Science.gov

Sample records for fermilab medium energy

  1. P-986 Letter of Intent: Medium-Energy Antiproton Physics at Fermilab

    SciTech Connect

    Asner, David M.; Phillips, Thomas J.; Apollinari, Giorgio; Broemmelsiek, Daniel R.; Brown, Charles N.; Christian, David C.; Derwent, Paul; Gollwitzer, Keith; Hahn, Alan; Papadimitriou, Vaia; Stefanski, Ray; /Fermilab /INFN, Ferrara /Hbar Technol., West Chicago /IIT, Chicago /CHEP, Taegu /Luther Coll. /Michigan U. /Northwestern U. /Notre Dame U. /St. Xavier U., Chicago

    2009-02-05

    Fermilab has long had the world's most intense antiproton source. Despite this, the opportunities for medium-energy antiproton physics at Fermilab have been limited in the past and - with the antiproton source now exclusively dedicated to serving the needs of the Tevatron Collider - are currently nonexistent. The anticipated shutdown of the Tevatron in 2010 presents the opportunity for a world-leading medium-energy antiproton program. We summarize the current status of the Fermilab antiproton facility and review some physics topics for which the experiment we propose could make the world's best measurements. Among these, the ones with the clearest potential for high impact and visibility are in the area of charm mixing and CP violation. Continued running of the Antiproton Source following the shutdown of the Tevatron is thus one of the simplest ways that Fermilab can restore a degree of breadth to its future research program. The impact on the rest of the program will be minor. We request a small amount of effort over the coming months in order to assess these issues in more detail.

  2. Thermal and structural stability of medium energy target carrier assembly for NOvA at Fermilab

    SciTech Connect

    McGee, M.W.; Ader, C.; Anderson, K.; Hylen, J.; Martens, M.; /Fermilab

    2010-05-01

    The NOvA project will upgrade the existing Neutrino at Main Injector (NuMI) project beamline at Fermilab to accommodate beam power of 700 kW. The Medium Energy (ME) graphite target assembly is provided through an accord with the State Research Center of Russia Institute for High Energy Physics (IHEP) at Protvino, Russia. The effects of proton beam energy deposition within beamline components are considered as thermal stability of the target carrier assembly and alignment budget are critical operational issues. Results of finite element thermal and structural analysis involving the target carrier assembly is provided with detail regarding the target's beryllium windows.

  3. The use of the Fermilab antiproton Accumulator in medium energy physics experiments

    SciTech Connect

    Bharadwaj, V.; Church, M.; Harms, E.; Hsueh, S.Y.; Kells, W.; MacLachlan, J.; Marsh, W.; McCarthy, J.; Pastrone, N.; Peoples, J.

    1988-06-07

    The Fermilab antiprotron Accumulator has been modified for use in a medium energy experiment. The experiment is conducted with circulating antiproton beam of momentum between 6.7 GeV/c and 3.7 GeV/c colliding with protons from an internal gas jet. Antiprotons are accumulated at the normal momentum of 8.9 GeV/c and then decelerated to the appropriate energy. It is necessary to cool the beam continually during the time it is colliding with the gas jet. The experiment requires new provisions for the control of magnet power supplies and low level rf system and modifications of the cooling system and high level energy systems to permit variable energy operation. Transition must be crossed to decelerate the beam below 5 GeV/c; because the deceleration is very slow, transition can not be crossed in a conventional manner. This paper will describe the required changes to the Accumulator and operating experience with protons. 8 refs., 2 figs., 1 tab.

  4. Medium-Energy Antiproton Physics with the Antiproton Annihilation Spectrometer (TApAS*) at Fermilab

    SciTech Connect

    Bartoszek, Larry; Piacentino, Giovanni M.; Phillips, Thomas J.; Apollinari, Giorgio; Broemmelsiek, Daniel R.; Brown, Charles N.; Christian, David C.; Derwent, Paul; Gollwitzer, Keith; Hahn, Alan; Papadimitriou, Vaia; /Fermilab /INFN, Pisa /Hbar Technologies, West Chicago /Houston U. /IIT, Chicago /IIT, Hyderabad /ITEP /KyungPook National U. /LPI

    2008-01-01

    We propose to assemble a cost-effective, yet powerful, solenoidal magnetic spectrometer for antiproton-annihilation events and use it at the Fermilab Antiproton Accumulator to measure the charm production cross section, study rare hyperon decays, search for hyperon CP asymmetry, and precisely measure the properties of several charmonium and nearby states. Should the charm production cross section be as large as some have proposed, we will also be able to measure D{sup 0}-{bar D}{sup 0} mixing with high precision and discover (or sensitively limit) charm CP violation. The experiment will be carried out by an international collaboration, with installation occurring during the accelerator downtime following the completion of the Tevatron run, and with funding largely from university research grants. The experiment will require some four years of running time. As possibly the sole hadron experiment in progress at Fermilab during that time, it will play an important role in maintaining a broad particle-physics program at Fermilab and in the U.S.

  5. Fermilab R{ampersand}D program in medium energyelectron cooling

    SciTech Connect

    MacLachlan, J.A.

    1996-07-01

    Fermilab began an R & D program in medium energy electron cooling in April 1995 with the object of cooling 8 GeV antiprotons in a new 3.3 km permanent magnet storage ring (Recycler) to be built in the same tunnel as the Main Injector (MI). The MI is to be completed in 1998, and it is planned to install the Recycler by the end of 1997 to reduce interference during the final rush of MI installation. Although the Recycler will employ stochastic cooling initially, its potential for contributing an order of magnitude to Tevatron collider luminosity is tied to electron cooling. The short time scale and Fermilab`s limited familiarity with low energy electron beams has given rise to a two-phase development plan. The first phase is to build a cooling system based on an electron beam of {ge} 200 mA before year 2000. The second phase of about 3 years is planned to reach electron current of 2 A or more. This report describes the general scheme for high luminosity collider operation as well as the R & D plan and progress to date. 17 refs., 5 figs., 1 tab.

  6. Beauty physics at Fermilab fixed target energies

    SciTech Connect

    Cox, B.

    1988-04-01

    The very high luminosities (>>10/sup 32/cm/sup /minus/2/sec/sup /minus/1/) available in the Fermilab fixed target experimental areas offer immediate opportunities for producing large samples (>10/sup 8/ of B hadrons in individual experiments. The possibilities of accumulating large samples of B decays are limited by experimental techniques and trigger strategies and not by available luminosity. At the present time one experiment, E771, is approved to begin B physics experimentation and several other experimental possibilities are being discussed. Some of the problems and the potential of B experiments at fixed target energies as B factories are discussed.

  7. Magnetic field data on Fermilab Energy-Saver quadrupoles

    SciTech Connect

    Schmidt, E.E.; Brown, B.C.; Cooper, W.E.; Fisk, H.E.; Gross, D.A.; Hanft, R.; Ohnuma, S.; Turkot, F.T.

    1983-03-01

    The Fermilab Energy Saver/Doubler (Tevatron) accelerator contains 216 superconducting quadrupole magnets. Before installation in the Tevatron ring, these magnets plus an additional number of spares were extensively tested at the Fermilab Magnet Test Facility (MTF). Details on the results of the tests are presented here.

  8. Physics overview of the Fermilab Low Energy Antiproton Facility Workshop

    SciTech Connect

    Chanowitz, M.S.

    1986-05-01

    A physics overview is presented of the Fermilab workshop to consider a possible high flux, low energy antiproton facility that would use cooled antiprotons from the accumulator ring of the Tevatron collider. Two examples illustrate the power of each a facility to produce narrow states at high rates. Physics topics to which such a facility may be applied are reviewed.

  9. Increasing the energy of the Fermilab Tevatron accelerator

    SciTech Connect

    Fuerst, J.D.; Theilacker, J.C.

    1994-07-01

    The superconducting Tevatron accelerator at Fermilab has reached its eleventh year of operation since being commissioned in 1983. Last summer, four significant upgrades to the cryogenic system became operational which allow Tevatron operation at higher energy. This came after many years of R&D, power testing in sectors (one sixth) of the Tevatron, and final system installation. The improvements include the addition of cold helium vapor compressors, supporting hardware for subatmospheric operation, a new satellite refrigerator control system, and a higher capacity central helium liquefier. A description of each cryogenic upgrade, commissioning experience, and attempts to increase the energy of the Tevatron are presented.

  10. Magnetic field properties of Fermilab Energy-Saver dipoles

    SciTech Connect

    Hanft, R.; Brown, B.C.; Cooper, W.E.; Gross, D.A.; Michelotti, L.; Schmidt, E.E.; Turkot, F.

    1983-03-01

    At Fermilab we have operated a production line for the fabrication of 901 21 foot long superconducting dipoles for use in the Energy Saver/Doubler. At any one time 772 of these dipoles are installed in the accelerator and 62 in beamlines; the remainder are spares. Magnetic field data are now available for most of these dipoles; in this paper we present some of these data which show that we have been able to maintain the necessary consistency in field quality throughout the production process. Specifically we report harmonic field coefficients, showing that the mechanical design permits substantial reduction of the magnitudes of the normal and skew quadrupole harmonic coefficients; field shape profiles; integral field data; and field angle data.

  11. Stability of electron energy in the Fermilab electron cooler

    SciTech Connect

    Shemyakin, A.; Carlson, K.; Prost, L.R.; Saewert, G.; /Fermilab

    2009-02-01

    A powerful electron beam (4.3 MeV, 0.1 A DC) generated by an electrostatic accelerator has been used at Fermilab for three years to cool antiprotons in the Recycler ring. For electron cooling to be effective, the electron energy should not deviate from its optimum value by more than 500V. The main tool for studying the energy stability is the electron beam position in a high-dispersion area. The energy ripple (frequencies above 0.2 Hz) was found to be less than 150 eV rms; the main cause of the ripple is the fluctuations of the chain current. In addition, the energy can drift to up to several keV that is traced to two main sources. One of them is a drift of the charging current, and another is a temperature dependence of generating voltmeter readings. The paper describes the efforts to reach the required level of stability as well as the setup, diagnostics, results of measurements, and operational experience.

  12. The Fermilab Main Injector

    SciTech Connect

    Mishra, C.S.

    1992-11-01

    The Fermilab Main Injector is a new 150 GeV proton synchrotron, designed to replace the Main Ring and improve the high energy physics potential of Fermilab. The status of the Fermilab accelerator complex upgrade will be discussed.

  13. UNIX trademark in high energy physics: What we can learn from the initial experiences at Fermilab

    SciTech Connect

    Butler, J.N.

    1991-03-01

    The reasons why Fermilab decided to support the UNIX operating system are reviewed and placed in the content of an overall model for high energy physics data analysis. The strengths and deficiencies of the UNIX environment for high energy physics are discussed. Fermilab's early experience in dealing with a an open'' multivendor environment, both for computers and for peripherals, is described. The human resources required to fully exploit the opportunities are clearly growing. The possibility of keeping the development and support efforts within reasonable bounds may depend on our ability to collaborate or at least to share information even more effectively than we have in the past. 7 refs., 4 figs., 5 tabs.

  14. Determination of the jet energy scale at the collider detector at Fermilab

    SciTech Connect

    Bhatti, A.; Canelli, Florencia; Heinemann, B.; Adelman, J.; Ambrose, D.; Arguin, J.-F.; Barbaro-Galtieri, A.; Budd, H.; Chung, Y.S.; Chung, K.; Cooper, B.; Currat, C.; D'Onofrio, M.; Dorigo, T.; Erbacher, R.; Field, R.; Flanagan, G.; Gibson, A.; Hatakeyama, K.; Happacher, F.; Hoffman, D.; /Argonne /UCLA /Carnegie Mellon U. /Chicago U., EFI /Fermilab /Florida U. /Frascati /Geneva U. /LBL, Berkeley /Liverpool U. /University Coll. London /Michigan State U. /Toronto U. /Padua U. /INFN, Padua /Pavia U. /INFN, Pavia /Pennsylvania U. /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore

    2005-10-01

    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron p{bar p} collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50 GeV the jet energy scale is determined with a 3% systematic uncertainty.

  15. [Medium energy meson research

    SciTech Connect

    Crowe, K.M.

    1992-12-01

    The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p{bar p} annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report.

  16. [Medium energy meson research

    SciTech Connect

    Crowe, K.M.

    1992-01-01

    The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p[bar p] annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report.

  17. Fermilab Central Computing Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect

    Krstulovich, S.F.

    1986-11-12

    This report is developed as part of the Fermilab Central Computing Facility Project Title II Design Documentation Update under the provisions of DOE Document 6430.1, Chapter XIII-21, Section 14, paragraph a. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis and should be considered as a supplement to the Title I Design Report date March 1986 wherein energy related issues are discussed pertaining to building envelope and orientation as well as electrical systems design.

  18. Low-energy run of Fermilab Electron Cooler's beam generation system

    SciTech Connect

    Prost, Lionel; Shemyakin, Alexander; Fedotov, Alexei; Kewisch, Jorg; /Brookhaven

    2010-08-01

    As a part of a feasibility study of using the Fermilab Electron Cooler for a low-energy Relativistic Heavy Ion Collider (RHIC) run at Brookhaven National Laboratory (BNL), the cooler operation at 1.6 MeV electron beam energy was tested in a short beam line configuration. The main result of the study is that the cooler beam generation system is suitable for BNL needs. In a striking difference with running 4.3 MeV beam, no unprovoked beam recirculation interruptions were observed.

  19. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    SciTech Connect

    Lopez, David Juarez

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  20. Fermilab E791

    SciTech Connect

    Amato, S.; Anjos, J.C.; Bediaga, I.; Costa, I.; de Mello Neto, J.R.T.; de Miranda, J.M.; Santoro, A.F.S.; Souza, M.H.G.; Blaylock, G.; Burchat, P.R.; Gagnon, P.; Sugano, K.; d`Oliveria, A.B.; Santha, A.; Sokologg, M.D.; Appel, J.A.; Banerjee, S.; Carter, T.; Denisenko, K.; Halling, M.; James, C.; Lundberg, B.; Thorne, K.; Burnstein, R.; Kasper, P.A.; Peng, K.C.; Rubin, H.; Cremaldi, L.M.; Aitala, E.M.; Gounder, K.; Rafatian, A.; Ramalho, A.J.; Reidy, J.J.; Summers, D.J.; Yi, D.; Granite, D.; Nguyen, A.; Reay, N.W.; Reibel, K.; Sidwell, R.A.; Stanton, N.; Tripathi, A.; Witchey, N.; Purohit, M.V.; Schwartz, A.; Wiener, J.; Almeida, F.M.L.; daSilva Carvalho, H.; Ashery, D.; Beck, S.; Gerzon, S.; Lichtenstadt, J.; Trumer, D.; Bracker, S.B.; Astroga, J.; Milburn, R.; Napier, A.; Radeztsky, S.; Sheaff, M.; Darling, C.; Slaughter, J.; Takach, S.; Wolin, E.

    1992-10-01

    Fermilab E791, a very high statistics charm particle experiment, recently completed its data taking at Fermilab`s Tagged Photon Laboratory. Over 20 billionevents were recorded through a loose transverse energy trigger and written to 8mm tape in the 1991--92 fixed target run at Fermilab. This unprecedented data sample containing charm is being analysis on many-thousand MIP RISC computing farms set up at sites in the collaboration. A glimpse of the data taking and analysis effort is presented. We also show some preliminary results for common charm decay modes. Our present analysis indicates a very rich yield of over 200K reconstructed charm decays.

  1. Studies in medium energy physics

    SciTech Connect

    Green, A.; Hoffmann, G.W.; McDonough, J.; Purcell, M.J.; Ray, R.L.; Read, D.E.; Worn, S.D.

    1991-12-01

    This document constitutes the (1991--1992) technical progress report and continuation proposal for the ongoing medium energy nuclear physics research program supported by the US Department of Energy through special Research Grant DE-FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF) and the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics; (2) provide unique, first-of-a-kind exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics.

  2. Measurement of Quark Energy Loss in Cold Nuclear Matter at Fermilab E906/SeaQuest

    SciTech Connect

    Lin, Po-Ju

    2017-01-01

    Parton energy loss is a process within QCD that draws considerable interest. The measurement of parton energy loss can provide valuable information for other hard-scattering processes in nuclei, and also serves as an important tool for exploring the properties of the quark-gluon plasma (QGP). Quantifying the energy loss in cold nuclear matter will help to set a baseline relative to energy loss in the QGP. With the Drell-Yan process, the energy loss of incoming quarks in cold nuclear matter can be ideally investigated since the final state interaction is expected to be minimal. E906/SeaQuest is a fixed-target experiment using the 120 GeV proton beam from the Fermilab Main Injector and has been collecting data from p+p, p+d, p+C, p+Fe, and p+W collisions. Within the E906 kinematic coverage of Drell-Yan production via the dimuon channel, the quark energy loss can be measured in a regime where other nuclear effects are expected to be small. In this thesis, the study of quark ener gy loss from different cold nuclear targets is presented.

  3. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    SciTech Connect

    Gohar, Yousry; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  4. QA (Quality Assurance) role in advanced energy activities: Towards an /open quotes/orthodox/close quotes/ Quality Program: Canonizing the traditions at Fermilab

    SciTech Connect

    Bodnarczuk, M.W.

    1988-02-01

    After a brief description of the goal of Fermi National Accelerator Laboratory (Fermilab) this paper poses and answers three questions related to Quality Assurance (QA) at the Laboratory. First, what is the difference between 'orthodox' and 'unorthodox' QA and is there a place for 'orthodox' QA at a laboratory like Fermilab. Second, are the deeper philosophical and cultural frameworks of high-energy physics acommodating or antagonistic to an 'orthodox' QA Program. Finally, faced with the task of developing an institutional QA program for Fermilab where does one begin. The paper is based on experience with the on-going development and implementation of an institutional QA Program at Fermilab. 10 refs.

  5. State of particle accelerators and high energy physics (Fermilab Summer School, 1981). Part 2

    SciTech Connect

    Carrigan, R.A. Jr.; Huson, F.R.; Month, M.

    1982-01-01

    The material gathered in this volume covers the seminars given at the Summer School on High Energy Particle Accelerators, sponsored by the United States Department of Energy (DOE) and the National Science Foundation, held at Fermilab in Batavia, Illinois, July 13 to 24, 1981. The school was organized as a response to a recent appeal by a subpanel of the DOE High Energy Physics Advisory Panel (HEPAP) for more scientists and more students to work in the field of high energy particle accelerators. The committee set a number of objectives for the school: (1) to present in a thorough and up-to-date manner the entire spectrum of knowledge relating to accelerators; (2) to disseminate that knowledge to audiences that can best make use of it; (3) to encourage, by providing text materials and training to potential instructors, the development of accelerator physics education as part of university programs in high-energy physics; and (4) to foster a more extensive dialogue between particle and accelerator physicists. Separate entries were prepared for the data base for the papers included. (WHK)

  6. Injury reduction at Fermilab

    SciTech Connect

    Griffing, Bill; /Fermilab

    2005-06-01

    In a recent DOE Program Review, Fermilab's director presented results of the laboratory's effort to reduce the injury rate over the last decade. The results, shown in the figure below, reveal a consistent and dramatic downward trend in OSHA recordable injuries at Fermilab. The High Energy Physics Program Office has asked Fermilab to report in detail on how the laboratory has achieved the reduction. In fact, the reduction in the injury rate reflects a change in safety culture at Fermilab, which has evolved slowly over this period, due to a series of events, both planned and unplanned. This paper attempts to describe those significant events and analyze how each of them has shaped the safety culture that, in turn, has reduced the rate of injury at Fermilab to its current value.

  7. Fermilab E791

    SciTech Connect

    Amato, S.; Anjos, J.C.; Bediaga, I.; Costa, I.; de Mello Neto, J.R.T.; de Miranda, J.M.; Santoro, A.F.S.; Souza, M.H.G. , Rio de Janeiro, RJ ); Blaylock, G.; Burchat, P.R.; Gagnon, P.; Sugano, K. ); d'Oliveria, A.B.; Santha, A.; Sokologg, M.D. ); Appel, J.A.; Banerjee, S.

    1992-10-01

    Fermilab E791, a very high statistics charm particle experiment, recently completed its data taking at Fermilab's Tagged Photon Laboratory. Over 20 billionevents were recorded through a loose transverse energy trigger and written to 8mm tape in the 1991--92 fixed target run at Fermilab. This unprecedented data sample containing charm is being analysis on many-thousand MIP RISC computing farms set up at sites in the collaboration. A glimpse of the data taking and analysis effort is presented. We also show some preliminary results for common charm decay modes. Our present analysis indicates a very rich yield of over 200K reconstructed charm decays.

  8. Fermilab: Science at Work

    ScienceCinema

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2016-07-12

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  9. Evidence for jets from a transverse-energy-triggered calorimeter experiment at Fermilab

    SciTech Connect

    Arenton, M.; Ditzler, R.; Fields, T.

    1982-07-01

    We have recently completed the first part of running for experiment E-609 at Fermilab. The E-609 hadron jet experiment uses a 132-segment 8-steradian full azimuth calorimeter with tower structure. Additional parts of the apparatus are described in the paper. A novel triggering system allowed us to take data with many different kinds of triggers simultaneously. We give a preliminary report on data obtained in 400 GeV pp collisions, concentrating on data from two triggers, both of which have no special geometrical requirement for the form of the transverse energy deposition. One of these was a global total E-transverse trigger; the other was a 2-high trigger, which required that 2 or more calorimeter segments (any 2) each give a signal larger than about 1.0 GeV/c. This report further concentrates on the data sample with total transverse energy above 11 GeV. We will present results concerning planarity distributions as well as theta-phi energy flow, for these events. For the globally triggered events in this kinematic region, only a few percent show clear di-jet structure, with clustering, co-planarity, and concentration of high-p/sub T/ fragments near the jet axes. For the 2-high events however, at this E-transverse, approximately 30 percent of the events show di-jet structure. The 2-high events constitute only about 15 percent of the global events, but contain virtually all the events which show this clear di-jet structure. Details of the analysis are presented, including studies of whether the features of the di-jet events can be explained by simple random fluctuations.

  10. Medium energy heavy ion operations at RHIC

    SciTech Connect

    Drees, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.M.C.; Blaskiewicz, M.; Brown, K.A.; Brennan, M.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D'Ottavio, T.; Fischer, W.; Fu, W.; Gassner, D.; Harvey, M.; Hayes, T.; Huang, H.; Hulsart, R.; Ingrassia, P.; Kling, N.; Lafky, M.; Laster, J.; Lee, R.C.; Litvinenko, V.; Luo, Y.; MacKay, W.W.; Marr, G.; Mapes. M.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.S.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; van Kuik, B.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n. The medium energy AuAu run covered two beam energies, both above the RHIC injection energy of 9.8 GeV but well below the standard store energy of 100 GeV (see table 1). The low energy and full energy runs with heavy ions in FY10 are summarized in [1] and [2]. Stochastic Cooling ([3]) was only used for 100 GeV beams and not used in the medium energy run. The efficiency of the transition from 100 GeV operation to 31.2 GeV and then to 19.5 GeV was remarkable. Setup took 32 h and 19 h respectively for the two energy settings. The time in store, defined to be the percentage of time RHIC provides beams in physics conditions versus calendar time, was approximately 52% for the entire FY10 heavy ion run. In both medium energy runs it was well above this average, 68% for 31.5 GeV and 82% for 19.5 GeV. For both energies RHIC was filled with 111 bunches with 1.2 10{sup 9} and 1.3 10{sup 9} ions per bunch respectively.

  11. Study of low-energy neutrino factory at the Fermilab to DUSEL baseline

    SciTech Connect

    Kyberd, Paul; Ellis, Malcolm; Bross, Alan; Geer, Steve; Mena, Olga; Long, Ken; Pascoli, Silvia; Fernandez Martinez, Enrique; McDonald, Kirk; Huber, Patrick; /Virginia Tech.

    2009-07-01

    This note constitutes a Letter of Interest to study the physics capabilities of, and to develop an implementation plan for, a neutrino physics program based on a Low-Energy Neutrino Factory at Fermilab providing a {nu} beam to a detector at the Deep Underground Science and Engineering Laboratory. It has been over ten years since the discovery of neutrino oscillations [1] established the existence of neutrino masses and leptonic mixing. Neutrino oscillations thus provide the first evidence of particle physics beyond the Standard Model. Most of the present neutrino oscillation data are well described by the 3{nu} mixing model. While a number of the parameters in this model have already been measured, there are several key parameters that are still unknown, namely, the absolute neutrino mass scale, the precise value of the mixing angles, the CP phase {delta} and hence the presence or absence of observable CP-violation in the neutrino sector. Future measurements of these parameters are crucial to advance our understanding of the origin of neutrino masses and of the nature of flavor in the lepton sector. The ultimate goal of a program to study neutrino oscillations goes beyond a first measurement of parameters, and includes a systematic search for clues about the underlying physics responsible for the tiny neutrino masses, and, hopefully, the origin of the observed flavor structure in the Standard Model, as well as the possible source of the observed matter-antimatter asymmetry in the Universe. To achieve this goal will almost certainly require precision measurements that go well beyond the presently foreseen program. One of the most promising experimental approaches to achieve some of the goals mentioned above is to build a Neutrino Factory and its corresponding detector. The Neutrino Factory produces neutrino beams from muons which have been accelerated to an energy of, for example, 25 GeV. The muons are stored in a race-track shaped decay ring and then decay along

  12. Hydrogen as an energy medium

    NASA Technical Reports Server (NTRS)

    Cox, K. E.

    1976-01-01

    Coal, though abundant in certain geographical locations of the USA poses environmental problems associated with its mining and combustion. Also, nuclear fission energy appears to have problems regarding safety and radioactive waste disposal that are as yet unresolved. The paper discusses hydrogen use and market projection along with energy sources for hydrogen production. Particular attention is given to hydrogen production technology as related to electrolysis and thermochemical water decomposition. Economics of hydrogen will ultimately be determined by the price and availability of future energy carriers such as electricity and synthetic natural gas. Thermochemical methods of hydrogen production appear to offer promise largely in the efficiency of energy conversion and in capital costs over electrolytic methods.

  13. Hydrogen as an energy medium

    NASA Technical Reports Server (NTRS)

    Cox, K. E.

    1976-01-01

    Coal, though abundant in certain geographical locations of the USA poses environmental problems associated with its mining and combustion. Also, nuclear fission energy appears to have problems regarding safety and radioactive waste disposal that are as yet unresolved. The paper discusses hydrogen use and market projection along with energy sources for hydrogen production. Particular attention is given to hydrogen production technology as related to electrolysis and thermochemical water decomposition. Economics of hydrogen will ultimately be determined by the price and availability of future energy carriers such as electricity and synthetic natural gas. Thermochemical methods of hydrogen production appear to offer promise largely in the efficiency of energy conversion and in capital costs over electrolytic methods.

  14. Medium energy nuclear physics research

    SciTech Connect

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1988-09-01

    The UMass group has concentrated on using electromagnetic probes, particularly the electron in high-energy scattering experiments at the Stanford Liner Accelerator Center (SLAC). Plans are also being made for high energy work at the Continuous Beam Accelerator Facility (CEBAF). The properties of this accelerator should permit a whole new class of coincidence experiments to be carried out. At SLAC UMass has made major contributions toward the plans for a cluster-jet gas target and detector system at the 16 GeV PEP storage ring. For the future CEBAF accelerator, tests were made of the feasibility of operating wire drift chambers in the vicinity of a continuous electron beam at the University Illinois microtron. At the same time a program of studies of the nuclear structure of more complex nuclei has been continued at the MIT-Bates Linear Accelerator Center and in Amsterdam at the NIKHEF-K laboratory. At the MIT-Bates Accelerator, because of an unforeseen change in beam scheduling as a result of problems with the T{sub 20} experiment, the UMass group was able to complete data acquisition on experiments involving 180{degrees} elastic magnetic scattering on {sup 117}Sn and {sup 41}Ca. A considerable effort has been given to preparations for a future experiment at Bates involving the high-resolution threshold electrodisintegration of the deuteron. The use of these chambers should permit a high degree of discrimination against background events in the measurement of the almost neutrino-like small cross sections that are expected. In Amsterdam at the NIKHEF-K facility, single arm (e,e{prime}) measurements were made in November of 1987 on {sup 10}B in order to better determine the p{sub 3/2} wave function from the transition from the J{sup pi} = 3{sup +} ground state to the O{sup +} excited state at 1.74 MeV. In 1988, (e,e{prime}p) coincidence measurements on {sup 10}B were completed. The objective was to obtain information on the p{sub 3/2} wave function by another means.

  15. Medium energy nuclear physics research

    SciTech Connect

    Peterson, G.A.; Dubach, J.F.; Hicks, R.S.; Miskimen, R.A.

    1992-06-01

    This paper covers the following topics: Experiment 87-02: Threshold Electrodisintegration of the Deuteron at High Q{sup 2}; Measurement of the 5th Structure Function in Deuterium and {sup 12}C; Single-Particle Densities of sd-Shell Nuclei; Experiment 84-28: Transverse Form Factors of {sup 117}Sn; Experiment 82-11: Elastic Magnetic Electron Scattering from {sup 13}C; Experiment 89-09: Measurement of the Elastic Magnetic Form Factor of {sup 3}He at High Momentum Transfer; Experiment 89-15: Coincidence Measurement of the D(e,e{prime}p) Cross-Section at Low Excitation Energy and High Momentum Transfer; Experiment 87-09: Measurement of the Quadrupole Contribution to the N {yields} {Delta} Excitation; Experiment E-140: Measurement of the x-, Q{sup 2} and A-Dependence of R = {sigma}{sub L}/{sigma}{sub T}; PEP Beam-Gas Event Analysis: Physics with the SLAC TPC/2{gamma} Detector; Drift Chamber Tests at Brookhaven National Laboratory; Experiment PR-89-031: Multi-nucleon Knockout Using the CLAS Detector; Electronics Design for the CLAS Region 1 Drift Chamber; Color Transparencies in the Electroproduction of Nucleon Resonances; and Experiment PR-89-015: Study of Coincidence Reactions in the Dip and Delta-Resonance Regions.

  16. Energy Spread of the Proton Beam in the Fermilab Booster at its Injection Energy

    SciTech Connect

    Bhat, C. M.; Chase, B. E.; Chaurize, S. J.; Garcia, F. G.; Seiya, K.; Pellico, W. A.; Sullivan, T. M.; Triplett, A. K.

    2015-04-27

    We have measured the energy spread of the Booster beam at its injection energy of 400 MeV by three different methods: (1) creating a notch of about 40 nsec wide in the beam immediately after multiple turn injection and measuring the slippage time required for high and low momentum particles for a grazing touch in line-charge distribution, (2) injecting partial turn beam and letting it to debunch, and (3) comparing the beam profile monitor data with predictions from MAD simulations for the 400 MeV injection beam line. The measurements are repeated under varieties of conditions of rf systems in the ring and in the beam transfer line.

  17. The Fermilab Particle Astrophysics Center

    SciTech Connect

    Not Available

    2004-11-01

    The Particle Astrophysics Center was established in fall of 2004. Fermilab director Michael S. Witherell has named Fermilab cosmologist Edward ''Rocky'' Kolb as its first director. The Center will function as an intellectual focus for particle astrophysics at Fermilab, bringing together the Theoretical and Experimental Astrophysics Groups. It also encompasses existing astrophysics projects, including the Sloan Digital Sky Survey, the Cryogenic Dark Matter Search, and the Pierre Auger Cosmic Ray Observatory, as well as proposed projects, including the SuperNova Acceleration Probe to study dark energy as part of the Joint Dark Energy Mission, and the ground-based Dark Energy Survey aimed at measuring the dark energy equation of state.

  18. Nucleon-nucleon scattering at medium energies

    NASA Astrophysics Data System (ADS)

    Afnan, I. R.

    1984-03-01

    A model of the N-N potential, at medium energies, in the frame work of the BB-πBB equations, is presented. The derivation is based on the Cloudy Bag Model Hamiltonian. Recent N-N calculations are reviewed in the frame work of the model. Theoretical methods for the analysis of dibaryon resonances are compared.

  19. Fermilab and Latin America

    NASA Astrophysics Data System (ADS)

    Lederman, Leon M.

    2006-09-01

    As Director of Fermilab, starting in 1979, I began a series of meetings with scientists in Latin America. The motivation was to stir collaboration in the field of high energy particle physics, the central focus of Fermilab. In the next 13 years, these Pan American Symposia stirred much discussion of the use of modern physics, created several groups to do collaborative research at Fermilab, and often centralized facilities and, today, still provides the possibility for much more productive North-South collaboration in research and education. In 1992, I handed these activities over to the AAAS, as President. This would, I hoped, broaden areas of collaboration. Such collaboration is unfortunately very sensitive to political events. In a rational world, it would be the rewards, cultural and economic, of collaboration that would modulate political relations. We are not there yet.

  20. ASIC design at Fermilab

    SciTech Connect

    Yarema, R.

    1991-06-01

    In the past few years, ASIC (Application Specific Integrated Circuit) design has become important at Fermilab. The purpose of this paper is to present an overview of the in-house ASIC design activity which has taken place. This design effort has added much value to the high energy physics program and physics capability at Fermilab. The two approaches to ASIC development being pursued at Fermilab are examined by looking at some of the types of projects where ASICs are being used or contemplated. To help estimate the cost of future designs, a cost comparison is given to show the relative development and production expenses for these two ASIC approaches. 5 refs., 14 figs., 7 tabs.

  1. Medium Effects of Low Energy Pions

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    2004-03-01

    Fits of pion--nucleus potentials to large sets of pionic atom data reveal departures of parameter values from the corresponding free π N parameters. These medium effects can be quantitatively reproduced by a chiral-motivated model where the pion decay constant is modified in the medium or by including the empirical on-shell energy dependence of the amplitudes. No consistency is obtained between pionic atoms and the free π N interaction when an extreme off-shell chiral model is used. The role of the size of data sets is briefly discussed.

  2. DAQ Software Contributions, Absolute Scale Energy Calibration and Background Evaluation for the NOvA Experiment at Fermilab

    SciTech Connect

    Flumerfelt, Eric Lewis

    2015-08-01

    The NOvA (NuMI Off-axis ve [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through an initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.

  3. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    SciTech Connect

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  4. Particle energy cascade in the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Valdés, M.; Evoli, C.; Ferrara, A.

    2010-05-01

    We study the development of high-energy (Ein <= 1 TeV) cascades produced by a primary electron of energy Ein injected into the intergalactic medium (IGM). To this aim we have developed the new code MEDEA (Monte Carlo Energy Deposition Analysis) which includes Bremsstrahlung and inverse Compton (IC) processes, along with H/He collisional ionizations and excitations, and electron-electron collisions. The cascade energy partition into heating, excitations and ionizations depends primarily not only on the IGM ionized fraction, xe, but also on redshift, z, due to IC on cosmic microwave background (CMB) photons. While Bremsstrahlung is unimportant under most conditions, IC becomes largely dominant at energies Ein >= 1 MeV. The main effect of IC at injection energies Ein <= 100 MeV is a significant boost of the fraction of energy converted into low-energy photons (hν < 10.2 eV) which do not further interact with the IGM. For energies Ein >= 1 GeV CMB photons are preferentially upscattered within the X-ray spectrum (hν > 104 eV) and can free stream to the observer. Complete tables of the fractional energy depositions as a function of redshift, Ein and ionized fraction are given. Our results can be used in many astrophysical contexts, with an obvious application related to the study of decaying/annihilating dark matter (DM) candidates in the high-z Universe.

  5. High Transverse Momentum Direct Photon Production at Fermilab Fixed-Target Energies

    SciTech Connect

    Apanasevich, Leonard

    2005-01-01

    This thesis describes a study of the production of high transverse momentum direct photons and π0 mesons by proton beams at 530 and 800 GeV/c and π- beams at 515 GeV/c incident on beryllium, copper, and liquid hydrogen targets. The data were collected by Fermilab experiment E706 during the 1990 and 1991-92 fixed target runs. The apparatus included a large, finely segmented lead and liquid argon electromagnetic calorimeter and a charged particle spectrometer featuring silicon strip detectors in the target region and proportional wire chambers and drift tubes downstream of a large aperture analysis magnet. The inclusive cross sections are presented as functions of transverse momentum and rapidity. The measurements are compared with next-to-leading order perturbative QCD calculations and to results from previous experiments.

  6. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    SciTech Connect

    Seletskiy, Sergei M.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  7. Fermilab Steering Group Report

    SciTech Connect

    Beier, Eugene; Butler, Joel; Dawson, Sally; Edwards, Helen; Himel, Thomas; Holmes, Stephen; Kim, Young-Kee; Lankford, Andrew; McGinnis, David; Nagaitsev, Sergei; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01

    in the U.S. and creating an engineering opportunity for ILC cost reductions. It offers an early and tangible application for ILC R&D in superconducting technology, attracting participation from accelerator scientists worldwide and driving forward the technology for still higher-energy accelerators of the future, such as a muon collider. To prepare for a future decision, the Fermilab Steering Group recommends that the laboratory seek R&D support for Project X, in order to produce an overall design of Project X and to spur the R&D and industrialization of ILC linac components needed for Project X. Advice from the High Energy Physics Advisory Panel will guide any future decision to upgrade the Fermilab accelerator complex, taking into account developments affecting the ILC schedule and the continuing evaluation of scientific priorities for U.S. particle physics. Fermilab should also work toward increased resources for longer-term future accelerators such as a muon collider, aiming at higher energies than the ILC would provide.

  8. Fermilab Steering Group Report

    SciTech Connect

    Steering Group, Fermilab; /Fermilab

    2007-12-01

    in the U.S. and creating an engineering opportunity for ILC cost reductions. It o.ers an early and tangible application for ILC R&D in superconducting technology, attracting participation from accelerator scientists worldwide and driving forward the technology for still higher-energy accelerators of the future, such as a muon collider. To prepare for a future decision, the Fermilab Steering Group recommends that the laboratory seek R&D support for Project X, in order to produce an overall design of Project X and to spur the R&D and industrialization of ILC linac components needed for Project X. Advice from the High Energy Physics Advisory Panel will guide any future decision to upgrade the Fermilab accelerator complex, taking into account developments a.ecting the ILC schedule and the continuing evaluation of scientific priorities for U.S. particle physics. Fermilab should also work toward increased resources for longer-term future accelerators such as a muon collider, aiming at higher energies than the ILC would provide.

  9. Vertically Integrated Circuits at Fermilab

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  10. Vertically Integrated Circuits at Fermilab

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2010-01-01

    The exploration of vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning, and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. For the first time, Fermilab has organized a 3D MPW run, to which more than 25 different designs have been submitted by the consortium.

  11. Fermilab D-0 Experimental Facility: Energy conservation report and mechanical systems design optimization and cost analysis study

    SciTech Connect

    Krstulovich, S.F.

    1987-10-31

    This report is developed as part of the Fermilab D-0 Experimental Facility Project Title II Design Documentation Update. As such, it concentrates primarily on HVAC mechanical systems design optimization and cost analysis.

  12. Studies in medium energy physics: Addendum

    NASA Astrophysics Data System (ADS)

    Green, A.; Hoffmann, G. W.; McDonough, J.; Purcell, M. J.; Ray, R. L.; Read, D. E.; Worn, S. D.

    1991-12-01

    This document constitutes the (1991--1992) technical progress report and continuation proposal for the ongoing medium energy nuclear physics research program supported by the U.S. Department of Energy through special Research Grant DE-FG05-88ER-40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF) and the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics; (2) provide unique, first-of-a-kind 'exploratory' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics.

  13. A transitionless lattice for the Fermilab Main Injector

    SciTech Connect

    Ng, K.Y.; Trbojevic, D. ); Lee, S.Y. . Dept. of Physics)

    1991-05-01

    Medium energy (1 to 30 GeV) accelerators are often confronted with transition crossing during acceleration. A lattice without transition is presented, which is a design for the Fermilab Main Injector. The main properties of this lattice are that the {gamma}{sub t} is an imaginary number, the maxima of the dispersion function are small, and two long-straight section with zero dispersion. 7 refs., 5 figs.

  14. Fermilab recycler stochastic cooling commissioning and performance

    SciTech Connect

    D. Broemmelsiek; Ralph Pasquinelli

    2003-06-04

    The Fermilab Recycler is a fixed 8 GeV kinetic energy storage ring located in the Fermilab Main Injector tunnel near the ceiling. The Recycler has two roles in Run II. First, to store antiprotons from the Fermilab Antiproton Accumulator so that the antiproton production rate is no longer compromised by large numbers of antiprotons stored in the Accumulator. Second, to receive antiprotons from the Fermilab Tevatron at the end of luminosity periods. To perform each of these roles, stochastic cooling in the Recycler is needed to preserve and cool antiprotons in preparation for transfer to the Tevatron. The commissioning and performance of the Recycler stochastic cooling systems will be reviewed.

  15. D0 Project at Fermilab

    SciTech Connect

    Marx, M.D.

