almost entirely in Java and comprises several modules. The software comprises web-services that allow online monitoring and provides charts summarizing work flow aspects and performance information. The server supports communication with several batch systems such as LSF and BQS and recently also Sun Grid Engine and Condor. This is accomplished through dedicated job control services that for Fermi are running at SLAC and the other computing site involved in this large scale framework, the Lyon computing center of IN2P3. While being different in the logic of a task, we evaluate a separate interface to the Dirac system in order to communicate with EGI sites to utilize Grid resources, using dedicated Grid optimized systems rather than developing our own. More recently the Pipeline and its associated data catalog have been generalized for use by other experiments, and are currently being used by the Enriched Xenon Observatory (EXO), Cryogenic Dark Matter Search (CDMS) experiments as well as for Monte Carlo simulations for the future Cherenkov Telescope Array (CTA).
Role of defects in the carrier-tunable topological-insulator (Bi1 -xSbx )2Te3 thin films
NASA Astrophysics Data System (ADS)
Scipioni, Kane L.; Wang, Zhenyu; Maximenko, Yulia; Katmis, Ferhat; Steiner, Charlie; Madhavan, Vidya
2018-03-01
Alloys of Bi2Te3 and Sb2Te3[(Bi1-xSbx) 2Te3] have played an essential role in the exploration of topological surface states, allowing us to study phenomena that would otherwise be obscured by bulk contributions to conductivity. Despite intensive transport and angle resolved photoemission (ARPES) studies, important questions about this system remain unanswered. For example, previous studies reported the chemical tuning of the Fermi level to the Dirac point by controlling the Sb:Bi composition ratio, but the optimum ratio varies widely across various studies. Moreover, it is unclear how the quasiparticle lifetime is affected by the disorder resulting from Sb/Bi alloying. In this work, we use scanning tunneling microscopy and spectroscopy to study the electronic structure of epitaxially grown (Bi,Sb) 2Te3 thin films at the nanoscale. We study Landau levels (LLs) to determine the effect of disorder on the quasiparticle lifetime as well as the position of the Dirac point with respect to the Fermi energy. A plot of the LL peak widths shows that despite the intrinsic disorder, the quasiparticle lifetime is not significantly degraded. We further determine that the ideal Sb concentration to place the Fermi energy to within a few meV of the Dirac point is x ˜0.7 , but that postannealing temperatures can have a significant effect on the crystallinity and Fermi level position. Specifically, high postgrowth annealing temperature can result in better crystallinity and surface roughness, but also produces a larger Te defect density which adds n -type carriers. Finally, in combination with quasiparticle interference imaging, the dispersion is revealed over a large energy range above the Fermi energy, in a regime inaccessible to ARPES. Interestingly, the surface state dispersion for the x ˜0.7 sample shows great similarity to pristine Bi2Te3 . This work provides microscopic information on the role of disorder and composition in determining carrier concentration, surface state dispersion, and quasiparticle lifetime in (Bi1 -xSbx )2Te3 .
Kaiser, V.; Comtet, J.; Niguès, A.; Siria, A.; Coasne, B.; Bocquet, L.
2017-01-01
The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon the approach by [Kornyshev et al. Zh. Eksp. Teor. Fiz., 78(3):1008–1019, 1980] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allow for an estimate of interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. A counterintuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length ℓTF, profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement. PMID:28436506
NASA Astrophysics Data System (ADS)
Varley, J. B.; Lordi, V.; Ogitsu, T.; Deangelis, A.; Horsley, K.; Gaillard, N.
2018-04-01
Understanding the impact of impurities in solar absorbers is critical to engineering high-performance in devices, particularly over extended periods of time. Here, we use hybrid functional calculations to explore the role of hydrogen interstitial (Hi) defects in the electronic properties of a number of attractive solar absorbers within the chalcopyrite and kesterite families to identify how this common impurity may influence device performance. Our results identify that Hi can inhibit the highly p-type conditions desirable for several higher-band gap absorbers and that H incorporation could detrimentally affect the open-circuit voltage (Voc) and limit device efficiencies. Additionally, we find that Hi can drive the Fermi level away from the valence band edge enough to lead to n-type conductivity in a number of chalcopyrite and kesterite absorbers, particularly those containing Ag rather than Cu. We find that these effects can lead to interfacial Fermi-level pinning that can qualitatively explain the observed performance in high-Ga content CIGSe solar cells that exhibit saturation in the Voc with increasing band gap. Our results suggest that compositional grading rather than bulk alloying, such as by creating In-rich surfaces, may be a better strategy to favorably engineering improved thin-film photovoltaics with larger-band gap absorbers.
Absence of Dirac states in BaZnBi 2 induced by spin-orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Weijun; Wang, Aifeng; Graf, D.
We report magnetotransport properties of BaZnBi 2 single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with not only three-dimensional, but also with quasi-two-dimensional portions of the Fermi surface. The SOC-induced gap in Dirac states is much larger when compared to isostructural SrMnBi 2. This suggests that not only long-range magnetic order, but also mass of the alkaline-earth atoms A in ABX 2 ( A = alkaline-earth, B = transition-metal, and Xmore » = Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface.« less
Magnetothermoelectric properties of Bi2Se3
NASA Astrophysics Data System (ADS)
Fauqué, Benoît; Butch, Nicholas P.; Syers, Paul; Paglione, Johnpierre; Wiedmann, Steffen; Collaudin, Aurélie; Grena, Benjamin; Zeitler, Uli; Behnia, Kamran
2013-01-01
We present a study of entropy transport in Bi2Se3 at low temperatures and high magnetic fields. In the zero-temperature limit, the magnitude of the Seebeck coefficient quantitatively tracks the Fermi temperature of the three-dimensional Fermi surface at the Γ point as the carrier concentration changes by two orders of magnitude (1017 to 1019 cm-3). In high magnetic fields, the Nernst response displays giant quantum oscillations indicating that this feature is not exclusive to compensated semimetals. A comprehensive analysis of the Landau level spectrum firmly establishes a large g factor in this material and a substantial decrease of the Fermi energy with increasing magnetic field across the quantum limit. Thus, the presence of bulk carriers significantly affects the spectrum of the intensively debated surface states in Bi2Se3 and related materials.
Absence of Dirac states in BaZnBi 2 induced by spin-orbit coupling
Ren, Weijun; Wang, Aifeng; Graf, D.; ...
2018-01-22
We report magnetotransport properties of BaZnBi 2 single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with not only three-dimensional, but also with quasi-two-dimensional portions of the Fermi surface. The SOC-induced gap in Dirac states is much larger when compared to isostructural SrMnBi 2. This suggests that not only long-range magnetic order, but also mass of the alkaline-earth atoms A in ABX 2 ( A = alkaline-earth, B = transition-metal, and Xmore » = Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface.« less
Superconductivity in the two-dimensional Hubbard model
NASA Astrophysics Data System (ADS)
Beenen, J.; Edwards, D. M.
1995-11-01
Quasiparticle bands of the two-dimensional Hubbard model are calculated using the Roth two-pole approximation to the one-particle Green's function. Excellent agreement is obtained with recent Monte Carlo calculations, including an anomalous volume of the Fermi surface near half-filling, which can possibly be explained in terms of a breakdown of Fermi liquid theory. The calculated bands are very flat around the (π,0) points of the Brillouin zone in agreement with photoemission measurements of cuprate superconductors. With doping there is a shift in spectral weight from the upper band to the lower band. The Roth method is extended to deal with superconductivity within a four-pole approximation allowing electron-hole mixing. It is shown that triplet p-wave pairing never occurs. A self-consistent solution with singlet dx2-y2-wave pairing is found and optimal doping occurs when the van Hove singularity, corresponding to the flat band part, lies at the Fermi level. Nearest-neighbor antiferromagnetic correlations play an important role in flattening the bands near the Fermi level and in favoring superconductivity. However, the mechanism for superconductivity is a local one, in contrast to spin-fluctuation exchange models. For reasonable values of the hopping parameter the transition temperature Tc is in the range 10-100 K. The optimum doping δc lies between 0.14 and 0.25, depending on the ratio U/t. The gap equation has a BCS-like form and 2Δmax/kTc~=4.
Realization of non-symmorphic Dirac cones in PbFCl materials
NASA Astrophysics Data System (ADS)
Schoop, Leslie
While most 3D Dirac semimetals require two bands with different orbital character to be protected, there is also the possibility to find 3D Dirac semimetals that are guaranteed to exist in certain space groups. Those are resulting from the non-symmoprhic symmetry of the space group, which forces the bands to degenerate at high symmetry points in the Brillouin zone. Non-symmorphic space groups can force three- four, six and eight fold degeneracies which led to the proposal to find 3D Dirac Semimetals as well as new quasiparticles in such space groups. Problematic for realizing this types of Dirac materials is that they require and odd band filling in order to have the Fermi level located at or also near by the band crossing points. Therefore, although the first prediction for using non-symmoprhic symmetry to create a Dirac material was made in 2012, it took almost four years for an experimental verification of this type of Dirac crossing. In this talk I will introduce the material ZrSiS that has, besides other Dirac features, a Dirac cone protected by non-symmorphic symmetry at about 0.5 eV below the Fermi level and was the first material where this type of Dirac cone was imaged with ARPES. I will then proceed to discuss ways to shift this crossing to the Fermi edge and finally show an experimental verification of a fourfold Dirac crossing, protected by non-symmorphic symmetry, at the Fermi energy.
Metal-to-insulator crossover in alkali doped zeolite
Igarashi, Mutsuo; Jeglič, Peter; Krajnc, Andraž; Žitko, Rok; Nakano, Takehito; Nozue, Yasuo; Arčon, Denis
2016-01-01
We report a systematic nuclear magnetic resonance investigation of the 23Na spin-lattice relaxation rate, 1/T1, in sodium loaded low-silica X (LSX) zeolite, Nan/Na12-LSX, for various loading levels of sodium atoms n across the metal-to-insulator crossover. For high loading levels of n ≥ 14.2, 1/T1T shows nearly temperature-independent behaviour between 10 K and 25 K consistent with the Korringa relaxation mechanism and the metallic ground state. As the loading levels decrease below n ≤ 11.6, the extracted density of states (DOS) at the Fermi level sharply decreases, although a residual DOS at Fermi level is still observed even in the samples that lack the metallic Drude-peak in the optical reflectance. The observed crossover is a result of a complex loading-level dependence of electric potential felt by the electrons confined to zeolite cages, where the electronic correlations and disorder both play an important role. PMID:26725368
Kim, Gwang-Sik; Kim, Seung-Hwan; Park, June; Han, Kyu Hyun; Kim, Jiyoung; Yu, Hyun-Yong
2018-06-06
The difficulty in Schottky barrier height (SBH) control arising from Fermi-level pinning (FLP) at electrical contacts is a bottleneck in designing high-performance nanoscale electronics and optoelectronics based on molybdenum disulfide (MoS 2 ). For electrical contacts of multilayered MoS 2 , the Fermi level on the metal side is strongly pinned near the conduction-band edge of MoS 2 , which makes most MoS 2 -channel field-effect transistors (MoS 2 FETs) exhibit n-type transfer characteristics regardless of their source/drain (S/D) contact metals. In this work, SBH engineering is conducted to control the SBH of electrical top contacts of multilayered MoS 2 by introducing a metal-interlayer-semiconductor (MIS) structure which induces the Fermi-level unpinning by a reduction of metal-induced gap states (MIGS). An ultrathin titanium dioxide (TiO 2 ) interlayer is inserted between the metal contact and the multilayered MoS 2 to alleviate FLP and tune the SBH at the S/D contacts of multilayered MoS 2 FETs. A significant alleviation of FLP is demonstrated as MIS structures with 1 nm thick TiO 2 interlayers are introduced into the S/D contacts. Consequently, the pinning factor ( S) increases from 0.02 for metal-semiconductor (MS) contacts to 0.24 for MIS contacts, and the controllable SBH range is widened from 37 meV (50-87 meV) to 344 meV (107-451 meV). Furthermore, the Fermi-level unpinning effect is reinforced as the interlayer becomes thicker. This work widens the scope for modifying electrical characteristics of contacts by providing a platform to control the SBH through a simple process as well as understanding of the FLP at the electrical top contacts of multilayered MoS 2 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quijano, Ramiro; DeCoss, Romeo; Singh, David J
2009-01-01
The electronic structure and energetics of the tetragonal distortion for the fluorite-type dihydrides TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} are studied by means of highly accurate first-principles total-energy calculations. For HfH{sub 2}, in addition to the calculations using the scalar relativistic (SR) approximation, calculations including the spin-orbit coupling have also been performed. The results show that TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} in the cubic phase are unstable against tetragonal strain. For the three systems, the total energy shows two minima as a function of the c/a ratio with the lowest-energy minimum at c/a < 1 in agreementmore » with the experimental observations. The band structure of TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} (SR) around the Fermi level shows two common features along the two major symmetry directions of the Brillouin zone, {Lambda}?L and {Lambda}?K, a nearly flat doubly degenerate band, and a van Hove singularity, respectively. In cubic HfH{sub 2} the spin-orbit coupling lifts the degeneracy of the partially filled bands in the {Lambda}?L path, while the van Hove singularity in the {Lambda}?K path remains unchanged. The density of states of the three systems in the cubic phase shows a sharp peak at the Fermi level. We found that the tetragonal distortion produces a strong reduction in the density of states at the Fermi level resulting mainly from the splitting of the doubly-degenerate bands in the {Lambda}?L direction and the shift of the van Hove singularity to above the Fermi level. The validity of the Jahn-Teller model in explaining the tetragonal distortion in this group of dihydrides is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, Pramod; Washiyama, Shun; Kaess, Felix
2016-04-14
In this work, we employed X-ray photoelectron spectroscopy to determine the band offsets and interface Fermi level at the heterojunction formed by stoichiometric silicon nitride deposited on Al{sub x}Ga{sub 1-x}N (of varying Al composition “x”) via low pressure chemical vapor deposition. Silicon nitride is found to form a type II staggered band alignment with AlGaN for all Al compositions (0 ≤ x ≤ 1) and present an electron barrier into AlGaN even at higher Al compositions, where E{sub g}(AlGaN) > E{sub g}(Si{sub 3}N{sub 4}). Further, no band bending is observed in AlGaN for x ≤ 0.6 and a reduced band bending (by ∼1 eV in comparison to that atmore » free surface) is observed for x > 0.6. The Fermi level in silicon nitride is found to be at 3 eV with respect to its valence band, which is likely due to silicon (≡Si{sup 0/−1}) dangling bonds. The presence of band bending for x > 0.6 is seen as a likely consequence of Fermi level alignment at Si{sub 3}N{sub 4}/AlGaN hetero-interface and not due to interface states. Photoelectron spectroscopy results are corroborated by current-voltage-temperature and capacitance-voltage measurements. A shift in the interface Fermi level (before band bending at equilibrium) from the conduction band in Si{sub 3}N{sub 4}/n-GaN to the valence band in Si{sub 3}N{sub 4}/p-GaN is observed, which strongly indicates a reduction in mid-gap interface states. Hence, stoichiometric silicon nitride is found to be a feasible passivation and dielectric insulation material for AlGaN at any composition.« less
Effects of Excess Carriers on Charged Defect Concentrations in Wide Bandgap Semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alberi, Kirstin M; Scarpulla, Michael A.
Unintentional doping and doping limits in semiconductors are typically caused by compensating defects with low formation energies. Since the formation enthalpy of a charged defect depends linearly on the Fermi level, doping limits can be especially pronounced in wide bandgap semiconductors where the Fermi level can vary substantially. Introduction of non-equilibrium carrier concentrations during growth or processing alters the chemical potentials of band carriers and allows populations of charged defects to be modified in ways impossible at thermal equilibrium. We demonstrate that in the presence of excess carriers, the rates of carrier capture and emission involving a defect charge transitionmore » level determine the admixture of electron and hole quasi-Fermi levels involved in the formation enthalpy of non-zero charge defect states. To understand the range of possible responses, we investigate the behavior of a single donor-like defect as functions of extrinsic doping and charge transition level energy. We find that that excess carriers will increase the formation enthalpy of compensating defects for most values of the charge transition level in the bandgap. Thus, it may be possible to use non-equilibrium carrier concentrations to overcome limitations on doping imposed by native defects. Cases also exist in which the concentration of defects with the same charge polarity as the majority dopant is either left unchanged or actually increases. This surprising effect arises when emission rates are suppressed relative to the capture rates and is most pronounced in wide bandgap semiconductors. We provide guidelines for carrying out experimental tests of this model.« less
Effects of excess carriers on charged defect concentrations in wide bandgap semiconductors
NASA Astrophysics Data System (ADS)
Alberi, Kirstin; Scarpulla, Michael A.
2018-05-01
Unintentional doping and doping limits in semiconductors are typically caused by compensating defects with low formation energies. Since the formation enthalpy of a charged defect depends linearly on the Fermi level, doping limits can be especially pronounced in wide bandgap semiconductors where the Fermi level can vary substantially. Introduction of non-equilibrium carrier concentrations during growth or processing alters the chemical potentials of band carriers and allows populations of charged defects to be modified in ways impossible at thermal equilibrium. We demonstrate that in the presence of excess carriers, the rates of carrier capture and emission involving a defect charge transition level determine the admixture of electron and hole quasi-Fermi levels involved in the formation enthalpy of non-zero charge defect states. To understand the range of possible responses, we investigate the behavior of a single donor-like defect as functions of extrinsic doping and charge transition level energy. We find that that excess carriers will increase the formation enthalpy of compensating defects for most values of the charge transition level in the bandgap. Thus, it may be possible to use non-equilibrium carrier concentrations to overcome limitations on doping imposed by native defects. Cases also exist in which the concentration of defects with the same charge polarity as the majority dopant is either left unchanged or actually increases. This surprising effect arises when emission rates are suppressed relative to the capture rates and is most pronounced in wide bandgap semiconductors. We provide guidelines for carrying out experimental tests of this model.
Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems
NASA Astrophysics Data System (ADS)
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.
We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.
NASA Astrophysics Data System (ADS)
Jia, Weile; Lin, Lin
2017-10-01
Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.
Jia, Weile; Lin, Lin
2017-10-14
Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.
Fermi observations of the very hard gamma-ray blazar PG 1553+113
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-12-22
Here, we report the observations of PG 1553+113 during the first ~ 200 days of Fermi Gamma-ray Space Telescope science operations, from 2008 August 4 to 2009 February 22 (MJD 54682.7-54884.2). This is the first detailed study of PG 1553+113 in the GeV gamma-ray regime and it allows us to fill a gap of three decades in energy in its spectral energy distribution (SED). We find PG 1553+113 to be a steady source with a hard spectrum that is best fit by a simple power law in the Fermi energy band. We combine the Fermi data with archival radio, optical,more » X-ray, and very high energy (VHE) gamma-ray data to model its broadband SED and find that a simple, one-zone synchrotron self-Compton model provides a reasonable fit. PG 1553+113 has the softest VHE spectrum of all sources detected in that regime and, out of those with significant detections across the Fermi energy bandpass so far, the hardest spectrum in that energy regime. Thus, it has the largest spectral break of any gamma-ray source studied to date, which could be due to the absorption of the intrinsic gamma-ray spectrum by the extragalactic background light (EBL). Assuming this to be the case, we selected a model with a low level of EBL and used it to absorb the power-law spectrum from PG 1553+113 measured with Fermi (200 MeV-157 GeV) to find the redshift, which gave the best fit to the measured VHE data (90 GeV-1.1 TeV) for this parameterization of the EBL. We show that this redshift can be considered an upper limit on the distance to PG 1553+113.« less
Thomas-Fermi model for a bulk self-gravitating stellar object in two dimensions
NASA Astrophysics Data System (ADS)
De, Sanchari; Chakrabarty, Somenath
2015-09-01
In this article we have solved a hypothetical problem related to the stability and gross properties of two-dimensional self-gravitating stellar objects using the Thomas-Fermi model. The formalism presented here is an extension of the standard three-dimensional problem discussed in the book on statistical physics, Part I by Landau and Lifshitz. Further, the formalism presented in this article may be considered a class problem for post-graduate-level students of physics or may be assigned as a part of their dissertation project.
Magnetoresistance of a nanostep junction based on topological insulators
NASA Astrophysics Data System (ADS)
Hu, Wei; Hong, Jin-Bin; Zhai, Feng
2018-06-01
We investigate ballistic transport of helical electrons in a three-dimensional topological insulator traversing a nanostep junction. We find that a magnetic field perpendicular to its side surface shrinks the phase space for transmission, leading to magnetoresistance for the Fermi energy close to the Dirac point of the top surface. We also find transmission resonances and suppression of the Fano factor due to Landau-level-related quasibound states. The transmission blockade in the off-resonance case can result in a huge magnetoresistance for Fermi energy higher than the Dirac point of the side surface.
Fermi-surface reconstruction and the origin of high-temperature superconductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norman, M. R.; Materials Science Division
2010-01-01
In crystalline lattices, the conduction electrons form waves, known as Bloch states, characterized by a momentum vector k. The defining characteristic of metals is the surface in momentum space that separates occupied from unoccupied states. This 'Fermi' surface may seem like an abstract concept, but it can be measured and its shape can have profound consequences for the thermal, electronic, and magnetic properties of a material. In the presence of an external magnetic field B, electrons in a metal spiral around the field direction, and within a semiclassical momentum-space picture, orbit around the Fermi surface. Physical properties, such as themore » magnetization, involve a sum over these orbits, with extremal orbits on the Fermi surface, i.e., orbits with minimal or maximal area, dominating the sum [Fig. 1(a)]. Upon quantization, the resulting electron energy spectrum consists of Landau levels separated by the cyclotron energy, which is proportional to the magnetic field. As the magnetic field causes subsequent Landau levels to cross through the Fermi energy, physical quantities, such as the magnetization or resistivity, oscillate in response. It turns out that the period of these oscillations, when plotted as a function of 1/B, is proportional to the area of the extremal orbit in a plane perpendicular to the applied field [Fig. 1(b)]. The power of the quantum oscillation technique is obvious: By changing the field direction, one can map out the Fermi surface, much like a blind man feeling an elephant. The nature and topology of the Fermi surface in high-T{sub c} cuprates has been debated for many years. Soon after the materials were discovered by Bednorz and Mueller, it was realized that superconductivity was obtained by doping carriers into a parent insulating state. This insulating state appears to be due to strong electronic correlations, and is known as a Mott insulator. In the case of cuprates, the electronic interactions force the electrons on the copper ion lattice into a d{sup 9} configuration, with one localized hole in the 3d shell per copper site. Given the localized nature of this state, it was questioned whether a momentum-space picture was an appropriate description of the physics of the cuprates. In fact, this question relates to a long-standing debate in the physics community: Since the parent state is also an antiferromagnet, one can, in principle, map the Mott insulator to a band insulator with magnetic order. In this 'Slater' picture, Mott physics is less relevant than the magnetism itself. It is therefore unclear which of the two, magnetism or Mott physics, is more fundamentally tied to superconductivity in the cuprates. After twenty years of effort, definitive quantum oscillations that could be used to map the Fermi surface were finally observed in a high-temperature cuprate superconductor in 2007. This and subsequent studies reveal a profound rearrangement of the Fermi surface in underdoped cuprates. The cause of the reconstruction, and its implication for the origin of high-temperature superconductivity, is a subject of active debate.« less
Large optical conductivity of Dirac semimetal Fermi arc surface states
NASA Astrophysics Data System (ADS)
Shi, Li-kun; Song, Justin C. W.
2017-08-01
Fermi arc surface states, a hallmark of topological Dirac semimetals, can host carriers that exhibit unusual dynamics distinct from that of their parent bulk. Here we find that Fermi arc carriers in intrinsic Dirac semimetals possess a strong and anisotropic light-matter interaction. This is characterized by a large Fermi arc optical conductivity when light is polarized transverse to the Fermi arc; when light is polarized along the Fermi arc, Fermi arc optical conductivity is significantly muted. The large surface spectral weight is locked to the wide separation between Dirac nodes and persists as a large Drude weight of Fermi arc carriers when the system is doped. As a result, large and anisotropic Fermi arc conductivity provides a novel means of optically interrogating the topological surfaces states of Dirac semimetals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savchenko, D., E-mail: dariyasavchenko@gmail.com; National Technical University of Ukraine “Kyiv Polytechnic Institute”, Kyiv 03056; Kalabukhova, E.
2016-01-28
We have studied the temperature behavior of the electron spin resonance (ESR) spectra of nitrogen (N) donors in n-type 6H SiC crystals grown by Lely and sublimation sandwich methods (SSM) with donor concentration of 10{sup 17 }cm{sup −3} at T = 60–150 K. A broad signal in the ESR spectrum was observed at T ≥ 80 K with Lorentzian lineshape and g{sub ||} = 2.0043(3), g{sub ⊥} = 2.0030(3), which was previously assigned in the literature to the N donors in the 1s(E) excited state. Based on the analysis of the ESR lineshape, linewidth and g-tensor we attribute this signal to the conduction electrons (CE). The emergence of the CE ESRmore » signal at T > 80 K was explained by the ionization of electrons from the 1s(A{sub 1}) ground and 1s(E) excited states of N donors to the conduction band while the observed reduction of the hyperfine (hf) splitting for the N{sub k1,k2} donors with the temperature increase is attributed to the motional narrowing effect of the hf splitting. The temperature dependence of CE ESR linewidth is described by an exponential law (Orbach process) with the activation energy corresponding to the energy separation between 1s(A{sub 1}) and 1s(E) energy levels for N residing at quasi-cubic sites (N{sub k1,k2}). The theoretical analysis of the temperature dependence of microwave conductivity measured by the contact-free method shows that due to the different position of the Fermi level in two samples the ionization of free electrons occurs from the energy levels of N{sub k1,k2} donors in Lely grown samples and from the energy level of N{sub h} residing at hexagonal position in 6H SiC grown by SSM.« less
Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe
Kim, Kihyun; Yoon, Yongsu; James, Ralph B.
2018-03-13
Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less
Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kihyun; Yoon, Yongsu; James, Ralph B.
Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less
Surprising stability of neutral interstitial hydrogen in diamond and cubic BN
Lyons, J. L.; Van de Walle, C. G.
2016-01-21
We report that in virtually all semiconductors and insulators, hydrogen interstitials (H i) act as negative-U centers, implying that hydrogen is never stable in the neutral charge state. Using hybrid density functional calculations, we find a different behavior for H i in diamond and cubic BN. In diamond, H i is a very strong positive-U center, and the H 0 icharge state is stable over a Fermi-level range of more than 2 eV. In cubic BN, a III-V compound similar to diamond, we also find positive-U behavior, though over a much smaller Fermi-level range. Finally, these results highlight the uniquemore » behavior of Hi in these covalent wide-band-gap semiconductors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchenko, A. V.; Terukov, E. I.; Egorova, A. Yu.
Impurity iron atoms in vitreous arsenic-selenide As{sub 2}Se{sub 3} films modified by iron form one-electron donor centers with an ionization energy of 0.24 (3) eV (the energy is counted from the conduction-band bottom). The Fermi level is shifted with an increase in the iron concentration from the mid-gap to the donorlevel position of iron due to the filling of one-electron states of the acceptor type lying below the Fermi level. At an iron concentration of ≥3 at %, the electron-exchange process is observed between neutral and ionized iron centers resulting in a change both in the electron density and inmore » the tensor of the electric-field gradient at iron-atom nuclei with increasing temperature above 350 K.« less
Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodière, Jean; Lombez, Laurent, E-mail: laurent.lombez@chimie-paristech.fr; Le Corre, Alain
We investigated a semiconductor heterostructure based on InGaAsP multi quantum wells (QWs) using optical characterizations and demonstrate its potential to work as a hot carrier cell absorber. By analyzing photoluminescence spectra, the quasi Fermi level splitting Δμ and the carrier temperature are quantitatively measured as a function of the excitation power. Moreover, both thermodynamics values are measured at the QWs and the barrier emission energy. High values of Δμ are found for both transition, and high carrier temperature values in the QWs. Remarkably, the quasi Fermi level splitting measured at the barrier energy exceeds the absorption threshold of the QWs.more » This indicates a working condition beyond the classical Shockley-Queisser limit.« less
Thermoelectric effect in molecular electronics
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Datta, Supriyo
2003-06-01
We provide a theoretical estimate of the thermoelectric current and voltage over a Phenyldithiol molecule. We also show that the thermoelectric voltage is (1) easy to analyze, (2) insensitive to the detailed coupling to the contacts, (3) large enough to be measured, and (4) give valuable information, which is not readily accessible through other experiments, on the location of the Fermi energy relative to the molecular levels. The location of the Fermi-energy is poorly understood and controversial even though it is a central factor in determining the nature of conduction (n or p type). We also note that the thermoelectric voltage measured over Guanine molecules with a scanning tunneling microscope by Poler et al., indicate conduction through the highest occupied molecular orbital level, i.e., p-type conduction.
Spatial variations of the local density of states modified by CDWs in 1 T- TaS2- xSex
NASA Astrophysics Data System (ADS)
Hasegawa, T.; Yamaguchi, W.; Kim, J.-J.; Wei, W.; Nantoh, M.; Ikuta, H.; Kitazawa, K.; Manivannan, A.; Fujishima, A.; Uchinokura, K.
1994-07-01
Spatial variations of the local density of states (LDOS) near the Fermi level have been observed on the layered dichalcogenides 1 T- TaS2- xSex ( x = 0, 0.2, 2) for the first time. The tunneling spectra on the cleaved surfaces were measured by atomic-site tunneling (AST) spectroscopy technique at room temperature. In 1T-TaS 2, the LDOS was substantially different among the three inequivalent Ta atomic sites induced by the CDW formation. However, the surface electronic structure became homogeneous, as the Se content was increased. By substituting Se for S, the minimum position of the LDOS was systematically shifted to a higher energy side above the Fermi level.
Non-extensive quantum statistics with particle-hole symmetry
NASA Astrophysics Data System (ADS)
Biró, T. S.; Shen, K. M.; Zhang, B. W.
2015-06-01
Based on Tsallis entropy (1988) and the corresponding deformed exponential function, generalized distribution functions for bosons and fermions have been used since a while Teweldeberhan et al. (2003) and Silva et al. (2010). However, aiming at a non-extensive quantum statistics further requirements arise from the symmetric handling of particles and holes (excitations above and below the Fermi level). Naive replacements of the exponential function or "cut and paste" solutions fail to satisfy this symmetry and to be smooth at the Fermi level at the same time. We solve this problem by a general ansatz dividing the deformed exponential to odd and even terms and demonstrate that how earlier suggestions, like the κ- and q-exponential behave in this respect.
Gonzalez-Vazquez, J P; Anta, Juan A; Bisquert, Juan
2009-11-28
The random walk numerical simulation (RWNS) method is used to compute diffusion coefficients for hopping transport in a fully disordered medium at finite carrier concentrations. We use Miller-Abrahams jumping rates and an exponential distribution of energies to compute the hopping times in the random walk simulation. The computed diffusion coefficient shows an exponential dependence with respect to Fermi-level and Arrhenius behavior with respect to temperature. This result indicates that there is a well-defined transport level implicit to the system dynamics. To establish the origin of this transport level we construct histograms to monitor the energies of the most visited sites. In addition, we construct "corrected" histograms where backward moves are removed. Since these moves do not contribute to transport, these histograms provide a better estimation of the effective transport level energy. The analysis of this concept in connection with the Fermi-level dependence of the diffusion coefficient and the regime of interest for the functioning of dye-sensitised solar cells is thoroughly discussed.
NASA Astrophysics Data System (ADS)
Johnston, Clifford T.; Swanson, Basil I.
1985-03-01
The unusual temperature dependence of the amide-I region in the IR spectrum of acetanilide (C 6H 5NHCOCH 3) has recently been attributed to a self-trapped Davydov-like soliton. The temperature dependence of the single-crystal Raman scattering, from acetanilide and its ND and 13CO substituted analogs in the phonon and internal mode regions has now been studied. The behavior of the amide-I region in the Raman spectra of the normal isotopic species is similar to that observed earlier in infrared studies. However, on the basis of results obtained from the ND and 13CO substituted species the unusual temperature dependence in the 1650 cm -1 region has been attributed to Fermi coupling of the amide-I fundamental and a combination band involving the in-plane NH deformation and a low-frequency torsional mode. As temperature is lowered, the strong blue-shift of the torsional mode results in a commensurate blue-shift in the combination level thereby increasing the Fermi coupling. Temperature tuning of the Fermi coupling results in the anomalous intensity changes observed in the IR and Raman spectra of the amide-I region for the normal isotopic species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belopolski, Ilya; Xu, Su-Yang; Ishida, Yukiaki
2016-08-15
It has recently been proposed that electronic band structures in crystals can give rise to a previously overlooked type of Weyl fermion, which violates Lorentz invariance and, consequently, is forbidden in particle physics. It was further predicted that Mo x W 1 - x Te 2 may realize such a type-II Weyl fermion. Here, we first show theoretically that it is crucial to access the band structure above the Fermi level ε F to show a Weyl semimetal in Mo x W 1 - x Te 2 . Then, we study Mo x W 1 - x Te 2 bymore » pump-probe ARPES and we directly access the band structure > 0.2 eV above ε F in experiment. By comparing our results with ab initio calculations, we conclude that we directly observe the surface state containing the topological Fermi arc. We propose that a future study of Mo x W 1 - x Te 2 by pump-probe ARPES may directly pinpoint the Fermi arc. Our work sets the stage for the experimental discovery of the first type-II Weyl semimetal in Mo x W 1 - x Te 2 .« less
Non-Fermi-liquid nature and exotic thermoelectric power in the heavy-fermion superconductor UBe13
NASA Astrophysics Data System (ADS)
Shimizu, Yusei; Pourret, Alexandre; Knebel, Georg; Palacio-Morales, Alexandra; Aoki, Dai
2015-12-01
We report quite exotic thermoelectric power S in UBe13. At 0 T, the negative S /T continues to strongly enhance down to the superconducting transition temperature with no Fermi-liquid behavior. |S /T | is dramatically suppressed and becomes rather modest with increasing field. We have also obtained precise field dependencies of (i) an anomaly in S due to an exotic Kondo effect and (ii) a field-induced anomaly in S /T associated with the anomalous upward Hc 2(T ) . In contrast to the field-sensitive transport property, the normal-state specific heat is magnetically robust, indicating that the largeness of the 5 f density of states remains in high fields. This unusual behavior in UBe13 can be explained by a considerable change in the energy derivative of the conduction-electron lifetime τc(ɛ ) at the Fermi level under magnetic fields.
Two-color Fermi-liquid theory for transport through a multilevel Kondo impurity
NASA Astrophysics Data System (ADS)
Karki, D. B.; Mora, Christophe; von Delft, Jan; Kiselev, Mikhail N.
2018-05-01
We consider a quantum dot with K ≥2 orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multilevel Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric point is governed by a two-channel S =1 Kondo model characterized by intrinsic channels asymmetry. Based on a conformal field theory approach we derived an effective Hamiltonian at a strong-coupling fixed point. The Hamiltonian capturing the low-energy physics of a two-stage Kondo screening represents the quantum impurity by a two-color local Fermi liquid. Using nonequilibrium (Keldysh) perturbation theory around the strong-coupling fixed point we analyze the transport properties of the model at finite temperature, Zeeman magnetic field, and source-drain voltage applied across the quantum dot. We compute the Fermi-liquid transport constants and discuss different universality classes associated with emergent symmetries.
Degenerate stars and gravitational collapse in AdS/CFT
NASA Astrophysics Data System (ADS)
Arsiwalla, Xerxes; de Boer, Jan; Papadodimas, Kyriakos; Verlinde, Erik
2011-01-01
We construct composite CFT operators from a large number of fermionic primary fields corresponding to states that are holographically dual to a zero temperature Fermi gas in AdS space. We identify a large N regime in which the fermions behave as free particles. In the hydrodynamic limit the Fermi gas forms a degenerate star with a radius determined by the Fermi level, and a mass and angular momentum that exactly matches the boundary calculations. Next we consider an interacting regime, and calculate the effect of the gravitational back-reaction on the radius and the mass of the star using the Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine the "Chandrasekhar limit" beyond which the degenerate star (presumably) undergoes gravitational collapse towards a black hole. This is interpreted on the boundary as a high density phase transition from a cold baryonic phase to a hot deconfined phase.
Visualizing Type-II Weyl Points in Tungsten Ditelluride by Quasiparticle Interference.
Lin, Chun-Liang; Arafune, Ryuichi; Liu, Ro-Ya; Yoshimura, Masato; Feng, Baojie; Kawahara, Kazuaki; Ni, Zeyuan; Minamitani, Emi; Watanabe, Satoshi; Shi, Youguo; Kawai, Maki; Chiang, Tai-Chang; Matsuda, Iwao; Takagi, Noriaki
2017-11-28
Weyl semimetals (WSMs) are classified into two types, type I and II, according to the topology of the Weyl point, where the electron and hole pockets touch each other. Tungsten ditelluride (WTe 2 ) has garnered a great deal of attention as a strong candidate to be a type-II WSM. However, the Weyl points for WTe 2 are located above the Fermi level, which has prevented us from identifying the locations and the connection to the Fermi arc surface states by using angle-resolved photoemission spectroscopy. Here, we present experimental proof that WTe 2 is a type-II WSM. We measured energy-dependent quasiparticle interference patterns with a cryogenic scanning tunneling microscope, revealing the position of the Weyl point and its connection with the Fermi arc surface states, in agreement with prior theoretical predictions. Our results provide an answer to this crucial question and stimulate further exploration of the characteristics of WSMs.
Coherent Transport in a Linear Triple Quantum Dot Made from a Pure-Phase InAs Nanowire.
Wang, Ji-Yin; Huang, Shaoyun; Huang, Guang-Yao; Pan, Dong; Zhao, Jianhua; Xu, H Q
2017-07-12
A highly tunable linear triple quantum dot (TQD) device is realized in a single-crystalline pure-phase InAs nanowire using a local finger gate technique. The electrical measurements show that the charge stability diagram of the TQD can be represented by three kinds of current lines of different slopes and a simulation performed based on a capacitance matrix model confirms the experiment. We show that each current line observable in the charge stability diagram is associated with a case where a QD is on resonance with the Fermi level of the source and drain reservoirs. At a triple point where two current lines of different slopes move together but show anticrossing, two QDs are on resonance with the Fermi level of the reservoirs. We demonstrate that an energetically degenerated quadruple point at which all three QDs are on resonance with the Fermi level of the reservoirs can be built by moving two separated triple points together via sophistically tuning of energy levels in the three QDs. We also demonstrate the achievement of direct coherent electron transfer between the two remote QDs in the TQD, realizing a long-distance coherent quantum bus operation. Such a long-distance coherent coupling could be used to investigate coherent spin teleportation and superexchange effects and to construct a spin qubit with an improved long coherent time and with spin state detection solely by sensing the charge states.
Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul
2016-02-09
We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime.
Discovery of a new type of topological Weyl fermion semimetal state in Mo xW 1-xTe 2
Belopolski, Ilya; Sanchez, Daniel S.; Ishida, Yukiaki; ...
