Science.gov

Sample records for fermilab accumulator magnets

  1. Guidelines for the Calculation of the Accumulator Magnet Bus Ramps for Fermilab Experiment E835

    SciTech Connect

    McGinnis, Dave; Stancari, Giulio; Werkema, Steve; /Fermilab

    1999-04-15

    This report lists the steps that are required to calculate deceleration ramps for all relevant Accumulator devices. The ramps used for the 1996-97 fixed target run (experiment E835) are saved in files associated with ACNET console application PA1627 (PAUX RAMP DEVELOP). These ramps cannot be re-used because the Accumulator {gamma}{sub t} upgrade has significantly changed the lattice since the last time the ramps were used. Consequently, new deceleration ramps must be calculated and commissioned before the next fixed target run. The deceleration ramp for a particular device is a table that gives the sequence of set values sent to the device as the ramp is executed. The 1997 ramps consist of ramp tables for 100 devices. Appendix 1 gives a list of the devices ramped. Most of these devices will still require ramps for the next fixed target run. Future decelerations will also require ramps for the quadrupole magnet shunts that were installed as part of the {gamma}{sub t} upgrade. Additionally, ramps must be constructed for the two skew-sextupole magnets that will be installed during the summer of 1999.

  2. Status of antiproton accumulation and cooling at Fermilab's Recycler

    SciTech Connect

    Prost, L.R.; Bhat, C.M.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Crisp, J.; Derwent, P.; Eddy, N.; Gattuso, C.; Hu, M.; Pruss, S.; /Fermilab

    2009-08-01

    The Recycler ring is an 8 GeV permanent magnet storage ring where antiprotons are accumulated and prepared for Fermilab's Tevatron Collider program. With the goal of maximizing the integrated luminosity delivered to the experiments, storing, cooling and extracting antiprotons with high efficiency has been pursued. Over the past two years, while the average accumulation rate doubled, the Recycler continued to operate at a constant level of performance thanks to changes made to the Recycler Electron Cooler (energy stability and regulation, electron beam optics), RF manipulations and operating procedures. In particular, we discuss the current accumulation cycle in which {approx} 400 x 10{sup 10} antiprotons are accumulated and extracted to the Tevatron every {approx}15 hours.

  3. HTS power lead testing at the Fermilab magnet test facility

    SciTech Connect

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  4. Magnetic field data on Fermilab Energy-Saver quadrupoles

    SciTech Connect

    Schmidt, E.E.; Brown, B.C.; Cooper, W.E.; Fisk, H.E.; Gross, D.A.; Hanft, R.; Ohnuma, S.; Turkot, F.T.

    1983-03-01

    The Fermilab Energy Saver/Doubler (Tevatron) accelerator contains 216 superconducting quadrupole magnets. Before installation in the Tevatron ring, these magnets plus an additional number of spares were extensively tested at the Fermilab Magnet Test Facility (MTF). Details on the results of the tests are presented here.

  5. Magnet reliability in the Fermilab Main Injector and implications for the ILC

    SciTech Connect

    Tartaglia, M.A.; Blowers, J.; Capista, D.; Harding, D.J.; Kiemschies, O.; Rahimzadeh-Kalaleh, S.; Tompkins, J.C.; /Fermilab

    2007-08-01

    The International Linear Collider reference design requires over 13000 magnets, of approximately 135 styles, which must operate with very high reliability. The Fermilab Main Injector represents a modern machine with many conventional magnet styles, each of significant quantity, that has now accumulated many hundreds of magnet-years of operation. We review here the performance of the magnets built for this machine, assess their reliability and categorize the failure modes, and discuss implications for reliability of similar magnet styles expected to be used at the ILC.

  6. The Fermilab recycler ring

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  7. Cryomdoule Test Stand Reduced-Magnetic Support Design at Fermilab

    SciTech Connect

    McGee, Mike; Chandrasekaran, Saravan Kumar; Crawford, Anthony; Harms, Elvin; Leibfritz, Jerry; Wu, Genfa

    2016-06-01

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These devices will be tested at Fermilab's Cryomodule Test Facility (CMTF) within the Cryomodule Test Stand (CMTS-1) cave. The problem of magnetic pollution became one of major issues during design stage of the LCLS-II cryomodule as the average quality factor of the accelerating cavities is specified to be 2.7 x 10¹⁰. One of the possible ways to mitigate the effect of stray magnetic fields and to keep it below the goal of 5 mGauss involves the application of low permeable materials. Initial permeability and magnetic measurement studies regarding the use of 316L stainless steel material indicated that cold work (machining) and heat affected zones from welding would be acceptable.

  8. Magnetic field measurements of full length 50 mm aperture SSC dipole magnets at Fermilab

    SciTech Connect

    Strait, J.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Mazur, P.O.; Mokhtarani, A.; Orris, D.; Ozelis, J.; Wake, M. ); Devred, A.; DiMarco, J.; Kuzminski, J.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H. ); Ogitsu, T. (Supe

    1992-09-01

    Thirteen 16 m long, 50 mm aperture SSC dipole magnets, designed jointly by Fermilab, Brookhaven National Laboratory, Lawrence Berkeley Laboratory and the SSC Laboratory, have been built at Fermilab. The first nine magnets have been fully tested to date. The allowed harmonics are systematically shifted from zero by amounts larger than the specification. The unallowed harmonics, with the exception of the skew sextupole, are consistent with zero. The magnet-to-magnet RMS variation of all harmonics is much smaller than the specification.

  9. The use of the Fermilab antiproton Accumulator in medium energy physics experiments

    SciTech Connect

    Bharadwaj, V.; Church, M.; Harms, E.; Hsueh, S.Y.; Kells, W.; MacLachlan, J.; Marsh, W.; McCarthy, J.; Pastrone, N.; Peoples, J.

    1988-06-07

    The Fermilab antiprotron Accumulator has been modified for use in a medium energy experiment. The experiment is conducted with circulating antiproton beam of momentum between 6.7 GeV/c and 3.7 GeV/c colliding with protons from an internal gas jet. Antiprotons are accumulated at the normal momentum of 8.9 GeV/c and then decelerated to the appropriate energy. It is necessary to cool the beam continually during the time it is colliding with the gas jet. The experiment requires new provisions for the control of magnet power supplies and low level rf system and modifications of the cooling system and high level energy systems to permit variable energy operation. Transition must be crossed to decelerate the beam below 5 GeV/c; because the deceleration is very slow, transition can not be crossed in a conventional manner. This paper will describe the required changes to the Accumulator and operating experience with protons. 8 refs., 2 figs., 1 tab.

  10. Magnetic performance of new Fermilab high gradient quadrupoles

    SciTech Connect

    Hanft, R.; Brown, B.C.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; McInturff, A.D.; Mokhtarani, A.; Riddiford, A.

    1991-05-01

    For the Fermilab Tevatron low beta insertions installed in 1990--1991 as part of a luminosity upgrade there were built approximately 35 superconducting cold iron quadrupoles utilizing a two layer cos 2{theta} coil geometry with 76 mm diameter aperature. The field harmonics and strengths of these magnets obtained by measurement at cryogenic conditions are presented. Evidence for a longitudinal periodic structure in the remnant field is shown. 6 refs., 2 figs., 3 tabs.

  11. Magnetic shielding for the Fermilab Vertical Cavity Test Facility

    SciTech Connect

    Ginsburg, Camille M.; Reid, Clark; Sergatskov, Dmitri A.; /Fermilab

    2008-09-01

    A superconducting RF cavity has to be shielded from magnetic fields present during cool down below the critical temperature to avoid freezing in the magnetic flux at localized impurities, thereby degrading the cavity intrinsic quality factor Q{sub 0}. The magnetic shielding designed for the Fermilab vertical cavity test facility (VCTF), a facility for CW RF vertical testing of bare ILC 1.3 GHz 9-cell SRF cavities, was recently completed. For the magnetic shielding design, we used two cylindrical layers: a room temperature 'outer' shield of Amumetal (80% Ni alloy), and a 2K 'inner' shield of Cryoperm 10. The magnetic and mechanical design of the magnetic shielding and measurement of the remanent magnetic field inside the shielding are described.

  12. Quench performance of Fermilab/General Dynamics built full length SSC collider dipole magnets

    SciTech Connect

    Strait, J.; Orris, D.; Mazur, P.O.; Bleadon, M.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Kuchnir, M.; Lamm, M.J.; Ozelis, J.; Wake, M. ); Devred, A.; DiMarco, J.; Kuzminski, J.; Nah, W.; Ogitsu, T.; Puglisi, M.; Tompkins, J.C.; Yu, Y.; Zhao, Y.; Zheng, H. )

    1992-04-01

    In this paper we present results of quench testing of full length SSC dipole magnets at Fermilab. The data are from the first six of a series of thirteen 15 m long, 50 mm aperture SSC dipole magnets which are being built and tested at Fermilab. These magnets were designed jointly by Fermilab, Brookhaven Laboratory, Lawrence Berkeley Laboratory and the SSC laboratory. Among the major goals for this series of magnets are to transfer magnet production technology to the lead vendor for the Collider Dipole Magnet, the General Dynamics Corporation, and to demonstrate industrial production by the vendor. The first magnet in the series, DCA311, was built by Fermilab technicians to establish assembly procedures. The second magnet, DCA312, was the ''technology transfer magnet'' and was built jointly by Fermilab and General Dynamics technicians. The next seven, DCA313- 319 are being built by General Dynamics personnel using Fermilab facilities and procedures. However, Fermilab personnel still operate the major tooling, provide the welders, perform assembly of items that would not be part of production magnets (e.g. voltage taps), and oversee the QA program. Five of these 7 GD-built magnets will be used in the Accelerator Systems String Test (ASST) to be carried out in Dallas later this year. The last four magnets, DCA320-323, are being built by Fermilab alone.

  13. New pulsed orbit bump magnets for the Fermilab Booster Synchrotron

    SciTech Connect

    Lackey, J.R.; Carson, J.A.; Ginsburg, C.M.; Glass, H.D.; Harding, D.J.; Kashikhin, V.S.; Makarov, A.; Prebys, E.J.; /Fermilab

    2005-05-01

    The beam from the Fermilab Linac is injected onto a bump in the closed orbit of the Booster Synchrotron where a carbon foil strips the electrons from the Linac's negative ion hydrogen beam. Although the Booster itself runs at 15 Hz, heat dissipation in the orbit bump magnets has been one limitation to the fraction of the cycles that can be used for beam. New 0.28 T pulsed dipole magnets have been constructed that will fit into the same space as the old ones, run at the full repetition rate of the Booster, and provide a larger bump to allow a cleaner injection orbit. The new magnets use a ferrite in the yoke rather than laminated steel.

  14. Magnetic field properties of Fermilab Energy-Saver dipoles

    SciTech Connect

    Hanft, R.; Brown, B.C.; Cooper, W.E.; Gross, D.A.; Michelotti, L.; Schmidt, E.E.; Turkot, F.

    1983-03-01

    At Fermilab we have operated a production line for the fabrication of 901 21 foot long superconducting dipoles for use in the Energy Saver/Doubler. At any one time 772 of these dipoles are installed in the accelerator and 62 in beamlines; the remainder are spares. Magnetic field data are now available for most of these dipoles; in this paper we present some of these data which show that we have been able to maintain the necessary consistency in field quality throughout the production process. Specifically we report harmonic field coefficients, showing that the mechanical design permits substantial reduction of the magnitudes of the normal and skew quadrupole harmonic coefficients; field shape profiles; integral field data; and field angle data.

  15. Solenoid Magnet System for the Fermilab Mu2e Experiment

    DOE PAGES

    Lamm, M. J.; Andreev, N.; Ambrosio, G.; ...

    2011-12-14

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoidmore » at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.« less

  16. Solenoid Magnet System for the Fermilab Mu2e Experiment

    SciTech Connect

    Lamm, M. J.; Andreev, N.; Ambrosio, G.; Brandt, J.; Coleman, R.; Evbota, D.; Kashikhin, V. V.; Lopes, M.; Miller, J.; Nicol, T.; Ostojic, R.; Page, T.; Peterson, T.; Popp, J.; Pronskikh, V.; Tang, Z.; Tartaglia, M.; Wake, M.; Wands, R.; Yamada, R.

    2011-12-14

    The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an 'S shaped' transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoid at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion elections. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.

  17. Hybrid permanent magnet quadrupoles for the Recycler Ring at Fermilab

    SciTech Connect

    Brown, B.C.; Pruss, S.M.; Foster, G.W.; Glass, H.D.; Harding, D.J.; Jackson, G.R.; May, M.R.; Nicol, T.H.; Ostiguy, J.-F.; Schlabach, R.; Volk, J.T.

    1997-10-01

    Hybrid Permanent Magnet Quadrupoles are used in several applications for the Fermilab Recycler Ring and associated beam transfer lines. Most of these magnets use a 0.6096 m long iron shell and provide integrated gradients up to 1.4 T-m/m with an iron pole tip radius of 41.6 mm. A 58.4 mm pole radius design is also required. Bricks of 25. 4 mm thick strontium ferrite supply the flux to the back of the pole to produce the desired gradients (0.6 to 2.75 T/m). For temperature compensation, Ni-Fe alloy strips are interspersed between ferrite bricks to subtract flux in a temperature dependent fashion. Adjustments of the permeance of each pole using iron between the pole and the flux return shell permits the matching of pole potentials. Magnetic potentials of the poles are adjusted to the desired value to achieve the prescribed strength and field uniformity based on rotating coil harmonic measurements. Procurement, fabrication, pole potential adjustment, and measured fields will be reported.

  18. The magnetic design and field measurement of Fermilab collider detectors: CDF (the Collider Detector at Fermilab) and D0

    SciTech Connect

    Yamada, R.

    1990-02-01

    General magnetic characteristics of the CDF and D0 hadron collider detectors at Fermilab are described. The method and equipment for the field measurement for both detectors are described, and their field measurement data are presented. The magnetic field distribution inside the CDF solenoid magnet was measured extensively only at the boundaries, and the field values inside the volume were reconstructed. The effects due to the joints and the return conductor were measured and are discussed. The flux distribution inside the yokes and the fringing field of the D0 toroids were calculated and compared with measured data. A proposal to generate dipole magnetic field inside the D0 toroidal magnet is discussed. 9 refs., 6 figs.

  19. The Fermilab Main Injector Dipole construction techniques and prototype magnet measurements

    SciTech Connect

    Bleadon, M.E.; Brown, B.C.; Chester, N.S.; Desavouret, E.; Garvey, J.D.; Glass, H.D.; Harding, D.J.; Harfoush, F.A.; Holmes, S.D.; Humbert, J.C. )

    1992-01-01

    The Fermilab Main Injector Project will provide 120-150 GeV Proton and Antiproton Beams for Fermilab Fixed Target Physics and Colliding Beams Physics use. A dipole magnet has been designed and prototypes constructed for the principal bending magnets of this new accelerator. In this paper the design considerations and fabrication techniques are described. Measurement results on prototypes are reported, emphasizing the field uniformity achieved in both body field and end field at excitation levels from injection at 0.1 T to full field of 1.7 T.

  20. The Fermilab main injector dipole construction techniques and prototype magnet measurements

    SciTech Connect

    Bleadon, M.; Brown, B.; Chester, N.; Desavouret, E.; Garvey, J.; Glass, H.; Harding, D.; Harfoush, F.; Holmes, S.; Humbert, J.; Kerby, J.; Knauf, A.; Kobliska, G.; Lipski, A.; Martin, P.; Mazur, P.; Orris, D.; Ostiguy, J.; Peggs, S.; Pachnik, J.; Pewitt, E.; Satti, J.; Schmidt, E.; Sim, J.; Snowdon, S.; Walbridge, D.

    1991-09-01

    The Fermilab Main Injector Project will provide 120--150 GeV Proton and Antiproton Beams for Fermilab Fixed Target Physics and Colliding Beams Physics use. A dipole magnet has been designed and prototypes constructed for the principal bending magnets of this new accelerator. The design considerations and fabrication techniques are described. Measurement results on prototypes are reported, emphasizing the field uniformity achieved in both body field and end field at excitation levels from injection at 0.1 T to full field of 1.7 T. 6 refs., 5 figs., 3 tabs.

  1. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    SciTech Connect

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab`s new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long.

  2. Development of Rutherford-type cables for high field accelerator magnets at Fermilab

    SciTech Connect

    Andreev, N.; Barzi, E.; Borissov, E.; Elementi, L.; Kashikhin, V.S.; Lombardo, V.; Rusy, A.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2006-08-01

    Fermilab's cabling facility has been upgraded to a maximum capability of 42 strands. This facility is being used to study the effect of cabling on the performance of the various strands, and for the development and fabrication of cables in support of the ongoing magnet R&D programs. Rutherford cables of various geometries, packing factors, with and without a stainless steel core, were fabricated out of Cu alloys, NbTi, Nb{sub 3}Al, and various Nb{sub 3}Sn strands. The parameters of the upgraded cabling machine and results of cable R&D efforts at Fermilab are reported.

  3. The measurement of the anomalous magnetic moment of the muon at Fermilab

    DOE PAGES

    Logashenko, I.

    2015-06-17

    The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment, E989, now under construction at Fermilab, is a fourfold improvement in precision. Furthermore, we discuss the details of the future measurement and its current status.

  4. The Measurement of the Anomalous Magnetic Moment of the Muon at Fermilab a)

    NASA Astrophysics Data System (ADS)

    Logashenko, I.; Grange, J.; Winter, P.; Carey, R. M.; Hazen, E.; Kinnaird, N.; Miller, J. P.; Mott, J.; Roberts, B. L.; Crnkovic, J.; Morse, W. M.; Sayed, H. Kamal; Tishchenko, V.; Druzhinin, V. P.; Shatunov, Y. M.; Bjorkquist, R.; Chapelain, A.; Eggert, N.; Frankenthal, A.; Gibbons, L.; Kim, S.; Mikhailichenko, A.; Orlov, Y.; Rider, N.; Rubin, D.; Sweigart, D.; Allspach, D.; Barzi, E.; Casey, B.; Convery, M. E.; Drendel, B.; Freidsam, H.; Johnstone, C.; Johnstone, J.; Kiburg, B.; Kourbanis, I.; Lyon, A. L.; Merritt, K. W.; Morgan, J. P.; Nguyen, H.; Ostiguy, J.-F.; Para, A.; Polly, C. C.; Popovic, M.; Ramberg, E.; Rominsky, M.; Soha, A. K.; Still, D.; Walton, T.; Yoshikawa, C.; Jungmann, K.; Onderwater, C. J. G.; Debevec, P.; Leo, S.; Pitts, K.; Schlesier, C.; Anastasi, A.; Babusci, D.; Corradi, G.; Hampai, D.; Palladino, A.; Venanzoni, G.; Dabagov, S.; Ferrari, C.; Fioretti, A.; Gabbanini, C.; Di Stefano, R.; Marignetti, S.; Iacovacci, M.; Mastroianni, S.; Di Sciascio, G.; Moricciani, D.; Cantatore, G.; Karuza, M.; Giovanetti, K.; Baranov, V.; Duginov, V.; Khomutov, N.; Krylov, V.; Kuchinskiy, N.; Volnykh, V.; Gaisser, M.; Haciomeroglu, S.; Kim, Y.; Lee, S.; Lee, M.; Semertzidis, Y. K.; Won, E.; Fatemi, R.; Gohn, W.; Gorringe, T.; Bowcock, T.; Carroll, J.; King, B.; Maxfield, S.; Smith, A.; Teubner, T.; Whitley, M.; Wormald, M.; Wolski, A.; Al-Kilani, S.; Chislett, R.; Lancaster, M.; Motuk, E.; Stuttard, T.; Warren, M.; Flay, D.; Kawall, D.; Meadows, Z.; Syphers, M.; Tarazona, D.; Chupp, T.; Tewlsey-Booth, A.; Quinn, B.; Eads, M.; Epps, A.; Luo, G.; McEvoy, M.; Pohlman, N.; Shenk, M.; de Gouvea, A.; Welty-Rieger, L.; Schellman, H.; Abi, B.; Azfar, F.; Henry, S.; Gray, F.; Fu, C.; Ji, X.; Li, L.; Yang, H.; Stockinger, D.; Cauz, D.; Pauletta, G.; Santi, L.; Baessler, S.; Frlez, E.; Pocanic, D.; Alonzi, L. P.; Fertl, M.; Fienberg, A.; Froemming, N.; Garcia, A.; Hertzog, D. W.; Kammel, P.; Kaspar, J.; Osofsky, R.; Smith, M.; Swanson, E.; Lynch, K.

    2015-09-01

    The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment, E989, now under construction at Fermilab, is a fourfold improvement in precision. Here, we discuss the details of the future measurement and its current status.

  5. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    SciTech Connect

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab's new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long.

  6. System overview for the multi-element corrector magnets and controls for the Fermilab Booster

    SciTech Connect

    Drennan, C.; Ball, M.; Franck, A.R.; Harding, D.J.; Kasley, P.A.; Krafczyk, G.E.; Kucera, M.J.; Lackey, J.; McArthur, D.; Misek, J.; Pellico, W.; /Fermilab

    2007-06-01

    To better control the beam position, tune, and chromaticity in the Fermilab Booster synchrotron, a new package of six corrector elements has been designed, incorporating both normal and skew orientations of dipole, quadrupole, and sextupole magnets. The devices are under construction and will be installed in 48 locations in the Booster accelerator. Each of these 288 corrector magnets will be individually powered. Each of the magnets will be individually controlled using operator programmed current ramps designed specifically for each type of Booster acceleration cycle. This paper provides an overview of the corrector magnet installation in the accelerator enclosure, power and sensor interconnections, specifications for the switch-mode power supplies, rack and equipment layouts, controls and interlock electronics, and the features of the operator interface for programming the current ramps and adjusting the timing of the system triggers.

  7. A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab

    SciTech Connect

    Orris, D.; Carcagno, R.; Nogiec, J.; Rabehl, R.; Sylvester, C.; Tartaglia, M.

    2013-09-01

    Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls with data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.

  8. Test results from Fermilab 1.5 m model SSC collider dipole magnets

    SciTech Connect

    Koska, W.; Bossert, R.; Carson, J.; Coulter, K.J.; Delchamps, S.; Gourlay, S.; Jaffery, T.S.; Kinney, W.; Lamm, M.J.; Ozelis, J.P.; Strait, J.; Wake, M.

    1991-09-01

    We will present results from tests of 1.5 m model SSC collider dipole magnets. These R&D magnets are identical to the 15 m full length dipoles currently being assembled at Fermilab in all important aspects except length. Because of their small size they can be built faster and tested more extensively than the long magnets. The model magnets are used to optimize design parameters for, and to indicate the performance which can be expected from, the 15 m magnets. The are instrumented with voltage taps over the first two current blocks for quench localization and with several arrays of strain gauge transducers for the study of mechanical behavior. The stress at the poles of the inner and outer coils is monitored during construction and, along with end force and shell strain, during excitation. Magnetic measurements are made several times during each magnet`s lifetime, including at operating temperature and field. We will report on studies of the quench performance, mechanical behavior and magnetic field of these magnets.

  9. Measurements of the persistent current decay and snapback effect in Nb3Sn Fermilab-built accelerator prototype magnets

    SciTech Connect

    Velev, G.V.; Chlachidze, G.; DiMarco, J.; Kashikhin, V.V.; /Fermilab

    2012-05-01

    In recent years, Fermilab has been performing an intensive R an D program on Nb{sub 3}Sn accelerator magnets. This program has included dipole and quadrupole magnets for different programs and projects, including LARP and VLHC. A systematic study of the persistent current decay and snapback effect in the fields of these magnets was executed at the Fermilab Magnet Test Facility. The decay and snapback were measured under a range of conditions including variations of the current ramp parameters and flattop and injection plateau durations. This study has mostly focused on the dynamic behavior of the normal sextupole and dodecapole components in dipole and quadrupole magnets respectively. The paper summarizes the recent measurements and presents a comparison with previously measured NbTi magnets.

  10. Fermilab R and D test facility for SSC (Superconducting Super Collider) magnets

    SciTech Connect

    Strait, J.; Bleadon, M.; Hanft, R.; Lamm, M.; McGuire, K.; Mantsch, P.; Mazur, P.O.; Orris, D.; Pachnik, J.

    1989-02-01

    The test facility used for R and D testing of full scale development dipole magnets for the SSC is described. The Fermilab Magnet Test Facility, originally built for production testing of Tevatron magnets, has been substantially modified to allow testing also of SSC magnets. Two of the original six test stands have been rebuilt to accommodate testing of SSC magnets at pressures between 1.3 Atm and 4 Atm and at temperatures between 1.8 K and 4.8 K and the power system has been modified to allow operation to at least 8 kA. Recent magnets have been heavily instrumented with voltage taps to allow detailed study of quench location and propagation and with strain gage based stress, force and motion transducers. A data acquisition system has been built with a capacity to read from each SSC test stand up to 220 electrical quench signals, 32 dynamic pressure, temperature and mechanical transducer signals during quench and up to 200 high precision, low time resolution, pressure, temperature and mechanical transducer signals. The quench detection and protection systems is also described. 23 refs., 4 figs., 2 tabs.

  11. Achieving a precision field in the muon g-2 storage ring magnet at Fermilab

    NASA Astrophysics Data System (ADS)

    Swanson, H. Erik; Muon g-2 Collaboration Collaboration

    2016-09-01

    The Muon g-2 Experiment at Fermilab will measure the anomalous magnetic moment aμ of the muon. The target precision is 140 parts per billion (ppb), a four-fold improvement over the previous Brookhaven E821 measurement which found a 3.5 standard deviation discrepancy from the Standard Model prediction. This precision requires knowing the magnetic field strength in the muon storage ring with an uncertainty of 70 ppb. The magnet is first shimmed to achieve an average uniformity of one part per million (ppm). The field in the muon storage volume will be periodically measured and continuously monitored using proton NMR with single shot precision of 10 ppb. This magnet was successfully commissioned in October, 2015 and the shimming of the field to achieve the ultimate uniformity has been ongoing since that time. We will present the final results of this year-long process, describing some of the unique instrumentation and analysis routines we have developed along the way. DOE Grant DE-FG02-97ER41020.

  12. Summary of the Persistent Current Effect Measurements in Nb 3 Sn and NbTi Accelerator Magnets at Fermilab

    DOE PAGES

    Velev, G. V.; Chlachidze, G.; DiMarco, J.; ...

    2016-01-06

    In the past 10 years, Fermilab has been executing an intensive R&D program on accelerator magnets based on Nb3Sn superconductor technology. This R&D effort includes dipole and quadrupole models for different programs, such as LARP and 11 T dipoles for the LHC high-luminosity upgrade. Before the Nb3Sn R&D program, Fermilab was involved in the production of the low-beta quadrupole magnets for LHC based on the NbTi superconductor. Additionally, during the 2003-2005 campaign to optimize the operation of the Tevatron, a large number of Tevatron magnets were re-measured. As a result of this field analysis, a systematic study of the persistentmore » current decay and snapback effect in these magnets was performed. This paper summarizes the result of this study and presents a comparison between Nb3Sn and NbTi dipoles and quadrupoles.« less

  13. Fermilab recycler diagnostics

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler Ring is a permanent magnet storage ring for the storage and cooling of antiprotons. The following note describes the diagnostic tools currently available for commissioning, as well as the improvements and upgrades planned for the near future.

  14. Overview of torus magnet coil production at Fermilab for the Jefferson Lab 12-GeV Hall B upgrade

    DOE PAGES

    Krave, S.; Velev, G.; Makarov, A.; ...

    2016-02-29

    Fermi National Accelerator Laboratory (Fermilab) fabricated the torus magnet coils for the 12 GeV Hall B upgrade at Jefferson Laboratory (JLab). The production consisted of 6 large superconducting coils for the magnet and 2 spare coils. The toroidal field coils are approximately 2 m x 4 m x 5 cm thick. Each of these coils consists of two layers, each of which has 117 turns of copper-stabilized superconducting cable which will be conduction cooled by helium gas. Due to the size of the coils and their unique geometry, Fermilab designed and fabricated specialized tooling and, together with JLab, developed uniquemore » manufacturing techniques for each stage of the coil construction. In conclusion, this paper describes the tooling and manufacturing techniques required to produce the six production coils and two spare coils needed by the project.« less

  15. Overview of torus magnet coil production at Fermilab for the Jefferson Lab 12-GeV Hall B upgrade

    SciTech Connect

    Krave, S.; Velev, G.; Makarov, A.; Nobrega, F.; Kiemschies, O.; Robotham, B.; Elementi, L.; Elouadrhiri, Latifa; Luongo, Cesar; Kashy, David H.; Wiseman, Mark A.

    2016-02-29

    Fermi National Accelerator Laboratory (Fermilab) fabricated the torus magnet coils for the 12 GeV Hall B upgrade at Jefferson Laboratory (JLab). The production consisted of 6 large superconducting coils for the magnet and 2 spare coils. The toroidal field coils are approximately 2 m x 4 m x 5 cm thick. Each of these coils consists of two layers, each of which has 117 turns of copper-stabilized superconducting cable which will be conduction cooled by helium gas. Due to the size of the coils and their unique geometry, Fermilab designed and fabricated specialized tooling and, together with JLab, developed unique manufacturing techniques for each stage of the coil construction. In conclusion, this paper describes the tooling and manufacturing techniques required to produce the six production coils and two spare coils needed by the project.

  16. Electron accumulation layer in ultrastrong magnetic field

    NASA Astrophysics Data System (ADS)

    Sammon, M.; Fu, Han; Shklovskii, B. I.

    2017-02-01

    When a three-dimensional electron gas is subjected to a very strong magnetic field, it can reach a quasi-onedimensional state in which all electrons occupy the lowest Landau level. This state is referred to as the extreme quantum limit ( EQL ) and has been studied in the physics of pulsars and bulk semiconductors. Here we present a theory of the EQL phase in electron accumulation layers created by an external electric field E at the surface of a semiconductor with a large Bohr radius such as InSb , PbTe , SrTiO 3 ( STO ) , and particularly in the LaA 1 O 3 / SrTiO 3 ( LAO / STO ) heterostructure. The phase diagram of the electron gas in the plane of the magnetic field strength and the electron surface concentration is found for different orientations of the magnetic field. We find that in addition to the quasi-classical metallic phase ( M ), there is a metallic EQL phase, as well as an insulating Wigner crystal state ( WC ). Within the EQL phase, the Thomas-Fermi approximation is used to find the electron density and the electrostatic potential profiles of the accumulation layer. Additionally, the quantum capacitance for each phase is calculated as a tool for experimental study of these phase diagrams.

  17. Thermally induced magnon accumulation in two-sublattice magnets

    NASA Astrophysics Data System (ADS)

    Ritzmann, Ulrike; Hinzke, Denise; Nowak, Ulrich

    2017-02-01

    We present a temperature-dependent study of the thermal excitation of a magnon accumulation in two-sublattice magnetic materials. Using atomistic spin model simulations, we study the local magnetization profiles sublattice-wise in the vicinity of a temperature step in antiferromagnets, as well as in ferrimagnets. It is shown that the strength of the magnon accumulation in these systems scales with the derivative of the magnetization with respect to the temperature. These results give an insight into the complex temperature dependence of the magnon accumulation by making a direct link to the macroscopic behavior of the magnetization.

  18. Fermilab recycler stochastic cooling commissioning and performance

    SciTech Connect

    D. Broemmelsiek; Ralph Pasquinelli

    2003-06-04

    The Fermilab Recycler is a fixed 8 GeV kinetic energy storage ring located in the Fermilab Main Injector tunnel near the ceiling. The Recycler has two roles in Run II. First, to store antiprotons from the Fermilab Antiproton Accumulator so that the antiproton production rate is no longer compromised by large numbers of antiprotons stored in the Accumulator. Second, to receive antiprotons from the Fermilab Tevatron at the end of luminosity periods. To perform each of these roles, stochastic cooling in the Recycler is needed to preserve and cool antiprotons in preparation for transfer to the Tevatron. The commissioning and performance of the Recycler stochastic cooling systems will be reviewed.

  19. The Fermilab Main Injector

    SciTech Connect

    Mishra, C.S.

    1992-11-01

    The Fermilab Main Injector is a new 150 GeV proton synchrotron, designed to replace the Main Ring and improve the high energy physics potential of Fermilab. The status of the Fermilab accelerator complex upgrade will be discussed.

  20. Impedances and beam stability issues of the Fermilab recycler ring

    SciTech Connect

    Ng, King-Yuen

    1996-04-01

    The Fermilab Recycler Ring (permanent magnets) will be built on top of the Fermilab Main Injector sharing the same tunnel; its main function is to recycle the anti-protons after a store in the Tevatron and to provide storage for them after after accumulation and cooling in the Accumulator. Estimates of coupling impedances show domination by space charge. Examination of longitudinal instabilities shows that microwave instability will not occur if there are only N = 2.53 x 10{sup 12} anti-protons in the beam. Longitudinal coupling-bunch instability during injection stacking does not appear possible because of long bunch lengths/short bunch gaps and lack of sharp resonances. Transverse instability, on the other hand, cannot be Landau damped by the momentum spread in the beam, but it can be cured by a small spread in the betatron tunes (either from space charge or an octupole).

  1. Charge accumulation due to spin transport in magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Zhu, Yao-Hui; Xu, Deng-Hui; Geng, Ai-Cong

    2014-08-01

    Starting with the Valet-Fert theory of the current-perpendicular-to-plane giant magnetoresistance, we studied the charge accumulation due to spin transport in magnetic multilayers by solving Poisson's equation analytically. Our results show that, in ferromagnetic layers, the charge accumulation has two exponential terms with opposite signs and different decaying lengths: the Thomas-Fermi screening length (on the order of angstrom) and the spin diffusion length (tens of nm in 3d ferromagnetic metals). The charge accumulation on the scale of the screening length is spin-unpolarized and also present in spin-independent transport in nonmagnetic multilayers. However, the charge accumulation on the scale of the spin diffusion length is spin-polarized and shows up only in ferromagnetic layers. Our analysis also provides new insights into the widely used quasi-neutrality approximation, which neglects the charge accumulation.

  2. Summary of the Persistent Current Effect Measurements in Nb 3 Sn and NbTi Accelerator Magnets at Fermilab

    SciTech Connect

    Velev, G. V.; Chlachidze, G.; DiMarco, J.; Stoynev, S. E.

    2016-01-06

    In the past 10 years, Fermilab has been executing an intensive R&D program on accelerator magnets based on Nb3Sn superconductor technology. This R&D effort includes dipole and quadrupole models for different programs, such as LARP and 11 T dipoles for the LHC high-luminosity upgrade. Before the Nb3Sn R&D program, Fermilab was involved in the production of the low-beta quadrupole magnets for LHC based on the NbTi superconductor. Additionally, during the 2003-2005 campaign to optimize the operation of the Tevatron, a large number of Tevatron magnets were re-measured. As a result of this field analysis, a systematic study of the persistent current decay and snapback effect in these magnets was performed. This paper summarizes the result of this study and presents a comparison between Nb3Sn and NbTi dipoles and quadrupoles.

  3. Kickers and power supplies for the Fermilab Tevatron I antiproton source

    SciTech Connect

    Castellano, T.; Bartoszek, L.; Tilles, E.; Petter, J.; McCarthy, J.

    1985-05-01

    The Fermilab Antiproton Source Accumulator and Debuncher rings require 5 kickers in total. These range in design from conventional ferrite delay line type magnets, with ceramic beam tubes to mechanically complex shuttered kickers situated entirely in the Accumulator Ring's 10/sup -10/ torr vacuum. Power supplies are thyratron switched pulse forming networks that produce microsecond width pulses of several kiloamps with less than 30 nanoseconds rise and fall times. Kicker and power supply design requirements for field strength, vacuum, rise and fall time, timing and magnetic shielding of the stacked beam in the accumulator by the eddy current shutter will be discussed. 8 refs., 3 figs., 2 tabs.

  4. The Muon g-2 experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Chapelain, Antoine

    2017-03-01

    The upcoming Fermilab E989 experiment will measure the muon anomalous magnetic moment aμ. This measurement is motivated by the previous measurement performed in 2001 by the BNL E821 experiment that reported a 3-4 standard deviation discrepancy between the measured value and the Standard Model prediction. The new measurement at Fermilab aims to improve the precision by a factor of four reducing the total uncertainty from 540 parts per billion (BNL E821) to 140 parts per billion (Fermilab E989). This paper gives the status of the experiment.

  5. Summary of Fermilab's Recycler Electron Cooler Operation and Studies

    SciTech Connect

    Prost, L.R.; Shemyakin, A.; /Fermilab

    2012-05-15

    Fermilab's Recycler ring was used as a storage ring for accumulation and subsequent manipulations of 8 GeV antiprotons destined for the Tevatron collider. To satisfy these missions, a unique electron cooling system was designed, developed and successfully implemented. The most important features that distinguish the Recycler cooler from other existing electron coolers are its relativistic energy, 4.3 MV combined with 0.1-0.5 A DC beam current, a weak continuous longitudinal magnetic field in the cooling section, 100 G, and lumped focusing elsewhere. With the termination of the Tevatron collider operation, so did the cooler. In this article, we summarize the experience of running this unique machine.

  6. Fermilab E791

    SciTech Connect

    Amato, S.; Anjos, J.C.; Bediaga, I.; Costa, I.; de Mello Neto, J.R.T.; de Miranda, J.M.; Santoro, A.F.S.; Souza, M.H.G.; Blaylock, G.; Burchat, P.R.; Gagnon, P.; Sugano, K.; d`Oliveria, A.B.; Santha, A.; Sokologg, M.D.; Appel, J.A.; Banerjee, S.; Carter, T.; Denisenko, K.; Halling, M.; James, C.; Lundberg, B.; Thorne, K.; Burnstein, R.; Kasper, P.A.; Peng, K.C.; Rubin, H.; Cremaldi, L.M.; Aitala, E.M.; Gounder, K.; Rafatian, A.; Ramalho, A.J.; Reidy, J.J.; Summers, D.J.; Yi, D.; Granite, D.; Nguyen, A.; Reay, N.W.; Reibel, K.; Sidwell, R.A.; Stanton, N.; Tripathi, A.; Witchey, N.; Purohit, M.V.; Schwartz, A.; Wiener, J.; Almeida, F.M.L.; daSilva Carvalho, H.; Ashery, D.; Beck, S.; Gerzon, S.; Lichtenstadt, J.; Trumer, D.; Bracker, S.B.; Astroga, J.; Milburn, R.; Napier, A.; Radeztsky, S.; Sheaff, M.; Darling, C.; Slaughter, J.; Takach, S.; Wolin, E.

    1992-10-01

    Fermilab E791, a very high statistics charm particle experiment, recently completed its data taking at Fermilab`s Tagged Photon Laboratory. Over 20 billionevents were recorded through a loose transverse energy trigger and written to 8mm tape in the 1991--92 fixed target run at Fermilab. This unprecedented data sample containing charm is being analysis on many-thousand MIP RISC computing farms set up at sites in the collaboration. A glimpse of the data taking and analysis effort is presented. We also show some preliminary results for common charm decay modes. Our present analysis indicates a very rich yield of over 200K reconstructed charm decays.

  7. Passive temperature compensation in hybrid magnets with application to the Fermilab stacker and recycler ring dipole design

    SciTech Connect

    Schlueter, R.D.; Marks, S.; Loper, C.; Halbach, K.

    1995-06-01

    Design theory of hybrid (permanent magnet plus iron) accelerator magnets with application to the proposed permanent magnet recycler and stacker rings at the Fermi National Laboratory is presented. Field stability in such devices requires that changes in the strength of the permanent magnet material with temperature be compensated. Field tuning techniques, including those employing variable capacitance between energized pole and magnet yoke and those employing variable energization of magnet pole pieces, are described. Mechanical configurations capable of achieving temperature compensation passively, including use of expanding liquids/gases and bimetallic springs are outlined. Active configurations, relying on a actuator, in addition to temperature compensation, have the additional benefit of enabling magnet tuning about a nominal operating field level.

  8. Fermilab Program and Plans

    SciTech Connect

    Denisov, Dmitri

    2014-01-01

    This article is a short summary of the talk presented at 2014 Instrumentation Conference in Novosibirsk about Fermilab's experimental program and future plans. It includes brief description of the P5 long term planning progressing in US as well as discussion of the future accelerators considered at Fermilab.

  9. Fermilab`s DART DA system

    SciTech Connect

    Pordes, R.; Anderson, J.; Berg, D.; Black, D.; Forster, R.; Franzen, J.; Kent, S.; Kwarciany, R.; Meadows, J.; Moore, C.

    1994-04-01

    DART is the new data acquisition system designed and implemented for six Fermilab experiments by the Fermilab Computing Division and the experiments themselves. The complexity of the experiments varies greatly. Their data taking throughput and event filtering requirements range from a few (2-5) to tens (80) of CAMAC, FASTBUS and home built front end crates; from a few 100 KByte/sec to 160 MByte/sec front end data collection rates; and from 0-3000 Mips of level 3 processing. The authors report on the architecture and implementation of DART to this date, and the hardware and software components that are being developed and supported.

  10. Injury reduction at Fermilab

    SciTech Connect

    Griffing, Bill; /Fermilab

    2005-06-01

    In a recent DOE Program Review, Fermilab's director presented results of the laboratory's effort to reduce the injury rate over the last decade. The results, shown in the figure below, reveal a consistent and dramatic downward trend in OSHA recordable injuries at Fermilab. The High Energy Physics Program Office has asked Fermilab to report in detail on how the laboratory has achieved the reduction. In fact, the reduction in the injury rate reflects a change in safety culture at Fermilab, which has evolved slowly over this period, due to a series of events, both planned and unplanned. This paper attempts to describe those significant events and analyze how each of them has shaped the safety culture that, in turn, has reduced the rate of injury at Fermilab to its current value.

  11. Generalized moment analysis of magnetic field correlations for accumulations of spherical and cylindrical magnetic pertubers

    NASA Astrophysics Data System (ADS)

    Kurz, Felix; Kampf, Thomas; Buschle, Lukas; Schlemmer, Heinz-Peter; Bendszus, Martin; Heiland, Sabine; Ziener, Christian

    2016-12-01

    In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-)reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate) monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.

  12. Fermilab E791

    SciTech Connect

    Amato, S.; Anjos, J.C.; Bediaga, I.; Costa, I.; de Mello Neto, J.R.T.; de Miranda, J.M.; Santoro, A.F.S.; Souza, M.H.G. , Rio de Janeiro, RJ ); Blaylock, G.; Burchat, P.R.; Gagnon, P.; Sugano, K. ); d'Oliveria, A.B.; Santha, A.; Sokologg, M.D. ); Appel, J.A.; Banerjee, S.

    1992-10-01

    Fermilab E791, a very high statistics charm particle experiment, recently completed its data taking at Fermilab's Tagged Photon Laboratory. Over 20 billionevents were recorded through a loose transverse energy trigger and written to 8mm tape in the 1991--92 fixed target run at Fermilab. This unprecedented data sample containing charm is being analysis on many-thousand MIP RISC computing farms set up at sites in the collaboration. A glimpse of the data taking and analysis effort is presented. We also show some preliminary results for common charm decay modes. Our present analysis indicates a very rich yield of over 200K reconstructed charm decays.

  13. Fermilab Cryogenic Workshop Report

    SciTech Connect

    Hassenzahl, W. V.

    1980-06-18

    A workshop to discuss recent pressing problems experienced in the operation of helium refrigerators at the national laboratories was proposed by DOE. Early in 1980 it was decided that the workshop should be held at the Fermi National Accelerator Laboratory (Fermilab). The reasoning behind the selection of Fermilab included the proposed initial tests of the Central Liquefier, the recently experienced problems with refrigeration systems at Fermilab, and the fact that a previous workshop had been held at the Brookhaven National Laboratory, which, at present, would be the other logical choice for the workshop.

  14. Highlights from Fermilab

    NASA Astrophysics Data System (ADS)

    Oddone, P. J.

    2010-12-01

    DISCUSSION by CHAIRMAN: P.J. ODDONE, Scientific Secretaries: W. Fisher, A. Holzner Note from Publisher: The Slides of the Lecture: "Highlights from Fermilab" can be found at http://www.ccsem.infn.it/issp2007/

  15. Stochastic cooling at Fermilab

    SciTech Connect

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system.

  16. Fermilab: Science at Work

    ScienceCinema

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2016-07-12

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  17. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2016-07-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  18. The 1994 Fermilab Fixed Target Program

    SciTech Connect

    Conrad, J. |

    1994-11-01

    This paper highlights the results of the Fermilab Fixed Target Program that were announced between October, 1993 and October, 1994. These results are drawn from 18 experiments that took data in the 1985, 1987 and 1990/91 fixed target running periods. For this discussion, the Fermilab Fixed Target Program is divided into 5 major topics: hadron structure, precision electroweak measurements, heavy quark production, polarization and magnetic moments, and searches for new phenomena. However, it should be noted that most experiments span several subtopics. Also, measurements within each subtopic often affect the results in other subtopics. For example, parton distributions from hadron structure measurements are used in the studies of heavy quark production.

  19. Simulation of dynamic magnetic particle capture and accumulation around a ferromagnetic wire

    NASA Astrophysics Data System (ADS)

    Choomphon-anomakhun, Natthaphon; Ebner, Armin D.; Natenapit, Mayuree; Ritter, James A.

    2017-04-01

    A new approach for modeling high gradient magnetic separation (HGMS)-type systems during the time-dependent capture and accumulation of magnetic particles by a ferromagnetic wire was developed. This new approach assumes the fluid (slurry) viscosity, comprised of water and magnetic particles, is a function of the magnetic particle concentration in the fluid, with imposed maxima on both the particle concentration and fluid viscosity to avoid unrealistic limits. In 2-D, the unsteady-state Navier-Stokes equations for compressible fluid flow and the unsteady-state continuity equations applied separately to the water and magnetic particle phases in the slurry were solved simultaneously, along with the Laplace equations for the magnetic potential applied separately to the slurry and wire, to evaluate the velocities and concentrations around the wire in a narrow channel using COMSOL Multiphysics. The results from this model revealed very realistic magnetically attractive and repulsive zones forming in time around the wire. These collection zones formed their own impermeable viscous phase during accumulation that was also magnetic with its area and magnetism impacting locally both the fluid flow and magnetic fields around the wire. These collection zones increased with an increase in the applied magnetic field. For a given set of conditions, the capture ability peaked and then decreased to zero at infinite time during magnetic particle accumulation in the collection zones. Predictions of the collection efficiency from a steady-state, clean collector, trajectory model could not show this behavior; it also agreed only qualitatively with the dynamic model and then only at the early stages of collection and more so at a higher applied magnetic field. Also, the collection zones decreased in size when the accumulation regions included magnetic particle magnetization (realistic) compared to when they excluded it (unrealistic). Overall, this might be the first time a mathematical

  20. Fermilab and Latin America

    NASA Astrophysics Data System (ADS)

    Lederman, Leon M.