    1984-01-01

    The D0 Project will explore 2 TeV anti pp collisions at Fermilab using a highly optimized calorimetric detector, to elucidate the new physics coming out of the SppS, and to explore the new higher energy regime. The design and physics potential of the detector system are described.

  16. Photoproduction of scalar mesons at medium energies

    SciTech Connect

    Da Silva, M. L.; Machado, M. V.

    2013-03-25

    In this work we will focus on photoproduction of mesons states a{sub 0}(980), f{sub 0}(1500) and f{sub 0}(1710). The f{sub 0}(1500) and f{sub 0}(1710) mesons will be considered in distinct mixing possibilities and assuming that a{sub 0}(980) is member of the ground-state nonet. The theoretical formalism is the Regge approach with reggeized {rho} and {omega} exchange. The differential and integrated total cross section are computed for the cases of the mesons a{sub 0}(980), f{sub 0}(1500) and f{sub 0}(1710) focusing the GlueX energy regime with photon energy E = 9 GeV.

  17. The Fermilab recycler ring

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  18. Fermilab Program and Plans

    SciTech Connect

    Denisov, Dmitri

    2014-01-01

    This article is a short summary of the talk presented at 2014 Instrumentation Conference in Novosibirsk about Fermilab's experimental program and future plans. It includes brief description of the P5 long term planning progressing in US as well as discussion of the future accelerators considered at Fermilab.

  19. Fermilab`s DART DA system

    SciTech Connect

    Pordes, R.; Anderson, J.; Berg, D.; Black, D.; Forster, R.; Franzen, J.; Kent, S.; Kwarciany, R.; Meadows, J.; Moore, C.

    1994-04-01

    DART is the new data acquisition system designed and implemented for six Fermilab experiments by the Fermilab Computing Division and the experiments themselves. The complexity of the experiments varies greatly. Their data taking throughput and event filtering requirements range from a few (2-5) to tens (80) of CAMAC, FASTBUS and home built front end crates; from a few 100 KByte/sec to 160 MByte/sec front end data collection rates; and from 0-3000 Mips of level 3 processing. The authors report on the architecture and implementation of DART to this date, and the hardware and software components that are being developed and supported.

  20. Physics History Books in the Fermilab Library

    SciTech Connect

    Sara Tompson.

    1999-09-17

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the worlds most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.

  1. Physics History Books in the Fermilab Library

    SciTech Connect

    Sara Tompson

    1999-09-17

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the world�s most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.

  2. Data preservation at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Boyd, J.; Herner, K.; Jayatilaka, B.; Roser, R.; Sakumoto, W.

    2015-12-01

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. These efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.

  3. Data preservation at the Fermilab Tevatron

    DOE PAGES

    Boyd, J.; Herner, K.; Jayatilaka, B.; ...

    2015-12-23

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in bothmore » software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.« less

  4. Data preservation at the Fermilab Tevatron

    SciTech Connect

    Boyd, J.; Herner, K.; Jayatilaka, B.; Roser, R.; Sakumoto, W.

    2015-12-23

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.

  5. Fermilab Cryogenic Workshop Report

    SciTech Connect

    Hassenzahl, W. V.

    1980-06-18

    A workshop to discuss recent pressing problems experienced in the operation of helium refrigerators at the national laboratories was proposed by DOE. Early in 1980 it was decided that the workshop should be held at the Fermi National Accelerator Laboratory (Fermilab). The reasoning behind the selection of Fermilab included the proposed initial tests of the Central Liquefier, the recently experienced problems with refrigeration systems at Fermilab, and the fact that a previous workshop had been held at the Brookhaven National Laboratory, which, at present, would be the other logical choice for the workshop.

  6. MEGA - Medium Energy Gamma-ray Astronomy Mission

    NASA Astrophysics Data System (ADS)

    Ryan, J. M.; Bloser, P. F.; Macri, J. R.; McConnell, M. L.; Ajello, M.; Andritschke, R.; Kanbach, G.; Schoenfelder, V.; Zoglauer, A.; Hunter, S. D.; Kurfess, J. D.; Phlips, B.; Strickman, M.; Wulf, E.; Hartmann, D.; Miller, R.; Paciesas, W.; Zych, A. D.; Kippen, R. M.; Vestrand, W. T.; Cherry, M. L.; Guzik, T. G.; Stacy, J. G.; Wefel, J. P.; Reglero, V.; Di Cocco, G.; Cravens, J.

    2004-12-01

    The Medium Energy Gamma-ray Astronomy (MEGA) telescope concept will soon be proposed as a MIDEX mission. This mission would enable a sensitive all-sky survey of the medium-energy gamma-ray sky (0.3 - 50 MeV) and bridge the huge sensitivity gap between the COMPTEL and OSSE experiments on the Compton Gamma Ray Observatory, the SPI and IBIS instruments on INTEGRAL, and the visionary Advanced Compton Telescope (ACT) mission. The scientific goals include, among other things, compiling a much larger catalog of sources in this energy range, performing far deeper searches for supernovae, better measuring the galactic continuum and line emissions, and identifying the components of the cosmic diffuse gamma-ray emission. MEGA will accomplish these goals using a tracker made of Si strip detector (SSD) planes surrounded by a dense high-Z calorimeter. At lower photon energies (below 30 MeV), the design is sensitive to Compton interactions, with the SSD system serving as a scattering medium that also detects and measures the Compton recoil energy deposit. If the energy of the recoil electron is sufficiently high (> 2 MeV) its momentum vector can also be measured. At higher photon energies (above 10 MeV), the design is sensitive to pair production events, with the SSD system measuring the tracks of the electron and positron. A prototype instrument has been developed and calibrated, and is currently being prepared for a scientific balloon flight.

  7. An Assessment of Nuclear Isomers as an Energy Storage Medium

    NASA Astrophysics Data System (ADS)

    Hartouni, Edward P.

    2009-03-01

    Nuclear Isomers have been suggested as a potential high energy density medium that might be used to store energy. This talk assesses the state of the science supporting key elements of using nuclear isomers in energy storage applications. The focus is on the nuclear isomer 178m2Hf which has been most widely suggested for energy storage applications. However, the science issues apply to all nuclear isomer. The assessment addresses the production of the nuclear isomer, and inducing the release of the isomer. Also discussed are novel speculations on photon and/or neutron chain reactions, both as a "pure" material as well as mixed with other materials.

  8. An Assessment of Nuclear Isomers as an Energy Storage Medium

    SciTech Connect

    Hartouni, E P

    2008-12-08

    Nuclear Isomers have been suggested as a potential high energy density medium that might be used to store energy. This talk assesses the state of the science supporting key elements of using nuclear isomers in energy storage applications. The focus is on the nuclear isomer {sup 178m2}Hf which has been most widely suggested for energy storage applications. However, the science issues apply to all nuclear isomer. The assessment addresses the production of the nuclear isomer, and inducing the release of the isomer. Also discussed are novel speculations on photon and/or neutron chain reactions, both as a 'pure' material as well as mixed with other materials.

  9. An Assessment of Nuclear Isomers as an Energy Storage Medium

    SciTech Connect

    Hartouni, Edward P.

    2009-03-16

    Nuclear Isomers have been suggested as a potential high energy density medium that might be used to store energy. This talk assesses the state of the science supporting key elements of using nuclear isomers in energy storage applications. The focus is on the nuclear isomer {sup 178m2}Hf which has been most widely suggested for energy storage applications. However, the science issues apply to all nuclear isomer. The assessment addresses the production of the nuclear isomer, and inducing the release of the isomer. Also discussed are novel speculations on photon and/or neutron chain reactions, both as a 'pure' material as well as mixed with other materials.

  10. Fermilab recycler diagnostics

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler Ring is a permanent magnet storage ring for the storage and cooling of antiprotons. The following note describes the diagnostic tools currently available for commissioning, as well as the improvements and upgrades planned for the near future.

  11. Highlights from Fermilab

    NASA Astrophysics Data System (ADS)

    Oddone, P. J.

    2010-12-01

    DISCUSSION by CHAIRMAN: P.J. ODDONE, Scientific Secretaries: W. Fisher, A. Holzner Note from Publisher: The Slides of the Lecture: "Highlights from Fermilab" can be found at http://www.ccsem.infn.it/issp2007/

  12. Stochastic cooling at Fermilab

    SciTech Connect

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system.

  13. Electrochemical cells for medium- and large-scale energy storage

    SciTech Connect

    Wang, Wei; Wei, Xiaoliang; Choi, Daiwon; Lu, Xiaochuan; Yang, G.; Sun, C.

    2014-12-12

    This is one of the chapters in the book titled “Advances in batteries for large- and medium-scale energy storage: Applications in power systems and electric vehicles” that will be published by the Woodhead Publishing Limited. The chapter discusses the basic electrochemical fundamentals of electrochemical energy storage devices with a focus on the rechargeable batteries. Several practical secondary battery systems are also discussed as examples

  14. Control of energy density inside turbid medium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sarma, Raktim; Yamilov, Alexey; Petrenko, Sasha; Bromberg, Yaron; Cao, Hui

    2017-02-01

    Recent breakthroughs in optical wavefront engineering have opened the possibility of controlling light intensity distribution inside highly scattering medium, but their success is limited by the open geometry of the sample and the difficulty of covering all input modes. Here we demonstrate experimentally an efficient control of energy density distribution inside a strong scattering medium. Instead of the open slab geometry, we fabricate a silicon waveguide that contains scatterers and has reflecting sidewalls. The intensity distribution inside the 2D waveguide is probed from the third dimension. With a careful design of the on-chip coupling waveguide, we can access all the input modes. Such unprecedented control of incident wavefront leads to 10 times enhancement of the total transmission or 50 times suppression. A direct probe of light intensity distribution inside the disordered structure reveals that selective excitation of open channels leads to an energy buildup deep inside the scattering medium, while the excitation of closed channels greatly reduces the penetration depth. Compared to the linear decay for random input fields, the optimized wavefront can produce an intensity profile that is either peaked near the center of the waveguide or decay exponentially with depth. The total energy stored inside the waveguide is increased 3.7 times or decreased 2 times. Since the energy density dictates light-matter interactions inside a scattering system, our results demonstrate the possibility of tailoring optical excitations as well as linear and nonlinear optical processes inside the turbid medium in an on-chip platform.

  15. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2016-07-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  16. Report of the Fermilab Committee for Site Studies

    SciTech Connect

    Steve Holmes, Vic Kuchler et. al.

    2001-09-10

    Fermilab is the flagship laboratory of the U.S. high-energy physics program. The Fermilab accelerator complex has occupied the energy frontier nearly continuously since its construction in the early 1970s. It will remain at the frontier until the Large Hadron Collider at CERN begins operating in 2006-7. A healthy future for Fermilab will likely require construction of a new accelerator in the post-LHC era. The process of identifying, constructing and operating a future forefront facility will require the support of the world high-energy-physics community, the governments and funding agencies of many nations and the people of surrounding communities. This report explores options for construction of a new facility on or near the existing Fermilab site. We began the study that forms the basis of this report with the idea that Fermilab, and the surrounding area of northeastern Illinois, possesses attributes that make it an attractive candidate for a new accelerator construction project: excellent geology; a Fermilab staff and local contractors who are experienced in subsurface construction; abundant energy supplies; good access to transportation networks; the presence of local universities with strong interest and participation in the Fermilab research program; Fermilab's demonstrated ability to mount large accelerator construction projects and operate complex accelerator facilities; and a surrounding community that is largely supportive of Fermilab's presence. Our report largely confirms these perceptions.

  17. Energy flow along the medium-induced parton cascade

    SciTech Connect

    Blaizot, J.-P.

    2016-05-15

    We discuss the dynamics of parton cascades that develop in dense QCD matter, and contrast their properties with those of similar cascades of gluon radiation in vacuum. We argue that such cascades belong to two distinct classes that are characterized respectively by an increasing or a constant (or decreasing) branching rate along the cascade. In the former class, of which the BDMPS, medium-induced, cascade constitutes a typical example, it takes a finite time to transport a finite amount of energy to very soft quanta, while this time is essentially infinite in the latter case, to which the DGLAP cascade belongs. The medium induced cascade is accompanied by a constant flow of energy towards arbitrary soft modes, leading eventually to the accumulation of the initial energy of the leading particle at zero energy. It also exhibits scaling properties akin to wave turbulence. These properties do not show up in the cascade that develops in vacuum. There, the energy accumulates in the spectrum at smaller and smaller energy as the cascade develops, but the energy never flows all the way down to zero energy. Our analysis suggests that the way the energy is shared among the offsprings of a splitting gluon has little impact on the qualitative properties of the cascades, provided the kernel that governs the splittings is not too singular.

  18. Theoretical Astrophysics at Fermilab

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Theoretical Astrophysics Group works on a broad range of topics ranging from string theory to data analysis in the Sloan Digital Sky Survey. The group is motivated by the belief that a deep understanding of fundamental physics is necessary to explain a wide variety of phenomena in the universe. During the three years 2001-2003 of our previous NASA grant, over 120 papers were written; ten of our postdocs went on to faculty positions; and we hosted or organized many workshops and conferences. Kolb and collaborators focused on the early universe, in particular and models and ramifications of the theory of inflation. They also studied models with extra dimensions, new types of dark matter, and the second order effects of super-horizon perturbations. S tebbins, Frieman, Hui, and Dodelson worked on phenomenological cosmology, extracting cosmological constraints from surveys such as the Sloan Digital Sky Survey. They also worked on theoretical topics such as weak lensing, reionization, and dark energy. This work has proved important to a number of experimental groups [including those at Fermilab] planning future observations. In general, the work of the Theoretical Astrophysics Group has served as a catalyst for experimental projects at Fennilab. An example of this is the Joint Dark Energy Mission. Fennilab is now a member of SNAP, and much of the work done here is by people formerly working on the accelerator. We have created an environment where many of these people made transition from physics to astronomy. We also worked on many other topics related to NASA s focus: cosmic rays, dark matter, the Sunyaev-Zel dovich effect, the galaxy distribution in the universe, and the Lyman alpha forest. The group organized and hosted a number of conferences and workshop over the years covered by the grant. Among them were:

  19. On the polarized beam acceleration in medium energy synchrotrons

    SciTech Connect

    Lee, S.Y.

    1992-12-31

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined.

  20. Intensity-Frontier Antiproton Physics with The Antiproton Annihilation Spectrometer (TAPAS) at Fermilab

    SciTech Connect

    Apollinari, Giorgio; Asner, David M.; Baldini, Wander; Bartoszek, Larry; Broemmelsiek, Daniel R.; Brown, Charles N.; Chakravorty, Alak; Colas, Paul; Derwent, Paul; Drutskoy, Alexey; Fortner, Michael; /Northern Illinois U. /Saclay /Indian Inst. Tech., Hyderabad

    2011-11-01

    The Fermilab Antiproton Source is the world's most intense source of antimatter. With the Tevatron program now behind us, this unique facility can help make the case for Fermilab's continued accelerator operations. The Antiproton Source can be used for unique, dedicated antimatter studies, including medium-energy {bar p}-annihilation experiments. We propose to assemble a powerful, yet cost-effective, solenoidal magnetic spectrometer for antiproton-annihilation events, and to use it at the Fermilab Antiproton Accumulator to measure the charm production cross section, study rare hyperon decays, search for hyperon CP asymmetry, precisely measure the properties of several charmonium and nearby states, and make the first measurements of the Drell-Yan continuum in medium-energy antiproton annihilation. Should the charm production cross section be as large as some have proposed, we will also be able to measure D{sup 0}-{bar D}{sup 0} mixing with high precision and discover (or sensitively limit) charm CP violation. The observation of charm or hyperon CP violation would be evidence for physics beyond the Standard Model, with possible implications for the origin of the baryon asymmetry of the universe - the question of what happened to all the antimatter that must have been produced in the Big Bang. The experiment will be carried out by an international collaboration and will require some four years of running time. As possibly the sole hadron experiment in progress at Fermilab during that time, it will play an important role in maintaining a broad particle physics program at Fermilab and in the U.S. It will thus help us to continue attracting creative and capable young people into science and technology, and introducing them to the important technologies of accelerators, detectors, and data acquisition and analysis - key roles in society that accelerator-based particle physics has historically played.

  1. Search for $W'\\to t b $ in Events with Large Missing Transverse Energy and Jets with the CDF detector at the Fermilab Tevatron Collider

    SciTech Connect

    Bianchi, Ludovico

    2012-01-01

    In the scope of the strong ongoing data analysis efforts of the CDF col- laboration at Fermilab, we present a search for the production of mas sive W1 bosons decaying to a top and a bottom quark in p$\\bar{p}$ collisions at √s = 1.96 TeV. To perform this search, we select events with large Missing Transverse Energy plus two or three jets, in which the W generated from top decays leptonically, and either the e or µ is lost or the τ is reconstructed as a jet. A complete study of the selected sample is discussed, including the creation and subsequent optimization of a Neural Network-based multivariate tool to reject the QCD multijet background from the signal region. Finally, we perform a likelihood-based multichannel Bayesian fit procedure on the invariant transverse mass of the Missing Transverse Energy and jets to extract 95% CL limits on σ(p$\\bar{p}$ . → W') × B(W' → tb) for MW' = 200 GeV/c2

  2. Excitation of phonons in medium-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.

    1996-03-01

    The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.

  3. CPS and the Fermilab farms

    SciTech Connect

    Fausey, M.R.

    1992-06-01

    Cooperative Processes Software (CPS) is a parallel programming toolkit developed at the Fermi National Accelerator Laboratory. It is the most recent product in an evolution of systems aimed at finding a cost-effective solution to the enormous computing requirements in experimental high energy physics. Parallel programs written with CPS are large-grained, which means that the parallelism occurs at the subroutine level, rather than at the traditional single line of code level. This fits the requirements of high energy physics applications, such as event reconstruction, or detector simulations, quite well. It also satisfies the requirements of applications in many other fields. One example is in the pharmaceutical industry. In the field of computational chemistry, the process of drug design may be accelerated with this approach. CPS programs run as a collection of processes distributed over many computers. CPS currently supports a mixture of heterogeneous UNIX-based workstations which communicate over networks with TCP/IR CPS is most suited for jobs with relatively low I/O requirements compared to CPU. The CPS toolkit supports message passing remote subroutine calls, process synchronization, bulk data transfers, and a mechanism called process queues, by which one process can find another which has reached a particular state. The CPS software supports both batch processing and computer center operations. The system is currently running in production mode on two farms of processors at Fermilab. One farm consists of approximately 90 IBM RS/6000 model 320 workstations, and the other has 85 Silicon Graphics 4D/35 workstations. This paper first briefly describes the history of parallel processing at Fermilab which lead to the development of CPS. Then the CPS software and the CPS Batch queueing system are described. Finally, the experiences of using CPS in production on the Fermilab processor farms are described.

  4. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  5. Scintillator manufacture at Fermilab

    NASA Astrophysics Data System (ADS)

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-11-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  6. The DHG sum rule measured with medium energy photons

    SciTech Connect

    Hicks, K.; Ardashev, K.; Babusci, D.

    1997-12-31

    The structure of the nucleon has many important features that are yet to be uncovered. Of current interest is the nucleon spin-structure which can be measured by doing double-polarization experiments with photon beams of medium energies (0.1 to 2 GeV). One such experiment uses dispersion relations, applied to the Compton scattering amplitude, to relate measurement of the total reaction cross section integrated over the incident photon energy to the nucleon anomalous magnetic moment. At present, no single facility spans the entire range of photon energies necessary to test this sum rule. The Laser-Electron Gamma Source (LEGS) facility will measure the double-polarization observables at photon energies between 0.15--0.47 MeV. Either the SPring8 facility, the GRAAL facility (France), or Jefferson Laboratory could make similar measurements at higher photon energies. A high-precision measurement of the spin-polarizability and the Drell-Hearn-Gerasimov sum rule is now possible with the advent of high-polarization solid HD targets at medium energy polarized photon facilities such as LEGS, GRAAL and SPring8. Other facilities with lower polarization in either the photon beam or target (or both) are also pursuing these measurements because of the high priority associated with this physics. The Spin-asymmetry (SASY) detector that will be used at LEGS has been briefly outlined in this paper. The detector efficiencies have been explored with simulations studies using the GEANT software, with the result that both charged and uncharged pions can be detected with a reasonable efficiency (> 30%) over a large solid angle. Tracking with a TPC, which will be built at LEGS over the next few years, will improve the capabilities of these measurements.

  7. Analysis of medium-energy transfers to the Moon

    NASA Astrophysics Data System (ADS)

    Oshima, Kenta; Topputo, Francesco; Campagnola, Stefano; Yanao, Tomohiro

    2017-03-01

    This study analyzes a recently discovered class of exterior transfers to the Moon. These transfers terminate in retrograde ballistic capture orbits, i.e., orbits with negative Keplerian energy and angular momentum with respect to the Moon. Yet, their Jacobi constant is relatively low, for which no forbidden regions exist, and the trajectories do not appear to mimic the dynamics of the invariant manifolds of the Lagrange points. This paper shows that these orbits shadow instead lunar collision orbits. We investigate the dynamics of singular, lunar collision orbits in the Earth-Moon planar circular restricted three-body problem, and reveal their rich phase space structure in the medium-energy regime, where invariant manifolds of the Lagrange point orbits break up. We show that lunar retrograde ballistic capture trajectories lie inside the tube structure of collision orbits. We also develop a method to compute medium-energy transfers by patching together orbits inside the collision tube and those whose apogees are located in the appropriate quadrant in the Sun-Earth system. The method yields the novel family of transfers as well as those ending in direct capture orbits, under particular energetic and geometrical conditions.

  8. Analysis of medium-energy transfers to the Moon

    NASA Astrophysics Data System (ADS)

    Oshima, Kenta; Topputo, Francesco; Campagnola, Stefano; Yanao, Tomohiro

    2016-09-01

    This study analyzes a recently discovered class of exterior transfers to the Moon. These transfers terminate in retrograde ballistic capture orbits, i.e., orbits with negative Keplerian energy and angular momentum with respect to the Moon. Yet, their Jacobi constant is relatively low, for which no forbidden regions exist, and the trajectories do not appear to mimic the dynamics of the invariant manifolds of the Lagrange points. This paper shows that these orbits shadow instead lunar collision orbits. We investigate the dynamics of singular, lunar collision orbits in the Earth-Moon planar circular restricted three-body problem, and reveal their rich phase space structure in the medium-energy regime, where invariant manifolds of the Lagrange point orbits break up. We show that lunar retrograde ballistic capture trajectories lie inside the tube structure of collision orbits. We also develop a method to compute medium-energy transfers by patching together orbits inside the collision tube and those whose apogees are located in the appropriate quadrant in the Sun-Earth system. The method yields the novel family of transfers as well as those ending in direct capture orbits, under particular energetic and geometrical conditions.

  9. The fermilab central computing facility architectural model

    NASA Astrophysics Data System (ADS)

    Nicholls, J.

    1989-12-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing enviroment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front-end, a LargeScale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS cluster interactive front-end, an Amdahl VM computing engine, ACP farms, and (primary) VMS workstations. This paper will discuss the implemetation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab.

  10. Contributions to the second workshop on medium energy electron cooling - MEEC96

    SciTech Connect

    MacLachlan, J.

    1997-09-01

    MEEC96 was a workshop devoted primarily to discussion within four working groups, not a mini-conference of prepared reports. Therefore, although there are contributions bearing the name of a single author, much of what was learned came in extemporaneous discussion of the issues posed to the participants. The original plan to produce formal proceedings has been dropped because of the limited number of participants willing to write up their own contributions and because of the difficulty of converting free-wheeling discussion to the written word. The premsise for the 1996 gathering was to set a critique of Fermilab`s R&D effort at cooling a ring of 8 GeV {bar p}`s. Separate abstracts have been submitted to the energy database for contributions to this workshop.

  11. Medium energy gamma ray astronomy with transpacific balloon flights

    NASA Technical Reports Server (NTRS)

    Zych, A. D.; Jennings, M. C.; White, R. S.; Dayton, B.

    1981-01-01

    Transpacific balloon flights with the University of California, Riverside (UCR) double scatter telescope are discussed. With flight durations from 5 days up to perhaps 15 days the long observation times necessary for medium energy (1-30 MeV) gamma ray astronomy can be obtained. These flights would be made under the auspices of the Joint U.S.-Japan Balloon Flight Program at NASA. It is proposed that flights can provide at least 30 hours of observation time per flight for many discrete source candidates and 120 hours for detecting low intensity cosmic gamma ray bursts.

  12. Medium-energy electron diffraction from Cu(100)

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Park, Ken T.

    1992-07-01

    We have investigated the polar-angle dependence of medium-energy electron diffraction (MEED) from a Cu(100) surface. It is observed that MEED is characterized by a combination of coherent and incoherent scattering, and the incoherent part is governed by the forward-scattering mechanism. The incoherent MEED pattern differs from that of x-ray photoelectron diffraction and Auger electron diffraction because of the angular distribution of the initial electron scattering. The asymmetry between the incident-beam and exit-beam diffraction is also observed and discussed.

  13. Medium energy gamma ray astronomy with transpacific balloon flights

    NASA Technical Reports Server (NTRS)

    Zych, A. D.; Jennings, M. C.; White, R. S.; Dayton, B.

    1981-01-01

    Transpacific balloon flights with the University of California, Riverside (UCR) double scatter telescope are discussed. With flight durations from 5 days up to perhaps 15 days the long observation times necessary for medium energy (1-30 MeV) gamma ray astronomy can be obtained. These flights would be made under the auspices of the Joint U.S.-Japan Balloon Flight Program at NASA. It is proposed that flights can provide at least 30 hours of observation time per flight for many discrete source candidates and 120 hours for detecting low intensity cosmic gamma ray bursts.

  14. Control system for Fermilab`s low temperature upgrade

    SciTech Connect

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel`s 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down.

  15. Fundamentals of charged devices: Energy changes in a capacitor medium

    NASA Astrophysics Data System (ADS)

    Young, J. S.; Baudry, L.

    2013-03-01

    Capacitors and derivative devices continue to be as relevant as ever, both at the frontiers of scientific and technological research and in the development of commercial products. Central to such pursuits is the essential requirement that all aspects of the work done in charging or discharging capacitors are clearly understood. Surprisingly, there is a very significant disagreement among standard texts and journal publications regarding this topic. The present work elaborates a thorough analysis of energy changes in a capacitor medium in terms of thermodynamic work and its extension to the more general, electrostatic energy change. Our conclusions agree, for example, with those of Volker Heine, but not with texts by Pippard or Callen. We also note that electric and magnetic analogues are not equivalent.

  16. The EXOSAT medium-energy slew survey catalog

    NASA Astrophysics Data System (ADS)

    Reynolds, A. P.; Parmar, A. N.; Hakala, P. J.; Pollock, A. M. T.; Williams, O. R.; Peacock, A.; Taylor, B. G.

    1999-01-01

    We present a catalog of X-ray sources observed during slew maneuvers by the Medium Energy Detector Array onboard the EXOSAT Observatory. The EXOSAT Medium Energy slew-survey catalog (EXMS) provides a unique record of the 1-8 keV X-ray sky between 1983 and 1986. 98% of the sky was observed, with 85% receiving an exposure of >60 s. 1210 sources were detected. By comparing these source positions with other catalogs, identifications are given for 992 detections (82% of the sample). These identifications consist of 250 distinct objects, including 95 different X-ray binary systems, and 14 different AGN. A further 58 detections have multiple candidates, while 160 detections remain unidentified. Collimator transmission corrected 1-8 keV count rates are given for the identified sources, together with raw count rates for the other detections. The construction of the EXMS and the checks performed to ensure the validity of the derived source properties are discussed. A publically available version of this catalog is maintained on the EXOSAT database and archive system (telnet://xray@exosat.estec.esa.nl). Tables 3, 4 and 5 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  17. Self-energy shift of the energy levels of atomic hydrogen in photonic crystal medium

    NASA Astrophysics Data System (ADS)

    Gainutdinov, R. Kh; Khamadeev, M. A.; Steryakov, O. V.; Ziyatdinova, K. A.; Salakhov, M. Kh

    2016-05-01

    Corrections to the average kinetic energy of atomic electrons caused by the change in electron mass in the photonic crystal medium are investigated. Corresponding shift of energy levels of atoms placed in a photonic crystal is shown to be of order of the ordinary Lamb shift.

  18. Proposed Fermilab upgrade main injector project

    SciTech Connect

    Not Available

    1992-04-01

    The US Department of Energy (DOE) proposes to construct and operate a Fermilab Main Injector'' (FMI), a 150 GeV proton injector accelerator, at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The purpose and need for this action are given of this Environmental Assessment (EA). A description of the proposed FMI and construction activities are also given. The proposed FMI would be housed in an underground tunnel with a circumference of approximately 2.1 miles (3.4 kilometers), and the construction would affect approximately 135 acres of the 6,800 acre Fermilab site. The purpose of the proposed FMI is to construct and bring into operation a new 150 GeV proton injector accelerator. This addition to Fermilab's Tevatron would enable scientists to penetrate ever more deeply into the subatomic world through the detection of the super massive particles that can be created when a proton and antiproton collide head-on. The conversion of energy into matter in these collisions makes it possible to create particles that existed only an instant after the beginning of time. The proposed FMI would significantly extend the scientific reach of the Tevatron, the world's first superconducting accelerator and highest energy proton-antiproton collider.

  19. Fermilab Library projects

    SciTech Connect

    Garrett, P.; Ritchie, D.

    1990-05-03

    Preprint database management as done at various centers -- the subject of this workshop -- is hard to separate from the overall activities of the particular center. We therefore present the wider context at the Fermilab Library into which preprint database management fits. The day-to-day activities of the Library aside, the dominant activity at present is that of the ongoing Fermilab Library Automation. A less dominant but relatively time-consuming activity is that of doing more online searches in commercial databases on behalf of laboratory staff and visitors. A related activity is that of exploring the benefits of end-user searching of similar sources as opposed to library staff searching of the same. The Library Automation Project, which began about two years ago, is about to go fully online.'' The rationale behind this project is described in the documents developed during the December 1988--February 1989 planning phase.

  20. Linux support at Fermilab

    SciTech Connect

    D.R. Yocum, C. Sieh, D. Skow, S. Kovich, D. Holmgren and R. Kennedy

    1998-12-01

    In January of 1998 Fermilab issued an official statement of support of the Linux operating system. This was the result of a ground swell of interest in the possibilities of a cheap, easily used platform for computation and analysis culminating with the successful demonstration of a small computation farm as reported at CHEP97. This paper will describe the current status of Linux support and deployment at Fermilab. The collaborative development process for Linux creates some problems with traditional support models. A primary example of this is that there is no definite OS distribution ala a CD distribution from a traditional Unix vendor. Fermilab has had to make a more definite statement about what is meant by Linux for this reason. Linux support at Fermilab is restricted to the Intel processor platform. A central distribution system has been created to mitigate problems with multiple distribution and configuration options. This system is based on the Red Hat distribution with the Fermi Unix Environment (FUE) layered above it. Deployment of Linux at the lab has been rapidly growing and by CHEP there are expected to be hundreds of machines running Linux. These include computational farms, trigger processing farms, and desktop workstations. The former groups are described in other talks and consist of clusters of many tens of very similar machines devoted to a few tasks. The latter group is more diverse and challenging. The user community has been very supportive and active in defining needs for Linux features and solving various compatibility issues. We will discuss the support arrangements currently in place.

  1. Central Arkansas Energy Project. Coal to medium-Btu gas

    NASA Astrophysics Data System (ADS)

    1982-05-01

    The Central Arkansas Energy Project has as its objective the conversion of coal in a central location to a more readily usable energy source, medium Btu gas (MBG), for use at dispersed locations as fuel for power production and steam generation, or as a feedstock for chemical processing. The project elements consist of a gasification facility to produce MBG from coal, a pipeline to supply the MBG to the dispersed sites. The end of line users investigated were the repowering or refueling of an existing Arkansas Power and Light Co. Generating station, an ammonia plant, and a combined cycle cogeneration facility for the production of steam and electricity. Preliminary design of the gasification plant including process engineering design bases, process flow diagrams, utility requirements, system description, project engineering design, equipment specifications, plot plan and section plot plans, preliminary piping and instrument diagrams, and facilities requirements. Financial analyses and sensitivities are determined. Design and construction schedules and manpower loadings are developed. It is concluded that the project is technically feasible, but the financial soundness is difficult to project due to uncertainty in energy markets of competing fuels.

  2. Nuclear structure studies with medium energy probes. [Northwestern Univ

    SciTech Connect

    Seth, Kamal K.

    1980-01-01

    Progress in the continuing program of experimental research in nuclear structure with medium-energy probes during the year 1979-1980 is reviewed, and the research activities planned for the year 1980-1981 are discussed. In the study of pion-induced reactions emphasis is placed on investigation of isovector characteristics of nuclear excitations and on double charge exchange reactions. Pion production studies form the major part of the program of experiments with proton beams of 400 to 800 MeV at LAMPF. Current emphasis is on the bearing of these investigations on di-baryon existence. The study of high-spin states and magnetic scattering constitute the main goals of the electron scattering program at Bates. Representative results are presented; completed work is reported in the usual publications. (RWR)

  3. In-medium nuclear interactions of low-energy hadrons

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.

    2007-11-01

    Exotic atoms provide a unique laboratory for studying strong interactions and nuclear medium effects at zero kinetic energy. Experimental and theoretical developments of the last decade in the study of exotic atoms and some related low-energy reactions are reviewed. The exotic atoms considered are of π-,K-,pbar,Σ-, and also the so far unobserved Ξ- atoms. The analysis of these atomic systems consists of fitting density-dependent optical potentials Vopt=t(ρ)ρ to comprehensive sets of data of strong-interaction level shifts, widths and yields across the periodic table. These provide information on the in-medium hadron-nucleon t matrix t(ρ) over a wide range of densities up to central nuclear densities. For pions, the review focuses on the extraction of the πN in-medium s-wave interaction from pionic atoms, which include also the deeply bound π- atomic states recently observed at GSI in isotopes of Sn and Pb. Also included are recent measurements at PSI of elastic scattering of π± on Si, Ca, Ni and Zr at 21.5 MeV. The experimental results are analyzed in the context of chirally motivated π-nuclear potentials, and the evidence for partial restoration of chiral symmetry in dense nuclear matter is critically discussed. For antikaons, we review the evidence from K- atoms, and also from low-energy K-p scattering and reaction data for and against a deepKbar-nucleus potential of 150-200 MeV attraction at nuclear matter density. The case for relatively narrow deeply bound K-atomic states is made, essentially independent of the potential-depth issue. Recent experimental suggestions from KEK and DA ΦNE (Frascati) for signals of Kbar-nuclear deeply bound states are reviewed, and dynamical models for calculating binding energies and widths of Kbar- nuclear states are discussed. For kaons we review the evidence, from K+ total and reaction cross section measurements at the AGS (BNL) on Li, C, Si and Ca at plab=500-700 MeV/c, for significant absorptivity of t

  4. Fixed-target physics at Fermilab

    SciTech Connect

    Bjorken, J.D.

    1985-03-01

    The Fermilab Energy Saver is now successfully commissioned and fixed-target experimentation at high energy (800 GeV) has begun. In addition, a number of new experiments designed to exploit the unique features of the Tevatron are yet to come on-line. In this talk, we will review recent accomplishments in the fixed-target program and describe experiments in progress and others yet to come.

  5. Energy and momentum deposited into a QCD medium by a jet shower.

    PubMed

    Qin, G-Y; Majumder, A; Song, H; Heinz, U

    2009-10-09

    For a hard parton moving through a dense QCD medium, we compute self-consistently the energy loss and the fraction deposited into the medium due to showering and rescattering of the shower, assuming weak coupling between probe and medium. The same transport coefficients thus determine both the energy loss and its deposition into the medium. This allows a parameter free calculation of the latter once the former are computed or measured. We compute them for a weakly interacting medium. Assuming a short thermalization time for the deposited energy, we determine the medium's hydrodynamical response and obtain a conical pattern that is strongly enhanced by showering.

  6. Nuclear structure and reaction studies at medium energies

    SciTech Connect

    Hoffmann, G.W.; Ray, R.L.

    1990-10-01

    This document constitutes the (1988--1991) technical progress report for the ongoing medium energy physics research program supported by the US Department of Energy through special Research Grant FG05-88ER40444. The experiments discussed are conducted at the Los Alamos National Laboratory's (LANL) Clinton P. Anderson Meson Physics Facility (LAMPF), the Alternating Gradient Synchrotron (AGS) facility of the Brookhaven National Laboratory (BNL), and at the Fermi National Accelerator Laboratory (FNAL). The overall motivation for the work discussed in this document is driven by three main objectives: (1) provide hadron-nucleon and hadron-nucleus scattering data which serve to facilitate the study of effective two-body interactions, test (and possibly determine) nuclear structure, and help study reaction mechanisms and dynamics;(2) provide unique, first-of-a-kind exploratory'' hadron-nucleus scattering data in the hope that such data will lead to discovery of new phenomena and new physics; and (3) perform precision tests of fundamental interactions, such as rare decay searches, whose observation would imply fundamental new physics.

  7. Er + medium energy ion implantation into lithium niobate

    NASA Astrophysics Data System (ADS)

    Svecova, B.; Nekvindova, P.; Mackova, A.; Oswald, J.; Vacik, J.; Grötzschel, R.; Spirkova, J.

    2009-05-01

    Erbium-doped lithium niobate (Er:LiNbO3) is a prospective photonics component, operating at 1.5 μm, which could find its use chiefly as an optical amplifier or waveguide laser. In this study, we have focused on the properties of the optically active Er:LiNbO3 layers, which are fabricated by medium energy ion implantation under various experimental conditions. Erbium ions were implanted at energies of 330 and 500 keV with fluences of 1.0 × 1015, 2.5 × 1015 and 1.0 × 1016 cm-2 into LiNbO3 single-crystalline cuts of various orientations. The as-implanted samples were annealed in air at 350 °C for 5 h. The depth distribution and diffusion profiles of the implanted Er were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The projected range RP and projected range straggling ΔRP were calculated employing the SRIM code. The damage distribution and structural changes were described using the RBS/channelling method. Changes of the lithium concentration depth distribution were studied by Neutron Depth Profiling (NDP). The photoluminescence spectra of the samples were measured to determine whether the emission was in the desired region of 1.5 μm. The obtained data made it possible to reveal the relations between the structural changes of erbium-implanted lithium niobate and its luminescence properties important for photonics applications.

  8. Cryogenic helium as stopping medium for high-energy ions

    NASA Astrophysics Data System (ADS)

    Purushothaman, S.; Dendooven, P.; Moore, I.; Penttilä, H.; Ronkainen, J.; Saastamoinen, A.; Äystö, J.; Peräjärvi, K.; Takahashi, N.; Gloos, K.

    2008-10-01

    We have investigated the survival and transport efficiency of 219Rn ions emitted by a 223Ra source in high-density cryogenic helium gas, with ionisation of the gas induced by a proton beam. The combined efficiency of ion survival and transport by an applied electric field was measured as a function of ionisation rate density for electric fields up to 160 V/cm and for three temperature and density combinations: 77 K, 0.18 mg/cm3, 10 K, 0.18 mg/cm3 and 10 K, 0.54 mg/cm3. At low beam intensity or high electric field, an efficiency of 30 % is obtained, confirming earlier results. A sharp drop in efficiency is observed at a "threshold" ionisation rate density which increases with the square of the applied electric field. At 160 V/cm, the efficiency stays above 10% up to an ionisation rate density of 1012 ion-electron pairs/cm3/s. The observed behaviour is understood as the result of shielding of the applied field by the weak plasma created by the proton beam: it counteracts the effective transport of ions and electrons, leading to recombination between the two. We conclude that cryogenic helium gas at high-density and high electric field is a promising medium for the transformation of very high-energy ions into low-energy ones.

  9. Flying wires at Fermilab

    SciTech Connect

    Gannon, J.; Crawford, C.; Finley, D.; Flora, R.; Groves, T.; MacPherson, M.

    1989-03-01

    Transverse beam profile measurement systems called ''Flying Wires'' have been installed and made operational in the Fermilab Main Ring and Tevatron accelerators. These devices are used routinely to measure the emittance of both protons and antiprotons throughout the fill process, and for emittance growth measurements during stores. In the Tevatron, the individual transverse profiles of six proton and six antiproton bunches are obtained simultaneously, with a single pass of the wire through the beam. Essential features of the hardware, software, and system operation are explained in the rest of the paper. 3 refs., 4 figs.

  10. Fermilab Library directions

    SciTech Connect

    Garrett, P.; Ritchie, D.

    1990-05-04

    In this document, we indicate our current thinking about the directions of the Fermilab Library. The ideas relate to the preprint management issue in a number of ways. The ideas are subject to revision as we come to understand what is possible as well as what is needed by the Laboratory community. This document should therefore be regarded as our personal view--the availability of off-the-shelf technology, of funding as well as feedback from the laboratory community about their needs will all affect how far we actually proceed in any of these directions.