2016-12-05
Here, the recent discovery of a Weyl semimetal in TaAs offers the first Weyl fermion observed in nature and dramatically broadens the classification of topological phases. However, in TaAs it has proven challenging to study the rich transport phenomena arising from emergent Weyl fermions. The series Mo xW 1-xTe 2 are inversion-breaking, layered, tunable semimetals already under study as a promising platform for new electronics and recently proposed to host Type II, or strongly Lorentz-violating, Weyl fermions. Here we report the discovery of a Weyl semimetal in Mo xW 1-xTe 2 at x=25%. We use pump-probe angle-resolved photoemission spectroscopy (pump-probemore » ARPES) to directly observe a topological Fermi arc above the Fermi level, demonstrating a Weyl semimetal. The excellent agreement with calculation suggests that Mo xW 1-xTe 2 is a Type II Weyl semimetal. We also find that certain Weyl points are at the Fermi level, making Mo xW 1-xTe 2 a promising platform for transport and optics experiments on Weyl semimetals.« less
Discovery of a new type of topological Weyl fermion semimetal state in Mo xW 1-xTe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belopolski, Ilya; Sanchez, Daniel S.; Ishida, Yukiaki
Here, the recent discovery of a Weyl semimetal in TaAs offers the first Weyl fermion observed in nature and dramatically broadens the classification of topological phases. However, in TaAs it has proven challenging to study the rich transport phenomena arising from emergent Weyl fermions. The series Mo xW 1-xTe 2 are inversion-breaking, layered, tunable semimetals already under study as a promising platform for new electronics and recently proposed to host Type II, or strongly Lorentz-violating, Weyl fermions. Here we report the discovery of a Weyl semimetal in Mo xW 1-xTe 2 at x=25%. We use pump-probe angle-resolved photoemission spectroscopy (pump-probemore » ARPES) to directly observe a topological Fermi arc above the Fermi level, demonstrating a Weyl semimetal. The excellent agreement with calculation suggests that Mo xW 1-xTe 2 is a Type II Weyl semimetal. We also find that certain Weyl points are at the Fermi level, making Mo xW 1-xTe 2 a promising platform for transport and optics experiments on Weyl semimetals.« less
The Mott transition in the strong coupling perturbation theory
NASA Astrophysics Data System (ADS)
Sherman, A.
2015-01-01
Using the strong coupling diagram technique a self-consistent equation for the electron Green's function is derived for the repulsive Hubbard model. Terms of two lowest orders of the ratio of the bandwidth Δ to the Hubbard repulsion U are taken into account in the irreducible part of the Larkin equation. The obtained equation is shown to retain causality and reduces to Green's function of uncorrelated electrons in the limit U → 0. Calculations were performed for the semi-elliptical initial band. It is shown that the approximation describes the Mott transition, which occurs at Uc =√{ 3 } Δ / 2. This value coincides with that obtained in the Hubbard-III approximation. At half-filling, for 0 < U
Tunnel transport and interlayer excitons in bilayer fractional quantum Hall systems
NASA Astrophysics Data System (ADS)
Zhang, Yuhe; Jain, J. K.; Eisenstein, J. P.
2017-05-01
In a bilayer system consisting of a composite-fermion (CF) Fermi sea in each layer, the tunnel current is exponentially suppressed at zero bias, followed by a strong peak at a finite-bias voltage Vmax. This behavior, which is qualitatively different from that observed for the electron Fermi sea, provides fundamental insight into the strongly correlated non-Fermi-liquid nature of the CF Fermi sea and, in particular, offers a window into the short-distance high-energy physics of this highly nontrivial state. We identify the exciton responsible for the peak current and provide a quantitative account of the value of Vmax. The excitonic attraction is shown to be quantitatively significant, and its variation accounts for the increase of Vmax with the application of an in-plane magnetic field. We also estimate the critical Zeeman energy where transition occurs from a fully spin-polarized composite-fermion Fermi sea to a partially spin-polarized one, carefully incorporating corrections due to finite width and Landau level mixing, and find it to be in satisfactory agreement with the Zeeman energy where a qualitative change has been observed for the onset bias voltage [J. P. Eisenstein et al., Phys. Rev. B 94, 125409 (2016), 10.1103/PhysRevB.94.125409]. For fractional quantum Hall states, we predict a substantial discontinuous jump in Vmax when the system undergoes a transition from a fully spin-polarized state to a spin singlet or a partially spin-polarized state.
Kaiser, V; Comtet, J; Niguès, A; Siria, A; Coasne, B; Bocquet, L
2017-07-01
The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon a previous approach [M. A. Vorotyntsev and A. A. Kornyshev, Zh. Eksp. Teor. Fiz., 1980, 78(3), 1008-1019] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allows for an estimation of the interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. The counter-intuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length l TF , profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement.
Electrodynamics of the nodal metal state in weakly doped high- Tc cuprates
NASA Astrophysics Data System (ADS)
Lee, Y. S.; Segawa, Kouji; Li, Z. Q.; Padilla, W. J.; Dumm, M.; Dordevic, S. V.; Homes, C. C.; Ando, Yoichi; Basov, D. N.
2005-08-01
We report on the detailed analysis of the infrared (IR) conductivity of two prototypical high- Tc systems YBa2Cu3Oy and La2-xSrxCuO4 throughout the complex phase diagram of these compounds. Our focus in this work is to thoroughly document the electromagnetic response of the nodal metal state which is initiated with only a few holes doped in parent antiferromagnetic systems and extends up to the pseudogap boundary in the phase diagram. The key signature of the nodal metal is the two-component conductivity: the Drude mode at low energies followed by a resonance in mid-IR. The Drude component can be attributed to the response of coherent quasiparticles residing on the Fermi arcs detected in photoemission experiments. The microscopic origin of the mid-IR band is yet to be understood. A combination of transport and IR data uncovers fingerprints of the Fermi liquid behavior in the response of the nodal metal. The comprehensive nature of the data sets presented in this work allows us to critically re-evaluate common approaches to the interpretation of the optical data. Specifically we re-examine the role of magnetic excitations in generating electronic self-energy effects through the analysis of the IR data in a high magnetic field.
Thermoelectricity in fullerene-metal heterojunctions.
Yee, Shannon K; Malen, Jonathan A; Majumdar, Arun; Segalman, Rachel A
2011-10-12
Thermoelectricty in heterojunctions, where a single-molecule is trapped between metal electrodes, has been used to understand transport properties at organic-inorganic interfaces. (1) The transport in these systems is highly dependent on the energy level alignment between the molecular orbitals and the Fermi level (or work function) of the metal contacts. To date, the majority of single-molecule measurements have focused on simple small molecules where transport is dominated through the highest occupied molecular orbital. (2, 3) In these systems, energy level alignment is limited by the absence of electrode materials with low Fermi levels (i.e., large work functions). Alternatively, more controllable alignment between molecular orbitals and the Fermi level can be achieved with molecules whose transport is dominated by the lowest unoccupied molecular orbital (LUMO) because of readily available metals with lower work functions. Herein, we report molecular junction thermoelectric measurements of fullerene molecules (i.e., C(60), PCBM, and C(70)) trapped between metallic electrodes (i.e., Pt, Au, Ag). Fullerene junctions demonstrate the first strongly n-type molecular thermopower corresponding to transport through the LUMO, and the highest measured magnitude of molecular thermopower to date. While the electronic conductance of fullerenes is highly variable, due to fullerene's variable bonding geometries with the electrodes, the thermopower shows predictable trends based on the alignment of the LUMO with the work function of the electrodes. Both the magnitude and trend of the thermopower suggest that heterostructuring organic and inorganic materials at the nanoscale can further enhance thermoelectric performance, therein providing a new pathway for designing thermoelectric materials.
Self-energy of an impurity in an ideal Fermi gas to second order in the interaction strength
NASA Astrophysics Data System (ADS)
Trefzger, Christian; Castin, Yvan
2014-09-01
We study in three dimensions the problem of a spatially homogeneous zero-temperature ideal Fermi gas of spin-polarized particles of mass m perturbed by the presence of a single distinguishable impurity of mass M. The interaction between the impurity and the fermions involves only the partial s wave through the scattering length a and has negligible range b compared to the inverse Fermi wave number 1/kF of the gas. Through the interactions with the Fermi gas the impurity gives birth to a quasiparticle, which will be here a Fermi polaron (or more precisely a monomeron). We consider the general case of an impurity moving with wave vector K ≠0: Then the quasiparticle acquires a finite lifetime in its initial momentum channel because it can radiate particle-hole pairs in the Fermi sea. A description of the system using a variational approach, based on a finite number of particle-hole excitations of the Fermi sea, then becomes inappropriate around K =0. We rely thus upon perturbation theory, where the small and negative parameter kFa→0- excludes any branches other than the monomeronic one in the ground state (as, e.g., the dimeronic one), and allows us a systematic study of the system. We calculate the impurity self-energy Σ(2)(K,ω) up to second order included in a. Remarkably, we obtain an analytical explicit expression for Σ(2)(K,ω), allowing us to study its derivatives in the plane (K,ω). These present interesting singularities, which in general appear in the third-order derivatives ∂3Σ(2)(K,ω). In the special case of equal masses, M =m, singularities appear already in the physically more accessible second-order derivatives ∂2Σ(2)(K,ω); using a self-consistent heuristic approach based on Σ(2) we then regularize the divergence of the second-order derivative ∂K2ΔE(K) of the complex energy of the quasiparticle found in Trefzger and Castin [Europhys. Lett. 104, 50005 (2013), 10.1209/0295-5075/104/50005] at K =kF, and we predict an interesting scaling law in the neighborhood of K =kF. As a by product of our theory we have access to all moments of the momentum of the particle-hole pair emitted by the impurity while damping its motion in the Fermi sea at the level of Fermi's golden rule.
Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model
Mendl, C. B.; Nowadnick, E. A.; Huang, E. W.; ...
2017-11-15
Here, we present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists outmore » to relatively high doping levels. We study the evolution of the d-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ.« less
Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendl, C. B.; Nowadnick, E. A.; Huang, E. W.
Here, we present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists outmore » to relatively high doping levels. We study the evolution of the d-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ.« less
Electronic properties of graphene and effect of doping on the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Abhinav, E-mail: abhinavn76@gmail.com; Kumar, Jagdish, E-mail: jagdishphysicist@gmail.com; Sastri, O. S. K. S., E-mail: sastri.osks@gmail.com
2015-05-15
The electronic structure of pure and doped two dimensional crystalline material graphene have been computed and analyzed. Density functional theory has been employed to perform calculations. The electronic exchange and correlations are considered using local density approximation (LDA). The doped material is studied within virtual crystal approximation (VCA) upto 0.15e excess as well as deficient charge per unit cell. Full Potential Linear Augmented Plane Wave basis as implemented in ELK code has been used to perform the calculations. To ensures the monolayer of graphene, distance after which energy is almost constant when interlayer seperation is varied, is taken as separatingmore » distance between the layers. The obtained density of states and band structure is analyzed. Results show that there is zero band gap in undoped graphene and conduction and valence band meets at fermi level at symmetry point K. PDOS graph shows that near the fermi level the main contribution is due to 2p{sub z} electrons. By using VCA, calculations for doped graphene are done and the results for doped graphene are compared with undoped graphene. We found that by electron or hole doping, the point where conduction and valence bands meet can shift below or above the fermi level. The shift in bands seems almost as per rigid band model upto doping concentration studied.« less
Hattori, Yoshiaki; Taniguchi, Takashi; Watanabe, Kenji; Nagashio, Kosuke
2018-04-11
Hexagonal boron nitride (h-BN) is an important insulating substrate for two-dimensional (2D) heterostructure devices and possesses high dielectric strength comparable to SiO 2 . Here, we report two clear differences in their physical properties. The first one is the occurrence of Fermi level pinning at the metal/h-BN interface, unlike that at the metal/SiO 2 interface. The second one is that the carrier of Fowler-Nordheim (F-N) tunneling through h-BN is a hole, which is opposite to an electron in the case of SiO 2 . These unique characteristics are verified by I- V measurements in the graphene/h-BN/metal heterostructure device with the aid of a numerical simulation, where the barrier height of graphene can be modulated by a back gate voltage owing to its low density of states. Furthermore, from a systematic investigation using a variety of metals, it is confirmed that the hole F-N tunneling current is a general characteristic because the Fermi levels of metals are pinned in the small energy range around ∼3.5 eV from the top of the conduction band of h-BN, with a pinning factor of 0.30. The accurate energy band alignment at the h-BN/metal interface provides practical knowledge for 2D heterostructure devices.
NASA Astrophysics Data System (ADS)
Janicki, Łukasz; Ramírez-López, Manolo; Misiewicz, Jan; Cywiński, Grzegorz; Boćkowski, Michał; Muzioł, Grzegorz; Chèze, Caroline; Sawicka, Marta; Skierbiszewski, Czesław; Kudrawiec, Robert
2016-05-01
Ga-polar, N-polar, and nonpolar m-plane GaN UN+ structures have been examined in air and vacuum ambient by contactless electroreflectance (CER). This technique is very sensitive to the surface electric field that varies with the Fermi level position at the surface. For UN+ GaN structures [i.e., GaN (undoped)/GaN (n-type)/substrate], a homogeneous built-in electric field is expected in the undoped GaN layer that is manifested by Franz-Keldysh oscillation (FKO) in CER spectra. A clear change in FKO has been observed in CER spectra for N-polar and nonpolar m-plane structures when changing from air to vacuum ambient. This means that those surfaces are very sensitive to ambient atmosphere. In contrast to that, only a small change in FKO can be seen in the Ga-polar structure. This clearly shows that the ambient sensitivity of the Fermi level position at the GaN surface varies with the crystallographic orientation and is very high for N-polar and nonpolar m-plane surfaces. This feature of the N-polar and nonpolar m-plane surfaces can be very important for GaN-based devices grown on these crystallographic orientations and can be utilized in some of the devices, e.g., sensors.
Magnetic states of linear defects in graphene monolayers: Effects of strain and interaction
NASA Astrophysics Data System (ADS)
Alexandre, Simone S.; Nunes, R. W.
2017-08-01
The combined effects of defect-defect interaction and strains of up to 10% on the onset of magnetic states in the quasi-one-dimensional electronic states generated by the so-called 558 linear defect in graphene monolayers are investigated by means of ab initio calculations. Results are analyzed on the basis of the heuristics of the Stoner criterion. We find that conditions for the emergence of magnetic states on the 558 defect can be tuned by uniaxial tensile parallel strains (along the defect direction) as well as by uniaxial compressive perpendicular strains, at both limits of isolated and interacting 558 defects. Parallel tensile strains and perpendicular compressive strains are shown to give rise to two cooperative effects that favor the emergence of itinerant magnetism on the 558 defect in graphene: enhancement of the density of states (DOS) of the resonant defect states in the region of the Fermi level and tuning of the Fermi level to the maximum of the related DOS peak. On the other hand, parallel compressive strains and perpendicular tensile strains are shown to be detrimental to the development of magnetic states in the 558 defect, because in these cases the Fermi level is found to shift away from the maximum of the DOS of the defect states. Effects of isotropic and unisotropic biaxial strains are also analyzed in terms of the conditions encoded in the Stoner criterion.
Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6
NASA Astrophysics Data System (ADS)
Hartstein, M.; Toews, W. H.; Hsu, Y.-T.; Zeng, B.; Chen, X.; Hatnean, M. Ciomaga; Zhang, Q. R.; Nakamura, S.; Padgett, A. S.; Rodway-Gant, G.; Berk, J.; Kingston, M. K.; Zhang, G. H.; Chan, M. K.; Yamashita, S.; Sakakibara, T.; Takano, Y.; Park, J.-H.; Balicas, L.; Harrison, N.; Shitsevalova, N.; Balakrishnan, G.; Lonzarich, G. G.; Hill, R. W.; Sutherland, M.; Sebastian, Suchitra E.
2018-02-01
The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator-metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. Here we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB6 positioned close to the insulator-metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including a sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.
Krishtopenko, S S; Gavrilenko, V I; Goiran, M
2012-04-04
Using the 'screened' Hartree-Fock approximation based on the eight-band k·p Hamiltonian, we have extended our previous work (Krishtopenko et al 2011 J. Phys.: Condens. Matter 23 385601) on exchange enhancement of the g-factor in narrow-gap quantum well heterostructures by calculating the exchange renormalization of quasiparticle energies, the density of states at the Fermi level and the quasiparticle g-factor for different Landau levels overlapping. We demonstrate that exchange interaction yields more pronounced Zeeman splitting of the density of states at the Fermi level and leads to the appearance of peak-shaped features in the dependence of the Landau level energies on the magnetic field at integer filling factors. We also find that the quasiparticle g-factor does not reach the maximum value at odd filling factors in the presence of large overlapping of spin-split Landau levels. We advance an argument that the behavior of the quasiparticle g-factor in weak magnetic fields is defined by a random potential of impurities in narrow-gap heterostructures. © 2012 IOP Publishing Ltd
Xenon-plasma-light low-energy ultrahigh-resolution photoemission study of Co(S1-xSex)2 (x=0.075)
NASA Astrophysics Data System (ADS)
Sato, Takafumi; Souma, Seigo; Sugawara, Katsuaki; Nakayama, Kosuke; Raj, Satyabrata; Hiraka, Haruhiro; Takahashi, Takashi
2007-09-01
We have performed low-energy ultrahigh-resolution photoemission spectroscopy on Co(S1-xSex)2 (x=0.075) to elucidate the bulk electronic states responsible for the ferromagnetic transition. By using a newly developed plasma-driven low-energy xenon (Xe) discharge lamp (hν=8.436eV) , we clearly observed a sharp quasiparticle peak at the Fermi level together with the remarkable temperature dependence of the electron density of states across the transition temperature. Comparison with the experimental result by the HeIα resonance line (hν=21.218eV) indicates that the sharp quasiparticle is of bulk origin and is produced by the Fermi-level crossing of the Co 3d eg↓ subband.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gajula, D. R., E-mail: dgajula01@qub.ac.uk; Baine, P.; Armstrong, B. M.
Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al{sub 2}O{sub 3} interfacial layer (∼2.8 nm). For diodes with an Al{sub 2}O{sub 3} interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO{sub 2} interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.
Interface Superconductivity in Cuprates Defies Fermi-Liquid Description
Radović, Zoran; Vanević, Mihajlo; Wu, Jie; ...
2016-07-26
La 2-xSr xCuO 4/La 2CuO 4 bilayers show interface superconductivity that originates from accumulation and depletion of mobile charge carriers across the interface. Surprisingly, the doping level can be varied broadly (within the interval 0.15 < x < 0.47) without affecting the transition temperature, which stays essentially constant and equal to that in optimally doped material, T c ≈ 40 K. Here we argue that this finding implies that doping up to the optimum level does not shift the chemical potential, unlike in ordinary Fermi liquids. Lastly, we discuss possible physical scenarios that can give doping-independent chemical potential in themore » pseudogap regime: electronic phase separation, formation of charge-density waves, strong Coulomb interactions, or self-trapping of mobile charge carriers.« less
NASA Astrophysics Data System (ADS)
Netzer, Falko P.; Frank, Karl-Heinz
1989-09-01
The unoccupied electronic states of the benzene + CO coadsorption system on Rh(111) have been investigated by inverse photoemission spectroscopy. The benzene and CO derived lowest unoccupied molecular orbitals (e2u and b2g for benzene and 2π* for CO) have been identified in the region 2.3-6.5 eV above the Fermi level. For the ordered (3×3) benzene + CO surface indications of enhanced density of states (DOS) within 0.5 eV of the Fermi level are found. This enhancement of the DOS may be associated with hybridized metal-benzene states, which have been invoked to be involved in the imaging process of the molecular entities in a recent scanning-tunneling-microscopy investigation of this system.
Structural and electronic properties of LaPd2As2 superconductor: First-principle calculations
NASA Astrophysics Data System (ADS)
Singh, Birender; Kumar, Pradeep
2017-05-01
In present work we have studied electronic and structural properties of superconducting LaPd2As2 compound having collapsed tetragonal structure using first-principle calculations. The band structure calculations show that the LaPd2As2 is metallic consistent with the reported experimental observation, and the density of states plots clearly shows that at the Fermi level major contribution to density of states arises from Pd 4d and As 4p states, unlike the Fe-based superconductors where major contribution at the Fermi level comes from Fe 3d states. The estimated value of electron-phonon coupling is found to be 0.37, which gives the upper bound of superconducting transition temperature of 5K, suggesting the conventional nature of this superconductor.
Anodic iridium oxide films: An UPS study of emersed electrodes
NASA Astrophysics Data System (ADS)
Kötz, E. R.; Neff, H.
1985-09-01
Formation of anodic iridium oxide films has been monitored using Ultraviolet Photoemission Spectroscopy (UPS) of the emersed electrodes. The potential dependent valence band spectra clearly show the onset of oxide formation at about 0.6 V versus SCE. The density of states at the Fermi level and the positron of the Fermi level with respect to the maximum of the t 2g band of the oxide indicates a transition from metallic to semiconducting behaviour of the oxide. Protonation of the oxide is associated with increased emission from OH species. A linear correlation between electrode potential and workfunction change is observed for the metal as well as for the oxide. Our results confirm known band theory models and provide a fundamental understanding of the electrochromism of anodic iridium oxide films.
Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions.
Zou, Jianfei; Jin, Guojun; Ma, Yu-Qiang
2009-03-25
We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.
NASA Astrophysics Data System (ADS)
Ciprini, Stefano
2018-05-01
The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed high-level gamma-ray activity from sources positionally consistent with the active galaxy PKS 0903-57 (also known as MRC 0903-573 and 3FGL J0904.8-5734, Acero et al. 2015, ApJS, 218, 23) and with the flat spectrum radio quasar PKS 0346-27 (also known as OE -278, TXS 0346-279, MRC 0346-279 and 3FGL J0348.6-2748).
Free electron laser-driven ultrafast rearrangement of the electronic structure in Ti
Principi, E.; Giangrisostomi, E.; Cucini, R.; Bencivenga, F.; Battistoni, A.; Gessini, A.; Mincigrucci, R.; Saito, M.; Di Fonzo, S.; D'Amico, F.; Di Cicco, A.; Gunnella, R.; Filipponi, A.; Giglia, A.; Nannarone, S.; Masciovecchio, C.
2015-01-01
High-energy density extreme ultraviolet radiation delivered by the FERMI seeded free-electron laser has been used to create an exotic nonequilibrium state of matter in a titanium sample characterized by a highly excited electron subsystem at temperatures in excess of 10 eV and a cold solid-density ion lattice. The obtained transient state has been investigated through ultrafast absorption spectroscopy across the Ti M2,3-edge revealing a drastic rearrangement of the sample electronic structure around the Fermi level occurring on a time scale of about 100 fs. PMID:26798835
NASA Astrophysics Data System (ADS)
Lu, Nianduan; Li, Ling; Sun, Pengxiao; Banerjee, Writam; Liu, Ming
2014-09-01
A unified physical model for Seebeck coefficient was presented based on the multiple-trapping and release theory for amorphous oxide semiconductor thin-film transistors. According to the proposed model, the Seebeck coefficient is attributed to the Fermi-Dirac statistics combined with the energy dependent trap density of states and the gate-voltage dependence of the quasi-Fermi level. The simulation results show that the gate voltage, energy disorder, and temperature dependent Seebeck coefficient can be well described. The calculation also shows a good agreement with the experimental data in amorphous In-Ga-Zn-O thin-film transistor.
Detection of high-energy gamma-ray emission from the globular cluster 47 Tucanae with Fermi.
Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Frailis, M; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Horan, D; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kawai, N; Kerr, M; Knödlseder, J; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Sgrò, C; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Wang, P; Webb, N; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M
2009-08-14
We report the detection of gamma-ray emissions above 200 megaelectron volts at a significance level of 17sigma from the globular cluster 47 Tucanae, using data obtained with the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. Globular clusters are expected to emit gamma rays because of the large populations of millisecond pulsars that they contain. The spectral shape of 47 Tucanae is consistent with gamma-ray emission from a population of millisecond pulsars. The observed gamma-ray luminosity implies an upper limit of 60 millisecond pulsars present in 47 Tucanae.
Observation of Dirac-like band dispersion in LaAgSb 2
Shi, X.; Richard, P.; Wang, Kefeng; ...
2016-02-16
In this paper, we present a combined angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations study of the electronic structure of LaAgSb 2 in the entire first Brillouin zone. We observe a Dirac-cone-like structure in the vicinity of the Fermi level formed by the crossing of two linear energy bands, as well as the nested segments of a Fermi surface pocket emerging from the cone. In conclusion, our ARPES results show the close relationship of the Dirac cone to the charge-density-wave ordering, providing consistent explanations for exotic behaviors in this material.
Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy
Doiron-Leyraud, N.; Badoux, S.; René de Cotret, S.; Lepault, S.; LeBoeuf, D.; Laliberté, F.; Hassinger, E.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Park, J.-H..; Vignolles, D.; Vignolle, B.; Taillefer, L.; Proust, C.
2015-01-01
In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge–density–wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap. PMID:25616011
Fermi pulsars known so far, as well as video and background information on Fermi and gamma-ray astronomy know about Fermi and gamma-ray astronomy. Fermi On WorldWide Telescope - Use a virtual telescope to
Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB 6
Hartstein, M.; Toews, W. H.; Hsu, Y. -T.; ...
2017-10-23
The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator–metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. In this paper, we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB 6 positioned close to the insulator–metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including amore » sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Finally, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB 6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.« less
The role of seniority-zero states in nuclear level densities
Åberg, S.; Carlsson, B. G.; Døssing, Th.; ...
2015-06-01
At low excitation energies seniority-zero states dominate the level density of K=0 bands in deformed even–even nuclei, while they play no role at higher excitation energies. We describe the level densities in a Fermi-gas model as well as in a combinatorial level-density model and compare to detailed experimental data for some rare-earth nuclei.
Fermi edge singularity in a tunnel junction
NASA Astrophysics Data System (ADS)
Zhang, Jin; Sherkunov, Yury; D'Ambrumenil, Nicholas; Muzykantskii, Boris
2010-03-01
We present results on the non-equilibrium Fermi edge singularity (FES) problem in tunnel junctions. The FES, which is present in a Fermi gas subject to any sudden change of potential, manifests itself in the final state many body interaction between the electrons in the leads [1]. We establish a connection between the FES problem in a tunnel junction and the Full Counting Statistics (FCS) for the device [2]. We find that the exact profile of the changing potential (or the profile for the barrier opening and closing in the tunnel junction case) strongly affects the overlap between the initial and final state of the Fermi gas. We factorize the contribution to the FES into two approximately independent terms: one is connected with the short time opening process while the other is concerned with the long time asymptotic effect, namely the Anderson orthogonality catastrophe. We consider applications to a localized level coupled through a tunnel barrier to a 1D lead driven out of equilibrium [3]. References: [1] G. Mahan, Phys. Rev. 163, 1612 (1967); P. Nozieres and C. T. De Dominicis, Phys. Rev. 178, 1079 (1969); P. Anderson, Phys. Rev. Lett. 18, 1049 (1967) [2] J. Zhang, Y. Sherkunov, N. d'Ambrumenil, and B. Muzykantskii, ArXiv:0909.3427 [3] D. Abanin and L. Levitov, Phys. Rev. Lett. 94, 186803 (2005)
Evidence of a 2D Fermi surface due to surface states in a p-type metallic Bi2Te3
NASA Astrophysics Data System (ADS)
Shrestha, K.; Marinova, V.; Lorenz, B.; Chu, C. W.
2018-05-01
We present a systematic quantum oscillations study on a metallic, p-type Bi2Te3 topological single crystal in magnetic fields up to B = 7 T. The maxima/minima positions of oscillations measured at different tilt angles align to one another when plotted as a function of the normal component of magnetic field, confirming the presence of the 2D Fermi surface. Additionally, the Berry phase, β = 0.4 ± 0.05 obtained from the Landau level fan plot, is very close to the theoretical value of 0.5 for the Dirac particles, confirming the presence of topological surface states in the Bi2Te3 single crystal. Using the Lifshitz–Kosevich analyses, the Fermi energy is estimated to be meV, which is lower than that of other bismuth-based topological systems. The detection of surface states in the Bi2Te3 crystal can be explained by our previous hypothesis of the lower position of the Fermi surface that cuts the ‘M’-shaped valence band maxima. As a result, the bulk state frequency is shifted to higher magnetic fields, which allows measurement of the surface states signal at low magnetic fields.
NASA Astrophysics Data System (ADS)
Yavari, H.; Mokhtari, M.
2014-03-01
The effects of impurity and Bose-Fermi interactions on the transition temperature of a dipolar Bose-Einstein condensation in trapped Bose-Fermi mixture, by using the two-fluid model, are investigated. The shift of the transition temperature consists of four contributions due to contact, Bose-Fermi, dipole-dipole, and impurity interactions. We will show that in the presence of an anisotropic trap, the Bose-Fermi correction to the shift of transition temperature due to the excitation spectra of the thermal part is independent of anisotropy factor. Applying our results to trapped Bose-Fermi mixtures shows that, by knowing the impurity effect, the shift of the transition temperature due to Bose-Fermi interaction could be measured for isotropic trap (dipole-dipole contributions is zero) and Feshbach resonance technique (contact potential contribution is negligible).
Bogolon-mediated electron capture by impurities in hybrid Bose-Fermi systems
NASA Astrophysics Data System (ADS)
Boev, M. V.; Kovalev, V. M.; Savenko, I. G.
2018-04-01
We investigate the processes of electron capture by a Coulomb impurity center residing in a hybrid system consisting of spatially separated two-dimensional layers of electron and Bose-condensed dipolar exciton gases coupled via the Coulomb forces. We calculate the probability of the electron capture accompanied by the emission of a single Bogoliubov excitation (bogolon), similar to regular phonon-mediated scattering in solids. Furthermore, we study the electron capture mediated by the emission of a pair of bogolons in a single capture event and show that these processes not only should be treated in the same order of the perturbation theory, but also they give a more important contribution than single-bogolon-mediated capture, in contrast with regular phonon scattering.
Homogeneous Atomic Fermi Gases
NASA Astrophysics Data System (ADS)
Mukherjee, Biswaroop; Yan, Zhenjie; Patel, Parth B.; Hadzibabic, Zoran; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin W.
2017-03-01
We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measurements, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two. The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas, saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially polarized Fermi gas.
Self-regulation of charged defect compensation and formation energy pinning in semiconductors
Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai
2015-01-01
Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators. PMID:26584670
Orientifolding of the ABJ Fermi gas
NASA Astrophysics Data System (ADS)
Okuyama, Kazumi
2016-03-01
The grand partition functions of ABJ theory can be factorized into even and odd parts under the reflection of fermion coordinate in the Fermi gas approach. In some cases, the even/odd part of ABJ grand partition function is equal to that of {N}=5O(n)× USp({n}^') theory, hence it is natural to think of the even/odd projection of grand partition function as an orientifolding of ABJ Fermi gas system. By a systematic WKB analysis, we determine the coefficients in the perturbative part of grand potential of such orientifold ABJ theory. We also find the exact form of the first few "half-instanton" corrections coming from the twisted sector of the reflection of fermion coordinate. For the Chern-Simons level k = 2 ,4 ,8 we find closed form expressions of the grand partition functions of orientifold ABJ theory, and for k = 2 , 4 we prove the functional relations among the grand partition functions conjectured in arXiv:1410.7658.
NASA Astrophysics Data System (ADS)
Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.
1990-06-01
Sub-Doppler spectra of the A 7Π-X 7Σ+ (0,0) band of gas phase MnH near 5680 Å were recorded by intermodulated fluorescence spectroscopy. The spectra reveal hyperfine splittings arising from both the 55Mn and 1H nuclear spins. Internal hyperfine perturbations have been observed between the different spin components of the ground state at low N`. From a preliminary analysis of several rotational lines originating from the isolated and unperturbed F1(J`=3) spin component of the X 7Σ+(N`=0) level, the 55Mn Fermi contact interaction in the ground state has been measured as bF=Aiso =276(1) MHz. This value is 11% smaller than the value obtained by Weltner et al. from an electron-nuclear double resonance (ENDOR) study of MnH in an argon matrix at 4 K. This unprecedented gas-to-matrix shift in the Fermi contact parameter is discussed.
Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity.
Xu, Li-Chun; Du, Aijun; Kou, Liangzhi
2016-10-05
The recent synthesis of monolayer borophene (triangular boron monolayer) on a substrate has opened the era of boron nanosheets (Science, 2015, 350, 1513), but the structural instability and a need to explore the novel physical properties are still open issues. Here we demonstrated that borophene can be stabilized by full surface hydrogenation (borophane), from first-principles calculations. Most interestingly, our calculations show that borophane has direction-dependent Dirac cones, which are mainly caused by the in-plane p x and p y orbitals of boron atoms. The Dirac fermions possess an ultrahigh Fermi velocity of up to 3.5 × 10 6 m s -1 under the HSE06 level, which is 4 times higher than that of graphene. The Young's moduli are calculated to be 190 and 120 GPa nm along two different directions, which are comparable to those of steel. The ultrahigh Fermi velocity and good mechanical features render borophane ideal for nanoelectronic applications.
Exotic emergent phenomena in the fractional quantum Hall effect
NASA Astrophysics Data System (ADS)
Coimbatore Balram, Ajit
When two-dimensional electron systems are subjected to a perpendicular magnetic field, they exhibit the marvelous phenomenon known as the fractional quantum Hall effect (FQHE). This arises as a result of the formation of composite fermions (CFs), which are bound states of electrons and an even number of vortices. The FQHE of electrons is understood as arising from the integer QHE (IQHE) of CFs. Alongside superconductivity, Bose-Einstein condensation and spin-liquids, the CF quantum fluid provides a model system for understanding strongly correlated systems and their collective behavior. Although it has been more than three decades since the experimental discovery of FQHE, the field continues to produce profound insights and pose interesting problems some of which have been addressed in this thesis. A major unanswered question in the field of FQHE is the mechanism of FQHE for the 1/3 state in the second Landau level (7/3 state). Numerical studies of this state have brought out the following puzzle: exact diagonalization studies suggest that the ground state and excitations of 1/3 state in the second Landau level are different from its counterpart in the lowest Landau level (LLL), while entanglement spectra of the two states point to the fact that they fall in the same universality class. Using methods from CF theory we show that the excitations of the 7/3 FQHE lie in the same universality class as those of the 1/3 state but are strongly modified due to screening by CF excitons, thereby settling the above discrepancy. Armed with the exciton calculation, we illustrate that by imposing certain exclusion rules for CF excitons one can build the full spectrum of FQHE in the lowest Landau level. Equipped with the techniques to calculate the spectra of FQHE systems, we carry out an extensive study of FQHE of multi-component CFs (systems possessing degrees of freedom for eg: valley and spin degeneracy), which is applicable to FQHE in systems such as graphene, AlAs and GaAs quantum wells. We provide a comprehensive list of the possible fractions, their ground state energies and the critical "Zeeman" energies for the "spin" transitions between the states and compare them with the experimental observations. In the lowest Landau level of graphene, we find an excellent agreement between theory and experiments. However, in the second Landau level of graphene we find an unexpected spontaneous spin polarization of CFs. We predict that there are no spin transitions to be expected in the second Landau level of graphene, a result that could be tested out in experiments. We reanalyzed some old experimental data showing excitation modes below the Zeeman energy in the vicinity of 1/3 filling of the lowest Landau level whose theoretical origin was unexplained. Using methods of exact diagonalization and CF theory we demonstrate that these modes arise as a result of formation of trions of CFs which have sub-Zeeman energy due to skyrmion-like physics. In the past couple of years, the Fermi wave vector of CFs has been measured very accurately in pioneering experiments at Princeton University. Motivated by these experiments we address the issue of the validity of Luttinger's theorem (which is a fundamental tenet of Landau Fermi liquid theory) for the Fermi sea of CFs. Our calculations suggest that the CF Fermi sea may violate Luttinger's theorem slightly. This not only provides a nontrivial example of a non-Fermi liquid, but gives new insight into the nature of the CF Fermi sea state and opens a new line of inquiry in the field of FQHE.
Metal insulator transition in nickel substituted FeSi
NASA Astrophysics Data System (ADS)
Krishnan, M.; Mishra, Ashish; Singh, Durgesh; Venkatesh, R.; Gangrade, Mohan; Ganesan, V.
2018-04-01
Resistivity of Fe1-xNixSi has been reported. Metal Insulator transition (MIT) is observed in Nickel (Ni) substituted FeSi for x in the range from 2 to 4 percentage. Two Band Model has been employed in order to calculate activation energy and to predict how band structure renormalized with substitution of nickel in FeSi. At sufficient level of nickel concentration an impurity band forms around Fermi level and contributes to the conduction heavily at low temperatures. Concentration around x = 0.04, displays metallic property below ˜ 70 K and is quantitatively similar to systems like Fe1-xTxSi (T = Co, Mn). Metallic component thus derived from Ni substituted FeSi seems to have an unconventional temperature dependence that may be attributed to the onset of departures from Fermi liquid picture.
Pseudogap and electronic structure of electron-doped Sr2IrO4
NASA Astrophysics Data System (ADS)
Moutenet, Alice; Georges, Antoine; Ferrero, Michel
2018-04-01
We present a theoretical investigation of the effects of correlations on the electronic structure of the Mott insulator Sr2IrO4 upon electron doping. A rapid collapse of the Mott gap upon doping is found, and the electronic structure displays a strong momentum-space differentiation at low doping level: The Fermi surface consists of pockets centered around (π /2 ,π /2 ) , while a pseudogap opens near (π ,0 ) . Its physical origin is shown to be related to short-range spin correlations. The pseudogap closes upon increasing doping, but a differentiated regime characterized by a modulation of the spectral intensity along the Fermi surface persists to higher doping levels. These results, obtained within the cellular dynamical mean-field-theory framework, are discussed in comparison to recent photoemission experiments and an overall good agreement is found.
VERITAS Upper Limit on the Very High Energy Emission from the Radio Galaxy NGC 1275
Acciari, V. A.; Aliu, E.; Arlen, T.; ...
2009-11-16
We report the recent detection by the Fermi γ-ray space telescope of high-energy γ-rays from the radio galaxy NGC 1275 that makes the observation of the very high energy (VHE: E>100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE γ-ray emission was detected by VERITAS from NGC 1275. Finally, a 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at themore » decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result.« less
First-principles study on electron transport properties of carbon-silicon mixed chains
NASA Astrophysics Data System (ADS)
Hu, Wei; Zhou, Qinghua; Liang, Yan; Liu, Wenhua; Wang, Tao; Wan, Haiqing
2018-03-01
In this paper, the transport properties of carbon-silicon mixed chains are studied by using the first-principles. We studied five atomic chain models. In these studies, we found that the equilibrium conductances of atomic chains appear to oscillate, the maximum conductance and the minimum conductance are more than twice the difference. Their I-V curves are linear and show the behavior of metal resistance, M5 system and M2 system current ratio is the largest in 0.9 V, which is 3.3, showing a good molecular switch behavior. In the case of bias, while the bias voltage increases, the transmission peaks move from the Fermi level. The resonance transmission peak height is reduced near the Fermi level. In the higher energy range, a large resonance transmission peak reappears, there is still no energy cut-off range.
NASA Astrophysics Data System (ADS)
Lin, Chung-Han; Doutt, D. R.; Mishra, U. K.; Merz, T. A.; Brillson, L. J.
2010-11-01
Nanoscale Kelvin probe force microscopy and depth-resolved cathodoluminescence spectroscopy reveal an electronic defect evolution inside operating AlGaN/GaN high electron mobility transistors with degradation under electric-field-induced stress. Off-state electrical stress results in micron-scale areas within the extrinsic drain expanding and decreasing in electric potential, midgap defects increasing by orders-of-magnitude at the AlGaN layer, and local Fermi levels lowering as gate-drain voltages increase above a characteristic stress threshold. The pronounced onset of defect formation, Fermi level movement, and transistor degradation at the threshold gate-drain voltage of J. A. del Alamo and J. Joh [Microelectron. Reliab. 49, 1200 (2009)] is consistent with crystal deformation and supports the inverse piezoelectric model of high electron mobility transistor degradation.
The model of self-compensation and pinning of the Fermi level in irradiated semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brudnyi, V. N.; Kolin, N. G.; Smirnov, L. S.