    2006-09-01

    As Director of Fermilab, starting in 1979, I began a series of meetings with scientists in Latin America. The motivation was to stir collaboration in the field of high energy particle physics, the central focus of Fermilab. In the next 13 years, these Pan American Symposia stirred much discussion of the use of modern physics, created several groups to do collaborative research at Fermilab, and often centralized facilities and, today, still provides the possibility for much more productive North-South collaboration in research and education. In 1992, I handed these activities over to the AAAS, as President. This would, I hoped, broaden areas of collaboration. Such collaboration is unfortunately very sensitive to political events. In a rational world, it would be the rewards, cultural and economic, of collaboration that would modulate political relations. We are not there yet.

  1. Air-cooled trim dipoles for the Fermilab Main Injector

    SciTech Connect

    Harding, D. J.; Chester, N. S.; Garvey, J. D.; Krafczyk, G. E.; Makarov, A. I.; Terechkine, I.; Yarba, V. A.

    1997-05-01

    New horizontal and vertical trim dipoles have been designed for the Fermilab Main Injector (FMI) and are being assembled in the Fermilab Technical Division. Magnets are 42.6 cm in length (30.5 cm steel length) and have similar cross-section dimensions. The horizontal (vertical) magnet gap is 50.8 mm (127 mm) and the target integrated strength is 0.072 T*m (0.029 T*m). The major design effort lay in making air cooling possible for these magnets. This report presents the magnets` thermal and magnetic properties and discusses the limitation on excitation current.

  2. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  3. Accumulator

    NASA Technical Reports Server (NTRS)

    Fenwick, J. R.; Karigan, G. H. (Inventor)

    1977-01-01

    An accumulator particularly adapted for use in controlling the pressure of a stream of fluid in its liquid phase utilizing the fluid in its gaseous phase was designed. The accumulator is characterized by a shell defining a pressure chamber having an entry throat for a liquid and adapted to be connected in contiguous relation with a selected conduit having a stream of fluid flowing through the conduit in its liquid phase. A pressure and volume stabilization tube, including an array of pressure relief perforations is projected into the chamber with the perforations disposed adjacent to the entry throat for accommodating a discharge of the fluid in either gaseous or liquid phases, while a gas inlet and liquid to gas conversion system is provided, the chamber is connected with a source of the fluid for continuously pressuring the chamber for controlling the pressure of the stream of liquid.

  4. Preparations for Muon Experiments at Fermilab

    SciTech Connect

    Syphers, M.J.; Popovic, M.; Prebys, E.; Ankenbrandt, C.; /Muons Inc., Batavia

    2009-05-01

    The use of existing Fermilab facilities to provide beams for two muon experiments--the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment--is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration.

  5. Intensity-Frontier Antiproton Physics with The Antiproton Annihilation Spectrometer (TAPAS) at Fermilab

    SciTech Connect

    Apollinari, Giorgio; Asner, David M.; Baldini, Wander; Bartoszek, Larry; Broemmelsiek, Daniel R.; Brown, Charles N.; Chakravorty, Alak; Colas, Paul; Derwent, Paul; Drutskoy, Alexey; Fortner, Michael; /Northern Illinois U. /Saclay /Indian Inst. Tech., Hyderabad

    2011-11-01

    The Fermilab Antiproton Source is the world's most intense source of antimatter. With the Tevatron program now behind us, this unique facility can help make the case for Fermilab's continued accelerator operations. The Antiproton Source can be used for unique, dedicated antimatter studies, including medium-energy {bar p}-annihilation experiments. We propose to assemble a powerful, yet cost-effective, solenoidal magnetic spectrometer for antiproton-annihilation events, and to use it at the Fermilab Antiproton Accumulator to measure the charm production cross section, study rare hyperon decays, search for hyperon CP asymmetry, precisely measure the properties of several charmonium and nearby states, and make the first measurements of the Drell-Yan continuum in medium-energy antiproton annihilation. Should the charm production cross section be as large as some have proposed, we will also be able to measure D{sup 0}-{bar D}{sup 0} mixing with high precision and discover (or sensitively limit) charm CP violation. The observation of charm or hyperon CP violation would be evidence for physics beyond the Standard Model, with possible implications for the origin of the baryon asymmetry of the universe - the question of what happened to all the antimatter that must have been produced in the Big Bang. The experiment will be carried out by an international collaboration and will require some four years of running time. As possibly the sole hadron experiment in progress at Fermilab during that time, it will play an important role in maintaining a broad particle physics program at Fermilab and in the U.S. It will thus help us to continue attracting creative and capable young people into science and technology, and introducing them to the important technologies of accelerators, detectors, and data acquisition and analysis - key roles in society that accelerator-based particle physics has historically played.

  6. Fermilab Steering Group Report

    SciTech Connect

    Beier, Eugene; Butler, Joel; Dawson, Sally; Edwards, Helen; Himel, Thomas; Holmes, Stephen; Kim, Young-Kee; Lankford, Andrew; McGinnis, David; Nagaitsev, Sergei; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components

  7. Fermilab Steering Group Report

    SciTech Connect

    Steering Group, Fermilab; /Fermilab

    2007-12-01

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOvA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components

  8. A novel human artery model to assess the magnetic accumulation of SPIONs under flow conditions

    PubMed Central

    Janikowska, Agata; Matuszak, Jasmin; Lyer, Stefan; Schreiber, Eveline; Unterweger, Harald; Zaloga, Jan; Groll, Jürgen; Alexiou, Christoph; Cicha, Iwona

    2017-01-01

    Magnetic targeting utilises the properties of superparamagnetic iron oxide nanoparticles (SPIONs) to accumulate particles in specified vasculature regions under an external magnetic field. As the behaviour of circulating particles varies depending on nanoparticle characteristics, magnetic field strength and flow dynamics, we established an improved ex vivo model in order to estimate the magnetic capture of SPIONs in physiological-like settings. We describe here a new, easy to handle ex vivo model of human umbilical artery. Using this model, the magnetic targeting of different types of SPIONs under various external magnetic field gradients and flow conditions was investigated by atomic emission spectroscopy and histology. Among tested particles, SPION-1 with lauric acid shell had the largest capacity to accumulate at the specific artery segment. SPION-2 (lauric acid/albumin-coated) were also successfully targeted, although the observed peak in the iron content under the tip of the magnet was smaller than for SPION-1. In contrast, we did not achieve magnetic accumulation of dextran-coated SPION-3. Taken together, the umbilical artery model constitutes a time- and cost-efficient, 3R-compliant tool to assess magnetic targeting of SPIONs under flow. Our results further imply the possibility of an efficient in vivo targeting of certain types of SPIONs to superficial arteries. PMID:28176885

  9. CONSTRUCTION AND POWER TEST OF THE EXTRACTION KICKER MAGNET FOR SNS ACCUMULATOR RING.

    SciTech Connect

    PAI, C.; HAHN, H.; HSEUH, H.; LEE, Y.; MENG, W.; MI,J.; SANDBERG, J.; TODD, R.; ET AL.

    2005-05-16

    Two extraction kicker magnet assemblies that contain seven individual pulsed magnet modules each will kick the proton beam vertically out of the SNS accumulator ring into the aperture of the extraction Lambertson septum magnet. The proton beam then travels to the 1.4 MW SNS target assembly. The 14 kicker magnets and major components of the kicker assembly have been fabricated in BNL. The inner surfaces of the kicker magnets were coated with TiN to reduce the secondary electron yield. All 14 PFN power supplies have been built, tested and delivered to OWL. Before final installation, a partial assembly of the kicker system with three kicker magnets was assembled to test the functions of each critical component in the system. In this paper we report the progress of the construction of the kicker components, the TIN coating of the magnets, the installation procedure of the magnets and the full power test of the kicker with the PFN power supply.

  10. Hyperon polarization, crystal channeling, and E781 at Fermilab

    SciTech Connect

    Lach, J.

    1994-01-01

    Early experiments at Fermilab observed significant polarization of inclusively produced hyperons. these and subsequent experiments showed that {Lambda}{degree} were produced polarized while {bar {Lambda}}{degree} had no polarization in the same kinematical region. Other hyperons and antihyperons were also seen to be polarized. Recent Fermilab experiments have showed this to be a rich and complex phenomena. Theoretical understanding is still lacking. Fermilab E761 has shown that bent single crystals can be used to process the polarization of hyperons and from the precession angle measure the hyperon`s magnetic moment. This opens the possibility of measuring the magnetic moments of charmed baryons. Finally, I will briefly discuss Fermilab E781, an experiment designed to study charmed particle production by {Sigma} {sup {minus}} hyperons.

  11. Accumulative coupling between magnetized tenuous plasma and gravitational waves

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    2017-01-01

    This talk presents solutions to the plasma waves induced by a plane gravitational wave (GW) train travelling through a region of strongly magnetized plasma. The computations constitute a very preliminary feasibility study for a possible ultra-high frequency gravitational wave detector, meant to take advantage of the observation that the plasma current is proportional to the GW amplitude, and not its square. This work is supported in part by NSFC Grant Number 11503003.

  12. Fermilab Library projects

    SciTech Connect

    Garrett, P.; Ritchie, D.

    1990-05-03

    Preprint database management as done at various centers -- the subject of this workshop -- is hard to separate from the overall activities of the particular center. We therefore present the wider context at the Fermilab Library into which preprint database management fits. The day-to-day activities of the Library aside, the dominant activity at present is that of the ongoing Fermilab Library Automation. A less dominant but relatively time-consuming activity is that of doing more online searches in commercial databases on behalf of laboratory staff and visitors. A related activity is that of exploring the benefits of end-user searching of similar sources as opposed to library staff searching of the same. The Library Automation Project, which began about two years ago, is about to go fully online.'' The rationale behind this project is described in the documents developed during the December 1988--February 1989 planning phase.

  13. Single and large grain activities at Fermilab

    SciTech Connect

    Antoine, Claire; /Fermilab

    2006-01-01

    This paper describes the ongoing activities at Fermilab for large grains and monocrystalline niobium. In addition to acquisition of local fabrication expertise, we plan to develop an R&D program dedicated to evidence the possible influence of crystal orientation on physical and chemical properties of niobium, such as mechanical properties, magnetic properties or surface contamination. Some considerations are also given about the morphology at grain boundaries and its role on the behavior of superconducting cavities.

  14. Flying wires at Fermilab

    SciTech Connect

    Gannon, J.; Crawford, C.; Finley, D.; Flora, R.; Groves, T.; MacPherson, M.

    1989-03-01

    Transverse beam profile measurement systems called ''Flying Wires'' have been installed and made operational in the Fermilab Main Ring and Tevatron accelerators. These devices are used routinely to measure the emittance of both protons and antiprotons throughout the fill process, and for emittance growth measurements during stores. In the Tevatron, the individual transverse profiles of six proton and six antiproton bunches are obtained simultaneously, with a single pass of the wire through the beam. Essential features of the hardware, software, and system operation are explained in the rest of the paper. 3 refs., 4 figs.

  15. Fermilab Library directions

    SciTech Connect

    Garrett, P.; Ritchie, D.

    1990-05-04

    In this document, we indicate our current thinking about the directions of the Fermilab Library. The ideas relate to the preprint management issue in a number of ways. The ideas are subject to revision as we come to understand what is possible as well as what is needed by the Laboratory community. This document should therefore be regarded as our personal view--the availability of off-the-shelf technology, of funding as well as feedback from the laboratory community about their needs will all affect how far we actually proceed in any of these directions.

  16. Neutrino Physics at Fermilab

    ScienceCinema

    Saoulidou, Niki

    2016-07-12

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  17. Medium-Energy Antiproton Physics with the Antiproton Annihilation Spectrometer (TApAS*) at Fermilab

    SciTech Connect

    Bartoszek, Larry; Piacentino, Giovanni M.; Phillips, Thomas J.; Apollinari, Giorgio; Broemmelsiek, Daniel R.; Brown, Charles N.; Christian, David C.; Derwent, Paul; Gollwitzer, Keith; Hahn, Alan; Papadimitriou, Vaia; /Fermilab /INFN, Pisa /Hbar Technologies, West Chicago /Houston U. /IIT, Chicago /IIT, Hyderabad /ITEP /KyungPook National U. /LPI

    2008-01-01

    We propose to assemble a cost-effective, yet powerful, solenoidal magnetic spectrometer for antiproton-annihilation events and use it at the Fermilab Antiproton Accumulator to measure the charm production cross section, study rare hyperon decays, search for hyperon CP asymmetry, and precisely measure the properties of several charmonium and nearby states. Should the charm production cross section be as large as some have proposed, we will also be able to measure D{sup 0}-{bar D}{sup 0} mixing with high precision and discover (or sensitively limit) charm CP violation. The experiment will be carried out by an international collaboration, with installation occurring during the accelerator downtime following the completion of the Tevatron run, and with funding largely from university research grants. The experiment will require some four years of running time. As possibly the sole hadron experiment in progress at Fermilab during that time, it will play an important role in maintaining a broad particle-physics program at Fermilab and in the U.S.

  18. Seismic studies for Fermilab future collider projects

    SciTech Connect

    Lauh, J.; Shiltsev, V.

    1997-11-01

    Ground motion can cause significant beam emittance growth and orbit oscillations in large hadron colliders due to a vibration of numerous focusing magnets. Larger accelerator ring circumference leads to smaller revolution frequency and, e.g. for the Fermilab Very Large Hadron Collider(VLHC) 50-150 Hz vibrations are of particular interest as they are resonant with the beam betatron frequency. Seismic measurements at an existing large accelerator under operation can help to estimate the vibrations generated by the technical systems in future machines. Comparison of noisy and quiet microseismic conditions might be useful for proper choice of technical solutions for future colliders. This article presents results of wide-band seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, and in two deep tunnels in the Illinois dolomite which is though to be a possible geological environment of the future accelerators.

  19. Status of the Fermilab Recycler

    SciTech Connect

    Derwent, P.F.; /Fermilab

    2007-09-01

    The author presents the current operational status of the Fermilab Recycler Ring. Using a mix of stochastic and electron cooling, we prepare antiproton beams for the Fermilab Tevatron Collider program. Included are discussion of stashing and cooling performance, operational scenarios, and collider performance.

  20. Siberian snakes for the Fermilab Main Injector

    SciTech Connect

    Anferov, V.A.; Baiod, R.; Courant, E.D.

    1993-04-01

    Appropriate Siberian snakes were designed to maintain the proton beam polarization during acceleration in the Fermilab Main Injector from 8 to 150 GeV. Various snake designs were investigated to find one fitting into the 14 m straight section spaces with the required spin rotation axis and the minimum orbit excursion. The authors studied both cold and warm discrete magnet snakes as well as warm snakes with helical magnets. For the warm discrete magnet snake, obtaining small orbit excursions required a nearly longitudinal snake axis, while axes near {+-}45{degrees} are needed when using two snakes in a ring. The authors found acceptable snakes either by using superconducting magnets or by using warm magnets with a helical dipole field.

  1. The new (g-2)mu experiment at Fermilab

    SciTech Connect

    Casey, Brendan C.K.; /Fermilab

    2009-01-01

    We present a proposal to measure the anomalous magnetic moment of the muon to 0.14 ppm precision. This new g-2 experiment will be hosted by Fermilab making use of minor modifications to the existing accelerator complex. The experiment will recycle several components from the previous g-2 experiment E821 hosted at Brookhaven. In particular, the entire storage ring and magnet will be shipped to Fermilab. We cover the motivation for the experiment and review the measurement technique. We then focus on a new in-vacuo straw tracking system planned for the new experiment and its impact on searching for a permanent electric dipole moment of the muon.

  2. Twist accumulation and topology structure of a solar magnetic flux rope

    SciTech Connect

    Guo, Y.; Ding, M. D.; Cheng, X.; Zhao, J.; Pariat, E.

    2013-12-20

    To study the buildup of a magnetic flux rope before a major flare and coronal mass ejection (CME), we compute the magnetic helicity injection, twist accumulation, and topology structure of the three-dimensional (3D) magnetic field, which is derived by the nonlinear force-free field model. The Extreme-ultraviolet Imaging Telescope on board the Solar and Heliospheric Observatory observed a series of confined flares without any CME before a major flare with a CME at 23:02 UT on 2005 January 15 in active region NOAA 10720. We derive the vector velocity at eight time points from 18:27 UT to 22:20 UT with the differential affine velocity estimator for vector magnetic fields, which were observed by the Digital Vector Magnetograph at Big Bear Solar Observatory. The injected magnetic helicity is computed with the vector magnetic and velocity fields. The helicity injection rate was (– 16.47 ± 3.52) × 10{sup 40} Mx{sup 2} hr{sup –1}. We find that only about 1.8% of the injected magnetic helicity became the internal helicity of the magnetic flux rope, whose twist increasing rate was –0.18 ± 0.08 Turns hr{sup –1}. The quasi-separatrix layers (QSLs) of the 3D magnetic field are computed by evaluating the squashing degree, Q. We find that the flux rope was wrapped by QSLs with large Q values, where the magnetic reconnection induced by the continuously injected magnetic helicity further produced the confined flares. We suggest that the flux rope was built up and heated by the magnetic reconnection in the QSLs.

  3. Development of Cogging at the Fermilab Booster

    SciTech Connect

    Seiya, K.; Chaurize, S.; Drennan, C.; Pellico, W.; Triplett, A. K.; Waller, A.

    2015-01-30

    The development of magnetic cogging is part of the Fermilab Booster upgrade within the Proton Improvement Plan (PIP). The Booster is going to send 2.25E17 protons/hour which is almost double the present flux, 1.4E17 protons/hour to the Main Injector (MI) and Recycler (RR). The extraction kicker gap has to synchronize to the MI and RR injection bucket in order to avoid a beam loss at the rising edge of the extraction and injection kickers. Magnetic cogging is able to control the revolution frequency and the position of the gap using the magnetic field from dipole correctors while radial position feedback keeps the beam at the central orbit. The new cogging is expected to reduce beam loss due to the orbit changes and reduce beam energy loss when the gap is created. The progress of the magnetic cogging system development is going to be discussed in this paper.

  4. The Fermilab Particle Astrophysics Center

    SciTech Connect

    Not Available

    2004-11-01

    The Particle Astrophysics Center was established in fall of 2004. Fermilab director Michael S. Witherell has named Fermilab cosmologist Edward ''Rocky'' Kolb as its first director. The Center will function as an intellectual focus for particle astrophysics at Fermilab, bringing together the Theoretical and Experimental Astrophysics Groups. It also encompasses existing astrophysics projects, including the Sloan Digital Sky Survey, the Cryogenic Dark Matter Search, and the Pierre Auger Cosmic Ray Observatory, as well as proposed projects, including the SuperNova Acceleration Probe to study dark energy as part of the Joint Dark Energy Mission, and the ground-based Dark Energy Survey aimed at measuring the dark energy equation of state.

  5. Physics overview of the Fermilab Low Energy Antiproton Facility Workshop

    SciTech Connect

    Chanowitz, M.S.

    1986-05-01

    A physics overview is presented of the Fermilab workshop to consider a possible high flux, low energy antiproton facility that would use cooled antiprotons from the accumulator ring of the Tevatron collider. Two examples illustrate the power of each a facility to produce narrow states at high rates. Physics topics to which such a facility may be applied are reviewed.

  6. Vertically Integrated Circuits at Fermilab

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2010-01-01

    The exploration of vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning, and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. For the first time, Fermilab has organized a 3D MPW run, to which more than 25 different designs have been submitted by the consortium.

  7. Vertically Integrated Circuits at Fermilab

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  8. Fermilab booster modeling and space charge study

    SciTech Connect

    Weiren Chou et al.

    2003-06-04

    The Fermilab Booster is a bottleneck limiting the proton beam intensity in the accelerator complex. A study group has been formed in order to have a better understanding of this old machine and seek possible improvements. The work includes lattice modeling, numerical simulations, bench measurements and beam studies. Based on newly obtained information, it has been found that the machine acceptance is severely compromised by the orbit bump and dogleg magnets. This, accompanied by emittance dilution from space charge at injection, is a major cause of the large beam loss at the early stage of the cycle. Measures to tackle this problem are being pursued.

  9. Stochastic cooling technology at Fermilab

    NASA Astrophysics Data System (ADS)

    Pasquinelli, Ralph J.

    2004-10-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  10. Muon g-2 Experiment at Fermilab

    SciTech Connect

    Gray, Frederick

    2015-10-01

    A new experiment at Fermilab will measure the anomalous magnetic moment of the muon with a precision of 140 parts per billion (ppb). This measurement is motivated by the results of the Brookhaven E821 experiment that were first released more than a decade ago, which reached a precision of 540 ppb. As the corresponding Standard Model predictions have been refined, the experimental and theoretical values have persistently differed by about 3 standard deviations. If the Brookhaven result is confirmed at Fermilab with this improved precision, it will constitute definitive evidence for physics beyond the Standard Model. The experiment observes the muon spin precession frequency in flight in a well-calibrated magnetic field; the improvement in precision will require both 20 times as many recorded muon decay events as in E821 and a reduction by a factor of 3 in the systematic uncertainties. This paper describes the current experimental status as well as the plans for the upgraded magnet, detector and storage ring systems that are being prepared for the start of beam data collection in 2017.

  11. Error-induced beam degradation in Fermilab's accelerators

    NASA Astrophysics Data System (ADS)

    Yong, Sung-Yong Phil

    ring. The ORBIT-FNAL simulations with space charge included show that rolled magnets, in particular, have substantial effects on the Booster beam. This survey-data-based misalignment model can predict how much improvement in machine performance can be achieved if prioritized or selected realignment work is done. In other words, this model can help us investigate different realignment scenarios for the Booster. In addition, by calculating average angular kicks from all misaligned magnets, we expect this misalignment model to serve as guidelines for resetting the strengths of corrector magnets. The third model for the Booster is a time-structured multi-turn injection model. Microbunch-injection scenarios with different time structures are explored in the presence of longitudinal space-charge force. Due to the radio-frequency (RF) bucket mismatch between the Booster and the 400-MeV transferline, RF-phase offsets can be parasitically introduced during the injection process. Using the microbunch multi-turn injection, we carry out ESME-ORBIT combined simulations. This combined simulation allows us to investigate realistic charge-density distribution under full space-charge effects. The growth rates of transverse emittances turned out to be 20% in both planes. This microbunch-injection scenarios is also applicable to the future 8-GeV Superconducting Linac Proton Driver and the upgraded Main Injector at Fermilab. In Part II, the feasibility of momentum-stacking method of proton beams is investigated. When the Run2 collider program at Fermilab is terminated around year 2009, the present antiproton source can be available for other purposes. One possible application is to convert the antiproton accumulator to a proton accumulator, so that the beam power from the Main Injector could be enhanced by a factor of four. Through adiabatic processes and optimized parameters of synchrotron motion, we demonstrate with an aid of the ESME code that up to four proton batches can be stacked

  12. Error-Induced Beam Degradation in Fermilab's Accelerators

    SciTech Connect

    Yoon, Sung-Young Phil

    2008-01-01

    currently distributed around the Booster ring. The ORBIT-FNAL simulations with space charge included show that rolled magnets, in particular, have substantial effects on the Booster beam. This survey-data-based misalignment model can predict how much improvement in machine performance can be achieved if prioritized or selected realignment work is done. In other words, this model can help us investigate different realignment scenarios for the Booster. In addition, by calculating average angular kicks from all misaligned magnets, we expect this misalignment model to serve as guidelines for resetting the strengths of corrector magnets. The third model for the Booster is a time-structured multi-turn injection model. Microbunch-injection scenarios with different time structures are explored in the presence of longitudinal space-charge force. Due to the radio-frequency (RF) bucket mismatch between the Booster and the 400-MeV transferline, RF-phase offsets can be parasitically introduced during the injection process. Using the microbunch multiturn injection, we carry out ESME-ORBIT-combined simulations. This combined simulation allows us to investigate realistic charge-density distribution under full space-charge effects. The growth rates of transverse emittances turned out to be 20 % in both planes. This microbunch-injection scenarios is also applicable to the future 8-GeV Superconducting Linac Proton Driver and the upgraded Main Injector at Fermilab. In Part II, the feasibility of momentum-stacking method of proton beams is investigated. When the Run2 collider program at Fermilab comes to an end around year 2009, the present antiproton source can be available for other purposes. One possible application is to convert the antiproton accumulator to a proton accumulator, so that the beam power from the Main Injector could be enhanced by a factor of four. Through adiabatic processes and optimized parameters of synchrotron motion, we demonstrate with an aid of the ESME code that up

  13. Theoretical Astrophysics at Fermilab

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Theoretical Astrophysics Group works on a broad range of topics ranging from string theory to data analysis in the Sloan Digital Sky Survey. The group is motivated by the belief that a deep understanding of fundamental physics is necessary to explain a wide variety of phenomena in the universe. During the three years 2001-2003 of our previous NASA grant, over 120 papers were written; ten of our postdocs went on to faculty positions; and we hosted or organized many workshops and conferences. Kolb and collaborators focused on the early universe, in particular and models and ramifications of the theory of inflation. They also studied models with extra dimensions, new types of dark matter, and the second order effects of super-horizon perturbations. S tebbins, Frieman, Hui, and Dodelson worked on phenomenological cosmology, extracting cosmological constraints from surveys such as the Sloan Digital Sky Survey. They also worked on theoretical topics such as weak lensing, reionization, and dark energy. This work has proved important to a number of experimental groups [including those at Fermilab] planning future observations. In general, the work of the Theoretical Astrophysics Group has served as a catalyst for experimental projects at Fennilab. An example of this is the Joint Dark Energy Mission. Fennilab is now a member of SNAP, and much of the work done here is by people formerly working on the accelerator. We have created an environment where many of these people made transition from physics to astronomy. We also worked on many other topics related to NASA s focus: cosmic rays, dark matter, the Sunyaev-Zel dovich effect, the galaxy distribution in the universe, and the Lyman alpha forest. The group organized and hosted a number of conferences and workshop over the years covered by the grant. Among them were:

  14. Integrable RCS as a proposed replacement for Fermilab Booster

    NASA Astrophysics Data System (ADS)

    Eldred, Jeffrey; Valishev, Alexander

    2017-03-01

    Integrable optics is an innovation in particle accelerator design that potentially enables a greater betatron tune spread and damps collective instabilities. An integrable rapid-cycling synchrotron (RCS) would be an effective replacement for the Fermilab Booster, as part of a plan to reach multi-MW beam power at 120 GeV for the Fermilab high-energy neutrino program. We provide an example integrable lattice with features of a modern RCS - dispersion-free drifts, low momentum compaction factor, superperiodicity, chromaticity correction, bounded beta functions, and separate-function magnets.

  15. Hydromechanical Properties at Fermilab

    NASA Astrophysics Data System (ADS)

    Potier, C. E.; Volk, J.; Fratta, D.; Wang, H. F.

    2012-12-01

    Tiltmeter arrays in the MINOS Near Detector Hall at Fermilab record solid earth tides, large earthquakes, and displacements during a monthly sump pump test. The arrays and sump pit lie in the Galena Wise Lake Formation directly below the floor of the hall, which is approximately 100m underground. Beginning in November 2005 the MINOS-I tiltmeter array was deployed. This array was composed of seven Budker capacitive hydrostatic level sensors (HLS) located in MINOS Hall. Four 30 meter apart HLS ran in the north-south direction and three HLS 8 meters apart ran in the east-west direction. The north-south components of this array were removed in May 2012 due to anticipation of construction of a new cavern for the Off-Axis Neutrino Appearance Experiment (NOvA). A new MINOS-II tiltmeter array was then placed in the fire corridor adjacent to MINOS Hall and began recording in February 2012. The MINOS-II array consists of eight Budker capacitive HLS oriented approximately north-south along with the east-west sensors from the MINOS-I array. Earth-tide data are presented for this new location. We use the sump pump tests recorded by both arrays to characterize the geophysical and hydromechanical behavior of the Wise Lake Formation. There are two sump pumps that alternate to pump the water out of the MINOS Hall sump pit. Once a month a 20 to 30 minute backup sump pump test is run. The tiltmeter array records a response from this test. Five minutes after the test is started tilt is generated, and once the test is complete the tiltmeters slowly equilibrate. Previously, the recorded tilt has been around 30 micrometers depending on the length of the sump pump test. A normal force solution gives expected tilts of less than one micrometer. The difference between these two is too large to be due to a difference in Young's modulus in a lab setting versus a field setting. The tiltmeter array will also record the mechanical unloading effect of the excavation of the NOvA cavern, along with

  16. Ultracold neutron accumulation in a superfluid-helium converter with magnetic multipole reflector

    NASA Astrophysics Data System (ADS)

    Zimmer, O.; Golub, R.

    2015-07-01

    We analyze the accumulation of ultracold neutrons (UCNs) in a superfluid-helium converter vessel surrounded by a magnetic multipole reflector. We solved the spin-dependent rate equation, employing formulas valid for adiabatic spin transport of trapped UCNs in mechanical equilibrium. Results for saturation UCN densities are obtained in dependence of order and strength of the multipolar field. The addition of magnetic storage to neutron optical potentials can increase the density and energy of the low-field-seeking UCNs produced and serves to mitigate the effects of wall losses on the source performance. It also can provide a highly polarized sample of UCNs without need to polarize the neutron beam incident on the converter. This work was performed in preparation of the UCN source project SuperSUN at the Institut Laue-Langevin.

  17. Beam Trail Tracking at Fermilab

    SciTech Connect

    Nicklaus, Dennis J.; Carmichael, Linden Ralph; Neswold, Richard; Yuan, Zongwei

    2015-01-01

    We present a system for acquiring and sorting data from select devices depending on the destination of each particular beam pulse in the Fermilab accelerator chain. The 15 Hz beam that begins in the Fermilab ion source can be directed to a variety of additional accelerators, beam lines, beam dumps, and experiments. We have implemented a data acquisition system that senses the destination of each pulse and reads the appropriate beam intensity devices so that profiles of the beam can be stored and analysed for each type of beam trail. We envision utilizing this data long term to identify trends in the performance of the accelerators

  18. The Fermilab data storage infrastructure

    SciTech Connect

    Jon A Bakken et al.

    2003-02-06

    Fermilab, in collaboration with the DESY laboratory in Hamburg, Germany, has created a petabyte scale data storage infrastructure to meet the requirements of experiments to store and access large data sets. The Fermilab data storage infrastructure consists of the following major storage and data transfer components: Enstore mass storage system, DCache distributed data cache, ftp and Grid ftp for primarily external data transfers. This infrastructure provides a data throughput sufficient for transferring data from experiments' data acquisition systems. It also allows access to data in the Grid framework.

  19. Looking to the future: A Fermilab viewpoint

    SciTech Connect

    Montgomery, H.E.; /Fermilab

    2005-08-01

    This is a short paper summarizing a presentation of the evolution of the Fermilab program for the next five to ten years. Emphasis is given to the Fermilab accelerator complex, but external collaboration is emphasized.

  20. [Accumulation of magnetic nanoparticles in plants grown on soils of Apsheron peninsula].

    PubMed

    Khalilov, R I; Nasibova, A N; Serezhenkov, V A; Ramazanov, M A; Kerimov, M K; Garibov, A A; Vanin, A F

    2011-01-01

    The disclosure of magnetic nanoparticles in five plant species growing in Apsheron peninsula have been detected by the EPR method. The EPR spectra of these nanoparticles proved to be similar to those of synthesized magnetic nanoparticles. The result demonstrated that plants are capable of absorbing magnetic nanoparticles from the soil. The accumulation of nanoparticles in plants is confirmed by the presence of a broad EPR signal whose maximum position of the low-field component changes from g = 2.38 and halfwidth of the signal of 32 mT at room temperature to g = 2.71 and 50-55 mT at 80 K. The intensity of the broad EPR signal for plants grown in radioactively contaminated areas (170-220 mkR per h) was substantially lower compared with plants grown on clean soil. The parameters of the broad EPR signal and its dependence on the temperature of recording were identical with those for synthetic magnetic nanoparticles. The photosynthetic activity and changes in the genome of irradiated plants by the analysis of PCR products were studied.

  1. Instability of current sheets with a localized accumulation of magnetic flux

    NASA Astrophysics Data System (ADS)

    Pritchett, P. L.

    2015-06-01

    The longstanding problem of whether a current sheet with curved magnetic field lines associated with a small "normal" Bz component is stable is investigated using two-dimensional electromagnetic particle-in-cell simulations, employing closed boundary conditions analogous to those normally assumed in energy principle calculations. Energy principle arguments [Sitnov and Schindler, Geophys. Res. Lett. 37, L08102 (2010)] have suggested that an accumulation of magnetic flux at the tailward end of a thin current sheet could produce a tearing instability. Two classes of such current sheet configurations are probed: one with a monotonically increasing Bz profile and the other with a localized Bz "hump." The former is found to be stable (in 2D) over any reasonable time scale, while the latter is prone to an ideal-like instability that shifts the hump peak in the direction of the curvature normal and erodes the field on the opposite side. The growth rate of this instability is smaller by an order of magnitude than previous suggestions of an instability in an open system. An example is given that suggests that such an unstable hump configuration is unlikely to be produced by external driving of a current sheet with no Bz accumulation even in the presence of open boundary conditions.

  2. Instability of current sheets with a localized accumulation of magnetic flux

    SciTech Connect

    Pritchett, P. L.

    2015-06-15

    The longstanding problem of whether a current sheet with curved magnetic field lines associated with a small “normal” B{sub z} component is stable is investigated using two-dimensional electromagnetic particle-in-cell simulations, employing closed boundary conditions analogous to those normally assumed in energy principle calculations. Energy principle arguments [Sitnov and Schindler, Geophys. Res. Lett. 37, L08102 (2010)] have suggested that an accumulation of magnetic flux at the tailward end of a thin current sheet could produce a tearing instability. Two classes of such current sheet configurations are probed: one with a monotonically increasing B{sub z} profile and the other with a localized B{sub z} “hump.” The former is found to be stable (in 2D) over any reasonable time scale, while the latter is prone to an ideal-like instability that shifts the hump peak in the direction of the curvature normal and erodes the field on the opposite side. The growth rate of this instability is smaller by an order of magnitude than previous suggestions of an instability in an open system. An example is given that suggests that such an unstable hump configuration is unlikely to be produced by external driving of a current sheet with no B{sub z} accumulation even in the presence of open boundary conditions.

  3. Future hadron physics facilities at Fermilab

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2004-12-01

    Fermilab's hadron physics research continues in all its accelerator-based programs. These efforts will be identified, and the optimization of the Fermilab schedules for physics will be described. In addition to the immediate plans, the Fermilab Long Range Plan will be cited, and the status and potential role of a new proton source, the Proton Driver, is described.

  4. Direct optical detection of current induced spin accumulation in metals by magnetization-induced second harmonic generation

    SciTech Connect

    Pattabi, A. Gu, Z.; Yang, Y.; Finley, J.; Lee, O. J.; Raziq, H. A.; Gorchon, J.; Salahuddin, S.; Bokor, J.

    2015-10-12

    Strong spin-orbit coupling in non-magnetic heavy metals has been shown to lead to large spin currents flowing transverse to a charge current in such a metal wire. This in turn leads to the buildup of a net spin accumulation at the lateral surfaces of the wire. Spin-orbit torque effects enable the use of the accumulated spins to exert useful magnetic torques on adjacent magnetic layers in spintronic devices. We report the direct detection of spin accumulation at the free surface of nonmagnetic metal films using magnetization-induced optical surface second harmonic generation. The technique is applied to probe the current induced surface spin accumulation in various heavy metals such as Pt, β-Ta, and Au with high sensitivity. The sensitivity of the technique enables us to measure the time dynamics on a sub-ns time scale of the spin accumulation arising from a short current pulse. The ability of optical surface second harmonic generation to probe interfaces suggests that this technique will also be useful for studying the dynamics of spin accumulation and transport across interfaces between non-magnetic and ferromagnetic materials, where spin-orbit torque effects are of considerable interest.

  5. Fermilab Recycler Ring: Technical design report. Revision 1.1

    SciTech Connect

    Jackson, G.

    1996-07-01

    This report describes the technical design of the Fermilab Recycler Ring. The purpose of the Recycler is to augment the luminosity increase anticipated from the implementation of the Fermi III upgrade project, which has as its main component the Fermilab Main Injector construction project. The Recycler is a fixed 8 GeV kinetic energy storage ring. It is located in the Main Injector tunnel directly above the Main Injector beamline, near the ceiling. The construction schedule calls for the installation of the Recycler ring before the installation shutdown of the Main Injector. This aggressive construction schedule is made possible by the exclusive use of permanent magnets in the ring lattice, removing the need for expensive conventional iron/copper magnet construction along with the related power supplies, cooling water system, and electrical safety systems. The location, operating energy, and mode of construction are chosen to minimize operational impacts on both Fermilab`s ongoing High Energy Physics program and the Main Injector construction project.

  6. The Holometer: A Fermilab Experiment

    SciTech Connect

    Chou, Aaron

    2015-12-16

    Do we live in a two-dimensional hologram? A group of Fermilab scientists has designed an experiment to find out. It’s called the Holometer, and this video gives you a behind-the-scenes look at the device that could change the way we see the universe.

  7. The FIFE Project at Fermilab

    SciTech Connect

    Box, D.; Boyd, J.; Di Benedetto, V.; Ding, P.; Dykstra, D.; Fattoruso, M.; Garzoglio, G.; Herner, K.; Levshina, T.; Kirby, M.; Kreymer, A.; Mazzacane, A.; Mengel, M.; Mhashilkar, P.; Podstavkov, V.; Retzke, K.; Sharma, N.

    2016-01-01

    The FabrIc for Frontier Experiments (FIFE) project is an initiative within the Fermilab Scientific Computing Division designed to steer the computing model for non-LHC Fermilab experiments across multiple physics areas. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying size, needs, and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of solutions for high throughput computing, data management, database access and collaboration management within an experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid compute sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including a common job submission service, software and reference data distribution through CVMFS repositories, flexible and robust data transfer clients, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken the leading role in defining the computing model for Fermilab experiments, aided in the design of experiments beyond those hosted at Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.

  8. D0 Project at Fermilab

    SciTech Connect

    Marx, M.D.

    1984-01-01

    The D0 Project will explore 2 TeV anti pp collisions at Fermilab using a highly optimized calorimetric detector, to elucidate the new physics coming out of the SppS, and to explore the new higher energy regime. The design and physics potential of the detector system are described.

  9. Future hadron physics at Fermilab

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2005-09-01

    Today, hadron physics research occurs at Fermilab as parts of broader experimental programs. This is very likely to be the case in the future. Thus, much of this presentation focuses on our vision of that future--a future aimed at making Fermilab the host laboratory for the International Linear Collider (ILC). Given the uncertainties associated with the ILC--the level of needed R&D, the ILC costs, and the timing--Fermilab is also preparing for other program choices. I will describe these latter efforts, efforts focused on a Proton Driver to increase the numbers of protons available for experiments. As examples of the hadron physics which will be coming from Fermilab, I summarize three experiments: MIPP/E907 which is running currently, and MINERvA and Drell-Yan/E906 which are scheduled for future running periods. Hadron physics coming from the Tevatron Collider program will be summarized by Arthur Maciel in another talk at Hadron05.

  10. The Holometer: A Fermilab Experiment

    ScienceCinema

    Chou, Aaron

    2016-07-12

    Do we live in a two-dimensional hologram? A group of Fermilab scientists has designed an experiment to find out. It’s called the Holometer, and this video gives you a behind-the-scenes look at the device that could change the way we see the universe.

  11. Test Results for HINS Focusing Solenoids at Fermilab

    SciTech Connect

    Tartaglia, M.A.; Orris, D.F.; Terechkine, I.; Tompkins, J.C.; /Fermilab

    2008-08-01

    A focusing lens R&D program is close to completion and industrial production of magnets has begun. Two types of magnets are being built for use in the room temperature RF section at the front end of a superconducting H-minus linac of a High Intensity Neutrino Source. All of the magnets are designed as a solenoid with bucking coils to cancel the field in the vicinity of adjacent RF cavities, and one type incorporates steering dipole corrector coils. We present a summary of the predicted and measured quench and magnetic properties for both R&D and production device samples that have been tested at Fermilab.

  12. Generalized magnetotail equilibria: Effects of the dipole field, thin current sheets, and magnetic flux accumulation

    NASA Astrophysics Data System (ADS)

    Sitnov, M. I.; Merkin, V. G.

    2016-08-01

    Generalizations of the class of quasi-1-D solutions of the 2-D Grad-Shafranov equation, first considered by Schindler in 1972, are investigated. It is shown that the effect of the dipole field, treated as a perturbation, can be included into the original 1972 class solution by modification of the boundary conditions. Some of the solutions imply the formation of singularly thin current sheets. Equilibrium solutions for such sheets resolving their singular current structure on the scales comparable to the thermal ion gyroradius can be obtained assuming anisotropic and nongyrotropic plasma distributions. It is shown that one class of such equilibria with the dipole-like boundary perturbation describes bifurcation of the near-Earth current sheet. Another class of weakly anisotropic equilibria with thin current sheets embedded into a thicker plasma sheet helps explain the formation of thin current sheets in a relatively distant tail, where such sheets can provide ion Landau dissipation for spontaneous magnetic reconnection. The free energy for spontaneous reconnection can be provided due to accumulation of the magnetic flux at the tailward end of the closed field line region. The corresponding hump in the normal magnetic field profile Bz(x,z = 0) creates a nonzero gradient along the tail. The resulting gradient of the equatorial magnetic field pressure is shown to be balanced by the pressure gradient and the magnetic tension force due to the higher-order correction of the latter in the asymptotic expansion of the tail equilibrium in the ratio of the characteristic tail current sheet variations across and along the tail.

  13. Accelerator Preparations for Muon Physics Experiments at Fermilab

    SciTech Connect

    Syphers, M.J.; /Fermilab

    2009-10-01

    The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

  14. Tune control in the Fermilab Main Injector

    SciTech Connect

    G. Wu et al.

    1999-04-16

    We describe methods used to measure and control tunes in the Fermilab Main Injector (FMI). Emphasis is given to software implementation of the operator interface, to the front-end embedded computer system, and handling of hysteresis of main dipole and quadrupole magnets. Techniques are developed to permit control of tune of the Main Injector through several acceleration cycles: from 8.9 GeV/c to 120 GeV/c, from 8.9 GeV/c to 150 GeV/c, and from 150 GeV/c to 8.9 GeV/c. Systems which automate the complex interactions between tune measurement and the variety of ramping options are described. Some results of tune measurements and their comparison with the design model are presented.

  15. Alignment of the Fermilab D0 Detector

    SciTech Connect

    Babatunde O'Sheg Oshinowo

    2001-07-20

    The Fermilab D0 detector was used for the discovery of the top quark during Run I in 1996. It is currently being upgraded to exploit the physics potential to be presented by the Main Injector and the Tevatron Collider during Run II in the Fall of 2000. Some of the essential elements of this upgrade is the upgrade of the Solenoid Magnet, the Central Fiber Tracker, the Preshower Detectors, the Calorimeter System, and the Muon System. This paper discusses the survey and alignment of the these detectors with emphasis on the Muon detector system. The alignment accuracy is specified as better than 0.5mm. A combination of the Laser Tracker, BETS, and V-STARS systems are used for the survey.

  16. Damage production and accumulation in SiC structures in inertial and magnetic fusion systems

    NASA Astrophysics Data System (ADS)

    Sawan, M. E.; Ghoniem, N. M.; Snead, L.; Katoh, Y.

    2011-10-01

    Radiation damage parameters in SiC/SiC composite structures are determined in both magnetic (MFE) and inertial (IFE) confinement fusion systems. Variations in the geometry, neutron energy spectrum, and pulsed nature of neutron production result in significant differences in damage parameters between the two systems. With the same neutron wall loading, the displacement damage rate in the first wall in an IFE system is ˜10% lower than in an MFE system, while gas production and burnup rates are a factor of 2 lower. Self-cooled LiPb and Flibe blankets were analyzed. While using LiPb results in higher displacement damage, Flibe yields higher gas production and burnup rates. The effects of displacement damage and helium production on defect accumulation in SiC/SiC composites are also discussed.

  17. Intensity Frontier Computing at Fermilab

    SciTech Connect

    Wolbers, Stephen

    2013-10-11

    The Intensity Frontier (IF) experiments at Fermilab require computing, software, data handling, and infrastructure development for detector and beamline design and to extract maximum scientific output from the data. The emphasis of computing at Fermilab for many years has been on the Tevatron collider Run 2 experiments and CMS. Using the knowledge and experience gained from those experiments as well as new computing developments, preparations for computing for IF experiments are ramping up. There are many challenges in IF computing. These include event generators and detector simulation, beamline simulation, detector design and optimization, data acquisition, data handling, data analysis, and all of the associated services required. In this presentation the computing challenges and requirements will be described and the approaches being taken to address them will be shown.

  18. Model of E-Cloud Instability in the Fermilab Recycler

    SciTech Connect

    Balbekov, V.

    2015-06-24

    Simple model of electron cloud is developed in the paper to explain e-cloud instability of bunched proton beam in the Fermilab Recycler. The cloud is presented as an immobile snake in strong vertical magnetic field. The instability is treated as an amplification of the bunch injection errors from the batch head to its tail. Nonlinearity of the e-cloud field is taken into account. Results of calculations are compared with experimental data demonstrating good correlation.

  19. Accumulation dynamics and some cytogenetical tests at Chelidonium majus and Papaver somniferum callus under the magnetic liquid effect

    NASA Astrophysics Data System (ADS)

    Pavel, A.; Trifan, M.; Bara, I. I.; Creanga, D. E.; Cotae, C.

    1999-07-01

    In this paper we studied the capacity of magnetic liquids which are biocompatible (as previous literature reports showed) to influence germination, de-differentiation and re-differentiation processes in vitro, as well as to influence both the mitotic index and the chromosomal aberration frequency. In vitro cultures of two species of pharmaceutical interest, Chelidonium majus L. and Papaver somniferum L., on media supplemented with various concentrations of magnetic liquid, for various explant types, revealed a small but significant effect of the petroleum magnetic liquid on the callus accumulation and induced a considerable rate of chromosomal aberrations.

  20. A study on accumulation of magnetic drug in the capillary vessel of target organ using superconducting MDDS

    NASA Astrophysics Data System (ADS)

    Mishima, F.; Akiyama, Y.; Nishijima, S.