  11. Neutrino Physics at Fermilab

    ScienceCinema

    Saoulidou, Niki

    2016-07-12

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  12. Status of the Fermilab Recycler

    SciTech Connect

    Derwent, P.F.; /Fermilab

    2007-09-01

    The author presents the current operational status of the Fermilab Recycler Ring. Using a mix of stochastic and electron cooling, we prepare antiproton beams for the Fermilab Tevatron Collider program. Included are discussion of stashing and cooling performance, operational scenarios, and collider performance.

  13. Medium-chain fatty acid nanoliposomes for easy energy supply.

    PubMed

    Liu, Wei; Liu, Wei-Lin; Liu, Cheng-Mei; Liu, Jian-Hua; Yang, Shui-Bing; Zheng, Hui-Juan; Lei, Han-Wu; Ruan, Roger; Li, Ti; Tu, Zong-Cai; Song, Xin-Yong

    2011-06-01

    Developing a nanoliposome delivery system for an easy energy supply of medium-chain fatty acids (MCFAs) to improve oral doses and bioavailability. Bangham's method and high-pressure microfluidization were used to prepare MCFA liposomes. The easy energy-supply property of MCFA nanoliposomes was estimated by the anti-fatigue experiments of mice including a weight-loaded swimming test and its corresponding parameters (serum urea nitrogen, blood lactic acid, and hepatic glycogen). For comparison, nanoliposomes without MCFAs and MCFAs not entrapped in nanoliposomes were used throughout. Compared with crude MCFA liposomes according to Bangham's method, the MCFA nanoliposomes made by high-pressure microfluidization exhibited great advantages in their characteristics, with a small average diameter (76.2 ± 34.7 nm), narrow size distribution (polydispersity index 0.207), high ζ-potential (-50.51 mV), great entrapment efficiency (70.5%) and drug loading (9.4%), and good stability. The high-dose group and the MCFA group (680 mg/kg) showed a longer weight-loaded swimming time (104 ± 29 min, P = 0.087, and 108 ± 11 min, P = 0.047, respectively) and significantly higher hepatic glycogen (16.40 ± 1.45 mg/g, P < 0.001 and 17.27 ± 2.13 mg/g, P < 0.001, respectively) than the control group (59 ± 11 min and 8.79 ± 2.76 mg/g, respectively). Moreover, serum urea nitrogen (891.5 ± 113.4 mg/L, P = 0.024, and 876.6 ± 70.8 mg/L, P = 0.015, respectively) and blood lactic acid (6.05 ± 1.40 mmol/L, P = 0.001, and 5.95 ± 1.27 mmol/L, P < 0.001, respectively) in the high-dose group and the group with an equivalent MCFA dose were significantly lower than those in the control group (1153.6 ± 102.5 mg/L and 12.53 ± 1.86 mmol/L, respectively). Similar to MCFAs, MCFA nanoliposomes prepared by high-pressure microfluidization showed a strong easy energy-supply property, which suggested that MCFA nanoliposomes could be a potential drug candidate for an easy energy supply. Copyright © 2011

  14. Fixed target experiments at the Fermilab Tevatron

    SciTech Connect

    Gutierrez, Gaston; Reyes, Marco A.

    2014-11-10

    This paper presents a review of the study of Exclusive Central Production at a Center of Mass energy of √s = 40 GeV at the Fermilab Fixed Target program. In all reactions reviewed in this paper, protons with an energy of 800 GeV were extracted from the Tevatron accelerator at Fermilab and directed to a Liquid Hydrogen target. The states reviewed include π⁺π⁻, K⁰s K⁰s, K⁰s K±π, φφ and D. Partial Wave Analysis results will be presented on the light states but only the cross-section will be reviewed in the diffractive production of D.

  15. Fixed target experiments at the Fermilab Tevatron

    DOE PAGES

    Gutierrez, Gaston; Reyes, Marco A.

    2014-11-10

    This paper presents a review of the study of Exclusive Central Production at a Center of Mass energy of √s = 40 GeV at the Fermilab Fixed Target program. In all reactions reviewed in this paper, protons with an energy of 800 GeV were extracted from the Tevatron accelerator at Fermilab and directed to a Liquid Hydrogen target. The states reviewed include π⁺π⁻, K⁰s K⁰s, K⁰s K±π∓, φφ and D*±. Partial Wave Analysis results will be presented on the light states but only the cross-section will be reviewed in the diffractive production of D*±.

  16. Recent Fermilab results on hadroproduction of heavy flavors

    SciTech Connect

    Garbincius, P.H.

    1993-08-01

    Recent results from various Fermilab experiments on the hadroproduction of states containing charm, bottom, and top quarks are discussed. These include observation of the spectra, lifetime, and production characteristics of charmonium, open charm states, and bottom particle production with both high energy fixed target and {bar p}-p collider facilities. The status of the search for the top quark by the Fermilab collider experiments is updated.

  17. 3D design activities at Fermilab: Opportunities for physics

    SciTech Connect

    Yarema, Raymond; Deptuch, Grezgorz; Hoff, Jim; Shenai, Alpana; Trimpl, Marcel; Zimmerman, Tom; Demarteau, Marcel; Liptona, Ron; Christian, Dave; /Fermilab

    2009-01-01

    Fermilab began exploring the technologies for vertically integrated circuits (also commonly known as 3D circuits) in 2006. These technologies include through silicon vias (TSV), circuit thinning, and bonding techniques to replace conventional bump bonds. Since then, the interest within the High Energy Physics community has grown considerably. This paper will present an overview of the activities at Fermilab over the last 3 years which have helped spark this interest.

  18. The MINERvA Neutrino Scattering Experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Schmitz, David W.

    2011-11-01

    The MINERνA experiment at Fermilab is aimed at precision measurements of neutrino interactions in nuclei for energies up to a few GeV. MINERνA makes use of a fine-grained, fully active detector design and a range of nuclear target materials. The experiment began taking data in the NuMI neutrino beam at Fermilab in late 2009 and will collect data in both the neutrino and antineutrino configurations of the beamline.

  19. Optimized undulator to generate low energy photons from medium to high energy accelerators

    NASA Astrophysics Data System (ADS)

    Chung, Ting-Yi; Chiu, Mau-Sen; Luo, Hao-Wen; Yang, Chin-Kang; Huang, Jui-Che; Jan, Jyh-Chyuan; Hwang, Ching-Shiang

    2017-07-01

    While emitting low energy photons from a medium or high energy storage ring, the on-axis heat load on the beam line optics can become a critical issue. In addition, the heat load in the bending magnet chamber, especially in the vertical and circular polarization mode of operation may cause some concern. In this work, we compare the heat loads for the APPLE-II and the Knot-APPLE, both optimized to emit 10 eV photons from the 3 GeV TPS. Under this constraint the heat load analysis, synchrotron radiation performance and features in various polarization modes are presented. Additional consideration is given to beam dynamics effect.

  20. Energy spectrum of medium energy gamma-rays from the galactic center region. [experimental design

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Ramanujarao, K.; Dutra, S. L. G.; Bertsch, D. L.; Kniffen, D. A.; Morris, D. J.

    1978-01-01

    A balloon-borne magnetic core digitized spark chamber with two assemblies of spark-chambers above and below the scintillation counters was used to measure the medium energy gamma ray flux from the galactic center region. Gamma ray calculations are based on the multiple scattering of the pair electrons in 15 aluminum plates interleaved in the spark chamber modules. Counting rates determined during ascent and at ceiling indicate the presence of diffuse component in this energy range. Preliminary results give an integral flux between 15 and 70 MeV compared to the differential points in other results.

  1. Medium Modification of Hadronic Interactions from Low Energy Experiments

    NASA Astrophysics Data System (ADS)

    Friedman, E.

    Medium-modification of hadronic interactions is defined as the differences between hadron-hadron interaction in the nuclear medium and the corresponding interaction in free space. Deeply penetrating hadrons provide such information and we discuss here pionic atoms and scattering by nuclei of 21.5 MeV pions. Brief mention is made also of the interaction of 500-700 MeV/c K+ with nuclei.

  2. Slope parameter for the differential cross-section for the reaction p + d. -->. X + d in the region of small momentum transfer at Fermilab energies

    SciTech Connect

    Akimov, Yu.K.; Bartenev, V.D.; Izyurov, V.M.

    1980-06-01

    A deuterium gas jet target was used in the circulating beam of the Fermilab accelerator to study the M/sup 2//sub x/ and s dependence and the slope parameter for pd ..-->.. Xd in the region 0.025 less than or equal to vertical bar t vertical bar less than or equal to 0.17 (GeV/c)/sup 2/ and 5 less than or equal to M/sup 2//sub x/ less than or equal to 0.068s GeV/sup 2/. A simple parametrization in terms of the variable (1 - x) is found.

  3. Stochastic cooling technology at Fermilab

    NASA Astrophysics Data System (ADS)

    Pasquinelli, Ralph J.

    2004-10-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  4. Superconducting radiofrequency linac development at Fermilab

    SciTech Connect

    Holmes, Stephen D.; /Fermilab

    2009-10-01

    As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

  5. Kaon physics at Fermilab Main Injector

    SciTech Connect

    Hsiung, Y.

    1992-03-01

    For high precision and high sensitivity studies of the physics of kaon physics of kaon decays, the important characteristics of the new Main Injector at Fermilab are its high energy (relative to other factories'') and its high intensity. Experiments of this kind are becoming increasingly important in the study of CP violation and for searches for new interactions. An extracted beam of 120 GeV will produce a source of high energy kaons (10--50 GeV) that will not be surpassed in intensity by any facility new under consideration world-wide.

  6. Kaon physics at Fermilab Main Injector

    SciTech Connect

    Hsiung, Y.

    1992-03-01

    For high precision and high sensitivity studies of the physics of kaon physics of kaon decays, the important characteristics of the new Main Injector at Fermilab are its high energy (relative to other ``factories``) and its high intensity. Experiments of this kind are becoming increasingly important in the study of CP violation and for searches for new interactions. An extracted beam of 120 GeV will produce a source of high energy kaons (10--50 GeV) that will not be surpassed in intensity by any facility new under consideration world-wide.

  7. Cylindrical radiant energy direction device with refractive medium

    DOEpatents

    Winston, Roland

    1978-01-01

    A device is provided for directing radiant energy and includes a refractive element and a reflective boundary. The reflective boundary is so contoured that incident energy directed thereto by the refractive element is directed to the exit surface thereof or onto the surface of an energy absorber positioned at the exit surface.

  8. Search for Diphoton Events with Large Missing Transverse Energy in 6.3 fb-1 of p$\\bar{p}$ Collisions using the D0 Detector at the Fermilab Tevatron Collider

    SciTech Connect

    Cooke, Mark Stephen

    2010-01-01

    A search for diphoton events with large missing transverse energy produced in p$\\bar{p}$ collisions at √s = 1.96 TeV is presented. The data were collected with the D0 detector at the Fermilab Tevatron Collider between 2002 and 2010, and correspond to 6.3 fb-1 of integrated luminosity. The observed missing transverse energy distribution is well described by the Standard Model prediction, and 95% C.L. limits are derived on two realizations of theories beyond the Standard Model. In a gauge mediated supersymmetry breaking scenario, the breaking scale Λ is excluded for Λ < 124 TeV. In a universal extra dimension model including gravitational decays, the compactification radius Rc is excluded for Rc-1 < 477 GeV.

  9. The energy dependence of lithium formate and alanine EPR dosimeters for medium energy x rays

    SciTech Connect

    Waldeland, Einar; Hole, Eli Olaug; Sagstuen, Einar; Malinen, Eirik

    2010-07-15

    Purpose: To perform a systematic investigation of the energy dependence of alanine and lilthium formate EPR dosimeters for medium energy x rays. Methods: Lithium formate and alanine EPR dosimeters were exposed to eight different x-ray beam qualities, with nominal potentials ranging from 50 to 200 kV. Following ionometry based on standards of absorbed dose to water, the dosimeters were given two different doses of approximately 3 and 6 Gy for each radiation quality, with three dosimeters for each dose. A reference series was also irradiated to three different dose levels at a {sup 60}Co unit. The dose to water energy response, that is, the dosimeter reading per absorbed dose to water relative to that for {sup 60}Co {gamma}-rays, was estimated for each beam quality. In addition, the energy response was calculated by Monte Carlo simulations and compared to the experimental energy response. Results: The experimental energy response estimates ranged from 0.89 to 0.94 and from 0.68 to 0.90 for lithium formate and alanine, respectively. The uncertainties in the experimental energy response estimates were typically 3%. The relative effectiveness, that is, the ratio of the experimental energy response to that following Monte Carlo simulations was, on average, 0.96 and 0.94 for lithium formate and alanine, respectively. Conclusions: This work shows that lithium formate dosimeters are less dependent on x-ray energy than alanine. Furthermore, as the relative effectiveness for both lithium formate and alanine were systematically less than unity, the yield of radiation-induced radicals is decreased following x-irradiation compared to irradiation with {sup 60}Co {gamma}-rays.

  10. Technical Support Document: 50% Energy Savings Design Technology Packages for Medium Office Buildings

    SciTech Connect

    Thornton, Brian A.; Wang, Weimin; Lane, Michael D.; Rosenberg, Michael I.; Liu, Bing

    2009-09-01

    This Technical Support Document (TSD) describes the process and methodology for development of the Advanced Energy Design Guide for Medium Offices (AEDG-MO or the Guide), a design guidance document which intends to provide recommendations for achieving 50% energy savings in medium office buildings that just meet the requirements of ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings.

  11. Proposed Fermilab upgrade main injector project. Environmental Assessment

    SciTech Connect

    Not Available

    1992-04-01

    The US Department of Energy (DOE) proposes to construct and operate a ``Fermilab Main Injector`` (FMI), a 150 GeV proton injector accelerator, at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The purpose and need for this action are given of this Environmental Assessment (EA). A description of the proposed FMI and construction activities are also given. The proposed FMI would be housed in an underground tunnel with a circumference of approximately 2.1 miles (3.4 kilometers), and the construction would affect approximately 135 acres of the 6,800 acre Fermilab site. The purpose of the proposed FMI is to construct and bring into operation a new 150 GeV proton injector accelerator. This addition to Fermilab`s Tevatron would enable scientists to penetrate ever more deeply into the subatomic world through the detection of the super massive particles that can be created when a proton and antiproton collide head-on. The conversion of energy into matter in these collisions makes it possible to create particles that existed only an instant after the beginning of time. The proposed FMI would significantly extend the scientific reach of the Tevatron, the world`s first superconducting accelerator and highest energy proton-antiproton collider.

  12. Designing high energy accelerators under DOE's New Culture'' for environment and safety: An example, the Fermilab 150 GeV Main Injector proton synchrotron

    SciTech Connect

    Fowler, W.B.

    1991-05-01

    Fermilab has initiated a design for a new Main Injector (150 GeV proton synchrotron) to take the place of the current Main Ring accelerator. New Culture'' environmental and safety questions are having to be addressed. The paper will detail the necessary steps that have to be taken in order to obtain the permits which control the start of construction. Obviously these depend on site-specific circumstances, however some steps are universally applicable. In the example, floodplains and wetlands are affected and therefore the National Environmental Policy Act (NEPA) compliance is a significant issue. The important feature is to reduce the relevant regulations to a concise set of easily understandable requirements. The effort required and the associated time line will be presented so that other new accelerator proposals can benefit from the experience gained from this example.

  13. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    SciTech Connect

    W. Wester

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  14. Metamaterial-based lossy anisotropic epsilon-near-zero medium for energy collimation

    NASA Astrophysics Data System (ADS)

    Shen, Nian-Hai; Zhang, Peng; Koschny, Thomas; Soukoulis, Costas M.

    2016-06-01

    A lossy anisotropic epsilon-near-zero (ENZ) medium may lead to a counterintuitive phenomenon of omnidirectional bending-to-normal refraction [S. Feng, Phys. Rev. Lett. 108, 193904 (2012), 10.1103/PhysRevLett.108.193904], which offers a fabulous strategy for energy collimation and energy harvesting. Here, in the scope of effective medium theory, we systematically investigate two simple metamaterial configurations, i.e., metal-dielectric-layered structures and the wire medium, to explore the possibility of fulfilling the conditions of such an anisotropic lossy ENZ medium by playing with materials' parameters. Both realistic metamaterial structures and their effective medium equivalences have been numerically simulated, and the results are in excellent agreement with each other. Our study provides clear guidance and therefore paves the way towards the search for proper designs of anisotropic metamaterials for a decent effect of energy collimation and wave-front manipulation.

  15. Hydromechanical Properties at Fermilab

    NASA Astrophysics Data System (ADS)

    Potier, C. E.; Volk, J.; Fratta, D.; Wang, H. F.

    2012-12-01

    Tiltmeter arrays in the MINOS Near Detector Hall at Fermilab record solid earth tides, large earthquakes, and displacements during a monthly sump pump test. The arrays and sump pit lie in the Galena Wise Lake Formation directly below the floor of the hall, which is approximately 100m underground. Beginning in November 2005 the MINOS-I tiltmeter array was deployed. This array was composed of seven Budker capacitive hydrostatic level sensors (HLS) located in MINOS Hall. Four 30 meter apart HLS ran in the north-south direction and three HLS 8 meters apart ran in the east-west direction. The north-south components of this array were removed in May 2012 due to anticipation of construction of a new cavern for the Off-Axis Neutrino Appearance Experiment (NOvA). A new MINOS-II tiltmeter array was then placed in the fire corridor adjacent to MINOS Hall and began recording in February 2012. The MINOS-II array consists of eight Budker capacitive HLS oriented approximately north-south along with the east-west sensors from the MINOS-I array. Earth-tide data are presented for this new location. We use the sump pump tests recorded by both arrays to characterize the geophysical and hydromechanical behavior of the Wise Lake Formation. There are two sump pumps that alternate to pump the water out of the MINOS Hall sump pit. Once a month a 20 to 30 minute backup sump pump test is run. The tiltmeter array records a response from this test. Five minutes after the test is started tilt is generated, and once the test is complete the tiltmeters slowly equilibrate. Previously, the recorded tilt has been around 30 micrometers depending on the length of the sump pump test. A normal force solution gives expected tilts of less than one micrometer. The difference between these two is too large to be due to a difference in Young's modulus in a lab setting versus a field setting. The tiltmeter array will also record the mechanical unloading effect of the excavation of the NOvA cavern, along with

  16. Energy loss by resonance line photons in an absorbing medium

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Kunasz, P. B.

    1980-01-01

    The mean path length of photons undergoing repeated scatterings in media of large optical thickness is calculated from accurate numerical solutions of the transfer equation including the effect of frequency redistribution characteristic of combined Doppler and natural broadening. Energy loss by continuous absorption processes, such as ionization or dust absorption, is discussed, and asymptotic scaling laws for the energy loss, the mean path length, and the mean number of scatterings are inferred from the numerical data.

  17. Partial cross sections of helium satellites at medium photon energies

    SciTech Connect

    Wehlitz, R.; Sellin, I.A.; Hemmers, O.

    1997-04-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He{sup +}nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energy at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al.

  18. Search for first generation leptoquarks in proton-antiproton collisions at the center of mass energy = 1.96 TeV in the dielectron + dijet channel using the D0 detector at Fermilab

    SciTech Connect

    Fu, Shaohua

    2004-01-01

    We describe a search for first generation leptoquarks decaying into the eejj final state in $p\\bar{p}$ collisions at a center of mass energy of 1.96 TeV using the D0 detector at the Fermilab Tevatron. this search is based on data collected during 2002-2003 with an integrated luminosity of (130.4 =- 8.5) pb -1. Leptoquarks are assumed to be produced in pairs and to decay into an electron and a quark with a branching ration β. We observe no evidence for leptoquarks, and set an upper cross section limit of 0.086 pb at the 95% confidence level corresponding to a lower mass limit of 231 GeV/c2 for scalar leptoquarks when β = 1.

  19. Beam Trail Tracking at Fermilab

    SciTech Connect

    Nicklaus, Dennis J.; Carmichael, Linden Ralph; Neswold, Richard; Yuan, Zongwei

    2015-01-01

    We present a system for acquiring and sorting data from select devices depending on the destination of each particular beam pulse in the Fermilab accelerator chain. The 15 Hz beam that begins in the Fermilab ion source can be directed to a variety of additional accelerators, beam lines, beam dumps, and experiments. We have implemented a data acquisition system that senses the destination of each pulse and reads the appropriate beam intensity devices so that profiles of the beam can be stored and analysed for each type of beam trail. We envision utilizing this data long term to identify trends in the performance of the accelerators

  20. The Fermilab data storage infrastructure

    SciTech Connect

    Jon A Bakken et al.

    2003-02-06

    Fermilab, in collaboration with the DESY laboratory in Hamburg, Germany, has created a petabyte scale data storage infrastructure to meet the requirements of experiments to store and access large data sets. The Fermilab data storage infrastructure consists of the following major storage and data transfer components: Enstore mass storage system, DCache distributed data cache, ftp and Grid ftp for primarily external data transfers. This infrastructure provides a data throughput sufficient for transferring data from experiments' data acquisition systems. It also allows access to data in the Grid framework.

  1. Looking to the future: A Fermilab viewpoint

    SciTech Connect

    Montgomery, H.E.; /Fermilab

    2005-08-01

    This is a short paper summarizing a presentation of the evolution of the Fermilab program for the next five to ten years. Emphasis is given to the Fermilab accelerator complex, but external collaboration is emphasized.

  2. Significance of medium energy gamma ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1975-01-01

    Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

  3. The energy source of the interplanetary medium and the heliosphere

    NASA Technical Reports Server (NTRS)

    Parker, Eugene N.

    1987-01-01

    The activity of the interplanetary medium arises from occasional transient outbursts of the active corona and, for the most part, from the interaction of fast and slow streams in the solar wind. The basic driver is the heat input to the corona, both transient and steady. The fast streams issue from coronal holes where the heat input may be Alfven waves with root mean squared (rms) fluid velocities of nearly 100 km/sec or may be wholly or in part the waves refracted into the hole from neighboring active regions. If the latter, then the character of the wind from the coronal hole depends upon the proximity and vigor of active regions, with significant differences between the polar and low altitude solar wind. In any case, there is no observational support for any of these ideas, so that the primary cause of the wind from the Sun, as well as any other similar star is not without mystery. It is to be hoped that ground-based observations together with the input from the Solar Optical Telescope and the International Solar Polar Mission may in time succeed in clearing up some of the basic questions.

  4. Physics at an upgraded proton driver at Fermilab

    SciTech Connect

    Steve Geer

    2004-07-28

    The accelerator-based particle physics program in the US is entering a period of transition. This is particularly true at Fermilab which for more than two decades has been the home of the Tevatron Proton-Antiproton Collider, the World's highest energy hadron collider. In a few years time the energy frontier will move to the LHC at CERN. Hence, if an accelerator-based program is to survive at Fermilab, it must evolve. Fermilab is fortunate in that, in addition to hosting the Tevatron Collider, the laboratory also hosts the US accelerator-based neutrino program. The recent discovery that neutrino flavors oscillate has opened a new exciting world for us to explore, and has created an opportunity for the Fermilab accelerator complex to continue to address the cutting-edge questions of particle physics beyond the Tevatron Collider era. The presently foreseen neutrino oscillation experiments at Fermilab (MiniBooNE [1] and MINOS [2]) will enable the laboratory to begin contributing to the Global oscillation physics program in the near future, and will help us better understand the basic parameters describing the oscillations. However, this is only a first step. To be able to pin down all of the oscillation parameters, and hopefully make new discoveries along the way, we will need high statistics experiments, which will require a very intense neutrino beam, and one or more very massive detectors. In particular we will require new MW-scale primary proton beams and perhaps ultimately a Neutrino Factory [3]. Plans to upgrade the Fermilab Proton Driver are presently being developed [4]. The upgrade project would replace the Fermilab Booster with a new 8 GeV accelerator with 0.5-2 MW beam power, a factor of 15-60 more than the current Booster. It would also make the modifications needed to the Fermilab Main Injector (MI) to upgrade it to simultaneously provide 120 GeV beams of 2 MW. This would enable a factor of 5-10 increase in neutrino beam intensities at the MI, while also

  5. Bibliographic survey of medium energy inclusive reaction data

    SciTech Connect

    Arthur, E.D.; Madland, D.G.; McClellan, D.M.

    1986-04-01

    A bibliographic survey of inclusive reaction data (experimental and theoretical) for several projectile types having energies between 50 and 1000 MeV has been completed. Approximately one thousand references selected from this survey describe the current state of knowledge for particle-induced inclusive reaction data. The search covered data for the following projectiles: p, d, t, /sup 3/He, /sup 4/He, and lithium ions.

  6. Future hadron physics facilities at Fermilab

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2004-12-01

    Fermilab's hadron physics research continues in all its accelerator-based programs. These efforts will be identified, and the optimization of the Fermilab schedules for physics will be described. In addition to the immediate plans, the Fermilab Long Range Plan will be cited, and the status and potential role of a new proton source, the Proton Driver, is described.

  7. The FIFE Project at Fermilab

    SciTech Connect

    Box, D.; Boyd, J.; Di Benedetto, V.; Ding, P.; Dykstra, D.; Fattoruso, M.; Garzoglio, G.; Herner, K.; Levshina, T.; Kirby, M.; Kreymer, A.; Mazzacane, A.; Mengel, M.; Mhashilkar, P.; Podstavkov, V.; Retzke, K.; Sharma, N.

    2016-01-01

    The FabrIc for Frontier Experiments (FIFE) project is an initiative within the Fermilab Scientific Computing Division designed to steer the computing model for non-LHC Fermilab experiments across multiple physics areas. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying size, needs, and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of solutions for high throughput computing, data management, database access and collaboration management within an experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid compute sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including a common job submission service, software and reference data distribution through CVMFS repositories, flexible and robust data transfer clients, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken the leading role in defining the computing model for Fermilab experiments, aided in the design of experiments beyond those hosted at Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.

  8. The Holometer: A Fermilab Experiment

    ScienceCinema

    Chou, Aaron

    2016-07-12

    Do we live in a two-dimensional hologram? A group of Fermilab scientists has designed an experiment to find out. It’s called the Holometer, and this video gives you a behind-the-scenes look at the device that could change the way we see the universe.

  9. Future hadron physics at Fermilab

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2005-09-01

    Today, hadron physics research occurs at Fermilab as parts of broader experimental programs. This is very likely to be the case in the future. Thus, much of this presentation focuses on our vision of that future--a future aimed at making Fermilab the host laboratory for the International Linear Collider (ILC). Given the uncertainties associated with the ILC--the level of needed R&D, the ILC costs, and the timing--Fermilab is also preparing for other program choices. I will describe these latter efforts, efforts focused on a Proton Driver to increase the numbers of protons available for experiments. As examples of the hadron physics which will be coming from Fermilab, I summarize three experiments: MIPP/E907 which is running currently, and MINERvA and Drell-Yan/E906 which are scheduled for future running periods. Hadron physics coming from the Tevatron Collider program will be summarized by Arthur Maciel in another talk at Hadron05.

  10. The Holometer: A Fermilab Experiment

    SciTech Connect

    Chou, Aaron

    2015-12-16

    Do we live in a two-dimensional hologram? A group of Fermilab scientists has designed an experiment to find out. It’s called the Holometer, and this video gives you a behind-the-scenes look at the device that could change the way we see the universe.

  11. Energy performance of medium-sized healthcare buildings in Victoria, Australia- a case study.

    PubMed

    Rajagopalan, Priyadarsini; Elkadi, Hisham

    2014-01-01

    This paper investigates the energy performance of three medium-sized healthcare buildings in Victoria, Australia, that operate only during the daytime. The aim is to provide preliminary understanding of energy consumption in this particular typology in Australia in relation to the available benchmarks. This paper also identifies the differences of energy consumption between different functional areas within medium health facilities. Building features and operational characteristics contributing to the variations in healthcare energy performance are discussed. The total annual energy consumption data ranging from 167-306 kWh/m(2) or 42-72 kWh/m(3) were compared against international data from various climatic zones. Some of the drivers of energy consumption were determined and potentials for energy and water conservation were identified. Comparison with international standards shows a possibility to achieve lower energy consumption in Victorian healthcare buildings.

  12. Energy trapping and shock disintegration in a composite granular medium.

    PubMed

    Daraio, C; Nesterenko, V F; Herbold, E B; Jin, S

    2006-02-10

    We report the first experimental observation of impulse confinement and the disintegration of shock and solitary waves in one-dimensional strongly nonlinear composite granular materials. The chains consist of alternating ensembles of beads with high and low elastic moduli (more than 2 orders of magnitude difference) of different masses. The trapped energy is contained within the "softer" sections of the composite chain and is slowly released in the form of weak, separated pulses over an extended period of time. This effect is enhanced by using a specific group assembly and precompression.

  13. Feasibility of a medium-size central cogenerated energy facility, energy management memorandum

    NASA Astrophysics Data System (ADS)

    Porter, R. W.

    1982-09-01

    The thermal-economic feasibility was studied of a medium-size central cogenerated energy facility designed to serve five varied industries. Generation options included one dual-fuel diesel and one gas turbine, both with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired-boiler cases, also low-sulphur coal and municipal refuse. The fired-boiler cogeneration systems employed back-pressure steam turbines. For coal and refuse, the option of steam only without cogeneration was also assessed. The refuse-fired cases utilized modular incinerators. The options provided for a wide range of steam and electrical capacities. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which could be displaced was assumed sold to Commonwealth Edison Company under PURPA (Public Utility Regulator Policies Act). The facility was assumed operated by a mutually owned corporation formed by the cogenerated power users. The economic analysis was predicted on currently applicable energy-investment tax credits and accelerated depreciation for a January 1985 startup date. Based on 100% equity financing, the results indicated that the best alternative was the modular-incinerator cogeneration system.

  14. Properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei

    SciTech Connect

    Gorelik, M. L. Shlomo, Sh. Tulupov, B. A. Urin, M. H.

    2015-07-15

    The recently developed particle-hole dispersive optical model is applied to describe properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. In particular, the double transition density averaged over the energy of the isoscalar monopole excitations is considered for {sup 208}Pb in a wide energy interval, which includes the isoscalar giant monopole resonance and its overtone. The energy-averaged strength functions of these resonances are also analyzed.

  15. Integrable RCS as a proposed replacement for Fermilab Booster

    NASA Astrophysics Data System (ADS)

    Eldred, Jeffrey; Valishev, Alexander

    2017-03-01

    Integrable optics is an innovation in particle accelerator design that potentially enables a greater betatron tune spread and damps collective instabilities. An integrable rapid-cycling synchrotron (RCS) would be an effective replacement for the Fermilab Booster, as part of a plan to reach multi-MW beam power at 120 GeV for the Fermilab high-energy neutrino program. We provide an example integrable lattice with features of a modern RCS - dispersion-free drifts, low momentum compaction factor, superperiodicity, chromaticity correction, bounded beta functions, and separate-function magnets.

  16. Measurements of the longitudinal beam parameters in the Fermilab Linac

    SciTech Connect

    Popovic, M.; Junck, K.; Kroc, T.; Mccrory, E.; Ostroumov, P.

    1994-08-01

    The Fermilab Linac Upgrade has increased the energy of the H{sup {minus}} linac from 201 to 401.5 MeV. This is achieved by replacing the last four 201.24 MHz drift-tube linac cavities with seven 804.96 MHz side-coupled cavity modules. Each accelerator module is powered with a 12 MW klystron-based power supply. The purpose of this report is to present a body of representative methods and data used to characterize longitudinal properties of the beam after each accelerating tank and module. These various methods proved useful in the commissioning of the Fermilab Linac Upgrade.

  17. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  18. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  19. QA (quality assurance) at Fermilab; the hermeneutics of NQA-1

    SciTech Connect

    Bodnarczuk, M.

    1988-06-01

    This paper opens with a brief overview of the purpose of Fermilab and a historical synopsis of the development and current status of quality assurance (QA) at the Laboratory. The paper subsequently addresses some of the more important aspects of interpreting the national standard ANSI/ASME NQA-1 in pure research environments like Fermilab. Highlights of this discussion include, what is hermeneutics and why are hermeneutical considerations relevant for QA, a critical analysis of NQA-1 focussing on teleological aspects of the standard, a description of the hermeneutical approach to NQA-1 used at Fermilab which attempts to capture the true intents of the document without violating the deeply ingrained traditions of quality standards and peer review that have been foundational to the overall success of the paradigms of high-energy physics.

  20. Search for medium-energy gamma-ray pulsars

    SciTech Connect

    Sweeney, W.E. Jr.

    1987-01-01

    Results are presented from a search for pulsed gamma rays from four radio pulsars, chosen for their interest to gamma-ray astronomers in previous studies. The data set used for the search consists of gamma-ray events at energies of 1-30 MeV, detected during a 40-hour balloon flight of the UCR double Compton scatter telescope launched at the National Scientific Balloon Facility in Palestine, Texas, USA on September 30, 1978. No statistically significant signals were detected from any of the pulsars. Three sigma upper limits to pulsed 1-30 MeV gamma ray flux from PSR 0950+08, PSR 1822+09, PSR 1929+10, and PSR 1953+29 are presented. Two complete exposures to PSR 0950+08 were obtained. The reported tentative detection of 1-20 MeV gamma rays from PSR 0950+08 is not confirmed.

  1. Fermilab Tevatron quadrupoles

    SciTech Connect

    Cooper, W.E.; Fisk, H.E.; Gross, D.A.; Lundy, R.A.; Schmidt, E.E.; Turkot, F.

    1983-03-01

    Details on the design, construction, and performance tests of Energy Saver/Doubler quadrupoles are presented along with recent data from the test of a special high gradient low beta prototype quadrupole.

  2. Time-domain electromagnetic energy in a frequency-dispersive left-handed medium

    NASA Astrophysics Data System (ADS)

    Cui, Tie Jun; Kong, Jin Au

    2004-11-01

    From Maxwell’s equations and the Poynting theorem, the time-domain electric and magnetic energy densities are generally defined in the frequency-dispersive media based on the conservation of energy. As a consequence, a general definition of electric and magnetic energy is proposed. Comparing with existing formulations of electric and magnetic energy in frequency-dispersive media, the new definition is more reasonable and is valid in any case. Using the new definition and staring from the equation of motion, we have shown rigorously that the total energy density and the individual electric and magnetic energy densities are always positive in a realistic artificial left-handed medium (LHM) [

    R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)
    ], which obeys actually the Lorentz medium model, although such a LHM has negative permittivity and negative permeability simultaneously in a certain frequency range. We have also shown that the conservation of energy is not violated in LHM. The earlier conclusions can be easily extended to the Drude medium model and the cold plasma medium model. Through an exact analysis of a one-dimensional transient current source radiating in LHM, numerical results are given to demonstrate that the work done by source, the power flowing outwards a surface, and the electric and magnetic energy stored in a volume are all positive in the time domain.

  3. Evaluation at the medium energy region for Pb-208 and Bi-209

    SciTech Connect

    Fukahori, Tokio; Pearlstein, S.

    1991-01-01

    Medium energy nuclear data in the 1--1000 MeV range is necessary to accelerator applications which include spallation neutron sources for radioactive waste treatment and accelerator shielding design, medical applications which include isotopes production and radiation therapy, and space applications. For the design of fission and fusion reactors, the nuclear data file for neutrons below 20 MeV is available and well evaluated. Evaluated nuclear data for protons and data in the medium energy region, however, have not been prepared completely. Evaluation in the medium energy region was performed using the theoretical calculation code ALICE-P or experimental data. In this paper, the evaluation of neutron and proton induced nuclear data for Pb-208 and Bi-209 has been performed using ALICE-P, empirical calculations and new systematics for the fission cross section. The evaluated data are compiled for possible inclusion in the ENDF/B-VI High Energy File. 204 refs., 51 figs., 9 tabs.

  4. Can the Abraham Light Momentum and Energy in a Medium Constitute a Lorentz Four-Vector?

    NASA Astrophysics Data System (ADS)

    Wang, Changbiao

    2013-08-01

    By analyzing the Einstein-box thought experiment with the principle of relativity, it is shown that Abraham's light momentum and energy in a medium cannot constitute a Lorentz four-vector, and they consequentially break global momentum and energy conservation laws. In contrast, Minkowski's momentum and energy always constitute a Lorentz four-vector no matter whether in a medium or in vacuum, and the Minkowski's momentum is the unique correct light momentum. A momentum-associated photon mass in a medium is exposed, which explains why only the Abraham's momentum is derived in the traditional "center-of-mass-energy" approach. The EM boundary-condition matching approach, combined with Einstein light-quantum hypothesis, is proposed to analyze this thought experiment, and it is found for the first time that only from Maxwell equations without resort to the relativity, the correctness of light momentum definitions cannot be identified. Optical pulling effect is studied as well.

  5. Medium modification of γ jets in high-energy heavy-ion collisions.

    PubMed

    Wang, Xin-Nian; Zhu, Yan

    2013-08-09

    Two puzzling features in the experimental study of jet quenching in central Pb+Pb collisions at the LHC are explained within a linearized Boltzmann transport model for jet propagation. A γ-tagged jet is found to lose about 15% of its initial energy while its azimuthal angle remains almost unchanged due to rapid cooling of the medium. The reconstructed jet fragmentation function is found to have some modest enhancement at both small and large fractional momenta as compared to that in the vacuum because of the increased contribution of leading particles to the reconstructed jet energy and induced gluon radiation and recoiled partons. A γ-tagged jet fragmentation function is proposed that is more sensitive to jet-medium interaction and the jet transport parameter in the medium. The effects of recoiled medium partons on the reconstructed jets are also discussed.

  6. Installation Progress at the PIP-II Injector Test at Fermilab

    SciTech Connect

    Baffes, C.; Alvarez, M.; Andrews, R.; Chen, A.; Czajkowski, J.; Derwent, P.; Edelen, J.; Hanna, B.; Hartsell, B.; Kendziora, K.; Mitchell, D.; Prost, L.; Scarpine, V.; Shemyakin, A.; Steimel, J.; Zuchnik, T.; Edelen, A.

    2016-10-04

    A CW-compatible, pulsed H- superconducting linac “PIP-II” is being planned to upgrade Fermilab's injection complex. To validate the front-end concept, a test acceler-ator (The PIP-II Injector Test, formerly known as "PXIE") is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV Radio Frequency Quadrupole (RFQ) capable of operation in Con-tinuous Wave (CW) mode, and a 10 m-long Medium En-ergy Beam Transport (MEBT). The paper will report on the installation of the RFQ and the first sections of the MEBT and related mechanical design considerations.

  7. Influence of medium chirality on electric dipole-dipole resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Rodriguez, Justo J.; Salam, A.

    2010-09-01

    Electric dipole-dipole resonance energy transfer taking place between two chromophores in an absorptive and dispersive chiral medium is studied. Quantized electromagnetic field operators in this environment are first obtained from the time-harmonic Maxwell equations and the Drude-Born-Fedorov equations. Second-order time-dependent perturbation theory and the Fermi Golden rule are used to calculate the transfer rate. A complicated dependence on the permittivity, permeability and chirality admittance of the medium is found. In the near-zone, the rate is amplified in a medium with negligible absorption comprised of one enantiomer relative to that in a racemic mixture.

  8. Fermilab Recycler Ring: Technical design report. Revision 1.1

    SciTech Connect

    Jackson, G.

    1996-07-01

    This report describes the technical design of the Fermilab Recycler Ring. The purpose of the Recycler is to augment the luminosity increase anticipated from the implementation of the Fermi III upgrade project, which has as its main component the Fermilab Main Injector construction project. The Recycler is a fixed 8 GeV kinetic energy storage ring. It is located in the Main Injector tunnel directly above the Main Injector beamline, near the ceiling. The construction schedule calls for the installation of the Recycler ring before the installation shutdown of the Main Injector. This aggressive construction schedule is made possible by the exclusive use of permanent magnets in the ring lattice, removing the need for expensive conventional iron/copper magnet construction along with the related power supplies, cooling water system, and electrical safety systems. The location, operating energy, and mode of construction are chosen to minimize operational impacts on both Fermilab`s ongoing High Energy Physics program and the Main Injector construction project.

  9. A disoriented chiral condensate search at the Fermilab Tevatron

    SciTech Connect

    Convery, Mary Elizabeth

    1997-05-01

    MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. Relativistic quantum field theory treats the vacuum as a medium, with bulk properties characterized by long-range order parameters. This has led to suggestions that regions of "disoriented vacuum" might be formed in high-energy collision processes. In particular, the approximate chiral symmetry of QCD could lead to regions of vacuum which have chiral order parameters disoriented to directions which have non-zero isospin, i.e. disoriented chiral condensates. A signature of DCC is the resulting distribution of the fraction of produced pions which are neutral. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC`s) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on pseudorapidity η ≈ 4. An electromagnetic calorimeter was located behind the MWPC telescope, and hadronic calorimeters and scintillator were located in the upstream anti-proton direction to tag diffractive events.