2007-09-15
A model is developed to analyze numerically the electrical properties and the steady-state (limiting) position of the Fermi level (F{sub lim}) in tetrahedral semiconductors irradiated with high-energy particles. It is shown that an irradiated semiconductor represents a highly compensated material, in which F{sub lim} is identical to
XES studies of density of states of high temperature superconductors
NASA Technical Reports Server (NTRS)
Jasiolek, Gabriel
1990-01-01
X-ray emission spectroscopic studies concerning the superconducting crystals, thin films and ceramics of the Y-Ba-Cu-O, Tm-Ba-Cu-O, Bi-Sr-Ca-Cu-O, Bi-Pb-Sr-Ca-Cu-O and T1-Ba-Ca-Cu-O types are presented. The contributions of the 13d(9)L, 13d(10)L, 13d(10)LL and 13d(10)L(2) configurations, where L denotes a ligand hole at the oxygen orbitals in the spectroscopic pattern of these superconductors are discussed. An attempt to connect the x-ray 'as registered' Cu L emission spectra with the density of states close to the Fermi level, considering an influence of the CuL3 absorption edge, is presented. The corrected intensity distributions below the Fermi level are found to correspond to the theoretical density of states. Furthermore, an approach to the average valence of copper based on the account of the self-absorption and fluorescence effects and on the configurations listed above is shown. The average valence of copper in the materials investigated is estimated to lie in the range of +2.10 to 2.32 when the formal trivalent copper is considered as that characterized by the 13d(9)L configuration. The density of states at the Fermi level was estimated to be 2.4 states/eV-cell for a Bi-Sr-Ca-Cu-O crystal and 3.6 states/eV-cell for a Tl-Ba-Ca-Cu-O ceramic.
NASA Astrophysics Data System (ADS)
Borg, A.; King, P. L.; Pianetta, P.; Lindau, I.; Mitzi, D. B.; Kapitulnik, A.; Soldatov, A. V.; della Longa, S.; Bianconi, A.
1992-10-01
The high-resolution Ca L2,3 x-ray-absorption near-edge-structure (XANES) spectrum of a Bi2Sr2CaCu2O8 single crystal has been measured by use of a magnetic-projection x-ray microscope probing a surface area of 200×200 μm2. The Ca L2,3 XANES spectrum is analyzed by performing a multiple-scattering XANES calculation in real space and comparing the results with the spectrum of CaF2. Good agreement between the calculated and experimental crystal-field splitting Δf of the Ca 3d final states is found and the splitting is shown to be smaller by 0.5 eV than in the initial state. The Ca 3d partial density of states is found to be close to the Fermi level in the initial state. The Ca-O(in plane) distance is shown to be a critical parameter associated with the shift of the Ca 3d states relative to the Fermi level; in particular, we have studied the effect of the out-of-plane dimpling mode of the in-plane oxygen atoms O(in plane) that will move the Ca 3d states on or off the Fermi level. This mode can therefore play a role in modulating the charge transfer between the two CuO2 planes separated by the Ca ions.
NASA Astrophysics Data System (ADS)
Hong, Liang; Bhatnagar, Kunal; Droopad, Ravi; Klie, Robert F.; Öǧüt, Serdar
2017-07-01
The electronic properties of epitaxial oxide thin films grown on compound semiconductors are largely determined by the interfacial atomic structure, as well as the thermodynamic conditions during synthesis. Ferroelectric polarization and Fermi-level pinning in SrTiO3 films have been attributed to the presence of oxygen vacancies at the oxide/semiconductor interface. Here, we present scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy analyses of GaAs films grown on SrTiO3 combined with first-principles calculations to determine the atomic and electronic structures of the SrTiO3/GaAs interfaces. An atomically abrupt SrO/As interface is observed and the interfacial SrO layer is found to be O-deficient. First-principles density functional theory (DFT) calculations show SrO/Ga and Sr/As interfaces are favorable under O-rich and O-poor conditions, respectively. The SrO/Ga interface is reconstructed via the formation of Ga-Ga dimers while the Sr/As interface is abrupt and consistent with the experiment. DFT calculations further reveal that intrinsic two-dimensional electron gas (2DEG) forms in both SrO/Ga and Sr/As interfaces, and the Fermi level is pinned to the localized 2DEG states. Interfacial O vacancies can enhance the 2DEG density while it is possible for Ga/As vacancies to unpin the Fermi level from the 2DEG states.
Electronic and Magnetic Properties of Ni-Doped Zinc-Blende ZnO: A First-Principles Study.
Xue, Suqin; Zhang, Fuchun; Zhang, Shuili; Wang, Xiaoyang; Shao, Tingting
2018-04-26
The electronic structure, band structure, density of state, and magnetic properties of Ni-doped zinc-blende (ZB) ZnO are studied by using the first-principles method based on the spin-polarized density-functional theory. The calculated results show that Ni atoms can induce a stable ferromagnetic (FM) ground state in Ni-doped ZB ZnO. The magnetic moments mainly originate from the unpaired Ni 3 d orbitals, and the O 2 p orbitals contribute a little to the magnetic moments. The magnetic moment of a supercell including a single Ni atom is 0.79 μ B . The electronic structure shows that Ni-doped ZB ZnO is a half-metallic FM material. The strong spin-orbit coupling appears near the Fermi level and shows obvious asymmetry for spin-up and spin-down density of state, which indicates a significant hybrid effects from the Ni 3 d and O 2 p states. However, the coupling of the anti-ferromagnetic (AFM) state show metallic characteristic, the spin-up and spin-down energy levels pass through the Fermi surface. The magnetic moment of a single Ni atom is 0.74 μ B . Moreover, the results show that the Ni 3 d and O 2 p states have a strong p - d hybridization effect near the Fermi level and obtain a high stability. The above theoretical results demonstrate that Ni-doped zinc blende ZnO can be considered as a potential half-metal FM material and dilute magnetic semiconductors.
XES studies of density of states of high temperature superconductors
NASA Technical Reports Server (NTRS)
Jasiolek, Gabriel
1991-01-01
X-ray emission spectroscopic studies concerning the superconducting crystals, thin films, and ceramics of the Y-Ba-Cu-O, Tm-Ba-Cu-O, Bi-Sr-Ca-Cu-O, Bi-Pb-Sr-Ca-Cu-O, and Tl-Ba-Ca-Cu-O types are presented. The contributions of the 13d(9)L, 13d(10)L, 13d(10)LL, and 13d(10)L(2) configurations, where L denotes a ligand hole at the oxygen orbitals in the spectroscopic pattern of these superconductors are discussed. An attempt to connect the x-ray 'as registered' Cu L(alpha) emission spectra with the density of states close to the Fermi level, considering an influence of the CuL3 absorption edge, is presented. The corrected intensity distributions below the Fermi level are found to correspond to the theoretical density of states. Furthermore, an approach to the average valence of copper basing on the account of the self-absorption and fluorescence effects and on the configurations listed above is shown. The average valence of copper in the materials investigated is estimated to lie in the range of +2.10 to 2.32 when the formal trivalent copper is considered as that characterized by the 13d(9)L configuration. The density of states at the Fermi level was estimated to be 2.4 states/eV-cell for a Bi-Sr-Ca-Cu-O crystal and 3.6 states/eV-cell for a Tl-Ba-Ca-CU-O ceramic.
Boron doped simulated graphene field effect transistor model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Preetika, E-mail: preetikamadhav@yahoo.co.in; Gupta, Shuchi, E-mail: sgupta@pu.ac.in; Kaur, Inderpreet, E-mail: inderpreety@yahoo.co.in
2016-05-06
Graphene based electronic devices due to its unique properties has transformed electronics. A Graphene Field Effect Transistor (GNRFET) model is simulated in Virtual Nano Lab (VNL) and the calculations are based on density functional theory (DFT). Simulations were performed on this pristine GNRFET model and the transmission spectrum was observed. The graph obtained showed a uniform energy gap of +1 to −1eV and the highest transmission peak at −1.75 eV. To this pristine model of GNRFET, doping was introduced and its effect was seen on the Fermi level obtained in the transmission spectrum. Boron as a dopant was used whichmore » showed variations in both the transmission peaks and the energy gap. In this model, first the single boron was substituted in place of carbon and Fermi level showed an energy gap of 1.5 to −0.5eV with the highest transmission peak at −1.3 eV. In another variation in the model, two carbon atoms were replaced by two boron atoms and Fermi level shifted from 2 to 0.25eV. In this observation, the highest transmission peak was observed at −1(approx.). The use of nanoelectronic devices have opened many areas of applications as GFET is an excellent building block for electronic circuits, and is being used in applications such as high-performance frequency doublers and mixers, digital modulators, phase detectors, optoelectronics and spintronics.« less
Have First-Year Emergency Medicine Residents Achieved Level 1 on Care-Based Milestones?
Weizberg, Moshe; Bond, Michael C.; Cassara, Michael; Doty, Christopher; Seamon, Jason
2015-01-01
Background Residents in Accreditation Council for Graduate Medical Education accredited emergency medicine (EM) residencies were assessed on 23 educational milestones to capture their progression from medical student level (Level 1) to that of an EM attending physician (Level 5). Level 1 was conceptualized to be at the level of an incoming postgraduate year (PGY)-1 resident; however, this has not been confirmed. Objectives Our primary objective in this study was to assess incoming PGY-1 residents to determine what percentage achieved Level 1 for the 8 emergency department (ED) patient care–based milestones (PC 1–8), as assessed by faculty. Secondary objectives involved assessing what percentage of residents had achieved Level 1 as assessed by themselves, and finally, we calculated the absolute differences between self- and faculty assessments. Methods Incoming PGY-1 residents at 4 EM residencies were assessed by faculty and themselves during their first month of residency. Performance anchors were adapted from ACGME milestones. Results Forty-one residents from 4 programs were included. The percentage of residents who achieved Level 1 for each subcompetency on faculty assessment ranged from 20% to 73%, and on self-assessment from 34% to 92%. The majority did not achieve Level 1 on faculty assessment of milestones PC-2, PC-3, PC-5a, and PC-6, and on self-assessment of PC-3 and PC-5a. Self-assessment was higher than faculty assessment for PC-2, PC-5b, and PC-6. Conclusions Less than 75% of PGY-1 residents achieved Level 1 for ED care-based milestones. The majority did not achieve Level 1 on 4 milestones. Self-assessments were higher than faculty assessments for several milestones. PMID:26692971
Lo Vecchio, I; Denlinger, J D; Krupin, O; Kim, B J; Metcalf, P A; Lupi, S; Allen, J W; Lanzara, A
2016-10-14
Using angle resolved photoemission spectroscopy, we report the first band dispersions and distinct features of the bulk Fermi surface (FS) in the paramagnetic metallic phase of the prototypical metal-insulator transition material V_{2}O_{3}. Along the c axis we observe both an electron pocket and a triangular holelike FS topology, showing that both V 3d a_{1g} and e_{g}^{π} states contribute to the FS. These results challenge the existing correlation-enhanced crystal field splitting theoretical explanation for the transition mechanism and pave the way for the solution of this mystery.
Competing order parameters in Fermi systems with engineered band dispersion
NASA Astrophysics Data System (ADS)
Wu, Chien-Te; Boyack, Rufus; Anderson, Brandon; Levin, K.
We explore a variety of competing phases in 2D and 3D Fermi gases in the presence of novel dispersion relations resulting from a shaken optical lattice. We incorporate spin imbalance along with attractive interactions. In 3D, at the mean field level we present phase diagrams reflecting the stability of alternative order parameters in the pairing (including LOFF) and charge density wave channels. We perform analogous studies in 2D, where we focus on the competition between different paired phases. Important in this regard is that our 2D studies are consistent with the Mermin Wagner theorem, so that, while there is competition, conventional superfluidity cannot occur
Harrison, Neil
2016-08-16
Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Neil
Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less
Fermi surfaces in Kondo insulators
NASA Astrophysics Data System (ADS)
Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.
2018-04-01
We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.
Meyer, Jens; Kidambi, Piran R; Bayer, Bernhard C; Weijtens, Christ; Kuhn, Anton; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Robertson, John; Hofmann, Stephan
2014-06-20
The interface structure of graphene with thermally evaporated metal oxide layers, in particular molybdenum trioxide (MoO3), is studied combining photoemission spectroscopy, sheet resistance measurements and organic light emitting diode (OLED) characterization. Thin (<5 nm) MoO3 layers give rise to an 1.9 eV large interface dipole and a downwards bending of the MoO3 conduction band towards the Fermi level of graphene, leading to a near ideal alignment of the transport levels. The surface charge transfer manifests itself also as strong and stable p-type doping of the graphene layers, with the Fermi level downshifted by 0.25 eV and sheet resistance values consistently below 50 Ω/sq for few-layer graphene films. The combination of stable doping and highly efficient charge extraction/injection allows the demonstration of simplified graphene-based OLED device stacks with efficiencies exceeding those of standard ITO reference devices.
Effect of doping on electronic properties of HgSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Abhinav, E-mail: abhinavn76@gmail.com; Sastri, O. S. K. S., E-mail: sastri.osks@gmail.com; Kumar, Jagdish, E-mail: jagdishphysicist@gmail.com
2016-05-23
First principle study of electronic properties of pure and doped HgSe have been performed using all electron Full Potential Linearized Augmented Plane Wave (FP-LAPW) method using ELK code. The electronic exchange and co-relations are considered using Generalized Gradient Approach (GGA). Lattice parameter, Density of States (DOS) and Band structure calculations have been performed. The total energy curve (Energy vs Lattice parameter), DOS and band structure calculations are in good agreement with the experimental values and those obtained using other DFT codes. The doped material is studied within the Virtual Crystal Approximation (VCA) with doping levels of 10% to 25% ofmore » electrons (hole) per unit cell. Results predict zero band gap in undopedHgSe and bands meet at Fermi level near the symmetry point Γ. For doped HgSe, we found that by electron (hole) doping, the point where conduction and valence bands meet can be shifted below (above) the fermi level.« less
Zhang, Tian; Ma, Zhongyun; Wang, Linjun; Xi, Jinyang; Shuai, Zhigang
2014-01-01
Double-docking self-assembled monolayers (DDSAMs), namely self-assembled monolayers (SAMs) formed by molecules possessing two docking groups, provide great flexibility to tune the work function of metal electrodes and the tunnelling barrier between metal electrodes and the SAMs, and thus offer promising applications in both organic and molecular electronics. Based on the dispersion-corrected density functional theory (DFT) in comparison with conventional DFT, we carry out a systematic investigation on the dual configurations of a series of DDSAMs on an Au(111) surface. Through analysing the interface electronic structures, we obtain the relationship between single molecular properties and the SAM-induced work-function modification as well as the level alignment between the metal Fermi level and molecular frontier states. The two possible conformations of one type of DDSAM on a metal surface reveal a strong difference in the work-function modification and the electron/hole tunnelling barriers. Fermi-level pinning is found to be a key factor to understand the interface electronic properties. PMID:24615153
Fermi surface properties of NbAs2 studied by de Haas-van Alphen oscillation
NASA Astrophysics Data System (ADS)
Singha, Ratnadwip; Mandal, Prabhat
2018-04-01
We have grown high quality single crystal of NbAs2, a member of the transition metal dipnictide family and measured magnetotransport properties. Very large magnetoresistance ˜1.3×105 % has been observed at 2 K with 9 T magnetic field. The Fermi surface properties have been studied by de Haas-van Alphen oscillation technique. The Fermi surface is highly anisotropic and consists of multiple Fermi pockets. From quantum oscillation results, different Fermi surface related parameters have been quantified.
75 FR 76054 - Detroit Edison Company Fermi, Unit 2; Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... licensee anticipates using rail to ship radioactive waste. From the licensee's experience with radioactive..., section III.E, to investigate and file a report to the NRC if shipments of low-level radioactive waste are... exemption would extend the time period that can elapse during shipments of low-level radioactive waste...
NASA Astrophysics Data System (ADS)
Kharga, D.; Inotani, D.; Hanai, R.; Ohashi, Y.
2017-06-01
We theoretically investigate the normal state properties of a Bose-Fermi mixture with a strong attractive interaction between Fermi and Bose atoms. We extend the ordinary T-matrix approximation (TMA) with respect to Bose-Fermi pairing fluctuations, to include the Hugenholtz-Pines' relation for all Bose Green's functions appearing in TMA self-energy diagrams. This extension is shown to be essentially important to correctly describe the physical properties of the Bose-Fermi mixture, especially near the Bose-Einstein condensation instability. Using this improved TMA, we clarify how the formation of composite fermions affects Bose and Fermi single-particle excitation spectra, over the entire interaction strength.
Tunable Fermi Contour Anisotropy in GaAs Electron and Hole Systems
NASA Astrophysics Data System (ADS)
Kamburov, Dobromir G.
This Thesis explores the ballistic transport of quasi two-dimensional (2D) electron and hole systems confined to GaAs quantum wells and subjected to a periodic, strain-induced density modulation. In the presence of an applied perpendicular magnetic field, whenever the diameter of the charged carriers' cyclotron orbit becomes commensurate with the period of the density modulation, the sample's resistance exhibits commensurability features. We use the commensurability effects to directly probe the size of the cyclotron orbit, the Fermi contour, and the spin-polarization of particles at low magnetic field and of composite fermions near even-denominator Landau level filling factors (nu). We establish how the commensurability signatures depend on the sample parameters, including the carrier density, the modulation period, and the width of the confining quantum well. In the presence of a small perpendicular magnetic field (B⊥ ), both 2D electrons and holes are essentially spin-unpolarized and their Fermi contours are nearly circular. When an additional parallel component B∥ is introduced, it couples to the carriers' out-of-plane motion and leads to a severe distortion of the energy bands and the Fermi contours. The degree of anisotropy is typically stronger in the wider quantum wells but it also depends on the carrier type. For a given QW width, holes become anisotropic more readily than electrons. The application of B ∥ also affects the spin-polarization of the carriers. Hole samples, for example, become more spin-polarized compared to electrons. We can semi-quantitatively explain the shape and size of the electron and hole Fermi contours with a theoretical calculation with no adjustable parameters based on an 8 x 8 Kane Hamiltonian. In addition to the electron and hole data at low perpendicular magnetic fields, we observe commensurability features for composite fermions near Landau level filling factors nu = 3=2, 1/2, and 1/4. Our data reveal an asymmetry of the composite fermion commensurability features on the two sides of filling factors nu = 1=2 and 3=2. The asymmetry is a fascinating manifestation of a subtle breaking of the particle-hole equivalence in the ballistic transport of composite fermions. It is consistent with a transport picture in which the minority carriers capture flux quanta to form composite fermions. We also employ commensurability oscillations as a tool to probe and quantify the effect of B∥ on the composite fermion Fermi contours. Our measurements reveal that, thanks to the finite layer thickness of the carriers and the coupling of their out-of-plane motion to B∥, the Fermi contours of nu = 1=2 and 3/2 composite fermions are significantly distorted. Furthermore, depending on the width of the quantum well and the sample density, in the vicinity of nu = 3=2 the spin-polarization of the composite fermions varies while near nu = 1=2 they remain fully spin-polarized.
Quasiparticle lifetime in a mixture of Bose and Fermi superfluids.
Zheng, Wei; Zhai, Hui
2014-12-31
In this Letter, we study the effect of quasiparticle interactions in a Bose-Fermi superfluid mixture. We consider the lifetime of a quasiparticle of the Bose superfluid due to its interaction with quasiparticles in the Fermi superfluid. We find that this damping rate, i.e., the inverse of the lifetime, has quite a different threshold behavior at the BCS and the BEC side of the Fermi superfluid. The damping rate is a constant near the threshold momentum in the BCS side, while it increases rapidly in the BEC side. This is because, in the BCS side, the decay process is restricted by the constraint that the fermion quasiparticle is located near the Fermi surface, while such a restriction does not exist in the BEC side where the damping process is dominated by bosonic quasiparticles of the Fermi superfluid. Our results are related to the collective mode experiment in the recently realized Bose-Fermi superfluid mixture.
Spin fluctations and heavy fermions in the Kondo lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaliullin, G.G.
1994-09-01
This paper studies the spectrum of the spin and electronic excitations of the Kondo lattice at low temperatures. To avoid unphysical states, the Mattis {open_quotes}drone{close_quotes}-fermion representation for localized spins is employed. First, the known Fermi liquid properties of a single impurity are examined. The behavior of the correlator between a localized spin and the electron spin density at large distances shows that the effective interaction between electrons on the Fermi level and low-energy localized spin fluctuations scales as {rho}{sup {minus}1}, where {rho} is the band-state density. This fact is developed into a renormalization of the band spectrum in a periodicmore » lattice. If the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between localized spins is much smaller than the Kondo fluctuation frequency {omega}{sub k}, the temperature of the crossover to the single-parameter Fermi liquid mode is determined by {omega}{sub k}. When the RKKY interaction becomes of order {omega}{sub k}, there is a new scale {omega}{sub sf}, the energy of the (antiferromagnetic) paramagnon mode, with {omega}{sub sf}{much_lt}{omega}{sub k}. Here the coherent Fermi liquid regime is realized only below a temperature T{sub coh} of order {omega}{sub sf}, while above T{sub coh} quasiparticle damping exhibits a linear temperature dependence. Finally, the nuclear-spin relaxation rate is calculated. 42 refs.« less
When a Standard Candle Flickers: Hard X-ray Variations in the Crab Nebula
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen; Cherry, Michael L.; Case, Gary L.; Baumgartner, Wayne H.; Beklen, Elif; Bhat, Narayana P.; Briggs, Michael S.; Buehler, Rolf; Camero-Arranz, Ascension; Connaughton, Valerie;
2014-01-01
In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, an approximately 7% (70 mcrab) decline was discovered in the overall Crab nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/PCA was particularly variable, changing by up to approximately3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. At higher energies, above 50 keV, the Crab flux appears to be slowly recovering to its 2008 levels. I will present updated light curves in multiple energy bands for the Crab nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL, MAXI, and NuSTAR and a 16-year long light curve from RXTE/PCA. We will compare these variations to higher energies as well, e.g. Fermi LAT.
Topological surface Fermi arcs in the magnetic Weyl semimetal Co3Sn2S2
NASA Astrophysics Data System (ADS)
Xu, Qiunan; Liu, Enke; Shi, Wujun; Muechler, Lukas; Gayles, Jacob; Felser, Claudia; Sun, Yan
2018-06-01
Very recently, the half-metallic compound Co3Sn2S2 was proposed to be a magnetic Weyl semimetal (WSM) with Weyl points only 60 meV above the Fermi level EF. Owing to the low charge carrier density and large Berry curvature induced, Co3Sn2S2 possesses both a large anomalous Hall conductivity and a large anomalous Hall angle, which provide strong evidence for the existence of Weyl points in Co3Sn2S2 . In this work, we theoretically study the surface topological feature of Co3Sn2S2 and its counterpart Co3Sn2Se2 . By cleaving the sample at the weak Sn-S/Se bonds, one can achieve two different surfaces terminated with Sn and S/Se atoms, respectively. The resulting Fermi-arc-related states can range from the energy of the Weyl points to EF-0.1 eV in the Sn-terminated surface. Therefore, it should be possible to observe the Fermi arcs in angle-resolved photoemission spectroscopy (ARPES) measurements. Furthermore, in order to simulate quasiparticle interference in scanning tunneling microscopy (STM) measurements, we also calculate the joint density of states for both terminals. This work should be helpful for a comprehensive understanding of the topological properties of these two magnetic WSMs and further ARPES and STM measurements.
Zhao, Yanfei; Liu, Haiwen; Zhang, Chenglong; ...
2015-09-16
Three-dimensional (3D) topological Dirac semimetals have a linear dispersion in the 3D momentum space and are viewed as the 3D analogues of graphene. Here, we report angle dependent magnetotransport on the newly revealed Cd 3As 2 single crystals and clearly show how the Fermi surface evolves with crystallographic orientations. Remarkably, when the magnetic field lies in [112] or [44more » $$\\bar{1}$$] axis, magnetoresistance oscillations with only single period are present. However, the oscillation shows double periods when the field is applied along [1$$\\bar{1}$$0] direction. Moreover, aligning the magnetic field at certain directions also gives rise to double period oscillations. We attribute the observed anomalous oscillation behavior to the sophisticated geometry of Fermi surface and illustrate a complete 3D Fermi surfaces with two nested anisotropic ellipsoids around the Dirac points. Additionally, a sub-millimeter mean free path at 6 K is found in Cd 3As 2 crystals, indicating ballistic transport in this material. By measuring the magnetoresistance up to 60 T, we reach the quantum limit (n = 1 Landau level) at about 43 T. Lastly, these results improve the knowledge of the Dirac semimetal material Cd 3As 2, and also pave the way for proposing new electronic applications based on 3D Dirac materials.« less
Kohn's theorem in a superfluid Fermi gas with a Feshbach resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, Y.
2004-12-01
We investigate the dipole mode in a superfluid gas of Fermi atoms trapped in a harmonic potential. According to Kohn's theorem, the frequency of this collective mode is not affected by an interaction between the atoms and is always equal to the trap frequency. This remarkable property, however, does not necessarily hold in an approximate theory. We explicitly prove that the Hartree-Fock-Bogoliubov generalized random phase approximation (HFB-GRPA), including a coupling between fluctuations in the density and Cooper channels, is consistent with both Kohn's theorem as well as Goldstone's theorem. This proof can be immediately extended to the strong-coupling superfluid theorymore » developed by Nozieres and Schmitt-Rink (NSR), where the effect of superfluid fluctuations is included within the Gaussian level. As a result, the NSR-GRPA formalism can be used to study collective modes in the BCS-BEC crossover region in a manner which is consistent with Kohn's theorem. We also include the effect of a Feshbach resonance and a condensate of the associated molecular bound states. A detailed discussion is given of the unusual nature of the Kohn mode eigenfunctions in a Fermi superfluid, in the presence and absence of a Feshbach resonance. When the molecular bosons feel a different trap frequency from the Fermi atoms, the dipole frequency is shown to depend on the strength of effective interaction associated with the Feshbach resonance.« less
NASA Astrophysics Data System (ADS)
Grushin, Adolfo G.; Venderbos, Jörn W. F.; Vishwanath, Ashvin; Ilan, Roni
2016-10-01
Topological Dirac and Weyl semimetals have an energy spectrum that hosts Weyl nodes appearing in pairs of opposite chirality. Topological stability is ensured when the nodes are separated in momentum space and unique spectral and transport properties follow. In this work, we study the effect of a space-dependent Weyl node separation, which we interpret as an emergent background axial-vector potential, on the electromagnetic response and the energy spectrum of Weyl and Dirac semimetals. This situation can arise in the solid state either from inhomogeneous strain or nonuniform magnetization and can also be engineered in cold atomic systems. Using a semiclassical approach, we show that the resulting axial magnetic field B5 is observable through an enhancement of the conductivity as σ ˜B52 due to an underlying chiral pseudomagnetic effect. We then use two lattice models to analyze the effect of B5 on the spectral properties of topological semimetals. We describe the emergent pseudo-Landau-level structure for different spatial profiles of B5, revealing that (i) the celebrated surface states of Weyl semimetals, the Fermi arcs, can be reinterpreted as n =0 pseudo-Landau levels resulting from a B5 confined to the surface, (ii) as a consequence of position-momentum locking, a bulk B5 creates pseudo-Landau levels interpolating in real space between Fermi arcs at opposite surfaces, and (iii) there are equilibrium bound currents proportional to B5 that average to zero over the sample, which are the analogs of bound currents in magnetic materials. We conclude by discussing how our findings can be probed experimentally.
NASA Astrophysics Data System (ADS)
Kocevski, D.; Ajello, M.; Buson, S.; Buehler, R.; Giomi, M.
2016-02-01
During the week between February 8 and 15, 2016, the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, observed gamma-ray activity from a new transient source, Fermi J1654-1055.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartstein, M.; Toews, W. H.; Hsu, Y. -T.
The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator–metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. In this paper, we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB 6 positioned close to the insulator–metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including amore » sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Finally, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB 6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.« less
Recent Developments in Non-Fermi Liquid Theory
NASA Astrophysics Data System (ADS)
Lee, Sung-Sik
2018-03-01
Non-Fermi liquids are unconventional metals whose physical properties deviate qualitatively from those of noninteracting fermions due to strong quantum fluctuations near Fermi surfaces. They arise when metals are subject to singular interactions mediated by soft collective modes. In the absence of well-defined quasiparticles, universal physics of non-Fermi liquids is captured by interacting field theories which replace Landau Fermi liquid theory. However, it has been difficult to understand their universal low-energy physics due to a lack of theoretical methods that take into account strong quantum fluctuations in the presence of abundant low-energy degrees of freedom. In this review, we discuss two approaches that have been recently developed for non-Fermi liquid theory with emphasis on two space dimensions. The first is a perturbative scheme based on a dimensional regularization, which achieves a controlled access to the low-energy physics by tuning the codimension of Fermi surface. The second is a nonperturbative approach which treats the interaction ahead of the kinetic term through a non-Gaussian scaling called interaction-driven scaling. Examples of strongly coupled non-Fermi liquids amenable to exact treatments through the interaction-driven scaling are discussed.
Pseudogap-generated a coexistence of Fermi arcs and Fermi pockets in cuprate superconductors
NASA Astrophysics Data System (ADS)
Zhao, Huaisong; Gao, Deheng; Feng, Shiping
2017-03-01
One of the most intriguing puzzle is why there is a coexistence of Fermi arcs and Fermi pockets in the pseudogap phase of cuprate superconductors? This puzzle is calling for an explanation. Based on the t - J model in the fermion-spin representation, the coexistence of the Fermi arcs and Fermi pockets in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the pseudogap induces an energy band splitting, and then the poles of the electron Green's function at zero energy form two contours in momentum space, however, the electron spectral weight on these two contours around the antinodal region is gapped out by the pseudogap, leaving behind the low-energy electron spectral weight only located at the disconnected segments around the nodal region. In particular, the tips of these disconnected segments converge on the hot spots to form the closed Fermi pockets, generating a coexistence of the Fermi arcs and Fermi pockets. Moreover, the single-particle coherent weight is directly related to the pseudogap, and grows linearly with doping. The calculated result of the overall dispersion of the electron excitations is in qualitative agreement with the experimental data. The theory also predicts that the pseudogap-induced peak-dip-hump structure in the electron spectrum is absent from the hot-spot directions.
3D Quantum Hall Effect of Fermi Arc in Topological Semimetals
NASA Astrophysics Data System (ADS)
Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.
2017-09-01
The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.
Ac electronic tunneling at optical frequencies
NASA Technical Reports Server (NTRS)
Faris, S. M.; Fan, B.; Gustafson, T. K.
1974-01-01
Rectification characteristics of non-superconducting metal-barrier-metal junctions deduced from electronic tunneling have been observed experimentally for optical frequency irradiation of the junction. The results provide verification of optical frequency Fermi level modulation and electronic tunneling current modulation.
Uji, S; Kimata, M; Moriyama, S; Yamada, J; Graf, D; Brooks, J S
2010-12-31
Systematic measurements of the magnetocaloric effect, heat capacity, and magnetic torque under a high magnetic field up to 35 T are performed in the spin density wave (SDW) phase of a quasi-one-dimensional organic conductor (TMTSF)2ClO4. In the SDW phase above 26 T, where the quantum Hall effect is broken, rapid oscillations (ROs) in these thermodynamic quantities are observed, which provides clear evidence of the density-of-state (DOS) oscillation near the Fermi level. The resistance is semiconducting and the heat capacity divided by temperature is extrapolated to zero at 0 K in the SDW phase, showing that all the energy bands are gapped, and there is no DOS at the Fermi level. The results show that the ROs are ascribed to the DOS oscillation of the quasiparticle excitation.
Electronic and magnetic properties of epitaxial perovskite SrCrO3(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hongliang; Du, Yingge; Sushko, Petr
2015-06-24
We have investigated the intrinsic properties of SrCrO3 epitaxial thin films synthesized by molecular beam epitaxy. We find compelling evidence that SrCrO3 is a correlated metal. X-ray photoemission valence band and O K-edge x-ray absorption spectra indicate a strongly hybridized Cr3d-O2p state crossing the Fermi level, leading to metallic behavior. Comparison between valence band spectra near the Fermi level and the densities of states calculated using density functional theory (DFT) also suggests the presence of coherent and incoherent states and points to a strong electron-electron correlation effects. The magnetic susceptibility can be described by Pauli paramagnetism at temperatures above 100more » K, but reveals antiferromagnetic behavior at lower temperatures resulting from orbital ordering as suggested by Ortega-San-Martin et al. [Phys. Rev. Lett. 99, 255701 (2007)].« less
Thermodynamic and mechanical properties of TiC from ab initio calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dang, D. Y.; Fan, J. L.; Gong, H. R., E-mail: gonghr@csu.edu.cn
2014-07-21
The temperature-dependent thermodynamic and mechanical properties of TiC are systematically investigated by means of a combination of density-functional theory, quasi-harmonic approximation, and thermal electronic excitation. It is found that the quasi-harmonic Debye model should be pertinent to reflect thermodynamic properties of TiC, and the elastic properties of TiC decease almost linearly with the increase of temperature. Calculations also reveal that TiC possesses a pronounced directional pseudogap across the Fermi level, mainly due to the strong hybridization of Ti 3d and C 2p states. Moreover, the strong covalent bonding of TiC would be enhanced (reduced) with the decrease (increase) of temperature,more » while the change of volume (temperature) should have negligible effect on density of states at the Fermi level. The calculated results agree well with experimental observations in the literature.« less
Liu, Yuanyue; Stradins, Paul; Wei, Su-Huai
2016-01-01
Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications. PMID:27152360
NASA Astrophysics Data System (ADS)
Annese, E.; Okuda, T.; Schwier, E. F.; Iwasawa, H.; Shimada, K.; Natamane, M.; Taniguchi, M.; Rusinov, I. P.; Eremeev, S. V.; Kokh, K. A.; Golyashov, V. A.; Tereshchenko, O. E.; Chulkov, E. V.; Kimura, A.
2018-05-01
We have grown the phase-homogeneous ternary compound with composition Bi2Te1.85S1.15 very close to the stoichiometric Bi2Te2S . The measurements performed with spin- and angle-resolved photoelectron spectroscopy as well as density functional theory and G W calculations revealed a wide-band-gap three-dimensional topological insulator phase. The surface electronic spectrum is characterized by the topological surface state (TSS) with Dirac point located above the valence band and Fermi level lying in the band gap. TSS band dispersion and constant energy contour manifest a weak warping effect near the Fermi level along with in-plane and out-of-plane spin polarization along the Γ ¯-K ¯ line. We identified four additional states at deeper binding energies with high in-plane spin polarization.
NASA Astrophysics Data System (ADS)
Yamamoto, Shintaro; Ootsuki, Daiki; Shimonaka, Daiya; Shibata, Daisuke; Kodera, Kenjiro; Okawa, Mario; Saitoh, Tomohiko; Horio, Masafumi; Fujimori, Atsushi; Kumigashira, Hiroshi; Ono, Kanta; Ikenaga, Eiji; Miyasaka, Shigeki; Tajima, Setsuko; Yoshida, Teppei
2018-02-01
We have performed a photoemission study of the Mott-Hubbard system Nd1-xSrxVO3 (x = 0.20 and 0.30) to investigate the electronic structure in the vicinity of the metal-insulator transition. By using bulk sensitive hard X-ray photoemission spectroscopy, we have observed a large coherent spectral weight near the Fermi level compared to those observed with surface-sensitive low photons. In particular, a pseudogap with an energy of ˜0.2 eV has been observed near the Fermi level, which is consistent with a prediction with a dynamical cluster approximation calculation. In order to understand the characteristic features in the Mott-Hubbard-type metal-insulator transition, particularly the pseudogap opening at x = 0.2 and 0.3, a phenomenological model of the self-energy has been proposed.
First principles study of crystal Si-doped Ge2Sb2Te5
NASA Astrophysics Data System (ADS)
Yan, Beibei; Yang, Fei; Chen, Tian; Wang, Minglei; Chang, Hong; Ke, Daoming; Dai, Yuehua
2017-02-01
Ge2Sb2Te5 (GST) and Si-doped GST with hexagonal structure were investigated by means of First-principles calcucations. We performed many kinds of doping types and studied the electronic properties of Si-doped GST with various Si concentrations. The theoretical calculations show that the lowest formation energy appeared when Si atoms substitute the Sb atoms (SiSb). With the increasing of Si concentrations from 10% to 30%, the impurity states arise around the Fermi level and the band gap of the SiSb structure broadens. Meanwhile, the doping supercell has the most favorable structure when the doping concentration keeps in 20%. The Si-doped GST exhibits p-type metallic characteristics more distinctly owing to the Fermi level moves toward the valence band. The Te p, d-orbitals electrons have greater impact on electronic properties than that of Te s-orbitals.
NASA Astrophysics Data System (ADS)
Braly, Ian L.; deQuilettes, Dane W.; Pazos-Outón, Luis M.; Burke, Sven; Ziffer, Mark E.; Ginger, David S.; Hillhouse, Hugh W.
2018-06-01
Reducing non-radiative recombination in semiconducting materials is a prerequisite for achieving the highest performance in light-emitting and photovoltaic applications. Here, we characterize both external and internal photoluminescence quantum efficiency and quasi-Fermi-level splitting of surface-treated hybrid perovskite (CH3NH3PbI3) thin films. With respect to the material bandgap, these passivated films exhibit the highest quasi-Fermi-level splitting measured to date, reaching 97.1 ± 0.7% of the radiative limit, approaching that of the highest performing GaAs solar cells. We confirm these values with independent measurements of internal photoluminescence quantum efficiency of 91.9 ± 2.7% under 1 Sun illumination intensity, setting a new benchmark for these materials. These results suggest hybrid perovskite solar cells are inherently capable of further increases in power conversion efficiency if surface passivation can be combined with optimized charge carrier selective interfaces.
Influence of Dopants in ZnO Films on Defects
NASA Astrophysics Data System (ADS)
Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao
2008-12-01
The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.
The role of rare-earth dopants in tailoring the magnetism and magnetic anisotropy in Fe4N
NASA Astrophysics Data System (ADS)
Li, Zirun; Mi, Wenbo; Bai, Haili
2018-05-01
The magnetism and magnetic anisotropy of the rare-earth (RE) atom-substituted Fe4N are investigated by first-principles calculations. It is found that the substitution of one RE atom results in an antiferromagnetic coupling with the Fe atoms. The 4f-3d exchange interaction has an important influence on the density of states of Fe near the Fermi level. PrFe3N and NdFe3N with a tetragonal structure exhibit giant magnetic anisotropy energy larger than 5 meV/atom. The magnetic anisotropy depends on the distribution of partial states of d or f orbital near the Fermi level. As Eu substitutes Fe in Fe4N, the magnetic moment of Eu3FeN even exceeds 23 μB. Our theoretical predictions point out the possibilities of tuning the magnetism and magnetic anisotropy of Fe4N upon RE doping.
Liu, Yuanyue; Stradins, Paul; Wei, Su -Huai
2016-04-22
Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanishmore » with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.« less
Band structure modification of the thermoelectric Heusler-phase TiFe2Sn via Mn substitution.
Zou, Tianhua; Jia, Tiantian; Xie, Wenjie; Zhang, Yongsheng; Widenmeyer, Marc; Xiao, Xingxing; Weidenkaff, Anke
2017-07-19
Doping (or substitution)-induced modification of the electronic structure to increase the electronic density of states (eDOS) near the Fermi level is considered as an effective strategy to enhance the Seebeck coefficient, and may consequently boost the thermoelectric performance. Through density-functional theory calculations of Mn-substituted TiFe 2-x Mn x Sn compounds, we demonstrate that the d-states of the substituted Mn atoms induce a strong resonant level near the Fermi energy. Our experimental results are in good agreement with the calculations. They show that Mn substitution results in a large increase of the Seebeck coefficient, arising from an enhanced eDOS in Heusler compounds. The results prove that a proper substitution position and element selection can increase the eDOS, leading to a higher Seebeck coefficient and thermoelectric performance of ecofriendly materials.
First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene
NASA Astrophysics Data System (ADS)
Ukpong, A. M.; Chetty, N.
2012-07-01
We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type structures. The lowest energy state of nitrogen vacancy complexes is negatively charged and spin polarized. Using the divacancy complex, we show that their formation induces spontaneous magnetic moments, which is tunable by electron or hole injection. The Fermi level s-resonant defect state is identified as a unique signature of the ground state of the divacancy complex. Due to their ability to enhance structural cohesion, only the divacancy and the nitrogen vacancy carbon-antisite complexes are able to suppress the Fermi level resonant defect state to open a gap between the conduction and valence bands.
Temperature-tunable Fano resonance induced by strong Weyl fermion-phonon coupling in TaAs
NASA Astrophysics Data System (ADS)
Dai, Yaomin; Trugman, S. A.; Zhu, J.-X.; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.; Xu, B.; Zhao, L. X.; Wang, K.; Yang, R.; Zhang, W.; Liu, J. Y.; Xiao, H.; Chen, G. F.; Qiu, X. G.