    2010-11-01

    Magnetic Drug Delivery System (MDDS) is one of the drug therapy technologies to accumulate the drug at the targeted part efficiently. The ferromagnetic particle is attached to the medicine, antibody, hormones and so on. The magnetic seeded drug is injected into the blood vessel, and then is accumulated in capillary vessel of target organ by magnetic field generated by the superconducting magnet placed outside of the body. The technology is great prospective for not only human medical treatment but also stockbreeding field. Treatment for cow ovarian diseases (decay of ovarian hormone secretion) requires an improvement in suppression of the drug diffusion to non-diseased part by the blood flow. In order to solve the problem, the applicability of the MDDS was examined. The behavior of the magnetic drug under the magnetic field generated by high temperature superconducting (HTS) bulk magnet were studied by the model experiment and computer simulation with the capillary model of the corpus luteum. As a result, it was shown that MDDS is able to apply to the capillaries of the corpus luteum (yellow body).

  1. Control system for Fermilab`s low temperature upgrade

    SciTech Connect

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel`s 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down.

  2. CPS and the Fermilab farms

    SciTech Connect

    Fausey, M.R.

    1992-06-01

    Cooperative Processes Software (CPS) is a parallel programming toolkit developed at the Fermi National Accelerator Laboratory. It is the most recent product in an evolution of systems aimed at finding a cost-effective solution to the enormous computing requirements in experimental high energy physics. Parallel programs written with CPS are large-grained, which means that the parallelism occurs at the subroutine level, rather than at the traditional single line of code level. This fits the requirements of high energy physics applications, such as event reconstruction, or detector simulations, quite well. It also satisfies the requirements of applications in many other fields. One example is in the pharmaceutical industry. In the field of computational chemistry, the process of drug design may be accelerated with this approach. CPS programs run as a collection of processes distributed over many computers. CPS currently supports a mixture of heterogeneous UNIX-based workstations which communicate over networks with TCP/IR CPS is most suited for jobs with relatively low I/O requirements compared to CPU. The CPS toolkit supports message passing remote subroutine calls, process synchronization, bulk data transfers, and a mechanism called process queues, by which one process can find another which has reached a particular state. The CPS software supports both batch processing and computer center operations. The system is currently running in production mode on two farms of processors at Fermilab. One farm consists of approximately 90 IBM RS/6000 model 320 workstations, and the other has 85 Silicon Graphics 4D/35 workstations. This paper first briefly describes the history of parallel processing at Fermilab which lead to the development of CPS. Then the CPS software and the CPS Batch queueing system are described. Finally, the experiences of using CPS in production on the Fermilab processor farms are described.

  3. Overview of the Fermilab Muon g-2 Experiment

    SciTech Connect

    Kim, SeungCheon

    2015-01-01

    The measurement of the anomalous magnetic moment of muon provides a precision test of the Standard Model. The Brookhaven muon g-2 experiment (E821) measured the muon magnetic moment anomaly with 0.54 ppm precision, a more than 3 deviation from the Standard Model predictions, spurring speculation about the possibility of new physics. The new g-2 experiment at Fermilab (E989) will reduce the combined statistical and systematic error of the BNL experiment by a factor of 4. An overview of the new experiment is described in this article.

  4. Electron cloud and space charge effects in the Fermilab Booster

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2007-06-01

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than {approx}1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated.

  5. Recycler lattice for Project X at Fermilab

    SciTech Connect

    Xiao, Meiqin; Johnson, David E.; /Fermilab

    2009-09-01

    Project X is an intense proton source that provides beam for various physics programs. The source consists of an 8 GeV H- superconducting linac that injects into the Fermilab Recycler where H- are converted to protons. Protons are provided to the Main Injector and accelerated to desired energy (in the range 60-120 GeV) or extracted from the Recycler for the 8 GeV program. A long drift space is needed to accommodate the injection chicane with stripping foils. The Recycler is a fixed 8 GeV kinetic energy storage ring using permanent gradient magnets. A phase trombone straight section is used to control the tunes. In this paper, the existing FODO lattice in RR10 straight section being converted into doublet will be described. Due to this change, the phase trombone straight section has to be modified to bring the tunes to the nominal working point. A toy lattice of recycler ring is designed to simulate the end-shim effects of each permanent gradient magnet to add the flexibility to handle the tune shift to the lattice during the operation of 1.6E14 with KV distribution of the proton beam to give {approx}0.05 of space charge tune shift. The comparison or the combinations of the two modification ways for the Recycler ring lattice will be presented also in this paper.

  6. Extruding plastic scintillator at Fermilab

    SciTech Connect

    Anna Pla-Dalmau; Alan D. Bross; Victor V. Rykalin

    2003-10-31

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R&D program at Fermilab.

  7. Search for top quark at Fermilab Collider

    SciTech Connect

    Sliwa, K.; The CDF Collaboration

    1991-10-01

    The status of a search for the top quark with Collider Detector at Fermilab (CDF), based on a data sample recorded during the 1988--1989 run is presented. The plans for the next Fermilab Collider run in 1992--1993 and the prospects of discovering the top quark are discussed. 19 refs., 4 figs., 2 tabs.

  8. Physics at an upgraded Fermilab proton driver

    SciTech Connect

    Geer, S.; /Fermilab

    2005-07-01

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. Over the last few months a physics study has developed the physics case for the Fermilab Proton Driver. The potential physics opportunities are discussed.

  9. Magnetic characteristics of aeolian and fluvial sediments and onset of dust accumulation at Lake Yoa (northern Chad) during the Holocene

    NASA Astrophysics Data System (ADS)

    Just, Janna; Kröpelin, Stefan; Karls, Jens; Rethemeyer, Janet; Melles, Martin

    2014-05-01

    The Holocene is a period of fundamental climatic change in North Africa. Humid conditions during the Holocene Humid Period have favored the formation of big lake systems (e.g. Lake Megachad) and are evident in terrestrial and marine archives. Only very few of these lakes persist until today. One of them is Lake Yoa (19°03'N/20°31'E) in the Ounianga Basin, Chad, which maintains its water level by ground water inflow. Here we present the magnetic characteristics of a continuous 16 m long sediment record (Co1240) from Lake Yoa, retrieved in 2010 within the framework of the Collaborative Research Centre 806 - Our Way to Europe (Deutsche Forschungsgemeinschaft). The sedimentary section covers the past 11,000 years. In an earlier core (Kröpelin et al. 2008), a humid climate during the Mid-Holocene is indicated by fresh-water conditions in the lake. At about 4,000 cal. years BP, a fresh-to-saline transition is reflected in the record. However, a major rise in magnetic susceptibility, interpreted as an increase in the accumulation of wind-blown material, is only visible after 3,000 cal. years BP. Beyond using the concentration of magnetic minerals (susceptibility), environmental magnetic proxies, e.g. magnetic grain size and the composition of the magnetic mineral fabric, are often used as paleoenvironmental indicators. The underlying assumption is that the formation of magnetic minerals during pedogenesis is catalyzed by precipitation and soil-temperature. The application of magnetic proxies as reliable climofunctions has, however, recently been challenged. Possible problems are that soil formation might not reach an equilibrium state if climate perturbations are too short (e.g. hundreds of years) or that other variables such as soil organic carbon and vegetation have varied. In this study, we will focus on the variability of magnetic parameters in Lake Yoa sediments and its implication for the regional environmental development throughout Holocene times. 400 discrete

  10. Superconducting helical solenoid systems for muon cooling experiment at Fermilab

    SciTech Connect

    Kashikhin, Vladimir S.; Andreev, Nikolai; Johnson, Rolland P.; Kashikhin, Vadim V.; Lamm, Michael J.; Romanov, Gennady; Yonehara, Katsuya; Zlobin, Alexander V.; /Fermilab

    2007-08-01

    Novel configurations of superconducting magnet system for Muon Beam Cooling Experiment is under design at Fermilab. The magnet system has to generate longitudinal and transverse dipole and quadrupole helical magnetic fields providing a muon beam motion along helical orbit. It was found that such complicated field configuration can be formed by a set of circular coils shifted in transverse directions in such a way that their centers lay on the center of the helical beam orbit. Closed beam orbit configurations were also proposed and investigated. This paper describes the magnetic and mechanical designs and parameters of such magnetic system based on a NbTi Rutherford type cable. The helical solenoid fabrication, assembly and quench protection issues are presented.

  11. Fermilab R{ampersand}D program in medium energyelectron cooling

    SciTech Connect

    MacLachlan, J.A.

    1996-07-01

    Fermilab began an R & D program in medium energy electron cooling in April 1995 with the object of cooling 8 GeV antiprotons in a new 3.3 km permanent magnet storage ring (Recycler) to be built in the same tunnel as the Main Injector (MI). The MI is to be completed in 1998, and it is planned to install the Recycler by the end of 1997 to reduce interference during the final rush of MI installation. Although the Recycler will employ stochastic cooling initially, its potential for contributing an order of magnitude to Tevatron collider luminosity is tied to electron cooling. The short time scale and Fermilab`s limited familiarity with low energy electron beams has given rise to a two-phase development plan. The first phase is to build a cooling system based on an electron beam of {ge} 200 mA before year 2000. The second phase of about 3 years is planned to reach electron current of 2 A or more. This report describes the general scheme for high luminosity collider operation as well as the R & D plan and progress to date. 17 refs., 5 figs., 1 tab.

  12. Sonic helium detectors in the Fermilab Tevatron

    SciTech Connect

    Bossert, R.J.; /Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  13. Fermilab Main Injector Beam Position Monitor Upgrade

    NASA Astrophysics Data System (ADS)

    Banerjee, B.; Barker, W.; Bledsoe, S.; Boes, T.; Briegel, C.; Capista, D.; Deuerling, G.; Dysert, R.; Forster, R.; Foulkes, S.; Haynes, W.; Hendricks, B.; Kasza, T.; Kutschke, R.; Marchionni, A.; Olson, M.; Pavlicek, V.; Piccoli, L.; Prieto, P.; Rapisarda, S.; Saewert, A.; Van Bogaert, J.; Votava, M.; Webber, R.; Wendt, M.; Wilcer, N.; Wolbers, S.

    2006-11-01

    An upgrade of the Beam Position Monitor (BPM) signal processing and data acquisition system for the Fermilab Main Injector is described. The Main Injector is a fast cycling synchrotron that accelerates protons or antiprotons from 8 to 150 GeV, Each Main Injector cycle can have a totally different magnet ramp, RF frequency configuration, beam bunch structure, and injection/extraction pattern from the previous cycle. The new BPM system provides the capabilities and flexibility required by the dynamic and complex machine operations. The system offers measurement capability in the 2.5 MHz and 53 MHz channels to detect the range of bunch structures for protons and antiprotons in both wideband (turn-by-turn) and narrowband (closed-orbit) modes. The new BPM read-out system is based on the digital receiver concept and is highly configurable, allowing the signal processing of nearly all Main Injector beam conditions, including the detection of individual batches. An overview of the BPM system in the Main Injector operating environment, some technology details and first beam measurements are presented.

  14. Study of Fast Instability in Fermilab Recycler

    SciTech Connect

    Antipov, Sergey; Adamson, Philip; Nagaitsev, Sergei; Yang, Ming-Jen

    2016-06-01

    One of the factors which may limit the intensity in the Fermilab Recycler is a fast transverse instability. It develops within a hundred turns and, in certain conditions, may lead to a beam loss. Various peculiar features of the instability: its occurrence only above a certain intensity threshold, and only in horizontal plane, as well as the rate of the instability, suggest that its cause is electron cloud. We studied the phenomena by observing the dynamics of stable and unstable beam. We found that beam motion can be stabilized by a clearing bunch, which confirms the electron cloud nature of the instability. The findings suggest electron cloud trapping in Recycler combined function mag-nets. Bunch-by-bunch measurements of betatron tune show a tune shift towards the end of the bunch train and allow the estimation of the density of electron cloud and the rate of its build-up. The experimental results are in agreement with numerical simulations of electron cloud build-up and its interaction with the beam.

  15. Fermilab HINS Proton Ion Source Beam Measurements

    SciTech Connect

    Tam, W.M.; Apollinari, G.; Chaurize, S.; Hays, S.; Romanov, G.; Scarpine, V.; Schmidt, C.; Webber, R.; /Fermilab

    2009-05-01

    The proton ion source for the High Intensity Neutrino Source (HINS) Linac front-end at Fermilab has been successfully commissioned. It produces a 50 keV, 3 msec beam pulse with a peak current greater than 20mA at 2.5Hz. The beam is transported to the radio-frequency quadrupole (RFQ) by a low energy beam transport (LEBT) that consists of two focusing solenoids, four steering dipole magnets and a beam current transformer. To understand beam transmission through the RFQ, it is important to characterize the 50 keV beam before connecting the LEBT to the RFQ. A wire scanner and a Faraday cup are temporarily installed at the exit of the LEBT to study the beam parameters. Beam profile measurements are made for different LEBT settings and results are compared to those from computer simulations. In lieu of direct emittance measurements, solenoid variation method based on profile measurements is used to reconstruct the beam emittance.

  16. Compensation of dogleg effect in Fermilab Booster

    SciTech Connect

    Xiaobiao Huang; Sho Ohnuma

    2003-10-06

    The edge focusing of dogleg magnets in Fermilab Booster has been causing severe distortion to the horizontal linear optics. The doglegs are vertical rectangular bends, therefore the vertical edge focusing is canceled by body focusing and the overall effect is focusing in the horizontal plane. The maximum horizontal beta function is changed from 33.7m to 46.9m and maximum dispersion from 3.19m to 6.14m. Beam size increases accordingly. This is believed to be one of the major reasons of beam loss. In this technote we demonstrate that this effect can be effectively corrected with Booster's quadrupole correctors in short straight sections (QS). There are 24 QS correctors which can alter horizontal linear optics with negligible perturbation to the vertical plane. The currents of correctors are determined by harmonic compensation, i.e., cancellation of dogleg's harmonics that are responsible for the distortion with that of QS correctors. By considering a few leading harmonics, the ideal lattice can be partly restored. For the current dogleg layout, maximum {beta}{sub x} is reduced to 40.6m and maximum D{sub x} is reduced to 4.19m. This scheme can be useful after the dogleg in section No.3 is repositioned. In this case it can bring {beta}{sub x} from 40.9m down to 37.7m, D{sub x} from 4.57m to 4.01m.

  17. Supporting multiple control systems at Fermilab

    SciTech Connect

    Nicklaus, Dennis J.; /Fermilab

    2009-10-01

    The Fermilab control system, ACNET, is used for controlling the Tevatron and all of its pre-accelerators. However, other smaller experiments at Fermilab have been using different controls systems, in particular DOOCS and EPICS. This paper reports some of the steps taken at Fermilab to integrate support for these outside systems. We will describe specific tools that we have built or adapted to facilitate interaction between the architectures. We also examine some of the difficulties that arise from managing this heterogeneous environment. Incompatibilities as well as common elements will be described.

  18. Operation and maintenance of Fermilab`s satellite refrigerator expansion engines

    SciTech Connect

    Soyars, W.M.

    1996-09-01

    Fermilab`s superconducting Tevatron accelerator is cooled to liquid helium temperatures by 24 satellite refrigerators, each of which uses for normal operations a reciprocating `wet` expansion engine. These expanders are basically Process System (formerly Koch) Model 1400 expanders installed in standalone cryostats designed by Fermilab. This paper will summarize recent experience with operations and maintenance of these expansion engines. Some of the statistics presented will include total engine hours, mean time between major and minor maintenance, and frequent causes of major maintenance.

  19. Dynamic Dust Accumulation and Dust Removal Observed on the Mars Exploration Rover Magnets

    NASA Technical Reports Server (NTRS)

    Bertelsen, P.; Bell, J. F., III; Goetz, W.; Gunnlaugsson, H. P.; Herkenhoff, K. E.; Hviid, S. F.; Johnson, J. R.; Kinch, K. M.; Knudsen, J. M.; Madsen, M. B.

    2005-01-01

    The Mars Exploration Rovers each carry a set of Magnetic Properties Experiments designed to investigate the properties of the airborne dust in the Martian atmosphere. It is a preferred interpretation of previous experiments that the airborne dust in the Martian atmosphere is primarily composed by composite silicate particles containing one or more highly magnetic minerals as a minor constituent. The ultimate goal of the magnetic properties experiments on the Mars Exploration Rover mission is to provide some information/ constraints on whether the dust is formed by volcanic, meteoritic, aqueous, or other processes. The first problem is to identify the magnetic mineral(s) in the airborne dust on Mars. While the overall results of the magnetic properties experiments are presented in, this abstract will focus on dust deposition and dust removal on some of the magnets.

  20. Data preservation at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Amerio, S.; Behari, S.; Boyd, J.; Brochmann, M.; Culbertson, R.; Diesburg, M.; Freeman, J.; Garren, L.; Greenlee, H.; Herner, K.; Illingworth, R.; Jayatilaka, B.; Jonckheere, A.; Li, Q.; Naymola, S.; Oleynik, G.; Sakumoto, W.; Varnes, E.; Vellidis, C.; Watts, G.; White, S.

    2017-04-01

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. These efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.

  1. Fermilab Recycler damper requirements and design

    SciTech Connect

    Crisp, J.; Hu, M.; Tupikov, V.; /Fermilab

    2005-05-01

    The design of transverse dampers for the Fermilab Recycler storage ring is described. An observed instability and analysis of subsequent measurements where used to identify the requirements. The digital approach being implemented is presented.

  2. Physics History Books in the Fermilab Library

    SciTech Connect

    Sara Tompson

    1999-09-17

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the world�s most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.

  3. Data preservation at the Fermilab Tevatron

    DOE PAGES

    Boyd, J.; Herner, K.; Jayatilaka, B.; ...

    2015-12-23

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in bothmore » software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.« less

  4. Data preservation at the Fermilab Tevatron

    DOE PAGES

    Amerio, S.; Behari, S.; Boyd, J.; ...

    2017-01-22

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards inmore » both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. Lastly, these efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.« less

  5. Improvement Plans of Fermilab's Proton Accelerator Complex

    SciTech Connect

    Shiltsev, Vladimir

    2016-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  6. Data preservation at the Fermilab Tevatron

    SciTech Connect

    Boyd, J.; Herner, K.; Jayatilaka, B.; Roser, R.; Sakumoto, W.

    2015-12-23

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.

  7. Physics History Books in the Fermilab Library

    SciTech Connect

    Sara Tompson.

    1999-09-17

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the worlds most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.

  8. A low energy positron accumulator for the plasma confinement in a compact magnetic mirror trap

    SciTech Connect

    Higaki, Hiroyuki Kaga, Chikato; Nagayasu, Katsushi; Okamoto, Hiromi; Nagata, Yugo; Kanai, Yasuyuki; Yamazaki, Yasunori

    2015-06-29

    A low energy positron accumulator was constructed at RIKEN for the purpose of confining an electron-positron plasma. The use of 5 mCi {sup 22}Na RI source with a standard solid Ne moderator and N{sub 2} buffer gas cooling resulted in a low energy positron yield of ∼ 3 × 10{sup 5} e+/s. So far, 2 × 10{sup 6} positrons have been accumulated in 120s.

  9. Fermilab Recycler Collimation System Design

    SciTech Connect

    Brown, B. C.; Adamson, P.; Ainsworth, R.; Capista, D.; Hazelwood, K.; Kourbanis, I.; Mokhov, N. V.; Morris, D. K.; Murphy, M.; Sidorov, V.; Stern, E.; Tropin, I.; Yang, M-J.

    2016-10-04

    To provide 700 kW proton beams for neutrino production in the NuMI facility, we employ slip stacking in the Recycler with transfer to the Main Injector for recapture and acceleration. Slip stacking with 12 Booster batches per 1.33 sec cycle of the Main Injector has been implemented and briefly tested while extensive operation with 8 batches and 10 batches per MI cycle has been demonstrated. Operation in this mode since 2013 shows that loss localization is an essential component for long term operation. Beam loss in the Recycler will be localized in a collimation region with design capability for absorbing up to 2 kW of lost protons in a pair of 20-Ton collimators (absorbers). This system will employ a two stage collimation with a thin molybdenum scattering foil to define the bottom edge of both the injected and decelerated-for-slipping beams. Optimization and engineering design of the collimator components and radiation shielding are based on comprehensive MARS15 simulations predicting high collimation efficiency as well as tolerable levels of prompt and residual radiation. The system installation during the Fermilab 2016 facility shutdown will permit commissioning in the subsequent operating period.

  10. Emergent Rotation from the Planck Scale and the Fermilab Holometer

    NASA Astrophysics Data System (ADS)

    Kwon, Ohkyung; Hogan, Craig; Richardson, Jonathan

    2017-01-01

    We present a statistical model of rotational fluctuations of the inertial frame arising from quantum geometry, based on Planck scale information bounds and exact causal symmetry. In an emergent space-time assembled from noncommuting quantum elements at the Planck scale, in the Minkowskian limit with no dynamics or curvature, quantum correlations are represented by covariant random transverse spatial displacements on light cones. Light that propagates in a nonradial direction inherits a projected component of the rotational correlation that accumulates as a random walk in phase. A calculation of the projection and accumulation leads to exact predictions for statistical signatures in an interferometer of any configuration. Coherent and consistent local inertial frames emerge as observer-dependent statistical approximations at large scales, and the cross-covariance for nearly co-located interferometers is shown to depart only slightly from the autocovariance. A specific example computed for the reconfigured second-generation Fermilab Holometer shows that the model can be rigorously tested with the sensitivity already achieved in the first-generation instrument. U.S. Department of Energy at Fermilab (Contract No. DE-AC02-07CH11359), John Templeton Foundation (Grant No. 51742).

  11. Effect of magnetic field on the accumulation of polyhydroxyalkanoates (PHAs) by microorganism in activated sludge.

    PubMed

    Zhu, Sai-Chang; Xu, Zhen-Lan; Meng, Hui-Juan; Zhou, Jun; Chen, Hong

    2012-08-01

    The effect of static magnetic field on polyhydroxyalkanoates (PHAs) syntheses by activated sludge under aerobic dynamic feeding (ADF) was evaluated in sequence batch reactors (SBR), with magnetic field intensities of 42, 21, 11 and 7 millitesla (mT) exposure in the feast, feast-famine and famine periods, respectively, and one control group without magnetic field exposure. Under each level of magnetic field intensity, the effect of magnetic field exposed in the famine period to PHAs syntheses was most significant in comparison with that in the feast or feast-famine period. Maximal hydroxybutyrate (HB) and (HV) yield occurred at 21 and 11 mT, respectively, and the minimal yield occurred at 42 mT during exposure in the famine period. The maximum biodegradable rate constant of PHA was noted at 11 mT during exposure in the famine period.

  12. Non-invasive localization of thymol accumulation in Carum copticum (Apiaceae) fruits by chemical shift selective magnetic resonance imaging.

    PubMed

    Gersbach, P V; Reddy, N

    2002-08-01

    Magnetic resonance imaging was used to localize the site of essential oil accumulation in fruit of Carum copticum L. (Apiaceae). A chemical shift method is described that utilized the spectral properties of the aromatic monoterpene thymol, the major component of the essential oil, to image thymol selectively. The presence of essential oil secretory structures in the fruit and an essential oil containing a high proportion of thymol were confirmed with optical microscopy and gas chromatography-mass spectrometry, respectively. Selective imaging of whole C. copticum fruits showed that thymol accumulation was localized to the secretory structures (canals) situated in the fruit wall. The technique was considered non-invasive as the seeds used in the imaging experiments remained intact and viable.

  13. Preparation of magnetic TNT-imprinted polymer nanoparticles and their accumulation onto magnetic carbon paste electrode for TNT determination.

    PubMed

    Alizadeh, Taher

    2014-11-15

    In this study, the TNT-imprinted polymer shell was created on nano-sized Fe3O4 cores in order to construct the nano-sized magnetic molecularly imprinted polymer (nano-MMIP). For this purpose, the surface of the synthesized magnetic nanoparticles was modified with methacrylic acid. The modified particles were then utilized as the core on which the TNT-imprinted polymeric shell was synthesized. The synthesized materials were then characterized by scanning electron microscopy, FT-IR and thermal gravimetric analysis (TGA). The resulting nano-MMIP particles were suspended in TNT solution and then collected on the surface of a carbon paste electrode via a permanent magnet, situated within the CP electrode. The extracted TNT was analyzed on the CP electrode by applying square wave voltammetry (SWV). It was found that the oxidative signal of TNT is much favorable for TNT detection on the resulting magnetic carbon paste electrode. The electrode with nano-MMIP showed distinctly higher signal to TNT, compared to that containing magnetic non-imprinted polymer (MNIP) nanoparticles. All parameters influencing the method performance including extraction pH, extraction time and sorbent amount were evaluated and optimized. The developed method showed a dynamic linear concentration range of 1.0-130.0 nM for TNT measurement. The detection limit of the method was calculated to be 0.5 nM. The method showed appropriate capability for TNT analysis in real water samples.

  14. Out-of-equilibrium Kondo effect in a quantum dot: Interplay of magnetic field and spin accumulation

    NASA Astrophysics Data System (ADS)

    Sahoo, Shaon; Crépieux, Adeline; Lavagna, Mireille

    2016-12-01

    We present a theoretical study of low-temperature nonequilibrium transport through an interacting quantum dot in the presence of Zeeman magnetic field and current injection into one of its leads. By using a self-consistent renormalized equation of motion approach, we show that the injection of a spin-polarized current leads to a modulation of the Zeeman splitting of the Kondo peak in the differential conductance. We find that an appropriate amount of spin accumulation in the lead can restore the Kondo peak by compensating the splitting due to magnetic field. By contrast when the injected current is spin-unpolarized, we establish that both Zeeman-split Kondo peaks are equally shifted and the splitting remains unchanged. Our results quantitatively explain the experimental findings reported in Kobayashi T. et al., Phys. Rev. Lett., 104 (2010) 036804. These features could be nicely exploited for the control and manipulation of spin in nanoelectronic and spintronic devices.

  15. Spin Tracking of Polarized Protons in the Main Injector at Fermilab

    SciTech Connect

    Xiao, M.; Lorenzon, W.; Aldred, C.

    2016-07-01

    The Main Injector (MI) at Fermilab currently produces high-intensity beams of protons at energies of 120 GeV for a variety of physics experiments. Acceleration of polarized protons in the MI would provide opportunities for a rich spin physics program at Fermilab. To achieve polarized proton beams in the Fermilab accelerator complex, shown in Fig.1.1, detailed spin tracking simulations with realistic parameters based on the existing facility are required. This report presents studies at the MI using a single 4-twist Si-berian snake to determine the depolarizing spin resonances for the relevant synchrotrons. Results will be presented first for a perfect MI lattice, followed by a lattice that includes the real MI imperfections, such as the measured magnet field errors and quadrupole misalignments. The tolerances of each of these factors in maintaining polariza-tion in the Main Injector will be discussed.

  16. Preliminary report on the utilization of the Fermilab site for a future accelerator

    SciTech Connect

    Site Utilization Working Group

    1996-10-01

    This report is a preliminary assessment of the utility of the Fermilab site for future accelerator projects. It responds to a request from the Director to evaluate how the Fermilab site and infrastructure may be relevant to future accelerator projects in the U.S. The SSC experience suggests that any major new project will have to be based on the existing infrastructure at one of the National Laboratories. This work presents only the technical issues and the benefits of the Fermilab site and infrastructure. The projects treated are: (1) A really large hadron collider based on the ``Pipetron`` vision of low-field (2 Tesla) magnets in a small diameter tunnel. Another option, not treated in detail, is a hadron collider using high field magnets. (2) Muon Colliders with 250 GeV and 2 TeV per beam. (3) A linear electron collider with 250 to 500 GeV per beam. The infrastructure of the state of Illinois - geology, hydrology, power and surface water- seems remarkably well suited to any of these projects. The geology of most of Illinois, including Fermilab, contains a dolomite layer that: has low seismic activity, is at an appropriate depth to provide radiation protection, is essentially impervious to water movement and thus satisfies hydrology requirements. There is adequate electrical power - both locally and statewide. We first give brief overviews of the Fermilab and Illinois infrastructure - geology, hydrology, power, and water - and then a summary of each project. On the basis of what we have learned, we feel that Fermilab must be considered seriously as a site for any of these projects. Beyond this point, however site-specific plans will need to be developed for each of the projects.

  17. Multipole error analysis using local 3-bump orbit data in Fermilab Recycler

    SciTech Connect

    Yang, M.J.; Xiao, M.; /Fermilab

    2005-05-01

    The magnetic harmonic errors of the Fermilab Recycler ring were examined using circulating beam data taken with closed local orbit bumps. Data was first parsed into harmonic orbits of first, second, and third order. Each of which was analyzed for sources of magnetic errors of corresponding order. This study was made possible only with the incredible resolution of a new BPM system that was commissioned after June of 2003.

  18. Field quality of the Fermilab NB3SN cos-theta dipole models

    SciTech Connect

    E. Barzi et al.

    2002-06-28

    Three short Nb{sub 3}Sn dipole models based on a single-bore cos-theta coil and a cold iron yoke have been fabricated and tested at Fermilab. This paper summarizes the results of magnetic measurements in those models. The geometrical harmonics, coil magnetization effects, cable eddy currents with and without a stainless steel core, and the ''snap-back'' effect at injection are presented.

  19. Beam Based Measurements for Stochastic Cooling Systems at Fermilab

    SciTech Connect

    Lebedev, V.A.; Pasquinelli, R.J.; Werkema, S.J.; /Fermilab

    2007-09-13

    Improvement of antiproton stacking rates has been pursued for the last twenty years at Fermilab. The last twelve months have been dedicated to improving the computer model of the Stacktail system. The production of antiprotons encompasses the use of the entire accelerator chain with the exception of the Tevatron. In the Antiproton Source two storage rings, the Debuncher and Accumulator are responsible for the accumulation of antiprotons in quantities that can exceed 2 x 10{sup 12}, but more routinely, stacks of 5 x 10{sup 11} antiprotons are accumulated before being transferred to the Recycler ring. Since the beginning of this recent enterprise, peak accumulation rates have increased from 2 x 10{sup 11} to greater than 2.3 x 10{sup 11} antiprotons per hour. A goal of 3 x 10{sup 11} per hour has been established. Improvements to the stochastic cooling systems are but a part of this current effort. This paper will discuss Stacktail system measurements and experienced system limitations.

  20. Charm and beauty measurements at Fermilab fixed target

    SciTech Connect

    Mishra, C.S.

    1993-10-01

    Eighteen months after a successful run of the Fermilab fixed target program, interesting results from several experiments are available. This is the first time that more than one Fermilab fixed target experiment has reported the observation of beauty mesons. In this paper we review recent results from charm and beauty fixed target experiments at Fermilab.

  1. THE LINAC LASER NOTCHER FOR THE FERMILAB BOOSTER

    SciTech Connect

    Johnson, David E,; Duel, Kevin; Gardner, Matthew; Johnson, Todd; Slimmer, David; Patil, Screenvias; Tafoya, Jason

    2016-09-27

    In synchrotron machines, the beam extraction is accomplished by a combination of septa and kicker magnets which deflect the beam from an accelerator into another. Ideally the kicker field must rise/fall in between the beam bunches. However, in reality, an intentional beam-free time region (aka "notch") is created on the beam pulse to assure that the beam can be extracted with minimal losses. In the case of the Fermilab Booster, the notch is created in the ring near injection energy by the use of fast kickers which deposit the beam in a shielded collimation region within the accelerator tunnel. With increasing beam power it is desirable to create this notch at the lowest possible energy to minimize activation. The Fermilab Proton Improvement Plan (PIP) initiated an R&D project to build a laser system to create the notch within a linac beam pulse at 750 keV. This talk will describe the concept for the laser notcher and discuss our current status, commissioning results, and future plans.

  2. Cloud services for the Fermilab scientific stakeholders

    SciTech Connect

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; Boyd, J.; Bernabeu, G.; Sharma, N.; Peregonow, N.; Kim, H.; Noh, S.; Palur, S.; Raicu, I.

    2015-12-23

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic ray simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. As a result, we present in detail the technological improvements that were used to make this work a reality.

  3. Photoproduction of charm particles at Fermilab

    SciTech Connect

    Cumalat, John P.

    1997-03-15

    A brief description of the Fermilab Photoproduction Experiment E831 or FOCUS is presented. The experiment concentrates on the reconstruction of charm particles. The FOCUS collaboration has participants from several Central American and Latin American institutions; CINVESTAV and Universidad Autonoma de Puebla from Mexico, University of Puerto Rico from the United States, and Centro Brasileiro de Pesquisas Fisicas in Rio de Janeiro from Brasil.

  4. Cloud services for the Fermilab scientific stakeholders

    DOE PAGES

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; ...

    2015-12-23

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic raymore » simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. As a result, we present in detail the technological improvements that were used to make this work a reality.« less

  5. Proposed Fermilab upgrade main injector project

    SciTech Connect

    Not Available

    1992-04-01

    The US Department of Energy (DOE) proposes to construct and operate a Fermilab Main Injector'' (FMI), a 150 GeV proton injector accelerator, at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The purpose and need for this action are given of this Environmental Assessment (EA). A description of the proposed FMI and construction activities are also given. The proposed FMI would be housed in an underground tunnel with a circumference of approximately 2.1 miles (3.4 kilometers), and the construction would affect approximately 135 acres of the 6,800 acre Fermilab site. The purpose of the proposed FMI is to construct and bring into operation a new 150 GeV proton injector accelerator. This addition to Fermilab's Tevatron would enable scientists to penetrate ever more deeply into the subatomic world through the detection of the super massive particles that can be created when a proton and antiproton collide head-on. The conversion of energy into matter in these collisions makes it possible to create particles that existed only an instant after the beginning of time. The proposed FMI would significantly extend the scientific reach of the Tevatron, the world's first superconducting accelerator and highest energy proton-antiproton collider.

  6. Recent results on charm physics from Fermilab

    NASA Astrophysics Data System (ADS)

    Anjos, J. C.; Cuautle, E.

    2000-08-01

    New high statistics, high resolution fixed target experiments producing 105-106 fully reconstructed charm particles are allowing a detailed study of the charm sector. Recent results on charm quark production from Fermilab fixed target experiments E-791, SELEX and FOCUS are presented. .

  7. W+ jets production at the Fermilab Tevatron

    SciTech Connect

    Dittmann, J.R.; CDF Collaboration; D0 Collaboration

    1997-05-01

    The production properties of jets in W events have been measured using {radical}s = 1.8 TeV pp collisions at the Fermilab Tevatron Collider. Experimental results from several CDF and D0 analyses are compared to leading-order and next-to-leading-order QCD predictions.

  8. Quench antenna studies of mechanical and quench performance in Fermilab interaction region quadrupoles for LHC

    SciTech Connect

    Tartaglia, M.A.; Feher, S.; Hocker, A.; Lamm, M.; Schlabach, P.; Sylvester, C.; Tompkins, J.C.; /Fermilab

    2005-09-01

    As part of the US-LHC collaboration, Fermilab has built and tested seventeen high gradient quadrupole magnets, assembled into nine cryostats, for installation at the Large Hadron Collider Interaction Regions. Most of these magnets have only quarter coil voltage taps for quench characterization, but the magnetic measurement warm bore is instrumented with a quench antenna for localization and characterization. We report on studies using the quench antenna for pre-production prototype (with extensive voltage taps) and 17 production magnets. These include a summary of quench localization and development characteristics, as well as general features of flux changes observed during training ramps.

  9. Proton synchrotron radiation at Fermilab

    SciTech Connect

    Thurman-Keup, Randy; /Fermilab

    2006-05-01

    While protons are not generally associated with synchrotron radiation, they do emit visible light at high enough energies. This paper presents an overview of the use of synchrotron radiation in the Tevatron to measure transverse emittances and to monitor the amount of beam in the abort gap. The latter is necessary to ensure a clean abort and prevent quenches of the superconducting magnets and damage to the silicon detectors of the collider experiments.

  10. The Fermilab Antiproton Source Design Report April, 1981

    SciTech Connect

    None, None

    1981-04-01

    The purpose of the Fermilab Antiproton source is to provide at least $10^{11}$ cooled, accumulated antiprotons for acceleration in the Main Ring and Tevatron for colliding-beams experiments with 1-TeV protons. This will provide the highest available energy in the world for particle-physics experiments through at least the 1980's. Collisions at 2 TeV in the center of mass will provide a unique experimental tool in a new energy range. The design of the Antiproton Source has been carried out by the Colliding Beams Department of the Accelerator Division in collaboration with Argonne National Laborator.y, Lawrence Berkeley Laboratory, the Institute of Nuclear Physics at Novosibirsk, and the University of Wisconsin...

  11. Physics Results from the Antiproton Experiment (APEX) at Fermilab

    DOE Data Explorer

    APEX Collaboration

    Is Antimatter stable? The APEX experiment searches for the decay of antiprotons at the Fermilab Antiproton Accumulator. Observation of antiproton decay would indicate a violation of the CPT theorem, which is one of the most fundamental theorems of modern physics. The best laboratory limits on antiproton decay come from the APEX experiment which achieved a sensitivity to antiproton lifetimes up to of order 700,000 years for the most sensitive decay modes. Antiproton lifetimes in this range could arise from CPT violation at the Planck scale.[copied from http://www-apex.fnal.gov/] This website presents published results from the APEX Test Experiment (T861) and from the E868 Experiment. Limits were placed on six antiproton decay modes with a muon in the final state and on seven antiproton decay modes with an electron in the final state. See also the summary table and plot and the APEX picture gallery.

  12. Simulations of the Fermilab Recycler for Losses and Collimation

    SciTech Connect

    Stern, Eric; Ainsworth, Robert; Amundson, James; Brown, Bruce

    2015-06-01

    Fermilab has recently completed an upgrade to the com- plex with the goal of delivering 700 kW of beam power as 120 GeV protons to the NuMI target. A major part of boost- ing beam power is to shorten the beam cycle by accumulating up to 12 bunches of 0.5 × 10 11 protons in the Recycler ring through slip-stacking during the Main Injector ramp. This introduces much higher intensities into the Recycler than it has had before. Meeting radiation safety requirements with high intensity operations requires understanding the ef- fects of space charge induced tune spreads and resulting halo formation, and aperture restrictions in the real machine to de- velop a collimation strategy. We report on initial simulations of slip-stacking in the Recycler performed with Synergia.

  13. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors.

    PubMed

    Larsen, Esben Kjær Unmack; Nielsen, Thomas; Wittenborn, Thomas; Rydtoft, Louise Munk; Lokanathan, Arcot R; Hansen, Line; Østergaard, Leif; Kingshott, Peter; Howard, Kenneth A; Besenbacher, Flemming; Nielsen, Niels Chr; Kjems, Jørgen

    2012-04-07

    Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333-20,000 Da PEG coatings that resulted in larger hydrodynamic size, lower surface charge, longer circulation half-life, and lower uptake in macrophage cells when the particles were coated with high molecular weight (M(w)) PEG molecules. By use of magnetic resonance imaging, we show coating-dependent in vivo uptake in murine tumors with an optimal coating M(w) of 10,000 Da.

  14. Commissioning of Fermilab's electron cooling system for 8-GeV antiprotons

    SciTech Connect

    Nagaitsev, S.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Gattuso, C.; Hu, M.; Kramper, B.; Kroc, T.; Leibfritz, J.; Prost, L.; Pruss, S.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; Seletsky, S.; Gai, W.; Kazakevich, Grigory M.; /Novosibirsk, IYF

    2005-05-01

    A 4.3-MeV electron cooling system [1] has been installed at Fermilab in the Recycler antiproton storage ring and is currently being commissioned. The cooling system is designed to assist accumulation of 8.9-GeV/c antiprotons for the Tevatron collider operations. This paper reports on the progress of the electron beam commissioning effort as well as on detailed plans of demonstrating the cooling of antiprotons.

  15. MODEL OF ELECTRON CLOUD INSTABILITY IN FERMILAB RECYCLER

    SciTech Connect

    Antipov, Sergey A.; Burov, A.; Nagaitsev, S.

    2016-10-04

    An electron cloud instability might limit the intensity in the Fermilab Recycler after the PIP-II upgrade. A multibunch instability typically develops in the horizontal plane within a hundred turns and, in certain conditions, leads to beam loss. Recent studies have indicated that the instability is caused by an electron cloud, trapped in the Recycler index dipole magnets. We developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function dipoles. The resulting instability growth rate of about 30 revolutions is consistent with experimental observations and qualitatively agrees with the simulation in the PEI code. The model allows an estimation of the instability rate for the future intensity upgrades.

  16. Nonlinear Effects at the Fermilab Recycler e-Cloud Instability

    SciTech Connect

    Balbekov, V.

    2016-06-10

    Theoretical analysis of e-cloud instability in the Fermilab Recycler is represented in the paper. The e-cloud in strong magnetic field is treated as a set of immovable snakes each being initiated by some proton bunch. It is shown that the instability arises because of injection errors of the bunches which increase in time and from bunch to bunch along the batch being amplified by the e-cloud electric field. The particular attention is given to nonlinear additions to the cloud field. It is shown that the nonlinearity is the main factor which restricts growth of the bunch amplitude. Possible role of the field free parts of the Recycler id discussed as well. Results of calculations are compared with experimental data demonstrating good correlation.

  17. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE PAGES

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; ...

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  18. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    SciTech Connect

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.

  19. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  20. Physics at a new Fermilab proton driver

    SciTech Connect

    Geer, Steve; /Fermilab

    2006-04-01

    In 2004, motivated by the recent exciting developments in neutrino physics, the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future. At the end of 2004 the APS ''Study on the Physics of Neutrinos'' concluded that the future US neutrino program should have, as one of its components, ''A proton driver in the megawatt class or above and neutrino superbeam with an appropriate very large detector capable of observing Cp violation and measuring the neutrino mass-squared differences and mixing parameters with high precision''. The presently proposed Fermilab Proton Driver is designed to accomplish these goals, and is based on, and would help develop, Linear Collider technology. In this paper the Proton Driver parameters are summarized, and the potential physics program is described.

  1. Hydro static water level systems at Fermilab

    SciTech Connect

    Volk, J.T.; Guerra, J.A.; Hansen, S.U.; Kiper, T.E.; Jostlein, H.; Shiltsev, V.; Chupyra, A.; Kondaurov, M.; Singatulin, S.

    2006-09-01

    Several Hydrostatic Water Leveling systems (HLS) are in use at Fermilab. Three systems are used to monitor quadrupoles in the Tevatron and two systems are used to monitor ground motion for potential sites for the International Linear Collider (ILC). All systems use capacitive sensors to determine the water level of water in a pool. These pools are connected with tubing so that relative vertical shifts between sensors can be determined. There are low beta quadrupoles at the B0 and D0 interaction regions of Tevatron accelerator. These quadrupoles use BINP designed and built sensors and have a resolution of 1 micron. All regular lattice superconducting quadrupoles (a total of 204) in the Tevatron use a Fermilab designed system and have a resolution of 6 microns. Data on quadrupole motion due to quenches, changes in temperature will be presented. In addition data for ground motion for ILC studies caused by natural and cultural factors will be presented.

  2. Fixed target experiments at the Fermilab Tevatron

    SciTech Connect

    Gutierrez, Gaston; Reyes, Marco A.

    2014-11-10

    This paper presents a review of the study of Exclusive Central Production at a Center of Mass energy of √s = 40 GeV at the Fermilab Fixed Target program. In all reactions reviewed in this paper, protons with an energy of 800 GeV were extracted from the Tevatron accelerator at Fermilab and directed to a Liquid Hydrogen target. The states reviewed include π⁺π⁻, K⁰s K⁰s, K⁰s K±π, φφ and D. Partial Wave Analysis results will be presented on the light states but only the cross-section will be reviewed in the diffractive production of D.

  3. FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM

    SciTech Connect

    Petersen, Troy; Diamond, J. S.; McDowell, D.; Nicklaus, D.; Prieto, P. S.; Semenov, A.

    2016-10-12

    An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of a fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.

  4. Fixed target experiments at the Fermilab Tevatron

    DOE PAGES

    Gutierrez, Gaston; Reyes, Marco A.

    2014-11-10

    This paper presents a review of the study of Exclusive Central Production at a Center of Mass energy of √s = 40 GeV at the Fermilab Fixed Target program. In all reactions reviewed in this paper, protons with an energy of 800 GeV were extracted from the Tevatron accelerator at Fermilab and directed to a Liquid Hydrogen target. The states reviewed include π⁺π⁻, K⁰s K⁰s, K⁰s K±π∓, φφ and D*±. Partial Wave Analysis results will be presented on the light states but only the cross-section will be reviewed in the diffractive production of D*±.

  5. Fixed-target physics at Fermilab

    SciTech Connect

    Bjorken, J.D.

    1985-03-01

    The Fermilab Energy Saver is now successfully commissioned and fixed-target experimentation at high energy (800 GeV) has begun. In addition, a number of new experiments designed to exploit the unique features of the Tevatron are yet to come on-line. In this talk, we will review recent accomplishments in the fixed-target program and describe experiments in progress and others yet to come.

  6. Grids, virtualization, and clouds at Fermilab

    DOE PAGES

    Timm, S.; Chadwick, K.; Garzoglio, G.; ...

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less

  7. Grids, virtualization, and clouds at Fermilab

    SciTech Connect

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  8. Uniform longitudinal beam profiles in the Fermilab Recycler using adaptive rf correction

    SciTech Connect

    Hu, Martin; Broemmelsiek, Daniel Robert; Chase, Brian; Crisp, James L.; Eddy, Nathan; Joireman, Paul W.; Ng, King Yuen; /Fermilab

    2007-06-01

    The Fermilab Recycler Ring is a permanent magnet based 8 GeV anti-proton storage ring. A wideband RF system, driven with ARB's (ARBitrary waveform generators), allows the system to produce programmable barrier waveforms. Beam current profile distortion was observed, its origin verified both experimentally and theoretically, and an FPGA-based correction system was designed, tested and implemented to level the bunch profile.

  9. Bunch length measurement at the Fermilab A0 photoinjector using a Martin-Puplett interferometer

    SciTech Connect

    Thurman-Keup, Randy; Fliller, Raymond Patrick; Kazakevich, Grigory; /Fermilab

    2008-05-01

    We present preliminary measurements of the electron bunch lengths at the Fermilab A0 Photoinjector using a Martin-Puplett interferometer on loan from DESY. The photoinjector provides a relatively wide range of bunch lengths through laser pulse width adjustment and compression of the beam using a magnetic chicane. We present comparisons of data with simulations that account for diffraction distortions in the signal and discuss future plans for improving the measurement.

  10. The muon g-2 experiment at Fermilab

    SciTech Connect

    Gohn, W.

    2016-11-15

    A new measurement of the anomalous magnetic moment of the muon, $a_{\\mu} \\equiv (g-2)/2$, will be performed at the Fermi National Accelerator Laboratory with data taking beginning in 2017. The most recent measurement, performed at Brookhaven National Laboratory and completed in 2001, shows a 3.5 standard deviation discrepancy with the standard model prediction of $a_\\mu$. The new measurement will accumulate 21 times those statistics using upgraded detection and storage ring systems, enabling a measurement of $a_\\mu$ to 140 ppb, a factor of 4 improvement in the uncertainty the previous measurement. This improvement in precision, combined with recent and ongoing improvements in the evaluation of the QCD contributions to the $a_\\mu$, could provide a 7.5$\\sigma$ discrepancy from the standard model if the current difference between experiment and theory is confirmed, a possible indication of new physics.