  10. Intensity Frontier Computing at Fermilab

    SciTech Connect

    Wolbers, Stephen

    2013-10-11

    The Intensity Frontier (IF) experiments at Fermilab require computing, software, data handling, and infrastructure development for detector and beamline design and to extract maximum scientific output from the data. The emphasis of computing at Fermilab for many years has been on the Tevatron collider Run 2 experiments and CMS. Using the knowledge and experience gained from those experiments as well as new computing developments, preparations for computing for IF experiments are ramping up. There are many challenges in IF computing. These include event generators and detector simulation, beamline simulation, detector design and optimization, data acquisition, data handling, data analysis, and all of the associated services required. In this presentation the computing challenges and requirements will be described and the approaches being taken to address them will be shown.

  11. Transport of low- and medium-energy electron and ion beams in seawater and its vapors

    NASA Technical Reports Server (NTRS)

    Erwin, Daniel A.; Kunc, Joseph A.

    1988-01-01

    A general theory of stopping power for electrons and ions in a target medium (gas, liquid, or thin solid foil) containing neutral as well as positive and negative ions is developed. The approach is quite accurate in the low- and medium-energy range (less than 1 MeV), where the Bethe stopping-power cross section is inaccurate. The energy transfer during individual collisions is treated by the binary-encounter approximation. The theory is applied to determine the stopping power of seawater, whose major components are H2O molecules and Na(+) and Cl(-) ions. The stopping-power cross sections for low- and medium-energy protons in water show excellent agreement with existing measurements.

  12. Strategies Used in "Fermilab LInC Online" To Develop Leadership Teams That Integrate Technology To Support Constructivist Learning.

    ERIC Educational Resources Information Center

    Mengel, Laura; Gatz, Sharon; Meehan, Stephen

    Fermilab is a U.S. Department of Energy national laboratory for research exploring the fundamental nature of matter and energy. This paper describes the Fermilab LInC (Leadership Institute Integrating Internet, Instruction and Curriculum) Online program and the strategies used over the past six years to develop leadership teams that can: (1)…

  13. Detection of Medium-Sized Polycyclic Aromatic Hydrocarbons via Fluorescence Energy Transfer

    PubMed Central

    Serio, Nicole; Prignano, Lindsey; Peters, Sean; Levine, Mindy

    2015-01-01

    Reported herein is the use of proximity-induced non-covalent energy transfer for the detection of medium-sized polycyclic aromatic hydrocarbons (PAHs). This energy transfer occurs within the cavity of γ-cyclodextrin in various aqueous environments, including human plasma and coconut water. Highly efficient energy transfer was observed, and the efficiency of the energy transfer is independent of the concentration of γ-cyclodextrin used, demonstrating the importance of hydrophobic binding in facilitating such energy transfer. Low limits of detection were also observed for many of the PAHs investigated, which is promising for the development of fluorescence-based detection schemes. PMID:25821390

  14. Solitonic transport of energy-momentum in a deformed magnetic medium

    NASA Astrophysics Data System (ADS)

    Kavitha, L.; Saravanan, M.; Akila, N.; Bhuvaneswari, S.; Gopi, D.

    2012-03-01

    The energy-momentum transport phenomenon between interacting spins in a deformed ferromagnetic medium is investigated theoretically. The spin dynamics of a one-dimensional (1D) classical continuum Heisenberg ferromagnetic spin system in the presence of varying exchange interactions is considered. The state of the 1D continuum spin system with varying exchange interactions is mapped onto a moving helical space curve in E3. The results are recast in conjunction with the evolution of energy and current densities of the deformed ferromagnetic medium, through a knowledge of the underlying geometry of this system. A set of soliton solutions for energy and current densities is constructed by employing the sine-cosine method coupled with symbolic computation. The evolution and propagation of solitonic energy-momentum transport under the influence of competing linear and nonlinear inhomogeneities have been analyzed briefly.

  15. Analysis of energy-efficiency investment decisions by small and medium-sized manufacturers

    SciTech Connect

    Woodruff, M.G.; Roop, J.M.; Seely, H.E.; Muller, M.R.; Jones, T.W.; Dowd, J.

    1996-05-01

    This report highlights the results of a comprehensive analysis of investment decisions regarding energy-efficiency measures at small and medium-sized manufacturing plants. The analysis is based on the experiences of companies participating in the DOE Industrial Assessment Center (IAC) program. The IAC program is a network of university-based centers that provides energy and waste assessments to small and medium-sized manufacturing plants. The purposes of this report are to do the following: (1) Examine what the data collected reveal about patterns of implementation of recommended energy- efficiency measures, (2) Evaluate how various factors, such as the type of industry, the characteristics of the manufacturing plants, or the cost of the measures, appear to effect implementation rates, (3) Examine reasons why recommended energy-saving measures are accepted or rejected.

  16. Low-energy cosmic ray protons from nuclear interactions of cosmic rays with the interstellar medium.

    NASA Technical Reports Server (NTRS)

    Wang, H. T.

    1973-01-01

    The intensity of low-energy (less than 100 MeV) protons from nuclear interactions of higher-energy (above 100 MeV) cosmic rays with the interstellar medium is calculated. The resultant intensity in the 10- to 100-MeV range is larger by a factor of 3-5 than the observed proton intensity near earth. The calculated intensity from nuclear interactions constitutes a lower limit on the actual proton intensity in interstellar space.

  17. Rebuild of Capture Cavity 1 at Fermilab

    SciTech Connect

    Harms, E.; Arkan, T.; Borissov, E.; Dhanaraj, N.; Hocker, A.; Orlov, Y.; Peterson, T.; Premo, K.

    2014-01-01

    The front end of the proposed Advanced Superconducting Test Accelerator at Fermilab employs two single cavity cryomodules, known as 'Capture Cavity 1' and 'Capture Cavity 2', for the first stage of acceleration. Capture Cavity 1 was previously used as the accelerating structure for the A0 Photoinjector to a peak energy of ~14 MeV. In its new location a gradient of ~25 MV/m is required. This has necessitated a major rebuild of the cryomodule including replacement of the cavity with a higher gradient one. Retrofitting the cavity and making upgrades to the module required significant redesign. The design choices and their rationale, summary of the rebuild, and early test results are presented.

  18. Full Discharges in Fermilab's Electron Cooler

    NASA Astrophysics Data System (ADS)

    Prost, L. R.; Shemyakin, A.

    2006-03-01

    Fermilab's 4.3 MeV electron cooler is based on an electrostatic accelerator, which generates a DC electron beam in an energy recovery mode. Effective cooling of the antiprotons in the Recycler requires that the beam remains stable for hours. While short beam interruptions do not deteriorate the performance of the Recycler ring, the beam may provoke full discharges in the accelerator, which significantly affect the duty factor of the machine as well as the reliability of various components. Although cooling of 8 GeV antiprotons has been successfully achieved, full discharges still occur in the current setup. The paper describes factors leading to full discharges and ways to prevent them.

  19. Development of Cogging at the Fermilab Booster

    SciTech Connect

    Seiya, K.; Chaurize, S.; Drennan, C.; Pellico, W.; Triplett, A. K.; Waller, A.

    2015-01-30

    The development of magnetic cogging is part of the Fermilab Booster upgrade within the Proton Improvement Plan (PIP). The Booster is going to send 2.25E17 protons/hour which is almost double the present flux, 1.4E17 protons/hour to the Main Injector (MI) and Recycler (RR). The extraction kicker gap has to synchronize to the MI and RR injection bucket in order to avoid a beam loss at the rising edge of the extraction and injection kickers. Magnetic cogging is able to control the revolution frequency and the position of the gap using the magnetic field from dipole correctors while radial position feedback keeps the beam at the central orbit. The new cogging is expected to reduce beam loss due to the orbit changes and reduce beam energy loss when the gap is created. The progress of the magnetic cogging system development is going to be discussed in this paper.

  20. Standard beam PWC for Fermilab

    SciTech Connect

    Fenker, H.

    1983-02-01

    As one of its projects the Fermilab Experimental Areas Department has been designed and tested a relatively small proportional wire chamber for use in the secondary beam lines. It is intended to supplement the variety of detectors known in the vernacular as SWICS that are used to obtain profiles for beam tuning. The new detector, described in this report, operates in the limited proportional mode and allows experimenters to use a standard, lab supported device for associating trajectories of individual beam particles with events triggering their own experiment's apparatus. A completed triple plane module is shown.

  1. Energy loss measurements for mass-14 ions using a patterned stopping medium on a PIN diode

    NASA Astrophysics Data System (ADS)

    Timmers, Heiko; Stenström, Kristina; Graczyk, Mariusz; Whitlow, Harry J.

    2004-06-01

    A new experimental technique to measure stopping forces for swift heavy ions was tested and has been found effective. A commercial PIN photodiode was coated with a patterned stopping medium of gold. This allowed the simultaneous detection of stopped- and reference-ions of 14C and 14N in the energy range E=6.4-10.4 MeV. The stopping forces of these ions in gold have been measured with excellent accuracy. They are up to 10% larger than expected from present tabulations. It would be straightforward to use the same modified PIN diode in other experiments providing direct comparisons for an identical stopping medium.

  2. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Prohaska, R.; Duran, A.; Ragatz, A.; Kelly, K.

    2015-05-03

    With funding from the U.S. Department of Energy’s Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2011, NREL launched a large-scale performance evaluation of medium-duty electric vehicles. With support from vehicle manufacturers Smith and Navistar, NREL research focused on characterizing vehicle operation and drive cycles for electric delivery vehicles operating in commercial service across the nation.

  3. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    SciTech Connect

    Bonnema, Eric; Leach, Matt; Pless, Shanti

    2013-06-05

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

  4. Technical Support Document: Development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings - 50% Energy Savings

    SciTech Connect

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Medium to Big Box Retail Buildings: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-MBBR) ASHRAE et al. (2011b). The AEDG-MBBR is intended to provide recommendations for achieving 50% whole-building energy savings in retail stores over levels achieved by following ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard 90.1-2004) (ASHRAE 2004b). The AEDG-MBBR was developed in collaboration with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IES), the U.S. Green Building Council (USGBC), and the U.S. Department of Energy.

  5. Energy Dissipation of Energetic Electrons in the Inhomogeneous Intergalactic Medium during the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Kaurov, Alexander A.

    2016-06-01

    We explore a time-dependent energy dissipation of the energetic electrons in the inhomogeneous intergalactic medium (IGM) during the epoch of cosmic reionization. In addition to the atomic processes, we take into account the inverse Compton (IC) scattering of the electrons on the cosmic microwave background photons, which is the dominant channel of energy loss for electrons with energies above a few MeV. We show that: (1) the effect on the IGM has both local (atomic processes) and non-local (IC radiation) components; (2) the energy distribution between hydrogen and helium ionizations depends on the initial energy of an electron; (3) the local baryon overdensity significantly affects the fractions of energy distributed in each channel; and (4) the relativistic effect of the atomic cross-section becomes important during the epoch of cosmic reionization. We release our code as open source for further modification by the community.

  6. System engineering and energy costs of small and medium wind turbines

    SciTech Connect

    Tu, P K.C.

    1985-07-01

    A preliminary system-level, computational model was developed to allow broad assessment and optimization of wind turbine design and costs analysis at The Wind Energy Research Center, Solar Energy Research Institute under contract to the US Department of Energy (DOE). This paper briefly describes the basic principles used in the model for energy capture and cost-of-energy (COE), and demonstrates the model's usefulness in determining the effects of rotor and system design modifications. The model's utilization for conducting parametric studies and defining the energy cost of small and medium-sized wind turbines is also shown. Topics of interest to wind turbine engineers and designers include the effects on rotor performance of airfoil geometry, blade pitch angle setting, and the system RPM schedule, etc.

  7. Tunneling beyond the Fermilab site

    SciTech Connect

    Baker, S.; Elwyn, A.; Lach, J.; Read, A.

    1983-07-01

    An accelerator that crosses the Fermilab site boundary must have a minimum effect on the surrounding environment and the people residing in the area. Unobstructed public access should be allowed above the ring except in relatively few areas such as the injection, dump, and experimental regions. The accelerator should be a benign and unobtrusive neighbor not only when it is completed but also in the construction period. For these reasons underground tunneling for all or most of the ring seems attractive. In this note we look into some questions raised by tunneling beyond the Fermilab site. Most of our discussion is of general applicability. However, we will use as examples two specific ring configurations. The examples have not been optimized from the point of view of physics output or accelerator technology but are just specific examples which allow us to study questions of tunneling. One is a ring of 5 km radius (5 TeV) tangent to the Tevatron and entirely east of the Fox River and fed by a beam from the Tevatron which crosses under the river. We assume that each of these machines will have 100 beam fills per year and we scale the maximum intensities with the accelerator radii. Thus we assume that there will be 1.0 E14 protons in each beam of the 20 TeV machine and 2.5 E13 for the 5 TeV machine.

  8. Extruding plastic scintillator at Fermilab

    SciTech Connect

    Anna Pla-Dalmau; Alan D. Bross; Victor V. Rykalin

    2003-10-31

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R&D program at Fermilab.

  9. Results on the production and detection of $W$ bosons with the Collider Detector at Fermilab in $p\\bar{p}$ collisions at a center - of - mass energy of 1.96 TeV

    SciTech Connect

    Stadie, Hartmut

    2003-07-01

    We studied W boson production and decay with the Collider Detector at Fermilab, CDF, in proton-antiproton collisions with a center-of-mass energy of 1.96 TeV. The first (55.5 ± 3.3) pb-1 of data collected since the start of Run II in summer 2001 were used. We limited ourselves to the decay of the W boson into an electron and neutrino pair. As a good electron identification is crucial to disentangle the signal from the large number of QCD events, we reevaluated the efficiency and purity of the standard CDF electron identification using tight cuts and compared it with a method based on an Artificial Neural Net. The net was trained with a signal and background sample obtained from data and offered a better discrimination power than the standard method. Using the standard tight cuts and two different cuts on the net output of the Artificial Neural Net, we measured the W boson cross-section in three analyses. To estimate the amount of background from fake electrons in the data samples, we created a background sample by selecting events with an electron candidate that has a small electron probability. This sample and a signal Monte Carlo sample were fitted to the missing transverse energy distribution of the data in order to obtain the background fraction of the data sample. The cross-section times branching ratio result for the tight cuts analysis is (2.74 ± 0.02(stat) ± 0.12(syst) ± 0.16(lum)) nb and one result for an analysis cutting on the net output is (2.76 ± 0.01(stat) ± 0.12(syst) ± 0.16(lum)) nb. The latter has a better statistical error due to the improved electron identification of the Artificial Neural Net. These results are in good agreement with the theoretical predictions and the previous Run II measurement.

  10. Physics at an upgraded Fermilab proton driver

    SciTech Connect

    Geer, S.; /Fermilab

    2005-07-01

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. Over the last few months a physics study has developed the physics case for the Fermilab Proton Driver. The potential physics opportunities are discussed.

  11. Search for top quark at Fermilab Collider

    SciTech Connect

    Sliwa, K.; The CDF Collaboration

    1991-10-01

    The status of a search for the top quark with Collider Detector at Fermilab (CDF), based on a data sample recorded during the 1988--1989 run is presented. The plans for the next Fermilab Collider run in 1992--1993 and the prospects of discovering the top quark are discussed. 19 refs., 4 figs., 2 tabs.

  12. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect

    W. Wester

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  13. Evolution of medium energy H and O ENAs during large storms

    NASA Astrophysics Data System (ADS)

    Valek, P. W.; Goldstein, J.; McComas, D. J.; Fok, M. H.; Mitchell, D. G.

    2013-12-01

    During large geomagnetic storms (Dst ≤ -100 nT) oxygen ions can be a significant component of the energetic particles of the inner magnetosphere. Until recently, there were no available global observations of the ring current's medium energy (<50 keV) oxygen population. Using observations from the Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) Energetic Neutral Atom (ENA) imagers we present a study of nine large storms of solar cycle 24 as a function of storm phase. For these 9 storms we observe that H and O ENA fluxes and their temperatures increase in tandem during each storm's initial phase. However, there is no increase in the O/H ratio in the inner magnetosphere until the storms main phase. Also seen during the main phase is an energy dispersion with higher energy (32 keV) H ENAs seen before the arrival of O ENAs of the same energy. The O ENAs take longer to return to pre-storm levels during the recovery phases. This longer recovery time is because there is a larger difference between the storm-time and pre-storm O populations than the H population (i.e. there is always some pre-storm H in the inner magnetosphere, but effectively no O pre-storm). These results imply that medium-energy O ENAs evolve over long time scales (hours to days) as opposed to the shorter substorm time-scales of the higher energy (> 52 keV) O ENAs.

  14. Effective-medium theory for energy velocity in one-dimensional finite lossless photonic crystals.

    PubMed

    Torrese, Guido; Taylor, Jason; Hall, Trevor J; Mégret, Patrice

    2006-06-01

    The effective medium theory is a useful approach for investigating the electromagnetic wave propagation in periodic multilayer slabs. It allows accurate computation of transmission and reflection spectra as well as of phase and group velocities. In this paper we derive an exact analytical expression for the energy velocity of a one-dimensional finite photonic crystal based on the effective medium approach. It accounts for the multiple reflections within the structure which results in the characteristic oscillations of the transmission spectrum. Our analytical expression holds for an arbitrary refractive index contrast and goes beyond the limits of the standard homogenization method. In order to validate our approach, results obtained by using the all-frequency effective energy velocity have been compared to those obtained using the transfer matrix method.

  15. Physics at the Fermilab Tevatron Proton-Antiproton Collider

    SciTech Connect

    Geer, S.

    1994-08-01

    These lectures discuss a selection of QCD and Electroweak results from the CDF and D0 experiments at the Fermilab Tevatron Proton-Antiproton Collider. Results are presently based on data samples of about 20 pb{sup {minus}1} at a center-of-mass energy of 1.8 TeV. Results discussed include jet production, direct photon production, W mass and width measurements, the triboson coupling, and most exciting of all, evidence for top quark production.

  16. Medium effects on intermediate-energy one-nucleon removal cross sections

    SciTech Connect

    Flavigny, F.; Obertelli, A.; Vidana, I.

    2009-06-15

    The influence of Pauli-blocking medium effects on intermediate-energy one-nucleon removal cross sections for sd-shell nuclei have been investigated using density-dependent nucleon-nucleon interaction cross sections within the S-matrix formalism under the Glauber approximation. All considered prescriptions for the density dependence result in a reduction of the one-nucleon removal cross sections. The effect is smaller than 20% for incident energies between 50 and 100 MeV/nucleon, and smaller than a few percent above 200 MeV/nucleon.

  17. The Fermilab physics class library

    SciTech Connect

    Fischler, M.; Brown, W.; Gaines, I.; Kennedy, R.D.; Marraffino, J.; Michelotti, L.; Sexton-Kennedy, E.; Yoh, J.; Adams, D.; Paterno, M.

    1997-02-01

    The Fermilab Physics Class Library Task Force has been formed to supply classes and utilities, primarily in support of efforts by CDF and D0 toward using C++. A collection of libraries and tools will be assembled via development by the task force, collaboration with other HEP developers, and acquisition of existing modules. The main emphasis is on a kit of resources which physics coders can incorporate into their programs, with confidence in robustness and correct behavior. The task force is drawn from CDF, DO and the FNAL Computing and Beams Divisions. Modules-containers, linear algebra, histograms, etc.-have been assigned priority, based on immediate Run II coding activity, and will be available at times ranging from now to late May.

  18. Title I Design Report: Fermilab Linac Upgrade

    SciTech Connect

    Fermilab,

    1990-02-01

    The Fermilab Linac Upgrade Project is motivated by the requirement to increase Collider luminosity which will increase the physics discovery potential of the Tevatron Collider. The Linac Upgrade is one of several steps which will increase the Collider luminosity. The basic accelerator physics motivation for the project is the following chain of logic. The existing Main Ring Accelerator has a fixed, relatively small admittance for 8 GeV protons injected from the Booster Accelerator. While it is demonstrably p088ible to increase the number of protons accelerated in the Booster, space charge effects at injection into the Booster from the Linac increase the emittance of the beam delivered from the Booster to the Main Ring beyond the available admittance of the Main Ring. An increase in the energy of the protons injected into the Booster, however, will reduce the emittance growth due to the space charge effects at injection. Therefore, for a given admittance into the Main Ring, a greater number of protons will be accelerated in the Booster with a matching emittance if the injection energy is raised. The goal of the Linac Upgrade is to double the output energy of the Linac from 200MeV to 400MeV.

  19. Bob Wilson and The Birth of Fermilab

    ScienceCinema

    Edwin L. Goldwasser

    2016-07-12

    In the 1960’s the Lawrence Berkeley Laboratory (then The Lawrence Radiation Laboratory) submitted two proposals to build the next high energy physics research laboratory. The first included a 200 GeV accelerator and associated experimental facilities. The cost was $350 million. The Bureau of the Budget rejected that proposal as a “budget buster”. It ruled that $250 million was the maximum that could be accepted. The second proposal was for a reduced scope laboratory that met the Bureau of the Budget’s cost limitation, but it was for a lower energy accelerator and somewhat smaller and fewer experimental facilities. The powerful Congressional Joint Committee on Atomic Energy rejected the reduced scope proposal as inadequate to provide physics results of sufficient interest to justify the cost. It was then that Bob Wilson came forth with a third proposal, coping with that “Catch 22” and leading to the creation of Fermilab. How he did it will be the subject of this colloquium.

  20. Channeling Radiation Experiment at Fermilab ASTA

    SciTech Connect

    Mihalcea, D.; Edstrom, D. R.; Piot, P.; Rush, W.; Sen, T.

    2015-06-01

    Electron beams with moderate energy ranging from 4 to 50 MeV can be used to produce x-rays through the Channeling Radiation (CR) mechanism. Typically, the xray spectrum from these sources extends up to 140 keV and this range covers the demand for most practical applications. The parameters of the electron beam determine the spectral brilliance of the x-ray source. The electron beam produced at the Fermilab new facility Advanced Superconducting Test Accelerator (ASTA) meets the requirements to assemble an experimental high brilliance CR xray source. In the first stage of the experiment the energy of the beam is 20 MeV and due to the very low emittance ($\\approx 100$ nm ) at low bunch charge (20 pC) the expected average brilliance of the x-ray source is about $10^9$ photons/[s- $(mm-mrad)^2$-0.1% BW]. In the second stage of the experiment the beam energy will be increased to 50 MeV and consequently the average brilliance will increase by a factor of five. Also, the x-ray spectrum will extend from about 30 keV to 140 keV

  1. The LArIAT experiment at Fermilab

    SciTech Connect

    Nutini, Irene

    2016-03-01

    The LArIAT experiment at Fermilab is part of the International Neutrino program recently approved in the US. LArIAT aims to measure the main features of charged particles interactions in argon in the energy range (0.2 - 2.0 GeV) corresponding to the energy spectrum of the same particles when produced in a neutrino-argon interaction (neutrino energies of few GeV) typical of the short- and long-baseline neutrino beams of the Neutrino Program. Data collected from the 1st Run are being analyzed for both Physics studies and a technical characterization of the scintillation light collection system. Furthermore, two analysis topics are reported: the method developed for charged pion cross section measurement, based on the specific features of the LArTPC, and the development and test of the LArIAT custom-designed cold front-end electronics for SiPM devices to collect LAr scintillation light.

  2. The LArIAT experiment at Fermilab

    DOE PAGES

    Nutini, Irene

    2016-03-01

    The LArIAT experiment at Fermilab is part of the International Neutrino program recently approved in the US. LArIAT aims to measure the main features of charged particles interactions in argon in the energy range (0.2 - 2.0 GeV) corresponding to the energy spectrum of the same particles when produced in a neutrino-argon interaction (neutrino energies of few GeV) typical of the short- and long-baseline neutrino beams of the Neutrino Program. Data collected from the 1st Run are being analyzed for both Physics studies and a technical characterization of the scintillation light collection system. Furthermore, two analysis topics are reported: themore » method developed for charged pion cross section measurement, based on the specific features of the LArTPC, and the development and test of the LArIAT custom-designed cold front-end electronics for SiPM devices to collect LAr scintillation light.« less

  3. A search for the higgs boson and a search for dark-matter particle with jets and missing transverse energy at collider detector at Fermilab

    SciTech Connect

    Liu, Qiuguang

    2013-05-01

    Finding the standard model Higgs boson and discovering beyond-standard model physics phenomena have been the most important goals for the high-energy physics in the last decades. In this thesis, we present two such searches. First is the search for the low mass standard model Higgs boson produced in association with a vector boson; second is the rst search for a dark-matter candidate (D) produced in association with a top quark (t) in particle colliders. We search in events with energetic jets and large missing transverse energy { a signature characterized by complicated backgrounds { in data collected by the CDF detector with proton-antiproton collisions at p s = 1:96 TeV. We discuss the techniques that have been developed for background modeling, for discriminating signal from background, and for reducing background resulting from detector e ects. In the Higgs search, we report the 95% con dence level upper limits on the pro- duction cross section across masses of 90 to 150 GeV/c2. The expected limits are improved by an average of 14% relative to the previous analysis. The Large Hadron Collider experiments reported a Higgs-like particle with mass of 125 GeV/c2 by study- ing the data collected in year 2011/12. At a Higgs boson mass of 125 GeV/c2, our observed (expected) limit is 3.06 (3.33) times the standard model prediction, corre- sponding to one of the most sensitive searches to date in this nal state. In the dark matter search, we nd the data are consistent with the standard model prediction, thus set 95% con dence level upper limits on the cross section of the process p p ! t + D as a function of the mass of the dark-matter candidate. The xviii upper limits are approximately 0.5 pb for a dark-matter particle with masses in the range of 0 􀀀 150 GeV/c2.

  4. RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab

    SciTech Connect

    Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan; Huang, Shichun; Huang, Yulu; Wang, Haipeng; Wang, S

    2015-09-01

    JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reduce the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.

  5. Development of a Telescope for Medium-Energy Gamma-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Sunter, Stan

    2012-01-01

    Since the launch of AGILE and FERMI, the scientific progress in high-energy (Eg greater than approximately 200 MeV) gamma-ray science has been, and will continue to be dramatic. Both of these telescopes cover a broad energy range from approximately 20 MeV to greater than 10 GeV. However, neither instrument is optimized for observations below approximately 200 MeV where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. Hence, while significant progress from current observations is expected, there will nonetheless remain a significant sensitivity gap in the medium-energy (approximately 0.1-200 MeV) regime; the lower end of this range remains largely unexplored whereas the upper end will allow comparison with FERMI data. Tapping into this unexplored regime requires significant improvements in sensitivity. A major emphasis of modern detector development, with the goal of providing significant improvements in sensitivity in the medium-energy regime, focuses on high-resolution electron tracking. The Three-Dimensional Track Imager (3-DTI) technology being developed at GSFC provides high resolution tracking of the electron-positron pair from gamma-ray interactions from 5 to 200 MeV. The 3-DTI consists of a time projection chamber (TPC) and 2-D cross-strip microwell detector (MWD). The low-density and homogeneous design of the 3-DTI, offers unprecedented sensitivity by providing angular resolution near the kinematic limit. Electron tracking also enables measurement of gamma-ray polarization, a new tool to study astrophysical phenomenon. We describe the design, fabrication, and performance of a 30x30x30 cm3 3-DTI detector prototype of a medium-energy gamma-ray telescope.

  6. Development of a Telescope for Medium-Energy Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2010-01-01

    Since the launch of AGILE and FERMI, the scientific progress in high-energy (E(sub gamma) greater than approximately 200 MeV) gamma-ray science has been, and will continue to be dramatic. Both of these telescopes cover a broad energy range from approximately 20 MeV to greater than 10 GeV. However, neither instrument is optimized for observations below approximately 200 MeV where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. Hence, while significant progress from current observations is expected, there will nonetheless remain a significant sensitivity gap in the medium-energy (approximately 0.1-200 MeV) regime; the lower end of this range remains largely unexplored whereas the upper end will allow comparison with FERMI data. Tapping into this unexplored regime requires significant improvements in sensitivity. A major emphasis of modern detector development, with the goal of providing significant improvements in sensitivity in the medium-energy regime, focuses on high-resolution electron tracking. The Three-Dimensional Track Imager (3-DTI) technology being developed at GSFC provides high resolution tracking of the electron-positron pair from gamma-ray interactions from 5 to 200 MeV. The 3-DTI consists of a time projection chamber (TPC) and 2-D cross-strip microwell detector (MWD). The low-density and homogeneous design of the 3-DTI, offers unprecedented sensitivity by providing angular resolution near the kinematic limit. Electron tracking also enables measurement of gamma-ray polarization, a new tool to study astrophysical phenomenon. We describe the design, fabrication, and performance of a 30x30x30 cubic centimeters 3-DTI detector prototype of a medium-energy gamma-ray telescope.

  7. Development of a Telescope for Medium-Energy Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2010-01-01

    Since the launch of AGILE and FERMI, the scientific progress in high-energy (E(sub gamma) greater than approximately 200 MeV) gamma-ray science has been, and will continue to be dramatic. Both of these telescopes cover a broad energy range from approximately 20 MeV to greater than 10 GeV. However, neither instrument is optimized for observations below approximately 200 MeV where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. Hence, while significant progress from current observations is expected, there will nonetheless remain a significant sensitivity gap in the medium-energy (approximately 0.1-200 MeV) regime; the lower end of this range remains largely unexplored whereas the upper end will allow comparison with FERMI data. Tapping into this unexplored regime requires significant improvements in sensitivity. A major emphasis of modern detector development, with the goal of providing significant improvements in sensitivity in the medium-energy regime, focuses on high-resolution electron tracking. The Three-Dimensional Track Imager (3-DTI) technology being developed at GSFC provides high resolution tracking of the electron-positron pair from gamma-ray interactions from 5 to 200 MeV. The 3-DTI consists of a time projection chamber (TPC) and 2-D cross-strip microwell detector (MWD). The low-density and homogeneous design of the 3-DTI, offers unprecedented sensitivity by providing angular resolution near the kinematic limit. Electron tracking also enables measurement of gamma-ray polarization, a new tool to study astrophysical phenomenon. We describe the design, fabrication, and performance of a 30x30x30 cubic centimeters 3-DTI detector prototype of a medium-energy gamma-ray telescope.

  8. Utilization of industrial dairy waste as microalgae cultivation medium : a potential study for sustainable energy resources

    NASA Astrophysics Data System (ADS)

    Nurmayani, S.; Sugiarti, Y.; Putra, R. H.

    2016-04-01

    Microalgae is one of biodiesel resources and call as third generation biofuel. Biodiesel is one alternative energy that being developed. So study about resource of biodiesel need a development, for the example is development the basic material such as microalgae. In this paper we explain the potential use of dairy waste from industry as a cultivation medium of microalgae for biodiesel production. Dairy waste from dairy industry contains 34.98% protein, 4.42% lactose, 9.77% fiber, 11.04% fat, 2.33% calcium, 1.05% phosfor, and 0.4 % magnesium, meaning that the dairy waste from dairy industry has a relatively high nutrient content and complete from a source of carbon, nitrogen and phosphorus as macro nutrients. The method in this paper is literature review to resulting a new conclusion about the potency of waste water from dairy industry as microalgae cultivation medium. Based on the study, the dairy waste from dairy industry has potency to be used as cultivation medium of Botryococcus braunii in the production of biodiesel, replacing the conventional cultivation medium.

  9. Medium effects on heavy-flavour observables in high-energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Beraudo, Andrea

    2016-11-01

    The peculiar role of heavy-flavour observables in relativistic heavy-ion collisions is discussed. Produced in the early stage, c and b quarks cross the hot medium arising from the collision, interacting strongly with the latter, until they hadronize. Depending on the strength of the interaction heavy quarks may or not approach kinetic equilibrium with the plasma, tending in the first case to follow the collective flow of the expanding fireball. The presence of a hot deconfined medium may also affect heavyquark hadronization, being possible for them to recombine with the surrounding light thermal partons, so that the final heavy-flavour hadrons inherit part of the flow of the medium. Here we show how it is possible to develop a complete transport setup allowing one to describe heavy-flavour production in high-energy nuclear collisions, displaying some major results one can obtain. Finally, the possibility that the formation of a hot deconfined medium even in small systems (high-multiplicity p-Au and d-Au collisions, so far) may affect also heavy-flavour observables is investigated.

  10. Low-energy and medium-energy gamma rays from PSR 0531 + 21

    NASA Technical Reports Server (NTRS)

    White, R. S.; Sweeney, W.; Tumer, T.; Zych, A.

    1985-01-01

    Results are presented from the Crab Pulsar PSR 0531 + 21 for energies of 0.3-30 MeV. For energies of 1-30 MeV, the absolute phase and separation of the first and second pulses 12.9 + or - 0.3 ms, widths of the pulses 2.2 + or - 0.5 ms FWHM, and 1.6 + or - 0.4 ms FWHM, ratio of the counts in the second to the first pulse 0.64 + or - 0.33 and ratio of counts in the interpulse region to the total pulsed counts 0.17 + or - 0.30 are compared to te results vor energies, E greater than 50 MeV and their variations with time. Values from the phase plots for E greater than 0.3 MeV are compared with low-energy gamma rays during 1970 through 1980 from several experiments with energies from about 20 to 360 keV. The above suggest different production mechanisms for low- and high-energy gamma rays with a transition at about 1 MeV. Derived fluxes from 0.3 to 30 MeV confirm a previously derived power law.

  11. Supporting multiple control systems at Fermilab

    SciTech Connect

    Nicklaus, Dennis J.; /Fermilab

    2009-10-01

    The Fermilab control system, ACNET, is used for controlling the Tevatron and all of its pre-accelerators. However, other smaller experiments at Fermilab have been using different controls systems, in particular DOOCS and EPICS. This paper reports some of the steps taken at Fermilab to integrate support for these outside systems. We will describe specific tools that we have built or adapted to facilitate interaction between the architectures. We also examine some of the difficulties that arise from managing this heterogeneous environment. Incompatibilities as well as common elements will be described.

  12. The Muon g-2 experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Chapelain, Antoine

    2017-03-01

    The upcoming Fermilab E989 experiment will measure the muon anomalous magnetic moment aμ. This measurement is motivated by the previous measurement performed in 2001 by the BNL E821 experiment that reported a 3-4 standard deviation discrepancy between the measured value and the Standard Model prediction. The new measurement at Fermilab aims to improve the precision by a factor of four reducing the total uncertainty from 540 parts per billion (BNL E821) to 140 parts per billion (Fermilab E989). This paper gives the status of the experiment.

  13. Interfacial free energy and medium range order: Proof of an inverse of Frank's hypothesis

    NASA Astrophysics Data System (ADS)

    Lee, Geun Woo; Cho, Yong Chan; Lee, Byeongchan; Kelton, Kenneth F.

    2017-02-01

    We study the relation of crystal-liquid interfacial free energy and medium range order in the quasicrystal-forming T i37Z r42N i21 liquid from undercooling experiment and ab initio molecular dynamics (MD) simulation. Adding a small amount of Ag to the liquid significantly reduces the degree of undercooling, which is suggestive of small interfacial free energy, and thus very similar atomic configuration between the liquid and the icosahedral quasicrystal phases. Using ab initio MD study, we find that Ag atoms predominantly form a bond with Zr atoms in the short range and, further, Ag-Zr pairs are extended in the liquid, as a medium range order which is identical to the global structural feature reported recently [Liu et al., Phys. Rev. Lett. 105, 155501 (2010)], 10.1103/PhysRevLett.105.155501. This result may expect extremely small undercooling if the icosahedral medium range order exists in a liquid forming an icosahedral quasicrystal, which implies the ambiguity of clear distinction of heterogeneous and homogeneous nucleation.

  14. Vertically integrated circuit development at Fermilab for detectors

    NASA Astrophysics Data System (ADS)

    Yarema, R.; Deptuch, G.; Hoff, J.; Khalid, F.; Lipton, R.; Shenai, A.; Trimpl, M.; Zimmerman, T.

    2013-01-01

    Today vertically integrated circuits, (a.k.a. 3D integrated circuits) is a popular topic in many trade journals. The many advantages of these circuits have been described such as higher speed due to shorter trace lenghts, the ability to reduce cross talk by placing analog and digital circuits on different levels, higher circuit density without the going to smaller feature sizes, lower interconnect capacitance leading to lower power, reduced chip size, and different processing for the various layers to optimize performance. There are some added advantages specifically for MAPS (Monolithic Active Pixel Sensors) in High Energy Physics: four side buttable pixel arrays, 100% diode fill factor, the ability to move PMOS transistors out of the diode sensing layer, and a increase in channel density. Fermilab began investigating 3D circuits in 2006. Many different bonding processes have been described for fabricating 3D circuits [1]. Fermilab has used three different processes to fabricate several circuits for specific applications in High Energy Physics and X-ray imaging. This paper covers some of the early 3D work at Fermilab and then moves to more recent activities. The major processes we have used are discussed and some of the problems encountered are described. An overview of pertinent 3D circuit designs is presented along with test results thus far.

  15. Optics Corrections with LOCO in the Fermilab Booster

    SciTech Connect

    Tan, Cheng-Yang; Prost, Lionel; Seiya, Kiyomi; Triplett, A. Kent

    2016-06-01

    The optics of the Fermilab Booster has been corrected with LOCO (Linear Optics from Closed Orbits). However, the first corrections did not show any improvement in capture efficiency at injection. A detailed analysis of the results showed that the problem lay in the MADX optics file. Both the quadrupole and chromatic strengths were originally set as constants independent of beam energy. However, careful comparison between the measured and calculated tunes and chromatcity show that these strengths are energy dependent. After the MADX model was modified with these new energy dependent strengths, the LOCO corrected lattice has been applied to Booster. The effect of the corrected lattice will be discussed here.

  16. Energy and mass balance in the three-phase interstellar medium

    NASA Astrophysics Data System (ADS)

    Wang, Zhong; Cowie, Lennox L.

    1988-12-01

    Details of the energy and mass balances are considered in the context of a three-phase interstellar medium. The rates of mass exchange between the different phases are derived based on the pressure variations created by supernova remnant expansions. It is shown that the pressure-confined warm and cold gases have stable temperatures under a variety of interstellar conditions. The three-phase quasi-static configuration is found to be a natural outcome, and both warm and cold phases generally contribute about half of the total mass density to the diffuse interstellar gas. The model is also likely to be self-regulatory in the sense that variations of the input parameters do not strongly alter the general result, which is consistent with most current observations. The consequences of extreme conditions on this model are considered, and the possible implications for interstellar medium in other galaxies are briefly discussed.

  17. Energy and mass balance in the three-phase interstellar medium

    NASA Technical Reports Server (NTRS)

    Wang, Zhong; Cowie, Lennox L.

    1988-01-01

    Details of the energy and mass balances are considered in the context of a three-phase interstellar medium. The rates of mass exchange between the different phases are derived based on the pressure variations created by supernova remnant expansions. It is shown that the pressure-confined warm and cold gases have stable temperatures under a variety of interstellar conditions. The three-phase quasi-static configuration is found to be a natural outcome, and both warm and cold phases generally contribute about half of the total mass density to the diffuse interstellar gas. The model is also likely to be self-regulatory in the sense that variations of the input parameters do not strongly alter the general result, which is consistent with most current observations. The consequences of extreme conditions on this model are considered, and the possible implications for interstellar medium in other galaxies are briefly discussed.

  18. Recycler lattice for Project X at Fermilab

    SciTech Connect

    Xiao, Meiqin; Johnson, David E.; /Fermilab

    2009-09-01

    Project X is an intense proton source that provides beam for various physics programs. The source consists of an 8 GeV H- superconducting linac that injects into the Fermilab Recycler where H- are converted to protons. Protons are provided to the Main Injector and accelerated to desired energy (in the range 60-120 GeV) or extracted from the Recycler for the 8 GeV program. A long drift space is needed to accommodate the injection chicane with stripping foils. The Recycler is a fixed 8 GeV kinetic energy storage ring using permanent gradient magnets. A phase trombone straight section is used to control the tunes. In this paper, the existing FODO lattice in RR10 straight section being converted into doublet will be described. Due to this change, the phase trombone straight section has to be modified to bring the tunes to the nominal working point. A toy lattice of recycler ring is designed to simulate the end-shim effects of each permanent gradient magnet to add the flexibility to handle the tune shift to the lattice during the operation of 1.6E14 with KV distribution of the proton beam to give {approx}0.05 of space charge tune shift. The comparison or the combinations of the two modification ways for the Recycler ring lattice will be presented also in this paper.

  19. Operation and maintenance of Fermilab`s satellite refrigerator expansion engines

    SciTech Connect

    Soyars, W.M.