Strong coupling between discrete phonon and continuous electron-hole pair excitations can give rise to a pronounced asymmetry in the phonon line shape, known as the Fano resonance. We present infrared spectroscopic studies on the recently discovered Weyl semimetal TaAs at different temperatures. Our experimental results reveal strong coupling between an infrared-active A1 phonon and electronic transitions near the Weyl points (Weyl fermions), as evidenced by the conspicuous asymmetry in the phonon line shape. More interestingly, the phonon line shape can be continuously tuned by temperature, which we demonstrate to arise from the suppression of the electronic transitions near the Weyl points due to the decreasing occupation of electronic states below the Fermi level with increasing temperature, as well as Pauli blocking caused by thermally excited electrons above the Fermi level. Supported by LANL LDRD and LANL-UCRP programs.
NASA Astrophysics Data System (ADS)
Tani, Tadaaki; Uchida, Takayuki
2015-06-01
Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst’s equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix.
Topological Nodal-Net Semimetal in a Graphene Network Structure
NASA Astrophysics Data System (ADS)
Wang, Jian-Tao; Nie, Simin; Weng, Hongming; Kawazoe, Yoshiyuki; Chen, Changfeng
2018-01-01
Topological semimetals are characterized by the nodal points in their electronic structure near the Fermi level, either discrete or forming a continuous line or ring, which are responsible for exotic properties related to the topology of bulk bands. Here we identify by ab initio calculations a distinct topological semimetal that exhibits nodal nets comprising multiple interconnected nodal lines in bulk and have two coupled drumheadlike flat bands around the Fermi level on its surface. This nodal net semimetal state is proposed to be realized in a graphene network structure that can be constructed by inserting a benzene ring into each C- C bond in the bct-C4 lattice or by a crystalline modification of the (5,5) carbon nanotube. These results expand the realm of nodal manifolds in topological semimetals, offering a new platform for exploring novel physics in these fascinating materials.
Novel Electronic Structures of Ru-pnictides RuPn (Pn = P, As, Sb)
NASA Astrophysics Data System (ADS)
Goto, H.; Toriyama, T.; Konishi, T.; Ohta, Y.
Density-functional-theory-based electronic structure calculations are made to consider the novel electronic states of Ru-pnictides RuP and RuAs where the intriguing phase transitions and superconductivity under doping of Rh have been reported. We find that there appear nearly degenerate flat bands just at the Fermi level in the high-temperature metallic phase of RuP and RuAs; the flat-band states come mainly from the 4dxy orbitals of Ru ions and the Rh doping shifts the Fermi level just above the flat bands. The splitting of the flat bands caused by their electronic instability may then be responsible for the observed phase transition to the nonmagnetic insulating phase at low temperatures. We also find that the band structure calculated for RuSb resembles that of the doped RuP and RuAs, which is consistent with experiment where superconductivity occurs in RuSb without Rh doping.
Defect characterization in Mg-doped GaN studied using a monoenergetic positron beam
NASA Astrophysics Data System (ADS)
Uedono, A.; Ishibashi, S.; Tenjinbayashi, K.; Tsutsui, T.; Nakahara, K.; Takamizu, D.; Chichibu, S. F.
2012-01-01
Vacancy-type defects in Mg-doped GaN grown by metalorganic vapor phase epitaxy were probed using a monoenergetic positron beam. For a sample fabricated with a high H2-flow rate, before post-growth annealing the major defect species detected by positrons was identified as vacancy-clusters. Evidence suggested that other donor-type defects such as nitrogen vacancies also existed. The defects increased the Fermi level position, and enhanced the diffusion of positrons toward the surface. The annihilation of positrons at the top surface was suppressed by Mg-doping. This was attributed to the introduction of a subsurface layer (<6 nm) with a low defect concentration, where the Fermi level position was considered to decrease due to partial activation of Mg. For samples after annealing, the trapping of positrons by residual vacancy-type defects was observed, and the sample crystal quality was found to depend on that before annealing.
Bias-induced modulation of ultrafast carrier dynamics in metallic single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Maekawa, Keisuke; Yanagi, Kazuhiro; Minami, Yasuo; Kitajima, Masahiro; Katayama, Ikufumi; Takeda, Jun
2018-02-01
The gate bias dependence of excited-state relaxation dynamics in metallic single-walled carbon nanotubes (MCNTs) was investigated using pump-probe transient absorption spectroscopy coupled with electrochemical doping through an ionic liquid. The transient transmittance decayed exponentially with the pump-probe delay time, whose value could be tuned via the Fermi-level modulation of Dirac electrons under a bias voltage. The obtained relaxation time was the shortest when the Fermi level was at the Dirac point of the MCNTs, and exhibited a U-shaped dependence on the bias voltage. Because optical dipole transitions between the Dirac bands are forbidden in MCNTs, the observed dynamics were attributed to carrier relaxation from the E11 band to the Dirac band. Using a model that considers the suppression of electron-electron scattering (impact ionization) due to Pauli blocking, we could qualitatively explain the obtained bias dependence of the relaxation time.
Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La₂-xSrxCuO₄.
Chang, J; Månsson, M; Pailhès, S; Claesson, T; Lipscombe, O J; Hayden, S M; Patthey, L; Tjernberg, O; Mesot, J
2013-01-01
High-temperature superconductivity emerges from an un-conventional metallic state. This has stimulated strong efforts to understand exactly how Fermi liquids breakdown and evolve into an un-conventional metal. A fundamental question is how Fermi liquid quasiparticle excitations break down in momentum space. Here we show, using angle-resolved photoemission spectroscopy, that the Fermi liquid quasiparticle excitations of the overdoped superconducting cuprate La1.77Sr0.23CuO4 is highly anisotropic in momentum space. The quasiparticle scattering and residue behave differently along the Fermi surface and hence the Kadowaki-Wood's relation is not obeyed. This kind of Fermi liquid breakdown may apply to a wide range of strongly correlated metal systems where spin fluctuations are present.
Self-regulation of charged defect compensation and formation energy pinning in semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang
2015-11-20
Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglementmore » of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH 3NH 3PbI 3 as examples, we illustrate these unexpected behaviors. Furthermore, our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Eileen T.; Breiding, Peter; Georganopoulos, Markos
The Chandra X-ray observatory has discovered several dozen anomalously X-ray-bright jets associated with powerful quasars. A popular explanation for the X-ray flux from the knots in these jets is that relativistic synchrotron-emitting electrons inverse-Compton scatter cosmic microwave background (CMB) photons to X-ray energies (the IC/CMB model). This model predicts a high gamma-ray flux that should be detectable by the Fermi /Large Area Telescope (LAT) for many sources. GeV-band upper limits from Fermi /LAT for the well-known anomalous X-ray jet in PKS 0637−752 were previously shown in Meyer et al. to violate the predictions of the IC/CMB model. Previously, measurements ofmore » the jet synchrotron spectrum, important for accurately predicting the gamma-ray flux level, were lacking between radio and infrared wavelengths. Here, we present new Atacama Large Millimeter/submillimeter Array (ALMA) observations of the large-scale jet at 100, 233, and 319 GHz, which further constrain the synchrotron spectrum, supporting the previously published empirical model. We also present updated limits from the Fermi /LAT using the new “Pass 8” calibration and approximately 30% more time on source. With these deeper limits, we rule out the IC/CMB model at the 8.7 σ level. Finally, we demonstrate that complete knowledge of the synchrotron SED is critical in evaluating the IC/CMB model.« less
NASA Astrophysics Data System (ADS)
Zwierlein, Martin
2017-04-01
Strongly interacting fermions govern physics at all length scales, from nuclear matter to modern electronic materials and neutron stars. The interplay of the Pauli principle with strong interactions can give rise to exotic properties that we do not understand even at a qualitative level. In recent years, ultracold Fermi gases of atoms have emerged as a new type of strongly interacting fermionic matter that can be created and studied in the laboratory with exquisite control. Feshbach resonances allow for unitarity limited interactions, leading to scale invariance, universal thermodynamics and a superfluid phase transition already at 17 Trapped in optical lattices, fermionic atoms realize the Fermi-Hubbard model, believed to capture the essence of cuprate high-temperature superconductors. Here, a microscope allows for single-atom, single-site resolved detection of density and spin correlations, revealing the Pauli hole as well as anti-ferromagnetic and doublon-hole correlations. Novel states of matter are predicted for fermions interacting via long-range dipolar interactions. As an intriguing candidate we created stable fermionic molecules of NaK at ultralow temperatures featuring large dipole moments and second-long spin coherence times. In some of the above examples the experiment outperformed the most advanced computer simulations of many-fermion systems, giving hope for a new level of understanding of strongly interacting fermions.
Heponiemi, Tarja; Elovainio, Marko; Pekkarinen, Laura; Noro, Anja; Finne-Soveri, Harriet; Sinervo, Timo
2006-04-01
This study examined the moderating effect of employee hostility on the association of unit-level resident characteristics (depression and behavioral problems) to individual-level employee's resident-related stress and psychological well-being during 1-year follow-up study among 501 employees in elderly care. Our results showed that employee hostility was associated with decreased psychological well-being. In addition, hostility moderated the association between unit-level proportion of depressive residents and resident-related stress experienced by the individual employees. Hostile employees reported increased resident-related stress irrespective of the proportion of depressed residents in the unit. Instead, nonhostile employees were sensitive to the depression in the unit. They reported low levels of stress when depression levels in the unit were low and increased stress when depression levels were high. (c) 2006 APA, all rights reserved.
Electron Thermionic Emission from Graphene and a Thermionic Energy Converter
NASA Astrophysics Data System (ADS)
Liang, Shi-Jun; Ang, L. K.
2015-01-01
In this paper, we propose a model to investigate the electron thermionic emission from single-layer graphene (ignoring the effects of the substrate) and to explore its application as the emitter of a thermionic energy converter (TIC). An analytical formula is derived, which is a function of the temperature, work function, and Fermi energy level. The formula is significantly different from the traditional Richardson-Dushman (RD) law for which it is independent of mass to account for the supply function of the electrons in the graphene behaving like massless fermion quasiparticles. By comparing with a recent experiment [K. Jiang et al., Nano Res. 7, 553 (2014)] measuring electron thermionic emission from suspended single-layer graphene, our model predicts that the intrinsic work function of single-layer graphene is about 4.514 eV with a Fermi energy level of 0.083 eV. For a given work function, a scaling of T3 is predicted, which is different from the traditional RD scaling of T2. If the work function of the graphene is lowered to 2.5-3 eV and the Fermi energy level is increased to 0.8-0.9 eV, it is possible to design a graphene-cathode-based TIC operating at around 900 K or lower, as compared with the metal-based cathode TIC (operating at about 1500 K). With a graphene-based cathode (work function=4.514 eV ) at 900 K and a metallic-based anode (work function=2.5 eV ) like LaB6 at 425 K, the efficiency of our proposed TIC is about 45%.
Surface modification effects of fluorine-doped tin dioxide by oxygen plasma ion implantation
NASA Astrophysics Data System (ADS)
Tang, Peng; Liu, Cai; Zhang, Jingquan; Wu, Lili; Li, Wei; Feng, Lianghuan; Zeng, Guanggen; Wang, Wenwu
2018-04-01
SnO2:F (FTO), as a kind of transparent conductive oxide (TCO), exhibits excellent transmittance and conductivity and is widely used as transparency electrodes in solar cells. It's very important to modifying the surface of FTO for it plays a critical role in CdTe solar cells. In this study, modifying effects of oxygen plasma on FTO was investigated systematically. Oxygen plasma treatment on FTO surface with ion accelerating voltage ranged from 0.4 kV to 1.6 kV has been processed. The O proportion of surface was increased after ion implantation. The Fermi level of surface measurement by XPS valance band spectra was lowered as the ion accelerating voltage increased to 1.2 kV and then raised as accelerating voltage was elevated to 1.6 kV. The work function measured by Kelvin probe force microscopy increased after ion implanting, and it was consistent with the variation of Fermi level. The change of energy band structure of FTO surface mainly originated from the surface composition variation. As FTO conduction was primarily due to oxyanion hole, the carrier was electron and its concentration was reduced while O proportion was elevated at the surface of FTO, as a result, the Fermi level lowered and the work function was enlarged. It was proved that oxygen plasma treatment is an effective method to modulate the energy band structure of the surface as well as other properties of FTO, which provides much more space for interface and surface modification and then photoelectric device performance promotion.
Quantum oscillations from the reconstructed Fermi surface in electron-doped cuprate superconductors
NASA Astrophysics Data System (ADS)
Higgins, J. S.; Chan, M. K.; Sarkar, Tarapada; McDonald, R. D.; Greene, R. L.; Butch, N. P.
2018-04-01
We have studied the electronic structure of electron-doped cuprate superconductors via measurements of high-field Shubnikov–de Haas oscillations in thin films. In optimally doped Pr2‑x Ce x CuO4±δ and La2‑x Ce x CuO4±δ , quantum oscillations indicate the presence of a small Fermi surface, demonstrating that electronic reconstruction is a general feature of the electron-doped cuprates, despite the location of the superconducting dome at very different doping levels. Negative high-field magnetoresistance is correlated with an anomalous low-temperature change in scattering that modifies the amplitude of quantum oscillations. This behavior is consistent with effects attributed to spin fluctuations.
High-Precision Half-Life Measurements for the Superallowed Fermi β+ Emitters 14O and 18Ne
NASA Astrophysics Data System (ADS)
Laffoley, A. T.; Andreoiu, C.; Austin, R. A. E.; Ball, G. C.; Bender, P. C.; Bidaman, H.; Bildstein, V.; Blank, B.; Bouzomita, H.; Cross, D. S.; Deng, G.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Garrett, P.; Giovinazzo, J.; Grinyer, G. F.; Grinyer, J.; Hadinia, B.; Jamieson, D. S.; Jigmeddorj, B.; Ketelhut, S.; Kisliuk, D.; Leach, K. G.; Leslie, J. R.; MacLean, A.; Miller, D.; Mills, B.; Moukaddam, M.; Radich, A. J.; Rajabali, M. M.; Rand, E. T.; Svensson, C. E.; Tardiff, E.; Thomas, J. C.; Turko, J.; Voss, P.; Unsworth, C.
High-precision half-life measurements, at the level of ±0.04%, for the superallowed Fermi emitters 14O and 18Ne have been performed at TRIUMF's Isotope Separator and Accelerator facility. Using 3 independent detector systems, a gas-proportional counter, a fast plastic scintillator, and a high-purity germanium array, a series of direct β and γ counting measurements were performed for each of the isotopes. In the case of 14O, these measurements were made to help resolve an existing discrepancy between detection methods, whereas for 18Ne the half-life precision has been improved in anticipation of forthcoming high-precision branching ratio measurements.
Matrix-valued Boltzmann equation for the nonintegrable Hubbard chain.
Fürst, Martin L R; Mendl, Christian B; Spohn, Herbert
2013-07-01
The standard Fermi-Hubbard chain becomes nonintegrable by adding to the nearest neighbor hopping additional longer range hopping amplitudes. We assume that the quartic interaction is weak and investigate numerically the dynamics of the chain on the level of the Boltzmann type kinetic equation. Only the spatially homogeneous case is considered. We observe that the huge degeneracy of stationary states in the case of nearest neighbor hopping is lost and the convergence to the thermal Fermi-Dirac distribution is restored. The convergence to equilibrium is exponentially fast. However for small next-nearest neighbor hopping amplitudes one has a rapid relaxation towards the manifold of quasistationary states and slow relaxation to the final equilibrium state.
Effective temperature in relaxation of Coulomb glasses.
Somoza, A M; Ortuño, M; Caravaca, M; Pollak, M
2008-08-01
We study relaxation in two-dimensional Coulomb glasses up to macroscopic times. We use a kinetic Monte Carlo algorithm especially designed to escape efficiently from deep valleys around metastable states. We find that, during the relaxation process, the site occupancy follows a Fermi-Dirac distribution with an effective temperature much higher than the real temperature T. Long electron-hole excitations are characterized by T(eff), while short ones are thermalized at T. We argue that the density of states at the Fermi level is proportional to T(eff) and is a good thermometer to measure it. T(eff) decreases extremely slowly, roughly as the inverse of the logarithm of time, and it should affect hopping conductance in many experimental circumstances.
NASA Technical Reports Server (NTRS)
Lagowski, J.; Bugajski, M.; Matsui, M.; Gatos, H. C.
1987-01-01
The key electronic characteristics of semiinsulating GaAs, i.e., the Fermi energy, concentration, and occupancy of the midgap donor EL2, and the net concentration of ionized acceptors can all be determined from high-resolution measurements of the EL2 intracenter absorption. The procedure is based on the measurement of zero-phonon line intensity before and after the complete transfer of EL2 to its metastable state followed by thermal recovery. The procedure is quantitative, involves no fitting parameters, and unlike existing methods, is applicable even when a significant part of the EL2 is ionized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempisty, Paweł; Krukowski, Stanisław; Interdisciplinary Centre for Materials Modelling, Warsaw University, Pawińskiego 5a, 02-106 Warsaw
Adsorption of ammonia at NH{sub 3}/NH{sub 2}/H-covered GaN(0001) surface was analyzed using results of ab initio calculations. The whole configuration space of partially NH{sub 3}/NH{sub 2}/H-covered GaN(0001) surface was divided into zones of differently pinned Fermi level: at the Ga broken bond state for dominantly bare surface (region I), at the valence band maximum (VBM) for NH{sub 2} and H-covered surface (region II), and at the conduction band minimum (CBM) for NH{sub 3}-covered surface (region III). The electron counting rule (ECR) extension was formulated for the case of adsorbed molecules. The extensive ab intio calculations show the validity of themore » ECR in case of all mixed H-NH{sub 2}-NH{sub 3} coverages for the determination of the borders between the three regions. The adsorption was analyzed using the recently identified dependence of the adsorption energy on the charge transfer at the surface. For region I ammonia adsorbs dissociatively, disintegrating into a H adatom and a HN{sub 2} radical for a large fraction of vacant sites, while for region II adsorption of ammonia is molecular. The dissociative adsorption energy strongly depends on the Fermi level at the surface (pinned) and in the bulk (unpinned) while the molecular adsorption energy is determined by bonding to surface only, in accordance to the recently published theory. Adsorption of Ammonia in region III (Fermi level pinned at CBM) leads to an unstable configuration both molecular and dissociative, which is explained by the fact that broken Ga-bonds are doubly occupied by electrons. The adsorbing ammonia brings 8 electrons to the surface, necessitating the transfer of these two electrons from the Ga broken bond state to the Fermi level. This is an energetically costly process. Adsorption of ammonia at H-covered site leads to the creation of a NH{sub 2} radical at the surface and escape of H{sub 2} molecule. The process energy is close to 0.12 eV, thus not large, but the direct inverse process is not possible due to the escape of the hydrogen molecule.« less
Two-level convolution formula for nuclear structure function
NASA Astrophysics Data System (ADS)
Ma, Boqiang
1990-05-01
A two-level convolution formula for the nuclear structure function is derived in considering the nucleus as a composite system of baryon-mesons which are also composite systems of quark-gluons again. The results show that the European Muon Colaboration effect can not be explained by the nuclear effects as nucleon Fermi motion and nuclear binding contributions.
Understanding and Using the Fermi Science Tools
NASA Astrophysics Data System (ADS)
Asercion, Joseph
2018-01-01
The Fermi Science Support Center (FSSC) provides information, documentation, and tools for the analysis of Fermi science data, including both the Large-Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Source and binary versions of the Fermi Science Tools can be downloaded from the FSSC website, and are supported on multiple platforms. An overview document, the Cicerone, provides details of the Fermi mission, the science instruments and their response functions, the science data preparation and analysis process, and interpretation of the results. Analysis Threads and a reference manual available on the FSSC website provide the user with step-by-step instructions for many different types of data analysis: point source analysis - generating maps, spectra, and light curves, pulsar timing analysis, source identification, and the use of python for scripting customized analysis chains. We present an overview of the structure of the Fermi science tools and documentation, and how to acquire them. We also provide examples of standard analyses, including tips and tricks for improving Fermi science analysis.
Formation of an incoherent metallic state in Rh-doped Sr2IrO4
NASA Astrophysics Data System (ADS)
Louat, A.; Bert, F.; Serrier-Garcia, L.; Bertran, F.; Le Fèvre, P.; Rault, J.; Brouet, V.
2018-04-01
Sr2IrO4 is the archetype of the spin-orbit Mott insulator, but the nature of the metallic states that may emerge from this type of insulator is still not very well known. We study with angle-resolved photoemission the insulator-to-metal transition observed in Sr2Ir1 -xRhxO4 when Ir is substituted by Rh (0.02
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, J. A., E-mail: jad95@cam.ac.uk; Guo, Y.; Robertson, J.
2015-09-21
Energetics for a variety of intrinsic defects in NiO are calculated using state-of-the-art ab initio hybrid density functional theory calculations. At the O-rich limit, Ni vacancies are the lowest cost defect for all Fermi energies within the gap, in agreement with the well-known p-type behaviour of NiO. However, the ability of the metal electrode in a resistive random access memory metal-oxide-metal setup to shift the oxygen chemical potential towards the O-poor limit results in unusual NiO behaviour and O vacancies dominating at lower Fermi energy levels. Calculated band diagrams show that O vacancies in NiO are positively charged at themore » operating Fermi energy giving it the advantage of not requiring a scavenger metal layer to maximise drift. Ni and O interstitials are generally found to be higher in energy than the respective vacancies suggesting that significant recombination of O vacancies and interstitials does not take place as proposed in some models of switching behaviour.« less
Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts.
Huang, Bing; Xiao, Li; Lu, Juntao; Zhuang, Lin
2016-05-17
A new property is reported that accurately quantifies and spatially describes the chemical reactivity of solid surfaces. The core idea is to create a reactivity weight function peaking at the Fermi level, thereby determining a weighted summation of the density of states of a solid surface. When such a weight function is defined as the derivative of the Fermi-Dirac distribution function at a certain non-zero temperature, the resulting property is the finite-temperature chemical softness, termed Fermi softness (SF ), which turns out to be an accurate descriptor of the surface reactivity. The spatial image of SF maps the reactive domain of a heterogeneous surface and even portrays morphological details of the reactive sites. SF analyses reveal that the reactive zones on a Pt3 Y(111) surface are the platinum sites rather than the seemingly active yttrium sites, and the reactivity of the S-dimer edge of MoS2 is spatially anisotropic. Our finding is of fundamental and technological significance to heterogeneous catalysis and industrial processes demanding rational design of solid catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kakehashi, Yoshiro; Chandra, Sumal
2017-03-01
The momentum distribution function (MDF) bands of iron-group transition metals from Sc to Cu have been investigated on the basis of the first-principles momentum dependent local ansatz wavefunction method. It is found that the MDF for d electrons show a strong momentum dependence and a large deviation from the Fermi-Dirac distribution function along high-symmetry lines of the first Brillouin zone, while the sp electrons behave as independent electrons. In particular, the deviation in bcc Fe (fcc Ni) is shown to be enhanced by the narrow eg (t2g) bands with flat dispersion in the vicinity of the Fermi level. Mass enhancement factors (MEF) calculated from the jump on the Fermi surface are also shown to be momentum dependent. Large mass enhancements of Mn and Fe are found to be caused by spin fluctuations due to d electrons, while that for Ni is mainly caused by charge fluctuations. Calculated MEF are consistent with electronic specific heat data as well as recent angle resolved photoemission spectroscopy data.
Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state
NASA Astrophysics Data System (ADS)
Culver, Adrian; Andrei, Natan
We calculate the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t =0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. The solution describes the non-equilibrium steady state of the system. We use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, yielding the I-V characteristic. The calculation is non-perturbative and exact. Research supported by NSF Grant DMR 1410583.
Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state
NASA Astrophysics Data System (ADS)
Culver, Adrian; Andrei, Natan
We present an exact method of calculating the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t = 0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. This exact, non-perturbative solution describes the non-equilibrium steady state of the system. We describe how to use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, which would yield the I-V characteristic of the dot. Research supported by NSF Grant DMR 1410583.
Nonlocal Poisson-Fermi model for ionic solvent.
Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob
2016-07-01
We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.
Fermi-surface-free superconductivity in underdoped (Bi,Pb)(Sr,La) 2CuO 6+δ (Bi2201)
Mistark, Peter; Hafiz, Hasnain; Markiewicz, Robert S.; ...
2015-06-18
Fermi-surface-free superconductivity arises when the superconducting order pulls down spectral weight from a band that is completely above the Fermi energy in the normal state. Here, we show that this can arise in hole-doped cuprates when a competing order causes a reconstruction of the Fermi surface. The change in Fermi surface topology is accompanied by a characteristic rise in the spectral weight. Finally, our results support the presence of a trisected superconducting dome, and suggest that superconductivity is responsible for stabilizing the (π,π) magnetic order at higher doping.
Yang, Anthony D; Chung, Jeanette W; Dahlke, Allison R; Biester, Thomas; Quinn, Christopher M; Matulewicz, Richard S; Odell, David D; Kelz, Rachel R; Shea, Judy A; Lewis, Frank; Bilimoria, Karl Y
2017-02-01
In the Flexibility in Duty Hour Requirements for Surgical Trainees (FIRST) trial, there were several differences in residents' perceptions of aspects of their education, well-being, and patient care that differed between standard and flexible duty hour policies. Our objective was to assess whether these perceptions differed by level of training. A survey assessed residents participating in the FIRST trial's perceptions of the effect of duty hour policies on aspects of patient safety, continuity of care, resident education, clinical training, and resident well-being. Hierarchical logistic regression models were used to examine the association between residents' perceptions, study arm, and level of training (interns, junior residents, and senior residents). In the Standard Policy arm, as the PGY level increased, residents more frequently reported that duty hour policies negatively affected patient safety, professionalism, morale, and career choice (all interactions p < 0.001). However, in the Flexible Policy arm, as the PGY level increased, residents less frequently perceived negative effects of duty hour policies on resident health, rest, and time for family and friends and extracurricular activities (all interactions p < 0.001). Overall, there was an increase by PGY level in the proportion of residents expressing a preference for training in programs with flexible duty hour policies, and this preference for flexible duty hour policies was even more apparent among residents who were in the Flexible Policy arm (p < 0.001). As PGY level increased, residents had increasing concerns about patient care and resident education and training under standard duty hour policies, but they had decreasing concerns about well-being under flexible policies. When given the choice between training under standard or flexible duty hour policies, only 14% of residents expressed a preference for standard policies. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nishimura, K.; Kakihana, M.; Nakamura, A.; Aoki, D.; Harima, H.; Hedo, M.; Nakama, T.; Ōnuki, Y.
2018-05-01
We grew high-quality single crystals of AuSb2 with the pyrite (FeS2)-type cubic structure by the Bridgman method and studied the Fermi surface properties by the de Haas-van Alphen (dHvA) experiment and the full potential LAPW band calculation. The Fermi surfaces of AuSb2 are found to be similar to those of NiSbS and PdBiSe with the ullmannite (NiSbS)-type cubic chiral structure because the crystal structures are similar each other and the number of valence electrons is the same between two different compounds. Note that each Fermi surface splits into two Fermi surfaces in NiSbS and PdBiSe, reflecting the non-centrosymmetric crystal structure.
The novel metallic states of the cuprates: Topological Fermi liquids and strange metals
NASA Astrophysics Data System (ADS)
Sachdev, Subir; Chowdhury, Debanjan
2016-12-01
We review ideas on the nature of the metallic states of the hole-doped cuprate high temperature superconductors, with an emphasis on the connections between the Luttinger theorem for the size of the Fermi surface, topological quantum field theories (TQFTs), and critical theories involving changes in the size of the Fermi surface. We begin with the derivation of the Luttinger theorem for a Fermi liquid, using momentum balance during a process of flux insertion in a lattice electronic model with toroidal boundary conditions. We then review the TQFT of the ℤ spin liquid, and demonstrate its compatibility with the toroidal momentum balance argument. This discussion leads naturally to a simple construction of "topological" Fermi liquid states: the fractionalized Fermi liquid (FL*) and the algebraic charge liquid (ACL). We present arguments for a description of the pseudogap metal of the cuprates using ℤ-FL* or ℤ-ACL states with Ising-nematic order. These pseudogap metal states are also described as Higgs phases of a SU(2) gauge theory. The Higgs field represents local antiferromagnetism, but the Higgs-condensed phase does not have long-range antiferromagnetic order: the magnitude of the Higgs field determines the pseudogap, the reconstruction of the Fermi surface, and the Ising-nematic order. Finally, we discuss the route to the large Fermi surface Fermi liquid via the critical point where the Higgs condensate and Ising nematic order vanish, and the application of Higgs criticality to the strange metal.
Bentley, Suzanne; Hu, Kevin; Messman, Anne; Moadel, Tiffany; Khandelwal, Sorabh; Streich, Heather; Noelker, Joan
2017-01-01
Feedback, particularly real-time feedback, is critical to resident education. The emergency medicine (EM) milestones were developed in 2012 to enhance resident assessment, and many programs use them to provide focused resident feedback. The purpose of this study was to evaluate EM residents' level of interest in receiving real-time feedback on each of the 23 competencies/sub-competencies. This was a multicenter cross-sectional study of EM residents. We surveyed participants on their level of interest in receiving real-time on-shift feedback on each of the 23 competencies/sub-competencies. Anonymous paper or computerized surveys were distributed to residents at three four-year training programs and three three-year training programs with a total of 223 resident respondents. Residents rated their level of interest in each milestone on a six-point Likert-type response scale. We calculated average level of interest for each of the 23 sub-competencies, for all 223 respondents and separately by postgraduate year (PGY) levels of training. One-way analyses of variance were performed to determine if there were differences in ratings by level of training. The overall survey response rate across all institutions was 82%. Emergency stabilization had the highest mean rating (5.47/6), while technology had the lowest rating (3.24/6). However, we observed no differences between levels of training on any of the 23 competencies/sub-competencies. Residents seem to ascribe much more value in receiving feedback on domains involving high-risk, challenging procedural skills as compared to low-risk technical and communication skills. Further studies are necessary to determine whether residents' perceived importance of competencies/sub-competencies needs to be considered when developing an assessment or feedback program based on these 23 EM competencies/sub-competencies.
The fermi paradox is neither Fermi's nor a paradox.
Gray, Robert H
2015-03-01
The so-called Fermi paradox claims that if technological life existed anywhere else, we would see evidence of its visits to Earth--and since we do not, such life does not exist, or some special explanation is needed. Enrico Fermi, however, never published anything on this topic. On the one occasion he is known to have mentioned it, he asked "Where is everybody?"--apparently suggesting that we do not see extraterrestrials on Earth because interstellar travel may not be feasible, but not suggesting that intelligent extraterrestrial life does not exist or suggesting its absence is paradoxical. The claim "they are not here; therefore they do not exist" was first published by Michael Hart, claiming that interstellar travel and colonization of the Galaxy would be inevitable if intelligent extraterrestrial life existed, and taking its absence here as proof that it does not exist anywhere. The Fermi paradox appears to originate in Hart's argument, not Fermi's question. Clarifying the origin of these ideas is important, because the Fermi paradox is seen by some as an authoritative objection to searching for evidence of extraterrestrial intelligence--cited in the U.S. Congress as a reason for killing NASA's SETI program on one occasion. But evidence indicates that it misrepresents Fermi's views, misappropriates his authority, deprives the actual authors of credit, and is not a valid paradox.
Observation strategies with the Fermi Gamma-ray Space Telescope
NASA Astrophysics Data System (ADS)
McEnery, Julie E.; Fermi mission Teams
2015-01-01
During the first few years of the Fermi mission, the default observation mode has been an all-sky survey, optimized to provide relatively uniform coverage of the entire sky every three hours. Over 95% of the mission has been performed in this observation mode. However, Fermi is capable of flexible survey mode patterns, and inertially pointed observations both of which allow increased coverage of selected parts of the sky. In this presentation, we will describe the types of observations that Fermi can make, the relative advantages and disadvantages of various observations, and provide guidelines to help Fermi users plan and evaluate non-standard observations.
Electronic structure in high temperature superconducting oxides
NASA Astrophysics Data System (ADS)
Howell, R. H.; Sterne, P.; Solal, F.; Fluss, M. J.; Tobin, J.; Obrien, J.; Radousky, H. B.; Haghighi, H.; Kaiser, J. H.; Rayner, S. L.
1991-08-01
We have performed measurements on entwined single crystals of YBCO using both photoemission and positron angular correlation of annihilation radiation and on single crystals of LSCO using only angular correlation. Fermi surface features in good agreement with band theory were found and identified in all of the measurements. In photoemission, the Fermi momentum was fixed for several points and the band dispersion below the Fermi energy was mapped. In positron angular correlation measurements, the shape of the Fermi surface was mapped for the CuO chains (YBCO) and the CuO planes (LSCO). Demonstration of the existence of Fermi surfaces in the HTSC materials points a direction for future theoretical considerations.
Generalized Thomas-Fermi equations as the Lampariello class of Emden-Fowler equations
NASA Astrophysics Data System (ADS)
Rosu, Haret C.; Mancas, Stefan C.
2017-04-01
A one-parameter family of Emden-Fowler equations defined by Lampariello's parameter p which, upon using Thomas-Fermi boundary conditions, turns into a set of generalized Thomas-Fermi equations comprising the standard Thomas-Fermi equation for p = 1 is studied in this paper. The entire family is shown to be non integrable by reduction to the corresponding Abel equations whose invariants do not satisfy a known integrability condition. We also discuss the equivalent dynamical system of equations for the standard Thomas-Fermi equation and perform its phase-plane analysis. The results of the latter analysis are similar for the whole class.
Ryan, James G; Barlas, David; Pollack, Simcha
2013-12-01
Medical knowledge (MK) in residents is commonly assessed by the in-training examination (ITE) and faculty evaluations of resident performance. We assessed the reliability of clinical evaluations of residents by faculty and the relationship between faculty assessments of resident performance and ITE scores. We conducted a cross-sectional, observational study at an academic emergency department with a postgraduate year (PGY)-1 to PGY-3 emergency medicine residency program, comparing summative, quarterly, faculty evaluation data for MK and overall clinical competency (OC) with annual ITE scores, accounting for PGY level. We also assessed the reliability of faculty evaluations using a random effects, intraclass correlation analysis. We analyzed data for 59 emergency medicine residents during a 6-year period. Faculty evaluations of MK and OC were highly reliable (κ = 0.99) and remained reliable after stratification by year of training (mean κ = 0.68-0.84). Assessments of resident performance (MK and OC) and the ITE increased with PGY level. The MK and OC results had high correlations with PGY level, and ITE scores correlated moderately with PGY. The OC and MK results had a moderate correlation with ITE score. When residents were grouped by PGY level, there was no significant correlation between MK as assessed by the faculty and the ITE score. Resident clinical performance and ITE scores both increase with resident PGY level, but ITE scores do not predict resident clinical performance compared with peers at their PGY level.
Ryan, James G.; Barlas, David; Pollack, Simcha
2013-01-01
Background Medical knowledge (MK) in residents is commonly assessed by the in-training examination (ITE) and faculty evaluations of resident performance. Objective We assessed the reliability of clinical evaluations of residents by faculty and the relationship between faculty assessments of resident performance and ITE scores. Methods We conducted a cross-sectional, observational study at an academic emergency department with a postgraduate year (PGY)-1 to PGY-3 emergency medicine residency program, comparing summative, quarterly, faculty evaluation data for MK and overall clinical competency (OC) with annual ITE scores, accounting for PGY level. We also assessed the reliability of faculty evaluations using a random effects, intraclass correlation analysis. Results We analyzed data for 59 emergency medicine residents during a 6-year period. Faculty evaluations of MK and OC were highly reliable (κ = 0.99) and remained reliable after stratification by year of training (mean κ = 0.68–0.84). Assessments of resident performance (MK and OC) and the ITE increased with PGY level. The MK and OC results had high correlations with PGY level, and ITE scores correlated moderately with PGY. The OC and MK results had a moderate correlation with ITE score. When residents were grouped by PGY level, there was no significant correlation between MK as assessed by the faculty and the ITE score. Conclusions Resident clinical performance and ITE scores both increase with resident PGY level, but ITE scores do not predict resident clinical performance compared with peers at their PGY level. PMID:24455005
NASA Astrophysics Data System (ADS)
Meyenburg, I.; Hofeditz, N.; Ruess, R.; Rudolph, M.; Schlettwein, D.; Heimbrodt, W.
2018-05-01
We studied the electron transfer at the interface of organic-inorganic hybrids consisting of indoline derivatives (D149 and D131) on ZnO substrates using a new optical method. We revealed the electron transfer times from the excited dye, e.g. the excitons formed in the dye aggregates to the ZnO substrate by analyzing the photoluminescence transients of the excitons after femtosecond excitation and applying kinetic model calculations. We reveal the changes of the electron transfer times by applying electrical bias. Pushing the Fermi energy of the ZnO substrate towards the excited dye level the transfer time gets longer and eventually the electron transfer is suppressed. The level alignment between the excited dye state and the ZnO Fermi-level is estimated. The excited state of D131 is about 100 meV higher than the respective state of D149 compared to the ZnO conduction band. This leads to shorter electron transfer times and eventually to higher quantum efficiencies of the solar cells.
Energy spectrum and electrical conductivity of graphene with a nitrogen impurity
NASA Astrophysics Data System (ADS)
Repetskii, S. P.; Vyshivanaya, I. G.; Skotnikov, V. A.; Yatsenyuk, A. A.
2015-04-01
The electronic structure of graphene with a nitrogen impurity has been studied based on the model of tight binding using exchange-correlation potentials in the density-functional theory. Wave functions of 2 s and 2 p states of neutral noninteracting carbon atoms have been chosen as the basis. When studying the matrix elements of the Hamiltonian, the first three coordination shells have been taken into account. It has been established that the hybridization of electron-energy bands leads to the splitting of the electron energy spectrum near the Fermi level. Due to the overlap of the energy bands, the arising gap behaves as a quasi-gap, in which the density of the electron levels is much lower than in the rest of the spectrum. It has been established that the conductivity of graphene decreases with increasing nitrogen concentration. Since the increase in the nitrogen concentration leads to an increase in the density of states at the Fermi level, the decrease in the conductivity is due to a sharper decrease in the time of relaxation of the electron sates.
NASA Astrophysics Data System (ADS)
Ovcharenko, R. E.; Tupitsyn, I. I.; Savinov, E. P.; Voloshina, E. N.; Dedkov, Yu. S.; Shulakov, A. S.
2014-01-01
A procedure is proposed to calculate the shape of the characteristic X-ray emission bands of metals with allowance for multielectron effects. The effects of the dynamic screening of a core vacancy by conduction electrons and the Auger effect in the valence band are taken into account. The dynamic screening of a core vacancy, which is known to be called the MND (Mahan-Nozeieres-De Dominics) effect, is taken into account by an ab initio band calculation of crystals using the PAW (projected augmented waves) method. The Auger effect is taken into account by a semiempirical method using the approximation of a quadratic dependence of the level width in the valence band on the difference between the level energy and the Fermi energy. The proposed calculation procedure is used to describe the X-ray emission K and L 2,3 bands of metallic magnesium and aluminum crystals. The calculated spectra agree well with the experimental bands both near the Fermi level and in the low-energy part of the spectra in all cases.
The overdoped region of the high Tc superconducting Bi2212 revisited
NASA Astrophysics Data System (ADS)
Zaki, N.; Yang, H.-B.; Rameau, J. D.; Johnson, P. D.; Claus, H.; Hinks, D. G.
High-resolution angle-resolved photoemission (ARPES) is used to probe the temperature dependence of the gaps observed in the antinodal region of the Fermi surface (FS) in overdoped Bi2212. In particular we study samples with doping levels greater than 0.19, the latter having previously been determined to be the doping level associated with a Fermi surface reconstruction. Careful simulation of the measured ARPES spectra indicates that any gap observed in this region of the FS at these doping levels is a reflection of the range of superconducting gaps associated with inhomogeneities observed in STM studies of the same systems. With this observation we are able to reexamine the phase diagram associated with the Bi2212 system and discuss the origin of the pseudogap associated with the underdoped region. This work is supported in part by the Center for Emergent Superconductivity (CES), an EFRC funded by the U.S. DOE. The work is also supported in part by the U.S. DOE under Contract No. DE-AC02- 98CH10886 at BNL and Contract No. DE-AC02-06CH11357 at ANL.