  11. Data from Fermilab E-687 (Photoproduction of Heavy Flavours) and Fermilab E-831 (FOCUS)

    DOE Data Explorer

    The FERMILAB E687 Collaboration studies production and decay properties of heavy flavours produced in photon-hadron interactions. The experiment recorded approximately 500 million hadronic triggers in the 1990-91 fixed target run at Fermilab from which over 80 thousand charm decays were fully reconstructed. Physics publications include the precision lifetime measurements of the charm hadrons, D meson semileptonic form factors, detailed Dalitz plot analyses, charm meson and baryon decay modes and spectroscopy, searches for rare and forbidden phenomena, and tests of QCD production mechanisms. The follow-on experiment FOCUS Collaboration (Fermilab E831) successfully recorded huge amount of data during the 1996-1997 fixed target run. The FOCUS home page is located at http://www-focus.fnal.gov/. FOCUS is an international collaboration with institutions in Brazil, Italy, South Korea, Mexico, Puerto Rico, and the U.S.

  12. Improvements and Performance of the Fermilab Solenoid Test Facility

    DOE PAGES

    Orris, Darryl; Arnold, Don; Brandt, Jeffrey; ...

    2017-06-01

    Here, the Solenoid Test Facility at Fermilab was built using a large vacuum vessel for testing of conduction-cooled superconducting solenoid magnets, and was first used to determine the performance of the MICE Coupling Coil. The facility was modified recently to enable testing of solenoid magnets for the Mu2e experiment, which operate at much higher current than the Coupling Coil. One pair of low current conduction-cooled copper and NbTi leads was replaced with two pairs of 10 kA HTS leads cooled by heat exchange with liquid nitrogen and liquid helium. The new design, with additional control and monitoring capability, also providesmore » helium cooling of the superconducting magnet leads by conduction. A high current power supply with energy extraction was added, and several improvements to the quench protection and characterization system were made. Here we present details of these changes and report on performance results from a test of the Mu2e prototype Transport Solenoid (TS) module. Progress on additional improvements in preparation for production TS module testing will be presented.« less

  13. Improvements and performance of the Fermilab solenoid test facility

    SciTech Connect

    Orris, Darryl; Arnold, Don; Brandt, Jeffrey; Cheban, Sergey; Evbota, Daniel; Feher, Sandor; Galt, Artur; Hays, Steven; Hemmati, Ali; Hess, Charles; Hocker, James A.; Kim, Min Jeong; Kokoska, Lidija; Koshelev, Sergey; Kotelnikov, Sergey; Lamm, Michael; Lopes, Mauricio L.; Nogiec, Jerzy; Page, Thomas M.; Pilipenko, Roman; Rabehl, Roger; Sylvester, Cosmore; Tartaglia, Michael; Vouris, Antonios

    2016-12-15

    Here, the Solenoid Test Facility at Fermilab was built using a large vacuum vessel for testing of conduction-cooled superconducting solenoid magnets, and was first used to determine the performance of the MICE Coupling Coil. The facility was modified recently to enable testing of solenoid magnets for the Mu2e experiment, which operate at much higher current than the Coupling Coil. One pair of low current conduction-cooled copper and NbTi leads was replaced with two pairs of 10 kA HTS leads cooled by heat exchange with liquid nitrogen and liquid helium. The new design, with additional control and monitoring capability, also provides helium cooling of the superconducting magnet leads by conduction. A high current power supply with energy extraction was added, and several improvements to the quench protection and characterization system were made. Here we present details of these changes and report on performance results from a test of the Mu2e prototype Transport Solenoid (TS) module. Progress on additional improvements in preparation for production TS module testing will be presented.

  14. Performance Analysis for the New g-2 Experiment at Fermilab

    SciTech Connect

    Stratakis, Diktys; Convery, Mary; Crmkovic, J.; Froemming, Nathan; Johnstone, Carol; Johnstone, John; Korostelev, Maxim; Morgan, James; Morse, William; Syphers, Michael; Tishchenko, Vladimir

    2016-06-01

    The new g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment to a precision of ±0.14 ppm ─ a fourfold improvement over the 0.54 ppm precision obtained in the g-2 BNL E821experiment. Achieving this goal requires the delivery of highly polarized 3.094 GeV/c muons with a narrow ±0.5% Δp/p acceptance to the g-2 storage ring. In this study, we describe a muon capture and transport scheme that should meet this requirement. First, we present the conceptual design of our proposed scheme wherein we describe its basic features. Then, we detail its performance numerically by simulating the pion production in the (g-2) production target, the muon collection by the downstream beamline optics as well as the beam polarization and spin-momentum correlation up to the storage ring. The sensitivity in performance of our proposed channel against key parameters such as magnet apertures and magnet positioning errors is analyzed

  15. Diagnostics of the Fermilab Tevatron using an AC dipole

    SciTech Connect

    Miyamoto, Ryoichi

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  16. Jet production in muon-proton and muon-nuclei scattering at Fermilab-E665

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1993-08-01

    Measurements of multi-jet production rates from Muon-Proton Muon- Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Proton deep-inelastic scattering are compared to perturbative Quantum Chromodynamics (PQCD) and Monte Carlo model predictions. We observe hadronic (2+1)-jet rates which are a factor of two higher than PQCD predictions at the partonic level. Preliminary results from jet production on heavy targets, in the shadowing region, show a suppression of the jet rates as compared to deuterium. The two- forward jet sample present higher suppression as compared to the one-forward jet sample.

  17. Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex

    SciTech Connect

    Kourbanis, Ioanis

    2014-07-01

    After a 16 month shutdown to reconfigure the Fermilab Accelerators for high power operations, the Fermilab Accelerator Complex is again providing beams for numerous Physics Experiments. By using the Recycler to slip stack protons while the Main Injector is ramping, the beam power at 120 GeV can reach 700 KW, a factor of 2 increase. The progress towards doubling the Fermilab's Accelerator complex beam power will be presented.

  18. Report of the Fermilab Committee for Site Studies

    SciTech Connect

    Steve Holmes, Vic Kuchler et. al.

    2001-09-10

    Fermilab is the flagship laboratory of the U.S. high-energy physics program. The Fermilab accelerator complex has occupied the energy frontier nearly continuously since its construction in the early 1970s. It will remain at the frontier until the Large Hadron Collider at CERN begins operating in 2006-7. A healthy future for Fermilab will likely require construction of a new accelerator in the post-LHC era. The process of identifying, constructing and operating a future forefront facility will require the support of the world high-energy-physics community, the governments and funding agencies of many nations and the people of surrounding communities. This report explores options for construction of a new facility on or near the existing Fermilab site. We began the study that forms the basis of this report with the idea that Fermilab, and the surrounding area of northeastern Illinois, possesses attributes that make it an attractive candidate for a new accelerator construction project: excellent geology; a Fermilab staff and local contractors who are experienced in subsurface construction; abundant energy supplies; good access to transportation networks; the presence of local universities with strong interest and participation in the Fermilab research program; Fermilab's demonstrated ability to mount large accelerator construction projects and operate complex accelerator facilities; and a surrounding community that is largely supportive of Fermilab's presence. Our report largely confirms these perceptions.

  19. An operator's views on Fermilab's control system

    NASA Astrophysics Data System (ADS)

    Baddorf, Debra S.

    1986-06-01

    A Fermilab accelerator operator presents views and personal opinions on the control system there. The paper covers features contributing to ease of use and comprehension, as well as a few things that could be improved. Included are such hardware as the trackball and interrupt button, the touch sensitive TV screen, the color Lexidata display, and black and white and color hardcopy capabilities. It also covers the software such as the generic parameter page, the generic plot package, and prepared displays. The alarm system is discussed from an operations standpoint, and also the datalogging system.

  20. Fermilab silicon strip readout chip for BTev

    SciTech Connect

    Yarema, Raymond; Hoff, Jim; Mekkaoui, Abderrezak; Manghisoni, Massimo; Re, Valerio; Angeleri, Valentina; Manfredi, Pier Francesco; Ratti, Lodovico; Speziali, Valeria; /Fermilab /Bergamo U. /INFN, Pavia /Pavia U.

    2005-05-01

    A chip has been developed for reading out the silicon strip detectors in the new BTeV colliding beam experiment at Fermilab. The chip has been designed in a 0.25 {micro}m CMOS technology for high radiation tolerance. Numerous programmable features have been added to the chip, such as setup for operation at different beam crossing intervals. A full size chip has been fabricated and successfully tested. The design philosophy, circuit features, and test results are presented in this paper.

  1. The VAXONLINE software system at Fermilab

    SciTech Connect

    White, V.; Heinicke, P.; Berman, E.; Constanta-Fanourakis, P.; MacKinnon, B.; Moore, C.; Nicinski, T.; Petravick, D.; Pordes, R.; Quigg, L.

    1987-06-01

    The VAXONLINE software system, started in late 1984, is now in use at 12 experiments at Fermilab, with at least one VAX or MicroVax. Data acquisition features now provide for the collection and combination of data from one or more sources, via a list-driven Event Builder program. Supported sources include CAMAC, FASTBUS, Front-end PDP-11's, Disk, Tape, DECnet, and other processors running VAXONLINE. This paper describes the functionality provided by the VAXONLINE system, gives performance figures, and discusses the ongoing program of enhancements.

  2. Superconducting radiofrequency linac development at Fermilab

    SciTech Connect

    Holmes, Stephen D.; /Fermilab

    2009-10-01

    As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

  3. Electropolishing on small samples at Fermilab

    SciTech Connect

    Boffo, C.; Bauer, P.; Teid, T.; Geng, R.; /Cornell U., Phys. Dept.

    2005-07-01

    The electropolishing process (EP) is considered an essential step in the processing of high gradient SRF cavities. Studies on EP of small samples has been started at Fermilab as part of the SRF materials R&D program. A simple bench top setup was developed to understand the basic variables affecting the EP. In addition a setup for vertical EP of half cells, based on the Cornell design, was used and another one for dumbbells was designed and tested. Results and findings are reported.

  4. The Fermilab short-baseline neutrino program

    SciTech Connect

    Camilleri, Leslie

    2015-10-15

    The Fermilab short-baseline program is a multi-facetted one. Primarily it searches for evidence of sterile neutrinos as hinted at by the MiniBooNE and LSND results. It will also measure a whole suite of ν-Argon cross sections which will be very useful in future liquid argon long-baseline projects. The program is based on MicroBooNE, already installed in the beam line, the recently approved LAr1-ND and the future addition of the refurbished ICARUS.

  5. Fermilab accelerator control system: Analog monitoring facilities

    SciTech Connect

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system.

  6. Numerical Tests of the Improved Fermilab Action

    SciTech Connect

    Detar, C.; Kronfeld, A.S.; Oktay, M.B.

    2010-11-01

    Recently, the Fermilab heavy-quark action was extended to include dimension-six and -seven operators in order to reduce the discretization errors. In this talk, we present results of the first numerical simulations with this action (the OK action), where we study the masses of the quarkonium and heavy-light systems. We calculate combinations of masses designed to test improvement and compare results obtained with the OK action to their counterparts obtained with the clover action. Our preliminary results show a clear improvement.

  7. Recent ground motion studies at Fermilab

    SciTech Connect

    Shiltsev, V.; Volk, J.; Singatulin, S.; /Novosibirsk, IYF

    2009-04-01

    Understanding slow and fast ground motion is important for the successful operation and design for present and future colliders. Since 2000 there have been several studies of ground motion at Fermilab. Several different types of HLS (hydro static level sensors) have been used to study slow ground motion (less than 1 hertz) seismometers have been used for fast (greater than 1 hertz) motions. Data have been taken at the surface and at locations 100 meters below the surface. Data of recent slow ground motion measurements with HLSs, many years of alignment data and results of the ATL-analysis are presented and discussed.

  8. Kaon physics at Fermilab Main Injector

    SciTech Connect

    Hsiung, Y.

    1992-03-01

    For high precision and high sensitivity studies of the physics of kaon physics of kaon decays, the important characteristics of the new Main Injector at Fermilab are its high energy (relative to other factories'') and its high intensity. Experiments of this kind are becoming increasingly important in the study of CP violation and for searches for new interactions. An extracted beam of 120 GeV will produce a source of high energy kaons (10--50 GeV) that will not be surpassed in intensity by any facility new under consideration world-wide.

  9. Kaon physics at Fermilab Main Injector

    SciTech Connect

    Hsiung, Y.

    1992-03-01

    For high precision and high sensitivity studies of the physics of kaon physics of kaon decays, the important characteristics of the new Main Injector at Fermilab are its high energy (relative to other ``factories``) and its high intensity. Experiments of this kind are becoming increasingly important in the study of CP violation and for searches for new interactions. An extracted beam of 120 GeV will produce a source of high energy kaons (10--50 GeV) that will not be surpassed in intensity by any facility new under consideration world-wide.

  10. Design considerations and prototype performance of the Fermilab Main Injector dipole

    SciTech Connect

    Harding, D.J.; Bleadon, M.E.; Brown, B.C.; Desavouret, E.; Garvey, J.D.; Glass, H.D.; Harfoush, F.A.; Holmes, S.D.; Humbert, J.C.; Jagger, J.M.; Kobliska, G.R.; Lipski, A.; Martin, P.S.; Mazur, P.O.; Mills, F.E.; Orris, D.F.; Ostiguy, J.F.; Peggs, S.G.; Pachnik, J.E.; Schmidt, E.E.; Sim, J.W.; Snowdon, S.C.; Walbridge, D.G.

    1991-05-01

    The Main Injector project at Fermilab requires a dipole with good field quality from 0.1 T to 1.73 T with ramps to full field at up to 2.4 T/s over an aperture of 10 {times} 5 cm. Operation of this magnet for the variety of purposes proposed for the Main Injector results in a design with low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction. The resulting design is presented, along with measurement results of a prototype magnet emphasizing the field uniformity. 6 refs., 4 figs., 2 tabs.

  11. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    SciTech Connect

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  12. Status of the Fermilab Muon (g-2) Experiment

    SciTech Connect

    Roberts, B.Lee

    2010-01-01

    The New Muon (g-2) Collaboration at Fermilab has proposed to measure the anomalous magnetic moment of the muon, a{sub {mu}}, a factor of four better than was done in E821 at the Brookhaven AGS, which obtained a{sub {mu}} = [116592089(63)] x 10{sup -11} {+-} 0.54 ppm. The last digit of a{sub {mu}} is changed from the published value owing to a new value of the ratio of the muon-to-proton magnetic moment that has become available. At present there appears to be a difference between the Standard-Model value and the measured value, at the {approx}= 3 standard deviation level when electron-positron annihilation data are used to determine the lowest-order hadronic piece of the Standard Model contribution. The improved experiment, along with further advances in the determination of the hadronic contribution, should clarify this difference. Because of its ability to constrain the interpretation of discoveries made at the LHC, the improved measurement will be of significant value, whatever discoveries may come from the LHC.

  13. Electron Lens Construction for the Integrable Optics Test Accelerator at Fermilab

    SciTech Connect

    McGee, Mike; Carlson, Kermit; Nobrega, Lucy; Stancari, Giulio; Valishev, Alexander

    2016-06-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. Construction of an electron lens for IOTA is necessary for both electron and proton operation. Components required for the Electron Lens design include; a 0.8 T conventional water-cooled main solenoid, and magnetic bending and focusing elements. The foundation of the design relies on repurposing the Fermilab Tevatron Electron Lens II (TELII) gun and collector under ultra-high vacuum (UHV) conditions.

  14. Metropolitan area network support at Fermilab

    SciTech Connect

    DeMar, Phil; Andrews, Chuck; Bobyshev, Andrey; Crawford, Matt; Colon, Orlando; Fry, Steve; Grigaliunas, Vyto; Lamore, Donna; Petravick, Don; /Fermilab

    2007-09-01

    Advances in wide area network service offerings, coupled with comparable developments in local area network technology have enabled many research sites to keep their offsite network bandwidth ahead of demand. For most sites, the more difficult and costly aspect of increasing wide area network capacity is the local loop, which connects the facility LAN to the wide area service provider(s). Fermilab, in coordination with neighboring Argonne National Laboratory, has chosen to provide its own local loop access through leasing of dark fiber to nearby network exchange points, and procuring dense wave division multiplexing (DWDM) equipment to provide data channels across those fibers. Installing and managing such optical network infrastructure has broadened the Laboratory's network support responsibilities to include operating network equipment that is located off-site, and is technically much different than classic LAN network equipment. Effectively, the Laboratory has assumed the role of a local service provider. This paper will cover Fermilab's experiences with deploying and supporting a Metropolitan Area Network (MAN) infrastructure to satisfy its offsite networking needs. The benefits and drawbacks of providing and supporting such a service will be discussed.

  15. WAN emulation development and testing at Fermilab

    SciTech Connect

    Bobyshev, A.; Rechenmacher, R.; Demar, P.; Ernst, M.; /DESY

    2004-12-01

    The Compact Muon Solenoid (CMS) experiment at CERN's Large Hadron Collider (LHC) is scheduled to come on-line in 2007. Fermilab will act as the CMS Tier-1 centre for the US and make experiment data available to more than 400 researchers in the US participating in the CMS experiment. The US CMS Users Facility group, based at Fermilab, has initiated a project to develop a model for optimizing movement of CMS experiment data between CERN and the various tiers of US CMS data centres and to design a WAN emulation facility which will enable controlled testing of unmodified or modified CMS applications and TCP implementations locally under conditions that emulate WAN connectivity. The WAN emulator facility is configurable for latency, jitter, and packet loss. The initial implementation is based on the NISTnet software product. In this paper we will describe the status of this project to date, the results of validation and comparison of performance measurements obtained in emulated and real environment for different applications including multistreams GridFTP. We also will introduce future short term and intermediate term plans, as well as outstanding problems and issues.

  16. Simulation Needs and Priorities of the Fermilab Intensity Frontier

    SciTech Connect

    Elvira, V. D.; Genser, K. L.; Hatcher, R.; Perdue, G.; Wenzel, H. J.; Yarba, J.

    2015-06-11

    Over a two-year period, the Physics and Detector Simulations (PDS) group of the Fermilab Scientific Computing Division (SCD), collected information from Fermilab Intensity Frontier experiments on their simulation needs and concerns. The process and results of these activities are documented here.

  17. CDF evidence for the top quark & B physics at Fermilab

    SciTech Connect

    Yao, Weiming

    1997-02-01

    We present the first direct evidence for the top quark with the Collider Detector at Fermilab (CDF) in a sample of {bar p}p collisions at {radical}s=1.8 TeV with an integrated luminosity of 19.3 pb{sup -1}. The recent B physics results at Fermilab from both collider and fixed target experiments are reviewed.

  18. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    SciTech Connect

    Wester, W.

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  19. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  20. Progress in Antiproton Production at the Fermilab Tevatron Collider

    SciTech Connect

    Pasquinelli, Ralph J.; Drendel, Brian; Gollwitzer, Keith; Johnson, Stan; Lebedev, Valeri; Leveling, Anthony; Morgan, James; Nagaslaev, Vladimir; Peterson, Dave; Sondgeroth, Alan; Werkema, Steve; /Fermilab

    2009-04-01

    Fermilab Collider Run II has been ongoing since 2001. During this time peak luminosities in the Tevatron have increased from approximately 10 x 10{sup 30} cm{sup -2}sec{sup -1} to 300 x 10{sup 30} cm{sup 02}sec{sup -1}. A major contributing factor in this remarkable performance is a greatly improved antiproton production capability. Since the beginning of Run II, the average antiproton accumulation rate has increased from 2 x 10{sup 10}{anti p}/hr to about 24 x 10{sup 10}{anti p}/hr. Peak antiproton stacking rates presently exceed 28 x 10{sup 10}{anti p}/hr. The antiproton stacking rate has nearly doubled since 2005. It is this recent progress that is the focus of this paper. The process of transferring antiprotons to the Recycler Ring for subsequent transfer to the collider has been significantly restructured and streamlined, yielding additional cycle time for antiproton production. Improvements to the target station have greatly increased the antiproton yield from the production target. The performance of the Antiproton Source stochastic cooling systems has been enhanced by upgrades to the cooling electronics, accelerator lattice optimization, and improved operating procedures. In this paper, we will briefly report on each of these modifications.

  1. Early history of the Fermilab Main Ring

    SciTech Connect

    Malamud, E.; /Fermilab

    1983-10-01

    This note is written in response to a request from Phil Livdahl for corrections, and additions to a TM he is writing on Staffing Levels at Fermilab during Initial Construction Years and to a note that Hank Hinterberger is preparing on milestones. In my spare time over the past few years I have taken the original files of the Main Ring Section, my own notes from that period, and various other collections of relevant paper, and arranged them in a set of 44 large loose leaf binders in chronological order. I call this set of volumes the 'Main Ring Chronological Archives'. In response to Phil's request I have recently skimmed through these records of the period and extracted a small subset of documents which relate to the specific questions that Phil is addressing: staffing. administration, and milestones.

  2. Rebuild of Capture Cavity 1 at Fermilab

    SciTech Connect

    Harms, E.; Arkan, T.; Borissov, E.; Dhanaraj, N.; Hocker, A.; Orlov, Y.; Peterson, T.; Premo, K.

    2014-01-01

    The front end of the proposed Advanced Superconducting Test Accelerator at Fermilab employs two single cavity cryomodules, known as 'Capture Cavity 1' and 'Capture Cavity 2', for the first stage of acceleration. Capture Cavity 1 was previously used as the accelerating structure for the A0 Photoinjector to a peak energy of ~14 MeV. In its new location a gradient of ~25 MV/m is required. This has necessitated a major rebuild of the cryomodule including replacement of the cavity with a higher gradient one. Retrofitting the cavity and making upgrades to the module required significant redesign. The design choices and their rationale, summary of the rebuild, and early test results are presented.

  3. Operational experience with the Fermilab Linac

    SciTech Connect

    Allen, L.J.; Lennox, A.J.; Schmidt, C.W.

    1992-12-01

    The Fermilab 200-MeV Linac has been in operation for nearly 22 years as a proton injector to the Booster synchrotron. It presently accelerates H{sup {minus}} ions to 200 MeV for charge-exchange injection into the Booster and to 66 MeV for the production of neutrons at the Neutron Therapy Facility. The beam intensity is typically 35 mA with pulse widths of 30 {mu}sec for the Booster for high energy physics and 57 {mu}sec for NTF at a maximum of 15 pulses per sec. During a typical physics run of nine to twelve months, beam is available for greater than 98% of the scheduled time. The Linac history, operation, tuning, stability and reliability will be discussed.

  4. Some recent experimental results from Fermilab

    SciTech Connect

    Montgomery, H.E.

    1994-02-01

    The aim of this talk was to give an impression of the tremendous range and depth of the data being produced by experiments at Fermilab, both fixed target and collider. Despite the generous allotment of time it was not possible to do more than scratch the surface of some subjects. The collider experiments, using the measurements of the W mass and with top search and mass limits, are approaching the situation where a statement about the Higgs mass, or a sensitive test of the consistency of the standard model become a possibility. Subjects discussed were: (1) cross-sections, QCD measurements; (2) decay physics; (3) W/Z physics; (4) searches for new physics; and (5) search for top quark.

  5. Full Discharges in Fermilab's Electron Cooler

    NASA Astrophysics Data System (ADS)

    Prost, L. R.; Shemyakin, A.

    2006-03-01

    Fermilab's 4.3 MeV electron cooler is based on an electrostatic accelerator, which generates a DC electron beam in an energy recovery mode. Effective cooling of the antiprotons in the Recycler requires that the beam remains stable for hours. While short beam interruptions do not deteriorate the performance of the Recycler ring, the beam may provoke full discharges in the accelerator, which significantly affect the duty factor of the machine as well as the reliability of various components. Although cooling of 8 GeV antiprotons has been successfully achieved, full discharges still occur in the current setup. The paper describes factors leading to full discharges and ways to prevent them.

  6. Operating Procedure Changes to Improve Antiproton Production at the Fermilab Tevatron Collider

    SciTech Connect

    Drendel, B.; Morgan, J.P.; Vander Meulen, D.; /Fermilab

    2009-04-01

    Since the start of Fermilab Collider Run II in 2001, the maximum weekly antiproton accumulation rate has increased from 400 x 10{sup 10} Pbars/week to approximately 3,700 x 10{sup 10} Pbars/week. There are many factors contributing to this increase, one of which involves changes to operational procedures that have streamlined and automated Antiproton Source production. Automation has been added to the beam line orbit control, stochastic cooling power level management, and RF settings. In addition, daily tuning efforts have been streamlined by implementing sequencer driven tuning software.

  7. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    SciTech Connect

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; /Fermilab

    2006-06-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R&D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands.

  8. The calorimeter of the Mu2e experiment at Fermilab

    DOE PAGES

    Atanov, N.; Baranov, V.; Budagov, J.; ...

    2017-01-23

    Here, the Mu2e experiment at Fermilab looks for Charged Lepton Flavor Violation (CLFV) improving by 4 orders of magnitude the current experimental sensitivity for the muon to electron conversion in a muonic atom. A positive signal could not be explained in the framework of the current Standard Model of particle interactions and therefore would be a clear indication of new physics. In 3 years of data taking, Mu2e is expected to observe less than one background event mimicking the electron coming from muon conversion. Achieving such a level of background suppression requires a deep knowledge of the experimental apparatus: amore » straw tube tracker, measuring the electron momentum and time, a cosmic ray veto system rejecting most of cosmic ray background and a pure CsI crystal calorimeter, that will measure time of flight, energy and impact position of the converted electron. The calorimeter has to operate in a harsh radiation environment, in a 10-4 Torr vacuum and inside a 1 T magnetic field. The results of the first qualification tests of the calorimeter components are reported together with the energy and time performances expected from the simulation and measured in beam tests of a small scale prototype.« less

  9. The calorimeter of the Mu2e experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Baranov, V.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Dané, E.; Davydov, Y. I.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Flood, K.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pezzullo, G.; Porter, F.; Raffaelli, F.; Radicioni, T.; Ricci, M.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2017-01-01

    The Mu2e experiment at Fermilab looks for Charged Lepton Flavor Violation (CLFV) improving by 4 orders of magnitude the current experimental sensitivity for the muon to electron conversion in a muonic atom. A positive signal could not be explained in the framework of the current Standard Model of particle interactions and therefore would be a clear indication of new physics. In 3 years of data taking, Mu2e is expected to observe less than one background event mimicking the electron coming from muon conversion. Achieving such a level of background suppression requires a deep knowledge of the experimental apparatus: a straw tube tracker, measuring the electron momentum and time, a cosmic ray veto system rejecting most of cosmic ray background and a pure CsI crystal calorimeter, that will measure time of flight, energy and impact position of the converted electron. The calorimeter has to operate in a harsh radiation environment, in a 10‑4 Torr vacuum and inside a 1 T magnetic field. The results of the first qualification tests of the calorimeter components are reported together with the energy and time performances expected from the simulation and measured in beam tests of a small scale prototype.

  10. Cryogenic system for the Cryomodule Test Facility at Fermilab

    NASA Astrophysics Data System (ADS)

    White, Michael; Martinez, Alex; Bossert, Rick; Dalesandro, Andrew; Geynisman, Michael; Hansen, Benjamin; Klebaner, Arkadiy; Makara, Jerry; Pei, Liujin; Richardson, Dave; Soyars, William; Theilacker, Jay

    2014-01-01

    This paper provides an overview of the current progress and near-future plans for the cryogenic system at the new Cryomodule Test Facility (CMTF) at Fermilab, which includes the helium compressors, refrigerators, warm vacuum compressors, gas and liquid storage, and a distribution system. CMTF will house the Project X Injector Experiment (PXIE), which is the front end of the proposed Project X. PXIE includes one 162.5 MHz half wave resonator (HWR) cryomodule and one 325 MHz single spoke resonator (SSR) cryomodule. Both cryomodules contain superconducting radio-frequency (SRF) cavities and superconducting magnets operated at 2.0 K. CMTF will also support the Advanced Superconducting Test Accelerator (ASTA), which is located in the adjacent New Muon Lab (NML) building. A cryomodule test stand (CMTS1) located at CMTF will be used to test 1.3 GHz cryomodules before they are installed in the ASTA cryomodule string. A liquid helium pump and transfer line will be used to provide supplemental liquid helium to ASTA.

  11. Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab

    SciTech Connect

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    2016-12-05

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses in the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.

  12. Superconducting focusing lenses for the SSR-1 cryomodule of PXIE test stand at Fermilab

    DOE PAGES

    DiMarco, J.; Tartaglia, M.; Terechkine, I.

    2016-12-05

    Five solenoid-based focusing lenses designed for use inside the SSR1 cryomodule of the PXIE test stand at Fermilab have been fabricated and tested. In addition to a focusing solenoid, each lens is equipped with a set of windings that generate magnetic field in the transverse plane and can be used in the steering dipole mode or as a skew quadrupole corrector. The lenses will be installed between superconducting cavities in the cryomodule, so getting sufficiently low fringe magnetic field was one of the main design requirements. Beam dynamics simulations indicated a need for high accuracy positioning of the lenses inmore » the cryomodule, which triggered a study towards understanding uncertainties of the magnetic axis position relative to the geometric features of the lens. Furthermore, this report summarizes the efforts towards certification of the lenses, including results of performance tests, fringe field data, and uncertainty of the magnetic axis position.« less

  13. Commissioning of polarized-proton and antiproton beams at Fermilab

    SciTech Connect

    Yokosawa, A.

    1988-05-04

    The author described the polarized-proton and polarized-antiproton beams up to 200 GeV/c at Fermilab. The beam line, called MP, consists of the 400-m long primary and 350-m long secondary beam line followed by 60-m long experimental hall. We discuss the characteristics of the polarized beams. The Fermilab polarization projects are designated at E-581/704 initiated and carried out by an international collaboration, Argonne (US), Fermilab (US), Kyoto-Kyushu-Hiroshima-KEK (Japan), LAPP (France), Northwestern University (US), Los Alamos Laboratory (US), Rice (US), Saclay (France), Serpukhov (USSR), INFN Trieste (Italy), and University of Texas (US).

  14. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice

    NASA Astrophysics Data System (ADS)

    Kettering, Melanie; Richter, Heike; Wiekhorst, Frank; Bremer-Streck, Sibylle; Trahms, Lutz; Alois Kaiser, Werner; Hilger, Ingrid

    2011-12-01

    Localized magnetic heating treatments (hyperthermia, thermal ablation) using superparamagnetic iron oxide nanoparticles (MNPs) continue to be an active area of cancer research. For generating the appropriate heat to sufficiently target cell destruction, adequate MNP concentrations need to be accumulated into tumors. Furthermore, the knowledge of MNP bio-distribution after application and additionally after heating is significant, firstly because of the possibility of repeated heating treatments if MNPs remain at the target region and secondly to study potential adverse effects dealing with MNP dilution from the target region over time. In this context, little is known about the behavior of MNPs after intra-tumoral application and magnetic heating. Therefore, the present in vivo study on the bio-distribution of intra-tumorally injected MNPs in mice focused on MNP long term monitoring of pre and post therapy over seven days using multi-channel magnetorelaxometry (MRX). Subsequently, single-channel MRX was adopted to study the bio-distribution of MNPs in internal organs and tumors of sacrificed animals. We found no distinct change of total MNP amounts in vivo during long term monitoring. Most of the MNP amounts remained in the tumors; only a few MNPs were detected in liver and spleen and less than 1% of totally injected MNPs were excreted. Apparently, the application of magnetic heating and the induction of apoptosis did not affect MNP accumulation. Our results indicate that MNP mainly remained within the injection side after magnetic heating over a seven-days-observation and therefore not affecting healthy tissue. As a consequence, localized magnetic heating therapy of tumors might be applied periodically for a better therapeutic outcome.

  15. Minimal-invasive magnetic heating of tumors does not alter intra-tumoral nanoparticle accumulation, allowing for repeated therapy sessions: an in vivo study in mice.

    PubMed

    Kettering, Melanie; Richter, Heike; Wiekhorst, Frank; Bremer-Streck, Sibylle; Trahms, Lutz; Kaiser, Werner Alois; Hilger, Ingrid

    2011-12-16

    Localized magnetic heating treatments (hyperthermia, thermal ablation) using superparamagnetic iron oxide nanoparticles (MNPs) continue to be an active area of cancer research. For generating the appropriate heat to sufficiently target cell destruction, adequate MNP concentrations need to be accumulated into tumors. Furthermore, the knowledge of MNP bio-distribution after application and additionally after heating is significant, firstly because of the possibility of repeated heating treatments if MNPs remain at the target region and secondly to study potential adverse effects dealing with MNP dilution from the target region over time. In this context, little is known about the behavior of MNPs after intra-tumoral application and magnetic heating. Therefore, the present in vivo study on the bio-distribution of intra-tumorally injected MNPs in mice focused on MNP long term monitoring of pre and post therapy over seven days using multi-channel magnetorelaxometry (MRX). Subsequently, single-channel MRX was adopted to study the bio-distribution of MNPs in internal organs and tumors of sacrificed animals. We found no distinct change of total MNP amounts in vivo during long term monitoring. Most of the MNP amounts remained in the tumors; only a few MNPs were detected in liver and spleen and less than 1% of totally injected MNPs were excreted. Apparently, the application of magnetic heating and the induction of apoptosis did not affect MNP accumulation. Our results indicate that MNP mainly remained within the injection side after magnetic heating over a seven-days-observation and therefore not affecting healthy tissue. As a consequence, localized magnetic heating therapy of tumors might be applied periodically for a better therapeutic outcome.

  16. The ZOOM Fermilab physics class libraries

    SciTech Connect

    Mark Fischler, Walter Brown, Philippe Canal and John Marraffino

    1998-11-01

    Several years ago, the two major collider experiments at Fermilab (D and CDF) decided that new software development for Run II will be largely done in C++. The run is slated to start in 1.5 years, an aggressive time frame for a major change in development language and style. If despite the transition each experiment (and sometimes multiple groups within an experiment) were to develop each needed mod- ule, the C++ strategy would not be advantageous. Thus it was deemed useful to have a library development group speci cally responsive to Run II needs. This Fer- milab Physics Class Library Task Force (ZOOM) would also expand the core of C++ expertise available for Fermilab physicists to draw upon. C++ di ers from Fortran in that the for common use of routines and libraries is greater. But this potential is not realized automatically. Unless coordina- tion issues are considered from the start, utilities produced by one group generally do mot meet the needs of other groups|and each group ends up creating independant software. To help increase code sharing, the centralized ZOOM task force must: Actively pursue outside (commercial and free-ware) packages. If ZOOM can verify that package X meets some needs in a sensible manner, then people can gravitate to that and not expend valuable development time. Act as a core for joint develpment of packages needed by both experiments. Develop relevant packages of su ciently high quality as to overcome the natu- ral reluctance of highly skilled physicists to rely on code developed by others. This means more extensive design thought and testing work than might be practical for some groups. Participate in cooperation with HEP groups outside the FNAL community, to acquire tools suitable for the Fermilab e orts. Of particular concern are areas where standardization is important, and thus a single product is more valuable than two, even discounting any savings in e ort. We must bring the ability to contribute some packages and the

  17. Electrical injection and detection of spin accumulation in silicon at 500 K with magnetic metal/silicon dioxide contacts.

    PubMed

    Li, C H; van 't Erve, O M J; Jonker, B T

    2011-01-01

    The International Technology Roadmap for Semiconductors has identified the electron's spin angular momentum as a new state variable that should be explored as an alternative to the electron's charge for use beyond the size scaling of Moore's Law. A major obstacle has been achieving control of the spin variable at temperatures required for practical applications. Here we demonstrate electrical injection, detection and precession of spin accumulation in silicon, the cornerstone material of device technology, at temperatures that easily exceed these requirements. We observe Hanle precession of electron spin accumulation in silicon for a wide range of bias, show that the magnitude of the Hanle signal agrees well with theory, and that the spin lifetime varies with silicon carrier density. These results confirm spin accumulation in the silicon transport channel to 500 K rather than trapping in localized interface states, and enable utilization of the spin variable in practical device applications.

  18. Fermilab's Proton Accelerator Complex : World Record Performance and Upgrade Plans

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2017-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  19. The Fermilab ISDN Pilot Project: Experiences and future plans

    SciTech Connect

    Martin, D.E.; Lego, A.J.; Clifford, A.E.

    1995-12-31

    Fully operational in June of 1994, the Fermilab ISDN Pilot Project was started to gain insight into the costs and benefits of providing ISDN service to the homes of Fermilab researchers. Fourteen users were chosen from throughout Fermilab, but the number of Fermilab-employed spouses pushed the total user count to 20. Each home was equipped with a basic rate ISDN (BRI) line, a BRI Ethernet half-bridge, and an NT-1. An inter-departmental team coordinated the project. Usage at each home was tracked and frequent surveys were attempted. Lessons learned include: working with Ameritech can be difficult; careful monitoring is essential; and configuration of home computing equipment is very time consuming. Plans include moving entirely to primary rate ISDN hubs, support for different home ISDN equipment and better usage and performance tracking.

  20. Power tests of the Fermilab Lithium Lens for antiproton collection

    SciTech Connect

    Biallas, G.; Dugan, G.; Hangst, J.; Hanson, R.; Hojvat, C.; Lange, F.; Lennox, A.J.; McCarthy, J.

    1983-08-01

    A prototpye Lithium Lens to be used for the collection of antiprotons in the Fermilab Tevatron I project has been constructed. Some of the fabrication details, the procedure for lithium filling and the results of the initial operation are discussed.

  1. Development of the beam extraction synchronization system at the Fermilab Booster

    DOE PAGES

    Seiya, K.; Chaurize, S.; Drennan, C. C.; ...

    2015-07-28

    The new beam extraction synchronization control system called “Magnetic Cogging” was developed at the Fermilab Booster and it replaces a system called “RF Cogging” as part of the Proton Improvement Plan (PIP). [1] The flux throughput goal for the PIP is 2.2×1017 protons per hour, which is double the present flux. Thus, the flux increase will be accomplished by doubling the number of beam cycles which, in turn, will double the beam loss in the Booster accelerator if nothing else is done.

  2. Development of the beam extraction synchronization system at the Fermilab Booster

    SciTech Connect

    Seiya, K.; Chaurize, S.; Drennan, C. C.; Pellico, W.; Sullivan, T.; Triplett, A. K.; Waller, A. M.

    2015-07-28

    The new beam extraction synchronization control system called “Magnetic Cogging” was developed at the Fermilab Booster and it replaces a system called “RF Cogging” as part of the Proton Improvement Plan (PIP). [1] The flux throughput goal for the PIP is 2.2×1017 protons per hour, which is double the present flux. Thus, the flux increase will be accomplished by doubling the number of beam cycles which, in turn, will double the beam loss in the Booster accelerator if nothing else is done.

  3. First high gradient test results of a dressed 325 MHz superconducting single spoke resonator at Fermilab

    SciTech Connect

    Webber, R.C.; Khabiboulline, T.; Madrak, R.; Nicol, T.; Ristori, L.; Soyars, W.; Wagner, R.; /Fermilab

    2010-09-01

    A new superconducting RF cavity test facility has been commissioned at Fermilab in conjunction with first tests of a 325 MHz, {beta} = 0.22 superconducting single-spoke cavity dressed with a helium jacket and prototype tuner. The facility is described and results of full gradient, CW cavity tests with a high Q{sub ext} drive coupler are reported. Sensitivities to Q disease and externally applied magnetic fields were investigated. Results are compared to bare cavity results obtained prior to hydrogen degassing and welding into the helium jacket.

  4. 3D design activities at Fermilab: Opportunities for physics

    SciTech Connect

    Yarema, Raymond; Deptuch, Grezgorz; Hoff, Jim; Shenai, Alpana; Trimpl, Marcel; Zimmerman, Tom; Demarteau, Marcel; Liptona, Ron; Christian, Dave; /Fermilab

    2009-01-01

    Fermilab began exploring the technologies for vertically integrated circuits (also commonly known as 3D circuits) in 2006. These technologies include through silicon vias (TSV), circuit thinning, and bonding techniques to replace conventional bump bonds. Since then, the interest within the High Energy Physics community has grown considerably. This paper will present an overview of the activities at Fermilab over the last 3 years which have helped spark this interest.

  5. Integrated FASTBUS, VME and CAMAC diagnostic software at Fermilab

    SciTech Connect

    Anderson, J.; Forster, R.; Franzen, J.; Wilcer, N.

    1992-10-01

    A fully integrated system for the diagnosis and repair of data acquisition hardware in FASTBUS, VME and CAMAC is described. A short cost/benefit analysis of using a distributed network of personal computers for diagnosis is presented. The SPUDS (Single Platform Uniting Diagnostic Software) software package developed at Fermilab by the authors is introduced. Examples of how SPUDS is currently used in the Fermilab equipment repair facility, as an evaluation tool and for field diagnostics are given.

  6. Jet production in muon scattering at Fermilab E665

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1993-11-01

    Measurements of multi-jet production rates from Muon-Nucleon and Muon-Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Nucleon deep-inelastic scattering are compared to Monte Carlo model predictions. Preliminary results from jet production on heavy targets, in the shadowing region, show a higher suppression of two-forward jets as compared to one-forward jet production.

  7. Simulations and Measurements of Stopbands in the Fermilab Recycler

    SciTech Connect

    Ainsworth, Robert; Adamson, Philip; Hazelwood, Kyle; Kourbanis, Ioanis; Stern, Eric

    2016-06-01

    Fermilab has recently completed an upgrade to the complex with the goal of delivering 700 kW of beam power as 120 GeV protons to the NuMI target. A major part of boosting beam power is to use the Fermilab Recycler to stack protons. Simulations focusing on the betatron resonance stopbands are presented taking into account different effects such as intensity and chromaticity. Simulations are compared with measurements.

  8. Operations aspects of the Fermilab Central Helium Liquefier Facility

    SciTech Connect

    Geynisman, M.G.; Makara, J.N.

    1995-03-01

    The Fermilab Central Helium Liquefier (CHL) facility consists of helium and nitrogen reliquefier plants operated 24 hours-a-day to supply LHe at 4.6{degrees}K and LN{sub 2} for the Fermilab Tevatron superconducting proton-antiproton collider ring and to recover warm return gases. Operating aspects of CHL, including different equipment and systems reliability, availability, maintenance experience, safety concerns, and economics aspects are discussed.

  9. Recent Fermilab results on hadroproduction of heavy flavors

    SciTech Connect

    Garbincius, P.H.

    1993-08-01

    Recent results from various Fermilab experiments on the hadroproduction of states containing charm, bottom, and top quarks are discussed. These include observation of the spectra, lifetime, and production characteristics of charmonium, open charm states, and bottom particle production with both high energy fixed target and {bar p}-p collider facilities. The status of the search for the top quark by the Fermilab collider experiments is updated.

  10. The Calibration System of the E989 Experiment at Fermilab

    SciTech Connect

    Anastasi, Antonio

    2017-01-01

    The muon anomaly aµ is one of the most precise quantity known in physics experimentally and theoretically. The high level of accuracy permits to use the measurement of aµ as a test of the Standard Model comparing with the theoretical calculation. After the impressive result obtained at Brookhaven National Laboratory in 2001 with a total accuracy of 0.54 ppm, a new experiment E989 is under construction at Fermilab, motivated by the diff of aexp SM µ - aµ ~ 3σ. The purpose of the E989 experiment is a fourfold reduction of the error, with a goal of 0.14 ppm, improving both the systematic and statistical uncertainty. With the use of the Fermilab beam complex a statistic of × 21 with respect to BNL will be reached in almost 2 years of data taking improving the statistical uncertainty to 0.1 ppm. Improvement on the systematic error involves the measurement technique of ωa and ωp, the anomalous precession frequency of the muon and the Larmor precession frequency of the proton respectively. The measurement of ωp involves the magnetic field measurement and improvements on this sector related to the uniformity of the field should reduce the systematic uncertainty with respect to BNL from 170 ppb to 70 ppb. A reduction from 180 ppb to 70 ppb is also required for the measurement of ωa; new DAQ, a faster electronics and new detectors and calibration system will be implemented with respect to E821 to reach this goal. In particular the laser calibration system will reduce the systematic error due to gain fl of the photodetectors from 0.12 to 0.02 ppm. The 0.02 ppm limit on systematic requires a system with a stability of 10-4 on short time scale (700 µs) while on longer time scale the stability is at the percent level. The 10-4 stability level required is almost an order of magnitude better than the existing laser calibration system in particle physics, making the calibration system a very challenging item. In addition to the high level

  11. Bob Wilson and The Birth of Fermilab

    ScienceCinema

    Edwin L. Goldwasser

    2016-07-12

    In the 1960’s the Lawrence Berkeley Laboratory (then The Lawrence Radiation Laboratory) submitted two proposals to build the next high energy physics research laboratory. The first included a 200 GeV accelerator and associated experimental facilities. The cost was $350 million. The Bureau of the Budget rejected that proposal as a “budget buster”. It ruled that $250 million was the maximum that could be accepted. The second proposal was for a reduced scope laboratory that met the Bureau of the Budget’s cost limitation, but it was for a lower energy accelerator and somewhat smaller and fewer experimental facilities. The powerful Congressional Joint Committee on Atomic Energy rejected the reduced scope proposal as inadequate to provide physics results of sufficient interest to justify the cost. It was then that Bob Wilson came forth with a third proposal, coping with that “Catch 22” and leading to the creation of Fermilab. How he did it will be the subject of this colloquium.

  12. Title I Design Report: Fermilab Linac Upgrade

    SciTech Connect

    Fermilab,

    1990-02-01

    The Fermilab Linac Upgrade Project is motivated by the requirement to increase Collider luminosity which will increase the physics discovery potential of the Tevatron Collider. The Linac Upgrade is one of several steps which will increase the Collider luminosity. The basic accelerator physics motivation for the project is the following chain of logic. The existing Main Ring Accelerator has a fixed, relatively small admittance for 8 GeV protons injected from the Booster Accelerator. While it is demonstrably p088ible to increase the number of protons accelerated in the Booster, space charge effects at injection into the Booster from the Linac increase the emittance of the beam delivered from the Booster to the Main Ring beyond the available admittance of the Main Ring. An increase in the energy of the protons injected into the Booster, however, will reduce the emittance growth due to the space charge effects at injection. Therefore, for a given admittance into the Main Ring, a greater number of protons will be accelerated in the Booster with a matching emittance if the injection energy is raised. The goal of the Linac Upgrade is to double the output energy of the Linac from 200MeV to 400MeV.