    1996-09-01

    Fermilab`s superconducting Tevatron accelerator is cooled to liquid helium temperatures by 24 satellite refrigerators, each of which uses for normal operations a reciprocating `wet` expansion engine. These expanders are basically Process System (formerly Koch) Model 1400 expanders installed in standalone cryostats designed by Fermilab. This paper will summarize recent experience with operations and maintenance of these expansion engines. Some of the statistics presented will include total engine hours, mean time between major and minor maintenance, and frequent causes of major maintenance.

  20. Energy conserved and costs saved by small and medium-size manufacturers, 1988--1989

    SciTech Connect

    Kirsch, F.W.

    1991-05-01

    Energy Analysis and Diagnostic Centers (EADCs) provided energy-conserving and cost saving assistance in 339 small and medium-size manufacturing plants nationwide during 1988-89. This report presents the results of what was recommended to those manufacturers, the record of what was implemented by them, and an analysis of the financial rewards gained by them. It also includes an accounting of the financial returns to the federal government, derived from taxes upon the cost savings, or incremental income, of the manufacturers who implement the EADCs` recommendations. EADCs collect implementation data within a year of the energy audit, and for these results that time period extended through 1990. The EADCs are located at accredited engineering departments of universities and staffed by faculty and students. At present there are 18 EADCs serving manufacturers in 37 states; of these, two were established as a result of the 1989 competition, and five more were chosen competitively in 1990. Most of the results in this report were generated by 11 EADCs (named in the Appendix); two others withdrew voluntarily after completing only 10 energy audits during 1988-89. Primary responsibility for selecting, training, evaluating, and managing the EADCs belongs to the Industrial Technology and Energy Management (ITEM) division of University City Science Center (UCSC). The Department of Energy`s Office of Industrial Technologies sponsors the EADC program through an agreement with UCSC.

  1. Probability distribution of the free energy of a directed polymer in a random medium

    NASA Astrophysics Data System (ADS)

    Brunet, Éric; Derrida, Bernard

    2000-06-01

    We calculate exactly the first cumulants of the free energy of a directed polymer in a random medium for the geometry of a cylinder. By using the fact that the nth moment of the partition function is given by the ground-state energy of a quantum problem of n interacting particles on a ring of length L, we write an integral equation allowing to expand these moments in powers of the strength of the disorder γ or in powers of n. For n small and n~(Lγ)-1/2, the moments take a scaling form which allows us to describe all the fluctuations of order 1/L of the free energy per unit length of the directed polymer. The distribution of these fluctuations is the same as the one found recently in the asymmetric exclusion process, indicating that it is characteristic of all the systems described by the Kardar-Parisi-Zhang equation in 1+1 dimensions.

  2. A Time Tree Medium Access Control for Energy Efficiency and Collision Avoidance in Wireless Sensor Networks

    PubMed Central

    Lee, Kilhung

    2010-01-01

    This paper presents a medium access control and scheduling scheme for wireless sensor networks. It uses time trees for sending data from the sensor node to the base station. For an energy efficient operation of the sensor networks in a distributed manner, time trees are built in order to reduce the collision probability and to minimize the total energy required to send data to the base station. A time tree is a data gathering tree where the base station is the root and each sensor node is either a relaying or a leaf node of the tree. Each tree operates in a different time schedule with possibly different activation rates. Through the simulation, the proposed scheme that uses time trees shows better characteristics toward burst traffic than the previous energy and data arrival rate scheme. PMID:22319270

  3. A time tree medium access control for energy efficiency and collision avoidance in wireless sensor networks.

    PubMed

    Lee, Kilhung

    2010-01-01

    This paper presents a medium access control and scheduling scheme for wireless sensor networks. It uses time trees for sending data from the sensor node to the base station. For an energy efficient operation of the sensor networks in a distributed manner, time trees are built in order to reduce the collision probability and to minimize the total energy required to send data to the base station. A time tree is a data gathering tree where the base station is the root and each sensor node is either a relaying or a leaf node of the tree. Each tree operates in a different time schedule with possibly different activation rates. Through the simulation, the proposed scheme that uses time trees shows better characteristics toward burst traffic than the previous energy and data arrival rate scheme.

  4. Observations of medium energy gamma ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1978-01-01

    Measurements of the gamma-ray emission in the medium energy range between 15 and 100 MeV, obtained during two ballon flights from Brazil are presented. The importance of this energy region in determining whether pi deg - decay of electron bremsstrahlung is the most likely dominant source mechanism is discussed along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to theoretical spectrum calculations including both sources mechanisms, but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.

  5. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    SciTech Connect

    Mashnik, Stepan Georgievich; Kerby, Leslie Marie

    2015-08-24

    Fragmentation reactions induced on light and medium nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the Los Alamos transport code MCNP6 and with its CEM03.03 and LAQGSM03.03 event generators. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after the INC. CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to sup>4He from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.

  6. Energy exchange and wave action conservation for magnetohydrodynamic (MHD) waves in a general, slowly varying medium

    NASA Astrophysics Data System (ADS)

    Walker, A. D. M.

    2014-12-01

    Magnetohydrodynamic (MHD) waves in the solar wind and magnetosphere are propagated in a medium whose velocity is comparable to or greater than the wave velocity and which varies in both space and time. In the approximation where the scales of the time and space variation are long compared with the period and wavelength, the ray-tracing equations can be generalized and then include an additional first-order differential equation that determines the variation of frequency. In such circumstances the wave can exchange energy with the background: wave energy is not conserved. In such processes the wave action theorem shows that the wave action, defined as the ratio of the wave energy to the frequency in the local rest frame, is conserved. In this paper we discuss ray-tracing techniques and the energy exchange relation for MHD waves. We then provide a unified account of how to deal with energy transport by MHD waves in non-uniform media. The wave action theorem is derived directly from the basic MHD equations for sound waves, transverse Alfvén waves, and the fast and slow magnetosonic waves. The techniques described are applied to a number of illustrative cases. These include a sound wave in a medium undergoing a uniform compression, an isotropic Alfvén wave in a steady-state shear layer, and a transverse Alfvén wave in a simple model of the magnetotail undergoing compression. In each case the nature and magnitude of the energy exchange between wave and background is found.

  7. Data preservation at the Fermilab Tevatron

    DOE PAGES

    Amerio, S.; Behari, S.; Boyd, J.; ...

    2017-01-22

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards inmore » both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. Lastly, these efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.« less

  8. Improvement Plans of Fermilab's Proton Accelerator Complex

    SciTech Connect

    Shiltsev, Vladimir

    2016-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  9. Data preservation at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Amerio, S.; Behari, S.; Boyd, J.; Brochmann, M.; Culbertson, R.; Diesburg, M.; Freeman, J.; Garren, L.; Greenlee, H.; Herner, K.; Illingworth, R.; Jayatilaka, B.; Jonckheere, A.; Li, Q.; Naymola, S.; Oleynik, G.; Sakumoto, W.; Varnes, E.; Vellidis, C.; Watts, G.; White, S.

    2017-04-01

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. These efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.

  10. Fermilab Recycler damper requirements and design

    SciTech Connect

    Crisp, J.; Hu, M.; Tupikov, V.; /Fermilab

    2005-05-01

    The design of transverse dampers for the Fermilab Recycler storage ring is described. An observed instability and analysis of subsequent measurements where used to identify the requirements. The digital approach being implemented is presented.

  11. Nuclear physics with a medium-energy Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Accardi, A.; Guzey, V.; Prokudin, A.; Weiss, C.

    2012-06-01

    A polarized ep/ eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy √ s ˜ 20-70 GeV and luminosity ˜1034 cm-2 s-1 would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

  12. Nuclear physics with a medium-energy Electron-Ion Collider

    SciTech Connect

    A. Accardi, V. Guzey, A. Prokudin, C. Weiss

    2012-06-01

    A polarized ep/eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy {radical}s {approx} 20-70 GeV and a luminosity {approx}10{sup 34} cm{sup -2} s{sup -1} would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: (i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); (ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); (iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12 GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

  13. Medium energy proton radiation damage to (AlGa)As-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Loo, R. Y.; Kamath, G. S.; Knechtli, R. C.

    1982-01-01

    The performance of (AlGa)As-GaAs solar cells irradiated by medium energy 2, 5, and 10 MeV protons was evaluated. The Si cells without coverglass and a number of GaAs solar cells with 12 mil coverglass were irradiated simultaneously with bare GaAs cells. The cell degradation is directly related to the penetration of depth of protons with GaAs. The influence of periodic and continuous thermal annealing on the GaAs solar cells was investigated.

  14. The Local Bubble in the interstellar medium and the origin of the low energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Machavariani, S. K.; Wolfendale, A. W.

    2017-01-01

    An analysis of the energy spectra of cosmic rays and particularly the precise data from the AMS-02 experiment support the view about the important role of the Local Bubble in the nearby interstellar medium. It is suggested that the bulk of CR below about 200 GV of rigidity (momentum/charge ratio) comes from the modest number of supernova remnants in the Local Bubble which appear to have occurred some 106 years ago and contributed to its formation. At higher rigidities the contribution from a 'Local Source', a single supernova remnant generated some 105 years ago seems to dominate up to, at least 1000 GV.

  15. The Casimir energy in a dispersive and absorptive medium in the Fano diagonalization approach

    NASA Astrophysics Data System (ADS)

    Braun, M. A.

    2017-02-01

    We calculate the Casimir energy of the electromagnetic field in the one-dimensional space between two metallic plates filled with a dispersive and absorptive dielectric in the framework of a microscopic approach in which the medium is modeled by a set of oscillators with continuously distributed frequencies. We analyze the treatment of singular expressions used in other papers and show that with appropriate regularization and omission of certain infinite terms, the results coincide with those obtained in an approach without such singularities. We study the asymptotic behavior at large distances and conclude that it always corresponds to attraction, but the influence of the dielectric can lead to repulsion at finite distances.

  16. In-Medium Isovector πN Amplitude from Low-Energy Pion Scattering

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Bauer, M.; Breitschopf, J.; Clement, H.; Denz, H.; Doroshkevich, E.; Erhardt, A.; Hofman, G. J.; Meier, R.; Wagner, G. J.; Yaari, G.

    2004-09-01

    Differential cross sections for elastic scattering of 21.5MeV positive and negative pions by Si, Ca, Ni, and Zr have been measured as part of a study of the pion-nucleus potential across the threshold. The “anomalous” repulsion in the s-wave term was observed, as is the case with pionic atoms. The extra repulsion can be accounted for by a chiral-motivated model where the pion decay constant is modified in the medium. Unlike in pionic atoms, the anomaly cannot be removed by merely introducing an empirical on-shell energy dependence.

  17. Preservation of Energy-Time Entanglement in a Slow Light Medium

    NASA Astrophysics Data System (ADS)

    Broadbent, Curtis J.; Camacho, Ryan M.; Xin, Ran; Howell, John C.

    2008-04-01

    We demonstrate the preservation of entanglement of an energy-time entangled biphoton through a slow light medium. Using the D1 and D2 fine structure resonances of Rubidium, we delay one photon of the 1.5 THz biphoton by ˜1.3 correlation lengths and measure the fourth order correlation fringes. After the group delay the fringe visibility is reduced from 97.0±4.4% to 80.0±4.8%, but is still sufficient to violate a Bell inequality. We show that temporal broadening is the primary mechanism for reducing the fringe visibility and that smaller bandwidths lead to greatly reduced broadening.

  18. Spatial aspects of low- and medium-energy electron degradation in N2

    NASA Astrophysics Data System (ADS)

    Singhal, R. F.; Green, A. E. S.; Jackman, C. H.

    1980-03-01

    Spatial (radial and longitudinal) yield spectra for electron energy degradation in molecular nitrogen gas for 25-eV to 10-keV incident electrons have been generated by using a Monte Carlo technique. These spatial yield spectra associated with the electron degradation process can be employed to calculate a 'yield' for any inelastic state at any position in the medium. These have been analytically represented in terms of a model containing three simple 'microplumes'. Five-dimensional yield spectra which contain the information about the polar angle of the electron have also been analytically represented within the framework of the microplume model. Aeronomical and radiological applications of our model are discussed.

  19. CP violation experiment at Fermilab

    SciTech Connect

    Hsiung, Yee B.

    1990-07-01

    The E731 experiment at Fermilab has searched for direct'' CP violation in K{sup 0} {yields} {pi}{pi}, which is parametrized by {var epsilon}{prime}/{var epsilon}. For the first time, in 20% of the data set, all four modes of the K{sub L,S} {yields} {pi}{sup +}{pi}{sup {minus}} ({pi}{sup 0}{pi}{sup 0}) were collected simultaneously, providing a great check on the systematic uncertainty. The result is Re({var epsilon}{prime}/{var epsilon}) = {minus}0.0004 {plus minus} 0.0014 (stat) {plus minus} 0.0006(syst), which provides no evidence for direct'' CP violation. The CPT symmetry has also been tested by measuring the phase difference {Delta}{phi} = {phi}{sub 00} {minus} {phi}{sub {plus minus}} between the two CP violating parameters {eta}{sub 00} and {eta}{sub {plus minus}}. We fine {Delta}{phi} = {minus}0.3{degrees} {plus minus} 2.4{degree}(stat) {plus minus} 1.2{degree}(syst). Using this together with the world average {phi}{sub {plus minus}}, we fine that the phase of the K{sup 0}-{bar K}{sup 0} mixing parameter {var epsilon} is 44.5{degree} {plus minus} 1.5{degree}. Both of these results agree well with the predictions of CPT symmetry. 17 refs., 10 figs.

  20. Fermilab Recycler Collimation System Design

    SciTech Connect

    Brown, B. C.; Adamson, P.; Ainsworth, R.; Capista, D.; Hazelwood, K.; Kourbanis, I.; Mokhov, N. V.; Morris, D. K.; Murphy, M.; Sidorov, V.; Stern, E.; Tropin, I.; Yang, M-J.

    2016-10-04

    To provide 700 kW proton beams for neutrino production in the NuMI facility, we employ slip stacking in the Recycler with transfer to the Main Injector for recapture and acceleration. Slip stacking with 12 Booster batches per 1.33 sec cycle of the Main Injector has been implemented and briefly tested while extensive operation with 8 batches and 10 batches per MI cycle has been demonstrated. Operation in this mode since 2013 shows that loss localization is an essential component for long term operation. Beam loss in the Recycler will be localized in a collimation region with design capability for absorbing up to 2 kW of lost protons in a pair of 20-Ton collimators (absorbers). This system will employ a two stage collimation with a thin molybdenum scattering foil to define the bottom edge of both the injected and decelerated-for-slipping beams. Optimization and engineering design of the collimator components and radiation shielding are based on comprehensive MARS15 simulations predicting high collimation efficiency as well as tolerable levels of prompt and residual radiation. The system installation during the Fermilab 2016 facility shutdown will permit commissioning in the subsequent operating period.

  1. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    SciTech Connect

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B; Zhang, Y

    2012-08-01

    Researchers have envisioned an electron-ion collider with ion species up to heavy ions, high polarization of electrons and light ions, and a well-matched center-of-mass energy range as an ideal gluon microscope to explore new frontiers of nuclear science. In its most recent Long Range Plan, the Nuclear Science Advisory Committee (NSAC) of the US Department of Energy and the National Science Foundation endorsed such a collider in the form of a 'half-recommendation.' As a response to this science need, Jefferson Lab and its user community have been engaged in feasibility studies of a medium energy polarized electron-ion collider (MEIC), cost-effectively utilizing Jefferson Lab's already existing Continuous Electron Beam Accelerator Facility (CEBAF). In close collaboration, this community of nuclear physicists and accelerator scientists has rigorously explored the science case and design concept for this envisioned grand instrument of science. An electron-ion collider embodies the vision of reaching the next frontier in Quantum Chromodynamics - understanding the behavior of hadrons as complex bound states of quarks and gluons. Whereas the 12 GeV Upgrade of CEBAF will map the valence-quark components of the nucleon and nuclear wave functions in detail, an electron-ion collider will determine the largely unknown role sea quarks play and for the first time study the glue that binds all atomic nuclei. The MEIC will allow nuclear scientists to map the spin and spatial structure of quarks and gluons in nucleons, to discover the collective effects of gluons in nuclei, and to understand the emergence of hadrons from quarks and gluons. The proposed electron-ion collider at Jefferson Lab will collide a highly polarized electron beam originating from the CEBAF recirculating superconducting radiofrequency (SRF) linear accelerator (linac) with highly polarized light-ion beams or unpolarized light- to heavy-ion beams from a new ion accelerator and storage complex. Since the very

  2. The Muon g - 2 experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Mott, James; Muon g - 2 experiment

    2017-06-01

    The Muon g - 2 experiment at Fermilab will measure the anomalous magnetic moment of the muon to a precision of 140 ppb, reducing the experimental uncertainty by a factor of 4 compared to the previous measurement at BNL (E821). The measurement technique adopts the storage ring concept used for E821, with magic-momentum muons stored in a highly uniform 1.45 T magnetic dipole field. The spin precession frequency is extracted from an analysis of the modulation of the rate of higher-energy positrons from muon decays, detected by 24 calorimeters and 3 straw tracking detectors. Compared to the E821 experiment, muon beam preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or significantly upgraded. Herein, I report on the status of the experiment as of Sept. 2016, presenting the magnetic field uniformity results after the completion of the first round of shimming and outlining the construction progress of the main detector systems.

  3. Fermilab HINS Proton Ion Source Beam Measurements

    SciTech Connect

    Tam, W.M.; Apollinari, G.; Chaurize, S.; Hays, S.; Romanov, G.; Scarpine, V.; Schmidt, C.; Webber, R.; /Fermilab

    2009-05-01

    The proton ion source for the High Intensity Neutrino Source (HINS) Linac front-end at Fermilab has been successfully commissioned. It produces a 50 keV, 3 msec beam pulse with a peak current greater than 20mA at 2.5Hz. The beam is transported to the radio-frequency quadrupole (RFQ) by a low energy beam transport (LEBT) that consists of two focusing solenoids, four steering dipole magnets and a beam current transformer. To understand beam transmission through the RFQ, it is important to characterize the 50 keV beam before connecting the LEBT to the RFQ. A wire scanner and a Faraday cup are temporarily installed at the exit of the LEBT to study the beam parameters. Beam profile measurements are made for different LEBT settings and results are compared to those from computer simulations. In lieu of direct emittance measurements, solenoid variation method based on profile measurements is used to reconstruct the beam emittance.

  4. The Muon g $-$ 2 experiment at Fermilab

    DOE PAGES

    Mott, James

    2017-06-21

    Here, the Muon g-2 experiment at Fermilab will measure the anomalous magnetic moment of the muon to a precision of 140 ppb, reducing the experimental uncertainty by a factor of 4 compared to the previous measurement at BNL (E821). The measurement technique adopts the storage ring concept used for E821, with magic-momentum muons stored in a highly uniform 1.45 T magnetic dipole field. The spin precession frequency is extracted from an analysis of the modulation of the rate of higher-energy positrons from muon decays, detected by 24 calorimeters and 3 straw tracking detectors. Compared to the E821 experiment, muon beammore » preparation, storage ring internal hardware, field measuring equipment, and detector and electronics systems are all new or significantly upgraded. Herein, I report on the status of the experiment as of Sept. 2016, presenting the magnetic field uniformity results after the completion of the first round of shimming and outlining the construction progress of the main detector systems.« less

  5. Project X: A Multi-MW Proton Source at Fermilab

    SciTech Connect

    Holmes, Stephen D.; /Fermilab

    2010-05-01

    As the Fermilab Tevatron Collider program draws to a close a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and he study of rare processes. Based on technology shared with the International Linear Collider (ILC), Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X will also support development of a Muon Collider as a uture facility at the energy frontier.

  6. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator.

    PubMed

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  7. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  8. Very High Specific Energy, Medium Power Li/CFx Primary Battery for Launchers and Space Probes

    NASA Astrophysics Data System (ADS)

    Brochard, Paul; Godillot, Gerome; Peres, Jean Paul; Corbin, Julien; Espinosa, Amaya

    2014-08-01

    Benchmark with existing technologies shows the advantages of the lithium-fluorinated carbon (Li/CFx) technology for use aboard future launchers in terms of a low Total Cost of Ownership (TCO), especially for high energy demanding missions such as re-ignitable upper stages for long GTO+ missions and probes for deep space exploration.This paper presents the new results obtained on this chemistry in terms of electrical and climatic performances, abuse tests and life tests. Studies - co-financed between CNES and Saft - looked at a pure CFx version with a specific energy up to 500 Wh/kg along with a medium power of 80 to 100 W/kg.

  9. Analytical method for calculating neutron bulk shielding in a medium-energy accelerator facility

    NASA Astrophysics Data System (ADS)

    Kato, Takashi; Nakamura, Takashi

    2001-05-01

    This investigation aims at an analytical method for calculating neutron bulk shielding in a medium-energy accelerator facility on the basis of the modified Moyer model. Shielding parameters for the analytical formula are obtained using the ANISN one-dimensional discrete ordinate code and the MCNP three-dimensional Monte Carlo code. The dose attenuation length of a concrete shield, which is the most important parameter, is obtained as a function of neutron energies from 0.2 MeV to 400 MeV and of shield thickness from 1 m to 7 m. The equation is also applicable to the estimation of neutron oblique penetration through a concrete shield, so the correction factor for oblique penetration is introduced into the analytical formula. It is expressed as the ratio of dose equivalent as calculated with MCNP for penetration through a relatively thin (1 or 2 m thick) concrete slab shield to that with the analytical equation developed in this work.

  10. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    SciTech Connect

    Jang, Hyojae Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  11. MINOS+: a Proposal to FNAL to run MINOS with the medium energy NuMI beam

    SciTech Connect

    Tzanankos, G.; Bishai, M.; Diwan, M.; Escobar, C.O.; Gomes, R.A.; Gouffon, P.; Blake, A.; Thomson, M.; Patterson, R.B.; Adamson, P.; Childress, S.; /Fermilab /IIT, Chicago /Los Alamos /Minnesota U. /Minnesota U., Duluth /Bhubaneswar, NISER /Iowa State U.

    2011-05-01

    This is a proposal to continue to expose the two MINOS detectors to the NuMI muon neutrino beam for three years starting in 2013. The medium energy setting of the NuMI beam projected for NO{nu}A will deliver about 18 x 10{sup 20} protons-on-target during the first three years of operation. This will allow the MINOS Far Detector to collect more than 10,000 charged current muon neutrino events in the 4-10 GeV energy range and provide a stringent test for non-standard neutrino interactions, sterile neutrinos, extra dimensions, neutrino time-of-flight, and perhaps more. In addition there will be more than 3,000 neutral current events which will be particularly useful in extending the sterile neutrino search range.

  12. Cluster multiple-scattering theory for medium-energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Barton, J. J.; Xu, M.-L.; van Hove, M. A.

    1988-06-01

    A theory of medium-energy (100-5000-eV) electron diffraction (MEED) is developed from a multiple-scattering, curved-wave theory of photoelectron diffraction. It may be called ``near-field expansion in clusters.'' Only selected important scattering events are included and these are computed in times proportional to electron wave number by using a generalized scattering-factor method (conventional low-energy electron-diffraction methods require computations proportional to at least the fourth power of the wave number, while the ``chain'' method for MEED scales as at least the square of the wave number). This removes the most serious barrier to a multiple-scattering analysis for surface-structure determination. A direct summation over atoms and scattering paths is used, avoiding any assumptions of periodicity in the surface structure. The theory allows a clearer understanding of the relationship between diffraction intensities and surface structure than heretofore possible.

  13. Characteristics of Wood Sawdust and Chips as Energy Absorption Filling Mediums

    NASA Astrophysics Data System (ADS)

    Singace, Abduljalil Abdulla

    Wood sawdust and chips, as carpentry processes remains, are introduced as alternatives for filling mediums in energy mitigation systems. The natural, economical and environment friendly material, wood, is modeled and its interaction with the collapse of tubes, typical energy absorption elements, has been considered. Compression tests on wood sawdust were used to extract its mechanical properties and the results of which have been used in the validation of the analytical models. The collapse of PVC tubes, filled with wood sawdust of different grades and densifications, has been analyzed considering multi-lobe mode, concertina mode and mixed mode. In these models, the interaction of wood sawdust filler on the final mode of collapse of PVC tubes has been incorporated and the final values of the mean crushing load show favourable results.

  14. Charge-equilibrium and radiation of low-energy cosmic rays passing through interstellar medium

    NASA Technical Reports Server (NTRS)

    Rule, D. W.; Omidvar, K.

    1977-01-01

    The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, is considered. Electron loss of the beam has been taken into account by means of the First Born approximation allowing for the target atom to remain unexcited, or to be excited to all possible states. Electron capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation and collisional inner-shell ionization of the ions has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated.

  15. Charge exchange of medium energy H and He ions emerging from solid surfaces

    NASA Astrophysics Data System (ADS)

    Kitsudo, Y.; Shibuya, K.; Nishimura, T.; Hoshino, Y.; Vickridge, I.; Kido, Y.

    2009-02-01

    Charge exchange of medium energy H and He ions emerging from clean solid surfaces is studied extensively using a toroidal electrostatic analyzer with an excellent energy resolution. The charge distributions of He ions scattered from sub-monolayers near a surface are non-equilibrated, resulting in a surface peak even for poly-crystal solids. By solving simultaneous rate equations numerically, we derive electron capture and loss cross sections for Ni and Au surfaces. Based on a free electron gas model, non-equilibrated He+ fractions dependent on emerging angle reveals uniform electronic surfaces for metals and corrugated surfaces for Si and graphite with covalent bonds. It is also found that equilibrium charge fractions of H+ are independent of surface materials (Z2) and in contrast equilibrium He+ fractions depend pronouncedly on Z2. The data obtained are compared with semi-empirical formulas.

  16. Concept study for the next generation medium-energy gamma-ray astronomy mission: MEGA

    NASA Astrophysics Data System (ADS)

    Kanbach, Gottfried; Andritschke, Robert; Bloser, Peter F.; Schopper, Florian; Schoenfelder, Volker; Zoglauer, Andreas

    2003-03-01

    A new telescope for Medium Energy Gamma-Ray Astronomy, MEGA, is being developed for the energy band 0.4 - 50 MeV as a successor to COMPTEL on CGRO. MEGA aims to improve the sensitivity for astronomical sources by at least an order of magnitude with respect to past instruments and will fill a severe sensitivity gap between already scheduled hard-X-ray and high-energy gamma-ray missions. MEGA records and images gamma rays by completely tracking Compton and pair creation events in a stack of double sided Si-strip track detectors surrounded by a pixelated CsI calorimeter. MEGA will have an effective area of ~100 square cm, a large field of view of ~130 degrees, angular resolution of ~2 degrees, and energy resolution of ~8% (all FWHM at ~2 MeV). Key science objectives for MEGA are the investigation of cosmic high-energy accelerators, nucleosynthesis sites with gamma-ray lines, and the mapping of large-scale structures in the Galaxy and beyond. If operated on a zenith pointing satellite MEGA will be an ideal continuous all-sky monitor for transient sources. This paper describes the development of a small scale prototype and the concept of a space mission for MEGA.

  17. A medium-energy photoemission and ab-initio investigation of cubic yttria-stabilised zirconia

    SciTech Connect

    Cousland, G. P.; Cui, X. Y.; Smith, A. E.; Stampfl, C. M.; Wong, L.; Tayebjee, M.; Yu, D.; Triani, G.; Evans, P. J.; Ruppender, H.-J.; Jang, L.-Y.; Stampfl, A. P. J.

    2014-04-14

    Experimental and theoretical investigations into the electronic properties and structure of cubic yttria-stabilized zirconia are presented. Medium-energy x-ray photoemission spectroscopy measurements have been carried out for material with a concentration of 8-9 mol. % yttria. Resonant photoemission spectra are obtained for a range of photon energies that traverse the L2 absorption edge for both zirconium and yttrium. Through correlation with results from density-functional theory (DFT) calculations, based on structural models proposed in the literature, we assign photoemission peaks appearing in the spectra to core lines and Auger transitions. An analysis of the core level features enables the identification of shifts in the core level energies due to different local chemical environments of the constituent atoms. In general, each core line feature can be decomposed into three contributions, with associated energy shifts. Their identification with results of DFT calculations carried out for proposed atomic structures, lends support to these structural models. The experimental results indicate a multi-atom resonant photoemission effect between nearest-neighbour oxygen and yttrium atoms. Near-edge x-ray absorption fine structure spectra for zirconium and yttrium are also presented, which correlate well with calculated Zr- and Y-4d electron partial density-of-states and with Auger electron peak area versus photon energy curve.

  18. A program in medium-energy nuclear physics. Progress report, January 1, 1992--March 31, 1995

    SciTech Connect

    Berman, B.L.; Dhuga, K.S.

    1994-08-01

    This renewal proposal requests continued funding for our program in experimental medium-energy nuclear physics. The focus of our program remains the understanding of the short-range part of the strong interaction in the nuclear medium. In the past three years we have focused our attention ever more sharply on experiments with real tagged photons at CEBAF. We are part of the Hall-B Collaboration at CEBAF. We are co-spokespersons on two approved CEBAF experiments, Photoreactions on {sup 3}He and Photoabsorption and Photofission of Nuclei, and we are preparing another, Nondiffractive Photoproduction of the {rho} Meson with Linearly Polarized Photons, for presentation to the next CEBAF PAC. We are part of the team that is instrumenting the Photon Tagger and a high-energy tagged polarized-photon beam for Hall B; some of the instrumentation for these projects is being built at our Nuclear Detector Laboratory, under the auspices of The George Washington University Center for Nuclear Studies. Our recent measurements of pion scattering from {sup 3}H and {sup 3}He at LAMPF and of cluster knockout from few-body nuclei at NIKHEF have yielded very provocative results, showing the importance of the very light nuclei as a laboratory for quantifying important aspects of the nuclear many-body force. We look forward to expanding our studies of short-range forces in nuclei, particularly the very fight nuclei using electromagnetic probes and employing the extraordinary power of CEBAF and the CLAS.

  19. Scalar and vector self-energies of heavy baryons in nuclear medium

    NASA Astrophysics Data System (ADS)

    Azizi, K.; Er, N.; Sundu, H.

    2017-04-01

    The in-medium sum rules are employed to calculate the shifts in the mass and residue as well as the scalar and vector self-energies of the heavy ΛQ ,ΣQ and ΞQ baryons, with Q being b or c quark. The maximum shift in mass due to nuclear matter belongs to the Σc baryon and it is found to be ΔmΣc = - 936 MeV. In the case of residue, it is obtained that the residue of Σb baryon is maximally affected by the nuclear medium with the shift ΔλΣb = - 0.014 GeV3. The scalar and vector self-energies are found to be ΣΛbS = 653 MeV, ΣΣbS = - 614 MeV, ΣΞbS = - 17 MeV, ΣΛcS = 272 MeV, ΣΣcS = - 936 MeV, ΣΞcS = - 5 MeV and ΣΛbν = 436 ± 148 MeV, ΣΣbν = 382 ± 129 MeV, ΣΞbν = 15 ± 5 MeV, ΣΛcν = 151 ± 45 MeV, ΣΣcν = 486 ± 144 MeV and ΣΞcν = 1.391 ± 0.529 MeV.

  20. Sensitivity Analysis on the Performance of Medium Deep Borehole Thermal Energy Storage Systems

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storages using arrays of medium deep (400 m - 1500 m) borehole heat exchangers (BHE) have two main advantages over near surface (< 400 m) BHE storages. Medium deep borehole thermal energy storages (MD-BTES) have a lower thermal impact on shallow groundwater resources and require less surface area. However, the storage performance indicators like the efficiency, the storage capacity and the supplied fluid temperature of MD-BTES are unknown as such system has not been put into practice so far. To study the influence of various design and operation parameters on the storage performance, more than 240 numerical models of different MD-BTES systems were compared in a sensitivity analysis. Most importantly, the BHE length, the number of BHEs, the spacing between the BHEs, the inlet temperatures of the heat transfer fluid into the BHEs and the underground properties were varied. A simplified underground model was used and also a simplified operation procedure was applied for a period of 30 years of storage operation. The results show a strong dependency of the storage performance on the studied design and operation parameters as well as on the underground properties. In the best case, storage efficiency reaches over 80 % in the 30th year of operation, whereas poorly designed storage systems show efficiencies of less than 20 %.

  1. The concrete columns as a sensible thermal energy storage medium and a heater

    NASA Astrophysics Data System (ADS)

    Ünalan, Sebahattin; Özrahat, Evrim

    2014-08-01

    This study investigated storage possibility of sensible thermal energy in the concrete columns of multi-storey buildings and the heating performance of the indoors with the stored energy. In the suggested system, the dry air heated in an energy center will be circulated in stainless steel pipes through columns. The sensible thermal energy would firstly be stored by means of forced convection in column medium. Then, the stored thermal energy will transfer by natural convection and radiation from the column surfaces to indoor spaces. The transient thermal calculations are realized for a flat of the 11-storey building in Kayseri city of Turkey. The thermal energy requirement of the flat is nearby 5.3 kW as an average of a winter season. The simplified transient calculations were carried out over a concrete hollow cylindrical column having outer radius of 0.31 m and inner radius of 0.05 m corresponding an averaged column section in the sample flat. The flow temperature was selected between T = 350 and 500 K, which are considerably lower than the temperature of 573 K assumed as a limit for thermal strength of the concrete in the literature. The flow velocity ranges were selected between V = 1.0 and 5.0 m/s. The initial temperature was assumed as 293 K. After the first energy charging process of 23 h, for T = 350 K and V = 1.0 m/s, the total heat flux from the column surfaces into indoors are nearby 5.5 kW. The first charging time required to reach the energy requirement of 5.3 kW is decreased by increasing the flow velocity and temperature. Also for 5.0 m/s-350 K and 5.0 m/s-450 K, this time can decrease to 10 and 4.5 h, respectively. In addition, with 4.0 m/s-360 K or 2.0 m/s-400 K, after the energy charging of 8 h, the energy requirement of 5.3 kW can be provided by the energy discharging of 16 h and the energy charging of 8 h during 7 days. The results are very attractive in terms of the building heating systems of the future.

  2. Fabrication and test of the first normal conducting crossbar H-type accelerating cavity at Fermilab for HINS

    SciTech Connect

    Ristori, L.; Apollinari, G.; Gonin, I.; Khabiboulline, T.; Romanov, G.; /Fermilab

    2007-06-01

    The proposed High Intensity Neutrino Source (HINS) at Fermilab is based on an 8 GeV linear proton accelerator that consists of a normal-conducting (warm) and a superconducting section. The warm section is composed of an ion source, a radio frequency quadrupole, a medium energy beam transport (MEBT) and 16 warm Crossbar H-type (CH) cavities that accelerate the beam from 2.5 MeV to 10 MeV (from {beta}=0.0744 to {beta}=0.1422). These warm cavities are separated by superconducting solenoids enclosed in individual cryostats. Beyond 10 MeV, the design uses superconducting spoke resonators to accelerate the beam up to 8 GeV. In this paper, we illustrate the completion of the first warm CH cavity ({beta}=0.0744) explaining in detail the mechanical engineering aspects related to the machining and brazing processes. The radio-frequency (RF) measurements and tuning performed at Fermilab on the resonator and comparisons with simulations are also discussed.

  3. Constraining in-medium heavy-quark energy-loss mechanisms via angular correlations between heavy and light mesons

    NASA Astrophysics Data System (ADS)

    Rohrmoser, M.; Gossiaux, P.-B.; Gousset, T.; Aichelin, J.

    2017-01-01

    Two-particle correlations obtained from parton showers that pass the hot and dense medium of the quark gluon plasma (QGP) can be used as an alternative observable, in addition to the combination of the nuclear modification factor RAA and the elliptic flow v 2, to study the mechanisms of in-medium heavy quark energy-loss. In particular, angular correlations represent a promising tool to distinguish between energy loss due to collisional and radiative interactions of jet and medium particles. To this end, parton cascades were created in Monte-Carlo simulations, where individual particles can undergo both parton splitting as well as an effective jet-medium interaction. A first model simulates the effects of induced radiations on parton cascades. Its consequences on angular correlations of partons within jets were studied in detail, with particular focus on angular broadening. The results can be compared to a second model that effectively describes elastic scatterings of jet and medium particles.

  4. The Fermilab Accelerator control system

    NASA Astrophysics Data System (ADS)

    Bogert, Dixon

    1986-06-01

    With the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab Accelerators. The current system is based on making as large an amount of data as possible available to many operators or end-users. Specifically there are about 100 000 separate readings, settings, and status and control registers in the various machines, all of which can be accessed by seventeen consoles, some in the Main Control Room and others distributed throughout the complex. A "Host" computer network of approximately eighteen PDP-11/34's, seven PDP-11/44's, and three VAX-11/785's supports a distributed data acquisition system including Lockheed MAC-16's left from the original Main Ring and Booster instrumentation and upwards of 1000 Z80, Z8002, and M68000 microprocessors in dozens of configurations. Interaction of the various parts of the system is via a central data base stored on the disk of one of the VAXes. The primary computer-hardware communication is via CAMAC for the new Tevatron and Antiproton Source; certain subsystems, among them vacuum, refrigeration, and quench protection, reside in the distributed microprocessors and communicate via GAS, an in-house protocol. An important hardware feature is an accurate clock system making a large number of encoded "events" in the accelerator supercycle available for both hardware modules and computers. System software features include the ability to save the current state of the machine or any subsystem and later restore it or compare it with the state at another time, a general logging facility to keep track of specific variables over long periods of time, detection of "exception conditions" and the posting of alarms, and a central filesharing capability in which files on VAX disks are available for access by any of the "Host" processors.

  5. Re-energizing energy supply: Electrolytically-produced hydrogen as a flexible energy storage medium and fuel for road transport

    NASA Astrophysics Data System (ADS)

    Emonts, Bernd; Schiebahn, Sebastian; Görner, Klaus; Lindenberger, Dietmar; Markewitz, Peter; Merten, Frank; Stolten, Detlef

    2017-02-01

    "Energiewende", which roughly translates as the transformation of the German energy sector in accordance with the imperatives of climate change, may soon become a byword for the corresponding processes most other developed countries are at various stages of undergoing. Germany's notable progress in this area offers valuable insights that other states can draw on in implementing their own transitions. The German state of North Rhine-Westphalia (NRW) is making its own contribution to achieving the Energiewende's ambitious objectives: in addition to funding an array of 'clean and green' projects, the Virtual Institute Power to Gas and Heat was established as a consortium of seven scientific and technical organizations whose aim is to inscribe a future, renewable-based German energy system with adequate flexibility. Thus, it is tasked with conceiving of and evaluating suitable energy path options. This paper outlines one of the most promising of these pathways, which is predicated on the use of electrolytically-produced hydrogen as an energy storage medium, as well as the replacement of hydrocarbon-based fuel for most road vehicles. We describe and evaluate this path and place it in a systemic context, outlining a case study from which other countries and federated jurisdictions therein may draw inspiration.

  6. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    SciTech Connect

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  7. Energy latency tradeoffs for medium access and sleep scheduling in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Gang, Lu

    Wireless sensor networks are expected to be used in a wide range of applications from environment monitoring to event detection. The key challenge is to provide energy efficient communication; however, latency remains an important concern for many applications that require fast response. The central thesis of this work is that energy efficient medium access and sleep scheduling mechanisms can be designed without necessarily sacrificing application-specific latency performance. We validate this thesis through results from four case studies that cover various aspects of medium access and sleep scheduling design in wireless sensor networks. Our first effort, DMAC, is to design an adaptive low latency and energy efficient MAC for data gathering to reduce the sleep latency. We propose staggered schedule, duty cycle adaptation, data prediction and the use of more-to-send packets to enable seamless packet forwarding under varying traffic load and channel contentions. Simulation and experimental results show significant energy savings and latency reduction while ensuring high data reliability. The second research effort, DESS, investigates the problem of designing sleep schedules in arbitrary network communication topologies to minimize the worst case end-to-end latency (referred to as delay diameter). We develop a novel graph-theoretical formulation, derive and analyze optimal solutions for the tree and ring topologies and heuristics for arbitrary topologies. The third study addresses the problem of minimum latency joint scheduling and routing (MLSR). By constructing a novel delay graph, the optimal joint scheduling and routing can be solved by M node-disjoint paths algorithm under multiple channel model. We further extended the algorithm to handle dynamic traffic changes and topology changes. A heuristic solution is proposed for MLSR under single channel interference. In the fourth study, EEJSPC, we first formulate a fundamental optimization problem that provides tunable

  8. Energy efficiency in the US economy technical report four: Analysis of energy-efficiency investment decisions by small and medium-sized manufacturers

    SciTech Connect

    1996-03-01

    This report highlights the results of a comprehensive analysis of investment decisions regarding energy-efficiency measures at small and medium-sized manufacturing plants. The analysis is based primarily on the experiences of companies participating in the US Department of Energy`s Industrial Assessment Center (IAC) program.