Liu, Lingling; Li, Xiao-Fei; Yan, Qing; Li, Qin-Kun; Zhang, Xiang-Hua; Deng, Mingsen; Qiu, Qi; Luo, Yi
2016-12-21
Metallic nanowires with desired properties for molecular integrated circuits (MICs) are especially significant in molectronics, but preparing such wires at a molecular level still remains challenging. Here, we propose, from first principles calculations, experimentally realizable edge-nitrogen-doped graphene nanoribbons (N-GNRs) as promising candidates for nanowires. Our results show that edge N-doping has distinct effects on the electronic structures and transport properties of the armchair GNRs and zigzag GNRs (AGNRs, ZGNRs), due to the formation of pyridazine and pyrazole rings at the edges. The pyridazine rings raise the Fermi level and introduce delocalized energy bands near the Fermi level, resulting in a highly enhanced conductance in N-AGNRs at the stable nonmagnetic ground state. Especially for the family of AGNRs with widths of n = 3p + 2, their semiconducting characteristics are transformed to metallic characteristics via N-doping, and they exhibit perfectly linear current-voltage (I-V) behaviors. Such uniform and excellent features indicate bright application prospects of the N-AGNRs as nanowires and electrodes in molectronics.
The Master Equation for Two-Level Accelerated Systems at Finite Temperature
NASA Astrophysics Data System (ADS)
Tomazelli, J. L.; Cunha, R. O.
2016-10-01
In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.
Pulsar searches of Fermi unassociated sources with the Effelsberg telescope
NASA Astrophysics Data System (ADS)
Barr, E. D.; Guillemot, L.; Champion, D. J.; Kramer, M.; Eatough, R. P.; Lee, K. J.; Verbiest, J. P. W.; Bassa, C. G.; Camilo, F.; Çelik, Ö.; Cognard, I.; Ferrara, E. C.; Freire, P. C. C.; Janssen, G. H.; Johnston, S.; Keith, M.; Lyne, A. G.; Michelson, P. F.; Parkinson, P. M. Saz; Ransom, S. M.; Ray, P. S.; Stappers, B. W.; Wood, K. S.
2013-02-01
Using the 100-m Effelsberg radio telescope operating at 1.36 GHz, we have performed a targeted radio pulsar survey of 289 unassociated γ-ray sources discovered by the Large Area Telescope (LAT) aboard the Fermi satellite and published in the 1FGL catalogue (Abdo et al. 2010a). This survey resulted in the discovery of millisecond pulsar J1745+1017, which resides in a short-period binary system with a low-mass companion, M_{c,{min}} ˜ 0.0137 M_{⊙}, indicative of `black widow' type systems. A 2-yr timing campaign has produced a refined radio ephemeris, accurate enough to allow for phase-folding of the LAT photons, resulting in the detection of a dual-peaked γ-ray light curve, proving that PSR J1745+1017 is the source responsible for the γ-ray emission seen in 1FGL J1745.5+1018 (2FGL J1745.6+1015; Nolan et al. 2012). We find the γ-ray spectrum of PSR J1745+1017 to be well modelled by an exponentially cut-off power law with cut-off energy 3.2 GeV and photon index 1.6. The observed sources are known to contain a further 10 newly discovered pulsars which were undetected in this survey. Our radio observations of these sources are discussed and in all cases limiting flux densities are calculated. The reasons behind the seemingly low yield of discoveries are also discussed.
Pulsar searches of Fermi unassociated sources with the Effelsberg telescope
Barr, E. D.; Guillemot, L.; Champion, D. J.; ...
2012-12-21
Using the 100-m Effelsberg radio telescope operating at 1.36 GHz, we have performed a targeted radio pulsar survey of 289 unassociated γ-ray sources discovered by the Large Area Telescope (LAT) aboard the Fermi satellite and published in the 1FGL catalogue (Abdo et al. 2010a). In addition, this survey resulted in the discovery of millisecond pulsar J1745+1017, which resides in a short-period binary system with a low-mass companion, M c,min~0.0137M⊙, indicative of ‘black widow’ type systems. A 2-yr timing campaign has produced a refined radio ephemeris, accurate enough to allow for phase-folding of the LAT photons, resulting in the detection ofmore » a dual-peaked γ-ray light curve, proving that PSR J1745+1017 is the source responsible for the γ-ray emission seen in 1FGL J1745.5+1018 (2FGL J1745.6+1015; Nolan et al. 2012). We find the γ-ray spectrum of PSR J1745+1017 to be well modelled by an exponentially cut-off power law with cut-off energy 3.2 GeV and photon index 1.6. The observed sources are known to contain a further 10 newly discovered pulsars which were undetected in this survey. Our radio observations of these sources are discussed and in all cases limiting flux densities are calculated. Lastly, the reasons behind the seemingly low yield of discoveries are also discussed.« less
Extended Thomas-Fermi density functional for the unitary Fermi gas
NASA Astrophysics Data System (ADS)
Salasnich, Luca; Toigo, Flavio
2008-11-01
We determine the energy density ξ(3/5)nɛF and the gradient correction λℏ2(∇n)2/(8mn) of the extended Thomas-Fermi (ETF) density functional, where n is the number density and ɛF is the Fermi energy, for a trapped two-component Fermi gas with infinite scattering length (unitary Fermi gas) on the basis of recent diffusion Monte Carlo (DMC) calculations [Phys. Rev. Lett. 99, 233201 (2007)]. In particular we find that ξ=0.455 and λ=0.13 give the best fit of the DMC data with an even number N of particles. We also study the odd-even splitting γN1/9ℏω of the ground-state energy for the unitary gas in a harmonic trap of frequency ω determining the constant γ . Finally we investigate the effect of the gradient term in the time-dependent ETF model by introducing generalized Galilei-invariant hydrodynamics equations.
Seebeck effect on a weak link between Fermi and non-Fermi liquids
NASA Astrophysics Data System (ADS)
Nguyen, T. K. T.; Kiselev, M. N.
2018-02-01
We propose a model describing Seebeck effect on a weak link between two quantum systems with fine-tunable ground states of Fermi and non-Fermi liquid origin. The experimental realization of the model can be achieved by utilizing the quantum devices operating in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London) 526, 233 (2015), 10.1038/nature15384] designed for detection of macroscopic quantum charged states in multichannel Kondo systems. We present a theory of thermoelectric transport through hybrid quantum devices constructed from quantum-dot-quantum-point-contact building blocks. We discuss pronounced effects in the temperature and gate voltage dependence of thermoelectric power associated with a competition between Fermi and non-Fermi liquid behaviors. High controllability of the device allows to fine tune the system to different regimes described by multichannel and multi-impurity Kondo models.
Fermi arc plasmons in Weyl semimetals
NASA Astrophysics Data System (ADS)
Song, Justin C. W.; Rudner, Mark S.
2017-11-01
In the recently discovered Weyl semimetals, the Fermi surface may feature disjoint, open segments—the so-called Fermi arcs—associated with topological states bound to exposed crystal surfaces. Here we show that the collective dynamics of electrons near such surfaces sharply departs from that of a conventional three-dimensional metal. In magnetic systems with broken time reversal symmetry, the resulting Fermi arc plasmons (FAPs) are chiral, with dispersion relations featuring open, hyperbolic constant frequency contours. As a result, a large range of surface plasmon wave vectors can be supported at a given frequency, with corresponding group velocity vectors directed along a few specific collimated directions. Fermi arc plasmons can be probed using near-field photonics techniques, which may be used to launch highly directional, focused surface plasmon beams. The unusual characteristics of FAPs arise from the interplay of bulk and surface Fermi arc carrier dynamics and give a window into the unusual fermiology of Weyl semimetals.
NASA Astrophysics Data System (ADS)
Su, Meng
2014-06-01
Data from the Fermi-LAT revealed two large gamma-ray bubbles, extending 50 degrees above and below the Galactic center, with a width of about 40 degrees in longitude. Such structure has been confirmed with multi-wavelength observations. With the most up to date Fermi-LAT data analysis, I will show that the Fermi bubbles have a spectral cutoff at both low energy < 1 GeV and high energy > 150 GeV. Detailed analysis of the spectral features will help us to distinguish the leptonic origin from hadronic origin of the gamma-ray emission from the bubbles. I will also describe what we expect to learn about the bubbles from future gamma-ray telescopes after Fermi, with an emphasis on Dark Matter Particle Explorer and Pair Production Gamma-ray Unit.
Surface to bulk Fermi arcs via Weyl nodes as topological defects
Kim, Kun Woo; Lee, Woo-Ram; Kim, Yong Baek; Park, Kwon
2016-01-01
A hallmark of Weyl semimetal is the existence of surface Fermi arcs. An intriguing question is what determines the connectivity of surface Fermi arcs, when multiple pairs of Weyl nodes are present. To answer this question, we show that the locations of surface Fermi arcs are predominantly determined by the condition that the Zak phase integrated along the normal-to-surface direction is . The Zak phase can reveal the peculiar topological structure of Weyl semimetal directly in the bulk. Here, we show that the winding of the Zak phase around each projected Weyl node manifests itself as a topological defect of the Wannier–Stark ladder, energy eigenstates under an electric field. Remarkably, this leads to bulk Fermi arcs, open-line segments in the bulk spectra. Bulk Fermi arcs should exist in conjunction with surface counterparts to conserve the Weyl fermion number under an electric field, which is supported by explicit numerical evidence. PMID:27845342
Quasiparticles and Fermi liquid behaviour in an organic metal
Kiss, T.; Chainani, A.; Yamamoto, H.M.; Miyazaki, T.; Akimoto, T.; Shimojima, T.; Ishizaka, K.; Watanabe, S.; Chen, C.-T.; Fukaya, A.; Kato, R.; Shin, S.
2012-01-01
Many organic metals display exotic properties such as superconductivity, spin-charge separation and so on and have been described as quasi-one-dimensional Luttinger liquids. However, a genuine Fermi liquid behaviour with quasiparticles and Fermi surfaces have not been reported to date for any organic metal. Here, we report the experimental Fermi surface and band structure of an organic metal (BEDT-TTF)3Br(pBIB) obtained using angle-resolved photoelectron spectroscopy, and show its consistency with first-principles band structure calculations. Our results reveal a quasiparticle renormalization at low energy scales (effective mass m*=1.9 me) and ω2 dependence of the imaginary part of the self energy, limited by a kink at ~50 meV arising from coupling to molecular vibrations. The study unambiguously proves that (BEDT-TTF)3Br(pBIB) is a quasi-2D organic Fermi liquid with a Fermi surface consistent with Shubnikov-de Haas results. PMID:23011143
Simpkin, Arabella L; Khan, Alisa; West, Daniel C; Garcia, Briana M; Sectish, Theodore C; Spector, Nancy D; Landrigan, Christopher P
2018-03-07
Depression and burnout are highly prevalent among residents, but little is known about modifiable personality variables, such as resilience and stress from uncertainty, that may predispose to these conditions. Residents are routinely faced with uncertainty when making medical decisions. To determine how stress from uncertainty is related to resilience among pediatric residents and whether these attributes are associated with depression and burnout. We surveyed 86 residents in pediatric residency programs from 4 urban freestanding children's hospitals in North America in 2015. Stress from uncertainty was measured with the use of the Physicians' Reaction to Uncertainty Scale, resilience with the use of the 14-item Resilience Scale, depression with the use of the Harvard National Depression Screening Scale; and burnout with the use of single-item measures of emotional exhaustion and depersonalization from the Maslach Burnout Inventory. Fifty out of 86 residents responded to the survey (58.1%). Higher levels of stress from uncertainty correlated with lower resilience (r = -0.60; P < .001). Five residents (10%) met depression criteria and 15 residents (31%) met burnout criteria. Depressed residents had higher mean levels of stress due to uncertainty (51.6 ± 9.1 vs 38.7 ± 6.7; P < .001) and lower mean levels of resilience (56.6 ± 10.7 vs 85.4 ± 8.0; P < .001) compared with residents who were not depressed. Burned out residents also had higher mean levels of stress due to uncertainty (44.0 ± 8.5 vs 38.3 ± 7.1; P = .02) and lower mean levels of resilience (76.7 ± 14.8 vs 85.0 ± 9.77; P = .02) compared with residents who were not burned out. We found high levels of stress from uncertainty, and low levels of resilience were strongly correlated with depression and burnout. Efforts to enhance tolerance of uncertainty and resilience among residents may provide opportunities to mitigate resident depression and burnout. Copyright © 2018 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Exotic Phenomena in Quantum limit in nodal-line semimetal ZrSiS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jin; Liu, Jinyu; Mao, Zhiqiang
2017-03-01
In quantum limit, all carriers condense to the lowest Landau level, leading to possible exotic quantum phenomena such as Lifshitz transition and density waves. Usually, quantum limit is not easily achieved due to relatively large Fermi surface in metals. Fortunately, the nodal-line semimetal ZrSiS possesses a very small Fermi pocket with a characteristic quantum oscillation frequency of 8.4T, which represents the 2D Dirac states protected by non-symmorphic symmetry. The quantum limit of such Dirac bands can be reached in moderate magnetic field ~25T, indicating that ZrSiS could be a nice platform to explore the novel quantum phenomena of Dirac fermionsmore » in quantum limit.« less
X-ray photoelectron spectroscopy study of chemically-etched Nd-Ce-Cu-O surfaces
NASA Technical Reports Server (NTRS)
Vasquez, R. P.; Gupta, A.; Kussmaul, A.
1991-01-01
Acetic acid, Br2, and HCl solutions are investigated for removing insulating species from Nd(1.85)Ce(0.15)CuO(4-delta) (NCCO) thin film surfaces. X-ray photoelectron spectroscopy (XPS) shows that the HCl etch is most effective, yielding O 1s spectra comparable to those obtained from samples cleaned in vacuum and a clear Fermi edge in the valence band region. Reduction and oxidation reversibly induces and eliminates, respectively, Fermi level states for undoped samples, but has no clearly observable effect on the XPS spectra for doped samples. Reactivity to air is much less for NCCO compared to hole superconductors, which is attributed to the lack of reactive alkaline earth elements in NCCO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbiellini, G.; Bastieri, D.; Buson, S.
Observations of occultations of bright γ-ray sources by the Sun may reveal predicted pair halos around blazars and/or new physics, such as, e.g., hypothetical light dark matter particles—axions. We use Fermi Gamma-Ray Space Telescope (Fermi) data to analyze four occultations of blazar 3C 279 by the Sun on October 8 each year from 2008 to 2011. A combined analysis of the observations of these occultations allows a point-like source at the position of 3C 279 to be detected with significance of ≈3σ, but does not reveal any significant excess over the flux expected from the quiescent Sun. The likelihood ratiomore » test rules out complete transparency of the Sun to the blazar γ-ray emission at a 3σ confidence level.« less
Superconducting states of topological surface states in β-PdBi2 investigated by STM/STS
NASA Astrophysics Data System (ADS)
Iwaya, Katsuya; Okawa, Kenjiro; Hanaguri, Tetsuo; Kohsaka, Yuhki; Machida, Tadashi; Sasagawa, Takao
We investigate superconducting (SC) states of topological surface states in β-PdBi2 using very low temperature STM. Characteristic quasiparticle interference patterns strongly support the existence of the spin-polarized surface states at the Fermi level in the normal state. A fully-opened SC gap well described by the conventional BCS model is observed, indicating the SC gap opening at the spin-polarized Fermi surfaces. Considering a possible mixing of odd- and even parity orbital functions in C4v group symmetry lowered from D4h near the surface, we suggest that the SC gap consists of the mixture of s- and p-wave SC gap functions in the two-dimensional state.
Spin polarized first principles study of Mn doped gallium nitride monolayer nanosheet
NASA Astrophysics Data System (ADS)
Sharma, Venus; Kaur, Sumandeep; Srivastava, Sunita; Kumar, Tankeshwar
2017-05-01
The structural, electronic and magnetic properties of gallium nitride nanosheet (GaNs) doped with Mn atoms have been studied using spin polarized density functional theory. The binding energy per atom, Energy Band gap, Fermi energy, magnetic moment, electric dipole moment have been found. The doped nanosheet is found to be more stable than pure GaN monolayer nanosheet. Adsorption of Mn atom has been done at four different sites on GaNs which affects the fermi level position. It is found that depending on the doping site, Mn can behave both like p-type semiconductor and also as n-type semiconductor. Also, it is ascertained that Mn doped GaNs (GaNs-Mn) exhibits ferromagnetic behavior.
Fermiology and Superconductivity of Topological Surface States in PdTe2
NASA Astrophysics Data System (ADS)
Clark, O. J.; Neat, M. J.; Okawa, K.; Bawden, L.; Marković, I.; Mazzola, F.; Feng, J.; Sunko, V.; Riley, J. M.; Meevasana, W.; Fujii, J.; Vobornik, I.; Kim, T. K.; Hoesch, M.; Sasagawa, T.; Wahl, P.; Bahramy, M. S.; King, P. D. C.
2018-04-01
We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor PdTe2 by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe2 with its sister compound PtSe2 , we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p -orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.
Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges.
Güell, Aleix G; Cuharuc, Anatolii S; Kim, Yang-Rae; Zhang, Guohui; Tan, Sze-yin; Ebejer, Neil; Unwin, Patrick R
2015-04-28
The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.
NASA Astrophysics Data System (ADS)
Xu, Fangbo; Sadrzadeh, Arta; Xu, Zhiping; Yakobson, Boris I.
2013-08-01
Recent measurements of carbon nanotube (CNT) fibers electrical conductivity still show the values lower than that of individual CNTs, by about one magnitude order. The imperfections of manufacturing process and constituent components are described as culprits. What if every segment is made perfect? In this work, we study the quantum conductance through the parallel junction of flawless armchair CNTs using tight-binding method in conjunction with non-equilibrium Green's function approach. Short-range oscillations within the long-range oscillations as well as decaying envelopes are all observed in the computed Fermi-level (low bias) conductance as a function of contact length, L. The propagation of CNTs' Bloch waves is cast in the coupled-mode formalism and helps to reveal the quantum interference nature of various behaviors of conductance. Our analysis shows that the Bloch waves at the Fermi-level propagate through a parallel junction without reflection only at an optimal value of contact length. For quite a long junction, however, the conductance at the Fermi level diminishes due to the perturbation of periodic potential field of close-packed CNTs. Thus, a macroscopic fiber, containing an infinite number of junctions, forms a filter that permits passage of electrons with specific wave vectors, and these wave vectors are determined by the collection of all the junction lengths. We also argue that the energy gap introduced by long junctions can be overcome by small voltage (˜0.04 V) across the whole fiber. Overall, developing long individual all-armchair metallic CNTs serves as a promising way to the manufacture of high-conductivity fibers.
Surface effects in the unitary Fermi gas
NASA Astrophysics Data System (ADS)
Salasnich, L.; Ancilotto, F.; Toigo, F.
2010-01-01
We study the extended Thomas-Fermi (ETF) density functional of the superfluid unitary Fermi gas. This functional includes a gradient term which is essential to describe accurately the surface effects of the system, in particular with a small number of atoms, where the Thomas-Fermi (local density) approximation fails. We find that our ETF functional gives density profiles which are in good agreement with recent Monte Carlo results and also with a more sophisticated superfluid density functional based on Bogoliubov-de Gennes equations. In addition, by using extended hydrodynamics equations of superfluids, we calculate the frequencies of collective surface oscillations of the unitary Fermi gas, showing that quadrupole and octupole modes strongly depend on the number of trapped atoms.
Search for Gamma-Ray Emission from Galactic Novae using Fermi-LAT Pass 8
NASA Astrophysics Data System (ADS)
Buson, Sara; Franckowiak, Anna; Cheung, Teddy; Jean, Pierre; Fermi-LAT Collaboration
2016-01-01
Recently Galactic novae have been identified as a new class of GeV gamma-ray emitters, with 6 detected so far with the Fermi Large Area Telescope (Fermi-LAT) data. Based on optical observations we have compiled a catalog of ~70 Galactic novae, which peak (in optical) during the operations of the Fermi mission. Based on the properties of known gamma-ray novae we developed a search procedure that we apply to all novae in the catalog to detect these slow transient sources or set flux upper limits using the Fermi-LAT Pass 8 data set. This is the first time a large sample of Galactic novae has been uniformly studied.
NASA Astrophysics Data System (ADS)
Kriske, Richard
2011-04-01
There may be Fermi Energy levels that would allow for easy travel by Atoms, Molecules and Particles, in the hollow interior of Nanotubes. This may result in a Quantum Mechanical explaination of Capillary Action, and it may result in devices could take advantage of the idea that it takes no energy to rise in a Capillary tube, only in leaving it. This no-energy conjecture of Capillarity sounds very much like the idea that Electrons in obitals lose no Energy staying in orbit, only in changing orbits.It is this conjecture that may reveal that a Fermi Energy state is essentially in a weak orbital. This weak orbital could be exploited to store Anti-matter for instance. More profoundly it clearly shows how the Quantum Mechanical states meld smoothly into Classical Physics. It also reveals how extremely efficient Classical Machines could be constructed to take advantage of this spontaneous action. Say a tube could be designed to nudge electrons out of a weak obital in one place, sent down the tube (which is another weak orbital) and deposited in a weak orbital of another very distant Atom, apparently with little or perhaps no work being done, as long as the orbitals are the same energy. This may already exist in some Biological systems. Although more experimentation is needed, this would be the breakthrough that is needed to unify Classical and Quantum Mechanics.
Tristant, Damien; Zubair, Ahmed; Puech, Pascal; Neumayer, Frédéric; Moyano, Sébastien; Headrick, Robert J; Tsentalovich, Dmitri E; Young, Colin C; Gerber, Iann C; Pasquali, Matteo; Kono, Junichiro; Leotin, Jean
2016-12-01
Highly aligned, packed, and doped carbon nanotube (CNT) fibers with electrical conductivities approaching that of copper have recently become available. These fibers are promising for high-power electrical applications that require light-weight, high current-carrying capacity cables. However, a microscopic understanding of how doping affects the electrical conductance of such CNT fibers in a quantitative manner has been lacking. Here, we performed Raman spectroscopy measurements combined with first-principles calculations to determine the position of the average Fermi energy and to obtain the temperature of chlorosulfonic-acid-doped double-wall CNT fibers under high current. Due to the unique way in which double-wall CNT Raman spectra depend on doping, it is possible to use Raman data to determine the doping level quantitatively. The correspondence between the Fermi level shift and the carbon charge transfer is derived from a tight-binding model and validated by several calculations. For the doped fiber, we were able to associate an average Fermi energy shift of ∼-0.7 eV with a conductance increase by a factor of ∼5. Furthermore, since current induces heating, local temperature determination is possible. Through the Stokes-to-anti-Stokes intensity ratio of the G-band peaks, we estimated a temperature rise at the fiber surface of ∼135 K at a current density of 2.27 × 10 8 A m -2 identical to that from the G-band shift, suggesting that thermalization between CNTs is well achieved.
Fermi Non-detections of Four X-Ray Jet Sources and Implications for the IC/CMB Mechanism
NASA Astrophysics Data System (ADS)
Breiding, Peter; Meyer, Eileen T.; Georganopoulos, Markos; Keenan, M. E.; DeNigris, N. S.; Hewitt, Jennifer
2017-11-01
Since its launch in 1999, the Chandra X-ray observatory has discovered several dozen X-ray jets associated with powerful quasars. In many cases, the X-ray spectrum is hard and appears to come from a second spectral component. The most popular explanation for the kpc-scale X-ray emission in these cases has been inverse-Compton (IC) scattering of Cosmic Microwave Background (CMB) photons by relativistic electrons in the jet (the IC/CMB model). Requiring the IC/CMB emission to reproduce the observed X-ray flux density inevitably predicts a high level of gamma-ray emission, which should be detectable with the Fermi Large Area Telescope (LAT). In previous work, we found that gamma-ray upper limits from the large-scale jets of 3C 273 and PKS 0637-752 violate the predictions of the IC/CMB model. Here, we present Fermi/LAT flux density upper limits for the X-ray jets of four additional sources: PKS 1136-135, PKS 1229-021, PKS 1354+195, and PKS 2209+080. We show that these limits violate the IC/CMB predictions at a very high significance level. We also present new Hubble Space Telescope observations of the quasar PKS 2209+080 showing a newly detected optical jet, and Atacama Large Millimeter/submillimeter Array band 3 and 6 observations of all four sources, which provide key constraints on the spectral shape that enable us to rule out the IC/CMB model.
NASA Astrophysics Data System (ADS)
Domon, Kaoru; Yamada, Takemi; Ōno, Yoshiaki
2018-05-01
Transition metal chalcogenide Ta2NiSe5, a promising material for the excitonic insulator, is investigated on the basis of the three-chain Hubbard model with two conduction (c) bands and one valence (f) band. In the semimetallic case where only one of two c bands and the f band cross the Fermi level, the transition from the c-f compensated semimetal to the uniform excitonic order, the so-called excitonic insulator, takes place at low temperature as the same as in the semiconducting case. On the other hand, when another c band also crosses the Fermi level, the system shows three types of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) excitonic orders characterized by the condensation of excitons with finite center-of-mass momentum q corresponding to the three types of nesting vectors between the imbalanced two c and one f Fermi surfaces. The obtained FFLO excitonic states are metallic in contrast to the excitonic insulator and are expected to be observed in the semimetallic Ta2NiSe5 under high pressure. The effect of the electron-lattice coupling is also discussed briefly and is found to induce the monoclinic distortion not only in the uniform excitonic state but also in the FFLO one resulting in the orthorhombic-monoclinic structural phase transition for both cases as observed in Ta2NiSe5 for both low-pressure semiconducting and high-pressure semimetallic regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Y.; Kataoka, J.; Nakamori, T.
2012-03-01
We report on our second-year campaign of X-ray follow-up observations of unidentified Fermi Large Area Telescope (LAT) {gamma}-ray sources at high Galactic latitudes (|b| > 10 Degree-Sign ) using the X-ray Imaging Spectrometer on board the Suzaku X-ray Observatory. In this second year of the project, seven new targets were selected from the First Fermi-LAT Catalog, and studied with 20-40 ks effective Suzaku exposures. We detected an X-ray point source coincident with the position of the recently discovered millisecond pulsar (MSP) PSR J2302+4442 within the 95% confidence error circle of 1FGL J2302.8+4443. The X-ray spectrum of the detected counterpart wasmore » well fit by a blackbody model with temperature of kT {approx_equal} 0.3 keV, consistent with an origin of the observed X-ray photons from the surface of a rotating magnetized neutron star. For four other targets that were also recently identified with a normal pulsar (1FGL J0106.7+4853) and MSPs (1FGL J1312.6+0048, J1902.0-5110, and J2043.2+1709), only upper limits in the 0.5-10 keV band were obtained at the flux levels of {approx_equal} 10{sup -14} erg cm{sup -2} s{sup -1}. A weak X-ray source was found in the field of 1FGL J1739.4+8717, but its association with the variable {gamma}-ray emitter could not be confirmed with the available Suzaku data alone. For the remaining Fermi-LAT object 1FGL J1743.8-7620 no X-ray source was detected within the LAT 95% error ellipse. We briefly discuss the general properties of the observed high Galactic-latitude Fermi-LAT objects by comparing their multiwavelength properties with those of known blazars and MSPs.« less
Effect of the 80-hour work week on resident case coverage.
Shin, Susanna; Britt, Rebecca; Britt, L D
2008-05-01
On July 1, 2003, residency training programs were required to institute restricted duty hours as mandated by the Accreditation Council for Graduate Medical Education. A major concern, voiced by both surgical residents and faculty, was an expectation that this would result in a decrease in operative experience. We hypothesized that implementing restricted duty hours would decrease case coverage by resident trainees. A retrospective study was performed of operative and endoscopic cases scheduled for a single general surgery practice for a year before and after July 1, 2003. Data collected included operation performed, number of attending surgeons present, whether a resident was present, and level of resident. From July 2002 to June 2003, there were 1,278 cases scheduled; 890 records were available. From July 2004 to June 2005, there were 1,182 cases scheduled; 960 records were available. Before institution of the restricted duty hours, 24.6% of junior-level (PGY1 and 2) cases, 21.7% of intermediate-level (PGY3) cases, and 6.2% of senior-level (PGY4 and 5) cases were not covered by residents. After restricted duty hours were implemented, 27.3% of junior-level cases, 15.9% of intermediate-level cases, and 8.1% of senior-level cases were not covered by residents. Overall 20.8% (185 of 890) and 20.4% (196 of 960) of cases were not covered by residents before and after instituting restricted duty hours, respectively. No difference in case coverage was statistically significant in each category or overall. Restricted duty hours have not affected resident case coverage.
Effect of the 80-hour work week on resident case coverage: corrected article.
Shin, Susanna; Britt, Rebecca; Britt, L D
2008-07-01
On July 1, 2003, residency training programs were required to institute restricted duty hours as mandated by the Accreditation Council for Graduate Medical Education. A major concern,voiced by both surgical residents and faculty, was an expectation that this would result in a decrease in operative experience. We hypothesized that implementing restricted duty hours would decrease case coverage by resident trainees. A retrospective study was per formed of operative and endoscopic cases scheduled for a single general surgery practice for a year before and after July 1, 2003. Data collected included operation per formed, number of attending surgeons present, whether a resident was present,and level of resident. From July 2002 to June 2003, there were 1,278 cases scheduled; 890 records were available. From July 2004 to June 2005, there were 1,182 cases scheduled; 960 records were available. Before institution of the restricted duty hours, 24.6% of junior-level (PGY1 and 2) cases, 21.7%of intermediate-level (PGY3) cases, and 6.2% of senior-level (PGY4 and 5) cases were not covered by residents. After restricted duty hours were implemented, 27.3% of junior-level cases,15.9% of intermediate-level cases, and 8.1% of senior-level cases were not covered by residents. Overall 20.8% (185 of 890) and 20.4% (196 of 960) of cases were not covered by residents before and after instituting restricted duty hours, respectively. No difference in case coverage was statistically significant in each category or overall. Restricted duty hours have not affected resident case coverage.
Saunders, J; Gopalan, P; Puri, N; Azzam, P N; Zhou, L; Ghinassi, F; Jain, A; Travis, M; Ryan, N D
2015-12-01
Psychiatric education for non-psychiatric residents varies between training programs, and may affect resident comfort with psychiatric topics. This study's goals were to identify non-psychiatric residents' comfort with psychiatric topics and to test the effectiveness of a video intervention. Residents in various departments were given a survey. They were asked to rank their comfort level with multiple psychiatric topics, answer questions about medical decision making capacity (MDMC), watch a 15-min video about MDMC, and answer a post-test section. In total, 91 Internal Medicine, General Surgery, and Obstetrics and Gynecology residents responded to the study. Of the 91 residents, 55 completed the pre- and post-test assessments. There was no significant difference in correct responses. Residents' comfort levels were assessed, and a significant improvement in comfort level with MDMC was found. This study highlights potential opportunities for psychiatric education, and suggests brief video interventions can increase resident physicians' comfort with a psychiatric topic.
NASA Astrophysics Data System (ADS)
Richter, J. H.; Karlsson, P. G.; Sandell, A.
2008-05-01
A TiO2-ZrO2 film with laterally graded stoichiometry has been prepared by metal-organic chemical vapor deposition in ultrahigh vacuum. The film was characterized in situ using synchrotron radiation photoelectron spectroscopy (PES) and x-ray absorption spectroscopy. PES depth profiling clearly shows that Ti ions segregate toward the surface region when mixed with ZrO2. The binding energy of the ZrO2 electronic levels is constant with respect to the local vacuum level. The binding energy of the TiO2 electronic levels is aligned to the Fermi level down to a Ti /Zr ratio of about 0.5. At a Ti /Zr ratio between 0.1 and 0.5, the TiO2 related electronic levels become aligned to the local vacuum level. The addition of small amounts of TiO2 to ZrO2 results in a ZrO2 band alignment relative to the Fermi level that is less asymmetric than for pure ZrO2. The band edge positions shift by -0.6eV for a Ti /Zr ratio of 0.03. This is explained in terms of an increase in the work function when adding TiO2, an effect that becomes emphasized by Ti surface segregation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yi, E-mail: yig057@ucsd.edu; Galperin, Michael, E-mail: migalperin@ucsd.edu; Nitzan, Abraham, E-mail: nitzan@post.tau.ac.il
Within a generic model we analyze the Stokes linewidth in surface enhanced Raman scattering (SERS) from molecules embedded as bridges in molecular junctions. We identify four main contributions to the off-resonant Stokes signal and show that under zero voltage bias (a situation pertaining also to standard SERS experiments) and at low bias junctions only one of these contributions is pronounced. The linewidth of this component is determined by the molecular vibrational relaxation rate, which is dominated by interactions with the essentially bosonic thermal environment when the relevant molecular electronic energy is far from the metal(s) Fermi energy(ies). It increases whenmore » the molecular electronic level is close to the metal Fermi level so that an additional vibrational relaxation channel due to electron-hole (eh) exciton in the molecule opens. Other contributions to the Raman signal, of considerably broader linewidths, can become important at larger junction bias.« less
Depletion region surface effects in electron beam induced current measurements.
Haney, Paul M; Yoon, Heayoung P; Gaury, Benoit; Zhitenev, Nikolai B
2016-09-07
Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the p - n junction depletion region result in perfect charge collection efficiency. However we find that in CdTe and Si samples prepared by focused ion beam (FIB) milling, there is a reduced and nonuniform EBIC lineshape for excitations in the depletion region. Motivated by this, we present a model of the EBIC response for excitations in the depletion region which includes the effects of surface recombination from both charge-neutral and charged surfaces. For neutral surfaces we present a simple analytical formula which describes the numerical data well, while the charged surface response depends qualitatively on the location of the surface Fermi level relative to the bulk Fermi level. We find the experimental data on FIB-prepared Si solar cells is most consistent with a charged surface, and discuss the implications for EBIC experiments on polycrystalline materials.
Wang, Hao-Yi; Wang, Yi; Yu, Man; Han, Jun; Guo, Zhi-Xin; Ai, Xi-Cheng; Zhang, Jian-Ping; Qin, Yujun
2016-04-28
Organic-inorganic halide perovskite solar cells are becoming the next big thing in the photovoltaic field owing to their rapidly developing photoelectric conversion performance. Herein, mesoporous structured perovskite devices with various perovskite grain sizes are fabricated by a sequential dropping method, and the charge recombination dynamics is investigated by transient optical-electric measurements. All devices exhibit an overall power conversion efficiency around 15%. More importantly, a biphasic trap-limited charge recombination process is proposed and interpreted by taking into account the specific charge accumulation mechanism in perovskite solar cells. At low Fermi levels, photo-generated electrons predominately populate in the perovskite phase, while at high Fermi levels, most electrons occupy traps in mesoporous TiO2. As a result, the dynamics of charge recombination is, respectively, dominated by the perovskite phase and mesoporous TiO2 in these two cases. The present work would give a new perspective on the charge recombination process in meso-structured perovskite solar cells.
Effect of density of states peculiarities on Hund's metal behavior
NASA Astrophysics Data System (ADS)
Belozerov, A. S.; Katanin, A. A.; Anisimov, V. I.
2018-03-01
We investigate a possibility of Hund's metal behavior in the Hubbard model with asymmetric density of states having peak(s). Specifically, we consider the degenerate two-band model and compare its results to the five-band model with realistic density of states of iron and nickel, showing that the obtained results are more general, provided that the hybridization between states of different symmetry is sufficiently small. We find that quasiparticle damping and the formation of local magnetic moments due to Hund's exchange interaction are enhanced by both the density of states asymmetry, which yields stronger correlated electron or hole excitations, and the larger density of states at the Fermi level, increasing the number of virtual electron-hole excitations. For realistic densities of states, these two factors are often interrelated because the Fermi level is attracted towards peaks of the density of states. We discuss the implication of the obtained results to various substances and compounds, such as transition metals, iron pnictides, and cuprates.
Electronic structure of ZrX2 (X = Se, Te)
NASA Astrophysics Data System (ADS)
Shkvarin, A. S.; Merentsov, A. I.; Shkvarina, E. G.; Yarmoshenko, Yu. M.; Píš, I.; Nappini, S.; Titov, A. N.
2018-03-01
The electronic structure of the ZrX2 (X = Se, Te) compounds has been studied using photoelectron, resonant photoelectron and X-ray absorption spectroscopy, theoretical calculations of the X-ray absorption spectra, and density of electronic states. It was found that the absorption spectra and valence band spectra are influenced by the chalcogen type. The results of the multiplet calculation of the Zr4+ atom show that the change in the splitting in the crystal field, which is described by the 10Dq parameter, is due to the change in the ratio of covalent and ionic contributions to the chemical bond. The resonance band near the Fermi level in the valence band spectra is observed for ZrTe2 in the Zr 3p-4d resonant excitation mode. The extent of photon energy indicates the charge localization on the Zr atom. Similar resonance band for ZrSe2 is absent; it indicates the presence of a gap at the Fermi level.
Doping reaction of PH3 and B2H6 with Si(100)
NASA Astrophysics Data System (ADS)
Yu, Ming L.; Vitkavage, D. J.; Meyerson, B. S.
1986-06-01
The reaction of phosphine PH3 and diborane B2H6 on Si(100) surfaces was studied by surface analytical techniques in relation to the in situ doping process in the chemical vapor deposition of silicon. Phosphine chemisorbs readily either nondissociatively at room temperature or dissociatively with the formation of silicon-hydrogen bonds at higher temperatures. Hydrogen can be desorbed at temperatures above 400 °C to generate a phosphorus layer. Phosphorus is not effective in shifting the Fermi level until the coverage reaches 2×1014/cm2. A maximum shift of 0.45 eV toward the conduction band was observed. In contrast, diborane has a very small sticking coefficient and the way to deposit boron is to decompose diborane directly on the silicon surface at temperatures above 600 °C. Boron at coverages less than 2×1014/cm2 is very effective in shifting the Fermi level toward the valence band and a maximum change of 0.4 eV was observed.
Influence of Thickness on the Electrical Transport Properties of Exfoliated Bi2Te3 Ultrathin Films
NASA Astrophysics Data System (ADS)
Mo, D. L.; Wang, W. B.; Cai, Q.
2016-08-01
In this work, the mechanical exfoliation method has been utilized to fabricate Bi2Te3 ultrathin films. The thickness of the ultrathin films is revealed to be several tens of nanometers. Weak antilocalization effects and Shubnikov de Haas oscillations have been observed in the magneto-transport measurements on individual films with different thickness, and the two-dimensional surface conduction plays a dominant role. The Fermi level is found to be 81 meV above the Dirac point, and the carrier mobility can reach ~6030 cm2/(Vs) for the 10-nm film. When the film thickness decreases from 30 to 10 nm, the Fermi level will move 8 meV far from the bulk valence band. The coefficient α in the Hikami-Larkin-Nagaoka equation is shown to be ~0.5, manifesting that only the bottom surface of the Bi2Te3 ultrathin films takes part in transport conductions. These will pave the way for understanding thoroughly the surface transport properties of topological insulators.
Aspects of silicon bulk lifetimes
NASA Technical Reports Server (NTRS)
Landsberg, P. T.
1985-01-01
The best lifetimes attained for bulk crytalline silicon as a function of doping concentrations are analyzed. It is assumed that the dopants which set the Fermi level do not contribute to the recombination traffic which is due to the unknown defect. This defect is assumed to have two charge states: neutral and negative, the neutral defect concentration is frozen-in at some temperature T sub f. The higher doping concentrations should include the band-band Auger effect by using a generalization of the Shockley-Read-Hall (SRH) mechanism. The generalization of the SRH mechanism is discussed. This formulation gives a straightforward procedure for incorporating both band-band and band-trap Auger effects in the SRH procedure. Two related questions arise in this context: (1) it may sometimes be useful to write the steady-state occupation probability of the traps implied by SRH procedure in a form which approximates to the Fermi-Dirac distribution; and (2) the effect on the SRH mechanism of spreading N sub t levels at one energy uniformly over a range of energies is discussed.