  13. The LArIAT experiment at Fermilab

    SciTech Connect

    Nutini, Irene

    2016-03-01

    The LArIAT experiment at Fermilab is part of the International Neutrino program recently approved in the US. LArIAT aims to measure the main features of charged particles interactions in argon in the energy range (0.2 - 2.0 GeV) corresponding to the energy spectrum of the same particles when produced in a neutrino-argon interaction (neutrino energies of few GeV) typical of the short- and long-baseline neutrino beams of the Neutrino Program. Data collected from the 1st Run are being analyzed for both Physics studies and a technical characterization of the scintillation light collection system. Furthermore, two analysis topics are reported: the method developed for charged pion cross section measurement, based on the specific features of the LArTPC, and the development and test of the LArIAT custom-designed cold front-end electronics for SiPM devices to collect LAr scintillation light.

  14. The LArIAT experiment at Fermilab

    DOE PAGES

    Nutini, Irene

    2016-03-01

    The LArIAT experiment at Fermilab is part of the International Neutrino program recently approved in the US. LArIAT aims to measure the main features of charged particles interactions in argon in the energy range (0.2 - 2.0 GeV) corresponding to the energy spectrum of the same particles when produced in a neutrino-argon interaction (neutrino energies of few GeV) typical of the short- and long-baseline neutrino beams of the Neutrino Program. Data collected from the 1st Run are being analyzed for both Physics studies and a technical characterization of the scintillation light collection system. Furthermore, two analysis topics are reported: themore » method developed for charged pion cross section measurement, based on the specific features of the LArTPC, and the development and test of the LArIAT custom-designed cold front-end electronics for SiPM devices to collect LAr scintillation light.« less

  15. Channeling Radiation Experiment at Fermilab ASTA

    SciTech Connect

    Mihalcea, D.; Edstrom, D. R.; Piot, P.; Rush, W.; Sen, T.

    2015-06-01

    Electron beams with moderate energy ranging from 4 to 50 MeV can be used to produce x-rays through the Channeling Radiation (CR) mechanism. Typically, the xray spectrum from these sources extends up to 140 keV and this range covers the demand for most practical applications. The parameters of the electron beam determine the spectral brilliance of the x-ray source. The electron beam produced at the Fermilab new facility Advanced Superconducting Test Accelerator (ASTA) meets the requirements to assemble an experimental high brilliance CR xray source. In the first stage of the experiment the energy of the beam is 20 MeV and due to the very low emittance ($\\approx 100$ nm ) at low bunch charge (20 pC) the expected average brilliance of the x-ray source is about $10^9$ photons/[s- $(mm-mrad)^2$-0.1% BW]. In the second stage of the experiment the beam energy will be increased to 50 MeV and consequently the average brilliance will increase by a factor of five. Also, the x-ray spectrum will extend from about 30 keV to 140 keV

  16. MULTIDETECTOR COMPUTED TOMOGRAPHIC AND LOW-FIELD MAGNETIC RESONANCE IMAGING ANATOMY OF THE QUADRIGEMINAL CISTERN AND CHARACTERIZATION OF SUPRACOLLICULAR FLUID ACCUMULATIONS IN DOGS.

    PubMed

    Bertolini, G; Ricciardi, M; Caldin, M

    2016-05-01

    Focal fluid accumulations in the supracollicular region are commonly termed quadrigeminal cysts and may be either subclinical or associated with neurologic deficits in dogs. Little published information is available on normal imaging anatomy and anatomic relationships for the canine quadrigeminal cistern. Objectives of this observational, cross-sectional study were to describe normal quadrigeminal cistern anatomy and determine the prevalence and characteristics of supracollicular fluid accumulations in dogs. Normal descriptions were accomplished using computed tomographic (CT) cisternography in one canine cadaver, and CT and magnetic resonance imaging (MRI) studies of the brain in four prospectively recruited dogs with no evidence of intracranial disease. Prevalence and characteristics descriptions were accomplished using a retrospective review of brain CT or MRI studies performed during the period of 2005-2015. The normal quadrigeminal cistern consistently exhibited a complex H shape and was separated from the third ventricle by a thin membrane. Prevalence of supracollicular fluid accumulations (SFAs) was 2.19% among CT studies (n = 4427) and 2.2% among MRI studies (n = 626). Dogs with SFA were significantly younger than control dogs (P < 0.0001). Shih-tzu (OR = 111.6), Chihuahua (OR = 81.1), and Maltese (OR = 27.6) breed dogs were predisposed (P < 0.0001). Among dogs with SFAs, the following three patterns were defined: (1) third ventricle (49.54%), (2) quadrigeminal cistern (13.51%), and (3) both third ventricle and quadrigeminal cistern (36.93%). Authors recommend that the term supracollicular fluid accumulation (SFA) should be used rather than the term quadrigeminal cyst to describe these focal fluid accumulations in dogs.

  17. Measurement and simulations of intensity-dependent effects in the Fermilab Booster synchrotron

    NASA Astrophysics Data System (ADS)

    McCarron, Daniel

    The Fermilab Booster is a nearly 40-year-old proton synchrotron, designed to accelerate protons from 0.4 to 8 GeV kinetic energy for extraction into the Main Injector, and currently operating with a typical intensity of 4.5 x 1012 particles per beam, roughly twice the design value, because of requirements for high particle flux in various experiments. Its relatively low injection energy provides certain challenges in maintaining beam quality/stability under such demands. Quantification of effects limiting intensity could provide enhanced beam stability and reduced downtime. Future accelerator design may also benefit from this better understanding of intensity-limiting effects near injection. Chapter 1 summarizes 20th-century accelerator research up to modern synchrotrons. Chapter 2 introduces some accelerator-physics terminology, and briefly describes the Booster. Synergia, a space-charge modeling tool, is presented with relevant benchmarks. Emittance is discussed in Chapter 3. Space-charge fields couple particle motion, leading to interplanar emittance exchange, necessitating simultaneous measurements to obtain adequate descriptions at higher intensities. Measurements are described and results are given. RMS emittances agree with known values at nominal intensities and emittance exchange is accounted for. Correlation terms between the planes are quantified using Synergia, and shown to be at most an 8% effect. Studies of coherent and incoherent betatron-frequency intensity dependence near injection are presented. In Chapter 4 coherent frequency shifts are shown to be from dipole- and quadrupole-wakefield effects. Asymmetry of the laminated, magnetic chambers are responsible for the magnitudes and opposing signs of horizontal and vertical wakefield tune shifts. Chapter 5 details procedures for obtaining a coherent-shift intensity dependence, yielding -0.009/1012 and +0.001/10 12 in the vertical and horizontal planes respectively, accumulating to maximal values over

  18. Electron Cloud Trapping in Recycler Combined Function Dipole Magnets

    SciTech Connect

    Antipov, Sergey A.; Nagaitsev, S.

    2016-10-04

    Electron cloud can lead to a fast instability in intense proton and positron beams in circular accelerators. In the Fermilab Recycler the electron cloud is confined within its combined function magnets. We show that the field of combined function magnets traps the electron cloud, present the results of analytical estimates of trapping, and compare them to numerical simulations of electron cloud formation. The electron cloud is located at the beam center and up to 1% of the particles can be trapped by the magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a Recycler combined function dipole this multiturn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The multi-turn build-up can be stopped by injection of a clearing bunch of 1010 p at any position in the ring.

  19. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    SciTech Connect

    W. Wester

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  20. Physics at an upgraded proton driver at Fermilab

    SciTech Connect

    Steve Geer

    2004-07-28

    The accelerator-based particle physics program in the US is entering a period of transition. This is particularly true at Fermilab which for more than two decades has been the home of the Tevatron Proton-Antiproton Collider, the World's highest energy hadron collider. In a few years time the energy frontier will move to the LHC at CERN. Hence, if an accelerator-based program is to survive at Fermilab, it must evolve. Fermilab is fortunate in that, in addition to hosting the Tevatron Collider, the laboratory also hosts the US accelerator-based neutrino program. The recent discovery that neutrino flavors oscillate has opened a new exciting world for us to explore, and has created an opportunity for the Fermilab accelerator complex to continue to address the cutting-edge questions of particle physics beyond the Tevatron Collider era. The presently foreseen neutrino oscillation experiments at Fermilab (MiniBooNE [1] and MINOS [2]) will enable the laboratory to begin contributing to the Global oscillation physics program in the near future, and will help us better understand the basic parameters describing the oscillations. However, this is only a first step. To be able to pin down all of the oscillation parameters, and hopefully make new discoveries along the way, we will need high statistics experiments, which will require a very intense neutrino beam, and one or more very massive detectors. In particular we will require new MW-scale primary proton beams and perhaps ultimately a Neutrino Factory [3]. Plans to upgrade the Fermilab Proton Driver are presently being developed [4]. The upgrade project would replace the Fermilab Booster with a new 8 GeV accelerator with 0.5-2 MW beam power, a factor of 15-60 more than the current Booster. It would also make the modifications needed to the Fermilab Main Injector (MI) to upgrade it to simultaneously provide 120 GeV beams of 2 MW. This would enable a factor of 5-10 increase in neutrino beam intensities at the MI, while also

  1. Proposed Fermilab upgrade main injector project. Environmental Assessment

    SciTech Connect

    Not Available

    1992-04-01

    The US Department of Energy (DOE) proposes to construct and operate a ``Fermilab Main Injector`` (FMI), a 150 GeV proton injector accelerator, at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The purpose and need for this action are given of this Environmental Assessment (EA). A description of the proposed FMI and construction activities are also given. The proposed FMI would be housed in an underground tunnel with a circumference of approximately 2.1 miles (3.4 kilometers), and the construction would affect approximately 135 acres of the 6,800 acre Fermilab site. The purpose of the proposed FMI is to construct and bring into operation a new 150 GeV proton injector accelerator. This addition to Fermilab`s Tevatron would enable scientists to penetrate ever more deeply into the subatomic world through the detection of the super massive particles that can be created when a proton and antiproton collide head-on. The conversion of energy into matter in these collisions makes it possible to create particles that existed only an instant after the beginning of time. The proposed FMI would significantly extend the scientific reach of the Tevatron, the world`s first superconducting accelerator and highest energy proton-antiproton collider.

  2. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  3. 6 Batch Injection and Slipped Beam Tune Measurements in Fermilab?s Main Injector

    SciTech Connect

    Scott, D.J.; Capista, D.; Kourbanis, I.; Seiya, K.; Yan, M.-J.; /Fermilab

    2012-05-01

    During NOVA operations it is planned to run the Fermilab Recycler in a 12 batch slip stacking mode. In preparation for this, measurements of the tune during a six batch injection and then as the beam is decelerated by changing the RF frequency have been carried out in the Main Injector. The coherent tune shifts due to the changing beam intensity were measured and compared well with the theoretically expected tune shift. The tune shifts due to changing RF frequency, required for slip stacking, also compare well with the linear theory, although some nonlinear affects are apparent at large frequency changes. These results give us confidence that the expected tunes shifts during 12 batch slip stacking Recycler operations can be accommodated.

  4. Secondary Electron Yield Measurements of Fermilab?s Main Injector Vacuum Vessel

    SciTech Connect

    Scott, D.J.; Capista, D.; Duel, K.L.; Zwaska, R.M.; Greenwald, S.; Hartung, W.; Li, Y.; Moore, T.P.; Palmer, M.A.; Kirby, R.; Pivi, M.; /SLAC

    2012-05-01

    We discuss the progress made on a new installation in Fermilab's Main Injector that will help investigate the electron cloud phenomenon by making direct measurements of the secondary electron yield (SEY) of samples irradiated in the accelerator. In the Project X upgrade the Main Injector will have its beam intensity increased by a factor of three compared to current operations. This may result in the beam being subject to instabilities from the electron cloud. Measured SEY values can be used to further constrain simulations and aid our extrapolation to Project X intensities. The SEY test-stand, developed in conjunction with Cornell and SLAC, is capable of measuring the SEY from samples using an incident electron beam when the samples are biased at different voltages. We present the design and manufacture of the test-stand and the results of initial laboratory tests on samples prior to installation.

  5. Geomodel constructs of the Earth's crust for water continuation of the Korotaikha depression from gravity and magnetic data for revealing promising areas of oil and gas accumulation

    NASA Astrophysics Data System (ADS)

    Litvinova, Tamara; Kudryavtsev, Ivan

    2016-04-01

    The paper considers the results of re-interpretation of geophysical data within the water continuation of the Korotaikha depression. To solve the issue of identifying promising areas of oil and gas accumulation in the region, magnetic and gravity materials were reprocessed: digital maps of potential fields at 1: 500 000 scale were compiled on a frame network of seismic lines (3 lines on land and 3 lines in water area) made by reflection-CDP, density models to a depth of 20 km by solving the direct problem of gravity prospecting in GM-SYS module (Geosoft) in 2D formulation were constructed. Deep reflection-CDP seismic sections specified according to the deep wells were used as starting models. Correctness of the selected density models was controlled by comparing the theoretical curve with the values interpolated on the profile line from the digital model of gravity anomaly (Bouguer, density of the intermediate layer of 2.67 g/cm3). Magnetic modeling was performed using geometry of blocks from the obtained density models to a depth of 20 km and is based on selection of local anomaly sources in the upper section (in the Triassic strata). Blocks of the Precambrian basement were used as sources of regional magnetic anomalies in the considered models. Modeling constructs show the defining role of the topography of terrigenous and carbonate complex boundary within the Paleozoic section as a source of gravity anomalies for the region under study. These findings are confirmed by comparison of gravity and seismic data (maps of local gravity anomalies and structural maps of reflecting horizons) and additionally substantiated by analysis of the nature of local magnetic anomalies distribution. The latter are associated with the Triassic basalt horizons at the top of the terrigenous complex and thus also reflect structures of the sedimentary cover, which are registered independently by gravity data.

  6. Applications of barrier bucket RF systems at Fermilab

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2006-03-01

    In recent years, the barrier rf systems have become important tools in a variety of beam manipulation applications at synchrotrons. Four out of six proton synchrotrons at Fermilab are equipped with broad-band barrier rf systems. All of the beam manipulations pertaining to the longitudinal phase space in the Fermilab Recycler (synchrotron used for antiproton storage) are carried out using a barrier system. Recently, a number of new applications of barrier rf systems have been developed- the longitudinal momentum mining, longitudinal phase-space coating, antiproton stacking, fast bunch compression and more. Some of these techniques have been critical for the recent spectacular success of the collider performance at the Fermilab Tevatron. Barrier bunch coalescing to produce bright proton bunches has a high potential to increase proton antiproton luminosity significantly. In this paper, I will describe some of these techniques in detail. Finally, I make a few general remarks on issues related to barrier systems.

  7. Review of programmable systems associated with Fermilab experiments

    SciTech Connect

    Nash, T.

    1981-05-01

    The design and application of programmable systems for Fermilab experiments are reviewed. The high luminosity fixed target environment at Fermilab has been a very fertile ground for the development of sophisticated, powerful triggering systems. A few of these are integrated systems designed to be flexible and to have broad application. Many are dedicated triggers taking advantage of large scale integrated circuits to focus on the specific needs of one experiment. In addition, the data acquisition requirements of large detectors, existing and planned, are being met with programmable systems to process the data. Offline reconstruction of data places a very heavy load on large general purpose computers. This offers a potentially very fruitful area for new developments involving programmable dedicated systems. Some of the present thinking at Fermilab regarding offline reconstruction processors will be described.

  8. Report of the Fermilab ILC Citizens' Task Force

    SciTech Connect

    2008-06-01

    Fermi National Accelerator Laboratory convened the ILC Citizens' Task Force to provide guidance and advice to the laboratory to ensure that community concerns and ideas are included in all public aspects of planning and design for a proposed future accelerator, the International Linear Collider. In this report, the members of the Task Force describe the process they used to gather and analyze information on all aspects of the proposed accelerator and its potential location at Fermilab in northern Illinois. They present the conclusions and recommendations they reached as a result of the learning process and their subsequent discussions and deliberations. While the Task Force was charged to provide guidance on the ILC, it became clear during the process that the high cost of the proposed accelerator made a near-term start for the project at Fermilab unlikely. Nevertheless, based on a year of extensive learning and dialogue, the Task Force developed a series of recommendations for Fermilab to consider as the laboratory develops all successor projects to the Tevatron. The Task Force recognizes that bringing a next-generation particle physics project to Fermilab will require both a large international effort and the support of the local community. While the Task Force developed its recommendations in response to the parameters of a future ILC, the principles they set forth apply directly to any large project that may be conceived at Fermilab, or at other laboratories, in the future. With this report, the Task Force fulfills its task of guiding Fermilab from the perspective of the local community on how to move forward with a large-scale project while building positive relationships with surrounding communities. The report summarizes the benefits, concerns and potential impacts of bringing a large-scale scientific project to northern Illinois.

  9. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  10. Feasibility of the utilization of BNCT in the fast neutron therapy beam at Fermilab

    SciTech Connect

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-23

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  11. Feasibility of the Utilization of BNCT in the Fast Neutron Therapy Beam at Fermilab

    DOE R&D Accomplishments Database

    Langen, Katja; Lennox, Arlene J.; Kroc, Thomas K.; DeLuca, Jr., Paul M.

    2000-06-01

    The Neutron Therapy Facility at Fermilab has treated cancer patients since 1976. Since then more than 2,300 patients have been treated and a wealth of clinical information accumulated. The therapeutic neutron beam at Fermilab is produced by bombarding a beryllium target with 66 MeV protons. The resulting continuous neutron spectrum ranges from thermal to 66 MeV in neutron energy. It is clear that this spectrum is not well suited for the treatment of tumors with boron neutron capture therapy (BNCT) only However, since this spectrum contains thermal and epithermal components the authors are investigating whether BNCT can be used in this beam to boost the tumor dose. There are clinical scenarios in which a selective tumor dose boost of 10 - 15% could be clinically significant. For these cases the principal treatment would still be fast neutron therapy but a tumor boost could be used either to deliver a higher dose to the tumor tissue or to reduce the dose to the normal healthy tissue while maintaining the absorbed dose level in the tumor tissue.

  12. Research Activities at Fermilab for Big Data Movement

    SciTech Connect

    Mhashilkar, Parag; Wu, Wenji; Kim, Hyun W; Garzoglio, Gabriele; Dykstra, Dave; Slyz, Marko; DeMar, Phil

    2013-01-01

    Adaptation of 100GE Networking Infrastructure is the next step towards management of Big Data. Being the US Tier-1 Center for the Large Hadron Collider's (LHC) Compact Muon Solenoid (CMS) experiment and the central data center for several other large-scale research collaborations, Fermilab has to constantly deal with the scaling and wide-area distribution challenges of the big data. In this paper, we will describe some of the challenges involved in the movement of big data over 100GE infrastructure and the research activities at Fermilab to address these challenges.

  13. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  14. Collider Detector at Fermilab (CDF): Data from B Hadrons Research

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group is organized into six working groups, each with a specific focus. The Bottom group studies the production and decay of B hadrons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  15. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  16. Preliminary consideration of a double, 480 GeV, fast cycling proton accelerator for production of neutrino beams at Fermilab

    SciTech Connect

    Piekarz, Henryk; Hays, Steven; /Fermilab

    2007-03-01

    We propose to build the DSF-MR (Double Super-Ferric Main Ring), 480 GeV, fast-cycling (2 second repetition rate) two-beam proton accelerator in the Main Ring tunnel of Fermilab. This accelerator design is based on the super-ferric magnet technology developed for the VLHC, and extended recently to the proposed LER injector for the LHC and fast cycling SF-SPS at CERN. The DSF-MR accelerator system will constitute the final stage of the proton source enabling production of two neutrino beams separated by 2 second time period. These beams will be sent alternately to two detectors located at {approx} 3000 km and {approx} 7500 km away from Fermilab. It is expected that combination of the results from these experiments will offer more than 3 order of magnitudes increased sensitivity for detection and measurement of neutrino oscillations with respect to expectations in any current experiment, and thus may truly enable opening the window into the physics beyond the Standard Model. We examine potential sites for the long baseline neutrino detectors accepting beams from Fermilab. The current injection system consisting of 400 MeV Linac, 8 GeV Booster and the Main Injector can be used to accelerate protons to 45 GeV before transferring them to the DSF-MR. The implementation of the DSF-MR will allow for an 8-fold increase in beam power on the neutrino production target. In this note we outline the proposed new arrangement of the Fermilab accelerator complex. We also briefly describe the DSF-MR magnet design and its power supply, and discuss necessary upgrade of the Tevatron RF system for the use with the DSF-MR accelerator. Finally, we outline the required R&D, cost estimate and possible timeline for the implementation of the DSF-MR accelerator.

  17. Cryogenic Particle Accumulation In ATRAP And The First Antihydrogen Production Within A Magnetic Gradient Trap For Neutral Antimatter

    SciTech Connect

    Storry, C. H.; Carew, A.; Comeau, D.; Hessels, E. A.; Weel, M.; George, M. C.; Grzonka, D.; Oelert, W.; Sefzick, T.; Zhang, Z.; Gabrielse, G.; Larochelle, P.; LeSage, D.; Levitt, B.; Kolthammer, W. S.; McConnell, R.; Richerme, P.; Wrubel, J.; Speck, A.; Markert, F.

    2008-08-08

    ATRAP has made many important improvements since CERN's Antiproton Decelerator (AD) was restarted in 2006. These include substantial increases in the number of positrons (e{sup +}) and antiprotons (Pbars) used to make antihydrogen (Hbar) atoms, a new technique for loading electrons (e{sup -}) that are used to cool Pbars and e{sup +}, implementation of a completely new, larger and more robust apparatus in our second experimental zone and the inclusion of a quadrupole Ioffe trap intended to trap the coldest Hbar atoms produced. Using this new apparatus we have produced large numbers of Hbar atoms within a Penning trap that is located within this quadrupole Ioffe trap using a new technique which shows promise for producing even colder atoms. These observed Hbar atoms resolve a debate about whether positrons and antiprotons can be brought together to form atoms within the divergent magnetic fields of a quadrupole Ioffe trap.

  18. Iron-dependent formation of reactive oxygen species and glutathione depletion after accumulation of magnetic iron oxide nanoparticles by oligodendroglial cells

    NASA Astrophysics Data System (ADS)

    Hohnholt, Michaela C.; Dringen, Ralf

    2011-12-01

    Magnetic iron oxide nanoparticles (IONP) are currently used for various neurobiological applications. To investigate the consequences of a treatment of brain cells with such particles, we have applied dimercaptosuccinate (DMSA)-coated IONP that had an average hydrodynamic diameter of 60 nm to oligodendroglial OLN-93 cells. After exposure to 4 mM iron applied as DMSA-IONP, these cells increased their total specific iron content within 8 h 600-fold from 7 to 4,200 nmol/mg cellular protein. The strong iron accumulation was accompanied by a change in cell morphology, although the cell viability was not compromized. DMSA-IONP treatment caused a concentration-dependent increase in the iron-dependent formation of reactive oxygen species and a decrease in the specific content of the cellular antioxidative tripeptide glutathione. During a 16 h recovery phase in IONP-free culture medium following exposure to DMSA-IONP, OLN-93 cells maintained their high iron content and replenished their cellular glutathione content. These data demonstrate that viable OLN-93 cells have a remarkable potential to deal successfully with the consequences of an accumulation of large amounts of iron after exposure to DMSA-IONP.

  19. Antiproton cooling in the Fermilab Recycler Ring

    SciTech Connect

    Nagaitsev, S.; Bolshakov, A.; Broemmelsiek, D.; Burov, Alexey V.; Carlson, K.; Gattuso, C.; Hu, M.; Kazakevich, G.; Kramper, B.; Kroc, T.; Leibfritz, J.; Prost, L.; Pruss, S.; Saewert, G; Schmidt, C.W.; Seletskiy, S.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; Zenkevich, P.; /Fermilab /Moscow, ITEP /Novosibirsk, IYF /Rochester U.

    2005-12-01

    The 8.9-GeV/c Recycler antiproton storage ring is equipped with both stochastic and electron cooling systems. These cooling systems are designed to assist accumulation of antiprotons for the Tevatron collider operations. In this paper we report on an experimental demonstration of electron cooling of high-energy antiprotons. At the time of writing this report, the Recycler electron cooling system is routinely used in collider operations. It has helped to set recent peak luminosity records.

  20. Physical characterization, magnetic measurements, REE geochemistry and biomonitoring of dust load accumulated during a protracted winter fog period and their implications.

    PubMed

    Chakarvorty, Munmun; Pati, Jayanta Kumar; Patil, Shiva Kumar; Shukla, Swati; Niyogi, Ambalika; Saraf, Arun Kumar

    2014-05-01

    The winter fog in India is a recurrent phenomenon for more than a decade now affecting the entire Himalayan and sub-Himalayan regions covering an area of nearly 500,000 km(2). Every winter (December-January), the air and surface transports in cities of northern India (Amritsar, New Delhi, Agra, Gwalior, Kanpur, Lucknow, and Allahabad) are severely disrupted with visibility reduced to <50 m at times. Since dust particles are known to act as nuclei for the fog formation, this study is aimed to carry out physicochemical characterization of the dust particulates accumulated during a protracted fog period from one of the severely fog affected cities of north India (Allahabad; 25°27'33.40″N-81°52'45.47″E). The dust-loaded tree leaves belonging to Ficus bengalensis and Ficus religiosa from 50 different locations between January 24 and 31, 2010 are sampled and characterized. The mass of dust, color, grain shape, size, phase constituents, and mineral magnetic parameters, such as magnetic susceptibility, SIRM, χ fd%, and S-ratio, show minor variation and the regional influence outweighs local anthropogenic contributions. The dust compositions show fractionated rare earth element pattern with a pronounced negative Eu anomaly similar to upper continental crust and further suggesting their derivation from sources located in parts of north and central India.

  1. Report on Workshop on Future Directions for Accelerator R&D at Fermilab

    SciTech Connect

    Shiltsev, V.; Church, M.; Spentzouris, P.; Chou, W.; /Fermilab

    2009-09-01

    Accelerator R&D has played a crucial role in enabling scientific discovery in the past century and will continue to play this role in the years to come. In the U.S., the Office of High Energy Physics of DOE's Office of Science is developing a plan for national accelerator R&D stewardship. Fermilab undertakes accelerator research, design, and development focused on superconducting radio-frequency (RF), superconducting magnet, beam cooling, and high intensity proton technologies. In addition, the Lab pursues comprehensive integrated theoretical concepts and simulations of complete future facilities on both the energy and intensity frontiers. At present, Fermilab (1) supplies integrated design concept and technology development for a multi-MW proton source (Project X) to support world-leading programs in long baseline neutrino and rare processes experiments; (2) plays a leading role in the development of ionization cooling technologies required for muon storage ring facilities at the energy (multi-TeV Muon Collider) and intensity (Neutrino Factory) frontiers, and supplies integrated design concepts for these facilities; and (3) carries out a program of advanced accelerator R&D (AARD) in the field of high quality beam sources, and novel beam manipulation techniques.

  2. Estimating the Transverse Impedance in the Fermilab Recycler

    SciTech Connect

    Ainsworth, Robert; Adamson, Philip; Burov, Alexey; Kourbanis, Ioanis; Yang, Ming-Jen

    2016-06-01

    Impedance could represent a limitation of running high intensity bunches in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this, studies have been performed measuring the tune shift as a function of bunch intensity allowing the transverse impedance to be derived.

  3. Targetry issues for the Fermilab 2-MW neutrino superbeam

    SciTech Connect

    Mikhail A Kostin et al.

    2002-06-27

    The possibility to use various target materials are studied for a 2 MW neutrino superbeam facility that can be built at Fermilab utilizing the Main Injector and a Proton Driver. A simple target solution found is a thick graphite rod taking a broad proton beam.

  4. Simulation of the capture process in the Fermilab Booster

    SciTech Connect

    Stahl, S.; Ankenbrandt, C.

    1987-09-01

    A progress report on efforts to understand and improve adiabatic capture in the Fermilab Booster by experiment and simulation is presented. In particular, a new RF voltage program for capture which ameliorates transverse space-charge effects is described and simulated. 7 refs., 4 figs.

  5. Progress on the Fabric for Frontier Experiments Project at Fermilab

    NASA Astrophysics Data System (ADS)

    Box, Dennis; Boyd, Joseph; Dykstra, Dave; Garzoglio, Gabriele; Herner, Kenneth; Kirby, Michael; Kreymer, Arthur; Levshina, Tanya; Mhashilkar, Parag; Sharma, Neha

    2015-12-01

    The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.

  6. Fast Transverse Instability and Electron Cloud Measurements in Fermilab Recycler

    SciTech Connect

    Eldred, Jeffery; Adamson, Philip; Capista, David; Eddy, Nathan; Kourbanis, Ioanis; Morris, Denton; Thangaraj, Jayakar; Yang, Ming-Jen; Zwaska, Robert; Ji, Yichen

    2015-03-01

    A new transverse instability is observed that may limit the proton intensity in the Fermilab Recycler. The instability is fast, leading to a beam-abort loss within two hundred turns. The instability primarily affects the first high-intensity batch from the Fermilab Booster in each Recycler cycle. This paper analyzes the dynamical features of the destabilized beam. The instability excites a horizontal betatron oscillation which couples into the vertical motion and also causes transverse emittance growth. This paper describes the feasibility of electron cloud as the mechanism for this instability and presents the first measurements of the electron cloud in the Fermilab Recycler. Direct measurements of the electron cloud are made using a retarding field analyzer (RFA) newly installed in the Fermilab Recycler. Indirect measurements of the electron cloud are made by propagating a microwave carrier signal through the beampipe and analyzing the phase modulation of the signal. The maximum betatron amplitude growth and the maximum electron cloud signal occur during minimums of the bunch length oscillation.

  7. Fermilab Test Beam Facility Annual Report. FY 2014

    SciTech Connect

    Brandt, A.

    2015-01-01

    Fermilab Test Beam Facility (FTBF) operations are summarized for FY 2014. It is one of a series of publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  8. MINERvA Detector ConstructionTimelapse at Fermilab

    SciTech Connect

    2009-09-01

    This is a short timelapse of one day of construction of the MINERvA detector located at Fermilab, approximately 375 feet below the ground. This sequence was shot at 5 minute intervals from 6:00 am until 11:00 pm on April 6, 2009.

  9. Lattice QCD production on commodity clusters at Fermilab

    SciTech Connect

    D. Holmgren et al.

    2003-09-30

    We describe the construction and results to date of Fermilab's three Myrinet-networked lattice QCD production clusters (an 80-node dual Pentium III cluster, a 48-node dual Xeon cluster, and a 128-node dual Xeon cluster). We examine a number of aspects of performance of the MILC lattice QCD code running on these clusters.

  10. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect

    W. Wester

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  11. Two decades of Mexican particle physics at Fermilab

    SciTech Connect

    Roy Rubinstein

    2002-12-03

    This report is a view from Fermilab of Mexican particle physics at the Laboratory since about 1980; it is not intended to be a history of Mexican particle physics: that topic is outside the expertise of the writer. The period 1980 to the present coincides with the growth of Mexican experimental particle physics from essentially no activity to its current state where Mexican groups take part in experiments at several of the world's major laboratories. Soon after becoming Fermilab director in 1979, Leon Lederman initiated a program to encourage experimental physics, especially experimental particle physics, in Latin America. At the time, Mexico had significant theoretical particle physics activity, but none in experiment. Following a visit by Lederman to UNAM in 1981, a conference ''Panamerican Symposium on Particle Physics and Technology'' was held in January 1982 at Cocoyoc, Mexico, with about 50 attendees from Europe, North America, and Latin America; these included Lederman, M. Moshinsky, J. Flores, S. Glashow, J. Bjorken, and G. Charpak. Among the conference outcomes were four subsequent similar symposia over the next decade, and a formal Fermilab program to aid Latin American physics (particularly particle physics); it also influenced a decision by Mexican physicist Clicerio Avilez to switch from theoretical to experimental particle physics. The first physics collaboration between Fermilab and Mexico was in particle theory. Post-docs Rodrigo Huerta and Jose Luis Lucio spent 1-2 years at Fermilab starting in 1981, and other theorists (including Augusto Garcia, Arnulfo Zepeda, Matias Moreno and Miguel Angel Perez) also spent time at the Laboratory in the 1980s.

  12. Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging.

    PubMed

    Fitsanakis, Vanessa A; Zhang, Na; Anderson, Joel G; Erikson, Keith M; Avison, Malcolm J; Gore, John C; Aschner, Michael

    2008-05-01

    Chronic exposure to manganese (Mn) may lead to a movement disorder due to preferential Mn accumulation in the globus pallidus and other basal ganglia nuclei. Iron (Fe) deficiency also results in increased brain Mn levels, as well as dysregulation of other trace metals. The relationship between Mn and Fe transport has been attributed to the fact that both metals can be transported via the same molecular mechanisms. It is not known, however, whether brain Mn distribution patterns due to increased Mn exposure vs. Fe deficiency are the same, or whether Fe supplementation would reverse or inhibit Mn deposition. To address these questions, we utilized four distinct experimental populations. Three separate groups of male Sprague-Dawley rats on different diets (control diet [MnT], Fe deficient [FeD], or Fe supplemented [FeS]) were given weekly intravenous Mn injections (3 mg Mn/kg body mass) for 14 weeks, whereas control (CN) rats were fed the control diet and received sterile saline injections. At the conclusion of the study, both blood and brain Mn and Fe levels were determined by atomic absorption spectroscopy and magnetic resonance imaging. The data indicate that changes in dietary Fe levels (either increased or decreased) result in regionally specific increases in brain Mn levels compared with CN or MnT animals. Furthermore, there was no difference in either Fe or Mn accumulation between FeS or FeD animals. These data suggest that dietary Fe manipulation, whether increased or decreased, may contribute to brain Mn deposition in populations vulnerable to increased Mn exposure.

  13. End-to-End Beam Simulations for the New Muon G-2 Experiment at Fermilab

    SciTech Connect

    Korostelev, Maxim; Bailey, Ian; Herrod, Alexander; Morgan, James; Morse, William; Stratakis, Diktys; Tishchenko, Vladimir; Wolski, Andrzej

    2016-06-01

    The aim of the new muon g-2 experiment at Fermilab is to measure the anomalous magnetic moment of the muon with an unprecedented uncertainty of 140 ppb. A beam of positive muons required for the experiment is created by pion decay. Detailed studies of the beam dynamics and spin polarization of the muons are important to predict systematic uncertainties in the experiment. In this paper, we present the results of beam simulations and spin tracking from the pion production target to the muon storage ring. The end-to-end beam simulations are developed in Bmad and include the processes of particle decay, collimation (with accurate representation of all apertures) and spin tracking.

  14. High Transverse Momentum Direct Photon Production at Fermilab Fixed-Target Energies

    SciTech Connect

    Apanasevich, Leonard

    2005-01-01

    This thesis describes a study of the production of high transverse momentum direct photons and π0 mesons by proton beams at 530 and 800 GeV/c and π- beams at 515 GeV/c incident on beryllium, copper, and liquid hydrogen targets. The data were collected by Fermilab experiment E706 during the 1990 and 1991-92 fixed target runs. The apparatus included a large, finely segmented lead and liquid argon electromagnetic calorimeter and a charged particle spectrometer featuring silicon strip detectors in the target region and proportional wire chambers and drift tubes downstream of a large aperture analysis magnet. The inclusive cross sections are presented as functions of transverse momentum and rapidity. The measurements are compared with next-to-leading order perturbative QCD calculations and to results from previous experiments.

  15. Three-dimensional field map of the Fermilab D0 detector

    SciTech Connect

    Ostiguy, J.; Yamada, R.

    1991-08-01

    The D0 detector is a general purpose hadron collider detector presently under construction at Fermilab and scheduled to be put in operation in the fall of 1991. The D0 muon detection system is composed of three major toroids referred to respectively as the Central Field (CF) toroid and the End Field (EF) toroids. The complete detector weighs in excess of 4000 metric tons and rests on a steel platform. The muon detection system was designed using standard 2D codes and flux maps inside were obtained for each of the toroids taken separately. Various magnetic field measurements were performed; discrepancies with the design calculations have been observed and attributed to three dimensional effects. In this paper, we compare the predictions of the 2D computations to 3D calculations for a fully assembled detector. We also estimate the electromagnetic forces between the toroids and discuss other 3D effects, in particular, the effect of the supporting platform. 4 refs., 3 figs.

  16. Collimation system design for beam loss localization with slipstacking injection in the Fermilab Main Injector

    SciTech Connect

    Drozhdin, A.I.; Brown, B.C.; Johnson, D.E.; Koba, K.; Kourbanis, I.; Mokhov, N.V.; Rakhno, I.L.; Sidorov, V.I.; /Fermilab

    2007-06-01

    Results of modeling with the 3-D STRUCT and MARS15 codes of beam loss localization and related radiation effects are presented for the slipstacking injection to the Fermilab Main Injector. Simulations of proton beam loss are done using multi-turn tracking with realistic accelerator apertures, nonlinear fields in the accelerator magnets and time function of the RF manipulations to explain the results of beam loss measurements. The collimation system consists of one primary and four secondary collimators. It intercepts a beam power of 1.6 kW at a scraping rate of 5% of 5.5E+13 ppp, with a beam loss rate in the ring outside the collimation region of 1 W/m or less. Based on thorough energy deposition and radiation modeling, a corresponding collimator design was developed that satisfies all the radiation and engineering constraints.

  17. A new high-gradient correction quadrupole for the Fermilab luminosity upgrade

    SciTech Connect

    Mantsch, P.; Carson, J.; Riddiford, A.; Lamm, M.J.

    1989-03-01

    Special superconducting correction quadrupoles are needed for the luminosity upgrade of the Fermilab Tevatron Collider. These correctors are part of the low-beta system for the interaction regions at B/phi/ and D/phi/. The requirements are high gradient and low current. A quadrupole has been designed that meets the operating gradient of 0.63 T/cm at 1086 A. The one-layer quadrupole is wound with a cable consisting of five individually insulated rectangular strands. The five strands are overwrapped with Kapton and epoxy impregnated glass tape. The winding, curing and collaring of the magnet is accomplished in the same manner as Tevatron-like magnets using Rutherford style cable. Once the magnet is complete the five strands are connected in series. A prototype quadrupole has been assembled and tested. The magnet reached a plateau current of 1560 A corresponding to a gradient of 0.91 T/cm without training. The measured field harmonics are substantially better than required. 8 refs., 6 figs., 4 tabs.

  18. Safety of the Gadolinium-Based Contrast Agents for Magnetic Resonance Imaging, Focusing in Part on Their Accumulation in the Brain and Especially the Dentate Nucleus.

    PubMed

    Runge, Val M

    2016-05-01

    The established class of intravenous contrast media for magnetic resonance imaging is the gadolinium chelates, more generally referred to as the gadolinium-based contrast agents (GBCAs). These can be differentiated on the basis of stability in vivo, with safety and tolerability of the GBCAs dependent upon chemical and biologic inertness. This review discusses first the background in terms of development of these agents and safety discussions therein, and second their relative stability based both on in vitro studies and clinical observations before and including the advent of nephrogenic systemic fibrosis. This sets the stage for the subsequent focus of the review, the current knowledge regarding accumulation of gadolinium in the brain and specifically the dentate nucleus after intravenous administration of the GBCAs and differentiation among agents on this basis. The information available to date, from the initial conception of these agents in 1981 to the latest reports concerning safety, demonstrates a significant difference between the macrocyclic and linear chelates. The review concludes with a discussion of the predictable future, which includes, importantly, a reassessment of the use of the linear GBCAs or a subset thereof.

  19. The New Muon g₋2 experiment at Fermilab

    SciTech Connect

    Venanzoni, Graziano

    2016-06-02

    There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with a comparable accuracy between experiment and theory. Two new proposals -- at Fermilab and J-PARC -- plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.

  20. A simulation of modulational diffusion for the Fermilab Tevatron

    SciTech Connect

    Satogata, T. Fermi National Accelertor Laboratory, Batavia, Illinois 60510 ); Peggs, S. )

    1992-11-01

    A summary of the requirements for modulational (thick-layer) diffusion to exist in a particle synchrotron is presented and applied to a simple tune-modulated collider model of the Fermilab Tevatron where the only nonlinearities present are two beam-beam kicks. For certain realistic tune modulation parameters and single-particle base tunes, amplitude growth is observed over timescales appropriate to diffusive models. The character of this growth has qualitative features that are similar to those predicted by modulational diffusion models, but is significantly different in that the amplitude growth is exponential in time, not root-time as in classical diffusion. Some possible explanations for this effect are briefly noted, and impact of the possible existence of such a mechanism on future Fermilab collider upgrades is mentioned.

  1. Remote manipulator experience in target train maintenance at Fermilab

    SciTech Connect

    Butala, S.W.

    1984-10-11

    When Fermilab was designed in the late 1960's and early 1970's, it was anticipated that Neutrino target train servicing could be costly in terms of personnel radiation exposure. This was based in part on the expectation that target intensities of at least 1E13 protons/pulse would be required to produce several neutrino interactions in a large bubble chamber detector. This was indeed later proven to be the case and historically the Neutrino beamline has been targeted with about one half of the protons available from the Main Ring. It was believed that much of the occupational radiation dose from the Neutrino Area could be spared by utilization of a remote manipulator system, which was eventually installed. It is the purpose of this report to examine the use of the Fermilab remote manipulator system and evaluate its cost effectiveness and success as an ALARA (As Low As Reasonably Achievable) tool. 16 references, 11 figures.

  2. Mechanical stability study of capture cavity II at Fermilab

    SciTech Connect

    McGee, M.W.; Pischalnikov, Y.; /Fermilab

    2007-06-01

    Problematic resonant conditions at both 18 Hz and 180 Hz were encountered and identified early during the commissioning of Capture Cavity II (CC2) at Fermilab. CC2 consists of an external vacuum vessel and a superconducting high gradient (close to 25 MV/m) 9-cell 1.3 GHz niobium cavity, transported from DESY for use in the A0 Photoinjector at Fermilab. An ANSYS modal finite element analysis (FEA) was performed in order to isolate the source of the resonance and directed the effort towards stabilization. Using a fast piezoelectric tuner to excite (or shake) the cavity at different frequencies (from 5 Hz to 250 Hz) at a low-range sweep for analysis purposes. Both warm (300 K) and cold (1.8 K) accelerometer measurements at the cavity were taken as the resonant ''fix'' was applied. FEA results, cultural and technical noise investigation, and stabilization techniques are discussed.

  3. FERMILAB SWITCHYARD RESONANT BEAM POSITION MONITOR ELECTRONICS UPGRADE RESULTS

    SciTech Connect

    Petersen, T.; Diamond, J.; Liu, N.; Prieto, P. S.; Slimmer, D.; Watts, A.

    2016-10-12

    The readout electronics for the resonant beam position monitors (BPMs) in the Fermilab Switchyard (SY) have been upgraded, utilizing a low noise amplifier transition board and Fermilab designed digitizer boards. The stripline BPMs are estimated to have an average signal output of between -110 dBm and -80 dBm, with an estimated peak output of -70 dBm. The external resonant circuit is tuned to the SY machine frequency of 53.10348 MHz. Both the digitizer and transition boards have variable gain in order to accommodate the large dynamic range and irregularity of the resonant extraction spill. These BPMs will aid in auto-tuning of the SY beamline as well as enabling operators to monitor beam position through the spill.

  4. Test results of LHC interaction regions quadrupoles produced by Fermilab

    SciTech Connect

    Bossert, R.; Carson, J.; Chichili, D.R.; Feher, S.; Kerby, J.; Lamm, M.J.; Nobrega, A.; Nicol, T.; Ogitsu, T.; Orris, D.; Page, T.; Peterson, T.; Rabehl, R.; Robotham, W.; Scanlan, R.; Schlabach, P.; Sylvester, C.; Strait, J.; Tartaglia, M.; Tompkins, J.C.; Velev, G.; /Fermilab

    2004-10-01

    The US-LHC Accelerator Project is responsible for the production of the Q2 optical elements of the final focus triplets in the LHC interaction regions. As part of this program Fermilab is in the process of manufacturing and testing cryostat assemblies (LQXB) containing two identical quadrupoles (MQXB) with a dipole corrector between them. The 5.5 m long Fermilab designed MQXB have a 70 mm aperture and operate in superfluid helium at 1.9 K with a peak field gradient of 215 T/m. This paper summarizes the test results of several production MQXB quadrupoles with emphasis on quench performance and alignment studies. Quench localization studies using quench antenna signals are also presented.

  5. The Fermilab CMTF cryogenic distribution remote control system

    SciTech Connect

    Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R.

    2014-01-29

    The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

  6. Fermilab Testbeam Facility Annual Report – FY 2016

    SciTech Connect

    Albrow, M. G.

    2016-11-01

    This Technical Memorandum (TM) summarizes the Fermilab Test Beam operations for FY 2015. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF and are listed in Table TB-1. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  7. Fermilab Testbeam Facility Annual Report – FY 2015

    SciTech Connect

    Albrow, M. G.

    2015-11-01

    This Technical Memorandum (TM) summarizes the Fermilab Test Beam operations for FY 2015. It is one of a series of annual publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF and are listed in Table TB-1. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  8. Measurement of /var epsilon/'//var epsilon/ at Fermilab

    SciTech Connect

    Hsiung, Yee B.

    1988-10-01

    The current status of the measurement of ''direct'' CP violation parameters /var epsilon/'//var epsilon/ in the Fermilab experiment E731 is reviewed. Preliminary results on upper limit for the decays K/sub L/ ..-->.. ..pi../sup 0/e/sup +/e/sup /minus// and ..pi../sup 0/ ..-->.. e/sup +/e/sup /minus// (from 20% of the data taken in 1987-88) are also reported. 9 refs., 9 figs., 1 tab.

  9. The Fermilab Main Injector: current status and future

    SciTech Connect

    Bhat, C.M.

    1996-09-01

    The Fermilab Main Injector is a 8-150 GeV proton synchrotron being built as a high intensity injector to the Tevatron. The design incorporates many novel features to achieve {ital p{anti p}} luminosity in the Tevatron exceeding 8 x 10{sup 31} cm{sup -2}sec{sup -1}. An overview of the Main Injector project, current status and future prospects will be discussed.

  10. Ancient Fermilab: The Mier Collection of Native American Artifacts

    SciTech Connect

    Wiant, Michael D.

    2002-09-25

    August Mier's collection of artifacts from Fermilab property and elsewhere in the Fox River valley provides perspective on ancient lifeways in this area. This slide-illustrated lecture explores the development of Native American culture in the region and how archaeologists use technology developed in other fields to explore the past. From hunting now-extinct Ice-Age mastodon to the development of agriculture, the history of Native American culture sheds light on the development of humanity in general.

  11. Physics at the Fermilab Tevatron Proton-Antiproton Collider

    SciTech Connect

    Geer, S.