  9. Thermal Impact of Medium Deep Borehole Thermal Energy Storage on the Shallow Subsurface

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Schulte, Daniel O.; Rühaak, Wolfram; Bär, Kristian; Sass, Ingo

    2017-04-01

    Borehole heat exchanger arrays are a well-suited and already widely applied method for exploiting the shallow subsurface as seasonal heat storage. However, in most of the populated regions the shallow subsurface also comprises an important aquifer system used for drinking water production. Thus, the operation of shallow geothermal heat storage systems leads to a significant increase in groundwater temperatures in the proximity of the borehole heat exchanger array. The magnitude of the impact on groundwater quality and microbiology associated with this temperature rise is controversially discussed. Nevertheless, the protection of shallow groundwater resources has priority. Accordingly, water authorities often follow restrictive permission policies for building such storage systems. An alternative approach to avoid this issue is the application of medium deep borehole heat exchanger arrays instead of shallow ones. The thermal impact on shallow aquifers can be significantly reduced as heat is stored at larger depth. Moreover, it can be further diminished by the installation of a thermally insulating materials in the upper section of the borehole heat exchangers. Based on a numerical simulation study, the advantageous effects of medium deep borehole thermal energy storage are demonstrated and quantified. A finite element software is used to model the heat transport in the subsurface in 3D, while the heat transport in the borehole heat exchangers is solved analytically in 1D. For this purpose, an extended analytical solution is implemented, which also allows for the consideration of a thermally insulating borehole section.

  10. Broad-band chopper for a CW proton linac at Fermilab

    SciTech Connect

    Gianfelice-Wendt, E.; Lebedev, V.A.; Solyak, N.; Nagaitsev, S.; Sun, D.; /Fermilab

    2011-03-01

    The future Fermilab program in the high energy physics is based on a new facility called the Project X [1] to be built in the following decade. It is based on a 3 MW CW linear accelerator delivering the 3 GeV 1 mA H{sup -} beam to a few experiments simultaneously. Small fraction of this beam will be redirected for further acceleration to 8 GeV to be injected to the Recycler/Main Injector for a usage in a neutrino program and other synchrotron based high energy experiments. Requirements and technical limitations to the bunch-by-bunch chopper for the Fermilab Project X are discussed.

  11. Design, performance and production of the Fermilab TESLA RF input couplers

    SciTech Connect

    Champion, M.

    1996-10-01

    The TeV Energy Superconducting Linear Accelerator (TESLA) requires as one of its technical components a radiofrequency (rf) input coupler that transfers 1.3 GHz rf energy from the rf distribution system to a nine-cell superconducting accelerating cavity operating at a temperature of 1.8 K. The input coupler design is driven by numerous design criteria, which result in a rather complicated implementation. The production of twelve input couplers for the TESLA Test Facility (TTF) is underway at Fermilab, with the first two couplers having been delivered late in 1995. This paper discusses the Fermilab TESLA rf input coupler design, recent test results, and production issues.

  12. Big Data over a 100G network at Fermilab

    DOE PAGES

    Garzoglio, Gabriele; Mhashilkar, Parag; Kim, Hyunwoo; ...

    2014-06-11

    As the need for Big Data in science becomes ever more relevant, networks around the world are upgrading their infrastructure to support high-speed interconnections. To support its mission, the high-energy physics community as a pioneer in Big Data has always been relying on the Fermi National Accelerator Laboratory to be at the forefront of storage and data movement. This need was reiterated in recent years with the data-taking rate of the major LHC experiments reaching tens of petabytes per year. At Fermilab, this resulted regularly in peaks of data movement on the Wide area network (WAN) in and out ofmore » the laboratory of about 30 Gbit/s and on the Local are network (LAN) between storage and computational farms of 160 Gbit/s. To address these ever increasing needs, as of this year Fermilab is connected to the Energy Sciences Network (ESnet) through a 100 Gb/s link. To understand the optimal system-and application-level configuration to interface computational systems with the new highspeed interconnect, Fermilab has deployed a Network Research & Development facility connected to the ESnet 100G Testbed. For the past two years, the High Throughput Data Program (HTDP) has been using the Testbed to identify gaps in data movement middleware [5] when transferring data at these high-speeds. The program has published evaluations of technologies typically used in High Energy Physics, such as GridFTP [4], XrootD [9], and Squid [8]. Furthermore, this work presents the new R&D facility and the continuation of the evaluation program.« less

  13. Big Data over a 100G network at Fermilab

    SciTech Connect

    Garzoglio, Gabriele; Mhashilkar, Parag; Kim, Hyunwoo; Dykstra, Dave; Slyz, Marko

    2014-06-11

    As the need for Big Data in science becomes ever more relevant, networks around the world are upgrading their infrastructure to support high-speed interconnections. To support its mission, the high-energy physics community as a pioneer in Big Data has always been relying on the Fermi National Accelerator Laboratory to be at the forefront of storage and data movement. This need was reiterated in recent years with the data-taking rate of the major LHC experiments reaching tens of petabytes per year. At Fermilab, this resulted regularly in peaks of data movement on the Wide area network (WAN) in and out of the laboratory of about 30 Gbit/s and on the Local are network (LAN) between storage and computational farms of 160 Gbit/s. To address these ever increasing needs, as of this year Fermilab is connected to the Energy Sciences Network (ESnet) through a 100 Gb/s link. To understand the optimal system-and application-level configuration to interface computational systems with the new highspeed interconnect, Fermilab has deployed a Network Research & Development facility connected to the ESnet 100G Testbed. For the past two years, the High Throughput Data Program (HTDP) has been using the Testbed to identify gaps in data movement middleware [5] when transferring data at these high-speeds. The program has published evaluations of technologies typically used in High Energy Physics, such as GridFTP [4], XrootD [9], and Squid [8]. Furthermore, this work presents the new R&D facility and the continuation of the evaluation program.

  14. Big Data Over a 100G Network at Fermilab

    NASA Astrophysics Data System (ADS)

    Garzoglio, Gabriele; Mhashilkar, Parag; Kim, Hyunwoo; Dykstra, Dave; Slyz, Marko

    2014-06-01

    As the need for Big Data in science becomes ever more relevant, networks around the world are upgrading their infrastructure to support high-speed interconnections. To support its mission, the high-energy physics community as a pioneer in Big Data has always been relying on the Fermi National Accelerator Laboratory to be at the forefront of storage and data movement. This need was reiterated in recent years with the data-taking rate of the major LHC experiments reaching tens of petabytes per year. At Fermilab, this resulted regularly in peaks of data movement on the Wide area network (WAN) in and out of the laboratory of about 30 Gbit/s and on the Local are network (LAN) between storage and computational farms of 160 Gbit/s. To address these ever increasing needs, as of this year Fermilab is connected to the Energy Sciences Network (ESnet) through a 100 Gb/s link. To understand the optimal system-and application-level configuration to interface computational systems with the new highspeed interconnect, Fermilab has deployed a Network Research & Development facility connected to the ESnet 100G Testbed. For the past two years, the High Throughput Data Program (HTDP) has been using the Testbed to identify gaps in data movement middleware [5] when transferring data at these high-speeds. The program has published evaluations of technologies typically used in High Energy Physics, such as GridFTP [4], XrootD [9], and Squid [8]. This work presents the new R&D facility and the continuation of the evaluation program.

  15. Technical Support Document: Development of the Advanced Energy Design Guide for Medium Box Retail -- 50% Energy Savings

    SciTech Connect

    Hale, E. T.; Macumber, D. L.; Long, N. L.; Griffith, B. T.; Benne, K. S.; Pless, S. D.; Torcellini, P. A.

    2008-09-01

    This report provides recommendations that architects, designers, contractors, developers, owners, and lessees of medium box retail buildings can use to achieve whole-building energy savings of at least 50% over ASHRAE Standard 90.1-2004. The recommendations are given by climate zone and address building envelope, fenestration, lighting systems, HVAC systems, building automation and controls, outside air treatment, service water heating, plug loads, and photovoltaic systems. The report presents several paths to 50% savings, which correspond to different levels of integrated design. These are recommendations only, and are not part of a code or standard. The recommendations are not exhaustive, but we do try to emphasize the benefits of integrated building design, that is, a design approach that analyzes a building as a whole system, rather than as a disconnected collection of individually engineered subsystems.

  16. Probability distribution of the free energy of a directed polymer in a random medium.

    PubMed

    Brunet, E; Derrida, B

    2000-06-01

    We calculate exactly the first cumulants of the free energy of a directed polymer in a random medium for the geometry of a cylinder. By using the fact that the nth moment of the partition function is given by the ground-state energy of a quantum problem of n interacting particles on a ring of length L, we write an integral equation allowing to expand these moments in powers of the strength of the disorder gamma or in powers of n. For n small and n approximately (Lgamma)(-1/2), the moments take a scaling form which allows us to describe all the fluctuations of order 1/L of the free energy per unit length of the directed polymer. The distribution of these fluctuations is the same as the one found recently in the asymmetric exclusion process, indicating that it is characteristic of all the systems described by the Kardar-Parisi-Zhang equation in 1+1 dimensions.

  17. Towards smart energy systems: application of kernel machine regression for medium term electricity load forecasting.

    PubMed

    Alamaniotis, Miltiadis; Bargiotas, Dimitrios; Tsoukalas, Lefteri H

    2016-01-01

    Integration of energy systems with information technologies has facilitated the realization of smart energy systems that utilize information to optimize system operation. To that end, crucial in optimizing energy system operation is the accurate, ahead-of-time forecasting of load demand. In particular, load forecasting allows planning of system expansion, and decision making for enhancing system safety and reliability. In this paper, the application of two types of kernel machines for medium term load forecasting (MTLF) is presented and their performance is recorded based on a set of historical electricity load demand data. The two kernel machine models and more specifically Gaussian process regression (GPR) and relevance vector regression (RVR) are utilized for making predictions over future load demand. Both models, i.e., GPR and RVR, are equipped with a Gaussian kernel and are tested on daily predictions for a 30-day-ahead horizon taken from the New England Area. Furthermore, their performance is compared to the ARMA(2,2) model with respect to mean average percentage error and squared correlation coefficient. Results demonstrate the superiority of RVR over the other forecasting models in performing MTLF.

  18. Gamma-ray Polarimetry with the All-sky Medium Energy Gamma-ray Observatory (AMEGO)

    NASA Astrophysics Data System (ADS)

    Kislat, Fabian

    2017-08-01

    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a next-generation Compton and pair-production telescope. It will allow us to perform sensitive polarimetric observations in the 200keV to 3MeV energy range. Due to its wide field of view it will survey the entire sky every 3 hours, enabling polarization measurements not only of persistent, but also of transient sources such as gamma-ray bursts. The polarization of gamma-rays carries geometric information about compact emission regions that are too small to be imaged at any wavelength, and will thus provide qualitatively new insights. In this paper we discuss AMEGO's polarization sensitivity based on detailed simulations of the instrument. We will use these results to discuss the scientific potential of AMEGO to search for violations of Lorentz invariance. Finally, we present predictions for possible observations based on theoretical models of bright gamma-ray bursts, blazar jets, and the high-energy tail of the galactic black hole binary Cygnus X-1. These predictions will demonstrate AMEGO's ability to distinguish different theoretical models.

  19. Energy cost based design optimization method for medium temperature CPC collectors

    NASA Astrophysics Data System (ADS)

    Horta, Pedro; Osório, Tiago; Collares-Pereira, Manuel

    2016-05-01

    CPC collectors, approaching the ideal concentration limits established by non-imaging optics, can be designed to have such acceptance angles enabling fully stationary designs, useful for applications in the low temperature range (T < 100°C). Their use in the medium temperature range (100°C < T < 250°C) typically requires higher concentration factors in turn requiring seasonal tracking strategies. Considering the CPC design options in terms of effective concentration factor, truncation, concentrator height, mirror perimeter, seasonal tracking, trough spacing, etc., an energy cost function based design optimization method is presented in this article. Accounting for the impact of the design on its optical (optical efficiency, Incidence Angle Modifier, diffuse acceptance) and thermal performances (dependent on the concentration factor), the optimization function integrates design (e.g. mirror area, frame length, trough spacing/shading), concept (e.g. rotating/stationary components, materials) and operation (e.g. O&M, tilt shifts and tracking strategy) costs into a collector specific energy cost function, in €/(kWh.m2). The use of such function stands for a location and operating temperature dependent design optimization procedure, aiming at the lowest solar energy cost. Illustrating this approach, optimization results will be presented for a (tubular) evacuated absorber CPC design operating in Morocco.

  20. Cross correlation analysis of medium energy gamma rays for the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Long, J.; Zanrosso, E.; Zych, A. D.; White, R. S.

    1982-01-01

    In the cross correlation method the observed gamma rays are compared with the expected telescope response for a discrete celestial source. The background consists of the atmospheric flux with its maximum near the horizon, the cosmic diffuse flux, and neutron induced gamma rays in the telescope. In sharp contrast to the background, a celestial source produces an asymmetric azimuthal response which varies predictably in time as the source moves through the telescope's aperture. This contrast serves as the basis of the cross correlation technique. Continuous data of 47.5 hr were obtained during a balloon flight from Palestine, TX from 0930 UT on September 30, 1978 to 2300 UT on October 1, 1978. The Crab Nebula-Anticenter region was observed on two consecutive days. A number of other medium energy source candidates also crossed the field-of-view. The obtained results are discussed.

  1. A Pair Production Telescope for Medium-Energy Gamma-Ray Polarimetry

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; Bloser, Peter F.; Depaola, Gerardo; Dion, Michael P.; DeNolfo, Georgia A.; Hanu, Andrei; Iparraguirre, Marcos; Legere, Jason; Longo, Francesco; McConnell, Mark L.; Nowicki, Suzanne F.; Ryan, James M.; Son, Seunghee; Stecker, Floyd W.

    2014-01-01

    We describe the science motivation and development of a pair production telescope for medium-energy (approximately 5-200 Mega electron Volts) gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time projection chamber, to achieve angular resolution within a factor of two of the pair production kinematics limit (approximately 0.6 deg at 70 Mega electron Volts), continuum sensitivity comparable with the Fermi-LAT front detector (is less than 3 x 10(exp -6) Mega electron Volts per square centimeter per second at 70 Mega electron Volts), and minimum detectable polarization less than 10% for a 10 milliCrab source in 10(exp 6) s.

  2. HEATING OF THE WARM IONIZED MEDIUM BY LOW-ENERGY COSMIC RAYS

    SciTech Connect

    Walker, Mark A.

    2016-02-10

    In light of evidence for a high ionization rate due to low-energy cosmic rays (LECR) in diffuse molecular gas in the solar neighborhood, we evaluate their heat input to the warm ionized medium (WIM). LECR are much more effective at heating plasma than they are at heating neutrals. We show that the upper end of the measured ionization rates corresponds to a local LECR heating rate sufficient to maintain the WIM against radiative cooling, independent of the nature of the ionizing particles or the detailed shape of their spectrum. Elsewhere in the Galaxy the LECR heating rates may be higher than those measured locally. In particular, higher fluxes of LECR have been suggested for the inner Galactic disk, based on the observed hard X-ray emission, with correspondingly larger heating rates implied for the WIM. We conclude that LECR play an important and perhaps dominant role in the thermal balance of the WIM.

  3. Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

    SciTech Connect

    Peffer, Therese; Blumstein, Carl; Culler, David; Modera, Mark; Meier, Alan

    2015-09-10

    The Project uses state-of-the-art computer science to extend the benefits of Building Automation Systems (BAS) typically found in large buildings (>100,000 square foot) to medium-sized commercial buildings (<50,000 sq ft). The BAS developed in this project, termed OpenBAS, uses an open-source and open software architecture platform, user interface, and plug-and-play control devices to facilitate adoption of energy efficiency strategies in the commercial building sector throughout the United States. At the heart of this “turn key” BAS is the platform with three types of controllers—thermostat, lighting controller, and general controller—that are easily “discovered” by the platform in a plug-and-play fashion. The user interface showcases the platform and provides the control system set-up, system status display and means of automatically mapping the control points in the system.

  4. Free energy and entropy production rate for a Brownian particle that walks on overdamped medium

    NASA Astrophysics Data System (ADS)

    Taye, Mesfin Asfaw

    2016-09-01

    We derive general expressions for the free energy, entropy production, and entropy extraction rates for a Brownian particle that walks in a viscous medium where the dynamics of its motion is governed by the Langevin equation. It is shown that, when the system is out of equilibrium, it constantly produces entropy and at the same time extracts entropy out of the system. Its entropy production and extraction rates decrease in time and saturate to a constant value. In the long-time limit, the rate of entropy production balances the rate of entropy extraction and, at equilibrium, both entropy production and extraction rates become zero. Moreover, considering different model systems, not only do we investigate how various thermodynamic quantities behave in time but also we discuss the fluctuation theorem in detail.

  5. A Pair Production Telescope for Medium-Energy Gamma-Ray Polarimetry

    SciTech Connect

    Hunter , Stanley D.; Bloser, Peter F.; Depaola, Gerardo O.; Dion, Michael P.; DeNolfo, Georgia A.; Hanu, Andrei; Iparraguirre, Marcos; Legere, Jason; Longo, Francesco; McConnell, Mark L.; Nowicki, Suzanne F.; Ryan, James M.; Son, Seunghee; Stecker, Floyd W.

    2014-08-01

    We describe the science motivation and development of a pair production telescope for medium-13 energy gamma-ray polarimetry. Our instrument concept, the Advanced Energetic Pair Telescope 14 (AdEPT), takes advantage of the Three-Dimensional Track Imager, a low-density gaseous time 15 projection chamber, to achieve angular resolution within a factor of two of the pair production 16 kinematics limit (~0.6° at 70 MeV), continuum sensitivity comparable with the Fermi-LAT front 17 detector (<3×10-6 MeV cm-2 s-1 at 70 MeV), and minimum detectable polarization less than 10% 18 for a 10 millicrab source in 106 seconds.

  6. Damage Processes In MgO Irradiated With Medium-energy Heavy Ions

    SciTech Connect

    Moll, Sandra J.; Zhang, Y.; Debelle, A.; Thome, Lionel; Crocombette, J.-P.; Zhu, Zihua; Jagielski, Jacek; Weber, William J.

    2015-04-01

    The micro-structural modifications produced in MgO single crystals exposed to medium-energy heavy ions (1.2-MeV Au) were investigated using Rutherford backscattering spectrometry in channeling geometry coupled to Monte-Carlo analyses, secondary ion mass spectrometry, X-ray diffraction and transmission electron microscopy. The damage accumulation and the elastic strain variation were interpreted in the framework of the multi-step damage accumulation (MSDA) model. Both build-ups follow a multi-step process similar to that recently observed for ion-irradiated yttria-stabilized zirconia (YSZ) single crystals. However, in MgO, an unexpectedly high disorder level occurs far beyond the theoretical damage distribution. These results strongly suggest that the migration of defects created in the near-surface layer is most likely at the origin of the broadening of the damage depth distribution in MgO.

  7. Statistical calculation of complete events in medium-energy nuclear collisions

    SciTech Connect

    Randrup, J.

    1983-04-01

    This lecture presents the essential tools for formulating a statistical model for the nuclear disassembly process. We consider the quick disassembly (explosion) of a hot nuclear system, a so-called source, into multifragment final states, which compete according to their statistical weight. First some useful notation is introduced. The expressions for exclusive and inclusive distributions are given and the factorization of an exclusive distribution into inclusive ones is carried out. In turn, the grand canonical approximation for one-fragment inclusive distributions is introduced. Finally, it is outlined how to generate a statistical sample of complete final states. On this basis, a model for statistical simulation of complete events in medium-energy nuclear collisions has been developed.

  8. Damage processes in MgO irradiated with medium-energy heavy ions

    SciTech Connect

    Moll, Sandra; Zhang, Yanwen; Debelle, Aurelien; Thomé, Lionel; Crocombette, Jean-Paul; Zihua, Z.; Jagielski, Jacek; Weber, William J.

    2015-01-01

    In this research, the micro-structural modifications produced in MgO single crystals exposed to medium-energy heavy ions (1.2-MeV Au) were investigated using Rutherford backscattering spectrometry in channeling geometry coupled to Monte-Carlo analyses, secondary ion mass spectrometry, X-ray diffraction and transmission electron microscopy. The damage accumulation and the elastic strain variation were interpreted in the framework of the multi-step damage accumulation (MSDA) model. Both build-ups follow a multi-step process similar to that recently observed for ion-irradiated yttria-stabilized zirconia (YSZ) single crystals. However, in MgO, an unexpectedly high disorder level occurs far beyond the theoretical damage distribution. In conclusion, these results strongly suggest that the migration of defects created in the near-surface layer is most likely at the origin of the broadening of t he damage depth distribution in MgO.

  9. A new medium energy beam transport line for the proton injector of AGS-RHIC

    SciTech Connect

    Okamura, M.; Briscoe, B.; Fite, J.; LoDestro, V.; Raparia, D.; Ritter, J.; Hayashizaki, N.

    2010-09-12

    In Brookhaven National Laboratory (BNL), a 750 keV medium energy beam transport line between the 201 MHz 750 keV proton RFQ and the 200 MeV Alvarez DTL is being modified to get a better transmission of the beam. Within a tight space, high field gradient quadrupoles (65 Tm) and newly designed steering magnets (6.5 mm in length) will be installed considering the cross-talk effects. Also a new half wave length 200 MHz buncher is being prepared. The beam commissioning will be done in this year. To enhance the performance of the proton linacs, the MEBT is being modified. New quadrupole magnets, steering magnets and a half wave length buncher as shown in Figure 7 will be installed and be commissioned soon.

  10. Next Generation Angle Control for Medium Current and High Energy Implanters

    SciTech Connect

    Olson, Joseph C.; Gupta, Atul; Gossmann, Hans-Joachim L.; Rodier, Dennis

    2008-11-03

    Angle control continues to increase in importance with device scaling. For instance, threshold voltage and on-state current in advanced logic devices depend critically on the angle accuracy of medium current halo implants. TCAD simulation results, showing that on-state current changes of greater than 1% per degree of implant angle are possible, are presented. We report here on improvements to angle performance and control in both the horizontal and vertical directions. Beam data covering the full operating space of the VIISta 900XP is presented, demonstrating total angle control of better than {+-}0.2 deg. The data set is chosen to emphasize performance of typical halo implants. Single wafer high energy angle control data is also presented.

  11. Fermilab 4.3-MeV Electron Cooler

    SciTech Connect

    Nagaitsev, Sergei; Prost, Lionel; Shemyakin, Alexander

    2014-11-25

    The Recycler Electron Cooler (REC) was the first cooler working at a relativistic energy (gamma = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. After introducing the physics of electron cooling and the REC system, this paper describes measurements carried out to tune the electron beam and optimize its cooling properties. In particular, we discuss the cooling strategy adopted for maximizing the collider integrated luminosity.

  12. Transverse and longitudinal beam dynamics studies at the Fermilab photoinjector

    SciTech Connect

    Carneiro, J.P.; Barov, N.; Edwards, H.; Fitch, M.; Hartung, W.; Flottmann, K.; Schreiber, S.; Ferrario, M.; /Frascati

    2005-01-01

    The Fermilab photoinjector produces electron bunches of 1-12 nC charge with an energy of 16-18 MeV. Detailed measurements and optimization of the transverse emittance have been carried out for a number of beam line optics conditions, and at a number of beam line locations. The length of the bunches has also been measured, first for an uncompressed beam (as a function of the charge) and then for a compressed beam of 8 nC charge (as a function of the 9-cell cavity phase). These measurements are presented and compared with the simulation codes HOMDYN and ASTRA.

  13. Fermilab Fast Parallel Readout System for Data Acquisition

    NASA Astrophysics Data System (ADS)

    Vignoni, R.; Barsotti, E.; Bracker, S.; Hansen, S.; Pordes, R.; Treptow, K.; White, V.; Wickert, S.

    1987-08-01

    Three modules have recently been developed at Fermilab to provide high speed parallel readout of data for high energy physics experiments. This paper describes how these modules provide a fast and efficient method for transferring CAMAC event data into VME-based or FASTBUS-based memories, thus enhancing and extending the usefulness of experiments' large investments in CAMAC hardware. Using these modules can decrease the dead time of an experiment by up to a factor of 10. This paper includes a discussion of the experiment topologies In which these modules are being used.

  14. An overview of plastic optical fiber end finishers at Fermilab

    SciTech Connect

    Mishina, M.; Lindenmeyer, C.; Korienek, J.

    1993-11-01

    Several years ago the need for equipment to precisely finish the ends of plastic optical fibers was recognized. Many high energy physics experiments use thousands of these fibers which must be polished on one or both ends. A fast, easy-to-operate machine yielding repeatable finishes was needed. Three types of machines were designed and constructed that are in daily use at Fermilab, all finish the fiber ends by flycutting with a diamond tool. Althrough diamond flycutting of plastic is not new, the size and fragility of plastic optical fibers present several challenges.

  15. Advanced beamline design for Fermilab's Advanced Superconducting Test Accelerator

    NASA Astrophysics Data System (ADS)

    Prokop, Christopher R.

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  16. Novel Muon Beam Facilities for Project X at Fermilab

    SciTech Connect

    Neuffer, D.V.; Ankenbrandt, C.M.; Abrams, R.; Roberts, T.J.; Yoshikawa, C.Y.; /MUONS Inc., Batavia

    2012-05-01

    Innovative muon beam concepts for intensity-frontier experiments such as muon-to-electron conversion are described. Elaborating upon a previous single-beam idea, we have developed a design concept for a system to generate four high quality, low-energy muon beams (two of each sign) from a single beam of protons. As a first step, the production of pions by 1 and 3 GeV protons from the proposed Project X linac at Fermilab is being simulated and compared with the 8-GeV results from the previous study.

  17. Summary of Fermilab's Recycler Electron Cooler Operation and Studies

    SciTech Connect

    Prost, L.R.; Shemyakin, A.; /Fermilab

    2012-05-15

    Fermilab's Recycler ring was used as a storage ring for accumulation and subsequent manipulations of 8 GeV antiprotons destined for the Tevatron collider. To satisfy these missions, a unique electron cooling system was designed, developed and successfully implemented. The most important features that distinguish the Recycler cooler from other existing electron coolers are its relativistic energy, 4.3 MV combined with 0.1-0.5 A DC beam current, a weak continuous longitudinal magnetic field in the cooling section, 100 G, and lumped focusing elsewhere. With the termination of the Tevatron collider operation, so did the cooler. In this article, we summarize the experience of running this unique machine.

  18. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    SciTech Connect

    Prokop, Christopher

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  19. The 1994 Fermilab Fixed Target Program

    SciTech Connect

    Conrad, J. |

    1994-11-01

    This paper highlights the results of the Fermilab Fixed Target Program that were announced between October, 1993 and October, 1994. These results are drawn from 18 experiments that took data in the 1985, 1987 and 1990/91 fixed target running periods. For this discussion, the Fermilab Fixed Target Program is divided into 5 major topics: hadron structure, precision electroweak measurements, heavy quark production, polarization and magnetic moments, and searches for new phenomena. However, it should be noted that most experiments span several subtopics. Also, measurements within each subtopic often affect the results in other subtopics. For example, parton distributions from hadron structure measurements are used in the studies of heavy quark production.

  20. Energy-efficient boarder node medium access control protocol for wireless sensor networks.

    PubMed

    Razaque, Abdul; Elleithy, Khaled M

    2014-03-12

    This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi

  1. Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks

    PubMed Central

    Razaque, Abdul; Elleithy, Khaled M.

    2014-01-01

    This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi

  2. An Exploratory Energy Analysis of Electrochromic Windows in Small and Medium Office Buildings - Simulated Results Using EnergyPlus

    SciTech Connect

    Belzer, David B.

    2010-08-01

    The Department of Energy’s (DOE) Building Technologies Program (BTP) has had an active research program in supporting the development of electrochromic (EC) windows. Electrochromic glazings used in these windows have the capability of varying the transmittance of light and heat in response to an applied voltage. This dynamic property allows these windows to reduce lighting, cooling, and heating energy in buildings where they are employed. The exploratory analysis described in this report examined three different variants of EC glazings, characterized by the amount of visible light and solar heat gain (as measured by the solar heat gain coefficients [SHGC] in their “clear” or transparent states). For these EC glazings, the dynamic range of the SHGC’s between their “dark” (or tinted) state and the clear state were: (0.22 - 0.70, termed “high” SHGC); (0.16 - 0.39, termed “low” SHGC); and (0.13 - 0.19; termed “very low” SHGC). These glazings are compared to conventional (static) glazing that meets the ASHRAE Standard 90.1-2004 energy standard for five different locations in the U.S. All analysis used the EnergyPlus building energy simulation program for modeling EC windows and alternative control strategies. The simulations were conducted for a small and a medium office building, where engineering specifications were taken from the set of Commercial Building Benchmark building models developed by BTP. On the basis of these simulations, total source-level savings in these buildings were estimated to range between 2 to 7%, depending on the amount of window area and building location.

  3. Measurement of the time-resolved reflection matrix for enhancing light energy delivery into a scattering medium.

    PubMed

    Choi, Youngwoon; Hillman, Timothy R; Choi, Wonjun; Lue, Niyom; Dasari, Ramachandra R; So, Peter T C; Choi, Wonshik; Yaqoob, Zahid

    2013-12-13

    Multiple scatterings occurring in a turbid medium attenuate the intensity of propagating waves. Here, we propose a method to efficiently deliver light energy to the desired target depth in a scattering medium. We measure the time-resolved reflection matrix of a scattering medium using coherent time-gated detection. From this matrix, we derive and experimentally implement an incident wave pattern that optimizes the detected signal corresponding to a specific arrival time. This leads to enhanced light delivery at the target depth. The proposed method will lay a foundation for efficient phototherapy and deep-tissue in vivo imaging in the near future.

  4. Sentinel node detection in patients with breast cancer: low-energy all-purpose collimator or medium-energy collimator?

    PubMed

    Lemstra, C; Broersma, M; Poot, L; Jager, P L

    2004-10-01

    Sentinel node detection in patients with breast cancer is routinely performed in our department. Images frequently show star-shaped activity at the site of injection caused by septum penetration. These star-shaped artifacts could possibly impair visualization of nearby sentinel nodes. The aim of this study was to determine whether sentinel node detection in patients with breast cancer can be improved using a medium-energy all-purpose (ME) collimator instead of a low-energy all-purpose (LEAP) collimator. For this purpose, 15 patients were studied and a phantom study was performed. The LEAP collimator was used for a dynamic study immediately after injection, and both the LEAP and the ME collimators were used for static studies. A total of 20 sentinel nodes were found with both collimators. All sentinel nodes were found in the axilla. To separate sentinel nodes from the injection site, the ME collimator gave the best results in 4 of 15 patients, but only within the first hour after injection. To separate 2 nearby sentinel nodes from each other, the LEAP collimator gave the best results in 3 of 15 patients. Our conclusion is that the LEAP collimator gave better results than the ME collimator as a result of the better resolution and the higher sensitivity. Use of the ME collimator did not improve sentinel node detection.

  5. A medium-chain fatty acid as an alternative energy source in mouse preimplantation development.

    PubMed

    Yamada, Mitsutoshi; Takanashi, Kazumi; Hamatani, Toshio; Hirayama, Akiyoshi; Akutsu, Hidenori; Fukunaga, Tomoko; Ogawa, Seiji; Sugawara, Kana; Shinoda, Kosaku; Soga, Tomoyoshi; Umezawa, Akihiro; Kuji, Naoaki; Yoshimura, Yasunori; Tomita, Masaru

    2012-01-01

    To further optimize the culturing of preimplantation embryos, we undertook metabolomic analysis of relevant culture media using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We detected 28 metabolites: 23 embryo-excreted metabolites including 16 amino acids and 5 media-derived metabolites (e.g., octanoate, a medium-chain fatty acid (MCFA)). Due to the lack of information on MCFAs in mammalian preimplantation development, this study examined octanoate as a potential alternative energy source for preimplantation embryo cultures. No embryos survived in culture media lacking FAs, pyruvate, and glucose, but supplementation of octanoate rescued the embryonic development. Immunoblotting showed significant expression of acyl-CoA dehydrogenase and hydroxyacyl-CoA dehydrogenase, important enzymes for ß-oxidation of MCFAs, in preimplantation embryo. Furthermore, CE-TOFMS traced [1-(13)C(8)] octanoate added to the culture media into intermediate metabolites of the TCA cycle via ß-oxidation in mitochondria. These results are the first demonstration that octanoate could provide an efficient alternative energy source throughout preimplantation development.

  6. Long-term atmospheric effects of medium-energy electron precipitation from chemistry-climate modelling

    NASA Astrophysics Data System (ADS)

    Andersson, M. E.; Verronen, P. T.; Marsh, D. R.; Seppälä, A.; Kalakoski, N.

    2016-12-01

    Medium energy electrons (MEE) from the Earth's outer radiation belt continuously affects the chemical composition of the mesosphere. In particular, ionisation caused by MEE leads to the production of odd hydrogen and odd nitrogen species that affects ozone chemistry. By absorbing a great part of UV radiation, ozone plays an important role in the energy budget and dynamics of the middle atmosphere. During strong precipitation events lasting days, ozone has been observed to decrease by tens of percent in the wintertime polar region. Such ozone perturbation causes zonal wind anomalies through wave-mean flow interaction which propagate to lower altitudes during the polar winter and affect stratospheric temperature. However, understanding the long term effects from MEE and its potential role in the polar climate variability is a difficult task due to the limitations of the satellite measurements. Here we use the Whole Atmosphere Community Climate Model (WACCM) together with MEE flux characterised using a precipitation model driven by the magnetic Ap index to simulate the effects of MEE on the solar cycles time scale. We will present results from free running simulations for the period of time 1955-2005. We will contrast our results with those from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) in order to assess the role of MEE and its significance to the atmospheric dynamics and climate variability in the polar regions.

  7. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective

    PubMed Central

    Schönfeld, Peter; Wojtczak, Lech

    2016-01-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. PMID:27080715

  8. Beam-beam interaction study of medium energy eRHIC

    SciTech Connect

    Hao,Y.; Litvinenko, V. N.; Ptitsyn, V.

    2009-07-15

    Medium Energy eRHIC (MeRHIC), the first stage design of eRHIC, includes a multi-pass ERL that provides 4GeV high quality electron beam to collide with the ion beam of RHIC. It delivers a minimum luminosity of 10{sup 32} cm{sup -2}s{sup -1}. Beam-beam effects present one of major factors limiting the luminosity of colliders. In this paper, both beam-beam effects on the electron beam and the proton beam in MeRHIC are investigated. The beam-beam interaction can induce a head-tail type instability of the proton beam referred to as the kink instability. Thus, beam stability conditions should be established to avoid proton beam loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure that the beam quality is good enough for the energy recovery pass. The relation of proton beam stability, electron disruption and consequential luminosity are carried out after thorough discussion.

  9. MCNP6 Simulation of Light and Medium Nuclei Fragmentation at Intermediate Energies

    SciTech Connect

    Mashnik, Stepan Georgievich; Kerby, Leslie Marie

    2015-05-22

    MCNP6, the latest and most advanced LANL Monte Carlo transport code, representing a merger of MCNP5 and MCNPX, is actually much more than the sum of those two computer codes; MCNP6 is available to the public via RSICC at Oak Ridge, TN, USA. In the present work, MCNP6 was validated and verified (V&V) against different experimental data on intermediate-energy fragmentation reactions, and results by several other codes, using mainly the latest modifications of the Cascade-Exciton Model (CEM) and of the Los Alamos version of the Quark-Gluon String Model (LAQGSM) event generators CEM03.03 and LAQGSM03.03. It was found that MCNP6 using CEM03.03 and LAQGSM03.03 describes well fragmentation reactions induced on light and medium target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below, and can serve as a reliable simulation tool for different applications, like cosmic-ray-induced single event upsets (SEU’s), radiation protection, and cancer therapy with proton and ion beams, to name just a few. Future improvements of the predicting capabilities of MCNP6 for such reactions are possible, and are discussed in this work.

  10. Supernova-Driven Interstellar Medium Simulations: Turbulent Pressure Distribution and Kinetic Energy Spectrum

    NASA Astrophysics Data System (ADS)

    Joung, M. K. R.; Mac Low, M.-M.

    2005-12-01

    We construct three-dimensional models of stratified interstellar medium stirred by discrete supernova explosions, including vertical gravitational field and parameterized heating and cooling, with sufficient spatial resolution to follow detailed gas dynamics using a grid-based adaptive mesh refinement code, Flash. The models reproduce observed characteristics of the Galaxy such as the galactic fountain and cold dense clouds in the galactic disk. We find: (1) Kinetic energy is distributed over a broad range of lengths, but 90% of the total kinetic energy is contained in wavelengths shortward of 150 pc; (2) Turbulent velocity dispersion is inversely proportional to the square root of the local density, making the turbulent pressure nearly constant; (3) The global gas structure depends sensitively on the assumed background diffuse heating rate. We discuss how these high-resolution models can be used as a subgrid model for supernova feedback in global simulations of galaxies. MKRJ was supported by an AMNH Graduate Student Fellowship. M-MML acknowledges support by NSF Career grant AST99-85392, and NSF grants AST03-07793, AST03-07854. The software used in this work was in part developed by the DOE-supported ASCI/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago. Computations were performed at the Pittsburgh Supercomputing Center supported by the NSF.

  11. Exploring Galactic Particle Accelerators with the All-sky Medium Energy Gamma-Ray Observatory (AMEGO)

    NASA Astrophysics Data System (ADS)

    Hays, Elizabeth A.

    2017-08-01

    Observations with the Fermi Large Area Telescope have raised new questions about particle accelerators within the Galaxy, including supernova remnants, pulsar wind nebulae, and novae. What is the origin and mechanism of the extreme, rapid variability seen in the Crab Nebula and how does it connect to longer time-scale hard X-ray variability? Do other young PWNe show this behavior near the synchrotron cutoff energy, which more commonly falls in the MeV band? How does the gamma-ray emission routinely detected from a nova relate to the properties of the binary system and the particle acceleration process occurring in the outburst? Can prompt gamma signals from novae be detected to probe the onset of the thermonuclear runaway explosion? MeV observations will also provide an important extension below the pion decay feature in LAT-detected supernova remnants as well as providing sensitivity to the youngest SNRs in the Galaxy and the LMC. We will explore the impact of medium-energy gamma-ray observations on characterizing known acceleration regions and exploring new, currently inaccessible phenomena.

  12. Development of global medium-energy nucleon-nucleus optical model potentials

    SciTech Connect

    Madland, D.G.; Sierk, A.J.

    1997-08-01

    The authors report on the development of new global optical model potentials for nucleon-nucleus scattering at medium energies. Using both Schroedinger and Dirac scattering formalisms, the goal is to construct a physically realistic optical potential describing nucleon-nucleus elastic scattering observables for a projectile energy range of (perhaps) 20 meV to (perhaps) 2 GeV and a target mass range of 16 to 209, excluding regions of strong nuclear deformation. They use a phenomenological approach guided by conclusions from recent microscopic studies. The experimental database consists largely of proton-nucleus elastic differential cross sections, analyzing powers, spin-rotation functions, and total reaction cross sections, and neutron-nucleus total cross sections. They will use this database in a nonlinear least-squares adjustment of optical model parameters in both relativistic equivalent Schroedinger (including relativistic kinematics) and Dirac (second-order reduction) formalisms. Isospin will be introduced through the standard Lane model and a relativistic generalization of that model.

  13. Charge equilibrium and radiation of low-energy cosmic rays passing through interstellar medium

    NASA Technical Reports Server (NTRS)

    Rule, D. W.; Omidvar, K.

    1979-01-01

    The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, are considered. Electron loss of the beam has been taken into account by means of the first Born approximation, allowing for the target atom to remain unexcited or to be excited to all possible states. Electron-capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms and capture into all excited states of the projectile. The capture and loss cross sections are found to be within 20%-30% of the existing experimental values for most of the cases considered. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation, and collisional inner-shell ionization, taking into account the fluorescence yield of the ions, has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated, and error estimates made for the results.

  14. Electron cooling for the Fermilab recycler: Present concept and provisional parameters

    SciTech Connect

    Nagaitsev, S.

    1997-09-01

    In all scenarios of the possible Tevatron upgrades, luminosity is essentially proportional to the number of antiprotons. Thus, a tenfold increase in luminosity could be achieved by putting five times more protons on the antiproton production target and gaining an additional factor of two from recycling antiprotons left over from the previous store. Stacking and storing ten times more antiprotons puts an unbearable burden on the stochastic cooling system of the existing Accumulator Ring. Thus, one is led to consider an additional stage of antiproton storage the so called Recycler Ring. Electron cooling of the 8 GeV antiprotons in the Recycler could provide an attractive way around the problems of large stacks. Such a system would look much like the IUCF proposal to cool 12 GeV protons in the SSC Medium Energy Booster. Although electron cooling has now become a routine tool in many laboratories, its use has been restricted to lower energy accelerators (< 500 MeV/nucleon). An R&D program is currently underway at Fermilab to extend electron cooling technology to the GeV range. This paper describes the electron cooling system design as well as the Recycler ring parameters required to accommodate this system.