NASA Astrophysics Data System (ADS)
Wen, Jun-Qing; Zhang, Jian-Min; Chen, Guo-Xiang; Wu, Hua; Yang, Xu
2018-04-01
The density functional theory calculations using general gradient approximation (GGA) applying Perdew-Burke-Ernzerhof (PBE) as correlation functional have been systematically performed to research the formation energy, the electronic structures, band structures, total and partial DOS, and optical properties of Nd doping ZnO with the content from 6.25% to 12.5%. The formation energies are negative for both models, which show that two structures are energetically stable. Nd doping ZnO crystal is found to be a direct band gap semiconductor and Fermi level shifts upward into conduction band, which show the properties of n-type semiconductor. Band structures are more compact after Nd doping ZnO, implying that Nd doping induces the strong interaction between different atoms. Nd doping ZnO crystal presents occupied states at near Fermi level, which mainly comes from the Nd 4f orbital. The calculated optical properties imply that Nd doping causes a red-shift of absorption peaks, and enhances the absorption of the visible light.
Model for determination of mid-gap states in amorphous metal oxides from thin film transistors
NASA Astrophysics Data System (ADS)
Bubel, S.; Chabinyc, M. L.
2013-06-01
The electronic density of states in metal oxide semiconductors like amorphous zinc oxide (a-ZnO) and its ternary and quaternary oxide alloys with indium, gallium, tin, or aluminum are different from amorphous silicon, or disordered materials such as pentacene, or P3HT. Many ZnO based semiconductors exhibit a steep decaying density of acceptor tail states (trap DOS) and a Fermi level (EF) close to the conduction band energy (EC). Considering thin film transistor (TFT) operation in accumulation mode, the quasi Fermi level for electrons (Eq) moves even closer to EC. Classic analytic TFT simulations use the simplification EC-EF> `several'kT and cannot reproduce exponential tail states with a characteristic energy smaller than 1/2 kT. We demonstrate an analytic model for tail and deep acceptor states, valid for all amorphous metal oxides and include the effect of trap assisted hopping instead of simpler percolation or mobility edge models, to account for the observed field dependent mobility.
Electronic structure and magnetic properties of quaternary Heusler alloy Co2CrGa1-xGex (x=0-1)
NASA Astrophysics Data System (ADS)
Seema, K.; Kumar, Ranjan
2015-03-01
The electronic structure of Co-based quaternary Heusler compounds Co2CrGa1-xGex (x=0.00, 0.25, 0.50, 0.75, 1.00) are calculated by first-principles density functional theory. The substitution of Ga by Ge leads to increase in the number of valence electrons. With increasing concentration of Ge, lattice constant decreases linearly whereas bulk modulus and total magnetic moment increases. This shows that the magnetic properties of the compound are dependent on electron concentration of main group element. The calculations show that the alloys with x=0.00, 0.25, 0.50 are not true half-metallic materials whereas alloy with x=0.75, 1.00 exhibit 100% spin polarization at the Fermi level. It shows that the Fermi level can be shifted within the energy-gap to achieve 100% spin polarization. The effect of volumetric and tetragonal strain on magnetic properties is also studied.
NASA Astrophysics Data System (ADS)
Chen, M. N.; Su, W.; Deng, M. X.; Ruan, Jiawei; Luo, W.; Shao, D. X.; Sheng, L.; Xing, D. Y.
2016-11-01
A great deal of attention has been paid to the topological phases engineered by photonics over the past few years. Here, we propose a topological quantum phase transition to a quantum anomalous Hall (QAH) phase induced by off-resonant circularly polarized light in a two-dimensional system that is initially in a quantum spin Hall phase or a trivial insulator phase. This provides an alternative method to realize the QAH effect, other than magnetic doping. The circularly polarized light effectively creates a Zeeman exchange field and a renormalized Dirac mass, which are tunable by varying the intensity of the light and drive the quantum phase transition. Both the transverse and longitudinal Hall conductivities are studied, and the former is consistent with the topological phase transition when the Fermi level lies in the band gap. A highly controllable spin-polarized longitudinal electrical current can be generated when the Fermi level is in the conduction band, which may be useful for designing topological spintronics.
Abdollahi, S; Ackermann, M; Ajello, M; Albert, A; Atwood, W B; Baldini, L; Barbiellini, G; Bellazzini, R; Bissaldi, E; Bloom, E D; Bonino, R; Bottacini, E; Brandt, T J; Bruel, P; Buson, S; Caragiulo, M; Cavazzuti, E; Chekhtman, A; Ciprini, S; Costanza, F; Cuoco, A; Cutini, S; D'Ammando, F; de Palma, F; Desiante, R; Digel, S W; Di Lalla, N; Di Mauro, M; Di Venere, L; Donaggio, B; Drell, P S; Favuzzi, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Green, D; Guiriec, S; Harding, A K; Jogler, T; Jóhannesson, G; Kamae, T; Kuss, M; Larsson, S; Latronico, L; Li, J; Longo, F; Loparco, F; Lubrano, P; Magill, J D; Malyshev, D; Manfreda, A; Mazziotta, M N; Meehan, M; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Negro, M; Nuss, E; Ohsugi, T; Omodei, N; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Principe, G; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Sgrò, C; Simone, D; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Strong, A W; Tajima, H; Thayer, J B; Torres, D F; Troja, E; Vandenbroucke, J; Zaharijas, G; Zimmer, S
2017-03-03
The Large Area Telescope on board the Fermi Gamma-ray Space Telescope has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction. The present data sample can probe dipole anisotropies down to a level of 10^{-3}. We take into account systematic effects that could mimic true anisotropies at this level. We present a detailed study of the event selection optimization of the cosmic-ray electrons and positrons to be used for anisotropy searches. Since no significant anisotropies have been detected on any angular scale, we present upper limits on the dipole anisotropy. The present constraints are among the strongest to date probing the presence of nearby young and middle-aged sources.
Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel
Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less
Chee, Augustus K. W.
2016-01-01
Two-dimensional dopant profiling using the secondary electron (SE) signal in the scanning electron microscope (SEM) is a technique gaining impulse for its ability to enable rapid and contactless low-cost diagnostics for integrated device manufacturing. The basis is doping contrast from electrical p-n junctions, which can be influenced by wet-chemical processing methods typically adopted in ULSI technology. This paper describes the results of doping contrast studies by energy-filtering in the SEM from silicon p-n junction specimens that were etched in ammonium fluoride solution. Experimental SE micro-spectroscopy and numerical simulations indicate that Fermi level pinning occurred on the surface of the treated-specimen, and that the doping contrast can be explained in terms of the ionisation energy integral for SEs, which is a function of the dopant concentration, and surface band-bending effects that prevail in the mechanism for doping contrast as patch fields from the specimen are suppressed. PMID:27576347
Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd
Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel; ...
2016-11-07
Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less
Tuning pentacene based dye-sensitized solar cells.
Kunzmann, Andreas; Gruber, Marco; Casillas, Rubén; Tykwinski, Rik R; Costa, Rubén D; Guldi, Dirk M
2018-05-10
We report on the synthesis, as well as photophysical and electrochemical characterization of a new family of pentacene derivatives, which are applied in n-type dye-sensitized solar cells (DSSCs). As far as the molecular structure of the pentacene is concerned, the synthetic design focuses on cyano acrylic tethered at the 13-position of the pentacene chromophore. The electrolyte composition features increasing amounts of Li+ ions as an additive. In general, the increase of Li+ concentrations extrinsically reduces the quasi Fermi level of the photoanode and as such facilitates the electron injection process. We demonstrate that pentacene derivatives give rise to a unique charge injection process, which is controlled by the positioning of the quasi Fermi level energies as a function of the Li+ concentration. As a result of the enhanced charge injection, device efficiencies as high as 1.5% are achieved, representing a 3-fold increase from previously reported efficiencies in pentacene-based DSSCs. These findings are supported by device analysis in combination with transient absorption and electrochemical impedance spectroscopy assays.
The electronic structure of Au25 clusters: between discrete and continuous
NASA Astrophysics Data System (ADS)
Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Sai Krishna, Katla; Li, Ruipeng; Mei, Wai-Ning; Skrabalak, Sara E.; Kumar, Challa S. S. R.; Losovyj, Yaroslav
2016-08-01
Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies.Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies. Electronic supplementary information (ESI) available: Experimental details including chemicals, sample preparation, and characterization methods. Computation techniques, SV-AUC, GIWAXS, XPS, UPS, MALDI-TOF, ESI data of Au25 clusters. See DOI: 10.1039/c6nr02374f
NASA Astrophysics Data System (ADS)
Shin, H.-C.; Ahn, S. J.; Kim, H. W.; Moon, Y.; Rai, K. B.; Woo, S. H.; Ahn, J. R.
2016-08-01
Atom (or molecule) intercalations and deintercalations have been used to control the electronic properties of graphene. In general, finite energies above room temperature (RT) thermal energy are required for the intercalations and deintercalations. Here, we demonstrate that alkali metal atoms can be deintercalated from epitaxial graphene on a SiC substrate at RT, resulting in the reduction in density of states at the Fermi level. The change in density of states at the Fermi level at RT can be applied to a highly sensitive graphene sensor operating at RT. Na atoms, which were intercalated at a temperature of 80 °C, were deintercalated at a high temperature above 1000 °C when only a thermal treatment was used. In contrast to the thermal treatment, the intercalated Na atoms were deintercalated at RT when tetrafluorotetracyanoquinodimethane (F4-TCNQ) molecules were adsorbed on the surface. The RT deintercalation occurred via the formation of charge-transfer complexes between Na atoms and F4-TCNQ molecules.
Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector.
Li, Xiaoqiang; Lin, Shisheng; Lin, Xing; Xu, Zhijuan; Wang, Peng; Zhang, Shengjiao; Zhong, Huikai; Xu, Wenli; Wu, Zhiqian; Fang, Wei
2016-01-11
In graphene/semiconductor heterojunction, the statistic charge transfer between graphene and semiconductor leads to decreased junction barrier height and limits the Fermi level tuning effect in graphene, which greatly affects the final performance of the device. In this work, we have designed a sandwich diode for solar cells and photodetectors through inserting 2D hexagonal boron nitride (h-BN) into graphene/GaAs heterostructure to suppress the static charge transfer. The barrier height of graphene/GaAs heterojunction can be increased from 0.88 eV to 1.02 eV by inserting h-BN. Based on the enhanced Fermi level tuning effect with interface h-BN, through adopting photo-induced doping into the device, power conversion efficiency (PCE) of 10.18% has been achieved for graphene/h-BN/GaAs compared with 8.63% of graphene/GaAs structure. The performance of graphene/h-BN/GaAs based photodetector is also improved with on/off ratio increased by one magnitude compared with graphene/GaAs structure.
Importance of the van Hove singularity in superconducting PdTe2
NASA Astrophysics Data System (ADS)
Kim, Kyoo; Kim, Sooran; Kim, J. S.; Kim, Heejung; Park, J.-H.; Min, B. I.
2018-04-01
We have investigated the electronic, phononic, and superconducting properties of the transition-metal dichalcogenide superconductor PdTe2, and explored the origin of different superconducting behaviors between PdTe2 and its isostructural PtTe2 that is nonsuperconducting. We have found that the saddle-point van Hove singularity (vHs) near the Fermi level, which interacts strongly with Te phonon modes, plays an important role in the BCS-type superconductivity of PdTe2. We show that, with electron doping, the vHs in PdTe2 shifts down toward the Fermi level to enhance Tc, as is consistent with the observed enhancement of Tc in Cu-doped PdTe2. We ascribe the absence of superconductivity in PtTe2 to the different dispersion behavior of the saddle-point vHs band from that of PdTe2. We also suggest that this difference in the vHs band behaviors is responsible for the different structural responses of PdTe2 and PtTe2 to external pressure.
Twelve Years of Education and Public Outreach with the Fermi Gamma-ray Space Telescope
NASA Astrophysics Data System (ADS)
Cominsky, Lynn R.; McLin, K. M.; Simonnet, A.; Fermi E/PO Team
2013-04-01
During the past twelve years, NASA's Fermi Gamma-ray Space Telescope has supported a wide range of Education and Public Outreach (E/PO) activities, targeting K-14 students and the general public. The purpose of the Fermi E/PO program is to increase student and public understanding of the science of the high-energy Universe, through inspiring, engaging and educational activities linked to the mission’s science objectives. The E/PO program has additional more general goals, including increasing the diversity of students in the Science, Technology, Engineering and Mathematics (STEM) pipeline, and increasing public awareness and understanding of Fermi science and technology. Fermi's multi-faceted E/PO program includes elements in each major outcome category: ● Higher Education: Fermi E/PO promotes STEM careers through the use of NASA data including research experiences for students and teachers (Global Telescope Network), education through STEM curriculum development projects (Cosmology curriculum) and through enrichment activities (Large Area Telescope simulator). ● Elementary and Secondary education: Fermi E/PO links the science objectives of the Fermi mission to well-tested, customer-focused and NASA-approved standards-aligned classroom materials (Black Hole Resources, Active Galaxy Education Unit and Pop-up book, TOPS guides, Supernova Education Unit). These materials have been distributed through (Educator Ambassador and on-line) teacher training workshops and through programs involving under-represented students (after-school clubs and Astro 4 Girls). ● Informal education and public outreach: Fermi E/PO engages the public in sharing the experience of exploration and discovery through high-leverage multi-media experiences (Black Holes planetarium and PBS NOVA shows), through popular websites (Gamma-ray Burst Skymap, Epo's Chronicles), social media (Facebook, MySpace), interactive web-based activities (Space Mysteries, Einstein@Home) and activities by amateur astronomers nation-wide (Supernova! Toolkit). This poster highlights various facets of the Fermi E/PO program.
Towards a complete Fermi surface in underdoped high Tc superconductors
NASA Astrophysics Data System (ADS)
Harrison, Neil
The discovery of magnetic quantum oscillations in underdoped high Tc superconductors raised many questions, and initiated a quest to understand the origin of the Fermi surface the like of which had not been seen since the very first discovery of quantum oscillations in elemental bismuth. While studies of the Fermi surface of materials are today mostly assisted by computer codes for calculating the electronic band structure, this was not the case in the underdoped high Tc materials. The Fermi surface was shown to reconstructed into small pockets, yet there was no hint of a viable order parameter. Crucial clues to understanding the origin of the Fermi surface were provided by the small value of the observed Fermi surface cross-section, the negative Hall coefficient and the small electronic heat capacity at high magnetic fields. We also know that the magnetic fields were likely to be too weak to destroy the pseudogap and that vortex pinning effects could be seen to persist to high magnetic fields at low temperatures. I will show that the Fermi surface that appears to fit best with the experimental observations is a small electron pocket formed by connecting the nodal `Fermi arcs' seen in photoemission experiments, corresponding to a density-wave state with two different orthogonal ordering vectors. The existence of such order has subsequently been detected by x-ray scattering experiments, thereby strengthening the case for charge ordering being responsible for reconstructing the Fermi surface. I will discuss new efforts to understand the relationship between the charge ordering and the pseudogap state, discussing the fate of the quasiparticles in the antinodal region and the dimensionality of the Fermi surface. The author acknowledges contributions from Suchitra Sebastian, Brad Ramshaw, Mun Chan, Yu-Te Hsu, Mate Hartstein, Gil Lonzarich, Beng Tan, Arkady Shekhter, Fedor Balakirev, Ross McDonald, Jon Betts, Moaz Altarawneh, Zengwei Zhu, Chuck Mielke, James Day, Doug Bonn, Ruixing Liang, Walter Hardy. Supported by BES ``Science of 100 tesla'' program.
NASA Astrophysics Data System (ADS)
Xu, Nan; Autes, Gabriel; Matt, Christian; Lv, Baiqing; Bisti, Federico; Strocov, Vladimir; Gawryluk, Dariusz; Pomjakushina, Ekaterina; Conder, Kazimierz; Plumb, Nicholas; Radovic, Milan; Qian, Tian; Yazyev, Oleg; Mesot, Joel; Ding, Hong; Shi, Ming
By performing ARPES and first-principle calculations, we demonstrate that Weyl fermions quasiparticles in bulk and Fermi arc on surface show distinct evolutions with the bulk band topology in transition-metal monophosphides. While Weyl fermion quasiparticles exist only when the chemical potential is located between two saddle points of the Weyl cone features, the Fermi arc states extend in a larger energy scale and are robust across the bulk Lifshitz transitions associated with the recombination of two non-trivial Fermi surfaces enclosing one Weyl point into a single trivial Fermi surface enclosing two Weyl points of opposite chirality. Therefore, in some systems (NbP), Fermi arc states are preserved even if Weyl fermion quasiparticles are absent in the bulk. Our findings not only provide insight into the relationship between the exotic physical phenomena and the intrinsic bulk band topology in Weyl semimetals, but also resolve the apparent puzzle of the different magneto-transport properties observed in TaAs, TaP and NbP, where the Fermi arc states are similar. The Sino-Swiss Science and Technology Cooperation (No. IZLCZ2138954), NCCR-MARVEL funded by the Swiss National Science Foundation.
A Route to Dirac Liquid Theory: A Fermi Liquid Description for Dirac Materials
NASA Astrophysics Data System (ADS)
Gochan, Matthew; Bedell, Kevin
Since the pioneering work developed by L.V. Landau sixty years ago, Fermi Liquid Theory has seen great success in describing interacting Fermi systems. While much interest has been generated over the study of non-Fermi Liquid systems, Fermi Liquid theory serves as a formidable model for many systems and offers a rich amount of of results and insight. The recent classification of Dirac Materials, and the lack of a unifying theoretical framework for them, has motivated our study. Dirac materials are a versatile class of materials in which an abundance of unique physical phenomena can be observed. Such materials are found in all dimensions, with the shared property that their low-energy fermionic excitations behave as massless Dirac fermions and are therefore governed by the Dirac equation. The most popular Dirac material, graphene, is the focus of this work. We present our Fermi Liquid description of Graphene. We find many interesting results, specifically in the transport and dynamics of the system. Additionally, we expand on previous work regarding the Virial Theorem and its impact on the Fermi Liquid parameters in graphene. Finally, we remark on viscoelasticity of Dirac Materials and other unusual results that are consequences of AdS-CFT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pederson, Mark R.; Baruah, Tunna; Basurto, Luis
We have applied a recently developed method to incorporate the self-interaction correction through Fermi orbitals to Mg-porphyrin, C{sub 60}, and pentacene molecules. The Fermi-Löwdin orbitals are localized and unitarily invariant to the Kohn-Sham orbitals from which they are constructed. The self-interaction-corrected energy is obtained variationally leading to an optimum set of Fermi-Löwdin orbitals (orthonormalized Fermi orbitals) that gives the minimum energy. A Fermi orbital, by definition, is dependent on a certain point which is referred to as the descriptor position. The degree to which the initial choice of descriptor positions influences the variational approach to the minimum and the complexitymore » of the energy landscape as a function of Fermi-orbital descriptors is examined in detail for Mg-porphyrin. The applications presented here also demonstrate that the method can be applied to larger molecular systems containing a few hundred electrons. The atomization energy of the C{sub 60} molecule within the Fermi-Löwdin-orbital self-interaction-correction approach is significantly improved compared to local density approximation in the Perdew-Wang 92 functional and generalized gradient approximation of Perdew-Burke-Ernzerhof functionals. The eigenvalues of the highest occupied molecular orbitals show qualitative improvement.« less
Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules
NASA Astrophysics Data System (ADS)
Pederson, Mark R.; Baruah, Tunna; Kao, Der-you; Basurto, Luis
2016-04-01
We have applied a recently developed method to incorporate the self-interaction correction through Fermi orbitals to Mg-porphyrin, C60, and pentacene molecules. The Fermi-Löwdin orbitals are localized and unitarily invariant to the Kohn-Sham orbitals from which they are constructed. The self-interaction-corrected energy is obtained variationally leading to an optimum set of Fermi-Löwdin orbitals (orthonormalized Fermi orbitals) that gives the minimum energy. A Fermi orbital, by definition, is dependent on a certain point which is referred to as the descriptor position. The degree to which the initial choice of descriptor positions influences the variational approach to the minimum and the complexity of the energy landscape as a function of Fermi-orbital descriptors is examined in detail for Mg-porphyrin. The applications presented here also demonstrate that the method can be applied to larger molecular systems containing a few hundred electrons. The atomization energy of the C60 molecule within the Fermi-Löwdin-orbital self-interaction-correction approach is significantly improved compared to local density approximation in the Perdew-Wang 92 functional and generalized gradient approximation of Perdew-Burke-Ernzerhof functionals. The eigenvalues of the highest occupied molecular orbitals show qualitative improvement.
Observation of the Leggett-Rice Effect in a Unitary Fermi Gas
NASA Astrophysics Data System (ADS)
Trotzky, S.; Beattie, S.; Luciuk, C.; Smale, S.; Bardon, A. B.; Enss, T.; Taylor, E.; Zhang, S.; Thywissen, J. H.
2015-01-01
We observe that the diffusive spin current in a strongly interacting degenerate Fermi gas of 40K precesses about the local magnetization. As predicted by Leggett and Rice, precession is observed both in the Ramsey phase of a spin-echo sequence, and in the nonlinearity of the magnetization decay. At unitarity, we measure a Leggett-Rice parameter γ =1.08 (9 ) and a bare transverse spin diffusivity D0⊥=2.3 (4 )ℏ/m for a normal-state gas initialized with full polarization and at one-fifth of the Fermi temperature, where m is the atomic mass. One might expect γ =0 at unitarity, where two-body scattering is purely dissipative. We observe γ →0 as temperature is increased towards the Fermi temperature, consistent with calculations that show the degenerate Fermi sea restores a nonzero γ . Tuning the scattering length a , we find that a sign change in γ occurs in the range 0 <(kFa )-1≲1.3 , where kF is the Fermi momentum. We discuss how γ reveals the effective interaction strength of the gas, such that the sign change in γ indicates a switching of branch between a repulsive and an attractive Fermi gas.
"Where is Everybody?" An Account of Fermi's Question
DOE R&D Accomplishments Database
Jones, E. M.
1985-03-01
Enrico Fermi's famous question, now central to debates about the prevalence of extraterrestrial civilizations, arose during a luncheon conversation with Emil Konopinski, Edward Teller, and Herbert York in the summer of 1950. Fermi's companions on that day have provided accounts of the incident.
Small Fermi surfaces of PtSn4 and Pt3In7
NASA Astrophysics Data System (ADS)
Yara, T.; Kakihana, M.; Nishimura, K.; Hedo, M.; Nakama, T.; Ōnuki, Y.; Harima, H.
2018-05-01
An extremely large magnetoresistance of PtSn4 has been recently observed and discussed from a viewpoint of de Haas-van Alphen (dHvA) oscillations and theoretical small Fermi surfaces. We have studied precisely the Fermi surfaces by measuring angular dependences of dHvA frequencies and have also carried out the full potential LAPW band calculation. Furthermore, small Fermi surfaces have been detected in another Pt-based compound of Pt3In7 with the cubic structure.
Palaszewski, Dawn M; Miladinovic, Branko; Caselnova, Petra M; Holmström, Shelly W
2016-12-01
To determine the effectiveness of a new pediatric and adolescent gynecology (PAG) curriculum for improving obstetrics/gynecology resident physician knowledge and comfort level in patient management and to describe the current deficiencies in resident physician knowledge and comfort level in PAG. A PAG curriculum was implemented for the obstetrics/gynecology resident physicians (n = 20) at the University of South Florida in July 2013. Before and after the curriculum was introduced, resident physicians and recent graduates of the residency program completed a survey to assess their comfort level and a knowledge assessment consisting of 20 case-based questions. University-based residency program. Resident physicians and recent resident physician graduates in the Department of Obstetrics and Gynecology. Introduction of a PAG curriculum during the 2013-2014 academic year. Improvement in resident physicians' comfort level and knowledge in PAG. After the curriculum was introduced, comfort increased in examining the genitals of a pediatric gynecology patient (median difference = 1.5; P = .003) and history-taking, physical examination skills, and management (median difference = 1; P = .002) compared with before the curriculum. There was no significant difference in overall quiz score (15.5 ± 1.87 vs 15.8 ± 1.3; P = .78). A curriculum in PAG did improve resident comfort level in managing PAG patients, but did not significantly improve knowledge of this topic. Copyright © 2016.
Bulk Fermi Surfaces of the Dirac Type-II Semimetallic Candidates M Al3 (Where M =V , Nb, and Ta)
NASA Astrophysics Data System (ADS)
Chen, K.-W.; Lian, X.; Lai, Y.; Aryal, N.; Chiu, Y.-C.; Lan, W.; Graf, D.; Manousakis, E.; Baumbach, R. E.; Balicas, L.
2018-05-01
We report a de Haas-van Alphen (dHvA) effect study on the Dirac type-II semimetallic candidates M Al3 (where, M =V , Nb and Ta). The angular dependence of their Fermi surface (FS) cross-sectional areas reveals a remarkably good agreement with our first-principles calculations. Therefore, dHvA supports the existence of tilted Dirac cones with Dirac type-II nodes located at 100, 230 and 250 meV above the Fermi level ɛF for VAl3 , NbAl3 and TaAl3 respectively, in agreement with the prediction of broken Lorentz invariance in these compounds. However, for all three compounds we find that the cyclotron orbits on their FSs, including an orbit nearly enclosing the Dirac type-II node, yield trivial Berry phases. We explain this via an analysis of the Berry phase where the position of this orbit, relative to the Dirac node, is adjusted within the error implied by the small disagreement between our calculations and the experiments. We suggest that a very small amount of doping could displace ɛF to produce topologically nontrivial orbits encircling their Dirac node(s).
Shells, orbit bifurcations, and symmetry restorations in Fermi systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magner, A. G., E-mail: magner@kinr.kiev.ua; Koliesnik, M. V.; Arita, K.
The periodic-orbit theory based on the improved stationary-phase method within the phase-space path integral approach is presented for the semiclassical description of the nuclear shell structure, concerning themain topics of the fruitful activity ofV.G. Soloviev. We apply this theory to study bifurcations and symmetry breaking phenomena in a radial power-law potential which is close to the realistic Woods–Saxon one up to about the Fermi energy. Using the realistic parametrization of nuclear shapes we explain the origin of the double-humped fission barrier and the asymmetry in the fission isomer shapes by the bifurcations of periodic orbits. The semiclassical origin of themore » oblate–prolate shape asymmetry and tetrahedral shapes is also suggested within the improved periodic-orbit approach. The enhancement of shell structures at some surface diffuseness and deformation parameters of such shapes are explained by existence of the simple local bifurcations and new non-local bridge-orbit bifurcations in integrable and partially integrable Fermi-systems. We obtained good agreement between the semiclassical and quantum shell-structure components of the level density and energy for several surface diffuseness and deformation parameters of the potentials, including their symmetry breaking and bifurcation values.« less
Probing the EBL Evolution at High Redshift Using GRBs Detected with the Fermi-LAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, A.; Ajello, M.; Omodei, N.
The extragalactic background light (EBL), from ultraviolet to infrared wavelengths, is predominantly due to emission from stars, accreting black holes and reprocessed light due to Galactic dust. The EBL can be studied through the imprint it leaves, via γ–γ absorption of high-energy photons, in the spectra of distant γ-ray sources. The EBL has been probed through the search for the attenuation it produces in the spectra of BL Lacertae (BL Lac) objects and individual γ-ray bursts (GRBs). GRBs have significant advantages over blazars for the study of the EBL especially at high redshifts. Here we analyze a combined sample ofmore » 22 GRBs, detected by the Fermi Large Area Telescope between 65 MeV and 500 GeV. We report a marginal detection (at the ~2.8σ level) of the EBL attenuation in the stacked spectra of the source sample. This measurement represents a first constraint of the EBL at an effective redshift of ~1.8. Here, we combine our results with prior EBL constraints and conclude that Fermi-LAT is instrumental to constrain the UV component of the EBL. We discuss the implications on existing empirical models of EBL evolution.« less
Composition-dependent magnetic response properties of Mn1 -xFexGe alloys
NASA Astrophysics Data System (ADS)
Mankovsky, S.; Wimmer, S.; Polesya, S.; Ebert, H.
2018-01-01
The composition-dependent behavior of the Dzyaloshinskii-Moriya interaction (DMI), the spin-orbit torque (SOT), as well as anomalous and spin Hall conductivities of Mn1 -xFexGe alloys have been investigated by first-principles calculations using the relativistic multiple scattering Korringa-Kohn-Rostoker (KKR) formalism. The Dxx component of the DMI exhibits a strong dependence on the Fe concentration, changing sign at x ≈0.85 in line with previous theoretical calculations as well as with experimental results demonstrating the change of spin helicity at x ≈0.8 . A corresponding behavior with a sign change at x ≈0.5 is predicted also for the Fermi-sea contribution to the SOT, because this is closely related to the DMI. In the case of anomalous and spin Hall effects it is shown that the calculated Fermi-sea contributions are rather small and the composition-dependent behavior of these effects are determined mainly by the electronic states at the Fermi level. The spin-orbit-induced scattering mechanisms responsible for both these effects suggest a common origin of the minimum of the anomalous Hall effect and the sign change of the spin Hall effect conductivities.
NASA Astrophysics Data System (ADS)
Wang, Yi X.; Wu, Q.; Chen, Xiang R.; Geng, Hua Y.
2016-09-01
The pressure-induced transition of vanadium from BCC to rhombohedral structures is unique and intriguing among transition metals. In this work, the stability of these phases is revisited by using density functional theory. At finite temperatures, a novel transition of rhombohedral phases back to BCC phase induced by thermal electrons is discovered. This reentrant transition is found not driven by phonons, instead it is the electronic entropy that stabilizes the latter phase, which is totally out of expectation. Parallel to this transition, we find a peculiar and strong increase of the shear modulus C44 with increasing temperature. It is counter-intuitive in the sense that it suggests an unusual harding mechanism of vanadium by temperature. With these stability analyses, the high-pressure and finite-temperature phase diagram of vanadium is proposed. Furthermore, the dependence of the stability of RH phases on the Fermi energy and chemical environment is investigated. The results demonstrate that the position of the Fermi level has a significant impact on the phase stability, and follows the band-filling argument. Besides the Fermi surface nesting, we find that the localization/delocalization of the d orbitals also contributes to the instability of rhombohedral distortions in vanadium.
Spin-orbit-coupled Fermi gases of two-electron ytterbium atoms
NASA Astrophysics Data System (ADS)
He, Chengdong; Song, Bo; Haciyev, Elnur; Ren, Zejian; Seo, Bojeong; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong
2017-04-01
Spin-orbit coupling (SOC) has been realized in bosonic and fermionic atomic gases opening an avenue to novel physics associated with spin-momentum locking. In this talk, we will demonstrate all-optical method coupling two hyperfine ground states of 173Yb fermions through a narrow optical transition 1S0 -> 3P1. An optical AC Stark shift is applied to split the ground hyperfine levels and separate out an effective spin-1/2 subspace from other spin states for the realization of SOC. The spin dephasing dynamics and the asymmetric momentum distribution of the spin-orbit coupled Fermi gas are observed as a hallmark of SOC. The implementation of all-optical SOC for ytterbium fermions should offer a new route to a long-lived spin-orbit coupled Fermi gas and greatly expand our capability in studying novel spin-orbit physics with alkaline-earth-like atoms. Other ongoing experimental works related to SOC will be also discussed. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants); MOST (Grant No. 2016YFA0301604) and NSFC (No. 11574008).
The first Fermi-LAT catalog of sources above 10 GeV
Ackermann, M.; Ajello, M.; Allafort, A.; ...
2013-11-14
Here, we present a catalog of γ-ray sources at energies above 10 GeV based on data from the Large Area Telescope (LAT) accumulated during the first 3 yr of the Fermi Gamma-ray Space Telescope mission. The first Fermi-LAT catalog of >10 GeV sources (1FHL) has 514 sources. For each source we present location, spectrum, a measure of variability, and associations with cataloged sources at other wavelengths. We found that 449 (87%) could be associated with known sources, of which 393 (76% of the 1FHL sources) are active galactic nuclei. Of the 27 sources associated with known pulsars, we find 20more » (12) to have significant pulsations in the range >10 GeV (>25 GeV). In this work we also report that, at energies above 10 GeV, unresolved sources account for 27% ± 8% of the isotropic γ-ray background, while the unresolved Galactic population contributes only at the few percent level to the Galactic diffuse background. We also highlight the subset of the 1FHL sources that are best candidates for detection at energies above 50-100 GeV with current and future ground-based γ-ray observatories.« less
Probing the EBL Evolution at High Redshift Using GRBs Detected with the Fermi-LAT
Desai, A.; Ajello, M.; Omodei, N.; ...
2017-11-17
The extragalactic background light (EBL), from ultraviolet to infrared wavelengths, is predominantly due to emission from stars, accreting black holes and reprocessed light due to Galactic dust. The EBL can be studied through the imprint it leaves, via γ–γ absorption of high-energy photons, in the spectra of distant γ-ray sources. The EBL has been probed through the search for the attenuation it produces in the spectra of BL Lacertae (BL Lac) objects and individual γ-ray bursts (GRBs). GRBs have significant advantages over blazars for the study of the EBL especially at high redshifts. Here we analyze a combined sample ofmore » 22 GRBs, detected by the Fermi Large Area Telescope between 65 MeV and 500 GeV. We report a marginal detection (at the ~2.8σ level) of the EBL attenuation in the stacked spectra of the source sample. This measurement represents a first constraint of the EBL at an effective redshift of ~1.8. Here, we combine our results with prior EBL constraints and conclude that Fermi-LAT is instrumental to constrain the UV component of the EBL. We discuss the implications on existing empirical models of EBL evolution.« less
The First Fermi-LAT Catalog of Sources Above 10 GeV
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Moiseev, Alexander A.
2013-01-01
We present a catalog of gamma-ray sources at energies above 10 GeV based on data from the Large Area Telescope (LAT) accumulated during the first 3 yr of the Fermi Gamma-ray Space Telescope mission. The first Fermi-LAT catalog of >10 GeV sources (1FHL) has 514 sources. For each source we present location, spectrum, a measure of variability, and associations with cataloged sources at other wavelengths. We found that 449 (87%) could be associated with known sources, of which 393 (76% of the 1FHL sources) are active galactic nuclei. Of the 27 sources associated with known pulsars, we find 20 (12) to have significant pulsations in the range >10 GeV (>25 GeV). In this work we also report that, at energies above 10 GeV, unresolved sources account for 27% +/- 8% of the isotropic ? -ray background, while the unresolved Galactic population contributes only at the few percent level to the Galactic diffuse background. We also highlight the subset of the 1FHL sources that are best candidates for detection at energies above 50-100 GeV with current and future ground-based ? -ray observatories.
Applications of Fermi-Lowdin-Orbital Self-Interaction Correction Scheme to Organic Systems
NASA Astrophysics Data System (ADS)
Baruah, Tunna; Kao, Der-You; Yamamoto, Yoh
Recent progress in treating the self-interaction errors by means of local, Lowdin-orthogonalized Fermi Orbitals offers a promising route to study the effect of self-interaction errors in the electronic structure of molecules. The Fermi orbitals depend on the location of the electronic positions, called as Fermi orbital descriptors. One advantage of using the Fermi orbitals is that the corrected Hamiltonian is unitarily invariant. Minimization of the corrected energies leads to an optimized set of centroid positions. Here we discuss the applications of this method to various systems from constituent atoms to several medium size molecules such as Mg-porphyrin, C60, pentacene etc. The applications to the ionic systems will also be discussed. De-SC0002168, NSF-DMR 125302.
NASA Technical Reports Server (NTRS)
Hays, Elizabeth
2009-01-01
An overview of the Fermi Gamma-ray Space Telescope's first 6 months in operation is provided. The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy rage 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. It contains a Large Area Telescope capable of viewing the entire sky every 3 hours and a Gamma-ray Burst Monitor for viewing the entire unocculted sky. Since its launch on June 11, 2008 Fermi has provided information on pulsars, gamma ray bursts, relativistic jets, the active galactic nucleus, and a globular star cluster. This presentation describes Fermi's development, mission, instruments and recent findings.
Spin-split fermi surfaces in CexLa1-xB6 and PrxLa1-xB6
NASA Astrophysics Data System (ADS)
Isshiki, T.; Endo, M.; Sugi, M.; Kimura, N.; Nakamura, S.; Nojima, T.; Aoki, H.; Kunii, S.
2006-05-01
We have performed the dHvA measurements on CexLa1-xB6 and PrxLa1-xB6 compounds to study spin splitting of the Fermi surfaces. In PrB 6 we have found new frequency branches to confirm that the Fermi surface splits into up and down spin Fermi surfaces, whereas no spin splitting has been found for x=0.25,0.5,0.75. We have also found several new frequency branches in CeB6. The new frequency branches imply that the Fermi surfaces of up and down spin conduction electrons are significantly different in CeB6 as well as in PrB6.
NASA Astrophysics Data System (ADS)
Stricker, D.; Mravlje, J.; Berthod, C.; Fittipaldi, R.; Vecchione, A.; Georges, A.; van der Marel, D.
2014-08-01
We report optical measurements demonstrating that the low-energy relaxation rate (1/τ) of the conduction electrons in Sr2RuO4 obeys scaling relations for its frequency (ω) and temperature (T) dependence in accordance with Fermi-liquid theory. In the thermal relaxation regime, 1/τ∝(ℏω)2+(pπkBT)2 with p=2, and ω/T scaling applies. Many-body electronic structure calculations using dynamical mean-field theory confirm the low-energy Fermi-liquid scaling and provide quantitative understanding of the deviations from Fermi-liquid behavior at higher energy and temperature. The excess optical spectral weight in this regime provides evidence for strongly dispersing "resilient" quasiparticle excitations above the Fermi energy.
Controlling resonant tunneling in graphene via Fermi velocity engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Jonas R. F., E-mail: jonas.lima@ufrpe.br; Pereira, Luiz Felipe C.; Bezerra, C. G.
We investigate the resonant tunneling in a single layer graphene superlattice with modulated energy gap and Fermi velocity via an effective Dirac-like Hamiltonian. We calculate the transmission coefficient with the transfer matrix method and analyze the effect of a Fermi velocity modulation on the electronic transmission, in the case of normal and oblique incidence. We find it is possible to manipulate the electronic transmission in graphene by Fermi velocity engineering, and show that it is possible to tune the transmitivity from 0 to 1. We also analyze how a Fermi velocity modulation influences the total conductance and the Fano factor.more » Our results are relevant for the development of novel graphene-based electronic devices.« less
Use of Fermi-Dirac statistics for defects in solids
NASA Astrophysics Data System (ADS)
Johnson, R. A.
1981-12-01
The Fermi-Dirac distribution function is an approximation describing a special case of Boltzmann statistics. A general occupation probability formula is derived and a criterion given for the use of Fermi-Dirac statistics. Application to classical problems of defects in solids is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari-Moghanjoughi, M.
Based on the quantum hydrodynamics (QHD) model, a new relationship between the electrostatic-potential and the electron-density in the ultradense plasma is derived. Propagation of arbitrary amplitude nonlinear ion waves is, then, investigated in a completely degenerate dense dusty electron-ion plasma, using this new energy relation for the relativistic electrons, in the ground of quantum hydrodynamics model and the results are compared to the case of semiclassical Thomas-Fermi dusty plasma. Based on the standard pseudopotential approach, it is remarked that the Fermi-Dirac plasma, in contrast to the Thomas-Fermi counterpart, accommodates a wide variety of nonlinear excitations such as positive/negative-potential ion solitarymore » and periodic waves, double-layers, and double-wells. It is also remarked that the relativistic degeneracy parameter which relates to the mass-density of plasma has significant effects on the allowed matching-speed range in Fermi-Dirac dusty plasmas.« less
Chen, Xin; Fan, Ruihua; Chen, Yiming; Zhai, Hui; Zhang, Pengfei
2017-11-17
The Sachdev-Ye-Kitaev (SYK) model is a concrete solvable model to study non-Fermi liquid properties, holographic duality, and maximally chaotic behavior. In this work, we consider a generalization of the SYK model that contains two SYK models with a different number of Majorana modes coupled by quadratic terms. This model is also solvable, and the solution shows a zero-temperature quantum phase transition between two non-Fermi liquid chaotic phases. This phase transition is driven by tuning the ratio of two mode numbers, and a nonchaotic Fermi liquid sits at the critical point with an equal number of modes. At a finite temperature, the Fermi liquid phase expands to a finite regime. More intriguingly, a different non-Fermi liquid phase emerges at a finite temperature. We characterize the phase diagram in terms of the spectral function, the Lyapunov exponent, and the entropy. Our results illustrate a concrete example of the quantum phase transition and critical behavior between two non-Fermi liquid phases.