    1994-08-01

    These lectures discuss a selection of QCD and Electroweak results from the CDF and D0 experiments at the Fermilab Tevatron Proton-Antiproton Collider. Results are presently based on data samples of about 20 pb{sup {minus}1} at a center-of-mass energy of 1.8 TeV. Results discussed include jet production, direct photon production, W mass and width measurements, the triboson coupling, and most exciting of all, evidence for top quark production.

  12. Supersymmetry searches at the Collider Detector at Fermilab

    SciTech Connect

    D. Tsybychev

    2001-12-28

    This article presents the current experimental results of searches for Supersymmetry (SUSY) at the Collider Detector at Fermilab (CDF), using over 110 pb{sup -1} of proton-antiproton collision data with {radical}s = 1800 GeV collected during the period 1992-1995. Since no signal was found, limits on the production of supersymmetric particles are derived. The prospects for supersymmetry searches at Run II of the Tevatron, that began in March 2001, are also discussed here.

  13. A transitionless lattice for the Fermilab Main Injector

    SciTech Connect

    Ng, K.Y.; Trbojevic, D. ); Lee, S.Y. . Dept. of Physics)

    1991-05-01

    Medium energy (1 to 30 GeV) accelerators are often confronted with transition crossing during acceleration. A lattice without transition is presented, which is a design for the Fermilab Main Injector. The main properties of this lattice are that the {gamma}{sub t} is an imaginary number, the maxima of the dispersion function are small, and two long-straight section with zero dispersion. 7 refs., 5 figs.

  14. Resistive Wall Growth Rate Measurements in the Fermilab Recycler

    SciTech Connect

    Ainsworth, R.; Adamson, P.; Burov, A.; Kourbanis, I.

    2016-10-05

    Impedance could represent a limitation of running high intensity beams in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this,studies have been performed measuring the growth rate of presumably the resistive wall instability. The growth rates at varying intensities and chromaticities are shown. The measured growth rates are compared to ones calculated with the resistive wall impedance.

  15. Two Decades of Mexican Particle Physics at Fermilab

    NASA Astrophysics Data System (ADS)

    Rubinstein, R.

    2003-06-01

    This report is a view from Fermilab of Mexican particle physics at the Laboratory since about 1980; it is not intended to be a history of Mexican particle physics: that topic is outside the expertise of the writer. The period 1980 to the present coincides with the growth of Mexican experimental particle physics from essentially no activity to its current state where Mexican groups take part in experiments at several of the world's major laboratories.

  16. GammeV: results and future plans at Fermilab

    SciTech Connect

    Wester, William; /Fermilab

    2010-05-01

    GammeV is an axion-like particle photo regeneration experiment that employs the light shining through a wall technique. We obtain limits on the coupling of a photon to an axion-like particle that extend previous limits for both scalar and pseudoscalar particles in the milli-eV mass range. We have reconfigured our apparatus to search for chameleon particles. We describe the current results and future plans for similar activities at Fermilab.

  17. Baseline air quality study at Fermilab

    SciTech Connect

    Dave, M.J.; Charboneau, R.

    1980-10-01

    Air quality and meteorological data collected at Fermi National Accelerator Laboratory are presented. The data represent baseline values for the pre-construction phase of a proposed coal-gasification test facility. Air quality data were characterized through continuous monitoring of gaseous pollutants, collection of meteorological data, data acquisition and reduction, and collection and analysis of discrete atmospheric samples. Seven air quality parameters were monitored and recorded on a continuous real-time basis: sulfur dioxide, ozone, total hydrocarbons, nonreactive hydrocarbons, nitric oxide, nitrogen oxides, and carbon monoxide. A 20.9-m tower was erected near Argonne's mobile air monitoring laboratory, which was located immediately downwind of the proposed facility. The tower was instrumented at three levels to collect continuous meteorological data. Wind speed was monitored at three levels; wind direction, horizontal and vertical, at the top level; ambient temperature at the top level; and differential temperature between all three levels. All continuously-monitored parameters were digitized and recorded on magnetic tape. Appropriate software was prepared to reduce the data. Statistical summaries, grphical displays, and correlation studies also are presented.

  18. Vertically integrated circuit development at Fermilab for detectors

    NASA Astrophysics Data System (ADS)

    Yarema, R.; Deptuch, G.; Hoff, J.; Khalid, F.; Lipton, R.; Shenai, A.; Trimpl, M.; Zimmerman, T.

    2013-01-01

    Today vertically integrated circuits, (a.k.a. 3D integrated circuits) is a popular topic in many trade journals. The many advantages of these circuits have been described such as higher speed due to shorter trace lenghts, the ability to reduce cross talk by placing analog and digital circuits on different levels, higher circuit density without the going to smaller feature sizes, lower interconnect capacitance leading to lower power, reduced chip size, and different processing for the various layers to optimize performance. There are some added advantages specifically for MAPS (Monolithic Active Pixel Sensors) in High Energy Physics: four side buttable pixel arrays, 100% diode fill factor, the ability to move PMOS transistors out of the diode sensing layer, and a increase in channel density. Fermilab began investigating 3D circuits in 2006. Many different bonding processes have been described for fabricating 3D circuits [1]. Fermilab has used three different processes to fabricate several circuits for specific applications in High Energy Physics and X-ray imaging. This paper covers some of the early 3D work at Fermilab and then moves to more recent activities. The major processes we have used are discussed and some of the problems encountered are described. An overview of pertinent 3D circuit designs is presented along with test results thus far.

  19. Perpendicular Biased Ferrite Tuned Cavities for the Fermilab Booster

    SciTech Connect

    Romanov, Gennady; Awida, Mohamed; Khabiboulline, Timergali; Pellico, William; Tan, Cheng-Yang; Terechkine, Iouri; Yakovlev, Vyacheslav; Zwaska, Robert

    2014-07-01

    The aging Fermilab Booster RF system needs an upgrade to support future experimental program. The important feature of the upgrade is substantial enhancement of the requirements for the accelerating cavities. The new requirements include enlargement of the cavity beam pipe aperture, increase of the cavity voltage and increase in the repetition rate. The modification of the present traditional parallel biased ferrite cavities is rather challenging. An alternative to rebuilding the present Fermilab Booster RF cavities is to design and construct new perpendicular biased RF cavities, which potentially offer a number of advantages. An evaluation and a preliminary design of the perpendicular biased ferrite tuned cavities for the Fermilab Booster upgrade is described in the paper. Also it is desirable for better Booster performance to improve the capture of beam in the Booster during injection and at the start of the ramp. One possible way to do that is to flatten the bucket by introducing second harmonic cavities into the Booster. This paper also looks into the option of using perpendicularly biased ferrite tuners for the second harmonic cavities.

  20. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    SciTech Connect

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-11-05

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  1. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    NASA Astrophysics Data System (ADS)

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-12-01

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Because each subsystem has to be far away from each other and be placed in the distant location, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  2. Space charge measurements with a high intensity bunch at the Fermilab Main Injector

    SciTech Connect

    Seiya, K.; Chase, B.; Dey, J.; Joireman, P.; Kourbanis, I.; Yagodnitsyna, A.; /Novosibirsk State U.

    2011-03-01

    For Project X, the Fermilab Main Injector will be required to operate with 3 times higher bunch intensity. The plan to study the space charge effects at the injection energy with intense bunches will be discussed. A multi-MW proton facility has been established as a critical need for the U.S. HEP program by HEPAP and P5. Utilization of the Main Injector (MI) as a high intensity proton source capable of delivering in excess of 2 MW beam power will require a factor of three increase in bunch intensity compared to current operations. Instabilities associated with beam loading, space charge, and electron cloud effects are common issues for high intensity proton machines. The MI intensities for current operations and Project X are listed in Table 1. The MI provides proton beams for Fermilab's Tevatron Proton-Antiproton Collider and MINOS neutrino experiments. The proposed 2MW proton facility, Project X, utilizes both the Recycler (RR) and the MI. The RR will be reconfigured as a proton accumulator and injector to realize the factor 3 bunch intensity increase in the MI. Since the energy in the RR and the MI at injection will be 6-8 GeV, which is relatively low, space charge effects will be significant and need to be studied. Studies based on the formation of high intensity bunches in the MI will guide the design and fabrication of the RF cavities and space-charge mitigation devices required for 2 MW operation of the MI. It is possible to create the higher bunch intensities required in the MI using a coalescing technique that has been successfully developed at Fermilab. This paper will discuss a 5 bunch coalescing scheme at 8 GeV which will produce 2.5 x 10{sup 11} protons in one bunch. Bunch stretching will be added to the coalescing process. The required RF parameters were optimized with longitudinal simulations. The beam studies, that have a goal of 85% coalescing efficiency, were started in June 2010.

  3. Big Data over a 100G network at Fermilab

    SciTech Connect

    Garzoglio, Gabriele; Mhashilkar, Parag; Kim, Hyunwoo; Dykstra, Dave; Slyz, Marko

    2014-06-11

    As the need for Big Data in science becomes ever more relevant, networks around the world are upgrading their infrastructure to support high-speed interconnections. To support its mission, the high-energy physics community as a pioneer in Big Data has always been relying on the Fermi National Accelerator Laboratory to be at the forefront of storage and data movement. This need was reiterated in recent years with the data-taking rate of the major LHC experiments reaching tens of petabytes per year. At Fermilab, this resulted regularly in peaks of data movement on the Wide area network (WAN) in and out of the laboratory of about 30 Gbit/s and on the Local are network (LAN) between storage and computational farms of 160 Gbit/s. To address these ever increasing needs, as of this year Fermilab is connected to the Energy Sciences Network (ESnet) through a 100 Gb/s link. To understand the optimal system-and application-level configuration to interface computational systems with the new highspeed interconnect, Fermilab has deployed a Network Research & Development facility connected to the ESnet 100G Testbed. For the past two years, the High Throughput Data Program (HTDP) has been using the Testbed to identify gaps in data movement middleware [5] when transferring data at these high-speeds. The program has published evaluations of technologies typically used in High Energy Physics, such as GridFTP [4], XrootD [9], and Squid [8]. Furthermore, this work presents the new R&D facility and the continuation of the evaluation program.

  4. Big Data over a 100G network at Fermilab

    DOE PAGES

    Garzoglio, Gabriele; Mhashilkar, Parag; Kim, Hyunwoo; ...

    2014-06-11

    As the need for Big Data in science becomes ever more relevant, networks around the world are upgrading their infrastructure to support high-speed interconnections. To support its mission, the high-energy physics community as a pioneer in Big Data has always been relying on the Fermi National Accelerator Laboratory to be at the forefront of storage and data movement. This need was reiterated in recent years with the data-taking rate of the major LHC experiments reaching tens of petabytes per year. At Fermilab, this resulted regularly in peaks of data movement on the Wide area network (WAN) in and out ofmore » the laboratory of about 30 Gbit/s and on the Local are network (LAN) between storage and computational farms of 160 Gbit/s. To address these ever increasing needs, as of this year Fermilab is connected to the Energy Sciences Network (ESnet) through a 100 Gb/s link. To understand the optimal system-and application-level configuration to interface computational systems with the new highspeed interconnect, Fermilab has deployed a Network Research & Development facility connected to the ESnet 100G Testbed. For the past two years, the High Throughput Data Program (HTDP) has been using the Testbed to identify gaps in data movement middleware [5] when transferring data at these high-speeds. The program has published evaluations of technologies typically used in High Energy Physics, such as GridFTP [4], XrootD [9], and Squid [8]. Furthermore, this work presents the new R&D facility and the continuation of the evaluation program.« less

  5. Big Data Over a 100G Network at Fermilab

    NASA Astrophysics Data System (ADS)

    Garzoglio, Gabriele; Mhashilkar, Parag; Kim, Hyunwoo; Dykstra, Dave; Slyz, Marko

    2014-06-01

    As the need for Big Data in science becomes ever more relevant, networks around the world are upgrading their infrastructure to support high-speed interconnections. To support its mission, the high-energy physics community as a pioneer in Big Data has always been relying on the Fermi National Accelerator Laboratory to be at the forefront of storage and data movement. This need was reiterated in recent years with the data-taking rate of the major LHC experiments reaching tens of petabytes per year. At Fermilab, this resulted regularly in peaks of data movement on the Wide area network (WAN) in and out of the laboratory of about 30 Gbit/s and on the Local are network (LAN) between storage and computational farms of 160 Gbit/s. To address these ever increasing needs, as of this year Fermilab is connected to the Energy Sciences Network (ESnet) through a 100 Gb/s link. To understand the optimal system-and application-level configuration to interface computational systems with the new highspeed interconnect, Fermilab has deployed a Network Research & Development facility connected to the ESnet 100G Testbed. For the past two years, the High Throughput Data Program (HTDP) has been using the Testbed to identify gaps in data movement middleware [5] when transferring data at these high-speeds. The program has published evaluations of technologies typically used in High Energy Physics, such as GridFTP [4], XrootD [9], and Squid [8]. This work presents the new R&D facility and the continuation of the evaluation program.

  6. Optics Corrections with LOCO in the Fermilab Booster

    SciTech Connect

    Tan, Cheng-Yang; Prost, Lionel; Seiya, Kiyomi; Triplett, A. Kent

    2016-06-01

    The optics of the Fermilab Booster has been corrected with LOCO (Linear Optics from Closed Orbits). However, the first corrections did not show any improvement in capture efficiency at injection. A detailed analysis of the results showed that the problem lay in the MADX optics file. Both the quadrupole and chromatic strengths were originally set as constants independent of beam energy. However, careful comparison between the measured and calculated tunes and chromatcity show that these strengths are energy dependent. After the MADX model was modified with these new energy dependent strengths, the LOCO corrected lattice has been applied to Booster. The effect of the corrected lattice will be discussed here.

  7. A CP violation and rare kaon decay experiment at Fermilab

    SciTech Connect

    Yamanaka, Taku

    1989-02-01

    The E731 collaboration at Fermilab has collected enough K ..-->.. 2..pi.. events to give a statistical error of approx.0.5 /times/ 10/sup /minus/3/ on the CP violation parameter epsilon'/epsilon. Improvements have been made to reduce the systematic error. The experiment is also sensitive to many rare decays, and it set a new limit on the branching ratio of K/sub L/ ..-->.. ..pi../sup 0/e/sup +/e/sup /minus//, < 4.2 /times/ 10/sup /minus/8/ (90% CL). 10 refs., 15 figs., 1 tab.

  8. Novel Muon Beam Facilities for Project X at Fermilab

    SciTech Connect

    Neuffer, D.V.; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01

    Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

  9. Fast Bunch Integrators at Fermilab During Run II

    SciTech Connect

    Meyer, Thomas; Briegel, Charles; Fellenz, Brian; Vogel, Greg; /Fermilab

    2011-07-13

    The Fast Bunch Integrator is a bunch intensity monitor designed around the measurements made from Resistive Wall Current Monitors. During the Run II period these were used in both Tevatron and Main Injector for single and multiple bunch intensity measurements. This paper presents an overview of the design and use of these systems during this period. During the Run II era the Fast Bunch integrators have found a multitude of uses. From antiproton transfers to muti-bunch beam coalescing, Main Injector transfers to halo scraping and lifetime measurements, the Fast Bunch Integrators have proved invaluable in the creation and maintenance of Colliding Beams stores at Fermilab.

  10. Opportunities for high-sensitivity charm physics at Fermilab

    SciTech Connect

    Kaplan, D.M.; Burnstein, R.A.; Lederman, L.M.; Rubin, H.A.; Brown, C.N.; Christian, D.C.; Gelfand, N.M.; Kwan, S.W.; Chen, T.Y.; He, M.; Koetke, D.D.; Napier, A.; Papavassiliou, V.; Yu, X.Q.

    1996-07-01

    The CO initiative under consideration at Fermilab makes feasible a charm experiment reconstructing >10{sup 9} charm decays, four orders - of magnitude beyond the largest extant sample. The experiment might commence data-taking as early as 1999. In addition to programmatic charm physics such as spectroscopy, lifetimes, and QCD tests, it will have significant new-physics reach in the areas of CP violation, flavor-changing neutral-current and lepton-number-violating decays, and D{sup o} {bar D} {bar {sup o}} mixing, and should observe direct CP violation in Cabibbo-suppressed D decays if it occurs at the level predicted by the Standard Model.

  11. The rf experimental program in the fermilab mucool test area

    SciTech Connect

    Norem, J.; Sandstrom, R.; Bross, A.; Moretti, A.; Qian, Z.; Torun, Y.; Rimmer, R.; Li, D.; Zisman, M.S.; Johnson, R.

    2005-05-20

    The rf R&D program for high-gradient, low frequency cavities to be used in muon cooling systems is underway in the Fermilab MUCOOL Test Area. Cavities at 805 and 201 MHz are used for tests of conditioning techniques, surface modification and breakdown studies. This work has the Muon Ionization Cooling Experiment (MICE) as its immediate goal and efficient muon cooling systems for neutrino sources and muon colliders as the long term goal. We study breakdown and dark current production under a variety of conditions.

  12. The rf experimental program in the Fermilab mucool test area

    SciTech Connect

    J. Norem; R. Sandstrom; A. Bross; A. Moretti; Z. Qian; Y. Torun; R. Rimmer; D. Li; M. Zisman; R. Johnson

    2005-05-16

    The rf R&D program for high gradient, low frequency cavities to be used in muon cooling systems is underway in the Fermilab MUCOOL Test Area. Cavities at 805 and 201 MHz are used for tests of conditioning techniques, surface modification and breakdown studies. This work has the Muon Ionization Cooling Experiment (MICE) as its immediate goal and efficient muon cooling systems for neutrino sources and muon colliders as the long term goal. We study breakdown, and dark current production under a variety of conditions.

  13. Gun and optics calculations for the Fermilab recirculation experiment

    SciTech Connect

    Kroc, T.

    1997-10-01

    Fermilab is investigating electron cooling to recycle 8 Gev antiprotons recovered from the Tevatron. To do so, it is developing an experiment to recirculate 2 Mev electrons generated by a Pelletron at National Electrostatics Corporation. This paper reports on the optics calculations done in support of that work. We have used the computer codes EGN2 and MacTrace to represent the gun area and acceleration columns respectively. In addition to the results of our simulations, we discuss some of the problems encountered in interfacing the two codes.

  14. Increasing the energy of the Fermilab Tevatron accelerator

    SciTech Connect

    Fuerst, J.D.; Theilacker, J.C.

    1994-07-01

    The superconducting Tevatron accelerator at Fermilab has reached its eleventh year of operation since being commissioned in 1983. Last summer, four significant upgrades to the cryogenic system became operational which allow Tevatron operation at higher energy. This came after many years of R&D, power testing in sectors (one sixth) of the Tevatron, and final system installation. The improvements include the addition of cold helium vapor compressors, supporting hardware for subatmospheric operation, a new satellite refrigerator control system, and a higher capacity central helium liquefier. A description of each cryogenic upgrade, commissioning experience, and attempts to increase the energy of the Tevatron are presented.

  15. The Advanced Superconducting Test Accelerator at Fermilab: Science Program

    SciTech Connect

    Piot, Philippe; Harms, Elvin; Henderson, Stuart; Leibfritz, Jerry; Nagaitsev, Sergei; Shiltsev, Vladimir; Valishev, Alexander

    2014-07-01

    The Advanced Superconducting Test Accelerator (ASTA) currently in commissioning phase at Fermilab is foreseen to support a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop novel approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SCRF) linac coupled to a flexible high-brightness photoinjector. The facility also includes a small-circumference storage ring capable of storing electrons or protons. This report summarizes the facility capabilities, and provide an overview of the accelerator-science researches to be enabled.

  16. The New Muon g-2 Experiment at Fermilab

    SciTech Connect

    Grange, Joseph

    2015-01-13

    Precision measurements of fundamental quantities have played a key role in pointing the way forward in developing our understanding of the universe. Though the enormously successful Standard Model (SM) describes the breadth of both historical and modern experimental particle physics data, it is necessarily incomplete. The muon $g-2$ experiment executed at Brookhaven concluded in 2001 and measured a discrepancy of more than three standard deviations compared to the Standard Model calculation. Arguably, this remains the strongest hint of physics beyond the SM. A new initiative at Fermilab is under construction to improve the experimental accuracy four-fold. The current status is presented here.

  17. An overview of plastic optical fiber end finishers at Fermilab

    SciTech Connect

    Mishina, M.; Lindenmeyer, C.; Korienek, J.

    1993-11-01

    Several years ago the need for equipment to precisely finish the ends of plastic optical fibers was recognized. Many high energy physics experiments use thousands of these fibers which must be polished on one or both ends. A fast, easy-to-operate machine yielding repeatable finishes was needed. Three types of machines were designed and constructed that are in daily use at Fermilab, all finish the fiber ends by flycutting with a diamond tool. Althrough diamond flycutting of plastic is not new, the size and fragility of plastic optical fibers present several challenges.

  18. Development of 325 MHz single spoke resonators at Fermilab

    SciTech Connect

    Apollinari, G.; Gonin, I.V.; Khabiboulline, T.N.; Lanfranco, G.; Mukherjee, A.; Ozelis, J.; Ristori, L.; Sergatskov, D.; Wagner, R.; Webber, R.; /Fermilab

    2008-08-01

    The High Intensity Neutrino Source (HINS) project represents the current effort at Fermilab to produce an 8-GeV proton linac based on 400 independently phased superconducting cavities. Eighteen ?=0.21 single spoke resonators, operating at 325 MHz, comprise the first stage of the linac cold section. In this paper we present the current status of the production and testing of the first two prototype cavities. This includes descriptions of the fabrication, frequency tuning, chemical polishing, high pressure rinse, and high-gradient cold tests.

  19. Multi-Physics Analysis of the Fermilab Booster RF Cavity

    SciTech Connect

    Awida, M.; Reid, J.; Yakovlev, V.; Lebedev, V.; Khabiboulline, T.; Champion, M.; /Fermilab

    2012-05-14

    After about 40 years of operation the RF accelerating cavities in Fermilab Booster need an upgrade to improve their reliability and to increase the repetition rate in order to support a future experimental program. An increase in the repetition rate from 7 to 15 Hz entails increasing the power dissipation in the RF cavities, their ferrite loaded tuners, and HOM dampers. The increased duty factor requires careful modelling for the RF heating effects in the cavity. A multi-physic analysis investigating both the RF and thermal properties of Booster cavity under various operating conditions is presented in this paper.

  20. Project X: A Multi-MW Proton Source at Fermilab

    SciTech Connect

    Holmes, Stephen D.; /Fermilab

    2010-05-01

    As the Fermilab Tevatron Collider program draws to a close a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and he study of rare processes. Based on technology shared with the International Linear Collider (ILC), Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X will also support development of a Muon Collider as a uture facility at the energy frontier.

  1. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  2. Photon and jet physics at the Collider Detector at Fermilab

    SciTech Connect

    J. Dittmann

    2002-10-25

    We summarize recent Run 1 photon and jet measurements from p{bar b} collisions at {radical}s = 0.63 TeV and 1.8 TeV using data collected at the Collider Detector at Fermilab (CDF). First Run 2 results at {radical}s = 1.96 TeV are also presented together with predictions of the kinematic reach accessible with 15 fb{sup -1} of Run 2 data. Data are compared to the predictions of Quantum Chromodynamics (QCD).

  3. Fermilab 4.3-MeV Electron Cooler

    SciTech Connect

    Nagaitsev, Sergei; Prost, Lionel; Shemyakin, Alexander

    2014-11-25

    The Recycler Electron Cooler (REC) was the first cooler working at a relativistic energy (gamma = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. After introducing the physics of electron cooling and the REC system, this paper describes measurements carried out to tune the electron beam and optimize its cooling properties. In particular, we discuss the cooling strategy adopted for maximizing the collider integrated luminosity.

  4. Electroweak and B physics results from the Fermilab Tevatron Collider

    SciTech Connect

    Pitts, K.T.

    2001-01-30

    This writeup is an introduction to some of the experimental issues involved in performing electroweak and b physics measurements at the Fermilab Tevatron. In the electroweak sector, we discuss W and Z boson cross section measurements as well as the measurement of the mass of the W boson. For b physics, we discuss measurements of B{sup 0}/{bar B}{sup 0} mixing and CP violation. This paper is geared towards nonexperts who are interested in understanding some of the issues and motivations for these measurements and how the measurements are carried out.

  5. Upgrades to the Fermilab NuMI beamline

    SciTech Connect

    Martens, Michael A.; Childress, Sam; Grossman, Nancy; Hurh, Patrick; Hylen, James; Marchionni, Alberto; McCluskey, Elaine; Moore, Craig Damon; Reilly, Robert; Tariq, Salman; Wehmann, Alan; /Fermilab

    2007-06-01

    The NuMI beamline at Fermilab has been delivering high-intensity muon neutrino beams to the MINOS experiment since the spring of 2005. A total of 3.4 x 10{sup 20} protons has been delivered to the NuMI target and a maximum beam power of 320 kW has been achieved. An upgrade of the NuMI facility increasing the beam power capability to 700 kW is planned as part of the NOvA experiment. The plans for this upgrade are presented and the possibility of upgrading the NuMI beamline to handle 1.2 MW is considered.

  6. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  7. Improving the Fermilab Booster Notching Efficiency, Beam Losses and Radiation Levels

    SciTech Connect

    Rakhno, I.L.; Drozhdin, A.I.; Mokhov, N.V.; Sidorov, V.I.; Tropin, I.S.; /Fermilab

    2012-05-14

    A fast vertical 1.08-m long kicker (notcher) located in the Fermilab Booster Long-05 straight section is currently used to remove 3 out of 84 circulating bunches after injection to generate an abort gap. With the maximum magnetic field of 72.5 Gauss, it removes only 87% of the 3-bunch intensity at 400 MeV, with 75% loss on pole tips of the focusing Booster magnets, 11% on the Long-06 collimators, and 1% in the rest of the ring. We propose to improve the notching efficiency and reduce beam loss in the Booster by using three horizontal kickers in the Long-12 section. STRUCT calculations show that using horizontal notchers, one can remove up to 96% of the 3-bunch intensity at 400-700 MeV, directing 95% of it to a new beam dump at the Long-13 section. This fully decouples notching and collimation. The beam dump absorbs most of the impinging proton energy in its jaws. The latter are encapsulated into an appropriate radiation shielding that reduces impact on the machine components, personnel and environment to the tolerable levels. MARS simulations show that corresponding prompt and residual radiation levels can be reduced ten times compared to the current ones.

  8. Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

    SciTech Connect

    Lebrun, Paul L.G.; Spentzouris, Panagiotis; Cary, John R.; Stoltz, Peter; Veitzer, Seth A.; /Tech-X, Boulder

    2011-01-01

    We present results from a precision simulation of the electron cloud (EC) in the Fermilab Main Injector using the code VORPAL. This is a fully 3d and self consistent treatment of the EC. Both distributions of electrons in 6D phase-space and E.M. field maps have been generated. This has been done for various configurations of the magnetic fields found around the machine have been studied. Plasma waves associated to the fluctuation density of the cloud have been analyzed. Our results are compared with those obtained with the POSINST code. The response of a Retarding Field Analyzer (RFA) to the EC has been simulated, as well as the more challenging microwave absorption experiment. Definite predictions of their exact response are difficult to obtain,mostly because of the uncertainties in the secondary emission yield and, in the case of the RFA, because of the sensitivity of the electron collection efficiency to unknown stray magnetic fields. Nonetheless, our simulations do provide guidance to the experimental program.

  9. The 'last mile' of data handling: Fermilab's IFDH tools

    SciTech Connect

    Lyon, Adam L.; Mengel, Marc W.

    2014-01-01

    IFDH (Intensity Frontier Data Handling), is a suite of tools for data movement tasks for Fermilab experiments and is an important part of the FIFE[2] (Fabric for Intensity Frontier [1] Experiments) initiative described at this conference. IFDH encompasses moving input data from caches or storage elements to compute nodes (the 'last mile' of data movement) and moving output data potentially to those caches as part of the journey back to the user. IFDH also involves throttling and locking to ensure that large numbers of jobs do not cause data movement bottlenecks. IFDH is realized as an easy to use layer that users call in their job scripts (e.g. 'ifdh cp'), hiding the low level data movement tools. One advantage of this layer is that the underlying low level tools can be selected or changed without the need for the user to alter their scripts. Logging and performance monitoring can also be added easily. This system will be presented in detail as well as its impact on the ease of data handling at Fermilab experiments.

  10. The Fabric for Frontier Experiments Project at Fermilab

    NASA Astrophysics Data System (ADS)

    Kirby, Michael

    2014-06-01

    The FabrIc for Frontier Experiments (FIFE) project is a new, far-reaching initiative within the Fermilab Scientific Computing Division to drive the future of computing services for experiments at FNAL and elsewhere. It is a collaborative effort between computing professionals and experiment scientists to produce an end-to-end, fully integrated set of services for computing on the grid and clouds, managing data, accessing databases, and collaborating within experiments. FIFE includes 1) easy to use job submission services for processing physics tasks on the Open Science Grid and elsewhere; 2) an extensive data management system for managing local and remote caches, cataloging, querying, moving, and tracking the use of data; 3) custom and generic database applications for calibrations, beam information, and other purposes; 4) collaboration tools including an electronic log book, speakers bureau database, and experiment membership database. All of these aspects will be discussed in detail. FIFE sets the direction of computing at Fermilab experiments now and in the future, and therefore is a major driver in the design of computing services worldwide.

  11. Proton Beam Intensity Upgrades for the Neutrino Program at Fermilab

    SciTech Connect

    Bhat, C. M.

    2016-12-15

    Fermilab is committed to upgrading its accelerator complex towards the intensity frontier to pursue HEP research in the neutrino sector and beyond. The upgrade has two steps: 1) the Proton Improvement Plan (PIP), which is underway, has its primary goal to start providing 700 kW beam power on NOvA target by the end of 2017 and 2) the foreseen PIP–II will replace the existing LINAC, a 400 MeV injector to the Booster, by an 800 MeV superconducting LINAC by the middle of next decade, with output beam intensity from the Booster increased significantly and the beam power on the NOvA target increased to <1.2 MW. In any case, the Fermilab Booster is going to play a very significant role for the next two decades. In this context, we have recently developed and commissioned an innovative beam injection scheme for the Booster called "early injection scheme". This scheme is already in operation and has a potential to increase the Booster beam intensity from the PIP design goal by a considerable amount with a reduced beam emittance and beam loss. In this paper, we will present results from our experience from the new scheme in operation, current status and future plans.

  12. The Fabric for Frontier Experiments Project at Fermilab

    SciTech Connect

    Kirby, Michael

    2014-01-01

    The FabrIc for Frontier Experiments (FIFE) project is a new, far-reaching initiative within the Fermilab Scientific Computing Division to drive the future of computing services for experiments at FNAL and elsewhere. It is a collaborative effort between computing professionals and experiment scientists to produce an end-to-end, fully integrated set of services for computing on the grid and clouds, managing data, accessing databases, and collaborating within experiments. FIFE includes 1) easy to use job submission services for processing physics tasks on the Open Science Grid and elsewhere, 2) an extensive data management system for managing local and remote caches, cataloging, querying, moving, and tracking the use of data, 3) custom and generic database applications for calibrations, beam information, and other purposes, 4) collaboration tools including an electronic log book, speakers bureau database, and experiment membership database. All of these aspects will be discussed in detail. FIFE sets the direction of computing at Fermilab experiments now and in the future, and therefore is a major driver in the design of computing services worldwide.

  13. Celebrating 30 Years of K-12 Educational Programming at Fermilab

    SciTech Connect

    Bardeen, M.; Cooke, M.P.; /Fermilab

    2011-09-01

    In 1980 Leon Lederman started Saturday Morning Physics with a handful of volunteer physicists, around 300 students and all the physics teachers who tagged along. Today Fermilab offers over 30 programs annually with help from 250 staff volunteers and 50 educators, and serves around 40,000 students and 2,500 teachers. Find out why we bother. Over the years we have learned to take advantage of opportunities and confront challenges to offer effective programs for teachers and students alike. We offer research experiences for secondary school teachers and high school students. We collaborate with educators to design and run programs that meet their needs and interests. Popular school programs include classroom presentations, experience-based field trips, and high school tours. Through our work in QuarkNet and I2U2, we make real particle physics data available to high school students in datadriven activities as well as masterclasses and e-Labs. Our professional development activities include a Teacher Resource Center and workshops where teachers participate in authentic learning experiences as their students would. We offer informal classes for kids and host events where children and adults enjoy the world of science. Our website hosts a wealth of online resources. Funded by the U.S. Department of Energy, the National Science Foundation and Fermilab Friends for Science Education, our programs reach out across Illinois, throughout the United States and even around the world. We will review the program portfolio and share comments from the volunteers and participants.

  14. Wide Area Network Monitoring System for HEP Experiments at Fermilab

    SciTech Connect

    Grigoriev, M.

    2004-11-23

    Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centres. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system.

  15. Wide area network monitoring system for HEP experiments at Fermilab

    SciTech Connect

    Grigoriev, Maxim; Cottrell, Les; Logg, Connie; /SLAC

    2004-12-01

    Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centers. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system.

  16. Status report on the survey and alignment activities at Fermilab

    SciTech Connect

    Oshinowo, Babatunde O'Sheg; /Fermilab

    2004-10-01

    The surveying and alignment activities at Fermilab are the responsibility of the Alignment and Metrology Group. The Group supports and interacts with physicists and engineers working on any particular project, from the facility construction phase to the installation and final alignment of components in the beam line. One of the goals of the Alignment and Metrology Group is to upgrade the old survey networks in the tunnel using modern surveying technology, such as the Laser Tracker for tunnel networks and GPS for the surface networks. According to the job needs, all surveys are done with Laser Trackers and/or Videogrammetry (V-STARS) systems for spatial coordinates; optical and electronic levels are used for elevations, Gyro-Theodolite for azimuths, Mekometer for distances and GPS for baseline vectors. The group has recently purchased two new API Laser Trackers, one INCA3 camera for the V-Stars, and one DNA03 digital level. This report presents the projects and major activities of the Alignment and Metrology Group at Fermilab during the period of 2000 to 2004. It focuses on the most important current projects, especially those that have to be completed during the currently scheduled three-month shutdown period. Future projects, in addition to the status of the current projects, are also presented.

  17. Megascience and the Powers and Paradoxes of Pushing Frontiers at Fermilab

    ScienceCinema

    Hoddeson, Lillian [University of Illinois, Champaign, Illinois, United States

    2016-07-12

    To help begin the year of celebration of Fermilab's fortieth anniversary (June 15, 1967), this colloquium will characterize the special brand of bigger 'Big Science' that emerged at Fermilab under Robert R. Wilson and Leon M. Lederman, with attention not only to its powers and beauties but to some of its paradoxes, conflicts, and ironies, due in part to funding limitations.

  18. Electron cooling for the Fermilab recycler: Present concept and provisional parameters

    SciTech Connect

    Nagaitsev, S.

    1997-09-01

    In all scenarios of the possible Tevatron upgrades, luminosity is essentially proportional to the number of antiprotons. Thus, a tenfold increase in luminosity could be achieved by putting five times more protons on the antiproton production target and gaining an additional factor of two from recycling antiprotons left over from the previous store. Stacking and storing ten times more antiprotons puts an unbearable burden on the stochastic cooling system of the existing Accumulator Ring. Thus, one is led to consider an additional stage of antiproton storage the so called Recycler Ring. Electron cooling of the 8 GeV antiprotons in the Recycler could provide an attractive way around the problems of large stacks. Such a system would look much like the IUCF proposal to cool 12 GeV protons in the SSC Medium Energy Booster. Although electron cooling has now become a routine tool in many laboratories, its use has been restricted to lower energy accelerators (< 500 MeV/nucleon). An R&D program is currently underway at Fermilab to extend electron cooling technology to the GeV range. This paper describes the electron cooling system design as well as the Recycler ring parameters required to accommodate this system.

  19. Transatlantic transport of Fermilab 3.9 GHz cryomodule for TTF/FLASH to DESY

    SciTech Connect

    McGee, M.W.; Vocean, V.; Grimm, C.; Schappert, W.; /Fermilab

    2008-06-01

    In an exchange of technology agreement, Fermilab built and will deliver a 3.9 GHz (3rd harmonic) cryomodule to DESY to be installed in the TTF/FLASH beamline. This cryomodule delivery will involve a combination of flatbed air ride truck and commercial aircraft transport to Hamburg Germany. A description of the isolation and damping systems that maintain alignment during transport and protect fragile components is provided. Initially, transport and corresponding alignment stability studies were performed in order to assess the risk associated with transatlantic travel of a fully assembled cryomodule. Shock loads were applied to the cryomodule by using a coldmass mockup to prevent subjecting actual critical components (such as the cavities and input couplers) to excessive forces. Accumulative and peak shock loads were applied through over-the-road testing and using a pendulum hammer apparatus, respectively. Finite Element Analysis (FEA) studies were implemented to define location of instrumentation for transport studies and provide modal frequencies and shapes. Shock and vibration measurement results of transport studies and stabilization techniques are discussed.

  20. A search for the Higgs boson in the zh channel with the D0 detector at the Fermilab Tevatron collider

    SciTech Connect

    Heinmiller, James Matthew

    2006-01-01

    This analysis describes a search for a standard model Higgs boson produced in association with a Z boson through the decay mode ZH → e+e-b$\\bar{b}$ in p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron Collider. The data sample used in this analysis corresponds to 452 pb-1 of integrated luminosity accumulated with the D0 detector. Agreement between data and standard model predictions is observed. A 95% confidence level upper exclusion limit for the σ(p$\\bar{p}$ → ZH) x BR(H → b$\\bar{b}$) channel is set between 3.2-8.2 pb for Higgs masses of 105 to 145 GeV.

  1. Fermilab Booster Transition Crossing Simulations and Beam Studies

    SciTech Connect

    Bhat, C. M.; Tan, C. Y.

    2016-01-01

    The Fermilab Booster accelerates beam from 400 MeV to 8 GeV at 15 Hz. In the PIP (Proton Improvement Plan) era, it is required that Booster deliver 4.2 x $10^{12}$ protons per pulse to extraction. One of the obstacles for providing quality beam to the users is the longitudinal quadrupole oscillation that the beam suffers from right after transition. Although this oscillation is well taken care of with quadrupole dampers, it is important to understand the source of these oscillations in light of the PIP II requirements that require 6.5 x $10^{12}$ protons per pulse at extraction. This paper explores the results from machine studies, computer simulations and solutions to prevent the quadrupole oscillations after transition.

  2. Fermilab Main Injector Collimation Systems: Design, Commissioning and Operation

    SciTech Connect

    Brown, Bruce; Adamson, Philip; Capista, David; Drozhdin, A.I.; Johnson, David E.; Kourbanis, Ioanis; Mokhov, Nikolai V.; Morris, Denton K.; Rakhno, Igor; Seiya, Kiyomi; Sidorov, Vladimir; /Fermilab

    2009-05-01

    The Fermilab Main Injector is moving toward providing 400 kW of 120 GeV proton beams using slip stacking injection of eleven Booster batches. Loss of 5% of the beam at or near injection energy results in 1.5 kW of beam loss. A collimation system has been implemented to localize this loss with the design emphasis on beam not captured in the accelerating RF buckets. More than 95% of these losses are captured in the collimation region. We will report on the construction, commissioning and operation of this collimation system. Commissioning studies and loss measurement tools will be discussed. Residual radiation monitoring of the Main Injector machine components will be used to demonstrate the effectiveness of these efforts.

  3. Report on the Fermilab pilot N&S closure process

    SciTech Connect

    Coulson, L.

    1995-08-01

    This document outlines the plans and protocols for conducting a pilot of the Department of Energy`s Necessary & Sufficient Closure Process (Attachment A) at Fermilab National Accelerator Laboratory (FNAL) in Batavia, Illinois. The result of this pilot will be a set of standards which will serve as the agreed upon basis for providing FNAL with adequate Environment, Safety and Health Protection at the lowest possible cost. This pilot will seek out and emulate compatible industry practices which have been proven successful both in terms of safety performance and cost-effectiveness. This charter has been developed as a partnership effort by the parties to this agreement (see ``Responsibilities`` below), and is considered to be a living document.

  4. Current and Future High Power Operation of Fermilab Main Injector

    SciTech Connect

    Kourbanis, I.; Adamson, P.; Brown, B.; Capista, D.; Chou, W.; Morris, D.; Seyia, K.; Wu, G.; Yang, M.J.; /Fermilab

    2009-04-01

    Fermilab's Main Injector on acceleration cycles to 120 GeV has been running a mixed mode operation delivering beam to both the antiproton source for pbar production and to the NuMI[1] target for neutrino production since 2005. On January 2008 the slip stacking process used to increase the beam to the pbar target was expanded to include the beam to the NuMI target increasing the MI beam power at 120 GeV to 400KW. The current high power MI operation will be described along with the plans to increase the power to 700KW for NOvA and to 2.1 MW for project X.

  5. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    SciTech Connect

    McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

    2011-03-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  6. Vibrational Stability of SRF Accelerator Test Facility at Fermilab

    SciTech Connect

    McGee, M.W.; Volk, J.T.; /Fermilab

    2009-05-01

    Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

  7. Results of microwave oven radiation leakage surveys at Fermilab

    SciTech Connect

    Miller, T.M.

    1987-01-01

    This report describes the results of routine microwave oven leakage surveys which were conducted at Fermi National Accelerator Laboratory (Fermilab) between 1974 and 1985. A total of 80 ovens representing 250 oven-years of operation were examined. The mean maximum leakage at any point 5 cm from the surface was 0.20 x/ 3.1 mW/cm/sup 2/. Although there was a great deal of scatter in sequential measurements for individual ovens, it appears that leakage tends to increase with oven age. The mean logarithmic rate of increase for the 55 ovens with usable data was 0.21 per year. Case histories of ovens leaking in excess of the standard were examined, and improvements in leakage monitoring programs are suggested.

  8. Electron Cloud Measurements in Fermilab Main Injector and Recycler

    SciTech Connect

    Eldred, Jeffrey Scott; Backfish, M.; Tan, C. Y.; Zwaska, R.

    2015-06-01

    This conference paper presents a series of electron cloud measurements in the Fermilab Main Injector and Recycler. A new instability was observed in the Recycler in July 2014 that generates a fast transverse excitation in the first high intensity batch to be injected. Microwave measurements of electron cloud in the Recycler show a corresponding depen- dence on the batch injection pattern. These electron cloud measurements are compared to those made with a retard- ing field analyzer (RFA) installed in a field-free region of the Recycler in November. RFAs are also used in the Main Injector to evaluate the performance of beampipe coatings for the mitigation of electron cloud. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. The diamond-like carbon coating, in contrast, reduced the electron cloud signal to 1% of that measured in uncoated stainless steel beampipe.

  9. Microdosimetric investigations at the fast neutron therapy facility at Fermilab

    SciTech Connect

    Langen, K.M.

    1997-12-01

    Microdosimetry was used to investigate three issues at the neutron therapy facility (NTF) at Fermilab. Firstly, the conversion factor from absorbed dose in A-150 tissue equivalent plastic to absorbed dose in ICRU tissue was determined. For this, the effective neutron kerma factor ratios, i.e., oxygen tissue equivalent plastic and carbon to A-150 tissue equivalent plastic, were measured in the neutron beam. An A-150 tissue equivalent plastic to ICRU tissue absorbed dose conversion factor of 0.92 {+-} 0.04 was determined. Secondly, variations in the radiobiological effectiveness (RBE) in the beam were mapped by determining variations in two related quantities, e{sup *} and R, with field size and depth in tissue. Maximal variation in e{sup *} and R of 9% and 15% respectively were determined. Lastly, the feasibility of utilizing the boron neutron capture reaction on boron-10 to selectively enhance the tumor dose in the NTF beam was investigated.

  10. Mechanical Stability Study for Integrable Optics Test Accelerator at Fermilab

    SciTech Connect

    McGee, Mike; Andrews, Richard; Carlson, Kermit; Leibfritz, Jerry; Nobrega, Lucy; Valishev, Alexander

    2016-07-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 4 m and (2) 2.8 m long girders with identical cross section completely encompass the ring. This study focuses on the 4 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.

  11. Search for quirks at the Fermilab Tevatron Collider

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; /Rio de Janeiro, CBPF /NIKHEF, Amsterdam

    2010-08-01

    We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.4 fb{sup -1} of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron p{bar p} collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like SU(N) sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107 GeV for the mass of a charged quirk with strong dynamics scale {Lambda} in the range from 10 keV to 1 MeV.

  12. Two decades of prairie restoration at Fermilab, Batavia, Illinois

    SciTech Connect

    Betz, R.F.; Lootens, R.J.; Becker, M.K.

    1996-12-31

    Successional Restoration is the method being used to restore the prairie at Fermilab on the former agricultural fields. This involves an initial planting, using aggressive species that have wide ecological tolerances which will grow well on abandoned agricultural fields. Collectively, these species are designated as the prairie matrix. The species used for this prairie matrix compete with and eventually eliminate most weedy species. They also provide an adequate fuel load capable of sustaining a fire within a few years after a site has been initially planted. Associated changes in the biological and physical structure of the soil help prepare the way for the successful introduction of plants of the later successional species. Only after the species of the prairie matrix are well established, is the species diversity increased by introducing species with narrower ecological tolerances. These species are thus characteristic of the later successional stages.

  13. Design, fabrication and testing of single spoke resonators at Fermilab

    SciTech Connect

    Ristori, L.; Apollinari, G.; Borissov, E.; Gonin, I.V.; Khabiboulline, T.N.; Mukherjee, A.; Nicol, T.H.; Ozelis, J.; Pischalnikov, Y.; Sergatskov, D.A.; Wagner, R.; /Fermilab

    2009-09-01

    The Fermilab High Intensity Neutrino Source (HINS) linac R&D program is building a pulsed 30 MeV superconducting H- linac. The linac incorporates superconducting solenoids, high power RF vector modulators and superconducting spoke-type accelerating cavities starting at 10 MeV. This will be the first application and demonstration of any of these technologies in a low-energy, high-intensity proton/H- linac. The HINS effort is relevant to a high intensity, superconducting H- linac that might serve the next generation of neutrino physics and muon storage ring/collider experiments. In this paper we present the RF design, the mechanical design, the fabrication, the chemistry and testing of the first two SSR1 (Single Spoke Resonator type-1) prototype cavities that were built. These cavities operate at 325 MHz with {beta} = 0.21. The design and testing of the input coupler and the tuning mechanism are also discussed.