  15. Charm and beauty measurements at Fermilab fixed target

    SciTech Connect

    Mishra, C.S.

    1993-10-01

    Eighteen months after a successful run of the Fermilab fixed target program, interesting results from several experiments are available. This is the first time that more than one Fermilab fixed target experiment has reported the observation of beauty mesons. In this paper we review recent results from charm and beauty fixed target experiments at Fermilab.

  16. A program in medium energy nuclear physics. Progress report, January 1, 1992--March 31, 1995

    SciTech Connect

    Berman, B.L.; Dhuga, K.S.

    1995-10-01

    This progress report and continuation proposal summarizes our achievements for the period from July 1, 1994 to September 30, 1995 and requests continued funding for our program in experimental medium-energy nuclear physics. The focus of our program remains the understanding of the short-range part of the strong interaction in the nuclear medium. In the past year we have focused our attention ever more sharply on experiments with real tagged photons, and we have successfully defended two new experimental proposals: Photofission of Actinide and Preactinide Nuclei at SAL and Photoproduction of the {rho} Meson from the Proton with Linearly Polarized Photons at CEBAF. (We are co-spokespersons on two previously approved Hall-B experiments at CEBAF, Photoreactions on {sup 3}He and Photoabsorption and Photofission of Nuclei.) As part of the team that is instrumenting the Photon Tagger for Hall B; we report excellent progress on the focal-plane detector array that is being built at our Nuclear Detector Laboratory, as well as progress on our plans for instrumentation of a tagged polarized-photon beam using coherent bremsstrahlung. Also, we shall soon receive a large computer system (from the SSC) which will form the basis for our new Data Analysis Center, which, like the Nuclear Detector Laboratory, will be operated under the auspices of The George Washington University Center for Nuclear Studies. Finally, during the past year we have published six more papers on the results of our measurements of pion scattering at LAMPF and of electron scattering at NIKHEF and Bates, and we can report that nearly all of the remaining papers documenting this long series of measurements are in the pipeline.

  17. Recent results on charm physics from Fermilab

    NASA Astrophysics Data System (ADS)

    Anjos, J. C.; Cuautle, E.

    2000-08-01

    New high statistics, high resolution fixed target experiments producing 105-106 fully reconstructed charm particles are allowing a detailed study of the charm sector. Recent results on charm quark production from Fermilab fixed target experiments E-791, SELEX and FOCUS are presented. .

  18. Cloud services for the Fermilab scientific stakeholders

    DOE PAGES

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; ...

    2015-12-23

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic raymore » simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. As a result, we present in detail the technological improvements that were used to make this work a reality.« less

  19. Cloud services for the Fermilab scientific stakeholders

    SciTech Connect

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; Boyd, J.; Bernabeu, G.; Sharma, N.; Peregonow, N.; Kim, H.; Noh, S.; Palur, S.; Raicu, I.

    2015-12-23

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic ray simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. As a result, we present in detail the technological improvements that were used to make this work a reality.

  20. Photoproduction of charm particles at fermilab

    NASA Astrophysics Data System (ADS)

    Cumalat, John P.

    1997-03-01

    A brief description of the Fermilab Photoproduction Experiment E831 or FOCUS is presented. The experiment concentrates on the reconstruction of charm particles. The FOCUS collaboration has participants from several Central American and Latin American institutions; CINVESTAV and Universidad Autonoma de Puebla from Mexico, University of Puerto Rico from the United States, and Centro Brasileiro de Pesquisas Fisicas in Rio de Janeiro from Brasil.

  1. Exabyte helical scan devices at Fermilab

    SciTech Connect

    Constanta-Fanourakis, P.; Kaczar, K.; Oleynik, G.; Petravick, D.; Votava, M.; White, V.; Hockney, G.; Bracker, S.; de Miranda, J.M.

    1989-05-01

    Exabyte 8mm helical scan storage devices are in use at Fermilab in a number of applications. These devices have the functionality of magnetic tape, but use media which is much more economical and much more dense than conventional 9 track tape. 6 refs., 3 figs.

  2. Charm and beauty physics at Fermilab

    SciTech Connect

    Lipton, R.

    1992-01-01

    The status of charm and beauty physics studies at Fermilab is reviewed. Data from fixed target experiments on charm production, semi-leptonic decay, and Cabibbo suppressed decays as well as charmonium studies in antiproton annihilation are described. In addition beauty results from CDF and E653 are reviewed and prospects for studies of B physics at collider detectors are discussed.

  3. Photoproduction of charm particles at Fermilab

    SciTech Connect

    Cumalat, John P.

    1997-03-15

    A brief description of the Fermilab Photoproduction Experiment E831 or FOCUS is presented. The experiment concentrates on the reconstruction of charm particles. The FOCUS collaboration has participants from several Central American and Latin American institutions; CINVESTAV and Universidad Autonoma de Puebla from Mexico, University of Puerto Rico from the United States, and Centro Brasileiro de Pesquisas Fisicas in Rio de Janeiro from Brasil.

  4. Cloud services for the Fermilab scientific stakeholders

    NASA Astrophysics Data System (ADS)

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; Boyd, J.; Bernabeu, G.; Sharma, N.; Peregonow, N.; Kim, H.; Noh, S.; Palur, S.; Raicu, I.

    2015-12-01

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic ray simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. We present in detail the technological improvements that were used to make this work a reality.

  5. W+ jets production at the Fermilab Tevatron

    SciTech Connect

    Dittmann, J.R.; CDF Collaboration; D0 Collaboration

    1997-05-01

    The production properties of jets in W events have been measured using {radical}s = 1.8 TeV pp collisions at the Fermilab Tevatron Collider. Experimental results from several CDF and D0 analyses are compared to leading-order and next-to-leading-order QCD predictions.

  6. In medium dispersion relation effects in nuclear inclusive reactions at intermediate and low energies

    NASA Astrophysics Data System (ADS)

    Nieves, Juan; Sobczyk, Joanna E.

    2017-08-01

    In a well-established many-body framework, successful in modeling a great variety of nuclear processes, we analyze the role of the spectral functions (SFs) accounting for the modifications of the dispersion relation of nucleons embedded in a nuclear medium. We concentrate in processes mostly governed by one-body mechanisms, and study possible approximations to evaluate the particle-hole propagator using SFs. We also investigate how to include together SFs and long-range RPA-correlation corrections in the evaluation of nuclear response functions, discussing the existing interplay between both type of nuclear effects. At low energy transfers (≤ 50 MeV), we compare our predictions for inclusive muon and radiative pion captures in nuclei, and charge-current (CC) neutrino-nucleus cross sections with experimental results. We also present an analysis of intermediate energy quasi-elastic neutrino scattering for various targets and both neutrino and antineutrino CC driven processes. In all cases, we pay special attention to estimate the uncertainties affecting the theoretical predictions. In particular, we show that errors on the σμ /σe ratio are much smaller than 5%, and also much smaller than the size of the SF+RPA nuclear corrections, which produce significant effects, not only in the individual cross sections, but also in their ratio for neutrino energies below 400 MeV. These latter nuclear corrections, beyond Pauli blocking, turn out to be thus essential to achieve a correct theoretical understanding of this ratio of cross sections of interest for appearance neutrino oscillation experiments. We also briefly compare our SF and RPA results to predictions obtained within other representative approaches.

  7. Co-generation and innovative heat storage systems in small-medium CSP plants for distributed energy production

    NASA Astrophysics Data System (ADS)

    Giaconia, Alberto; Montagnino, Fabio; Paredes, Filippo; Donato, Filippo; Caputo, Giampaolo; Mazzei, Domenico

    2017-06-01

    CSP technologies can be applied for distributed energy production, on small-medium plants (on the 1 MW scale), to satisfy the needs of local communities, buildings and districts. In this perspective, reliable, low-cost, and flexible small/medium multi-generative CSP plants should be developed. Four pilot plants have been built in four Mediterranean countries (Cyprus, Egypt, Jordan, and Italy) to demonstrate the approach. In this paper, the plant built in Italy is presented, with specific innovations applied in the linear Fresnel collector design and the Thermal Energy Storage (TES) system, based on a single the use of molten salts but specifically tailored for small scale plants.

  8. Spin Tracking of Polarized Protons in the Main Injector at Fermilab

    SciTech Connect

    Xiao, M.; Lorenzon, W.; Aldred, C.

    2016-07-01

    The Main Injector (MI) at Fermilab currently produces high-intensity beams of protons at energies of 120 GeV for a variety of physics experiments. Acceleration of polarized protons in the MI would provide opportunities for a rich spin physics program at Fermilab. To achieve polarized proton beams in the Fermilab accelerator complex, shown in Fig.1.1, detailed spin tracking simulations with realistic parameters based on the existing facility are required. This report presents studies at the MI using a single 4-twist Si-berian snake to determine the depolarizing spin resonances for the relevant synchrotrons. Results will be presented first for a perfect MI lattice, followed by a lattice that includes the real MI imperfections, such as the measured magnet field errors and quadrupole misalignments. The tolerances of each of these factors in maintaining polariza-tion in the Main Injector will be discussed.

  9. THE LINAC LASER NOTCHER FOR THE FERMILAB BOOSTER

    SciTech Connect

    Johnson, David E,; Duel, Kevin; Gardner, Matthew; Johnson, Todd; Slimmer, David; Patil, Screenvias; Tafoya, Jason

    2016-09-27

    In synchrotron machines, the beam extraction is accomplished by a combination of septa and kicker magnets which deflect the beam from an accelerator into another. Ideally the kicker field must rise/fall in between the beam bunches. However, in reality, an intentional beam-free time region (aka "notch") is created on the beam pulse to assure that the beam can be extracted with minimal losses. In the case of the Fermilab Booster, the notch is created in the ring near injection energy by the use of fast kickers which deposit the beam in a shielded collimation region within the accelerator tunnel. With increasing beam power it is desirable to create this notch at the lowest possible energy to minimize activation. The Fermilab Proton Improvement Plan (PIP) initiated an R&D project to build a laser system to create the notch within a linac beam pulse at 750 keV. This talk will describe the concept for the laser notcher and discuss our current status, commissioning results, and future plans.

  10. The Advanced Energetic Pair Telescope (AdEPT}: A Future Medium-Energy Gamma-Ray Balloon (and Explorer?) Mission

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2011-01-01

    Gamma-ray astrophysics probes the highest energy, exotic phenomena in astrophysics. In the medium-energy regime, 0.1-200 MeV, many astrophysical objects exhibit unique and transitory behavior such as the transition from electron dominated to hadron dominated processes, spectral breaks, bursts, and flares. Medium-energy gamma-ray imaging however, continues to be a major challenge particularly because of high background, low effective area, and low source intensities. The sensitivity and angular resolution required to address these challenges requires a leap in technology. The Advance Energetic Pair Telescope (AdEPT) being developed at GSFC is designed to image gamma rays above 5 MeV via pair production with angular resolution of 1-10 deg. In addition AdEPT will, for the first time, provide high polarization sensitivity in this energy range. This performance is achieved by reducing the effective area in favor of enhanced angular resolution through the use of a low-density gaseous conversion medium. AdEPT is based on the Three-Dimensional Track Imager (3-DTI) technology that combines a large volume Negative Ion Time Projection Chamber (NITPC) with 2-D Micro-Well Detector (MWD) readout. I will review the major science topics addressable with medium-energy gamma-rays and discuss the current status of the AdEPT technology, a proposed balloon instrument, and the design of a future satellite mission.

  11. Statistics of low energy excitations for the directed polymer in a random medium.

    PubMed

    Monthus, Cécile; Garel, Thomas

    2006-05-01

    We consider a directed polymer of length L in a random medium of space dimension d = 1,2,3. The statistics of low energy excitations as a function of their size l is numerically evaluated. These excitations can be divided into bulk and boundary excitations, with respective densities rho(bulk)(L) (E = 0,l) and rho(boundary)(L)(E=0,l). We find that both densities follow the scaling behavior rho(bulk, boundary)(L)(E = 0,l)=L(-1-theta)(d)R(bulk,boundary)(x = l/L), where theta(d) is the exponent governing the energy fluctuations at zero temperature (with the well-known exact value theta(1)= 1/3 in one dimension). In the limit x = l/L --> 0, both scaling functions R(bulk)(x) and R(boundary)(x) behave as R(bulk,boundary)(x) approximately x(-1-theta)(d), leading to the droplet power law rho(bulk, boundary)(L) (E = 0,l) approximately l(-1-theta)(d) in the regime 1 < l < L. Beyond their common singularity near x --> 0, the two scaling functions R(bulk,boundary)(x) are very different: whereas R(bulk)(x) decays monotonically for 0 < x < 1, the function R(boundary)(x) first decays for 0 < x < x(min), then grows for x(min) < x < 1, and finally presents a power law singularity R(boundary)(x) approximately (1-x)(-sigma)(d) near x -->1. The density of excitations of length l = L accordingly decays as rho(boundary)(L)(E = 0,l = L) approximately L(-lambda)(d) where gamma(d) = 1+ theta(d) - lambda(d). We obtain lambda(1) approximately 10.67, lambda(2) = 0.53, and lambda(3) approximately 0.39, suggesting the possible relation lambda(d) = 2theta(d).

  12. Preparation and evaluation of easy energy supply property of medium-chain fatty acids liposomes.

    PubMed

    Liu, Weilin; Liu, Wei; Liu, Chengmei; Liu, Jianhua; Zheng, Huijuan; Yang, Shuibing; Su, Jiahong

    2011-01-01

    To develop an easy-energy-supply agent, medium-chain fatty acids (MCFAs) liposomes were prepared by thin-layer dispersion, freeze-thawing and dynamic high pressure microfluidization (DHPM)-freeze-thawing methods. Results showed that MCFAs nanoliposomes obtained by the novel method (DHPM-freeze-thawing) exhibited a smaller size (72.6 ± 4.9 nm), narrower size distribution (PDI = 0.175 ± 0.005), higher zeta potential (-41.27 ± 1.16 mV) and entrapment efficiency (45.9 ± 6.0%) compared to the other two methods. In the weight-loaded swimming test of the mice, the high-dose group of MCFAs nanoliposomes indicated a significantly longer swimming time (105 ± 31 min, p < 0.05), a lower serum urea nitrogen (839.5 ± 111.9 mg/L, p < 0.05) and blood lactic acid (5.7 ± 1.0 mmol/L, p ≤ 0.001), and a higher hepatic glycogen (15.0 ± 3.6 mg/g, p ≤ 0.001) than those of the control group (53 ± 13 min, 1153.6 ± 102.5 mg/L, 12.5 ± 1.9 mmol/L and 8.8 ± 3.3 mg/g, respectively). However, no significant difference was found between the high-dose group and MCFAs group. The results suggested that MCFAs nanoliposomes could be used as a potential easy-energy-supply agent.

  13. Quantitative considerations in medium energy ion scattering depth profiling analysis of nanolayers

    NASA Astrophysics Data System (ADS)

    Zalm, P. C.; Bailey, P.; Reading, M. A.; Rossall, A. K.; van den Berg, J. A.

    2016-11-01

    The high depth resolution capability of medium energy ion scattering (MEIS) is becoming increasingly relevant to the characterisation of nanolayers in e.g. microelectronics. In this paper we examine the attainable quantitative accuracy of MEIS depth profiling. Transparent but reliable analytical calculations are used to illustrate what can ultimately be achieved for dilute impurities in a silicon matrix and the significant element-dependence of the depth scale, for instance, is illustrated this way. Furthermore, the signal intensity-to-concentration conversion and its dependence on the depth of scattering is addressed. Notably, deviations from the Rutherford scattering cross section due to screening effects resulting in a non-coulombic interaction potential and the reduction of the yield owing to neutralization of the exiting, backscattered H+ and He+ projectiles are evaluated. The former mainly affects the scattering off heavy target atoms while the latter is most severe for scattering off light target atoms and can be less accurately predicted. However, a pragmatic approach employing an extensive data set of measured ion fractions for both H+ and He+ ions scattered off a range of surfaces, allows its parameterization. This has enabled the combination of both effects, which provides essential information regarding the yield dependence both on the projectile energy and the mass of the scattering atom. Although, absolute quantification, especially when using He+, may not always be achievable, relative quantification in which the sum of all species in a layer adds up to 100%, is generally possible. This conclusion is supported by the provision of some examples of MEIS derived depth profiles of nanolayers. Finally, the relative benefits of either using H+ or He+ ions are briefly considered.

  14. Central Arkansas Energy Project: coal to medium-Btu gas. Volume 1. Feasibility study. Final report

    SciTech Connect

    Not Available

    1982-05-01

    The Central Arkansas Energy Project has as its objective the conversion of coal in a central location to a more readily usable energy source, medium Btu gas (MBG), for use at dispersed locations as fuel for power production and steam generation, or as a feedstock for chemical processing. The gasification plant will be located adjacent to AP and L's existing White Bluff Steam Electric Station near Redfield, Arkansas. A comprehensive 14-month study was performed to investigate the project feasibility. The study included preliminary design of the gasification plant including process engineering design bases, process flow diagrams, utility requirements, system descriptions, project engineering design, equipment specifications, plot plan and section plot plans, preliminary piping and instrument diagrams, and facilities requirements. Financial analyses and sensitivities were determined. Detailed design and construction schedules and manpower loadings were developed. Site characteristics and site suitability as well as an evaluation of the environmental safety, health and socioeconomic issues were performed. The results of these evaluations indicate that the gasification plant and pipeline are licensable and will have a minimal effect on the environment. An overall schedule for construction of the gasification plant was developed which indicated a 76 month requirement for design engineering and construction, including a 10 month start-up period. The estimated 1981 dollar project capital cost is $964 million. The escalated 1988 project capital cost is $1.370 billion. Financial analyses have indicated the plant would provide a 25% after-tax return on investment, based upon a 1988 MBG price of $11.02 MM Btu.

  15. Strain relaxation of CdTe on Ge studied by medium energy ion scattering

    NASA Astrophysics Data System (ADS)

    Pillet, J. C.; Pierre, F.; Jalabert, D.

    2016-10-01

    We have used the medium energy ion scattering (MEIS) technique to assess the strain relaxation in molecular-beam epitaxial (MBE) grown CdTe (2 1 1)/Ge (2 1 1) system. A previous X-ray diffraction study, on 10 samples of the same heterostructure having thicknesses ranging from 25 nm to 10 μm has allowed the measurement of the strain relaxation on a large scale. However, the X-ray diffraction measurements cannot achieve a stress measurement in close proximity to the CdTe/Ge interface at the nanometer scale. Due to the huge lattice misfit between the CdTe and Ge, a high degree of disorder is expected at the interface. The MEIS in channeling mode is a good alternative in order to profile defects with a high depth resolution. For a 21 nm thick CdTe layer, we observed, at the interface, a high density of Cd and/or Te atoms moved from their expected crystallographic positions followed by a rapid recombination of defects. Strain relaxation mechanisms in the vicinity of the interface are discussed

  16. Betatron Tunes in the Proposed Medium-Energy Electron-Ion Collider at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Jarvis, Colin; Terzic, Balsa

    2010-11-01

    The future of Jefferson Lab lies within the construction of a Medium-Energy Electron-Ion Collider (MEIC), which is currently in the proposal stage. In a synchrotron collider storage ring, the orbiting beams oscillate transversely in both the horizontal and vertical directions. The frequency of these oscillations is called the betatron tune. Depending on the design tune of the collider, non-linear beam-beam effects can cause rapid degradation of the beam quality, thus yielding poor luminosity, which is the figure of merit in the MEIC. The non-linear nature of the beam-beam effects poses a serious obstacle to the efficient analysis of potential design tunes. The goal of this research was to find an X and Y betatron tune, or working point, which optimizes luminosity performance. Using code developed at Lawrence Berkeley National Lab, particle interactions were numerically simulated. Beginning with a previously known working point, systematic simulations were run to scan the adjacent tunespace. A subsequent working point was discovered that provides a 33 percent increase in theoretical peak luminosity over the current MEIC design.

  17. Energy conserved and costs saved by small and medium-size manufacturers: 1985-1986 EADC (Energy Analysis and Diagnostic Center) program period

    SciTech Connect

    Kirsch, F.W.

    1988-03-01

    The Energy Analysis and Diagnostic Center (EADC) program continues to provide energy-conserving and cost-saving assistance in the plants of small and medium-size manufacturers. This report presents the results of energy audits in 300 such plants carried out by ten EADCs during the 1985-86 program period. Also included are the results obtained during 1987 from manufacturers who implemented 1267 of the EADCs' recommendations from the preceding year.

  18. Energy conserved and costs saved by small and medium-size manufacturers: (Final and annual report), 1985-86 EADC (Energy Analysis and Diagnostic Center) program period

    SciTech Connect

    Kirsch, F.W.

    1988-03-01

    The Energy Analysis and Diagnostic Center (EADC) program continues to provide energy-conserving and cost-saving assistance in the plants of small and medium-size manufacturers. This report presents the results of energy audits in 300 such plants carried out by ten EADCs during the 1985-1986 program period. Also included are the results obtained during 1987 from manufacturers who implemented 1,267 of the EADCs' recommendations from the preceding year.

  19. Advertisement-Based Energy Efficient Medium Access Protocols for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Ray, Surjya Sarathi

    One of the main challenges that prevents the large-scale deployment of Wireless Sensor Networks (WSNs) is providing the applications with the required quality of service (QoS) given the sensor nodes' limited energy supplies. WSNs are an important tool in supporting applications ranging from environmental and industrial monitoring, to battlefield surveillance and traffic control, among others. Most of these applications require sensors to function for long periods of time without human intervention and without battery replacement. Therefore, energy conservation is one of the main goals for protocols for WSNs. Energy conservation can be performed in different layers of the protocol stack. In particular, as the medium access control (MAC) layer can access and control the radio directly, large energy savings is possible through intelligent MAC protocol design. To maximize the network lifetime, MAC protocols for WSNs aim to minimize idle listening of the sensor nodes, packet collisions, and overhearing. Several approaches such as duty cycling and low power listening have been proposed at the MAC layer to achieve energy efficiency. In this thesis, I explore the possibility of further energy savings through the advertisement of data packets in the MAC layer. In the first part of my research, I propose Advertisement-MAC or ADV-MAC, a new MAC protocol for WSNs that utilizes the concept of advertising for data contention. This technique lets nodes listen dynamically to any desired transmission and sleep during transmissions not of interest. This minimizes the energy lost in idle listening and overhearing while maintaining an adaptive duty cycle to handle variable loads. Additionally, ADV-MAC enables energy efficient MAC-level multicasting. An analytical model for the packet delivery ratio and the energy consumption of the protocol is also proposed. The analytical model is verified with simulations and is used to choose an optimal value of the advertisement period

  20. Recent progress on the understanding of the medium-induced jet evolution and energy loss in pQCD

    NASA Astrophysics Data System (ADS)

    Apolinário, Liliana

    2017-03-01

    Motivated by the striking modifications of jets observed both at RHIC and the LHC, significant progress towards the understanding of jet dynamics within QGP has occurred over the last few years. In this talk, I review the recent theoretical developments in the study of medium-induced jet evolution and energy loss within a perturbative framework. The main mechanisms of energy loss and broadening will be firstly addressed with focus on leading particle calculations beyond the eikonal approximation. Then, I will provide an overview of the modifications of the interference pattern between the different parton emitters that build up the parton shower when propagating through an extended coloured medium. I will show that the interplay between color coherence/decoherence that arises from such effects is the main mechanism for the modification of the jet core angular structure. Finally, I discuss the possibility of a probabilistic picture of the parton shower evolution in the limit of a very dense or infinite medium.

  1. Energy conserved and costs saved by small and medium-size manufacturers. 1983-84 EADC Program period

    SciTech Connect

    Kirsch, F.W.; Perrotti, G.M.

    1986-02-01

    Almost 300 small and medium-size manufacturers were able to benefit during 1983-84 from the services provided in their plants by 12 Energy Analysis and diagnostic Centers (EADCs) managed by University City Science Center under an agreement with the US Department of Energy, Office of Industrial Programs. This report describes and analyzes what the EADCs recommended, reviews and assesses what the manufacturers implemented, and evaluates how cost-effective the manufacturers found the EADCs' recommendations to be.

  2. Fermilab's SC Accelerator Magnet Program for Future U.S. HEP Facilities

    SciTech Connect

    Lamm, Michael; Zlobin, Alexander; /Fermilab

    2010-01-01

    The invention of SC accelerator magnets in the 1970s opened wide the possibilities for advancing the energy frontier of particle accelerators, while limiting the machine circumference and reducing their energy consumption. The successful development of SC accelerator magnets based on NbTi superconductor have made possible a proton-antiproton collider (Tevatron) at Fermilab, an electron-proton collider (HERA) at DESY, a relativistic heavy ion collider (RHIC) at BNL and recently a proton-proton collider (LHC) at CERN. Further technological innovations and inventions are required as the US HEP looks forward towards the post-LHC energy or/and intensity frontiers. A strong, goal oriented national SC accelerator magnet program must take on this challenge to provide a strong base for the future of HEP in the U.S. The results and experience obtained by Fermilab during the past 30 years will allow us to play a leadership role in the SC accelerator magnet development in the U.S., in particular, focusing on magnets for a Muon Collider/Neutrino Factory [1]-[2]. In this paper, we summarize the required Muon Collider magnet needs and challenges, summarize the technology advances in the Fermilab accelerator magnet development over the past few years, and present and discuss our vision and long-term plans for these Fermilab-supported accelerator initiatives.

  3. Nuclear effects on heavy quark production: Results from Fermilab Experiments E772 and E789

    SciTech Connect

    E772 and E789 Collaborations

    1991-12-31

    Fermilab Experiments E772 and E789 are fixed target experiments with 800 GeV protons incident on nuclear targets corresponding to a center-of-mass energy of {radical}{bar s} {approximately} 39 GeV. Measurements are made with a pair spectrometer which has a solid angle of a few percent and operates at high luminosity with up to {approximately}10{sup 12}(E772) or {approximately}10{sup 11}(E789) protons/spill. Our experimental program explores several types of nuclear medium effects: the modification of quark and gluon structure functions by the nucleus, effects on the production of vector mesons (e.g. J/{psi} and {gamma}), and effects on the production of D mesons. The latter is accomplished with the use of a new silicon vertex detector. E789 also looks at the decays of B mesons including the decay to J/{psi} and searches for the decays to two-charged particles (e.g. B {yields} h{sup +}h{sup {minus}}) but I will not discuss this part of our program in this paper.

  4. Strong interactions studies with medium energy probes. Progress report, 1993--1994

    SciTech Connect

    Seth, K.K.

    1994-09-01

    This progress report refers to the period August 1993 to September 1994, which includes the second year of the three year period December 1, 1992--November 30, 1995 of our existing research contract. The budget proposal for the third year, December 1, 1994 to November 30, 1995 as originally approved, is also presented. As anticipated in our 1992--1995 proposal, Fermilab E760/E835 on high precision charmonium spectroscopy has remained a major part of our preoccupation and commitment during the last year, and it will remain so in the forthcoming year. In early 1994 we joined the collaboration of the Brookhaven experiment E852 on the spectroscopy of states with exotic quantum numbers. The first successful three month run of E852 was completed on July 31 and preliminary data analysis has been started. Some new commitments have resulted from this collaboration and a separate proposal for supplemental financial support is being prepared for them. At Los Alamos our experiment {number_sign}1274 on search of extremely neutron rich exotic nuclei by pion absorption began making initial measurements a month ago and is expected to take data during the period October 15--November 30, 1994. In addition to the above on-going programs, our Bates proposal (94-01) for a definitive measurement of the quenching of the longitudinal response in quasi-free scattering of electrons from nuclei has been approved with high priority for 600 hours of beam time, and we expect to start the experiment in late 1995.

  5. CAPTAIN-Minerνa. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    SciTech Connect

    Mauger, Christopher M.

    2015-10-29

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NOνA, MINERνA and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINERνA detector in the NuMI beamline and combining the data from the CAPTAIN, MINERνA and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINERνA’s scintillator (CH) target, a new level of precision can be achieved in the measurements of the effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINERνA experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.

  6. Fermilab proton accelerator complex status and improvement plans

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2017-05-01

    Fermilab carries out an extensive program of accelerator-based high energy particle physics research at the Intensity Frontier that relies on the operation of 8 GeV and 120 GeV proton beamlines for a number of fixed target experiments. Routine operation with a world-record 700 kW of average 120 GeV beam power on the neutrino target was achieved in 2017 as a result of the Proton Improvement Plan (PIP) upgrade. There are plans to further increase the power from 900-1000 kW. The next major upgrade of the FNAL accelerator complex, called PIP-II, is under development. It aims at 1.2 MW beam power on target at the start of the LBNF/DUNE experiment in the middle of the next decade and assumes replacement of the existing 40 years old 400 MeV normal-conducting Linac with a modern 800 MeV superconducting RF linear accelerator. There are several concepts to further double the beam power to > 2.4 MW after replacement of the existing 8 GeV Booster synchrotron. In this review, we discuss current performance of the Fermilab proton accelerator complex, the upgrade plans for the next two decades and the accelerator R&D program to address cost and performance risks for these upgrades.

  7. Radiation shielding for the Fermilab Vertical Cavity Test Facility

    SciTech Connect

    Ginsburg, Camille; Rakhno, Igor; /Fermilab

    2010-03-01

    The results of radiation shielding studies for the vertical test cryostat VTS1 at Fermilab performed with the codes FISHPACT and MARS15 are presented and discussed. The analysis is focused on operations with two RF cavities in the cryostat. The vertical cavity test facility (VCTF) for superconducting RF cavities in Industrial Building 1 at Fermilab has been in operation since 2007. The facility currently consists of a single vertical test cryostat VTS1. Radiation shielding for VTS1 was designed for operations with single 9-cell 1.3 GHz cavities, and the shielding calculations were performed using a simplified model of field emission as the radiation source. The operations are proposed to be extended in such a way that two RF cavities will be in VTS1 at a time, one above the other, with tests for each cavity performed sequentially. In such a case the radiation emitted during the tests from the lower cavity can, in part, bypass the initially designed shielding which can lead to a higher dose in the building. Space for additional shielding, either internal or external to VTS1, is limited. Therefore, a re-evaluation of the radiation shielding was performed. An essential part of the present analysis is in using realistic models for cavity geometry and spatial, angular and energy distributions of field-emitted electrons inside the cavities. The calculations were performed with the computer codes FISHPACT and MARS15.

  8. Celebrating 30 Years of K-12 Educational Programming at Fermilab

    SciTech Connect

    Bardeen, M.; Cooke, M.P.; /Fermilab

    2011-09-01

    In 1980 Leon Lederman started Saturday Morning Physics with a handful of volunteer physicists, around 300 students and all the physics teachers who tagged along. Today Fermilab offers over 30 programs annually with help from 250 staff volunteers and 50 educators, and serves around 40,000 students and 2,500 teachers. Find out why we bother. Over the years we have learned to take advantage of opportunities and confront challenges to offer effective programs for teachers and students alike. We offer research experiences for secondary school teachers and high school students. We collaborate with educators to design and run programs that meet their needs and interests. Popular school programs include classroom presentations, experience-based field trips, and high school tours. Through our work in QuarkNet and I2U2, we make real particle physics data available to high school students in datadriven activities as well as masterclasses and e-Labs. Our professional development activities include a Teacher Resource Center and workshops where teachers participate in authentic learning experiences as their students would. We offer informal classes for kids and host events where children and adults enjoy the world of science. Our website hosts a wealth of online resources. Funded by the U.S. Department of Energy, the National Science Foundation and Fermilab Friends for Science Education, our programs reach out across Illinois, throughout the United States and even around the world. We will review the program portfolio and share comments from the volunteers and participants.

  9. Wide Area Network Monitoring System for HEP Experiments at Fermilab

    SciTech Connect

    Grigoriev, M.

    2004-11-23

    Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centres. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system.

  10. Wide area network monitoring system for HEP experiments at Fermilab

    SciTech Connect

    Grigoriev, Maxim; Cottrell, Les; Logg, Connie; /SLAC

    2004-12-01

    Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centers. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developed into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system.

  11. Emergent Rotation from the Planck Scale and the Fermilab Holometer

    NASA Astrophysics Data System (ADS)

    Kwon, Ohkyung; Hogan, Craig; Richardson, Jonathan

    2017-01-01

    We present a statistical model of rotational fluctuations of the inertial frame arising from quantum geometry, based on Planck scale information bounds and exact causal symmetry. In an emergent space-time assembled from noncommuting quantum elements at the Planck scale, in the Minkowskian limit with no dynamics or curvature, quantum correlations are represented by covariant random transverse spatial displacements on light cones. Light that propagates in a nonradial direction inherits a projected component of the rotational correlation that accumulates as a random walk in phase. A calculation of the projection and accumulation leads to exact predictions for statistical signatures in an interferometer of any configuration. Coherent and consistent local inertial frames emerge as observer-dependent statistical approximations at large scales, and the cross-covariance for nearly co-located interferometers is shown to depart only slightly from the autocovariance. A specific example computed for the reconfigured second-generation Fermilab Holometer shows that the model can be rigorously tested with the sensitivity already achieved in the first-generation instrument. U.S. Department of Energy at Fermilab (Contract No. DE-AC02-07CH11359), John Templeton Foundation (Grant No. 51742).

  12. Proton synchrotron radiation at Fermilab

    SciTech Connect

    Thurman-Keup, Randy; /Fermilab

    2006-05-01

    While protons are not generally associated with synchrotron radiation, they do emit visible light at high enough energies. This paper presents an overview of the use of synchrotron radiation in the Tevatron to measure transverse emittances and to monitor the amount of beam in the abort gap. The latter is necessary to ensure a clean abort and prevent quenches of the superconducting magnets and damage to the silicon detectors of the collider experiments.

  13. The Fermilab main injector neutrino program

    SciTech Connect

    Morfin, Jorge G.; /Fermilab

    2007-01-01

    The NuMI Facility at Fermilab provides an extremely intense beam of neutrinos making it an ideal place for the study of neutrino oscillations as well as high statistics (anti)neutrino-nucleon/nucleus scattering experiments. The MINOS neutrino oscillation {nu}{mu} disappearance experiment is currently taking data and has published first results. The NO{nu}A {nu}e appearance experiment is planning to begin taking data at the start of the next decade. For the study of neutrino scattering, the MINER{nu}A experiment at Fermilab is a collaboration of elementary-particle and nuclear physicists planning to use a fully active fine-grained solid scintillator detector. The overall goals of the experiment are to measure absolute exclusive cross-sections, nuclear effects in {nu} - A interactions, a systematic study of the resonance-DIS transition region and the high-xBj - low Q2 DIS region.

  14. The new g-2 experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Anastasi, A.

    2017-04-01

    There is a long standing discrepancy between the Standard Model prediction for the muon g-2 and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with an uncertainty dominated by the theoretical error. Two new proposals - at Fermilab and J-PARC - plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.

  15. Hydro static water level systems at Fermilab

    SciTech Connect

    Volk, J.T.; Guerra, J.A.; Hansen, S.U.; Kiper, T.E.; Jostlein, H.; Shiltsev, V.; Chupyra, A.; Kondaurov, M.; Singatulin, S.

    2006-09-01

    Several Hydrostatic Water Leveling systems (HLS) are in use at Fermilab. Three systems are used to monitor quadrupoles in the Tevatron and two systems are used to monitor ground motion for potential sites for the International Linear Collider (ILC). All systems use capacitive sensors to determine the water level of water in a pool. These pools are connected with tubing so that relative vertical shifts between sensors can be determined. There are low beta quadrupoles at the B0 and D0 interaction regions of Tevatron accelerator. These quadrupoles use BINP designed and built sensors and have a resolution of 1 micron. All regular lattice superconducting quadrupoles (a total of 204) in the Tevatron use a Fermilab designed system and have a resolution of 6 microns. Data on quadrupole motion due to quenches, changes in temperature will be presented. In addition data for ground motion for ILC studies caused by natural and cultural factors will be presented.

  16. Physics at a new Fermilab proton driver

    SciTech Connect

    Geer, Steve; /Fermilab

    2006-04-01

    In 2004, motivated by the recent exciting developments in neutrino physics, the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future. At the end of 2004 the APS ''Study on the Physics of Neutrinos'' concluded that the future US neutrino program should have, as one of its components, ''A proton driver in the megawatt class or above and neutrino superbeam with an appropriate very large detector capable of observing Cp violation and measuring the neutrino mass-squared differences and mixing parameters with high precision''. The presently proposed Fermilab Proton Driver is designed to accomplish these goals, and is based on, and would help develop, Linear Collider technology. In this paper the Proton Driver parameters are summarized, and the potential physics program is described.

  17. Seismic studies for Fermilab future collider projects

    SciTech Connect

    Lauh, J.; Shiltsev, V.

    1997-11-01

    Ground motion can cause significant beam emittance growth and orbit oscillations in large hadron colliders due to a vibration of numerous focusing magnets. Larger accelerator ring circumference leads to smaller revolution frequency and, e.g. for the Fermilab Very Large Hadron Collider(VLHC) 50-150 Hz vibrations are of particular interest as they are resonant with the beam betatron frequency. Seismic measurements at an existing large accelerator under operation can help to estimate the vibrations generated by the technical systems in future machines. Comparison of noisy and quiet microseismic conditions might be useful for proper choice of technical solutions for future colliders. This article presents results of wide-band seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, and in two deep tunnels in the Illinois dolomite which is though to be a possible geological environment of the future accelerators.

  18. FERMILAB CRYOMODULE TEST STAND RF INTERLOCK SYSTEM

    SciTech Connect

    Petersen, Troy; Diamond, J. S.; McDowell, D.; Nicklaus, D.; Prieto, P. S.; Semenov, A.

    2016-10-12

    An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of a fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.

  19. A program in medium-energy nuclear physics. Progress report, September 1, 1992--June 30, 1993

    SciTech Connect

    Berman, B.L.; Dhuga, K.S.

    1998-06-01

    This report reviews progress on our nuclear-physics program for the last ten months, and includes as well copies of our publications and other reports for that time period. The structure of this report follows that of our 1992 Progress Report: Sec. II outlines our research activities aimed at future experiments at CEBAF, NIKHEF, and Bates; Sec. III gives results of our recent research activities at NIKHEF, LAMPF, and elsewhere; Sec. IV provides an update of our laboratory activities at GWU, including those at our new Nuclear Detector Laboratory at our Virginia Campus; and Sec. V is a list of our publications, proposals, and other reports. Copies of those on medium-energy nuclear physics are reproduced in the Appendix. The highlight of the year has been the approval by the NIKHEF and CEBAF PACs of all three of the proposals we have submitted. These are {open_quotes}Recoil Polarization of the Neutron in the Reactions {sup 3}He(e,e{prime}) and {sup 4}He(e,e{prime}n),{close_quotes} NIKHEF Proposal 93-09 {open_quotes}Photoreactions on {sup 3}He,{close_quotes} CEBAF Proposal 93-044, and {open_quotes}Photoabsorption and Photofission of Nuclei,{close_quotes} CEBAF Proposal 93-019. The NIKHEF experiment involves the use of the High-Acceptance Recoil Polarimeter (HARP) for detection and measurement of the polarization of the emitted neutron. We, together with our colleagues at Grenoble, are responsible for the design and construction of the wire chambers for this device; we have largely completed the design phase this part year. The CEBAF experiments involve the use of the Hall-B Photon Tagger for production of the monochromatic photon beam. We are responsible for the 432-scintillator focal-plane detector array for this device; again, most of the design work and some prototype testing have been completed this past year.

  20. A program in medium-energy nuclear physics. Progress report, September 1, 1992--June 30, 1993

    SciTech Connect

    Berman, B.L.; Dhuga, K.S.

    1993-08-01

    This report reviews progress on our nuclear-physics program for the last ten months, and includes as well copies of our publications and other reports for that time period. The structure of this report follows that of our 1992 Progress Report: Sec. II outlines our research activities aimed at future experiments at CEBAF, NIKHEF, and Bates; Sec. III gives results of our recent research activities at NIKHEF, LAMPF, and elsewhere; Sec. IV provides an update of our laboratory activities at GWU, including those at our new Nuclear Detector Laboratory at our Virginia Campus; and Sec. V is a list of our publications, proposals, and other reports. Copies of those on medium-energy nuclear physics are reproduced in the Appendix. The highlight of the year has been the approval by the NIKHEF and CEBAF PACs of all three of the proposals we have submitted. These are ``Recoil Polarization of the Neutron in the Reactions {sup 3}He(e,e{prime}n) and {sup 4}He(e,e{prime}n),`` NIKHEF Proposal 93-09, ``Photoreactions on {sup 3}He,`` CEBAF Proposal 93-044, and ``Photoabsorption and Photofission of Nuclei,`` CEBAF Proposal 93-019. The NIKHEF experiment involves the use of the High-Acceptance Recoil Polarimeter for detection and measurement of the polarization of the emitted neutron. We, together with our colleagues at Grenoble, are responsible for the design and construction of the wire chambers for this device; we have largely completed the design phase this past year. The CEBAF experiments involve the use of the Hall-B Photon Tagger for production of the monochromatic photon beam. We are responsible for the 432-scintillator focal-plane detector array for this device; again, most of the design work and some prototype testing have been completed this past year. In addition, we have continued to make progress on data analysis and publication of results of previous measurements at Bates, LAMPF, and NIKHEF.