Sources of GeV Photons and the Fermi Results
NASA Astrophysics Data System (ADS)
Dermer, Charles D.
This chapter presents the elaborated lecture notes on Sources of GeV Photons and the Fermi Results given by Charles D. Dermer at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". The Fermi Gamma-ray Space Telescope made important discoveries and established new results in various areas of astrophysics: from our solar system to remote gamma-ray bursts, from pulsar physics to limits on dark matter and Lorentz invariance violations. The author gives a broad overview of these results by discussing GeV instrumentation and the GeV sky as seen by Fermi, the Fermi catalogs on gamma-ray sources, pulsars and active galactic nuclei, relativistic jet physics and blazars, gamma-rays from cosmic rays in the Galaxy, from star-forming galaxies and from clusters of galaxies, the diffuse extra-galactic gamma-ray background, micro-quasars, radio galaxies, the extragalactic background light, gamma-ray bursts, Fermi acceleration, ultra-high energy cosmic rays, and black holes.
Gap Solitons of Superfluid Fermi Gas in FS Optical Lattices
NASA Astrophysics Data System (ADS)
Chen, Yan; Zhang, Ke-Zhi; He, Yong-Lin; Liu, Zhen-Lai; Zhu, Liao
2018-01-01
By employing the mean-field theory and hydrodynamic scheme, we study the gap solitons of superfluid Fermi gas in Fourier-Synthesized(FS) optical lattices. By means of numerical methods and variational approximation, the atomic interaction, the chemical potential, the potential depth of the lattice and relative phase of the Fermi system are derived along the Bose-Enstein condensation(BEC)side to the Bardeen-Cooper-Schrieffer (BCS)side. It means that the condition exciting gap solitons is obtained. Moreover, we analyze the fundamental gap soltions of the superfluid Fermi gas. It is found that the relative phase α impacts greatly on the properties of fundamental gap solitons for superfluid Fermi gas. Especially, the nonlinearity interaction term g decreases with α. Add, due to Fermi pressure, curvature changes of g in the BEC limit( γ = 1, here, γ is a function of an interaction parameter) is larger than that at unitary ( γ = 2/3). Spatial distribution of gap solitons exhibit very obvious different when the system transit from the BEC side to BCS side.
Y. M. Dai; Miao, H.; Xing, L. Y.; ...
2015-09-15
A series of LiFe 1–xCo xAs compounds with different Co concentrations by transport, optical spectroscopy, angle-resolved photoemission spectroscopy, and nuclear magnetic resonance. We observe a Fermi-liquid to non-Fermi-liquid to Fermi-liquid (FL-NFL-FL) crossover alongside a monotonic suppression of the superconductivity with increasing Co content. In parallel to the FL-NFL-FL crossover, we find that both the low-energy spin fluctuations and Fermi surface nesting are enhanced and then diminished, strongly suggesting that the NFL behavior in LiFe 1–xCo xAs is induced by low-energy spin fluctuations that are very likely tuned by Fermi surface nesting. Our study reveals a unique phase diagram of LiFemore » 1–xCo xAs where the region of NFL is moved to the boundary of the superconducting phase, implying that they are probably governed by different mechanisms.« less
Quasi-continuous transition from a Fermi liquid to a spin liquid in κ-(ET)2Cu2(CN)3.
Furukawa, Tetsuya; Kobashi, Kazuhiko; Kurosaki, Yosuke; Miyagawa, Kazuya; Kanoda, Kazushi
2018-01-22
The Mott metal-insulator transition-a manifestation of Coulomb interactions among electrons-is known as a discontinuous transition. Recent theoretical studies, however, suggest that the transition is continuous if the Mott insulator carries a spin liquid with a spinon Fermi surface. Here, we demonstrate the case of a quasi-continuous Mott transition from a Fermi liquid to a spin liquid in an organic triangular-lattice system κ-(ET) 2 Cu 2 (CN) 3 . Transport experiments performed under fine pressure tuning have found that as the Mott transition is approached, the Fermi liquid coherence temperature continuously falls to the scale of kelvins, with a divergent quasi-particle decay rate on the metal side, and the charge gap continuously closes on the insulator side. A Clausius-Clapeyron analysis provides thermodynamic evidence for the extremely weak first-order nature of the transition. These results provide additional support for the existence of a spinon Fermi surface, which becomes an electron Fermi surface when charges are delocalized.
Helling, Thomas S; Kaswan, Sumesh; Boccardo, Justin; Bost, James E
2010-09-01
Resident duty hour restriction was instituted to improve patient safety, but actual impact on patient care is unclear. We sought to determine the effect of duty hour restriction on trauma outcomes in Level I trauma centers (TCs; surgery residency programs) versus Level II TCs (those with no surgery residency programs) within the state of Pennsylvania, using noninferiority as our hypothesis testing. Outcomes (mortality and length of stay [LOS]) were compared in Level II TCs without surgery residencies (n = 7) with Level I TCs (with surgery residencies; n = 14) PRE80 (2001-2003) and POST80 (2004-2007). The subcategories of critically injured patients, Injury Severity Score (ISS) >15, ISS >25, Trauma and Injury Severity Score (TRISS) ≤ 50, Abbreviated Injury Scale (AIS) head/chest/abdomen score >3, age >65 years, mechanism, and shock, functioned as outcome predictors. There was a decrease in mortality overall PRE80 to POST80 for Level I and II TCs. There was a decrease in mortality in Level I TCs POST80 in ISS >15 (16.5% vs. 14.8%, p = 0.0001), AIS (head) score >3 (20.8% vs. 17.8%, p < 0.0001), age >65 years (12.2% vs. 10.7%, p = 0.0013), and blunt mechanism (5.2% vs. 4.6%, p = 0.0004). LOS was reduced in ISS >15, AIS (head) score >3, age >65 years, and penetrating mechanism in Level I TCs POST80. A similar but more profound decrease was also seen in Level II TCs PRE80 and POST80 (ISS >15, 25; AIS (head) score; shock; blunt mechanism; and TRISS ≤ 50). Testing for inhomogeneity identified less-severely injured patients at Level II TCs POST80 compared with Level I TCs in certain subcategories (ISS >15, 25; AIS (head) score; shock; blunt mechanism; and TRISS ≤ 50) regarding mortality and LOS (TRISS >50%). Decreases in mortality and LOS during the study periods were likely not related to resident work hour restriction but rather to overall improvement in outcomes seen at Level II (no residents) and Level I (residents) TCs. Resident work hour restrictions had no discernible effect on patient care (noninferiority).
Dayal, Arjun; O’Connor, Daniel M.; Qadri, Usama
2017-01-01
Importance Although implicit bias in medical training has long been suspected, it has been difficult to study using objective measures, and the influence of sex and gender in the evaluation of medical trainees is unknown. The emergency medicine (EM) milestones provide a standardized framework for longitudinal resident assessment, allowing for analysis of resident performance across all years and programs at a scope and level of detail never previously possible. Objective To compare faculty-observed training milestone attainment of male vs female residency training Design, Setting, and Participants This multicenter, longitudinal, retrospective cohort study took place at 8 community and academic EM training programs across the United States from July 1, 2013, to July 1, 2015, using a real-time, mobile-based, direct-observation evaluation tool. The study examined 33 456 direct-observation subcompetency evaluations of 359 EM residents by 285 faculty members. Main Outcomes and Measures Milestone attainment for male and female EM residents as observed by male and female faculty throughout residency and analyzed using multilevel mixed-effects linear regression modeling. Results A total of 33 456 direct-observation evaluations were collected from 359 EM residents (237 men [66.0%] and 122 women [34.0%]) by 285 faculty members (194 men [68.1%] and 91 women [31.9%]) during the study period. Female and male residents achieved similar milestone levels during the first year of residency. However, the rate of milestone attainment was 12.7% (0.07 levels per year) higher for male residents through all of residency (95% CI, 0.04-0.09). By graduation, men scored approximately 0.15 milestone levels higher than women, which is equivalent to 3 to 4 months of additional training, given that the average resident gains approximately 0.52 levels per year using our model (95% CI, 0.49-0.54). No statistically significant differences in scores were found based on faculty evaluator gender (effect size difference, 0.02 milestone levels; 95% CI for males, −0.09 to 0.11) or evaluator-evaluatee gender pairing (effect size difference, −0.02 milestone levels; 95% CI for interaction, −0.05 to 0.01). Conclusions and Relevance Although male and female residents receive similar evaluations at the beginning of residency, the rate of milestone attainment throughout training was higher for male than female residents across all EM subcompetencies, leading to a gender gap in evaluations that continues until graduation. Faculty should be cognizant of possible gender bias when evaluating medical trainees. PMID:28264090
Fermi Large Area Telescope third source catalog
Acero, F.; Ackermann, M.; Ajello, M.; ...
2015-06-12
Here, we present the third Fermi Large Area Telescope (LAT) source catalog (3FGL) of sources in the 100 MeV–300 GeV range. Based on the first 4 yr of science data from the Fermi Gamma-ray Space Telescope mission, it is the deepest yet in this energy range. Relative to the Second Fermi LAT catalog, the 3FGL catalog incorporates twice as much data, as well as a number of analysis improvements, including improved calibrations at the event reconstruction level, an updated model for Galactic diffuse γ-ray emission, a refined procedure for source detection, and improved methods for associating LAT sources with potential counterparts at other wavelengths. The 3FGL catalog includes 3033 sources abovemore » $$4\\sigma $$ significance, with source location regions, spectral properties, and monthly light curves for each. Of these, 78 are flagged as potentially being due to imperfections in the model for Galactic diffuse emission. Twenty-five sources are modeled explicitly as spatially extended, and overall 238 sources are considered as identified based on angular extent or correlated variability (periodic or otherwise) observed at other wavelengths. For 1010 sources we have not found plausible counterparts at other wavelengths. More than 1100 of the identified or associated sources are active galaxies of the blazar class; several other classes of non-blazar active galaxies are also represented in the 3FGL. Pulsars represent the largest Galactic source class. As a result, from source counts of Galactic sources we estimate that the contribution of unresolved sources to the Galactic diffuse emission is ~3% at 1 GeV.« less
Factors influencing residents' acceptance (support) of remediation technologies.
Prior, Jason
2018-05-15
An increasing diversity of technologies are being used to remediate contaminated sites, yet there remains little understanding of the level of acceptance that residents living near these sites hold for these technologies, and what factors influence their level of acceptance. This lack of understanding hinders the remediation industry's ability to effectively engage with these residents about remediation technology selection, at a time when such engagement is become part and parcel of remediation policy and practice. The study develops on wider research into public acceptance of technologies, using data from a telephone survey of 2009 residents living near thirteen contaminated sites across Australia. Within the survey acceptance is measured through residents' level of support for the application of remediation technologies in their local area. Firstly, a regression analysis of closed-ended questions, and coding of open-ended questions are combined to identify the main predictors of residents' support for remediation technologies. Secondly, coding of open-ended questions was analysed using Crawford and Ostrom's Institutional Grammar Tool to identify norms and sanctions guiding residents' willingness to negotiate their support. The research identifies factors associated with the residents' personal and demographic characteristics, their physical context and engagement with institution during remediation processes, and the technologies themselves which predict residents' level of support for the application of remediation technologies. Bioremediation technologies had higher levels of support than chemical, thermal and physical technologies. Furthermore, the paper identifies a core set of norms and sanctions residents use to negotiate their level of support for remediation technologies. Copyright © 2017 Elsevier B.V. All rights reserved.
Jin, Xueying; Tamiya, Nanako; Jeon, Boyoung; Kawamura, Akira; Takahashi, Hideto; Noguchi, Haruko
2018-05-01
To determine the resident and facility characteristics associated with residents' care-need level deterioration in long-term care welfare facilities in Japan. A nationally representative sample of 358 886 residents who lived in 3774 long-term care welfare facilities for at least 1 year from October 2012 was obtained from long-term care insurance claims data. Facility characteristics were linked with a survey of institutions and establishments for long-term care in 2012. We used a multilevel logistic regression according to the inclusion and exclusion of lost to follow-up to define the resident and facility characteristics associated with resident care-need level deteriorations (lost to follow-up: the majority were hospitalized residents or had died; were treated as deterioration in the including loss to follow-up model). Adjusting for the covariates, at the resident level, older age and lower care-need level at baseline were more likely to show deterioration in the care-need level. At the facility level, metropolitan facilities, unit model (all private room settings) and mixed-model facilities (partly private room settings) were less likely to experience care-need level deterioration. A higher proportion of registered nurses among all nurses was negatively related to care-need level deterioration only in the model including lost to follow-up. A higher proportion of registered dietitians among all dietitians and the facilities in business for fewer years were negatively associated with care-need level deterioration only in the model excluding lost to follow-up. The present study could help identify residents who are at risk of care-need level deterioration, and could contribute to improvements in provider quality performance and enhance competence in the market. Geriatr Gerontol Int 2018; 18: 758-766. © 2018 The Authors Geriatrics & Gerontology International published by John Wiley & Sons Australia, Ltd on behalf of Japan Geriatrics Society.
Beltempo, Marc; Clement, Karin; Lacroix, Guy; Bélanger, Sylvie; Julien, Anne-Sophie; Piedboeuf, Bruno
2018-02-08
This article assesses the effect of reducing consecutive hours worked by residents from 24 to 16 hours on yearly total hours worked per resident in the neonatal intensive care unit (NICU) and evaluates the association of resident duty hour reform, level of trainee, and the number of residents present at admission with mortality in the NICU. This is a 6-year retrospective cohort study including all pediatric residents working in a Level 3 NICU ( N = 185) and infants admitted to the NICU ( N = 8,159). Adjusted odds ratios (aOR) were estimated for mortality with respect to Epoch (2008-2011 [24-hour shifts] versus 2011-2014 [16-hour shifts]), level of trainee, and the number of residents present at admission. The reduction in maximum consecutive hours worked was associated with a significant reduction of the median yearly total hours worked per resident in the NICU (381 hour vs. 276 hour, p < 0.01). Early mortality rate was 1.2% (50/4,107) before the resident duty hour reform and 0.8% (33/4,052) after the reform (aOR, 0.57; 95% confidence interval [CI], 0.33-0.98). Neither level of trainee (aOR, 1.22; 95% CI, 0.71-2.10; junior vs. senior) nor the number of residents present at admission (aOR, 2.08; 95% CI, 0.43-10.02, 5-8 residents vs. 0-2 residents) were associated with early mortality. Resident duty hour reform was not associated with hospital mortality (aOR, 0.73; 95% CI, 0.50-1.07; after vs. before resident duty hour reform). Resident duty hour restrictions were associated with a reduction in the number of yearly hours worked by residents in the NICU as well as a significant decrease in adjusted odds of early mortality but not of hospital mortality in admitted neonates. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Bartel, Billie J
2014-08-01
This pilot study explored the use of multidisciplinary high-fidelity simulation and additional pharmacist-focused training methods in training postgraduate year 1 (PGY1) pharmacy residents to provide Advanced Cardiovascular Life Support (ACLS) care. Pharmacy resident confidence and comfort level were assessed after completing these training requirements. The ACLS training requirements for pharmacy residents were revised to include didactic instruction on ACLS pharmacology and rhythm recognition and participation in multidisciplinary high-fidelity simulation ACLS experiences in addition to ACLS provider certification. Surveys were administered to participating residents to assess the impact of this additional education on resident confidence and comfort level in cardiopulmonary arrest situations. The new ACLS didactic and simulation training requirements resulted in increased resident confidence and comfort level in all assessed functions. Residents felt more confident in all areas except providing recommendations for dosing and administration of medications and rhythm recognition after completing the simulation scenarios than with ACLS certification training and the didactic components alone. All residents felt the addition of lectures and simulation experiences better prepared them to function as a pharmacist in the ACLS team. Additional ACLS training requirements for pharmacy residents increased overall awareness of pharmacist roles and responsibilities and greatly improved resident confidence and comfort level in performing most essential pharmacist functions during ACLS situations. © The Author(s) 2013.
Two carrier temperatures non-equilibrium generalized Planck law for semiconductors
NASA Astrophysics Data System (ADS)
Gibelli, François; Lombez, Laurent; Guillemoles, Jean-François
2016-10-01
Planck's law of radiation describes the light emitted by a blackbody. This law has been generalized in the past for the case of a non-blackbody material having a quasi Fermi-level splitting: the lattice of the material and the carriers are then considered in an isothermal regime. Hot carrier spectroscopy deals with carriers out of the isothermal regime, as their respective temperatures (THe ≠ THh) are considered to be different than that of the lattice (TL). Here we show that Fermi-Dirac distribution temperature for each type of carrier still determine an effective radiation temperature: an explicit relationship is given involving the effective masses. Moreover, we show how to determine, in principle with an additional approximation, the carrier temperatures (THe, THh) and the corresponding absolute electrochemical potentials from photoluminescence measurements.
Ackermann, M; Albert, A; Anderson, B; Atwood, W B; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bonino, R; Bottacini, E; Brandt, T J; Bregeon, J; Bruel, P; Buehler, R; Caliandro, G A; Cameron, R A; Caputo, R; Caragiulo, M; Caraveo, P A; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cuoco, A; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Desiante, R; Digel, S W; Di Venere, L; Drell, P S; Drlica-Wagner, A; Essig, R; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Guiriec, S; Gustafsson, M; Hays, E; Hewitt, J W; Horan, D; Jogler, T; Jóhannesson, G; Kuss, M; Larsson, S; Latronico, L; Li, J; Li, L; Llena Garde, M; Longo, F; Loparco, F; Lubrano, P; Malyshev, D; Mayer, M; Mazziotta, M N; McEnery, J E; Meyer, M; Michelson, P F; Mizuno, T; Moiseev, A A; Monzani, M E; Morselli, A; Murgia, S; Nuss, E; Ohsugi, T; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Sánchez-Conde, M; Schulz, A; Sehgal, N; Sgrò, C; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Strigari, L; Tajima, H; Takahashi, H; Thayer, J B; Tibaldo, L; Torres, D F; Troja, E; Vianello, G; Werner, M; Winer, B L; Wood, K S; Wood, M; Zaharijas, G; Zimmer, S
2015-12-04
The dwarf spheroidal satellite galaxies (dSphs) of the Milky Way are some of the most dark matter (DM) dominated objects known. We report on γ-ray observations of Milky Way dSphs based on six years of Fermi Large Area Telescope data processed with the new Pass8 event-level analysis. None of the dSphs are significantly detected in γ rays, and we present upper limits on the DM annihilation cross section from a combined analysis of 15 dSphs. These constraints are among the strongest and most robust to date and lie below the canonical thermal relic cross section for DM of mass ≲100 GeV annihilating via quark and τ-lepton channels.
The half-filled Landau level: The case for Dirac composite fermions
NASA Astrophysics Data System (ADS)
Geraedts, Scott D.; Zaletel, Michael P.; Mong, Roger S. K.; Metlitski, Max A.; Vishwanath, Ashvin; Motrunich, Olexei I.
2016-04-01
In a two-dimensional electron gas under a strong magnetic field, correlations generate emergent excitations distinct from electrons. It has been predicted that “composite fermions”—bound states of an electron with two magnetic flux quanta—can experience zero net magnetic field and form a Fermi sea. Using infinite-cylinder density matrix renormalization group numerical simulations, we verify the existence of this exotic Fermi sea, but find that the phase exhibits particle-hole symmetry. This is self-consistent only if composite fermions are massless Dirac particles, similar to the surface of a topological insulator. Exploiting this analogy, we observe the suppression of 2kF backscattering, a characteristic of Dirac particles. Thus, the phenomenology of Dirac fermions is also relevant to two-dimensional electron gases in the quantum Hall regime.
Wang, Limin; Berlijn, Tom; Wang, Yan; Lin, Chia-Hui; Hirschfeld, P J; Ku, Wei
2013-01-18
An unexpected insensitivity of the Fermi surface to impurity scattering is found in Ru substituted BaFe(2)As(2) from first-principles theory, offering a natural explanation of the unusual resilience of transport and superconductivity to a high level of disordered substitution in this material. This robustness is shown to originate from a coherent interference of correlated on-site and intersite impurity scattering, similar in spirit to the microscopic mechanism of superdiffusion in one dimension. Our result also demonstrates a strong substitution dependence of the Fermi surface and carrier concentration and provides a resolution to current discrepancies in recent photoelectron spectroscopy. These effects offer a natural explanation of the diminishing long-range magnetic, orbital, and superconducting orders with high substitution.
Cyclotron resonance mass and Fermi energy pinning in the In(AsN) alloy
NASA Astrophysics Data System (ADS)
Drachenko, O.; Patanè, A.; Kozlova, N. V.; Zhuang, Q. D.; Krier, A.; Eaves, L.; Helm, M.
2011-04-01
We report cyclotron resonance (CR) experiments on the midinfrared alloy InAs1-xNx grown on GaAs with x from 0% to 1.9%. Using magnetic fields up to 60 T and terahertz photon sources from 3 to 30 THz, we determine the dependence on x of the electron density and CR mass. The increase in the carrier density with increasing x is accompanied by a redshift in the interband photoluminescence emission and is explained in terms of the pinning of the Fermi level to its value at x =0. The high carrier densities (˜1018 cm-3) at x˜1% give rise to a CR mass that is only weakly dependent on the excitation energy, significantly weaker than that in InAs.
A New View of the High Energy Gamma-ray Sky with the Fermi Gamma-Ray Space Telescope
NASA Technical Reports Server (NTRS)
McEnery, Julie
2010-01-01
This slide presentation reviews some of the findings that have been made possible by the use of the Fermi Gamma-ray Space Telescope. It describes the current status of the Fermi Telescope and reviews some of the science highlights.
Quantum chaos on a critical Fermi surface.
Patel, Aavishkar A; Sachdev, Subir
2017-02-21
We compute parameters characterizing many-body quantum chaos for a critical Fermi surface without quasiparticle excitations. We examine a theory of [Formula: see text] species of fermions at nonzero density coupled to a [Formula: see text] gauge field in two spatial dimensions and determine the Lyapunov rate and the butterfly velocity in an extended random-phase approximation. The thermal diffusivity is found to be universally related to these chaos parameters; i.e., the relationship is independent of [Formula: see text], the gauge-coupling constant, the Fermi velocity, the Fermi surface curvature, and high-energy details.
Non-Fermi-liquid magic angle effects in high magnetic fields
NASA Astrophysics Data System (ADS)
Lebed, A. G.
2016-07-01
We investigate a theoretical problem of electron-electron interactions in an inclined magnetic field in a quasi-one-dimensional (Q1D) conductor. We show that they result in strong non-Fermi-liquid corrections to a specific heat, provided that the direction of the magnetic field is far from the so-called Lebed's magic angles (LMAs). If magnetic field is directed close to one of the LMAs, the specific heat corrections become small and the Fermi-liquid picture restores. As a result, we predict Fermi-liquid-non-Fermi-liquid angular crossovers in the vicinities of the LMA directions of the field. We suggest to perform the corresponding experiment in the Q1D conductor (Per) 2Au (mnt) 2 under pressure in magnetic fields of the order of H ≃25 T .
FERMI Observations of High-Energy Gamma-Ray Emission from GRB 080825C
Abdo, A. A.; Ackermann, M.; Asano, K.; ...
2009-11-24
The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here in this paper, we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. Finally, we also present some theoretical interpretation ofmore » GRB 080825C observations as well as some common features observed in other LAT GRBs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crabtree, G.W.; Dye, D.H.; Karim, D.P.
1987-02-01
The detailed angular dependence of the Fermi radius k/sub F/, the Fermi velocity v/sub F/(k), the many-body enhancement factor lambda(k), and the superconducting energy gap ..delta..(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas--van Alphen (dHvA) data of Karim, Ketterson, and Crabtree (J. Low Temp. Phys. 30, 389 (1978)), a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained kappa,more » ..cap alpha..', and ..cap alpha..'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor lambda(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of lambda(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap ..delta..(k) is estimated from our results for lambda(k), assuming weak anisotropy.« less
NASA Astrophysics Data System (ADS)
Crabtree, G. W.; Dye, D. H.; Karim, D. P.; Campbell, S. A.; Ketterson, J. B.
1987-02-01
The detailed angular dependence of the Fermi radius kF, the Fermi velocity vF(k), the many-body enhancement factor λ(k), and the superconducting energy gap Δ(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas-van Alphen (dHvA) data of Karim, Ketterson, and Crabtree [J. Low Temp. Phys. 30, 389 (1978)], a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained κ, α', and α'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor λ(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of λ(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap Δ(k) is estimated from our results for λ(k), assuming weak anisotropy.
Fermi bubbles as a source of cosmic rays above 1015 eV
NASA Astrophysics Data System (ADS)
Chernyshov, D. O.; Cheng, K. S.; Dogiel, V. A.; Ko, C. M.
2014-11-01
Fermi bubbles are giant gamma-ray structures extended north and south of the Galactic center with characteristic sizes of order of 10 kpc recently discovered by Fermi Large Area Telescope. Good correlation between radio and gamma-ray emission in the region covered by Fermi bubbles implies the presence of high-energy electrons in this region. Since it is relatively difficult for relativistic electrons of this energy to travel all the way from the Galactic sources toward Fermi bubbles one can assume that they accelerated in-situ. The corresponding acceleration mechanism should also affect the distribution of the relativistic protons in the Galaxy. Since protons have much larger lifetimes the effect may even be observed near the Earth. In our model we suggest that Fermi bubbles are created by acceleration of electrons on series of shocks born due to periodic star accretions by supermassive black hole Sgr A*. We propose that hadronic CR within the 'knee' of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Reacceleration of these particles in the Fermi Bubble produces CRs beyond the knee. This model provides a natural explanation of the observed CR flux, spectral indexes, and matching of spectra at the knee.
Sargent, M Catherine; Sotile, Wayne; Sotile, Mary O; Rubash, Harry; Barrack, Robert L
2009-10-01
A pilot study of two academic training programs revealed concerning levels of resident burnout and psychological dysfunction. The purpose of the present study was to determine the quality of life of orthopaedic residents and faculty on a national scale and to identify risk factors for decompensation. Three hundred and eighty-four orthopaedic residents and 264 full-time orthopaedic faculty members completed a voluntary, anonymous survey consisting of three validated instruments (the Maslach Burnout Inventory, the General Health Questionnaire-12, and the Revised Dyadic Adjustment Scale) and question sets assessing demographic information, relationship issues, stress reactions/management, and work/life balance. High levels of burnout were seen in 56% of the residents and 28% of the faculty members. Burnout risk was greatest among second-postgraduate-year residents and residents in training programs with six or more residents per postgraduate year. Sixteen percent of residents and 19% of faculty members reported symptoms of psychological distress. Sleep deprivation was common among the residents and correlated positively with every distress measure. Faculty reported greater levels of stress but greater satisfaction with work and work/life balance. A number of factors, such as making time for hobbies and limiting alcohol use, correlated with decreased dysfunction for both residents and faculty. Despite reporting high levels of job satisfaction, orthopaedic residents and faculty are at risk for burnout and distress. Identification of protective factors and risk factors may provide guidance to improve the quality of life of academic orthopaedic surgeons in training and beyond.
Carney, Patricia A; Conry, Colleen M; Mitchell, Karen B; Ericson, Annie; Dickinson, W Perry; Martin, James C; Carek, Peter J; Douglass, Alan B; Eiff, M Patrice
2016-04-01
Evolutions in care delivery toward the patient-centered medical home have influenced important aspects of care continuity. Primary responsibility for a panel of continuity patients is a foundational requirement in family medicine residencies. In this paper we characterize challenges in measuring continuity of care in residency training in this new era of primary care. We synthesized the literature and analyzed information from key informant interviews and group discussions with residency faculty and staff to identify the challenges and possible solutions for measuring continuity of care during family medicine training. We specifically focused on measuring interpersonal continuity at the patient level, resident level, and health care team level. Challenges identified in accurately measuring interpersonal continuity of care during residency training include: (1) variability in empanelment approaches for all patients, (2) scheduling complexity in different types of visits, (3) variability in ability to attain continuity counts at the level of the resident, and (4) shifting make-up of health care teams, especially in residency training. Possible solutions for each challenge are presented. Philosophical issues related to continuity are discussed, including whether true continuity can be achieved during residency training and whether qualitative rather than quantitative measures of continuity are better suited to residencies. Measuring continuity of care in residency training is challenging but possible, though improvements in precision and assessment of the comprehensive nature of the relationships are needed. Definitions of continuity during training and the role continuity measurement plays in residency need further study.
Xie, Jiang; Guan, Fei; Wang, Jia-Hong; Hu, Da-Yi
2011-10-01
The community medical center is the first barrier for lipid control. We aimed to survey the residents' cholesterol condition in the community, and pursue the reasons for the upsetting results from various aspects. Residents and physicians were recruited from four community centers. Residents completed questionnaires and a physical examination as well as biochemical analysis. Physicians were also asked to complete a questionnaire, some of which were about basic knowledge of lipids. About 37.0% male and 48.1% female had elevated cholesterol levels. Residents' blood pressure (BP), fasting glucose (FG), body mass index (BMI), and waist circumference (WC) were positively associated with their low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC). Framingham risk scoring (FRS) was strongly related to cholesterol (P < 0.001 for LDL-C and TC). Residents' higher education grade was positively related to a normal cholesterol condition (P < 0.001), while personal income was negatively related to it. Rural residents had higher percent of population with normal cholesterol level (normal cholesterol rate) than their city counterpart (P < 0.001). Although physicians with college education had a much higher lipid knowledge level themselves, the physicians' factors had almost no relationship with the residents' cholesterol levels. Management of hypercholesterolemia should be an important component of health strategy in Beijing. Education is imperative for residents as well as for physicians.
Brühl, Albert; Planer, Katarina; Hagel, Anja
2018-01-01
A validity test was conducted to determine how care level-based nurse-to-resident ratios compare with actual daily care times per resident in Germany. Stability across different long-term care facilities was tested. Care level-based nurse-to-resident ratios were compared with the standard minimum nurse-to-resident ratios. Levels of care are determined by classification authorities in long-term care insurance programs and are used to distribute resources. Care levels are a powerful tool for classifying authorities in long-term care insurance. We used observer-based measurement of assignable direct and indirect care time in 68 nursing units for 2028 residents across 2 working days. Organizational data were collected at the end of the quarter in which the observation was made. Data were collected from January to March, 2012. We used a null multilevel model with random intercepts and multilevel models with fixed and random slopes to analyze data at both the organization and resident levels. A total of 14% of the variance in total care time per day was explained by membership in nursing units. The impact of care levels on care time differed significantly between nursing units. Forty percent of residents at the lowest care level received less than the standard minimum registered nursing time per day. For facilities that have been significantly disadvantaged in the current staffing system, a higher minimum standard will function more effectively than a complex classification system without scientific controls.
Stabilization of Fermi level via electronic excitation in Sn doped CdO thin films
NASA Astrophysics Data System (ADS)
Das, Arkaprava; Singh, Fouran
2018-04-01
Pure and Sn doped CdO sol-gel derived thin films were deposited on corning glass substrate and further irradiated by swift heavy ion (SHI) (Ag and O) with fluence upto 3×1013 ions/cm2. The observed tensile stress from X-ray diffraction pattern at higher fluence for Ag ions can be corroborated to the imbrications of cylindrical tracks due to multiple impacts. The anomalous band gap enhancement after irradiation may be attributed to the consolidated effect of Burstein-Moss shift (BMS) and impurity induced virtual gap states (ViGs). At higher excitation density as Fermi stabilization level (EFS) tends to coincide with charge neutrality level (CNL), band gap enhancement saturates as further creation of additional defects inside the lattice becomes unsustainable. Raman spectroscopy divulges an intensity enhancement of 478 cm-1 LO phonon mode with Sn doping and irradiation induces further asymmetric peak broadening due to damage and disordering inside the lattice. However for 3% Sn doped thin film irradiated with Ag ions having 3×1013 fluence shows a drastic change in structural properties and reduction in band gap which might be attributed to the generation of localized energy levels between conduction and valance band due to high density of defects.
Nikjou, A; Sadeghi, M
2018-06-01
The 123 I radionuclide (T 1/2 = 13.22 h, β+ = 100%) is one of the most potent gamma emitters for nuclear medicine. In this study, the cyclotron production of this radionuclide via different nuclear reactions namely, the 121 Sb(α,2n), 122 Te(d,n), 123 Te(p,n), 124 Te(p,2n), 124 Xe(p,2n), 127 I(p,5n) and 127 I(d,6n) were investigated. The effect of the various phenomenological nuclear level density models such as Fermi gas model (FGM), Back-shifted Fermi gas model (BSFGM), Generalized superfluid model (GSM) and Enhanced generalized superfluid model (EGSM) moreover, the three microscopic level density models were evaluated for predicting of cross sections and production yield predictions. The SRIM code was used to obtain the target thickness. The 123 I excitation function of reactions were calculated by using of the TALYS-1.8, EMPIRE-3.2 nuclear codes and with data which taken from TENDL-2015 database, and finally the theoretical calculations were compared with reported experimental measurements in which taken from EXFOR database. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rybin, Maxim G.; Islamova, Vera R.; Obraztsova, Ekaterina A.; Obraztsova, Elena D.
2018-01-01
Molecular doping is an efficient, non-destructive, and simple method for changing the electronic structure of materials. Here, we present a simple air ambient vapor deposition method for functionalization of pristine graphene with a strong electron acceptor: copper chloride. The doped graphene was characterized by Raman spectroscopy, UV-vis-NIR optical absorption spectroscopy, scanning electron microscopy, and electro-physical measurements performed using the 4-probe method. The effect of charge transfer from graphene to a dopant results in shifting the Fermi level in doped graphene. The change of the electronic structure of doped graphene was confirmed by the tangential Raman peak (G-peak) shift and by the appearance of the gap in the UV-vis-NIR spectrum after doping. Moreover, the charge transfer resulted in a substantial decrease in electrical sheet resistance depending on the doping level. At the highest concentration of copper chloride, a Fermi level shift into the valence band up to 0.64 eV and a decrease in the sheet resistance value by 2.36 times were observed (from 888 Ω/sq to 376 Ω/sq for a single graphene layer with 97% of transparency).
NASA Astrophysics Data System (ADS)
Magnuson, Martin; Mattesini, Maurizio; Bugnet, Matthieu; Eklund, Per
2015-10-01
The anisotropy in the electronic structure of the inherently nanolaminated ternary phase Cr2GeC is investigated by bulk-sensitive and element selective soft x-ray absorption/emission spectroscopy. The angle-resolved absorption/emission measurements reveal differences between the in-plane and out-of-plane bonding at the (0001) interfaces of Cr2GeC. The Cr L 2, 3, C K, and Ge M 1, M 2, 3 emission spectra are interpreted with first-principles density-functional theory (DFT) including core-to-valence dipole transition matrix elements. For the Ge 4s states, the x-ray emission measurements reveal two orders of magnitude higher intensity at the Fermi level than DFT within the General Gradient Approximation (GGA) predicts. We provide direct evidence of anisotropy in the electronic structure and the orbital occupation that should affect the thermal expansion coefficient and transport properties. As shown in this work, hybridization and redistribution of intensity from the shallow 3d core levels to the 4s valence band explain the large Ge density of states at the Fermi level.
Magnuson, Martin; Mattesini, Maurizio; Bugnet, Matthieu; Eklund, Per
2015-10-21
The anisotropy in the electronic structure of the inherently nanolaminated ternary phase Cr2GeC is investigated by bulk-sensitive and element selective soft x-ray absorption/emission spectroscopy. The angle-resolved absorption/emission measurements reveal differences between the in-plane and out-of-plane bonding at the (0001) interfaces of Cr2GeC. The Cr L(2, 3), C K, and Ge M1, M(2, 3) emission spectra are interpreted with first-principles density-functional theory (DFT) including core-to-valence dipole transition matrix elements. For the Ge 4s states, the x-ray emission measurements reveal two orders of magnitude higher intensity at the Fermi level than DFT within the General Gradient Approximation (GGA) predicts. We provide direct evidence of anisotropy in the electronic structure and the orbital occupation that should affect the thermal expansion coefficient and transport properties. As shown in this work, hybridization and redistribution of intensity from the shallow 3d core levels to the 4s valence band explain the large Ge density of states at the Fermi level.
Optical spectroscopy shows that the normal state of URu2Si2 is an anomalous Fermi liquid.
Nagel, Urmas; Uleksin, Taaniel; Rõõm, Toomas; Lobo, Ricardo P S M; Lejay, Pascal; Homes, Christopher C; Hall, Jesse S; Kinross, Alison W; Purdy, Sarah K; Munsie, Tim; Williams, Travis J; Luke, Graeme M; Timusk, Thomas
2012-11-20
Fermi showed that, as a result of their quantum nature, electrons form a gas of particles whose temperature and density follow the so-called Fermi distribution. As shown by Landau, in a metal the electrons continue to act like free quantum mechanical particles with enhanced masses, despite their strong Coulomb interaction with each other and the positive background ions. This state of matter, the Landau-Fermi liquid, is recognized experimentally by an electrical resistivity that is proportional to the square of the absolute temperature plus a term proportional to the square of the frequency of the applied field. Calculations show that, if electron-electron scattering dominates the resistivity in a Landau-Fermi liquid, the ratio of the two terms, b, has the universal value of b = 4. We find that in the normal state of the heavy Fermion metal URu(2)Si(2), instead of the Fermi liquid value of 4, the coefficient b = 1 ± 0.1. This unexpected result implies that the electrons in this material are experiencing a unique scattering process. This scattering is intrinsic and we suggest that the uranium f electrons do not hybridize to form a coherent Fermi liquid but instead act like a dense array of elastic impurities, interacting incoherently with the charge carriers. This behavior is not restricted to URu(2)Si(2). Fermi liquid-like states with b ≠ 4 have been observed in a number of disparate systems, but the significance of this result has not been recognized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massaro, F.; D’Abrusco, R.; Paggi, A.