  14. Fermilab main injector: High intensity operation and beam loss control

    NASA Astrophysics Data System (ADS)

    Brown, Bruce C.; Adamson, Philip; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K.; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-07-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  15. Simulations of space charge in the Fermilab Main Injector

    SciTech Connect

    Stern, E.; Amundson, J.; Spentzouris, P.; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2011-03-01

    The Fermilab Project X plan for future high intensity operation relies on the Main Injector as the engine for delivering protons in the 60-120 GeV energy range. Project X plans call for increasing the number of protons per Main Injector bunch from the current value of 1.0 x 10{sup 11} to 3.0 x 10{sup 11}. Space charge effects at the injection energy of 8 GeV have the potential to seriously disrupt operations. We report on ongoing simulation efforts with Synergia, MARYLIE/Impact, and IMPACT, which provide comprehensive capabilities for parallel, multi-physics modeling of beam dynamics in the Main Injector including 3D space-charge effects.

  16. Survey of the Fermilab D0 detector collision hall

    SciTech Connect

    Babatunde O'Sheg Oshinowo

    2001-07-20

    The Fermilab D0 detector was used for the discovery of the top quark during Run I in 1996. It had been upgraded to exploit the physics potential to be presented by the Main Injector and the Tevatron Collider during Run II. The upgrade of the D0 detector was fully commissioned on March 1, 2001, and thus marked the official start of the Run II experiment. The detector which weighs about 5500 tons, was assembled in the Assembly Hall. Prior to moving the detector into the Collision Hall, the existing survey monuments were densified in the Collision Hall with new monuments. This paper discusses the survey of the Collision Hall using a combination of the Laser Tracker, BETS, V-Stars, and other Optical systems to within the specified accuracy of {+-}0.5mm.

  17. Proton Injection into the Fermilab Integrable Optics Test Accelerator (IOTA)

    SciTech Connect

    Prebys, Eric; Antipov, Sergey; Piekarz, Henryk; Valishev, A.

    2015-06-01

    The Integrable Optics Test Accelerator (IOTA) is an experimental synchrotron being built at Fermilab to test the concept of non-linear "integrable optics". These optics are based on a lattice including non-linear elements that satisfies particular conditions on the Hamiltonian. The resulting particle motion is predicted to be stable but without a unique tune. The system is therefore insensitive to resonant instabilities and can in principle store very intense beams, with space charge tune shifts larger than those which are possible in conventional linear synchrotrons. The ring will initially be tested with pencil electron beams, but this poster describes the ultimate plan to install a 2.5 MeV RFQ to inject protons, which will produce tune shifts on the order of unity. Technical details will be presented, as well as simulations of protons in the ring.

  18. The Fermilab Short-Baseline Program: MicroBooNE

    SciTech Connect

    Schukraft, Anne

    2016-01-01

    The MicroBooNE experiment is the first of three detectors of the Fermilab short-baseline neutrino program that started operation in the Booster Neutrino Beamline in October 2015 [1]. When completed, the three-detector lineup will explore short-baseline neutrino oscillations and will be sensitive to sterile neutrino scenarios. MicroBooNE in itself is now starting its own physics program, with the measurement of neutrino-argon cross sections in the ~1GeV range being one of its main physics goals. These proceedings describe the status of the detector, the start of operation, and the automated reconstruction of the first neutrino events observed with MicroBooNE. Prospects for upcoming cross section measurements are also given.

  19. Application of independent component analysis to Fermilab Booster

    SciTech Connect

    Huang, X.B.; Lee, S.Y.; Prebys, E.; Tomlin, R.; /Indiana U. /Fermilab

    2005-01-01

    Autocorrelation is applied to analyze sets of finite-sampling data such as the turn-by-turn beam position monitor (BPM) data in an accelerator. This method of data analysis, called the independent component analysis (ICA), is shown to be a powerful beam diagnosis tool for being able to decompose sampled signals into its underlying source signals. They find that the ICA has an advantage over the principle component analysis (PCA) used in the model-independent analysis (MIA) in isolating independent modes. The tolerance of the ICA method to noise in the BPM system is systematically studied. The ICA is applied to analyze the complicated beam motion in a rapid-cycling booster synchrotron at the Fermilab. Difficulties and limitations of the ICA method are also discussed.

  20. Development of the third harmonic SC cavity at Fermilab

    SciTech Connect

    Nikolay Solyak et al.

    2004-08-05

    The third harmonic 3.9 GHz superconducting cavity was recently proposed by DESY for a new generation of high brightness photo-injector (TTF photoinjector-2) to compensate nonlinear distortion of the longitudinal phase space due to RF curvature of the 1.3 GHz TESLA cavities [1,2]. Installation of the 3rd harmonic cavity will allow us to generate ultra-short (<50 {micro}m rms) highly charged electron bunches with an extremely small transverse normalized emittance (<1 {micro}m). This is required to support a new generation of linear colliders, free electron lasers and synchrotron radiation sources. In this paper we present the current status of the 3rd harmonic cavity being developed at Fermilab. We discuss the design procedure, the building and testing of the copper and niobium half-cells and components, the design of input and HOM couplers.

  1. Computing and data handling recent experiences at Fermilab and SLAC

    SciTech Connect

    Cooper, P.S.

    1990-04-09

    Computing has become evermore central to the doing of high energy physics. There are now major second and third generation experiments for which the largest single cost is computing. At the same time the availability of cheap'' computing has made possible experiments which were previously considered infeasible. The result of this trend has been an explosion of computing and computing needs. I will review here the magnitude of the problem, as seen at Fermilab and SLAC, and the present methods for dealing with it. I will then undertake the dangerous assignment of projecting the needs and solutions forthcoming in the next few years at both laboratories. I will concentrate on the offline'' problem; the process of turning terabytes of data tapes into pages of physics journals. 5 refs., 4 figs., 4 tabs.

  2. Correlations in bottom quark pair production at the Fermilab Tevatron

    SciTech Connect

    Galyardt, Jason Edward

    2009-01-01

    I present an analysis of b$\\bar{b}$ pair production correlations, using dimuon-triggered data collected with the Collider Detector at Fermilab (CDF) in p$\\bar{p}$ collisions at √s = 1.96 TeV during Run II of the TeVatron. The leading order (LO) and next-to-leading order (NLO) b quark production processes are discriminated by the angular and momentum correlations between the b{bar b} pair. Track-level jets containing a muon are classified by b quark content and used to estimate the momentum vector of the progenitor b quark. The theoretical distributions given by the MC@NLO event generator are tested against the data.

  3. The status of the Fermilab data storage system

    SciTech Connect

    Bakken, J.; Berman, E.; Huang, Chi-Hao; Moibenko, A.; Petravick, D.; Zalokar, M.; /Fermilab

    2004-12-01

    This document describes the Fermilab Data Storage System Enstore, its design concepts, structure, and current status. Enstore provides storage of the data in robotic tape libraries according to requirements of the experiments. High fault tolerance and availability, as well as multilevel priority based request processing allows experiments to effectively store and access data in the Enstore. Amount of data stored in the system currently approaches 2 PBytes. The Enstore system includes 5 robotic tape libraries, more than 100 PC nodes, and 90 tape drives. The distributed structure and modularity of Enstore allows scaling of the system and adding of more storage equipment as the requirements and needs grow. Users access data in Enstore directly using a special command. They can also use ftp, GridFtp, and SRM interfaces to the dCache caching and buffering system [1], which uses Enstore as its lower layer storage.

  4. The dynamical oscillation and propulsion of magnetic fields in the convective zone of a star. II - Thermal shadows. III - Accumulation of heat and the onset of the Rayleigh-Taylor instability

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1987-01-01

    The dynamics of thermal shadows which develop in the convective zone of a star around an insulating obstacle such as a horizontal band in intense magnetic field are studied. The depth of the shadow on the cool side of the obstacle is found to depend largely on the width of the obstacle multiplied by the temperature gradient. Thermal shadows pressing fields up to 10,000 G downward against the bottom of the convective zone are produced by the broad bands of the azimuthal field in the sun's convective zone. In the third part, the time-dependent accumulation of heat beneath a thermal barrier simulating such a band in the lower convective zone of the sun is considered. The resulting Rayleigh-Taylor instability is shown to cause tongues of heated gas to penetrate upward through the field, providing the emerging magnetic fields that give rise to the activity of the sun.

  5. The effect of space-charge and wake fields in the Fermilab Booster

    SciTech Connect

    Macridin, Alexandru; Spentzouris, Panagiotis; Amundson, James; Spentzouris, Linda; McCarron, Daniel; /IIT, Chicago

    2011-03-01

    We calculate the impedance and the wake functions for laminated structures with parallel-planes and circular geometries. We critically examine the approximations used in the literature for the coupling impedance in laminated chambers and find that most of them are not justified because the wall surface impedance is large. A comparison between the flat and the circular geometry impedance is presented. We use the wake fields calculated for the Fermilab Booster laminated magnets in realistic beam simulations using the Synergia code. We find good agreement between our calculation of the coherent tune shift at injection energy and the experimental measurements. In this paper we calculate the impedance and the wake functions for laminated structures with parallel-planes and circular geometries. First the coupling impedance is derived as a function of the wall surface impedance. Then the surface impedance is calculated by solving Maxwell's equations inside the lamination and the crack regions. We find that the commonly used resistive-wall approximations, good for metallic pipes with small surface impedance, are not valid in the laminated structures where the surface impedance is large. Realistic Synergia simulations of the Booster machine with wake fields predict transverse coherent tune shifts in good agreement with the experiment.

  6. The Machine Protection System for the Fermilab Accelerator Science and Technology Facility

    SciTech Connect

    Wu, Jinyuan; Warner, Arden; Liu, Ning; Neswold, Richard; Carmichael, Linden

    2015-11-15

    The Machine Protection System (MPS) for the Fermilab Accelerator Science and Technology Facility (FAST) has been implemented and tested. The system receives signals from several subsystems and devices which conveys the relevant status needed to the safely operate the accelerator. Logic decisions are made based on these inputs and some predefined user settings which in turn controls the gate signal to the laser of the photo injector. The inputs of the system have a wide variety of signal types, encoding methods and urgencies for which the system is designed to accommodate. The MPS receives fast shutdown (FSD) signals generated by the beam loss system and inhibits the beam or reduces the beam intensity within a macropulse when the beam losses at several places along the accelerator beam line are higher than acceptable values. TTL or relay contact signals from the vacuum system, toroids, magnet systems etc., are chosen with polarities that ensure safe operation of the accelerator from unintended events such as cable disconnection in the harsh industrial environment of the experimental hall. A RS422 serial communication scheme is used to interface the operation permit generator module and a large number of movable devices each reporting multi-bit status. The system also supports operations at user defined lower beam levels for system conunissioning. The machine protection system is implemented with two commercially available off-the-shelf VMEbus based modules with on board FPGA devices. The system is monitored and controlled via the VMEbus by a single board CPU

  7. Electron Lenses and Cooling for the Fermilab Integrable Optics Test Accelerator

    SciTech Connect

    Stancari, G.; Burov, A.; Lebedev, V.; Nagaitsev, S.; Prebys, E.; Valishev, A.

    2015-11-05

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whether nonlinear integrable optics allows electron coolers to exceed limitations set by both coherent or incoherent instabilities excited by space charge.

  8. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    SciTech Connect

    Kafka, Gene

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  9. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    NASA Astrophysics Data System (ADS)

    Baumbaugh, A.; Briegel, C.; Brown, B. C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J. D.; Marchionni, A.; Needles, C.; Olson, M.; Pordes, S.; Shi, Z.; Still, D.; Thurman-Keup, R.; Utes, M.; Wu, J.

    2011-11-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  10. Collider Detector at Fermilab (CDF): Data from Supersymmetry, New Phenomena Research of the CDF Exotics Group

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Exotics group searches for Supersymmetry and other New Phenomena. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  11. Collider Detector at Fermilab (CDF): Data from the Top Group's Top Quark Research

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Top group studies the properties of the top quark, the heaviest known fundamental particle. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  12. Superconducting multipole corrector magnet

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2004-10-01

    A novel concept of superconducting multipole corrector magnet is discussed. This magnet assembled from 12 identical racetrack type coils and can generate any combination of dipole, quadrupole and sextupole magnetic fields. The coil groups are powered from separate power supplies. In the case of normal dipole, quadrupole and sextupole fields the total field is symmetrical relatively the magnet median plane and there are only five powered separately coil groups. This type multipole corrector magnet was proposed for BTeV, Fermilab project and has following advantages: universal configuration, simple manufacturing and high mechanical stability. The results of magnetic design including the field quality and magnetic forces in comparison with known shell type superconducting correctors are presented.

  13. Electron Lenses for Experiments on Nonlinear Dynamics with Wide Stable Tune Spreads in the Fermilab Integrable Optics Test Accelerator

    SciTech Connect

    Stancari, G.; Carlson, K.; McGee, M. W.; Nobrega, L. E.; Romanov, A. L.; Ruan, J.; Valishev, A.; Noll, D.

    2015-06-01

    Recent developments in the study of integrable Hamiltonian systems have led to nonlinear accelerator lattice designs with two transverse invariants. These lattices may drastically improve the performance of high-power machines, providing wide tune spreads and Landau damping to protect the beam from instabilities, while preserving dynamic aperture. To test the feasibility of these concepts, the Integrable Optics Test Accelerator (IOTA) is being designed and built at Fermilab. One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The parameters of the required device are similar to the ones of existing electron lenses. We present theory, numerical simulations, and first design studies of electron lenses for nonlinear integrable optics.

  14. Beam tests of beampipe coatings for electron cloud mitigation in Fermilab Main Injector

    DOE PAGES

    Backfish, Michael; Eldred, Jeffrey; Tan, Cheng Yang; ...

    2015-10-26

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparisonmore » between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and we track the changes in these materials as a function of time and the number of absorbed electrons. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. We measure the energy spectrum of electrons incident on the stainless steel, titanium nitride and amorphous carbon beampipes. We find the electron cloud signal is highly sensitive to stray magnetic fields and bunch-length over the Main Injector ramp cycle. In conclusion, we conduct a complete survey of the stray magnetic fields at the test station and compare the electron cloud signal to that in a field-free region.« less

  15. Beam tests of beampipe coatings for electron cloud mitigation in Fermilab Main Injector

    SciTech Connect

    Backfish, Michael; Eldred, Jeffrey; Tan, Cheng Yang; Zwaska, Robert

    2015-10-26

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparison between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and we track the changes in these materials as a function of time and the number of absorbed electrons. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. We measure the energy spectrum of electrons incident on the stainless steel, titanium nitride and amorphous carbon beampipes. We find the electron cloud signal is highly sensitive to stray magnetic fields and bunch-length over the Main Injector ramp cycle. In conclusion, we conduct a complete survey of the stray magnetic fields at the test station and compare the electron cloud signal to that in a field-free region.

  16. Assessment of neutron skyshine near unmodified Accumulator Debuncher storage rings under Mu2e operational conditions

    SciTech Connect

    Cossairt, J.Donald; /Fermilab

    2010-12-01

    Preliminary plans for providing the proton beam needed by the proposed Mu2e experiment at Fermilab will require the transport of 8 GeV protons to the Accumulator/Debuncher where they be processed into an intensity and time structure useful for the experiment. The intensities involved are far greater that those encountered with antiprotons of the same kinetic energy in the same beam enclosures under Tevatron Collider operational conditions, the operating parameters for which the physical facilities of the Antiproton Source were designed. This note explores some important ramifications of the proposed operation for radiation safety and demonstrates the need for extensive modifications of significant portions of the shielding of the Accumulator Debuncher storage rings; notably that underneath the AP Service Buildings AP10, AP30, and AP50. While existing shielding is adequate for the current operating mode of the Accumulator/Debuncher as part of the Antiproton Source used in the Tevatron Collider program, without significant modifications of the shielding configuration in the Accumulator/Debuncher region and/or beam loss control systems far more effective than seen in most applications at Fermilab, the proposed operational mode for Mu2e is not viable for the following reasons: 1. Due to skyshine alone, under normal operational conditions large areas of the Fermilab site would be exposed to unacceptable levels of radiation where most of the Laboratory workforce and some members of the general public who regularly visit Fermilab would receive measurable doses annually, contrary to workforce, public, and DOE expectations concerning the As Low as Reasonably Achievable (ALARA) principle. 2. Under normal operational conditions, a sizeable region of the Fermilab site would also require fencing due to skyshine. The size of the areas involved would likely invite public inquiry about the significant and visible enlargement of Fermilab's posted radiological areas. 3. There would

  17. MAGNETS

    DOEpatents

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  18. Field calculations, single-particle tracking, and beam dynamics with space charge in the electron lens for the Fermilab Integrable Optics Test Accelerator

    SciTech Connect

    Noll, Daniel; Stancari, Giulio

    2015-11-17

    An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize the main findings and list directions for further work.

  19. Commissioning and early operating experience with the Fermilab horizontal test facility

    SciTech Connect

    Carcagno, R.; Chase, B.; Harms, E.; Hocker, A.; Prieto, P.; Reid, J.; Rowe, A.; Theilacker, J.; Votava, M.; /Fermilab

    2007-10-01

    Fermilab has constructed a facility for testing dressed superconducting radiofrequency (RF) cavities at 1.8 K with high-power pulsed RF. This test stand was designed to test both 9-cell 1.3 GHz TESLA-style cavities and 9-cell 3.9 GHz cavities being built by Fermilab for DESY's TTF-FLASH facility. An overview of the test stand and a description of its initial commissioning is described here.

  20. Biomedical user facility at the 400-MeV Linac at Fermilab

    SciTech Connect

    Chu, W.T.

    1993-12-01

    In this paper, general requirements are discussed on a biomedical user facility at the Fermilab`s 400-MeV Linac, which meets the needs of biology and biophysics experiments, and a conceptual design and typical operations requirements of the facility is presented. It is assumed that no human patient treatment will take place in this facility. If human patients were treated, much greater attention would have to be paid to safeguarding the patients.

  1. A HIGH-LEVEL PYTHON INTERFACE TO THE FERMILAB ACNET CONTROL SYSTEM

    SciTech Connect

    Piot, P.; Halavanau, A.

    2016-10-19

    This paper discusses the implementation of a python- based high-level interface to the Fermilab acnet control system. The interface has been successfully employed during the commissioning of the Fermilab Accelerator Science & Technology (FAST) facility. Specifically, we present examples of applications at FAST which include the interfacing of the elegant program to assist lattice matching, an automated emittance measurement via the quadrupole-scan method and tranverse transport matrix measurement of a superconducting RF cavity.

  2. Fabrication of x-band accelerating structures at Fermilab

    SciTech Connect

    Tug T Arkan et al.

    2004-07-20

    The RF Technology Development group at Fermilab is working together with the NLC and GLC groups at SLAC and KEK on developing technology for room temperature X-band accelerating structures for a future linear collider. We built six 60-cm long, high phase advance, detuned structures (HDS or FXB series). These structures have 150 degrees phase advance per cell, and are intended for high gradient tests. The structures were brazed in a vacuum furnace with a partial pressure of argon, rather than in a hydrogen atmosphere. We have also begun to build 60-cm long, damped and detuned structures (HDDS or FXC/FXD series). We have built 5 FXC and 1 FXD structures. Our goal was to build six structures for the 8-pack test at SLAC by the end of March 2004, as part of the GLC/NLC effort to demonstrate the readiness of room temperature RF technology for a linear collider. This paper describes the RF structure factory infrastructure (clean rooms, vacuum furnaces, vacuum equipment, RF equipment etc.), and the fabrication techniques utilized (the machining of copper cells/couplers, quality control, etching, vacuum brazing, cleanliness requirements etc.) for the production of FXB and FXC/FXD structures.

  3. Stability of electron energy in the Fermilab electron cooler

    SciTech Connect

    Shemyakin, A.; Carlson, K.; Prost, L.R.; Saewert, G.; /Fermilab

    2009-02-01

    A powerful electron beam (4.3 MeV, 0.1 A DC) generated by an electrostatic accelerator has been used at Fermilab for three years to cool antiprotons in the Recycler ring. For electron cooling to be effective, the electron energy should not deviate from its optimum value by more than 500V. The main tool for studying the energy stability is the electron beam position in a high-dispersion area. The energy ripple (frequencies above 0.2 Hz) was found to be less than 150 eV rms; the main cause of the ripple is the fluctuations of the chain current. In addition, the energy can drift to up to several keV that is traced to two main sources. One of them is a drift of the charging current, and another is a temperature dependence of generating voltmeter readings. The paper describes the efforts to reach the required level of stability as well as the setup, diagnostics, results of measurements, and operational experience.

  4. Modelling the Fermilab Collider to determine optimal running

    SciTech Connect

    McCrory, E.

    1994-12-01

    A Monte Carlo-type model of the Fermilab Collider has been constructed, the goal of which is to accurately represent the operation of the Collider, incorporating the aspects of the facility which affect operations in order to determine how to run optimally. In particular, downtime for the various parts of the complex are parameterized and included. Also, transfer efficiencies, emittance growths, changes in the luminosity lifetime and other effects are included and randomized in a reasonable manner. This Memo is an outgrowth of TM-1878, which presented an entirely analytical model of the Collider. It produced a framework for developing intuition on the way in which the major components of the collider affect the luminosity, like the stacking rate and the shot set-up time, for example. However, without accurately including downtime effects, it is not possible to say with certainty that the analytical approach can produce accurate guidelines for optimizing the performance of the Collider. This is the goal of this analysis. We first discuss the way the model is written, describing the object-oriented approach taken in C++. The parameters of the simulation are described. Then the potential criteria for ending stores are described and analyzed. Next, a typical store and a typical week are derived. Then, a final conclusion on the best end-of-store criterion is made. Finally, ideas for future analysis are presented.

  5. A disoriented chiral condensate search at the Fermilab Tevatron

    SciTech Connect

    Convery, Mary Elizabeth

    1997-05-01

    MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. Relativistic quantum field theory treats the vacuum as a medium, with bulk properties characterized by long-range order parameters. This has led to suggestions that regions of "disoriented vacuum" might be formed in high-energy collision processes. In particular, the approximate chiral symmetry of QCD could lead to regions of vacuum which have chiral order parameters disoriented to directions which have non-zero isospin, i.e. disoriented chiral condensates. A signature of DCC is the resulting distribution of the fraction of produced pions which are neutral. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC`s) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on pseudorapidity η ≈ 4. An electromagnetic calorimeter was located behind the MWPC telescope, and hadronic calorimeters and scintillator were located in the upstream anti-proton direction to tag diffractive events.

  6. Electron cloud experiments at Fermilab: Formation and mitigation

    SciTech Connect

    Zwaska, R.; /Fermilab

    2011-06-01

    We have performed a series of experiments at Fermilab to explore the electron cloud phenomenon. The Main Injector will have its beam intensity increased four-fold in the Project X upgrade, and would be subject to instabilities from the electron cloud. We present measurements of the cloud formation in the Main Injector and experiments with materials for the mitigation of the Cloud. An experimental installation of Titanium-Nitride (TiN) coated beam pipes has been under study in the Main Injector since 2009; this material was directly compared to an adjacent stainless chamber through electron cloud measurement with Retarding Field Analyzers (RFAs). Over the long period of running we were able to observe the secondary electron yield (SEY) change and correlate it with electron fluence, establishing a conditioning history. Additionally, the installation has allowed measurement of the electron energy spectrum, comparison of instrumentation techniques, and energydependent behavior of the electron cloud. Finally, a new installation, developed in conjunction with Cornell and SLAC, will allow direct SEY measurement of material samples irradiated in the accelerator.

  7. Microdosimetric investigations at the Fast Neutron Therapy Facility at Fermilab

    SciTech Connect

    Langen, Katja Maria

    1997-01-01

    Microdosimetry was used to investigate three issues at the neutron therapy facility (NTF) at Fermilab. Firstly, the conversion factor from absorbed dose in A-150 tissue equivalent plastic to absorbed dose in ICRU tissue was determined. For this, the effective neutron kerma factor ratios, i.e. oxygen tissue equivalent plastic and carbon to A-150 tissue equivalent plastic, were measured in the neutron beam. An A-150 tissue equivalent plastic to ICRU tissue absorbed dose conversion factor of 0.92 ± 0.04 determined. Secondly, variations in the radiobiological effectiveness (RBE) in the beam were mapped by determining variations in two related quantities, e* and R, with field size and depth in tissue. Maximal variation in e* and R of 9% and 15% respectively were determined. Lastly, the feasibility of utilizing the boron neutron capture reaction on boron-10 to selectively enhance the tumor dose in the NTF beam was investigated. In the unmodified beam, a negligible enhancement for a 50 ppm boron loading was measured. To boost the boron dose enhancement to 3% it was necessary to change the primary proton energy from 66 MeV and to filter the beam by 90 mm of tungsten.

  8. The pixel tracking telescope at the Fermilab Test Beam Facility

    DOE PAGES

    Kwan, Simon; Lei, CM; Menasce, Dario; ...

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm2 pixelmore » cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.« less

  9. The pixel tracking telescope at the Fermilab Test Beam Facility

    SciTech Connect

    Kwan, Simon; Lei, CM; Menasce, Dario; Moroni, Luigi; Ngadiuba, Jennifer; Prosser, Alan; Rivera, Ryan; Terzo, Stefano; Turqueti, Marcos; Uplegger, Lorenzo; Vigani, Luigi; Dinardo, Mauro E.

    2016-03-01

    An all silicon pixel telescope has been assembled and used at the Fermilab Test Beam Facility (FTBF) since 2009 to provide precise tracking information for different test beam experiments with a wide range of Detectors Under Test (DUTs) requiring high resolution measurement of the track impact point. The telescope is based on CMS pixel modules left over from the CMS forward pixel production. Eight planes are arranged to achieve a resolution of less than 8 μm on the 120 GeV proton beam transverse coordinate at the DUT position. In order to achieve such resolution with 100 × 150 μm2 pixel cells, the planes were tilted to 25 degrees to maximize charge sharing between pixels. Crucial for obtaining this performance is the alignment software, called Monicelli, specifically designed and optimized for this system. This paper will describe the telescope hardware, the data acquisition system and the alignment software constituting this particle tracking system for test beam users.

  10. Fermilab E866 (NuSea) Figures and Data Plots

    DOE Data Explorer

    None

    The NuSea Experiment at Fermilab studied the internal structure of protons, in particular the difference between up quarks and down quarks. This experiment also addressed at least two other physics questions: nuclear effects on the production of charmonia states (bound states of charm and anti-charm quarks) and energy loss of quarks in nuclei from Drell-Yan measurements on nuclei. While much of the NuSea data are available only to the collaboration, figures, data plots, and tables are presented as stand-alone items for viewing or download. They are listed in conjunction with the published papers, theses, or presentations in which they first appeared. The date range is 1998 to 2008. To see these figures and plots, click on E866 publications or go directly to http://p25ext.lanl.gov/e866/papers/papers.html. Theses are at http://p25ext.lanl.gov/e866/papers/e866theses/e866theses.html and the presentations are found at http://p25ext.lanl.gov/e866/papers/e866talks/e866talks.html. Many of the items are postscript files.

  11. Fermilab Recycler Ring BPM Upgrade Based on Digital Receiver Technology

    NASA Astrophysics Data System (ADS)

    Webber, R.; Crisp, J.; Prieto, P.; Voy, D.; Briegel, C.; McClure, C.; West, R.; Pordes, S.; Mengel, M.

    2004-11-01

    Electronics for the 237 BPMs in the Fermilab Recycler Ring have been upgraded from a log-amplifier based system to a commercially produced digitizer-digital down converter based system. The hardware consists of a pre-amplifier connected to a split-plate BPM, an analog differential receiver-filter module and an 8-channel 80-MHz digital down converter VME board. The system produces position and intensity with a dynamic range of 30 dB and a resolution of ±10 microns. The position measurements are made on 2.5-MHz bunched beam and barrier buckets of the un-bunched beam. The digital receiver system operates in one of six different signal processing modes that include 2.5-MHz average, 2.5-MHz bunch-by-bunch, 2.5-MHz narrow band, unbunched average, un-bunched head/tail and 89-kHz narrow band. Receiver data is acquired on any of up to sixteen clock events related to Recycler beam transfers and other machine activities. Data from the digital receiver board are transferred to the front-end CPU for position and intensity computation on an on-demand basis through the VME bus. Data buffers are maintained for each of the acquisition events and support flash, closed orbit and turn-by-turn measurements. A calibration system provides evaluation of the BPM signal path and application programs.

  12. Probing neutrino mass with displaced vertices at the Fermilab Tevatron

    SciTech Connect

    Campos, F. de; Eboli, O.J.P.; Magro, M.B.; Porod, W.; Restrepo, D.; Valle, J.W.F.

    2005-04-01

    Supersymmetric extensions of the standard model exhibiting bilinear R-parity violation can generate naturally the observed neutrino mass spectrum as well as mixings. One interesting feature of these scenarios is that the lightest supersymmetric particle (LSP) is unstable, with several of its decay properties predicted in terms of neutrino mixing angles. A smoking gun of this model in colliders is the presence of displaced vertices due to LSP decays in large parts of the parameter space. In this work we focus on the simplest model of this type that comes from minimal supergravity with universal R-parity conserving soft breaking of supersymmetry augmented with bilinear R-parity breaking terms at the electroweak scale (RmSUGRA). We evaluate the potential of the Fermilab Tevatron to probe the RmSUGRA parameters through the analysis of events possessing two displaced vertices stemming from LSP decays. We show that requiring two displaced vertices in the events leads to a reach in m{sub 1/2} twice the one in the usual multilepton signals in a large fraction of the parameter space.

  13. The 400 MeV Linac Upgrade at Fermilab

    SciTech Connect

    Noble, R.J.

    1992-12-01

    The Fermilab Linac Upgrade in planned to increase the energy of the H{sup {minus}} linac from 200 to 400 MeV. This is intended to reduce the incoherent space-charge tuneshift at injection into the 8 GeV Booster which limit either the brightness or the total intensity of the beam. The Linac Upgrade will be achieved by replacing the last four 201.25 MHs drift-tube linac (DTL) tanks which accelerate the beam from 116 to 200 MeV, with seven 805 MRs side-coupled cavity modules operating at an average axial field of about 7.5 MV/meter. This will allow acceleration to 400 MeV in the existing Linac enclosure. Each accelerator module will be driven with a 12 MW klystron-based rf power supply. Three of seven accelerator modules have been fabricated, power tested and installed in their temporary location adjacent to the existing DTL. All seven RF Modulators have been completed and klystron installation has begun. Waveguide runs have completed from the power supply gallery to the accelerator modules. The new linac will be powered in the temporary position without beam in order to verify overall system reliability until the laboratory operating schedule permits final conversion to 400 MeV operation.

  14. Particle Production Measurements Using the MIPP Detector at Fermilab

    SciTech Connect

    Mahajan, Sonam; Bhatnagar, Vipin; Choudhary, Brajesh C.; Raja, Rajendran

    2015-05-01

    Inelastic cross sections have been measured for H, Be, C and Bi targets using proton beams at momenta of 58, 85 and 120 GeV/c using the MIPP experiment at Fermilab. The cross section dependence on the atomic weight (A) of the targets has been found to vary as A$^{\\alpha}$, where $\\alpha$ is 0.75 $\\pm$ 0.03 for a beam momentum of 58 GeV/c and 0.66 $\\pm$ 0.03 for 120 GeV/c. The MIPP data have been compared with the Monte Carlo (DPMJET/FLUKA) predictions and previous measurements. Inelastic cross sections have also been measured as a function of multiplicity for H and C targets using proton beams at different momenta. The DPMJET/FLUKA multiplicity shapes disagree with those of data. Inclusive charged pion production cross sections have also been measured in bins of true momentum for C target using 58 and 120 GeV/c proton beams, and compared with the FLUKA Monte Carlo.

  15. First Megascience Experiment at Fermilab: Through Hardship to Protons

    NASA Astrophysics Data System (ADS)

    Pronskikh, Vitaly; Higgins, Valerie

    The E-36 experiment on the small angle proton-proton scattering that officially started in 1970, making use of the Main Ring beams and giving rise to a chain of similar experiments that continued after 1972, was the first experiment at the newly built NAL. It was also the first US/USSR collaboration in particle physics as well as the first experiment that can be confidently characterized as megascience. The experimental data were interpreted as an indication of the pomeron, a quasiparticle that had been named after the Soviet theorist I. Pomeranchuk. The idea of the experiment can be traced back to the Rochester conference held in 1970 in Kiev where two American and Soviet physicists met to develop it and later acquainted NAL director Robert Wilson with it. Wilson enthusiastically set the stage for the experiment at NAL. Involving a gas-jet target built at the Dubna machine shop of Joint Institute for Nuclear Research and brought to Batavia, Illinois, the experiment established cooperation between the US and the Soviets in the spirit of their contemporary Apollo-Soyuz space program, thus breaking the ice of the Cold War from within high-energy physics. In this talk based on the Fermilab Archives and interviews, we discuss the financial and administrative obstacles raised by Soviet officials that the Russian collaborators had to overcome, interinstitutional tensions among the Soviets that accompanied the collaboration, NAL culture as well as the roles of scientists in megascience as ambassadors of peace.

  16. Cryogenic Controls for Fermilab's Srf Cavities and Test Facility

    NASA Astrophysics Data System (ADS)

    Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.

    2008-03-01

    A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The Cryogenic Test Facility (CTF), located in a separate building 500 m away, supplies the facility with cryogens. The design incorporates ambient temperature pumping for superfluid helium production, as well as three 0.6 kW at 4.5 K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+™, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+™ allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+™ nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLCs by KOYO® are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

  17. Cryogenic controls for Fermilab's SRF cavities and test facility

    SciTech Connect

    Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.; /Fermilab

    2007-07-01

    A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The facility is supplied cryogens from the Cryogenic Test Facility (CTF) located in a separate building 500-m away. The design incorporates ambient temperature pumping for super-fluid helium production, as well as three 0.6-kW at 4.5-K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+{trademark}, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+{trademark} allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+{trademark} nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLC's by KOYO{reg_sign} are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

  18. SSC collider dipole magnets field angle data

    SciTech Connect

    Kuchnir, M.; Bleadon, M.; Schmidt, E.; Bossert, R.; Carson, J.; Delchamps, S.W.; Gourlay, S.; Hanft, R.; Koska, W.; Lamm, M.J.; Mazur, P.O.; Orris, D.; Ozelis, J.; Strait, J.; Wake, M. ); DiMarco, J.; Devred, A.; Kuzminski, J.; Yu, Y.; Zheng, H. ); Ogitsu, T. (Superconducting Super Collider

    1992-09-01

    In the fabrication of both 40 and 50 mm collider dipole superconducting magnets, surveys of the direction of the magnetic field along their length have been taken. This data besides being used for certifying compliance with the specifications for the finished magnet, yields interesting information on the straightness and rigidity of the coil placement between some stages in their manufacture and testing. A discussion on the measuring equipment and procedures is given. All of the 40 mm magnets that were built or cryostat at Fermilab have at least one of these surveys, and a summary of the data on them is presented. Most of the 50 mm magnets built and cold tested at Fermilab have been surveyed before and after insertion in the cryostat and before and after being cold tested. A summary of this data is also presented.

  19. Magnetic field angle changes during manufacture and testing of SSC collider dipoles

    SciTech Connect

    Kuchnir, M.; Bleadon, M.; Delchamps, S.W.; Schmidt, E.; Bossert, R.; Carson, J.; Gourlay, S.; Hanft, R.; Koska, W.; Lamm, M.J.; Mazur, P.O.; Orris, D.; Ozelis, J.; Strait, J.; Wake, M.; Devred, A.; DiMarco, J.; Kuzminski, J.; Ogitsu, T.; Yu, Y.; Zheng, H.

    1992-10-01

    Measurements of the magnetic field angle along the length of collider dipole magnets are discussed. These superconducting magnets were built at Fermilab for the Superconducting Super Collider (SSC) by Fermilab and General Dynamics personnel. These measurements were made at four stages in the assembly and test sequence. The data show-that changes can occur both during installation in the cryostat and as a result of cold testing. Most of the changes during installation are correlated with the welding of the tie bar restraints. But the changes observed as a result of the cold testing can be attributed to changes in the magnetization of the iron laminations.

  20. RF Test Results from Cryomodule 1 at the Fermilab SRF Beam Test Facility

    SciTech Connect

    Harms, E.; Carlson, K.; Chase, B.; Cullerton, E.; Hocker, A.; Jensen, C.; Joireman, P.; Klebaner, A.; Kubicki, T.; Kucera, M.; Legan, A.; /Fermilab /DESY

    2011-07-26

    Powered operation of Cryomodule 1 (CM-1) at the Fermilab SRF Beam Test Facility began in late 2010. Since then a series of tests first on the eight individual cavities and then the full cryomodule have been performed. We report on the results of these tests and lessons learned which will have an impact on future module testing at Fermilab. Since November 2010 Cryomodule 1 has been operating at 2 Kelvin. After evaluating each of the eight cavities while individually powered, the entire module has recently been powered and peak operation determined as shown in Figure 4. Several more weeks of measurements are planned before the module is warmed up, removed and replaced with Cryomodule 2 now under assembly at Fermilab.

  1. The Science Training Program for Young Italian Physicists and Engineers at Fermilab

    SciTech Connect

    Barzi, Emanuela; Bellettini, Giorgio; Donati, Simone

    2015-03-12

    Since 1984 Fermilab has been hosting a two-month summer training program for selected undergraduate and graduate Italian students in physics and engineering. Building on the traditional close collaboration between the Italian National Institute of Nuclear Physics (INFN) and Fermilab, the program is supported by INFN, by the DOE and by the Scuola Superiore di Sant`Anna of Pisa (SSSA), and is run by the Cultural Association of Italians at Fermilab (CAIF). This year the University of Pisa has qualified it as a “University of Pisa Summer School”, and will grant successful students with European Supplementary Credits. Physics students join the Fermilab HEP research groups, while engineers join the Particle Physics, Accelerator, Technical, and Computing Divisions. Some students have also been sent to other U.S. laboratories and universities for special trainings. The programs cover topics of great interest for science and for social applications in general, like advanced computing, distributed data analysis, nanoelectronics, particle detectors for earth and space experiments, high precision mechanics, applied superconductivity. In the years, over 350 students have been trained and are now employed in the most diverse fields in Italy, Europe, and the U.S. In addition, the existing Laurea Program in Fermilab Technical Division was extended to the whole laboratory, with presently two students in Master’s thesis programs on neutrino physics and detectors in the Neutrino Division. And finally, a joint venture with the Italian Scientists and Scholars North-America Foundation (ISSNAF) provided this year 4 professional engineers free of charge for Fermilab. More details on all of the above can be found below.

  2. Single-layer high field dipole magnets

    SciTech Connect

    Vadim V. Kashikhin and Alexander V. Zlobin

    2001-07-30

    Fermilab is developing high field dipole magnets for post-LHC hadron colliders. Several designs with a nominal field of 10-12 T, coil bore size of 40-50 mm based on both shell-type and block-type coil geometry are currently under consideration. This paper presents a new approach to magnet design, based on simple and robust single-layer coils optimized for the maximum field, good field quality and minimum number of turns.

  3. Upgrade of the A0 photoinjector laser system for NML accelerator test facility at Fermilab

    SciTech Connect

    Ruan, J.; Edwards, H.; Fliller, R.P., III; Santucci, J.K.; /Fermilab

    2007-06-01

    The current Fermilab A0 Photoinjector laser system includes a seed laser, a flashlamp pumped multipass amplifier cavity, a flashlamp pumped 2-pass amplifier system followed by an Infra-Red (IR) to Ultra-Violet (UV) conversion stage. However the current system can only deliver up to 800 pulses due to the low efficiency of Nd:Glass used inside multi-pass cavity. In this paper we will report the effort to develop a new multi pass cavity based on Nd:YLF crystal end-pumped by diode laser. We will also discuss the foreseen design of the laser system for the NML accelerator test facility at Fermilab.

  4. Beam manipulation and compression using broadband rf systems in the Fermilab Main Injector and Recycler

    SciTech Connect

    G William Foster et al.

    2004-07-09

    A novel method for beam manipulation, compression, and stacking using a broad band RF system in circular accelerators is described. The method uses a series of linear voltage ramps in combination with moving barrier pulses to azimuthally compress, expand, or cog the beam. Beam manipulations can be accomplished rapidly and, in principle, without emittance growth. The general principle of the method is discussed using beam dynamics simulations. Beam experiments in the Fermilab Recycler Ring convincingly validate the concept. Preliminary experiments in the Fermilab Main Injector to investigate its potential for merging two ''booster batches'' to produce high intensity proton beams for neutrino and antiproton production are described.

  5. Installation Status of the Electron Beam Profiler for the Fermilab Main Injector

    SciTech Connect

    Thurman-Keup, R.; Alvarez, M.; Fitzgerald, J.; Lundberg, C.; Prieto, P.; Roberts, M.; Zagel, J.; Blokland, W.

    2015-11-06

    The planned neutrino program at Fermilab requires large proton beam intensities in excess of 2 MW. Measuring the transverse profiles of these high intensity beams is challenging and often depends on non-invasive techniques. One such technique involves measuring the deflection of a probe beam of electrons with a trajectory perpendicular to the proton beam. A device such as this is already in use at the Spallation Neutron Source at ORNL and the installation of a similar device is underway in the Main Injector at Fermilab. The present installation status of the electron beam profiler for the Main Injector will be discussed together with some simulations and test stand results.

  6. Observation of Instabilities of Coherent Transverse Ocillations in the Fermilab Booster

    SciTech Connect

    Alexahin, Y.; Eddy, N.; Gianfelice-Wendt, E.; Lebedev, V.; Marsh, W.; Pellico, W.; Triplett, K.; /Fermilab

    2012-05-01

    The Fermilab Booster - built more than 40 years ago - operates well above the design proton beam intensity of 4 {center_dot} 10{sup 12} ppp. Still, the Fermilab neutrino experiments call for even higher intensity exceeding 5.5 {center_dot} 10{sup 12} ppp. A multitude of intensity related effects must be overcome in order to meet this goal including suppression of coherent dipole instabilities of transverse oscillations which manifest themselves as a sudden drop in the beam current. In this report we present the results of observation of these instabilities at different tune, coupling and chromaticity settings and discuss possible cures.

  7. Experiment and simulations of sub-ps electron bunch train generation at Fermilab photoinjectors

    SciTech Connect

    Sun, Y.-E; Church, M.; Piot, P.; Prokop, C.R.; /Fermilab /Northern Illinois U.

    2011-10-01

    Recently the generation of electron bunch trains with sub-picosecond time structure has been experimentally demonstrated at the A0 photoinjector of Fermilab using a transverse-longitudinal phase-space exchange beamline. The temporal profile of the bunch train can be easily tuned to meet the requirements of the applications of modern accelerator beams. In this paper we report the A0 bunch-train experiment and explore numerically the possible extension of this technique to shorter time scales at the Fermilab SRF Accelerator Test Facility, a superconducting linear electron accelerator currently under construction in the NML building.

  8. UNIX trademark in high energy physics: What we can learn from the initial experiences at Fermilab

    SciTech Connect

    Butler, J.N.

    1991-03-01

    The reasons why Fermilab decided to support the UNIX operating system are reviewed and placed in the content of an overall model for high energy physics data analysis. The strengths and deficiencies of the UNIX environment for high energy physics are discussed. Fermilab's early experience in dealing with a an open'' multivendor environment, both for computers and for peripherals, is described. The human resources required to fully exploit the opportunities are clearly growing. The possibility of keeping the development and support efforts within reasonable bounds may depend on our ability to collaborate or at least to share information even more effectively than we have in the past. 7 refs., 4 figs., 5 tabs.

  9. Broad-band chopper for a CW proton linac at Fermilab

    SciTech Connect

    Gianfelice-Wendt, E.; Lebedev, V.A.; Solyak, N.; Nagaitsev, S.; Sun, D.; /Fermilab

    2011-03-01

    The future Fermilab program in the high energy physics is based on a new facility called the Project X [1] to be built in the following decade. It is based on a 3 MW CW linear accelerator delivering the 3 GeV 1 mA H{sup -} beam to a few experiments simultaneously. Small fraction of this beam will be redirected for further acceleration to 8 GeV to be injected to the Recycler/Main Injector for a usage in a neutrino program and other synchrotron based high energy experiments. Requirements and technical limitations to the bunch-by-bunch chopper for the Fermilab Project X are discussed.

  10. Production and test results of SC 3.9-GHz accelerating cavity at Fermilab

    SciTech Connect

    Khabiboulline, Timergali; Cooper, Charlie; Edwards, Helen; Foley, Mike; Gonin, Ivan; Mitchell, Donald; Olis, D.; Rowe, Allan; Salman, Tariq; Solyak, Nikolay; /Fermilab

    2006-08-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve beam performances for TTF-FEL facility. In the frame of collaboration Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. In this paper we discuss the status of the cavity and coupler production and the first result of cavity tests. It is hoped that this project will be completed during the first half of 2007 and the cryomodule delivered to DESY in this time span.

  11. Design, performance and production of the Fermilab TESLA RF input couplers

    SciTech Connect

    Champion, M.

    1996-10-01

    The TeV Energy Superconducting Linear Accelerator (TESLA) requires as one of its technical components a radiofrequency (rf) input coupler that transfers 1.3 GHz rf energy from the rf distribution system to a nine-cell superconducting accelerating cavity operating at a temperature of 1.8 K. The input coupler design is driven by numerous design criteria, which result in a rather complicated implementation. The production of twelve input couplers for the TESLA Test Facility (TTF) is underway at Fermilab, with the first two couplers having been delivered late in 1995. This paper discusses the Fermilab TESLA rf input coupler design, recent test results, and production issues.

  12. Automatic steering corrections to minimize injection oscillations in the Fermilab Antiproton Source rings

    SciTech Connect

    Harding, D.J.; Riddiford, A.W.

    1989-03-01

    Missteering of particle beam at injection into a circular accelerator produces coherent betatron oscillations. The beam position monitor system in the Antiproton Source at Fermilab can measure the beam position on each turn around the ring during these oscillations. From the amplitude and phase of the oscillations, corrections to the beamline steering are calculated to remove the oscillations. The analysis includes the case where the horizontal and vertical tunes are quite strongly coupled. This technique has proved to be valuable both in operation of the Fermilab Collider and as an analytical tool. 4 refs., 2 figs.

  13. Conceptual Design Report: Fermilab Main Injector - Technical Components and Civil Construction, April 1992 (Rev. 3.1)

    SciTech Connect

    None, None

    1992-04-01

    This report contains a description of the design and cost estimation of a new 150 GeV accelerator, designated the Fermilab Main Injector (FMI). The construction of this accelerator will simulataneously result in significant enhancements to both the Fermilab collider and fixed target programs.

  14. Strategies Used in "Fermilab LInC Online" To Develop Leadership Teams That Integrate Technology To Support Constructivist Learning.