The Fermi-Large Area Telescope (LAT) First Source Catalog (1FGL) was released in 2010 February and the Fermi-LAT 2-Year Source Catalog (2FGL) appeared in 2012 April, based on data from 24 months of operation. Since they were released, many follow up observations of unidentified γ-ray sources have been performed and new procedures for associating γ-ray sources with potential counterparts at other wavelengths have been developed. Here we review and characterize all of the associations as published in the 1FGL and 2FGL catalogs on the basis of multifrequency archival observations. In particular, we located 177 spectra for the low-energy counterparts that weremore » not listed in the previous Fermi catalogs, and in addition we present new spectroscopic observations of eight γ-ray blazar candidates. Based on our investigations, we introduce a new counterpart category of “candidate associations” and propose a refined classification for the candidate low-energy counterparts of the Fermi sources. We compare the 1FGL-assigned counterparts with those listed in 2FGL to determine which unassociated sources became associated in later releases of the Fermi catalogs. We also search for potential counterparts to all of the remaining unassociated Fermi sources. Finally, we prepare a refined and merged list of all of the associations of 1FGL plus 2FGL that includes 2219 unique Fermi objects. This is the most comprehensive and systematic study of all the associations collected for the γ-ray sources available to date. We conclude that 80% of the Fermi sources have at least one known plausible γ-ray emitter within their positional uncertainty regions.« less
Optical spectroscopy shows that the normal state of URu2Si2 is an anomalous Fermi liquid
Nagel, Urmas; Uleksin, Taaniel; Rõõm, Toomas; Lobo, Ricardo P. S. M.; Lejay, Pascal; Homes, Christopher C.; Hall, Jesse S.; Kinross, Alison W.; Purdy, Sarah K.; Munsie, Tim; Williams, Travis J.; Luke, Graeme M.; Timusk, Thomas
2012-01-01
Fermi showed that, as a result of their quantum nature, electrons form a gas of particles whose temperature and density follow the so-called Fermi distribution. As shown by Landau, in a metal the electrons continue to act like free quantum mechanical particles with enhanced masses, despite their strong Coulomb interaction with each other and the positive background ions. This state of matter, the Landau–Fermi liquid, is recognized experimentally by an electrical resistivity that is proportional to the square of the absolute temperature plus a term proportional to the square of the frequency of the applied field. Calculations show that, if electron-electron scattering dominates the resistivity in a Landau–Fermi liquid, the ratio of the two terms, b, has the universal value of b = 4. We find that in the normal state of the heavy Fermion metal URu2Si2, instead of the Fermi liquid value of 4, the coefficient b = 1 ± 0.1. This unexpected result implies that the electrons in this material are experiencing a unique scattering process. This scattering is intrinsic and we suggest that the uranium f electrons do not hybridize to form a coherent Fermi liquid but instead act like a dense array of elastic impurities, interacting incoherently with the charge carriers. This behavior is not restricted to URu2Si2. Fermi liquid-like states with b ≠ 4 have been observed in a number of disparate systems, but the significance of this result has not been recognized. PMID:23115333
Bradley, Kendall E.
2016-01-01
Objectives To pilot test if Orthopaedic Surgery residents could self-assess their performance using newly created milestones, as defined by the Accreditation Council on Graduate Medical Education. Methods In June 2012, an email was sent to Program Directors and administrative coordinators of the154 accredited Orthopaedic Surgery Programs, asking them to send their residents a link to an online survey. The survey was adapted from the Orthopaedic Surgery Milestone Project. Completed surveys were aggregated in an anonymous, confidential database. SAS 9.3 was used to perform the analyses. Results Responses from 71 residents were analyzed. First and second year residents indicated through self-assessment that they had substantially achieved Level 1 and Level 2 milestones. Third year residents reported they had substantially achieved 30/41, and fourth year residents, all Level 3 milestones. Fifth year, graduating residents, reported they had substantially achieved 17 Level 4 milestones, and were extremely close on another 15. No milestone was rated at Level 5, the maximum possible. Earlier in training, Patient Care and Medical Knowledge milestones were rated lower than the milestones reflecting the other four competencies of Practice Based Learning and Improvement, Systems Based Practice, Professionalism, and Interpersonal Communication. The gap was closed by the fourth year. Conclusions Residents were able to successfully self-assess using the 41 Orthopaedic Surgery milestones. Respondents’ rate improved proficiency over time. Graduating residents report they have substantially, or close to substantially, achieved all Level 4 milestones. Milestone self-assessment may be a useful tool as one component of a program’s overall performance assessment strategy. PMID:26752012
Obstetric training in Emergency Medicine: a needs assessment.
Janicki, Adam James; MacKuen, Courteney; Hauspurg, Alisse; Cohn, Jamieson
2016-01-01
Identification and management of obstetric emergencies is essential in emergency medicine (EM), but exposure to pregnant patients during EM residency training is frequently limited. To date, there is little data describing effective ways to teach residents this material. Current guidelines require completion of 2 weeks of obstetrics or 10 vaginal deliveries, but it is unclear whether this instills competency. We created a 15-item survey evaluating resident confidence and knowledge related to obstetric emergencies. To assess confidence, we asked residents about their exposure and comfort level regarding obstetric emergencies and eight common presentations and procedures. We assessed knowledge via multiple-choice questions addressing common obstetric presentations, pelvic ultrasound image, and cardiotocography interpretation. The survey was distributed to residency programs utilizing the Council of Emergency Medicine Residency Directors (CORD) listserv. The survey was completed by 212 residents, representing 55 of 204 (27%) programs belonging to CORD and 11.2% of 1,896 eligible residents. Fifty-six percent felt they had adequate exposure to obstetric emergencies. The overall comfort level was 2.99 (1-5 scale) and comfort levels of specific presentations and procedures ranged from 2.58 to 3.97; all increased moderately with postgraduate year (PGY) level. Mean overall percentage of items answered correctly on the multiple-choice questions was 58% with no statistical difference by PGY level. Performance on individual questions did not differ by PGY level. The identification and management of obstetric emergencies is the cornerstone of EM. We found preliminary evidence of a concerning lack of resident comfort regarding obstetric conditions and knowledge deficits on core obstetrics topics. EM residents may benefit from educational interventions to increase exposure to these topics.
Medicare payment changes and nursing home quality: effects on long-stay residents.
Konetzka, R Tamara; Norton, Edward C; Stearns, Sally C
2006-09-01
The Balanced Budget Act of 1997 dramatically changed the way that Medicare pays skilled nursing facilities, providing a natural experiment in nursing home behavior. Medicare payment policy (directed at short-stay residents) may have affected outcomes for long-stay, chronic-care residents if services for these residents were subsidized through cost-shifting prior to implementation of Medicare prospective payment for nursing homes. We link changes in both the form and level of Medicare payment at the facility level with changes in resident-level quality, as represented by pressure sores and urinary tract infections in Minimum Data Set (MDS) assessments. Results show that long-stay residents experienced increased adverse outcomes with the elimination of Medicare cost reimbursement.
Fermilab History and Archives Project | Announcement of Renaming NAL
Archives Project Home About the Archives History and Archives Online Request Contact Us History & Fermi Laboratory In 1972 Enrico Fermi, Nobel Laureate Physicist Return to the Wilson Years NAL TO BECOME ENRICO FERMI LABORATORY IN 1972 Dr. Glenn T. Seaborg, Chairman of the Atomic Energy Commission, announced
NASA Astrophysics Data System (ADS)
Delmastro, Marco
2017-12-01
When I settled down to read The Last Man Who Knew Everything by Davis Schwartz, I was asking myself whether there was any need for yet another Enrico Fermi biography. While navigating this ambitious book, I realized that maybe I knew less than I thought about Fermi, and that maybe there was still a lot I could learn.
Unconventional Fermi surface associated with novel quasiparticles in the Kondo insulator SmB6
NASA Astrophysics Data System (ADS)
Sebastian, Suchitra
The search for a Fermi surface in the absence of a Fermi liquid has endured for decades. We present evidence for the realisation of such a state in the Kondo Insulator SmB6, which is an extreme example of Fermi liquid breakdown. Experimental results are presented from complementary techniques including quantum oscillations, specific heat capacity, thermal conductivity, and oscillatory entropy down to low temperatures. An experimental comparison is made with alternative theoretical models that associate novel quasiparticles with the unconventional Fermi surface we uncover in SmB6. A new paradigm for the realisation of a Fermi surface in the absence of conventional quasiparticles is proposed in the vicinity of a Kondo insulator transition. This work was performed in collaboration with M. Hartstein, W. H. Toews, Y.-T. Hsu, B. Zeng, X. Chen, M. Ciomaga Hatnean, Q. R. Zhang, S. Nakamura, A. S. Padgett, G. Rodway-Gant, J. Berk, M. K. Kingston, G. H. Zhang, M. K. Chan, S. Yamashita, T. Sakakibara, Y. Takano, J. -H. Park, L. Balicas, N. Harrison, N. Shitsevalova, G. Balakrishnan, G. G. Lonzarich, R. W. Hill, and M. Sutherland.
The MARS15-based FermiCORD code system for calculation of the accelerator-induced residual dose
NASA Astrophysics Data System (ADS)
Grebe, A.; Leveling, A.; Lu, T.; Mokhov, N.; Pronskikh, V.
2018-01-01
The FermiCORD code system, a set of codes based on MARS15 that calculates the accelerator-induced residual doses at experimental facilities of arbitrary configurations, has been developed. FermiCORD is written in C++ as an add-on to Fortran-based MARS15. The FermiCORD algorithm consists of two stages: 1) simulation of residual doses on contact with the surfaces surrounding the studied location and of radionuclide inventories in the structures surrounding those locations using MARS15, and 2) simulation of the emission of the nuclear decay γ-quanta by the residuals in the activated structures and scoring the prompt doses of these γ-quanta at arbitrary distances from those structures. The FermiCORD code system has been benchmarked against similar algorithms based on other code systems and against experimental data from the CERF facility at CERN, and FermiCORD showed reasonable agreement with these. The code system has been applied for calculation of the residual dose of the target station for the Mu2e experiment and the results have been compared to approximate dosimetric approaches.
Modeling the Virtual Machine Launching Overhead under Fermicloud
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzoglio, Gabriele; Wu, Hao; Ren, Shangping
FermiCloud is a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows. The Cloud Bursting module of the FermiCloud enables the FermiCloud, when more computational resources are needed, to automatically launch virtual machines to available resources such as public clouds. One of the main challenges in developing the cloud bursting module is to decide when and where to launch a VM so that all resources are most effectively and efficiently utilized and the system performance is optimized. However, based on FermiCloud’s system operational data, the VM launching overhead is not a constant. It varies with physical resourcemore » (CPU, memory, I/O device) utilization at the time when a VM is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launch overhead reference model is needed. The paper is to develop a VM launch overhead reference model based on operational data we have obtained on FermiCloud and uses the reference model to guide the cloud bursting process.« less
NASA Astrophysics Data System (ADS)
Chang, Soon Yong
2008-04-01
In the recent years, dilute Fermi gases have played the center stage role in the many-body physics. The gas of neutral alkali atoms such as Lithium-6 and Potassium-40 can be trapped at temperatures below the Fermi degeneracy. The most relevant feature of these gases is that the interaction is tunable and strongly interacting superfluid can be artificially created. I will discuss the recent progress in understanding the ground state properties of the dilute Fermi gases at different interaction regimes. First, I will present the case of the spin symmetric systems where the Fermi gas can smoothly crossover from the BCS regime to the BEC regime. Then, I will discuss the case of the spin polarized systems, where different quantum phases can occur as a function of the polarization. In the laboratory, the trapped Fermi gas shows spatial dependence of the different quantum phases. This can be understood in the context of the local variation of the chemical potential. I will present the most accurate quantum ab initio results and the relevant experiments.
Mak, Winnie W S; Cheung, Rebecca Y M; Law, Lawrence S C
2009-09-01
Sense of community (SOC) has been one of the most studied topics in community psychology. However, no empirical study to date has investigated SOC in Hong Kong and its relations with community characteristics and residents' psychological well-being. A representative sample of 941 Hong Kong Chinese based on a randomized household survey was conducted in all 18 districts in Hong Kong. Results of hierarchical linear modeling indicated that SOC was not associated with sociodemographic indicators on both the individual-level (i.e., gender, age, family income, education level, type of residence, and area-to-capita ratio of residence) and the community-level (i.e., proportion of individuals with tertiary education, median family income, ownership of residence, population density, and resident stability). SOC was negatively related to daily hassles and positively with social support and quality of life. Conceptualization of SOC in Hong Kong was discussed.
Fernández, Cynthia C; Pensa, Evangelina; Carro, Pilar; Salvarezza, Roberto; Williams, Federico J
2018-05-22
The electronic structure of aromatic and aliphatic thiols on Au(111) has been extensively studied in relation to possible applications in molecular electronics. In this work, the effect on the electronic structure of an additional anchor to the S-Au bond using 6-mercaptopurine as a model system has been investigated. Results from X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory (DFT) confirm that this molecule adsorbs on Au(111) with S-Au and iminic N-Au bonds. Combined ultraviolet photoelectron spectroscopy and DFT data reveal that formation of the 6MP self-assembled monolayer generates a molecular dipole perpendicular to the surface, with negative charges residing at the metal/monolayer interface and positive charges at the monolayer/vacuum interface, which lowers the substrate work function. Scanning tunneling microscopy shows two surface molecular domains: a well-ordered rectangular lattice where molecules are tilted on average 30° with respect to the substrate and aligned 6MP islands where molecules are standing upright. Finally, we found a new electronic state located at -1.7 eV with respect to the Fermi level that corresponds to a localized π molecular state, while the state corresponding to the N-Au bond is hybridized with Au d electrons and stabilized at much lower energies (-3 eV).
Improvement of the GaSb/Al2O3 interface using a thin InAs surface layer
NASA Astrophysics Data System (ADS)
Greene, Andrew; Madisetti, Shailesh; Nagaiah, Padmaja; Yakimov, Michael; Tokranov, Vadim; Moore, Richard; Oktyabrsky, Serge
2012-12-01
The highly reactive GaSb surface was passivated with a thin InAs layer to limit interface trap state density (Dit) at the III-V/high-k oxide interface. This InAs surface was subjected to various cleaning processes to effectively reduce native oxides before atomic layer deposition (ALD). Ammonium sulfide pre-cleaning and trimethylaluminum/water ALD were used in conjunction to provide a clean interface and annealing in forming gas (FG) at 350 °C resulted in an optimized fabrication for n-GaSb/InAs/high-k gate stacks. Interface trap density, Dit ≈ 2-3 × 1012 cm-2eV-1 resided near the n-GaSb conductance band which was extracted and compared with three different methods. Conductance-voltage-frequency plots showed efficient Fermi level movement and a sub-threshold slope of 200 mV/dec. A composite high-k oxide process was also developed using ALD of Al2O3 and HfO2 resulting in a Dit ≈ 6-7 × 1012 cm-2eV-1. Subjecting these samples to a higher (450 °C) processing temperature results in increased oxidation and a thermally unstable interface. p-GaSb displayed very fast minority carrier generation/recombination likely due to a high density of bulk traps in GaSb.
Enlivening Introductory Physics With SETI
NASA Astrophysics Data System (ADS)
Hobson, Art
2001-04-01
The search for extraterrestrial intelligence (SETI), popular for years in astronomy courses, is also an excellent topic in physics literacy courses. Space travel, relativity, scientific methodology, pseudoscience, and physics-related societal topics can all be taught within the SETI context. Fermi's question (see Kuiper and Brin, Extraterrestrial Civilization, AAPT 1989, p. 67) is especially appropriate. Enrico Fermi, speculating in 1950 on the number of technological civilizations in our galaxy, concluded that we should have been visited long ago and many times over. Thus one might ask, paraphrasing Fermi, "Where is everybody?" Fermi concluded that either interstellar travel is impossible, or is always judged not to be worth the effort, or technological civilization doesn't last long enough for it to happen. Whether one agrees with Fermi or not, the great physicist's third suggestion is a sobering perspective on the sustainability of Earth-based civilization.
Self-consistent mean-field approach to the statistical level density in spherical nuclei
NASA Astrophysics Data System (ADS)
Kolomietz, V. M.; Sanzhur, A. I.; Shlomo, S.
2018-06-01
A self-consistent mean-field approach within the extended Thomas-Fermi approximation with Skyrme forces is applied to the calculations of the statistical level density in spherical nuclei. Landau's concept of quasiparticles with the nucleon effective mass and the correct description of the continuum states for the finite-depth potentials are taken into consideration. The A dependence and the temperature dependence of the statistical inverse level-density parameter K is obtained in a good agreement with experimental data.
NASA Astrophysics Data System (ADS)
Loomis, John; Smith, Adam; Huszar, Paul
2005-08-01
The contingent valuation method (CVM) was used to estimate homeowners' willingness to pay for water leasing to maintain stable lake levels at an irrigation reservoir in a residential neighborhood. A binary logit model was used to analyze households' voter referendum responses for maintaining the lake level. The median willingness to pay (WTP) was found to be $368 per year for lakefront residents and $59 per year for off-lake residents. The median WTP for lakefront residents was significantly different from off-lake residents at the 90% confidence level. Using the median WTP for lakefront and nonlakefront residents, we found that the increase in homeowner association fees would generate approximately $43,000, enough money to lease sufficient water to reach the target higher lake level in a normal water year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotondo, M.; Rueda, Jorge A.; Xue, S.-S.
The Feynman-Metropolis-Teller treatment of compressed atoms is extended to the relativistic regimes. Each atomic configuration is confined by a Wigner-Seitz cell and is characterized by a positive electron Fermi energy. The nonrelativistic treatment assumes a pointlike nucleus and infinite values of the electron Fermi energy can be attained. In the relativistic treatment there exists a limiting configuration, reached when the Wigner-Seitz cell radius equals the radius of the nucleus, with a maximum value of the electron Fermi energy (E{sub e}{sup F}){sub max}, here expressed analytically in the ultrarelativistic approximation. The corrections given by the relativistic Thomas-Fermi-Dirac exchange term are alsomore » evaluated and shown to be generally small and negligible in the relativistic high-density regime. The dependence of the relativistic electron Fermi energies by compression for selected nuclei are compared and contrasted to the nonrelativistic ones and to the ones obtained in the uniform approximation. The relativistic Feynman-Metropolis-Teller approach here presented overcomes some difficulties in the Salpeter approximation generally adopted for compressed matter in physics and astrophysics. The treatment is then extrapolated to compressed nuclear matter cores of stellar dimensions with A{approx_equal}(m{sub Planck}/m{sub n}){sup 3}{approx}10{sup 57} or M{sub core}{approx}M{sub {circle_dot}}. A new family of equilibrium configurations exists for selected values of the electron Fermi energy varying in the range 0
Stress and coping among orthopaedic surgery residents and faculty.
Sargent, M Catherine; Sotile, Wayne; Sotile, Mary O; Rubash, Harry; Barrack, Robert L
2004-07-01
Evaluations of physicians and residents have revealed concerning levels of psychosocial dysfunction. The purposes of this study were to determine the quality of life of orthopaedic residents and faculty and to identify the risk factors for decompensation. Twenty-one orthopaedic residents and twenty-five full-time orthopaedic faculty completed a 102-question voluntary, anonymous survey. The survey consisted of three validated instruments, i.e., the Maslach Burnout Inventory, the General Health Questionnaire-12, and the Revised Dyadic Adjustment Scale; and three novel question sets addressing background and demographic information, stress reaction and management, and the balance between work and home life. Descriptive statistics, pairwise correlations, simple t tests, and Pearson and nonparametric Spearman correlations were calculated. The simple correlation coefficient was used to assess bivariate relationships. The mean overall quality-of-life score, on a scale of 0 to 4 points, was 2.5 points for residents compared with 3.6 points for faculty members. Residents reported considerable burnout, showing a high level of emotional exhaustion and depersonalization and an average level of personal achievement, whereas faculty reported minimal burnout, showing a low level of emotional exhaustion (p < 0.0003), an average level of depersonalization (p < 0.0001), and a high level of personal achievement (p < 0.0001). Only two of twenty-five faculty members (compared with seven of twenty-one residents) scored over 4 points on the General Health Questionnaire-12, indicating significant symptomatology (p < 0.01). The majority of subjects reported that a partner or spouse showed nondistressed levels of marital adjustment and satisfaction. All residents and nine of the twenty-five faculty members had mentors but judged the resource to be minimally beneficial. Resident burnout and psychiatric morbidity correlated with weekly work hours; conflict between the commitments of work and home life; discord with faculty, nursing staff, and senior residents; debt load; and work-related stress. Protective factors included being a parent, spending time with a spouse, having a physician father, and deriving satisfaction from discussing concerns with colleagues, friends, and family. In pursuit of our goal of determining the quality of life of orthopaedic residents and faculty, we identified a large disparity between the two groups. The resident group reported much greater levels of dysfunction particularly with regard to burnout and psychiatric morbidity. Furthermore, with regard to our second goal; our data revealed a number of risk factors for resident decompensation, most notably, increased workload, high debt levels, and discord with superiors. In addition, our research revealed that the current support interventions by the residency program, including mentoring and facilitation of spousal adjustment, are viewed as being of little help.
Quantum mechanical models for the Fermi shuttle
NASA Astrophysics Data System (ADS)
Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.
2009-05-01
Although the Fermi shuttle was originally proposed as an explanation for highly energetic cosmic rays, it is also a mechanism for the production of high energy electrons in atomic collisions [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for ion-atom collisions and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)
Momentum density and Fermi surface of Nd2-xCexCuO4-δ
NASA Astrophysics Data System (ADS)
Shukla, A.; Barbiellini, B.; Hoffmann, L.; Manuel, A. A.; Sadowski, W.; Walker, E.; Peter, M.
1996-02-01
High-temperature positron two-dimensional angular correlation of annihilation radiation (2D-ACAR) measurements have recently been succesfully applied to map parts of the Fermi surface of YBa2Cu3O7-δ. Using the same principle, we have been able to observe with a bulk sensitive method, the Fermi surface of Nd2-xCexCuO4-δ. Although positron trapping by defects and correlation effects are strong, positron 2D-ACAR measurements provide a signal from the Fermi surface which agrees with band-structure calculations, confirming earlier surface sensitive photoemission experiments.
Fermi arcs vs. fermi pockets in electron-doped perovskite iridates
He, Junfeng; Hafiz, H.; Mion, Thomas R.; ...
2015-02-23
We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr 1-xLa x)₃Ir₂O₇. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr₂IrO₄. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.
Observation of non-Fermi liquid behavior in hole-doped LiFe 1-x V xAs
Xing, L. Y.; Shi, X.; Richard, P.; ...
2016-09-28
Here we synthesized a series of V-doped LiFe 1₋xV xAs single crystals. The superconducting transition temperature T c of LiFeAs decreases rapidly at a rate of 7 K per 1% V. The Hall coefficient of LiFeAs switches from negative to positive with 4.2% V doping, showing that V doping introduces hole carriers. This observation is further confirmed by the evaluation of the Fermi surface volume measured by angle-resolved photoemission spectroscopy (ARPES), from which a 0.3 hole doping per V atom introduced is deduced. Interestingly, the introduction of holes does not follow a rigid band shift. We also show that themore » temperature evolution of the electrical resistivity as a function of doping is consistent with a crossover from a Fermi liquid to a non-Fermi liquid. Our ARPES data indicate that the non-Fermi liquid behavior is mostly enhanced when one of the hole d xz/dyz Fermi surfaces is well nested by the antiferromagnetic wave vector to the inner electron Fermi surface pocket with the d xy orbital character. In conclusion, the magnetic susceptibility of LiFe 1₋xV xAs suggests the presence of strong magnetic impurities following V doping, thus providing a natural explanation to the rapid suppression of superconductivity upon V doping.« less
Observation of non-Fermi liquid behavior in hole-doped LiFe 1-x V xAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, L. Y.; Shi, X.; Richard, P.
Here we synthesized a series of V-doped LiFe 1₋xV xAs single crystals. The superconducting transition temperature T c of LiFeAs decreases rapidly at a rate of 7 K per 1% V. The Hall coefficient of LiFeAs switches from negative to positive with 4.2% V doping, showing that V doping introduces hole carriers. This observation is further confirmed by the evaluation of the Fermi surface volume measured by angle-resolved photoemission spectroscopy (ARPES), from which a 0.3 hole doping per V atom introduced is deduced. Interestingly, the introduction of holes does not follow a rigid band shift. We also show that themore » temperature evolution of the electrical resistivity as a function of doping is consistent with a crossover from a Fermi liquid to a non-Fermi liquid. Our ARPES data indicate that the non-Fermi liquid behavior is mostly enhanced when one of the hole d xz/dyz Fermi surfaces is well nested by the antiferromagnetic wave vector to the inner electron Fermi surface pocket with the d xy orbital character. In conclusion, the magnetic susceptibility of LiFe 1₋xV xAs suggests the presence of strong magnetic impurities following V doping, thus providing a natural explanation to the rapid suppression of superconductivity upon V doping.« less
Burden and stress among psychiatry residents and psychiatric healthcare providers.
Zuardi, Antonio Waldo; Ishara, Sergio; Bandeira, Marina
2011-11-01
The authors compared the levels of job burden and stress in psychiatry residents with those of other healthcare professionals at inpatient and outpatient psychiatric hospitals in a medium-sized Brazilian city. In this study, the levels of job burden and stress of 136 healthcare workers and 36 psychiatry residents from six various psychiatric facilities (two day-hospitals, two inpatient units of psychiatric hospitals, and two general hospitals) were evaluated. All participants completed two rating scales for job burden and stress. Psychiatry residents showed higher job burden and stress than other healthcare workers. There was a negative correlation between the burden scores and age in the sample of employees, but no correlation of burden and age in residents. Psychiatric residents in this study suffered higher levels of job burden and stress than other healthcare professionals, suggesting the need for changes in residency programs to deal with this issue.
Olmos-Vega, Francisco; Dolmans, Diana; Donkers, Jeroen; Stalmeijer, Renée E
2015-10-16
A major challenge for clinical supervisors is to encourage their residents to be independent without jeopardising patient safety. Residents' preferences according to level of training on this regard have not been completely explored. This study has sought to investigate which teaching methods of the Cognitive Apprenticeship (CA) model junior, intermediate and senior residents preferred and why, and how these preferences differed between groups. We invited 301 residents of all residency programmes of Javeriana University, Bogotá, Colombia, to participate. Each resident was asked to complete a Maastricht Clinical Teaching Questionnaire (MCTQ), which, being based on the teaching methods of CA, asked residents to rate the importance to their learning of each teaching method and to indicate which of these they preferred the most and why. A total of 215 residents (71 %) completed the questionnaire. All concurred that all CA teaching methods were important or very important to their learning, regardless of their level of training. However, the reasons for their preferences clearly differed between groups: junior and intermediate residents preferred teaching methods that were more supervisor-directed, such as modelling and coaching, whereas senior residents preferred teaching methods that were more resident-directed, such as exploration and articulation. The results indicate that clinical supervision (CS) should accommodate to residents' varying degrees of development by attuning the configuration of CA teaching methods to each level of residency training. This configuration should initially vest more power in the supervisor, and gradually let the resident take charge, without ever discontinuing CS.
Prince-Embury, S; Rooney, J F
1990-12-01
A study of residents who remained in the vicinity of Three Mile Island (TMI) immediately following the restart of the nuclear generating plant revealed that older residents employed a more emotion-focused coping style in the face of this event than did younger residents. Coping style was, however, unrelated to the level of psychological symptoms for these older residents, whereas demographic variables were related. Among younger residents, on the other hand, coping style was related to the level of psychological symptoms, whereas demographic variables were not. Among younger residents, emotion-focused coping was associated with more symptoms and problem-focused coping was associated with fewer symptoms, contradicting previous findings among TMI area residents.
Selected Health Practices Among Ohio's Rural Residents.
ERIC Educational Resources Information Center
Phillips, G. Howard; Pugh, Albert
Using a stratified random sample of 12 of Ohio's 88 counties, this 1967 study had as its objectives (1) to measure the level of participation in selected health practices by Ohio's rural residents, (2) to compare the level of participation in selected health practices of farm and rural nonfarm residents, and (3) to examine levels of participation…
Tsubokura, Masaharu; Kato, Shigeaki; Nomura, Shuhei; Gilmour, Stuart; Nihei, Masahiko; Sakuma, Yu; Oikawa, Tomoyoshi; Kanazawa, Yukio; Kami, Masahiro; Hayano, Ryugo
2014-01-01
Maintaining low levels of chronic internal contamination among residents in radiation-contaminated areas after a nuclear disaster is a great public health concern. However, the efficacy of reduction measures for individual internal contamination remains unknown. To reduce high levels of internal radiation exposure in a group of individuals exposed through environmental sources, we performed careful dietary intervention with identification of suspected contaminated foods, as part of mass voluntary radiation contamination screenings and counseling program in Minamisoma Municipal General Hospital and Hirata Central Hospital. From a total of 30,622 study participants, only 9 residents displayed internal cesium-137 (Cs-137) levels of more than 50 Bq/kg. The median level of internal Cs-137 contamination in these residents at the initial screening was 4,830 Bq/body (range: 2,130–15,918 Bq/body) and 69.6 Bq/kg (range: 50.7–216.3 Bq/kg). All these residents with high levels of internal contamination consumed homegrown produce without radiation inspection, and often collected mushrooms in the wild or cultivated them on bed-logs in their homes. They were advised to consume distributed food mainly and to refrain from consuming potentially contaminated foods without radiation inspection and local produces under shipment restrictions such as mushrooms, mountain vegetables, and meat of wild life. A few months after the intervention, re-examination of Cs levels revealed remarkable reduction of internal contamination in all residents. Although the levels of internal radiation exposure appear to be minimal amongst most residents in Fukushima, a subset of the population, who unknowingly consumed highly contaminated foodstuffs, experienced high levels of internal contamination. There seem to be similarities in dietary preferences amongst residents with high internal contamination levels, and intervention based on pre- and post-test counseling and dietary advice from medical care providers about risky food intake appears to be a feasible option for changing residents' dietary practices, subsequently resulting in a reduction in Cs internal contamination levels. PMID:24932486
Communication skills of residents to families with Down syndrome babies.
Dogan, Derya G; Kutluturk, Yesim; Kivilcim, Meltem; Canaloglu, Sinem K
2016-12-01
Generally, pediatricians are the first health caregivers to deliver initial diagnosis of Down syndrome (DS) to the families. However, most of the parents are not satisfied with the contents and how they receive information when their child is born with DS. Pediatric residents should target educational interventions to help parents to overcome with these issues and to provide accurate information. The objective is to assess comfort levels and training requirements of pediatric residents to communicate with parents of babies born with Down syndrome. Diagnostic Situations Inventory (DSI) is a rating scale which included ten questions to assess discomfort level. A survey was sent via mobile, websites and all the social media which were available to all pediatrics residents in the country. Socio-demographic factors including information about training requirement were collected as well. From the 326 participants, total mean discomfort level was 30.22 in DSI out of 50 which was the highest score. Discomfort level was significantly increased in female participants (p= 0.033). Being female (p= 0.014), having less residency level (p= 0.028), examining less number of patients with Down syndrome (p= 0.025) and having higher discomfort levels (p= 0.001) were found to be related with increased training requirement. From the residents, 84% declared the need for additional training. This study showed that pediatric residents had a high level of discomfort when communicating with parentes of newborn with Down Syndrome. Female residentes had a discomfort level significantly higher than male residentes. Sociedad Argentina de Pediatría
Li, Su-Ting T; Tancredi, Daniel J; Schwartz, Alan; Guillot, Ann P; Burke, Ann E; Trimm, R Franklin; Guralnick, Susan; Mahan, John D; Gifford, Kimberly A
2017-03-01
To describe clinical skills progression during pediatric residency using the distribution of pediatric milestone assessments by subcompetency and year of training and to determine reasonable milestone expectations at time of graduation. Multi-institutional cohort study of the milestones reported to the Accreditation Council for Graduate Medical Education for all 21 pediatric subcompetencies. Most subcompetencies were measured using five milestone levels (1 = novice, 2 = advanced beginner, 3 = competent, 4 = proficient, 5 = master); 3 subcompetencies had only four levels defined. Milestone assessments for 2,030 pediatric residents in 47 programs during academic year 2013-2014 were obtained. There was significant variation in end-of-year milestone ratings for residents within each level of training, which decreased as training level increased. Most (78.9%; 434/550) graduating third-year pediatric residents received a milestone rating of ≥ 3 in all 21 subcompetencies; fewer (21.1%; 116/550) received a rating of ≥ 4 in all subcompetencies. Across all training levels, professionalism and interpersonal communication skills were rated highest; quality improvement was rated lowest. Trainees entered residency with a wide range of skills. As they advanced, skill variability within a training level decreased. Most graduating pediatric residents were still advancing on the milestone continuum toward proficiency and mastery, and an expectation of milestone ratings ≥ 4 in all categories upon graduation is unrealistic; milestone ratings ≥ 3 upon graduation may be more realistic. Understanding current pediatric residents' and graduates' skills can help to identify key areas that should be specifically targeted during training.
A correlation between hard gamma-ray sources and cosmic voids along the line of sight
Furniss, A.; Sutter, P. M.; Primack, J. R.; ...
2014-11-25
We estimate the galaxy density along lines of sight to hard extragalactic gamma-ray sources by correlating source positions on the sky with a void catalog based on the Sloan Digital Sky Survey (SDSS). Extragalactic gamma-ray sources that are detected at very high energy (VHE; E > 100 GeV) or have been highlighted as VHE-emitting candidates in the Fermi Large Area Telescope hard source catalog (together referred to as “VHE-like” sources) are distributed along underdense lines of sight at the 2.4σ level. There is a less suggestive correlation for the Fermi hard source population (1.7σ). A correlation between 10-500 GeV fluxmore » and underdense fraction along the line of sight for VHE-like and Fermi hard sources is found at 2.4σ and 2.6σ, calculated from the Pearson correlation coefficients of r = 0.57 and 0.47, respectively. The preference for underdense sight lines is not displayed by gamma-ray emitting galaxies within the second Fermi catalog, containing sources detected above 100 MeV, or the SDSS DR7 quasar catalog. We investigate whether this marginal correlation might be a result of lower extragalactic background light (EBL) photon density within the underdense regions and find that, even in the most extreme case of a entirely underdense sight line, the EBL photon density is only 2% less than the nominal EBL density. Translating this into gamma-ray attenuation along the line of sight for a highly attenuated source with opacity τ(E, z) ~ 5, we estimate that the attentuation of gamma-rays decreases no more than 10%. This decrease, although non-neglible, is unable to account for the apparent hard source correlation with underdense lines of sight.« less
Fermi/LAT observations of lobe-dominant radio galaxy 3C 207 and possible radiation region of γ-rays
NASA Astrophysics Data System (ADS)
Guo, Sheng-Chu; Zhang, Hai-Ming; Zhang, Jin; Liang, En-Wei
2018-06-01
3C 207 is a lobe-dominant radio galaxy with a one sided jet and bright knots, spanning a kpc-Mpc scale, which have been resolved in the radio, optical and X-ray bands. This target was confirmed as a γ-ray emitter with Fermi/LAT, but it is uncertain whether the γ-ray emission region is the core or knots due to the low spatial resolution of Fermi/LAT. We present an analysis of its Fermi/LAT data acquired during the past 9 years. Different from the radio and optical emission from the core, it is found that the γ-ray emission is steady without detection of flux variation at over a 2σ confidence level. This likely implies that the γ-ray emission is from its knots. We collect the radio, optical and X-ray data of knot-A, the closest knot from the core at 1.4″, and compile its spectral energy distribution (SED). Although the single-zone synchrotron+SSC+IC/CMB model that assumes knot-A is at rest can reproduce the SED in the radio-optical-X-ray band, the predicted γ-ray flux is lower than the LAT observations and the derived magnetic field strength deviates from the equipartition condition by 3 orders of magnitude. Assuming that knot-A is moving relativistically, its SED from radio to γ-ray bands would be represented well with the single-zone synchrotron+SSC+IC/CMB model under the equipartition condition. These results likely suggest that the γ-ray emission may be from knot-A via the IC/CMB process and the knot should have relativistical motion. The jet power derived from our model parameters is also roughly consistent with the kinetic power estimated with radio data.
Tanaka, Y. T.; Cheung, C. C.; Inoue, Y.; ...
2013-10-18
Here, we report the Fermi Large Area Telescope (LAT) detection of two very-high-energy (VHE, E > 100 GeV) γ-ray photons from the directional vicinity of the distant (redshift, z = 1.1) blazar PKS 0426–380. The null hypothesis that both the 134 and 122 GeV photons originate from unrelated sources can be rejected at the 5.5σ confidence level. We therefore claim that at least one of the two VHE photons is securely associated with PKS 0426–380, making it the most distant VHE emitter known to date. The results are in agreement with recent Fermi-LAT constraints on the extragalactic background light (EBL)more » intensity, which imply a z sime 1 horizon for sime 100 GeV photons. The LAT detection of the two VHE γ-rays coincided roughly with flaring states of the source, although we did not find an exact correspondence between the VHE photon arrival times and the flux maxima at lower γ-ray energies. Modeling the γ-ray continuum of PKS 0426–380 with daily bins revealed a significant spectral hardening around the time of the first VHE event detection (LAT photon index Γ sime 1.4) but on the other hand no pronounced spectral changes near the detection time of the second one. This combination implies a rather complex variability pattern of the source in γ-rays during the flaring epochs. An additional flat component is possibly present above several tens of GeV in the EBL-corrected Fermi-LAT spectrum accumulated over the ~8 month high state.« less
Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blume, D.; Daily, K. M.
We treat small trapped unequal-mass two-component Fermi gases at unitarity within a nonperturbative microscopic framework and investigate the system properties as functions of the mass ratio {kappa}, and the numbers N{sub 1} and N{sub 2} of heavy and light fermions. While equal-mass Fermi gases with infinitely large interspecies s-wave scattering length a{sub s} are universal, we find that unequal-mass Fermi gases are, for sufficiently large {kappa} and in the regime where Efimov physics is absent, not universal. In particular, the (N{sub 1},N{sub 2})=(2,1) and (3, 1) systems exhibit three-body and four-body resonances at {kappa}=12.314(2) and 10.4(2), respectively, as well asmore » surprisingly large finite-range effects. These findings have profound implications for ongoing experimental efforts and quantum simulation proposals that utilize unequal-mass atomic Fermi gases.« less
Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons
NASA Astrophysics Data System (ADS)
Su, Yue-Hua; Lu, Han-Tao
2018-04-01
One challenge in contemporary condensed matter physics is to understand unconventional electronic physics beyond the paradigm of Landau Fermi-liquid theory. Here, we present a perspective that posits that most such examples of unconventional electronic physics stem from restrictions on the degrees of freedom of quantum electrons in Landau Fermi liquids. Since the degrees of freedom are deeply connected to the system's symmetries and topology, these restrictions can thus be realized by external constraints or by interaction-driven processes via the following mechanisms: (i) symmetry breaking, (ii) new emergent symmetries, and (iii) nontrivial topology. Various examples of unconventional electronic physics beyond the reach of traditional Landau Fermi liquid theory are extensively investigated from this point of view. Our perspective yields basic pathways to study the breakdown of Landau Fermi liquids and also provides a guiding principle in the search for novel electronic systems and devices.
Effective field theories for superconducting systems with multiple Fermi surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braga, P.R., E-mail: pedro.rangel.braga@gmail.com; Granado, D.R., E-mail: diegorochagrana@uerj.br; Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent
2016-11-15
In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defectsmore » and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.« less
Experiments with Ultracold Quantum-degenerate Fermionic Lithium Atoms
NASA Technical Reports Server (NTRS)
Ketterle, Wolfgang
2003-01-01
Experimental methods of laser and evaporative cooling, used in the production of atomic Bose-Einstein condensates have recently been extended to realize quantum degeneracy in trapped Fermi gases. Fermi gases are a new rich system to explore the implications of Pauli exclusion on scattering properties of the system, and ultimately fermionic superfluidity. We have produced a new macroscopic quantum system, in which a degenerate Li-6 Fermi gas coexists with a large and stable Na-23 BEC. This was accomplished using inter-species sympathetic cooling of fermionic 6Li in a thermal bath of bosonic Na-23. We have achieved high numbers of both fermions (less than 10(exp 5) and bosons (less than 10(exp 6), and Li-6 quantum degeneracy corresponding to one half of the Fermi temperature. This is the first time that a Fermi sea was produced with a condensate as a "refrigerator".
NASA Astrophysics Data System (ADS)
Ezawa, Motohiko
2017-07-01
We propose a type of Hopf semimetal indexed by a pair of numbers (p ,q ) , where the Hopf number is given by p q . The Fermi surface is given by a preimage of the Hopf map, which consists of loops nontrivially linked for a nonzero Hopf number. The Fermi surface forms a torus link, whose examples are a Hopf link indexed by (1 ,1 ) , Solomon's knot (2 ,1 ) , a double Hopf link (2 ,2 ) , and a double trefoil knot (3 ,2 ) . We may choose p or q to be a half integer, where the Fermi surface is a torus knot, such as a trefoil knot (3 /2 ,1 ) . It is even possible to make the Hopf number an arbitrary rational number, where a semimetal whose Fermi surface forms open strings is generated.
Vortex Lattices in the Bose-Fermi Superfluid Mixture.
Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui
2017-02-24
In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.
NASA Astrophysics Data System (ADS)
Bahauddin, Shah Mohammad; Mehedi Faruk, Mir
2016-09-01
From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.