    ERIC Educational Resources Information Center

    Mengel, Laura; Gatz, Sharon; Meehan, Stephen

    Fermilab is a U.S. Department of Energy national laboratory for research exploring the fundamental nature of matter and energy. This paper describes the Fermilab LInC (Leadership Institute Integrating Internet, Instruction and Curriculum) Online program and the strategies used over the past six years to develop leadership teams that can: (1)…

  15. Report Tunneling Cost Reduction Study prepared for Fermilab

    SciTech Connect

    Not Available

    1999-07-16

    Fermi National Accelerator Laboratories has a need to review the costs of constructing the very long tunnels which would be required for housing the equipment for the proposed Very Large Hadron Collider (VLHC) project. Current tunneling costs are high, and the identification of potential means of significantly reducing them, and thereby helping to keep overall project costs within an acceptable budget, has assumed great importance. Fermilab has contracted with The Robbins Company to provide an up-to-date appraisal of tunneling technology, and to review the potential for substantially improving currently the state-of-practice performance and construction costs in particular. The Robbins Company was chosen for this task because of its long and successful experience in hard rock mechanical tunnel boring. In the past 40 years, Robbins has manufactured over 250 tunneling machines, the vast majority for hard rock applications. In addition to also supplying back-up equipment, Robbins has recently established a division dedicated to the manufacture of continuous conveying equipment for the efficient support of tunneling operations. The study extends beyond the tunnel boring machine (TBM) itself, and into the critical area of the logistics of the support of the machine as it advances, including manpower. It is restricted to proven methods using conventional technology, and its potential for incremental but meaningful improvement, rather than examining exotic and undeveloped means of rock excavation that have been proposed from time to time by the technical community. This is the first phase of what is expected to be a number of studies in increasing depth of technical detail, and as such has been restricted to the issues connected with the initial 34 kilometer circumference booster tunnel, and not the proposed 500 kilometer circumference tunnel housing the VLHC itself. The booster tunnel is entirely sited within low to medium strength limestone and dolomite formations

  16. Quench tests of Nb3Al small racetrack magnets

    SciTech Connect

    Yamada, R.; Kikuchi, A.; Tartaglia, Michael Albert; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Feher, S.; Kashikhin, V.V.; Kotelnikov, S.; Lamm, Michael J.; /Fermilab /NIMC, Tsukuba /KEK, Tsukuba

    2007-08-01

    Two Cu stabilized Nb3Al strands, F1 (Nb matrixed) and F3 (Ta matrixed), have been made at NIMS and their Rutherford cables were made at Fermilab in collaboration with NIMS. A Small Race-track magnet using F1 Rutherford cable, the first Nb3Al dipole magnet in the world, was constructed and tested to full current at Fermilab. This magnet was tested extensively to full short sample data and its quench characteristics were studied and reported. The 3-D magnetic field calculation was done with ANSYS to find the peak field. The quench characteristics of the magnet are explained with the characteristics of the Nb3Al strand and Rutherford cable. The other Small Race-track magnet using Ta matrixed F3 strand was constructed and will be tested in the near future. The advantages and disadvantages of these Nb3Al cables are discussed.

  17. Fast Instability Caused by Electron Cloud in Combined Function Magnets

    SciTech Connect

    Antipov, S. A.; Adamson, P.; Burov, A.; Nagaitsev, S.; Yang, M. J.

    2016-12-12

    One of the factors which may limit the intensity in the Fermilab Recycler is a fast transverse instability. It develops within a hundred turns and, in certain conditions, may lead to a beam loss. The high rate of the instability suggest that its cause is electron cloud. We studied the phenomena by observing the dynamics of stable and unstable beam, simulating numerically the build-up of the electron cloud, and developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function di-poles. We found that beam motion can be stabilized by a clearing bunch, which confirms the electron cloud nature of the instability. The clearing suggest electron cloud trapping in Recycler combined function mag-nets. Numerical simulations show that up to 1% of the particles can be trapped by the magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a Recycler combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated resulting instability growth rate of about 30 revolutions and the mode fre-quency of 0.4 MHz are consistent with experimental observations and agree with the simulation in the PEI code. The created instability model allows investigating the beam stability for the future intensity upgrades.

  18. A prototype 7.5 MHz Finemet(Trademark) loaded RF cavity and 200kW amplifier for the Fermilab proton driver

    SciTech Connect

    David W. Wildman et al.

    2001-07-09

    A 7.5 MHz RF cavity and power amplifier have been built and tested at Fermilab as part of the proton Driver Design Study. The project goal was to achieve the highest possible 7.5 MHz accelerating gradient at 15 Hz with a 50% duty cycle. To reduce beam loading effects, a low shunt impedance (500{Omega}) design was chosen. The 46 cm long single gap cavity uses 5 inductive cores, consisting of the nanocrystalline soft magnetic alloy Finemet, to achieve a peak accelerating voltage of 15 kV. The 95 cm OD tape wound cores have been cut in half to increase the cavity Q and are cooled from both sides using large water-cooled copper heat sinks. The prototype cavity has a shunt impedance of 550{Omega}, Q = 11, and is powered by a 200 kW cw cathode driven tetrode amplifier. Both cavity and amplifier designs are described. Results from recent cavity tests coalescing beam in the Fermilab Main Injector is also presented.

  19. Progress on the FabrIc for Frontier Experiments project at Fermilab

    DOE PAGES

    Box, Dennis; Boyd, Joseph; Dykstra, Dave; ...

    2015-12-23

    The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercialmore » cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. Hence, the progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide« less

  20. Progress on the FabrIc for Frontier Experiments project at Fermilab

    SciTech Connect

    Box, Dennis; Boyd, Joseph; Dykstra, Dave; Garzoglio, Gabriele; Herner, Kenneth; Kirby, Michael; Kreymer, Arthur; Levshina, Tanya; Mhashilkar, Parag; Sharma, Neha

    2015-12-23

    The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. Hence, the progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide

  1. The NuMI proton beam at Fermilab successes and challenges

    SciTech Connect

    Childress, S.; /Fermilab

    2008-11-01

    The NuMI beam at Fermilab has delivered over 5 x 10{sup 20} 120 GeV protons to the neutrino production target since the start for MINOS [1] neutrino oscillation experiment operation in 2005. We report on proton beam commissioning and operation status, including successes and challenges with this beam.

  2. DOE Lab-Wide Review of Fermilab May 19-20, 1987

    SciTech Connect

    Green, Dan

    1987-05-01

    This book is submitted as a written adjunct to the Annual DOE Lab-Wide Review of Fermilab, scheduled this year for May 19, 20, 1987. In it are described the functions and activities of the various laboratory areas plus statements of plans and goals for the coming year.

  3. P-986 Letter of Intent: Medium-Energy Antiproton Physics at Fermilab

    SciTech Connect

    Asner, David M.; Phillips, Thomas J.; Apollinari, Giorgio; Broemmelsiek, Daniel R.; Brown, Charles N.; Christian, David C.; Derwent, Paul; Gollwitzer, Keith; Hahn, Alan; Papadimitriou, Vaia; Stefanski, Ray; /Fermilab /INFN, Ferrara /Hbar Technol., West Chicago /IIT, Chicago /CHEP, Taegu /Luther Coll. /Michigan U. /Northwestern U. /Notre Dame U. /St. Xavier U., Chicago

    2009-02-05

    Fermilab has long had the world's most intense antiproton source. Despite this, the opportunities for medium-energy antiproton physics at Fermilab have been limited in the past and - with the antiproton source now exclusively dedicated to serving the needs of the Tevatron Collider - are currently nonexistent. The anticipated shutdown of the Tevatron in 2010 presents the opportunity for a world-leading medium-energy antiproton program. We summarize the current status of the Fermilab antiproton facility and review some physics topics for which the experiment we propose could make the world's best measurements. Among these, the ones with the clearest potential for high impact and visibility are in the area of charm mixing and CP violation. Continued running of the Antiproton Source following the shutdown of the Tevatron is thus one of the simplest ways that Fermilab can restore a degree of breadth to its future research program. The impact on the rest of the program will be minor. We request a small amount of effort over the coming months in order to assess these issues in more detail.

  4. Measurement of the Top Quark Mass with the Collider Detector at Fermilab

    SciTech Connect

    Sato, Koji

    2005-02-01

    We present a measurement of the top quark mass using tt pair creation events decaying into the lepton+jets channel in pp collisions at √s = 1.96 TeV. The data sample used in this analysis was collected with the Collider Detector at Fermilab (CDF) in Tevatron Run II during the period from March 2002 through August 2003.

  5. Operation of the CDF Silicon Vertex Detector with colliding beams at Fermilab

    SciTech Connect

    Bedeschi, F.; Bolognesi, V.; Dell'Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F. ); Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M. ); Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneide

    1992-10-01

    In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on S/N ratio, alignment, resolution and efficiency are given.

  6. Overview of results from the Fermilab fixed target and collider experiments

    SciTech Connect

    Montgomery, H.E.

    1997-06-01

    In this paper we present a review of recent QCD related results from Fermilab fixed target and collider experiments. Topics covered range from structure functions through W/Z production, heavy quark production and jet angular distributions. We also include the current state of knowledge about leptoquark pair production in hadronic collisions.

  7. An Observation of a Transverse to Longitudinal Emittance Exchange at the Fermilab A0 Photoinjector

    SciTech Connect

    Koeth, Timothy W

    2009-05-01

    An experimental program to perform a proof of principle of transverse to longitudinal emittance exchange (ϵxin ↔ ϵzout and ϵxin ↔ ϵzout) has been developed at the Fermilab A0 Photoinjector. A new beamline, including two magnetic dogleg channels and a TM110 deflecting mode radio frequency cavity, were constructed for the emittance exchange experiment. The first priority was a measurement of the Emittance Exchange beamline transport matrix. The method of difference orbits was used to measure the transport matrix. Through varying individual beam input vector elements, such as xin, x'in, yin, y'in, zin, or δin, and measuring the changes in all of the beam output vector's elements, xout, x'out, yout, y'out, zout, δout, the full 6 x 6 transport matrix was measured. The measured emittance exchange transport matrix was in overall good agreement with our calculated transport matrix. A direct observation of an emittance exchange was performed by measuring the electron beam's characteristics before and after the emittance exchange beamline. Operating with a 14.3 MeV, 250pC electron bunch, ϵzin of 21.1 ± 1.5 mm • mrad was observed to be exchanged with ϵxout of 20.8 ± 2.00 mm • mrad. Diagnostic limitations in the ϵzout measurement did not account for an energy-time correlation, thus potentially returning values larger than the actual longitudinal emittance. The ϵxin of 4.67 ± 0.22 mm • mrad was observed to be exchanged with ϵzout of 7.06 ± 0.43 mm • mrad. The apparent ϵzoutgrowth is consistent with calculated values in which the correlation term is neglected.

  8. Solids Accumulation Scouting Studies

    SciTech Connect

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of

  9. Prospects for the Simultaneous Operation of the Tevatron Collider and pp Experiments in the Antiproton Source Accumulator

    SciTech Connect

    Werkema, Steven J.; /Fermilab

    2001-06-07

    This document is a slightly expanded version of a portion of the Proton Driver design report. The Proton Driver group gets the credit for the original idea of running an Accumulator experiment in the BTeV era. The work presented here is a study of the feasibility of this idea. The addition of the Recycler Ring to the Fermilab accelerator complex provides an opportunity to continue the program of {bar p}p physics in the Antiproton Source Accumulator that was started by Fermilab experiments E760 and E835. The operational scenario presented here utilizes the Recycler Ring as an antiproton bank from which the colliders makes 'withdrawals' as needed to maintain the required luminosity in the Tevatron. The Accumulator is only needed to re-supply the bank in between withdrawals. When the {anti p} stacking rate is sufficiently high, and the luminosity requirements of the Collider experiments are sufficiently low, there will be time between Collider fills and subsequent refilling of the recycler to deliver beam to an experiment in the Accumulator. In the scenario envisioned here, the impact of the Accumulator experiment on the luminosity delivered to the Collider experiments is very small. If the Run II antiproton stacking rate goals are met, the operational conditions required for running Accumulator based experiments will be met during the BTeV era. A simple model of the operation of the Fermilab accelerator complex for BTeV and an experiment in the Accumulator has been developed. The model makes predictions of the rate at which luminosity is delivered to BTeV and an Accumulator experiment. This model was used to examine the impact of the proton driver on this experimental program.

  10. Collider Detector at Fermilab (CDF): Data from Standard Model and Supersymmetric Higgs Bosons Research of the Higgs Group

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Higgs group searches for Standard Model and Supersymmetric Higgs bosons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  11. Collider Detector at Fermilab (CDF): Data from the QCD Group's Research into Properties of the Strong Interaction

    DOE Data Explorer

    ,

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The QCD group studies the properties of the strong interaction. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  12. Field quality study in Nb(3)Sn accelerator magnets

    SciTech Connect

    Kashikhin, V.V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bossert, R.; DiMarco, J.; Kashikhin, V.S.; Lamm, M.; Novitski, I.; Schlabach, P.; Velev, G.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2005-05-01

    Four nearly identical Nb{sub 3}Sn dipole models of the same design were built and tested at Fermilab. It provided a unique opportunity of systematic study the field quality effects in Nb{sub 3}Sn accelerator magnets. The results of these studies are reported in the paper.

  13. Quench Protection of High Field Nb{sub 3}Sn Magnets for VLHC

    SciTech Connect

    Linda Imbasciati et al.

    2001-07-30

    Fermilab is developing high field magnets for a possible future VLHC. The high levels of stored energy in these magnets present significant challenges to the magnet quench protection. Simulation programs have been developed and used to analyze temperature and voltage distributions during a quench and to performed parametric studies on conductor and quench-heater requirements. This paper concludes with a proposal for a set of quench protection parameters for the VLHC magnets.

  14. A cryogenic test stand for large superconducting solenoid magnets

    NASA Astrophysics Data System (ADS)

    Rabehl, R.; Carcagno, R.; Nogiec, J.; Orris, D.; Soyars, W.; Sylvester, C.

    2014-01-01

    A new test stand for testing large superconducting solenoid magnets at the Fermilab Central Helium Liquefier (CHL) has been designed, installed, and operated. This test stand is being used to test a coupling coil for the Muon Ionization Cooling Experiment (MICE), and future uses include solenoids for the Fermilab μ2e experiment. This paper describes the test stand design and operation including controlled cool-down and warm-up. Overviews of the process controls system and the quench management system are also included.

  15. A Cryogenic Test Stand for Large Superconducting Solenoid Magnets

    SciTech Connect

    Rabehl, R.; Carcagno, R.; Nogiec, J.; Orris, D.; Soyars, W.; Sylvester, C.

    2013-01-01

    A new test stand for testing large superconducting solenoid magnets at the Fermilab Central Helium Liquifier (CHL) has been designed, and operated. This test stand has been used to test a coupling coil for the Muon Ionization Cooling Experiment (MICE), and future uses include solenoids for the Fermilab mu2e experiment. This paper describes the test stand design and operation including controlled cool-down and warm-up. Overviews of the process controls system and the quench management system are also included.

  16. Fermilab D-0 Experimental Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect

    Krstulovich, S.F.

    1987-10-31

    This report is developed as part of the Fermilab D-0 Experimental Facility Project Title II Design Documentation Update. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis.

  17. The Discovery of the b Quark at Fermilab in 1977: The Experiment Coordinator's Story

    DOE R&D Accomplishments Database

    Yoh, J.

    1997-12-01

    I present the history of the discovery of the Upsilon ({Upsilon}) particle (the first member of the b-quark family to be observed) at Fermilab in 1977 by the CFS (Columbia-Fermilab-Stony Brook collaboration) E288 experiment headed by Leon Lederman. We found the first evidence of the {Upsilon} in November 1976 in an early phase of E288. The subsequent discovery in the spring of 1977 resulted from an upgraded E288 the {mu}{mu}II phase, optimized for dimuons, with about 100 times the sensitivity of the previous investigatory dimuon phase (which had been optimized for dielectrons). The events leading to the discovery, the planning of {mu}{mu}II and the running, including a misadventure (the infamous Shunt Fire of May 1977), are described. Some discussions of the aftermath, a summary, and an acknowledgement list end this brief historical note.

  18. Recent developments in electropolishing and tumbling R&D at Fermilab

    SciTech Connect

    Cooper, C.; Brandt, J.; Cooley, L.; Ge, M.; Harms, E.; Khabiboulline, T.; Ozelis, J.; Boffo, C.; /Babcock Noell, Wuerzburg

    2009-10-01

    Fermi National Accelerator Lab (Fermilab) is continuing to improve its infrastructure for research and development on the processing of superconducting radio frequency cavities. A single cell 3.9 GHz electropolishing tool built at Fermilab and operated at an industrial partner was recently commissioned. The EP tool was used to produce a single cell 3.9 GHz cavity that reached an accelerating gradient of 30 MV/m with a quality factor of 5 x 10{sup 9}. A single cell 1.3 GHz cavity was also electropolished at the same industrial vendor using the vendor's vertical full-immersion technique. On their first and only attempt the vendor produced a single cell 1.3 GHz cavity that reached 30 MV/m with a quality factor of 1 x 10{sup 10}. These results will be detailed along with preliminary tumbling results.

  19. The discovery of the b quark at Fermilab in 1977: The experiment coordinator`s story

    SciTech Connect

    Yoh, J.

    1997-12-01

    I present the history of the discovery of the Upsilon ({Upsilon}) particle (the first member of the b-quark family to be observed) at Fermilab in 1977 by the CFS (Columbia-Fermilab-Stony Brook collaboration) E288 experiment headed by Leon Lederman. We found the first evidence of the {Upsilon} in November 1976 in an early phase of E288. The subsequent discovery in the spring of 1977 resulted from an upgraded E288 the {mu}{mu}II phase, optimized for dimuons, with about 100 times the sensitivity of the previous investigatory dimuon phase (which had been optimized for dielectrons). The events leading to the discovery, the planning of {mu}{mu}II and the running, including a misadventure (the infamous Shunt Fire of May 1977), are described. Some discussions of the aftermath, a summary, and an acknowledgement list end this brief historical note.

  20. The discovery of the b quark at Fermilab in 1977: The experiment coordinator's story

    NASA Astrophysics Data System (ADS)

    Yoh, John

    1998-02-01

    I present the history of the discovery of the Upsilon (Υ) particle (the first member of the b-quark family to be observed) at Fermilab in 1977 by the CFS (Columbia-Fermilab-Stony Brook collaboration) E288 experiment headed by Leon Lederman. We found the first evidence of the Υ in November 1976 in an early phase of E288. The subsequent discovery in the spring of 1977 resulted from an upgraded E288-the μμII phase, optimized for dimuons, with about 100 times the sensitivity of the previous investigatory dimuon phase (which had been optimized for dielectrons). The events leading to the discovery, the planning of μμII and the running, including a misadventure (the infamous Shunt Fire of May 1977), are described. Some discussions of the aftermath, a summary, and an acknowledgment list end this brief historical note.

  1. Development of picoseconds Time of Flight systems in Meson Test Beam Facility at Fermilab

    SciTech Connect

    Ronzhin, A.; Albrow, M.; Demarteau, M.; Los, S.; Malik, S.; Pronko, S.; Ramberg, E.; Zatserklyaniy, A.; /Puerto Rico U., Mayaguez

    2010-11-01

    The goal of the work is to develop time of flight (TOF) system with about 10 picosecond time resolution in real beam line when start and stop counters separated by some distance. We name the distance as 'base' for the TOF. This 'real' TOF setup is different from another one when start and stop counters located next to each other. The real TOF is sensitive to beam momentum spread, beam divergence, etc. Anyway some preliminary measurements are useful with close placement of start and stop counter. We name it 'close geometry'. The work started about 2 years ago at Fermilab Meson Test Beam Facility (MTBF). The devices tested in 'close geometry' were Microchannel Plate Photomultipliers (MCP PMT) with Cherenkov radiators. TOF counters based on Silicon Photomultipliers (SiPms) with Cherenkov radiators also in 'close geometry' were tested. We report here new results obtained with the counters in the MTBF at Fermilab, including beam line data.

  2. The Fermilab program for the next decade a response to the Gilman HEPAP subpanel

    SciTech Connect

    Pordes, S.

    1997-10-01

    We have divided this description of our plans for the Laboratory program into seven parts. The first five sections describe the ongoing technical work and the broad range of physics opportunities available at Fermilab. These are organized into: our plans for the accelerator complex; our plans for facilities for performing experiments; the program of experiments we presently foresee; our plans for involvement with the LHC; and our plans for R & D towards a future facility which recaptures the energy frontier. The final sections summarize: our priorities and our planning strategy for making choices for the future, and our budget request to support the Fermilab program as we approach the fundamental challenges of elementary particle physics over the next ten years.

  3. Plots and Figures from the Main Injector Neutrino Oscillation Search (MINOS) at Fermilab

    DOE Data Explorer

    MINOS, or Main Injector Neutrino Oscillation Search, is an experiment at Fermilab designed to study the phenomena known as neutrino oscillations. It uses a beam of neutrino particles produced by the NuMI beamline facility - Neutrinos at the Main Injector. The beam of neutrinos is sent through the two MINOS detectors, one at Fermilab and one in the Soudan Mine in northern Minnesota. The Minos for Scientists page provides a link to the data plots that are available to the public and also provides explanations for some of the recent results of the experiment. Another links leads to a long listing of MINOS publications in refereed journals. Photo galleries are found by checking the links on the left menu.

  4. A model for calculating radionuclide concentrations in the Fermilab industrial cooling water system

    SciTech Connect

    Cossairt, J.Donald; /Fermilab

    2007-10-01

    Large particle accelerators such as those at the Fermi National Accelerator Laboratory (Fermilab) unavoidably produce radionuclides in their bulk shielding and also require large volume process cooling water systems to handle electrical heat loads. The Neutrinos at the Main Injector (NuMI) beam facility came on line during CY 2005. After several months of initial operation of this facility, measurable concentrations of {sup 3}H as tritiated water were identified throughout the Industrial Cooling Water (ICW) system. This was the first identification of measurable concentrations of any radionuclide leaving the Fermilab site, motivating an extensive effort to understand these discharges in order to minimize environmental releases. As part of this work, a simple model of radionuclide concentrations in this system has been developed.

  5. Space Charge Simulations in the Fermilab Recycler for PIP-II

    SciTech Connect

    Ainsworth, Robert; Adamson, Philip; Kourbanis, Ioanis; Stern, Eric

    2016-06-01

    Proton Improvement Plan-II (PIP-II) is Fermilab's plan for providing powerful, high-intensity proton beams to the laboratory's experiments. Upgrades are foreseen for the recycler which will cope with bunches containing fifty percent more beam. Of particular concern is large space charge tune shifts caused by the intensity increase. Simulations performed using Synergia are detailed focusing on the space charge footprint.

  6. GammeV: Fermilab axion-like particle photon regeneration results

    SciTech Connect

    Wester, William; /Fermilab

    2008-09-01

    GammeV is an axion-like particle photon regeneration experiment conducted at Fermilab that employs the light shining through a wall technique. They obtain limits on the coupling of a photon to an axion-like particle that extend previous limits for both scalar and pseudoscalar axion-like particles in the milli-eV mass range. They are able to exclude the axion-like particle interpretation of the anomalous PVLAS 2006 result by more than 5 standard deviations.

  7. The calorimeter system of the new muon g-2 experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Cantatore, G.; Dabagov, S.; Sciascio, G. Di; Di Stefano, R.; Fatemi, R.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Kammel, P.; Karuza, M.; Kaspar, J.; Kiburg, B.; Li, L.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Peterson, D. A.; Počanić, D.; Santi, L.; Smith, M. W.; Sweigart, D. A.; Tishchenko, V.; Van Wechel, T. D.; Venanzoni, G.; Wall, K. B.; Winter, P.; Yai, K.

    2016-07-01

    The electromagnetic calorimeter for the new muon (g-2) experiment at Fermilab will consist of arrays of PbF2 Čerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. We report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0-4.5 GeV electrons with a 28-element prototype array.

  8. Microwave Transmission Through the Electron Cloud at the Fermilab Main Injector: Simulation and Comparison with Experiment

    SciTech Connect

    Lebrun, Paul L.G.; Veitzer, Seth Andrew; /Tech-X, Boulder

    2009-04-01

    Simulations of the microwave transmission properties through the electron cloud at the Fermilab Main Injector have been implemented using the plasma simulation code 'VORPAL'. Phase shifts and attenuation curves have been calculated for the lowest frequency TE mode, slightly above the cutoff frequency, in field free regions, in the dipoles and quadrupoles. Preliminary comparisons with experimental results for the dipole case are showed and will guide the next generation of experiments.

  9. Operation of the intensity monitors in beam transport lines at Fermilab during Run II¹

    DOE PAGES

    Crisp, J.; Fellenz, B.; Fitzgerald, J.; ...

    2011-10-06

    The intensity of charged particle beams at Fermilab must be kept within pre-determined safety and operational envelopes in part by assuring all beam within a few percent has been transported from any source to destination. Beam instensity monitors with toroidial pickups provide such beam intensity measurements in the transport lines between accelerators at FNAL. With Run II, much effort was made to continually improve the resolution and accuracy of the system.

  10. Transition Radiation Detector in the D0 colliding beam experiment at Fermilab

    SciTech Connect

    Piekarz, H.

    1995-04-01

    The construction, operation and response of the Transition Radiation Detector (TRD) at DO colliding beam experiment at Fermilab are presented. The use of the TRD signal to enhance electron identification and hadronic rejection in the multiparticle background characteristic for the antiproton-proton interactions at the center-of-mass energy of 1.8 TeV is also described and results are discussed.

  11. Search for Centauro events in the DO Detector at Fermilab collider

    SciTech Connect

    Rao, M.V.S.; DO Collaboration

    1994-09-01

    We report preliminary results of a Monte Carlo study to search for Centauro events in the DO Detector at Fermilab. Montecarlo simulation of minimum bias events are being carried out using the ISAJET and DOGEANT packages to study the detector response for low energy particles and to understand the background. Preliminary indications are that the detector is capable of resolving individual particles. Further work on developing reconstruction algorithms for individual particles is in progress.

  12. D(S) spectrum and leptonic decays with Fermilab heavy quarks and improved staggered light quarks

    SciTech Connect

    Massimo Di Pierro et al.

    2004-03-12

    We present preliminary results for the D{sub s} meson spectrum and decay constants in unquenched lattice QCD. Simulations are carried out with 2 + 1 dynamical quarks using gauge configurations generated by the MILC collaboration. We use the ''asqtad'' a{sup 2} improved staggered action for the light quarks, and the clover heavy quark action with the Fermilab interpretation. We compare our spectrum results with the newly discovered 0{sup +} and 1{sup +} states in the D{sub s} system.

  13. Diffractive Higgs boson production at the Fermilab Tevatron and the CERN Large Hadron Collider.

    PubMed

    Enberg, R; Ingelman, G; Kissavos, A; Tîmneanu, N

    2002-08-19

    Improved possibilities to find the Higgs boson in diffractive events, having less hadronic activity, depend on whether the cross section is large enough. Based on the soft color interaction models that successfully describe diffractive hard scattering at DESY HERA and the Fermilab Tevatron, we find that only a few diffractive Higgs events may be produced at the Tevatron, but we predict a substantial rate at the CERN Large Hadron Collider.

  14. DZero (D0) Experiment Results for B Physics from the Fermilab Tevatron

    DOE Data Explorer

    ,

    The DZero b-Physics Working Group studies all issues related to the b-quark at the Fermilab Tevatron Collider. Topics we are working on include CP violation, measurements of B hadron properties (masses, lifetimes, decay branching ratios, production mechanisms), and searches for rare decays. The D0 (DZero) Experiment consists of a worldwide collaboration of scientists conducting research on the fundamental nature of matter.

  15. Envelope and multi-slit emittance measurements at Fermilab A0 photoinjector and comparison with simulations

    SciTech Connect

    Bhat, C.M.; Carneiro, J.-P.; Fliller, R.P.; Kazakevich, G.; Ruan, J.; Santucci, J.; /Fermilab

    2007-06-01

    Recently we have measured the envelope and the transverse emittance of an 0.85 nC electron beam at the Fermilab A0-Photoinjector facility. The transverse emittance measurement was performed using the multi-slit method. The data have been taken with an unstacked 2.8 ps laser pulse. In this paper we report on these beam measurements and compare the results with the predictions from beam dynamics codes ASTRA and GPT using 3D space charge routines.

  16. New directions for QA in basic research: The Fermilab/DOE-CH experience

    SciTech Connect

    Bodnarczuk, M.

    1989-09-01

    This paper addresses the underlying problems involved in developing institution-wide QA programs at DOE funded basic research facilities, and suggests concrete ways in which QA professionals and basic researchers can find common ground in describing and analyzing those activities to the satisfaction of both communities. The paper is designed to be a springboard into workshop discussions which can define a path for developing institution-wide QA programs based on the experience gained with DOE-CH and Fermilab.

  17. FERMILAB ACCELERATOR R&D PROGRAM TOWARDS INTENSITY FRONTIER ACCELERATORS : STATUS AND PROGRESS

    SciTech Connect

    Shiltsev, Vladimir

    2016-11-15

    The 2014 P5 report indicated the accelerator-based neutrino and rare decay physics research as a centrepiece of the US domestic HEP program at Fermilab. Operation, upgrade and development of the accelerators for the near- term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss key elements of the accelerator physics and technology R&D program toward future multi-MW proton accelerators and present its status and progress. INTENSITY FRONTIER ACCELERATORS

  18. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    SciTech Connect

    Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.

    2014-06-15

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.

  19. Recent Progress in High Intensity Operation of the Fermilab Accelerator Complex

    SciTech Connect

    Convery, Mary E

    2016-10-05

    We report on the status of the Fermilab accelerator com-plex. Beam delivery to the neutrino experiments surpassed our goals for the past year. The Proton Improvement Plan is well underway with successful 15 Hz beam operation. Beam power of 700 kW to the NOvA experiment was demonstrated and will be routine in the next year. We are also preparing the Muon Campus to commission beam to the g-2 experiment.

  20. Investigation of Thermal Acoustic Effects on SRF Cavities within CM1 at Fermilab

    SciTech Connect

    McGee, Mike; Harms, Elvin; Klebaner, Arkadiy; Leibfritz, Jerry; Martinez, Alex; Pischalnikov, Yuriy; Schappert, Warren

    2016-06-01

    Two TESLA-style 8-cavity cryomodules have been operated at Fermilab Accelerator Science and Technology (FAST), formerly the Superconducting Radio Frequency (SRF) Accelerator Test Facility. Operational instabilities were revealed during Radio Frequency (RF) power studies. These observations were complemented by the characterization of thermal acoustic effects on cavity microphonics manifested by apparent noisy boiling of helium involving vapor bubble and liquid vibration. The thermal acoustic measurements also consider pressure and temperature spikes which drive the phenomenon at low and high frequencies.

  1. The calorimeter system of the new muon g-2 experiment at Fermilab

    DOE PAGES

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; ...

    2015-12-02

    The electromagnetic calorimeter for the new muon (g–2) experiment at Fermilab will consist of arrays of PbF2 Cerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. Here, we report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0–4.5 GeV electrons with a 28-element prototype array.

  2. The calorimeter system of the new muon g-2 experiment at Fermilab

    SciTech Connect

    Alonzi, L. P.; Anastasi, A.; Bjorkquist, R.; Cauz, D.; Cantatore, G.; Dabagov, S.; Sciascio, G. Di; Di Stefano, R.; Fatemi, R.; Ferrari, C.; Fienberg, A. T.; Fioretti, A.; Frankenthal, A.; Gabbanini, C.; Gibbons, L. K.; Giovanetti, K.; Goadhouse, S. D.; Gohn, W. P.; Gorringe, T. P.; Hampai, D.; Hertzog, D. W.; Iacovacci, M.; Kammel, P.; Karuza, M.; Kaspar, J.; Kiburg, B.; Li, L.; Marignetti, F.; Mastroianni, S.; Moricciani, D.; Pauletta, G.; Peterson, D. A.; Pocanic, D.; Santi, L.; Smith, M. W.; Sweigart, D. A.; Tishchenko, V.; Van Wechel, T. D.; Venanzoni, G.; Wall, K. B.; Winter, P.; Yai, K.

    2015-12-02

    The electromagnetic calorimeter for the new muon (g–2) experiment at Fermilab will consist of arrays of PbF2 Cerenkov crystals read out by large-area silicon photo-multiplier (SiPM) sensors. Here, we report here the requirements for this system, the achieved solution and the results obtained from a test beam using 2.0–4.5 GeV electrons with a 28-element prototype array.

  3. Single event effects and their mitigation for the Collider Detector at Fermilab

    SciTech Connect

    Tesarek, Richard J.; D'Auria, Saverio; Dong, Peter; Hocker, Andy; Kordas, Kostas; McGimpsey, Susan; Nicolas, Ludovic; Wallny, Rainer; Schmitt, Wayne; Worm, Steven; /Fermilab /Toronto U. /Glasgow U. /Rutherford /UCLA

    2005-11-01

    We present an overview of radiation induced failures and operational experiences from the Collider Detector at Fermilab (CDF). In our summary, we examine single event effects (SEE) in electronics located in and around the detector. We present results of experiments to identify the sources and composition of the radiation and steps to reduce the rate of SEEs in our electronics. Our studies have led to a better, more complete understanding of the radiation environment in a modern hadron collider experiment.

  4. Studies of local horizontal-vertical betatron coupling in the Fermilab Main Ring

    SciTech Connect

    Bourianoff, G.; Sun, N.; Tsironis, G.P.; Kourbanis, I.

    1993-09-01

    We give preliminary evidence that local horizontal-vertical betatron coupling can be detected using digital signal processing techniques. We use the Fermilab Main ring to perform a number of local detection experiments using UDAS. For the data analysis we use straightforward FFT`s as well as more sophisticated parametric estimation techniques. We show that the latter enables the detection of local coupling with some accuracy.

  5. Results from a MHz gravitational wave search using the Fermilab Holometer

    NASA Astrophysics Data System (ADS)

    Kamai, Brittany; Holometer Collaboration Collaboration

    2017-01-01

    The Fermilab Holometer, two nested 40 meter Michelson interferometers, has extended the accessible gravitational wave frequency range from kHz to a broad range of MHz frequencies. I will present results from a 130-hr campaign that measured the energy density of gravitational waves in the MHz band. Additionally, this dataset was used to place constraints on the abundance of primordial black hole binaries.

  6. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect

    Krstulovich, S.F.

    1986-11-12

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  7. Low-cost hadron colliders at Fermilab: A discussion paper

    SciTech Connect

    Foster, G.W.; Malamud, E.

    1996-06-21

    New more economic approaches are required to continue the dramatic exponential rise in collider energies as represented by the well known Livingston plot. The old idea of low cost, low field iron dominated magnets in a small diameter pipe may become feasible in the next decade with dramatic recent advances in technology: (1) advanced tunneling technologies for small diameter, non human accessible tunnels, (2) accurate remote guidance systems for tunnel survey and boring machine steering, (3) high T{sub c} superconductors operating at liquid N{sub 2} or liquid H{sub 2} temperatures, (4) industrial applications of remote manipulation and robotics, (5) digitally multiplexed electronics to minimize cables, (6) achievement of high luminosities in p-p and p-{anti P} colliders. The goal of this paper is to stimulate continuing discussions on approaches to this new collider and to identify critical areas needing calculations, construction of models, proof of principle experiments, and full scale prototypes in order to determine feasibility and arrive at cost estimates.

  8. Modeling Longitudinal Dynamics in the Fermilab Booster Synchrotron

    SciTech Connect

    Ostiguy, Jean-Francois; Bhat, Chandra; Lebedev, Valeri

    2016-06-01

    The PIP-II project will replace the existing 400 MeV linac with a new, CW-capable, 800 MeV superconducting one. With respect to current operations, a 50% increase in beam intensity in the rapid cycling Booster synchrotron is expected. Booster batches are combined in the Recycler ring; this process limits the allowed longitudinal emittance of the extracted Booster beam. To suppress eddy currents, the Booster has no beam pipe; magnets are evacuated, exposing the beam to core laminations and this has a substantial impact on the longitudinal impedance. Noticeable longitudinal emittance growth is already observed at transition crossing. Operation at higher intensity will likely necessitate mitigation measures. We describe systematic efforts to construct a predictive model for current operating conditions. A longitudinal only code including a laminated wall impedance model, space charge effects, and feedback loops is developed. Parameter validation is performed using detailed measurements of relevant beam, rf and control parameters. An attempt is made to benchmark the code at operationally favorable machine settings.

  9. Hippocampal Networks Habituate as Novelty Accumulates

    ERIC Educational Resources Information Center

    Murty, Vishnu P.; Ballard, Ian C.; Macduffie, Katherine E.; Krebs, Ruth M.; Adcock, R. Alison

    2013-01-01

    Novelty detection, a critical computation within the medial temporal lobe (MTL) memory system, necessarily depends on prior experience. The current study used functional magnetic resonance imaging (fMRI) in humans to investigate dynamic changes in MTL activation and functional connectivity as experience with novelty accumulates. fMRI data were…

  10. Status and specifications of a Project X front-end accelerator test facility at Fermilab

    SciTech Connect

    Steimel, J.; Webber, R.; Madrak, R.; Wildman, D.; Pasquinelli, R.; Evans-Peoples, E.; /Fermilab

    2011-03-01

    This paper describes the construction and operational status of an accelerator test facility for Project X. The purpose of this facility is for Project X component development activities that benefit from beam tests and any development activities that require 325 MHz or 650 MHz RF power. It presently includes an H- beam line, a 325 MHz superconducting cavity test facility, a 325 MHz (pulsed) RF power source, and a 650 MHz (CW) RF power source. The paper also discusses some specific Project X components that will be tested in the facility. Fermilab's future involves new facilities to advance the intensity frontier. In the early 2000's, the vision was a pulsed, superconducting, 8 GeV linac capable of injecting directly into the Fermilab Main Injector. Prototyping the front-end of such a machine started in 2005 under a program named the High Intensity Neutrino Source (HINS). While the HINS test facility was being constructed, the concept of a new, more versatile accelerator for the intensity frontier, now called Project X, was forming. This accelerator comprises a 3 GeV CW superconducting linac with an associated experimental program, followed by a pulsed 8 GeV superconducting linac to feed the Main Injector synchrotron. The CW Project X design is now the model for Fermilab's future intensity frontier program. Although CW operation is incompatible with the original HINS front-end design, the installation remains useful for development and testing many Project X components.

  11. Expression of Interest: A Muon to Electron Conversion Experiment at Fermilab

    SciTech Connect

    Prebys, E.J.; Bogert, D.; Broemmelsiek, D.R.; Ankenbrandt, C.M.; Brice, S.J.; DeJongh, D.F.; Geer, S.; Johnson, D.E.; Martens, M.A.; Neuffer, D.V.; Popovic, M.; /Fermilab /Boston U. /Brookhaven /UC, Berkeley /Idaho State U. /Illinois U., Urbana /Moscow, INR /Massachusetts U., Amherst /MUONS Inc., Batavia /Syracuse U. /Virginia U.

    2007-08-01

    We are writing this letter to express our interest in pursuing an experiment at Fermilab to search for neutrinoless conversion of muons into electrons in the field of a nucleus, which is a lepton flavor-violating (LFV) reaction. The sensitivity goal of this experiment, improving on existing limits for this process by more than a factor of 10000, is very similar to that of previous experiments that have been proposed but never built. It would provide the most sensitive test of LFV, a unique and essential window on new physics unavailable at the high energy frontier. We present a conceptual scheme that would exploit the existing Accumulator and Debuncher rings to generate the required characteristics of the primary proton beam. The proposal requires only modest modifications to the accelerator complex after including those already planned for the NOvA experiment, with which this experiment would be fully compatible. The search for lepton flavor violation (LFV) has long played an important role in the evolution of our understanding of electroweak interactions. The neutrinoless conversion of a muon to an electron in the field of a nucleus is a particularly interesting example of an LFV process involving charged leptons. In the Standard Model, such conversions would take place via loop diagrams involving virtual neutrino mixing, at a rate far below the threshold of any currently conceivable experiment. Indeed, any detectable signal would be a definite indication, albeit indirect, of new dynamics at multi-TeV energy scales. Enhanced rate for this process is an almost universal feature of beyond the Standard Model physics, and the fact that such a process has not been observed has constrained or eliminated many models [1]. While it is widely believed that new physics will appear at LHC energies, the LHC is not well-equipped to study LFV directly. An often-quoted example is in the case of supersymmetry. The LHC will probe slepton masses, but it cannot compete with muon

  12. Field quality measurements of a 2-Tesla transmission line magnet

    SciTech Connect

    Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; Wake, M.; /KEK, Tsukuba

    2005-09-01

    A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

  13. Cold iron cos THETA magnet option for the SSC

    SciTech Connect

    Reardon, P.

    1985-01-01

    We review first the evolution over the past several years of a cold iron, high field cos THETA magnet design option for the SSC. We note the collaborative approach pursued by BNL and LBL on the 2-in-1 option, and the culmination of this effort in the tests of the BNL 4.5 m model magnets. Next, we discuss the subsequent 1-in-1 option being pursued jointly by BNL, Fermilab and LBL.

  14. QA (Quality Assurance) role in advanced energy activities: Towards an /open quotes/orthodox/close quotes/ Quality Program: Canonizing the traditions at Fermilab

    SciTech Connect

    Bodnarczuk, M.W.

    1988-02-01

    After a brief description of the goal of Fermi National Accelerator Laboratory (Fermilab) this paper poses and answers three questions related to Quality Assurance (QA) at the Laboratory. First, what is the difference between 'orthodox' and 'unorthodox' QA and is there a place for 'orthodox' QA at a laboratory like Fermilab. Second, are the deeper philosophical and cultural frameworks of high-energy physics acommodating or antagonistic to an 'orthodox' QA Program. Finally, faced with the task of developing an institutional QA program for Fermilab where does one begin. The paper is based on experience with the on-going development and implementation of an institutional QA Program at Fermilab. 10 refs.

  15. Development and test of Nb3Sn cos-theta magnets based on RRP and PIT strands

    SciTech Connect

    Feher, S.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bordini, B.; Bossert, R.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2005-09-01

    As part of the High Field Magnet program at Fermilab three cos({theta}) magnets--two mirror dipole magnets utilizing RRP cable and one dipole magnet utilizing PIT cable--have been designed, fabricated and tested recently. Both mirror magnets with RRP strands only reached {approx}50-60% of their estimated critical current limit. The PIT conductor based dipole however reached its critical current limit producing over 10 T magnetic field in the bore of the magnet. This paper describes the parameters of superconducting strands and cable, the details of magnet design and fabrication procedure, and reports the results.

  16. Archiving Scientific Data Outside of the Traditional HEP Domain, Using the Archive Facilities at Fermilab

    NASA Astrophysics Data System (ADS)

    Norman, A.; Diesbug, M.; Gheith, M.; Illingworth, R.; Mengel, M.

    2015-12-01

    Many experiments in the HEP and Astrophysics communities generate large extremely valuable datasets, which need to be efficiently cataloged and recorded to archival storage. These datasets, both new and legacy, are often structured in a manner that is not conducive to storage and cataloging with modern data handling systems and large file archive facilities. In this paper we discuss in detail how we have created a robust toolset and simple portal into the Fermilab archive facilities, which allows for scientific data to be quickly imported, organized and retrieved from the multi-petabyte facility. In particular we discuss how the data from the Sudbury Neutrino Observatory (SNO) for the COUPP dark matter detector was aggregated, cataloged, archived and re-organized to permit it to be retrieved and analyzed using modern distributed computing resources both at Fermilab and on the Open Science Grid. We pay particular attention to the methods that were employed to uniquify the namespaces for the data, derive metadata for the over 460,000 image series taken by the COUP experiment and what was required to map that information into coherent datasets that could be stored and retrieved using the large scale archives systems. We describe the data transfer and cataloging engines that are used for data importation and how these engines have been setup to import data from the data acquisition systems of ongoing experiments at non-Fermilab remote sites including the Laboratori Nazionali del Gran Sasso and the Ash River Laboratory in Orr, Minnesota. We also describe how large University computing sites around the world are using the system to store and retrieve large volumes of simulation and experiment data for physics analysis.

  17. Thermo-magnetic instabilities in Nb3Sn superconducting accelerator magnets

    SciTech Connect

    Bordini, Bernardo

    2006-09-01

    The advance of High Energy Physics research using circulating accelerators strongly depends on increasing the magnetic bending field which accelerator magnets provide. To achieve high fields, the most powerful present-day accelerator magnets employ NbTi superconducting technology; however, with the start up of Large Hadron Collider (LHC) in 2007, NbTi magnets will have reached the maximum field allowed by the intrinsic properties of this superconductor. A further increase of the field strength necessarily requires a change in superconductor material; the best candidate is Nb3Sn. Several laboratories in the US and Europe are currently working on developing Nb3Sn accelerator magnets, and although these magnets have great potential, it is suspected that their performance may be fundamentally limited by conductor thermo-magnetic instabilities: an idea first proposed by the Fermilab High Field Magnet group early in 2003. This thesis presents a study of thermo-magnetic instability in high field Nb3Sn accelerator magnets. In this chapter the following topics are described: the role of superconducting magnets in High Energy Physics; the main characteristics of superconductors for accelerator magnets; typical measurements of current capability in superconducting strands; the properties of Nb3Sn; a description of the manufacturing process of Nb3Sn strands; superconducting cables; a typical layout of superconducting accelerator magnets; the current state of the art of Nb3Sn accelerator magnets; the High Field Magnet program at Fermilab; and the scope of the thesis.

  18. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    SciTech Connect

    Halavanau, A.; Piot, P.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  19. Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

    SciTech Connect

    Lebrun, Paul L.G.; Spentzouris, Panagiotis; Cary, John R.; Stoltz, Peter; Veitzer, Seth A.; /Tech-X, Boulder

    2010-05-01

    Precision simulations of the electron cloud at the Fermilab Main Injector have been studied using the plasma simulation code VORPAL. Fully 3D and self consistent solutions that includes E.M. field maps generated by the cloud and the proton bunches have been obtained, as well detailed distributions of the electron's 6D phase space. We plan to include such maps in the ongoing simulation of the space charge effects in the Main Injector. Simulations of the response of beam position monitors, retarding field analyzers and microwave transmission experiments are ongoing.

  20. Multi-batch slip stacking in the Main Injector at Fermilab

    SciTech Connect

    Seiya, K.; Berenc, T.; Chase, B.; Dey, J.; Joireman, P.; Kourbanis, I.; Reid, J.; /Fermilab

    2007-06-01

    The Main Injector (MI) at Fermilab is planning to use multi-batch slip stacking scheme in order to increase the proton intensity at the NuMI target by about a factor of 1.5.[1] [2] By using multi-batch slip stacking, a total of 11 Booster batches are merged into 6, 5 double ones and one single. We have successfully demonstrated the multibatch slip stacking in MI and accelerated a record intensity of 4.6E13 particle per cycle to 120 GeV. The technical issues and beam loss mechanisms for multibatch slip stacking scheme are discussed.