  1. Preparations for Muon Experiments at Fermilab

    SciTech Connect

    Syphers, M.J.; Popovic, M.; Prebys, E.; Ankenbrandt, C.; /Muons Inc., Batavia

    2009-05-01

    The use of existing Fermilab facilities to provide beams for two muon experiments--the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment--is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration.

  2. Single and large grain activities at Fermilab

    SciTech Connect

    Antoine, Claire; /Fermilab

    2006-01-01

    This paper describes the ongoing activities at Fermilab for large grains and monocrystalline niobium. In addition to acquisition of local fabrication expertise, we plan to develop an R&D program dedicated to evidence the possible influence of crystal orientation on physical and chemical properties of niobium, such as mechanical properties, magnetic properties or surface contamination. Some considerations are also given about the morphology at grain boundaries and its role on the behavior of superconducting cavities.

  3. Search for quirks at the Fermilab Tevatron Collider

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; /Rio de Janeiro, CBPF /NIKHEF, Amsterdam

    2010-08-01

    We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.4 fb{sup -1} of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron p{bar p} collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like SU(N) sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107 GeV for the mass of a charged quirk with strong dynamics scale {Lambda} in the range from 10 keV to 1 MeV.

  4. Toward a cold electron beam in the Fermilab's Electron Cooler

    SciTech Connect

    Vitali S. Tupikov et al.

    2004-05-12

    Fermilab is developing a high-energy electron cooling system to cool 8.9-GeV/c antiprotons in the Recycler ring [1]. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through 20-m long cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 0.1 mrad, the cooling section will be immersed into a solenoidal field of 50-150G. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of beam quality measurements in the cooler prototype.

  5. Simulations of space charge in the Fermilab Main Injector

    SciTech Connect

    Stern, E.; Amundson, J.; Spentzouris, P.; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2011-03-01

    The Fermilab Project X plan for future high intensity operation relies on the Main Injector as the engine for delivering protons in the 60-120 GeV energy range. Project X plans call for increasing the number of protons per Main Injector bunch from the current value of 1.0 x 10{sup 11} to 3.0 x 10{sup 11}. Space charge effects at the injection energy of 8 GeV have the potential to seriously disrupt operations. We report on ongoing simulation efforts with Synergia, MARYLIE/Impact, and IMPACT, which provide comprehensive capabilities for parallel, multi-physics modeling of beam dynamics in the Main Injector including 3D space-charge effects.

  6. The Fermilab Antiproton Source Design Report April, 1981

    SciTech Connect

    None, None

    1981-04-01

    The purpose of the Fermilab Antiproton source is to provide at least $10^{11}$ cooled, accumulated antiprotons for acceleration in the Main Ring and Tevatron for colliding-beams experiments with 1-TeV protons. This will provide the highest available energy in the world for particle-physics experiments through at least the 1980's. Collisions at 2 TeV in the center of mass will provide a unique experimental tool in a new energy range. The design of the Antiproton Source has been carried out by the Colliding Beams Department of the Accelerator Division in collaboration with Argonne National Laborator.y, Lawrence Berkeley Laboratory, the Institute of Nuclear Physics at Novosibirsk, and the University of Wisconsin...

  7. Report on the Fermilab pilot N&S closure process

    SciTech Connect

    Coulson, L.

    1995-08-01

    This document outlines the plans and protocols for conducting a pilot of the Department of Energy`s Necessary & Sufficient Closure Process (Attachment A) at Fermilab National Accelerator Laboratory (FNAL) in Batavia, Illinois. The result of this pilot will be a set of standards which will serve as the agreed upon basis for providing FNAL with adequate Environment, Safety and Health Protection at the lowest possible cost. This pilot will seek out and emulate compatible industry practices which have been proven successful both in terms of safety performance and cost-effectiveness. This charter has been developed as a partnership effort by the parties to this agreement (see ``Responsibilities`` below), and is considered to be a living document.

  8. Analysis of high-kappa dielectric thin films with time-of-flight medium energy backscattering

    NASA Astrophysics Data System (ADS)

    Geil, Robert D.

    Time-of-flight medium backscattering (TOF-MEBS) is a powerful analytical technique for characterizing high-kappa dielectric thin films and their interface with Si. The amount of information that can be obtained from backscattering experiments can be maximized by carefully choosing a detailed thin film model for simulations and by implementing an experimental configuration that optimizes depth resolution. This thesis presents four main studies. In the first study a thin film model for simulating backscattering spectra is developed and used to extract interfacial information from thin dielectric films. A sufficient film model was found to consist of three layers: (1) dielectric material; (2) interfacial silicate; and (3) substrate. In the next study, the influence of multiple scattering and surface roughness on the shape of backscattering spectra was evaluated by generating spectra using Monte Carlo simulations. For TOF-MEBS analysis of thin (˜50 A) ZrO 2 films on Si, multiple scattering and surface roughness were found to have a negligible influence on the shape of a backscattering spectrum. The third study presents calculations and measurements of the energy and depth resolution of the TOF-MEBS system, and the experimental configuration for optimizing depth resolution was determined. For the analysis of thin films (˜50 A), the depth resolution of the TOF-MEBS system can be improved by operating at a beam energy around 150 keV and by using a glancing tilt angle (˜54°). However, if the angle is too glancing, multiple scattering and surface roughness can significantly degrade depth resolution and distort the shape of the backscattering spectrum. ZrO2 films deposited on H-terminated Si and native Si oxide surfaces were characterized with TOF-MEBS for the final study. The deposition surface was found to significantly affect the physical and chemical properties of MOCVD ZrO2 films and their interface with Si. ZrO2 films deposited on H-terminated Si are low in density

  9. Grids, virtualization, and clouds at Fermilab

    SciTech Connect

    Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.

  10. Grids, virtualization, and clouds at Fermilab

    DOE PAGES

    Timm, S.; Chadwick, K.; Garzoglio, G.; ...

    2014-06-11

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less

  11. Investigation of the energy-averaged double transition density of isoscalar monopole excitations in medium-heavy mass spherical nuclei

    NASA Astrophysics Data System (ADS)

    Gorelik, M. L.; Shlomo, S.; Tulupov, B. A.; Urin, M. H.

    2016-11-01

    The particle-hole dispersive optical model, developed recently, is applied to study properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. The energy-averaged strength functions of the isoscalar giant monopole resonance and its overtone in 208Pb are analyzed. In particular, we analyze the energy-averaged isoscalar monopole double transition density, the key quantity in the description of the hadron-nucleus inelastic scattering, and studied the validity of the factorization approximation using semi classical and microscopic one body transition densities, respectively, in calculating the cross sections for the excitation of isoscalar giant resonances by inelastic alpha scattering.

  12. Accelerator measurement of NaI response to medium energy neutrons and application to a satellite-borne spectrometer

    NASA Technical Reports Server (NTRS)

    Dunphy, P. P.; Chupp, E. L.; Popecki, M.; Forrest, D. J.; Lopiano, D.; Shima, T.; Spinka, H.; Glass, G.; Burleson, G.; Beddo, M.

    1992-01-01

    We report on the response of a prototype detector to medium energy neutrons. The neutrons were produced by n-p scattering of a neutron beam on a hydrogen target. The measurements provide unique data on the efficiency and response of large NaI scintillators to neutrons in the energy range 36-709 MeV. We apply the results to the high-energy mode of the Gamma-Ray Spectrometer (GRS) on the Solar Maximum Mission satellite by estimating its efficiency for neutron detection. This estimate is compared to earlier Monte Carlo calculations of the GRS efficiency.

  13. Energy conserved and costs saved by small and medium-size manufacturers: 1986-1987 EADC program period

    SciTech Connect

    Kirsch, F.W.

    1989-03-01

    The Energy Analysis and Diagnostic Center (EADC) program provides energy-conserving and cost-saving assistance to small and medium-size manufacturers in 36 states. Engineering faculty from 13 universities, assisted by graduate and undergraduate students, analyze energy usage and manufacturing operations in each plant and then prepare an individualized report that recommends specific actions and estimates their costs and their benefits. Manufacturing plants are eligible if they meet the size criteria and are not more than 150 miles from an EADC. The US Department of Energy, Office of Industrial Programs, sponsors the EADC program, which is managed by University City Science Center, through its Industrial Technology and Energy Management (ITEM) Division. This and similar reports are prepared from data which ITEM staff members extract as they review every energy audit report prepared by the EADCs. Eventually these data also include the results of manufacturers' implementation of EADCs' recommendations, together with costs and savings. 14 tabs.

  14. Data from Fermilab E-687 (Photoproduction of Heavy Flavours) and Fermilab E-831 (FOCUS)

    DOE Data Explorer

    The FERMILAB E687 Collaboration studies production and decay properties of heavy flavours produced in photon-hadron interactions. The experiment recorded approximately 500 million hadronic triggers in the 1990-91 fixed target run at Fermilab from which over 80 thousand charm decays were fully reconstructed. Physics publications include the precision lifetime measurements of the charm hadrons, D meson semileptonic form factors, detailed Dalitz plot analyses, charm meson and baryon decay modes and spectroscopy, searches for rare and forbidden phenomena, and tests of QCD production mechanisms. The follow-on experiment FOCUS Collaboration (Fermilab E831) successfully recorded huge amount of data during the 1996-1997 fixed target run. The FOCUS home page is located at http://www-focus.fnal.gov/. FOCUS is an international collaboration with institutions in Brazil, Italy, South Korea, Mexico, Puerto Rico, and the U.S.

  15. Development of the Advanced Energetic Pair Telescope (AdEPT) for Medium-Energy Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; Bloser, Peter F.; Dion, Michael P.; McConnell, Mark L.; deNolfo, Georgia A.; Son, Seunghee; Ryan, James M.; Stecker, Floyd W.

    2011-01-01

    Progress in high-energy gamma-ray science has been dramatic since the launch of INTEGRAL, AGILE and FERMI. These instruments, however, are not optimized for observations in the medium-energy (approx.0.3< E(sub gamma)< approx.200 MeV) regime where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. We outline some of the major science goals of a medium-energy mission. These science goals are best achieved with a combination of two telescopes, a Compton telescope and a pair telescope, optimized to provide significant improvements in angular resolution and sensitivity. In this paper we describe the design of the Advanced Energetic Pair Telescope (AdEPT) based on the Three-Dimensional Track Imager (3-DTI) detector. This technology achieves excellent, medium-energy sensitivity, angular resolution near the kinematic limit, and gamma-ray polarization sensitivity, by high resolution 3-D electron tracking. We describe the performance of a 30x30x30 cm3 prototype of the AdEPT instrument.

  16. Jet production in muon-proton and muon-nuclei scattering at Fermilab-E665

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1993-08-01

    Measurements of multi-jet production rates from Muon-Proton Muon- Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Proton deep-inelastic scattering are compared to perturbative Quantum Chromodynamics (PQCD) and Monte Carlo model predictions. We observe hadronic (2+1)-jet rates which are a factor of two higher than PQCD predictions at the partonic level. Preliminary results from jet production on heavy targets, in the shadowing region, show a suppression of the jet rates as compared to deuterium. The two- forward jet sample present higher suppression as compared to the one-forward jet sample.

  17. Development of Medium Energy Ion Mass Spectrometer for Future Missions in the Inner Magnetosphere of the Earth

    NASA Astrophysics Data System (ADS)

    Kasahara, S.; Asamura, K.; Saito, Y.; Hirahara, M.; Mukai, T.; Takashima, T.; Fujikawa, N.

    2005-12-01

    It is well known that intense fluxes of energetic particles are seen in the inner magnetosphere of the Earth during magnetic storms and substorms; ring current ions and radiation belt electrons with energies of several hundred keV up to more than a few MeV are generated and/or transported. However, their acceleration mechanisms and sources have not been well understood, partly due to insufficient data of medium-energy ions (from several 10 to ~200keV/q). This is one of the most important problems in magnetospheric physics, and in general, space physics. The key information for this study is the energy (E) distribution, charge state (q) and mass (m) of particles. We also recognize the importance of detailed information on three-dimensional distribution functions in this energy range; it is required from a viewpoint of the influence of plasma waves on the evolution of the storm time ring current. We have started to develop a Medium energy Ion Mass Spectrometer (MIMS), which can measure energy (E), mass (m), and charge state (q) of each ion in the medium-energy range. The instrument consists of 1) an energy-per-charge (E/q) ElectroStatic Analyser (ESA), 2) a Time-Of-Flight (TOF) unit that provides velocity (v) of particles, and 3) Solid-State Detectors (SSD), which measure the total energy (E). To detect an ion, we use three signals; a start signal and a stop signal in TOF unit provide us ion velocity, and a signal from SSD tells us the incident ion energy. A triple coincidence technique with these three signals is also useful for discrimination of true particle signals from background noise. Thus the instrument can provide E/q, v and E, from which the charge state (q) and mass (m) can be deduced unambiguously. The techniques of ESA, TOF, and SSD are conventional for lower or higher energy range, but the application to medium energy range is not trivial. One of the most serious problems is a size of the instrument. The size of ESA becomes too large, if we take

  18. Progress Towards Doubling the Beam Power at Fermilab's Accelerator Complex

    SciTech Connect

    Kourbanis, Ioanis

    2014-07-01

    After a 16 month shutdown to reconfigure the Fermilab Accelerators for high power operations, the Fermilab Accelerator Complex is again providing beams for numerous Physics Experiments. By using the Recycler to slip stack protons while the Main Injector is ramping, the beam power at 120 GeV can reach 700 KW, a factor of 2 increase. The progress towards doubling the Fermilab's Accelerator complex beam power will be presented.

  19. Development of the Three-Dimensional Track Imager (3-DTI) for High Sensitivity Medium-Energy Gamma-Ray Polarimeter

    NASA Astrophysics Data System (ADS)

    Hunter, Stanley

    We propose to complete development of the Three-Dimensional Track Imager (3-DTI) detector. The 3-DTI development is motivated by the diverse science goals of the Advance Energetic Pair Telescope (AdEPT); a future instrument for medium-energy gamma-ray polarization. AdEPT will provide exceptional angular resolution approaching the kinematic limit for nuclear pair production ( 2 deg at 30 MeV) over the energy range from 5 MeV to >200 MeV and will be the first instrument in this energy range to be sensitive to gamma-ray polarization. The AdEPT performance can only be achieved with a low density pair-production medium coupled with high resolution electron-positron tracking and energy determination, i.e. accurate measurement of the electron-positron recoil momenta. The 3-DTI detector combines a gas time projection chamber (TPC) with a 400 um pitch two-dimensional Micro-Well Detector (MWD) to provide the high resolution three-dimensional charged particle tracking needed for AdEPT. The proposed work will address the need to tile smaller 12-25 cm2 MWDs together to achieve larger, 50 x 50 cm2 and 1 m2 areas, explore additive manufacturing of MWDs, and measure the long-term MWD performance. We will build a 50 x 50 x 100 cm3 active volume AdEPT prototype that will include zero dead-time streaming mode readout and charge integrating front-end electronics. Software will be developed for this prototype to discriminate between gamma-ray interactions and charged particles, determine the electron energies from multiple scattering and energy loss, and determine the incident direction and polarization of medium-energy gamma-rays.

  20. Stopping cross sections of protons in Ti, TiO2 and Si using medium energy ion scattering

    NASA Astrophysics Data System (ADS)

    Brocklebank, Mitchell; Dedyulin, Sergey N.; Goncharova, Lyudmila V.

    2016-11-01

    Stopping cross sections of protons in Ti, Si, and TiO2 films in the energy range 50-170 keV were determined from medium energy ion scattering (MEIS) spectra by an iterative procedure. The energy loss of protons was investigated for pure Ti and Si films, deposited by molecular beam epitaxy (MBE) onto n-Si(100) and diamond-like carbon (DLC) substrates respectively. Consecutive annealing of Ti at 200 °C in O2 resulted in stoichiometric TiO2 thin-films. Thickness and composition of the films and the interfacial properties were determined using Rutherford backscattering spectroscopy (RBS), MEIS, and X-ray photoelectron spectroscopy (XPS). Calculated stopping cross sections of Ti, Si, and TiO2 in the range of energies were compared with the commonly used SRIM2003 values. For Ti and Si, SRIM2003 values appear to be overestimated over the entire energy range. The new stopping cross sections explain deviations from previously reported values for SrTiO3. We note that the stopping cross sections of O in a gaseous phase, used in Bragg's rule calculations, cannot be applied for accurate quantitative ion beam analysis in solid compounds in the medium ion energy range.

  1. Energy service contracts in regional engineering center for small and medium businesses

    NASA Astrophysics Data System (ADS)

    Gil'manshin, I. R.; Kashapov, N. F.

    2014-12-01

    The analysis of the energy service contracts development in Russia is given in the article. The role of the Complex learning centres in the field of energy efficiency in the promotion of energy service contracts is described. The reasons of constraining the development of energy service contracts are described.

  2. Computing and data handling recent experiences at Fermilab and SLAC

    SciTech Connect

    Cooper, P.S.

    1990-04-09

    Computing has become evermore central to the doing of high energy physics. There are now major second and third generation experiments for which the largest single cost is computing. At the same time the availability of cheap'' computing has made possible experiments which were previously considered infeasible. The result of this trend has been an explosion of computing and computing needs. I will review here the magnitude of the problem, as seen at Fermilab and SLAC, and the present methods for dealing with it. I will then undertake the dangerous assignment of projecting the needs and solutions forthcoming in the next few years at both laboratories. I will concentrate on the offline'' problem; the process of turning terabytes of data tapes into pages of physics journals. 5 refs., 4 figs., 4 tabs.

  3. Design, fabrication and testing of single spoke resonators at Fermilab

    SciTech Connect

    Ristori, L.; Apollinari, G.; Borissov, E.; Gonin, I.V.; Khabiboulline, T.N.; Mukherjee, A.; Nicol, T.H.; Ozelis, J.; Pischalnikov, Y.; Sergatskov, D.A.; Wagner, R.; /Fermilab

    2009-09-01

    The Fermilab High Intensity Neutrino Source (HINS) linac R&D program is building a pulsed 30 MeV superconducting H- linac. The linac incorporates superconducting solenoids, high power RF vector modulators and superconducting spoke-type accelerating cavities starting at 10 MeV. This will be the first application and demonstration of any of these technologies in a low-energy, high-intensity proton/H- linac. The HINS effort is relevant to a high intensity, superconducting H- linac that might serve the next generation of neutrino physics and muon storage ring/collider experiments. In this paper we present the RF design, the mechanical design, the fabrication, the chemistry and testing of the first two SSR1 (Single Spoke Resonator type-1) prototype cavities that were built. These cavities operate at 325 MHz with {beta} = 0.21. The design and testing of the input coupler and the tuning mechanism are also discussed.

  4. Beam dynamics simulations of the NML photoinjector at Fermilab

    SciTech Connect

    Piot, P.; Sun, Y.-E.; Church, M.; /Fermilab

    2010-08-01

    Fermilab is currently constructing a superconducting RF (SRF) test linear accelerator at the New Muon Lab (NML). Besides testing SRF accelerating modules for ILC and Project-X, NML will also eventually support a variety of advanced accelerator R&D experiments. The NML incorporates a 40 MeV photoinjector capable of providing electron bunches with variable parameters. The photoinjector is based on the 1+1/2 cell DESY-type gun followed by two superconducting cavities. It also includes a magnetic bunch compressor, a round-to-flat beam transformer and a low-energy experimental area for beam physics experiments and beam diagnostics R&D. In this paper, we explore, via beam dynamics simulations, the performance of the photoinjector for different operating scenarios.

  5. Fermilab Main Injector Collimation Systems: Design, Commissioning and Operation

    SciTech Connect

    Brown, Bruce; Adamson, Philip; Capista, David; Drozhdin, A.I.; Johnson, David E.; Kourbanis, Ioanis; Mokhov, Nikolai V.; Morris, Denton K.; Rakhno, Igor; Seiya, Kiyomi; Sidorov, Vladimir; /Fermilab

    2009-05-01

    The Fermilab Main Injector is moving toward providing 400 kW of 120 GeV proton beams using slip stacking injection of eleven Booster batches. Loss of 5% of the beam at or near injection energy results in 1.5 kW of beam loss. A collimation system has been implemented to localize this loss with the design emphasis on beam not captured in the accelerating RF buckets. More than 95% of these losses are captured in the collimation region. We will report on the construction, commissioning and operation of this collimation system. Commissioning studies and loss measurement tools will be discussed. Residual radiation monitoring of the Main Injector machine components will be used to demonstrate the effectiveness of these efforts.

  6. Fermilab advanced computer program multi-microprocessor project

    SciTech Connect

    Nash, T.; Areti, H.; Biel, J.; Case, G.; Cook, A.; Fischler, M.; Gaines, I.; Hance, R.; Husby, D.; Zmuda, T.

    1985-06-01

    Fermilab's Advanced Computer Program is constructing a powerful 128 node multi-microprocessor system for data analysis in high-energy physics. The system will use commercial 32-bit microprocessors programmed in Fortran-77. Extensive software supports easy migration of user applications from a uniprocessor environment to the multiprocessor and provides sophisticated program development, debugging, and error handling and recovery tools. This system is designed to be readily copied, providing computing cost effectiveness of below $2200 per VAX 11/780 equivalent. The low cost, commercial availability, compatibility with off-line analysis programs, and high data bandwidths (up to 160 MByte/sec) make the system an ideal choice for applications to on-line triggers as well as an offline data processor.

  7. Status of antiproton accumulation and cooling at Fermilab's Recycler

    SciTech Connect

    Prost, L.R.; Bhat, C.M.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Crisp, J.; Derwent, P.; Eddy, N.; Gattuso, C.; Hu, M.; Pruss, S.; /Fermilab

    2009-08-01

    The Recycler ring is an 8 GeV permanent magnet storage ring where antiprotons are accumulated and prepared for Fermilab's Tevatron Collider program. With the goal of maximizing the integrated luminosity delivered to the experiments, storing, cooling and extracting antiprotons with high efficiency has been pursued. Over the past two years, while the average accumulation rate doubled, the Recycler continued to operate at a constant level of performance thanks to changes made to the Recycler Electron Cooler (energy stability and regulation, electron beam optics), RF manipulations and operating procedures. In particular, we discuss the current accumulation cycle in which {approx} 400 x 10{sup 10} antiprotons are accumulated and extracted to the Tevatron every {approx}15 hours.

  8. 1-GeV Linac Upgrade Study at Fermilab

    SciTech Connect

    Popovic, M., Moretti, A., Noble, R., Schmidt, C. W., FNAL

    1998-09-01

    A linac injector for a new proton source complex at Fermilab is assumed to have a kinetic energy of 1 GeV. This linac would be sized to accelerate 100 mA of H{sup -} beam in a 200 microsecond pulse at a 15 Hz repetition rate. This would be adequate to produce {approximately}10{sup 14} protons per pulse allowing for future improvements of the new proton source complex. An alternate proposal is to add 600 MeV of side coupled cavity linac at 805 MHz to the existing 400 MeV Linac. This addition may either be in a new location or use the present Booster tunnel. A discussion of these possibilities will be given.

  9. Fermilab main injector: High intensity operation and beam loss control

    NASA Astrophysics Data System (ADS)

    Brown, Bruce C.; Adamson, Philip; Capista, David; Chou, Weiren; Kourbanis, Ioanis; Morris, Denton K.; Seiya, Kiyomi; Wu, Guan Hong; Yang, Ming-Jen

    2013-07-01

    From 2005 through 2012, the Fermilab Main Injector provided intense beams of 120 GeV protons to produce neutrino beams and antiprotons. Hardware improvements in conjunction with improved diagnostics allowed the system to reach sustained operation at 400 kW beam power. Transmission was very high except for beam lost at or near the 8 GeV injection energy where 95% beam transmission results in about 1.5 kW of beam loss. By minimizing and localizing loss, residual radiation levels fell while beam power was doubled. Lost beam was directed to either the collimation system or to the beam abort. Critical apertures were increased while improved instrumentation allowed optimal use of available apertures. We will summarize the improvements required to achieve high intensity, the impact of various loss control tools and the status and trends in residual radiation in the Main Injector.

  10. Development of observational and instrumental techniques in hard X-ray and medium energy gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Pelling, M.

    1985-01-01

    The technical activities, scientific results, related space hardware projects and personnel of the high energy astrophysics program are reported. The development of observational and instrumental techniques in hard X-ray (0.001 to 100 keV) and medium energy gamma-ray (0.1 to 10 MeV) astronomy are examined. Many of these techniques were developed explicitly for use on high altitude balloons where most of the scientific results were obtained. The extensive observational activity using balloons are tabulated. Virtually every research activity will eventually result in a major space hardware development effort.

  11. Fermilab accelerator control system: Analog monitoring facilities

    SciTech Connect

    Seino, K.; Anderson, L.; Smedinghoff, J.

    1987-10-01

    Thousands of analog signals are monitored in different areas of the Fermilab accelerator complex. For general purposes, analog signals are sent over coaxial or twinaxial cables with varying lengths, collected at fan-in boxes and digitized with 12 bit multiplexed ADCs. For higher resolution requirements, analog signals are digitized at sources and are serially sent to the control system. This paper surveys ADC subsystems that are used with the accelerator control systems and discusses practical problems and solutions, and it describes how analog data are presented on the console system.

  12. A search for WIMPs at Fermilab

    NASA Astrophysics Data System (ADS)

    Tartaglia, Michael A.

    The fine-grained neutrino detector at Fermilab was instrumented with high-resolution scintillation timing counters to search by time-of-flight for Weakly Interacting Massive Particles in the Tevatron neutrino beam. In a recent exposure of about 5 x 10 to the 17th 800-GeV protons on target, a sample of nearly 100,000 fiducial interactions was accumulated and a comparable number of test-beam calibration interactions were recorded. This search experiment is described in detail, and a preliminary review of the detector performance is given.

  13. Fermilab silicon strip readout chip for BTev

    SciTech Connect

    Yarema, Raymond; Hoff, Jim; Mekkaoui, Abderrezak; Manghisoni, Massimo; Re, Valerio; Angeleri, Valentina; Manfredi, Pier Francesco; Ratti, Lodovico; Speziali, Valeria; /Fermilab /Bergamo U. /INFN, Pavia /Pavia U.

    2005-05-01

    A chip has been developed for reading out the silicon strip detectors in the new BTeV colliding beam experiment at Fermilab. The chip has been designed in a 0.25 {micro}m CMOS technology for high radiation tolerance. Numerous programmable features have been added to the chip, such as setup for operation at different beam crossing intervals. A full size chip has been fabricated and successfully tested. The design philosophy, circuit features, and test results are presented in this paper.

  14. The Fermilab short-baseline neutrino program

    SciTech Connect

    Camilleri, Leslie

    2015-10-15

    The Fermilab short-baseline program is a multi-facetted one. Primarily it searches for evidence of sterile neutrinos as hinted at by the MiniBooNE and LSND results. It will also measure a whole suite of ν-Argon cross sections which will be very useful in future liquid argon long-baseline projects. The program is based on MicroBooNE, already installed in the beam line, the recently approved LAr1-ND and the future addition of the refurbished ICARUS.

  15. The VAXONLINE software system at Fermilab

    SciTech Connect

    White, V.; Heinicke, P.; Berman, E.; Constanta-Fanourakis, P.; MacKinnon, B.; Moore, C.; Nicinski, T.; Petravick, D.; Pordes, R.; Quigg, L.

    1987-06-01

    The VAXONLINE software system, started in late 1984, is now in use at 12 experiments at Fermilab, with at least one VAX or MicroVax. Data acquisition features now provide for the collection and combination of data from one or more sources, via a list-driven Event Builder program. Supported sources include CAMAC, FASTBUS, Front-end PDP-11's, Disk, Tape, DECnet, and other processors running VAXONLINE. This paper describes the functionality provided by the VAXONLINE system, gives performance figures, and discusses the ongoing program of enhancements.

  16. Fermilab booster modeling and space charge study

    SciTech Connect

    Weiren Chou et al.

    2003-06-04

    The Fermilab Booster is a bottleneck limiting the proton beam intensity in the accelerator complex. A study group has been formed in order to have a better understanding of this old machine and seek possible improvements. The work includes lattice modeling, numerical simulations, bench measurements and beam studies. Based on newly obtained information, it has been found that the machine acceptance is severely compromised by the orbit bump and dogleg magnets. This, accompanied by emittance dilution from space charge at injection, is a major cause of the large beam loss at the early stage of the cycle. Measures to tackle this problem are being pursued.

  17. An operator's views on Fermilab's control system

    NASA Astrophysics Data System (ADS)

    Baddorf, Debra S.

    1986-06-01

    A Fermilab accelerator operator presents views and personal opinions on the control system there. The paper covers features contributing to ease of use and comprehension, as well as a few things that could be improved. Included are such hardware as the trackball and interrupt button, the touch sensitive TV screen, the color Lexidata display, and black and white and color hardcopy capabilities. It also covers the software such as the generic parameter page, the generic plot package, and prepared displays. The alarm system is discussed from an operations standpoint, and also the datalogging system.

  18. Numerical Tests of the Improved Fermilab Action

    SciTech Connect

    Detar, C.; Kronfeld, A.S.; Oktay, M.B.

    2010-11-01

    Recently, the Fermilab heavy-quark action was extended to include dimension-six and -seven operators in order to reduce the discretization errors. In this talk, we present results of the first numerical simulations with this action (the OK action), where we study the masses of the quarkonium and heavy-light systems. We calculate combinations of masses designed to test improvement and compare results obtained with the OK action to their counterparts obtained with the clover action. Our preliminary results show a clear improvement.

  19. Electropolishing on small samples at Fermilab

    SciTech Connect

    Boffo, C.; Bauer, P.; Teid, T.; Geng, R.; /Cornell U., Phys. Dept.

    2005-07-01

    The electropolishing process (EP) is considered an essential step in the processing of high gradient SRF cavities. Studies on EP of small samples has been started at Fermilab as part of the SRF materials R&D program. A simple bench top setup was developed to understand the basic variables affecting the EP. In addition a setup for vertical EP of half cells, based on the Cornell design, was used and another one for dumbbells was designed and tested. Results and findings are reported.

  20. Recent ground motion studies at Fermilab

    SciTech Connect

    Shiltsev, V.; Volk, J.; Singatulin, S.; /Novosibirsk, IYF

    2009-04-01

    Understanding slow and fast ground motion is important for the successful operation and design for present and future colliders. Since 2000 there have been several studies of ground motion at Fermilab. Several different types of HLS (hydro static level sensors) have been used to study slow ground motion (less than 1 hertz) seismometers have been used for fast (greater than 1 hertz) motions. Data have been taken at the surface and at locations 100 meters below the surface. Data of recent slow ground motion measurements with HLSs, many years of alignment data and results of the ATL-analysis are presented and discussed.

  1. Massive Stars and the Energy Balance of the Interstellar Medium. 1; The Impact of an Isolated 60 M. Star

    NASA Technical Reports Server (NTRS)

    Freyer, Tim; Hensler, Gerhard; Yorke, Harold W.

    2003-01-01

    We present results of numerical simulations carried out with a two-dimensional radiation hydrodynamics code in order to study the impact of massive stars on their surrounding interstellar medium. This first paper deals with the evolution of the circumstellar gas around an isolated 60 M. star. The interaction of the photo- ionized H II region with the stellar wind bubble forms a variety of interesting structures like shells, clouds, fingers, and spokes. These results demonstrate that complex structures found in H II regions are not necessarily relics from the time before the gas became ionized but may result from dynamical processes during the course of the H II region evolution. We have also analyzed the transfer and deposit of the stellar wind and radiation energy into the circumstellar medium until the star explodes as a supernova. Although the total mechanical wind energy supplied by the star is negligible compared to the accumulated energy of the Lyman continuum photons, the kinetic energy imparted to the circumstellar gas over the star s lifetime is 4 times higher than for a comparable windless simulation. Furthermore, the thermal energy of warm photoionized gas is lower by some 55%). Our results document the necessity to consider both ionizing radiation and stellar winds for an appropriate description of the interaction of OB stars with their circumstellar environment.

  2. Dose to tissue medium or water cavities as surrogate for the dose to cell nuclei at brachytherapy photon energies

    NASA Astrophysics Data System (ADS)

    Enger, Shirin A.; Ahnesjö, Anders; Verhaegen, Frank; Beaulieu, Luc

    2012-07-01

    It has been suggested that modern dose calculation algorithms should be able to report absorbed dose both as dose to the local medium, Dm,m, and as dose to a water cavity embedded in the medium, Dw,m, using conversion factors from cavity theory. Assuming that the cell nucleus with its DNA content is the most important target for biological response, the aim of this study is to investigate, by means of Monte Carlo (MC) simulations, the relationship of the dose to a cell nucleus in a medium, Dn,m, to Dm,m and Dw,m, for different combinations of cell nucleus compositions and tissue media for different photon energies used in brachytherapy. As Dn,m is very impractical to calculate directly for routine treatment planning, while Dm,m and Dw,m are much easier to obtain, the questions arise which one of these quantities is the best surrogate for Dn,m and which cavity theory assumptions should one use for its estimate. The Geant4.9.4 MC code was used to calculate Dm,m, Dw,m and Dn,m for photon energies from 20 (representing the lower energy end of brachytherapy for 103Pd or125I) to 300 keV (close to the mean energy of 192Ir) and for the tissue media adipose, breast, prostate and muscle. To simulate the cell and its nucleus, concentric spherical cavities were placed inside a cubic phantom (10 × 10 × 10 mm3). The diameter of the simulated nuclei was set to 14 µm. For each tissue medium, three different setups were simulated; (a) Dn,m was calculated with nuclei embedded in tissues (MC-Dn,m). Four different published elemental compositions of cell nuclei were used. (b) Dw,m was calculated with MC (MC-Dw,m) and compared with large cavity theory calculated Dw,m (LCT-Dw,m), and small cavity theory calculated Dw,m (SCT-Dw,m). (c) Dm,m was calculated with MC (MC-Dm,m). MC-Dw,m is a good substitute for MC-Dn,m for all photon energies and for all simulated nucleus compositions and tissue types. SCT-Dw,m can be used for most energies in brachytherapy, while LCT-Dw,m should only be

  3. Performance characteristics of a diesel engine using low- and medium-energy gases as a fuel supplement (fumigation)

    NASA Technical Reports Server (NTRS)

    Monford, L. G.

    1976-01-01

    The use of low- and medium-energy gases derived from solid waste is investigated. Gases that simulate those gases that could be derived from refuse were injected into the air inlet of a 298-kilowatt (400 horsepower) diesel engine as a fuel supplement. This process is called fumigation. Three different gases with thermal-energy contents of 6.11 MJ/cu m (164 Btu/cu ft), 18.1 MJ/cu m (485 Btu/cu ft), and 18.8 MJ/cu m (505 Btu/cu ft, respectively, were used at rates ranging as high as 20 percent of the normal fuel oil energy at four different engine load points. The test results indicated approximately 100 percent gas energy utilization with no observable deleterious effect on the engine.

  4. Predictions for the energy loss of light ions in laser-generated plasmas at low and medium velocities.

    PubMed

    Cayzac, W; Bagnoud, V; Basko, M M; Blažević, A; Frank, A; Gericke, D O; Hallo, L; Malka, G; Ortner, A; Tauschwitz, An; Vorberger, J; Roth, M

    2015-11-01

    The energy loss of light ions in dense plasmas is investigated with special focus on low to medium projectile energies, i.e., at velocities where the maximum of the stopping power occurs. In this region, exceptionally large theoretical uncertainties remain and no conclusive experimental data are available. We perform simulations of beam-plasma configurations well suited for an experimental test of ion energy loss in highly ionized, laser-generated carbon plasmas. The plasma parameters are extracted from two-dimensional hydrodynamic simulations, and a Monte Carlo calculation of the charge-state distribution of the projectile ion beam determines the dynamics of the ion charge state over the whole plasma profile. We show that the discrepancies in the energy loss predicted by different theoretical models are as high as 20-30%, making these theories well distinguishable in suitable experiments.

  5. Calcium-Iron Oxide as Energy Storage Medium in Rechargeable Oxide Batteries

    DOE PAGES

    Berger, Cornelius M.; Mahmoud, Abdelfattah; Hermann, Raphaël P.; ...

    2016-08-08

    Rechargeable oxide batteries (ROB) comprise a regenerative solid oxide cell (rSOC) and a storage medium for oxygen ions. A sealed ROB avoids pumping loss, heat loss, and gas purity expenses in comparison with conventional rSOC. However, the iron oxide base storage medium degrades during charging–discharging cycles. In comparison, CaFe3O5 has improved cyclability and a high reversible oxygen storage capacity of 22.3 mol%. In this paper, we analyzed the redox mechanism of this compound. After a solid-state synthesis of CaFe3O5, we verified the phase composition and studied the redox reaction by means of X-ray diffraction, Mössbauer spectrometry, and scanning electron microscopy.more » Finally, results show a great potential to operate the battery with this storage material during multiple charging–discharging cycles.« less

  6. Calcium-Iron Oxide as Energy Storage Medium in Rechargeable Oxide Batteries

    SciTech Connect

    Berger, Cornelius M.; Mahmoud, Abdelfattah; Braun, Waldemar; Yazhenskikh, Elena; Sohn, Yoo Jung; Menzler, Norbert H.; Guillon, Olivier; Bram, Martin

    2016-08-08

    Rechargeable oxide batteries (ROB) comprise a regenerative solid oxide cell (rSOC) and a storage medium for oxygen ions. A sealed ROB avoids pumping loss, heat loss, and gas purity expenses in comparison with conventional rSOC. However, the iron oxide base storage medium degrades during charging–discharging cycles. In comparison, CaFe3O5 has improved cyclability and a high reversible oxygen storage capacity of 22.3 mol%. In this paper, we analyzed the redox mechanism of this compound. After a solid-state synthesis of CaFe3O5, we verified the phase composition and studied the redox reaction by means of X-ray diffraction, Mössbauer spectrometry, and scanning electron microscopy. Finally, results show a great potential to operate the battery with this storage material during multiple charging–discharging cycles.

  7. Calcium-Iron Oxide as Energy Storage Medium in Rechargeable Oxide Batteries

    SciTech Connect

    Berger, Cornelius M.; Mahmoud, Abdelfattah; Braun, Waldemar; Yazhenskikh, Elena; Sohn, Yoo Jung; Menzler, Norbert H.; Guillon, Olivier; Bram, Martin

    2016-08-08

    Rechargeable oxide batteries (ROB) comprise a regenerative solid oxide cell (rSOC) and a storage medium for oxygen ions. A sealed ROB avoids pumping loss, heat loss, and gas purity expenses in comparison with conventional rSOC. However, the iron oxide base storage medium degrades during charging–discharging cycles. In comparison, CaFe3O5 has improved cyclability and a high reversible oxygen storage capacity of 22.3 mol%. In this paper, we analyzed the redox mechanism of this compound. After a solid-state synthesis of CaFe3O5, we verified the phase composition and studied the redox reaction by means of X-ray diffraction, Mössbauer spectrometry, and scanning electron microscopy. Finally, results show a great potential to operate the battery with this storage material during multiple charging–discharging cycles.

  8. 10 CFR Appendix W to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Medium Base Compact Fluorescent Lamps

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption of Medium Base Compact Fluorescent Lamps W Appendix W to Subpart B of Part 430 Energy DEPARTMENT OF... final energy consumption value, as applicable, to the nearest decimal place or whole number as follows...

  9. Muon g-2 Experiment at Fermilab

    SciTech Connect

    Gray, Frederick

    2015-10-01

    A new experiment at Fermilab will measure the anomalous magnetic moment of the muon with a precision of 140 parts per billion (ppb). This measurement is motivated by the results of the Brookhaven E821 experiment that were first released more than a decade ago, which reached a precision of 540 ppb. As the corresponding Standard Model predictions have been refined, the experimental and theoretical values have persistently differed by about 3 standard deviations. If the Brookhaven result is confirmed at Fermilab with this improved precision, it will constitute definitive evidence for physics beyond the Standard Model. The experiment observes the muon spin precession frequency in flight in a well-calibrated magnetic field; the improvement in precision will require both 20 times as many recorded muon decay events as in E821 and a reduction by a factor of 3 in the systematic uncertainties. This paper describes the current experimental status as well as the plans for the upgraded magnet, detector and storage ring systems that are being prepared for the start of beam data collection in 2017.

  10. Metropolitan area network support at Fermilab

    SciTech Connect

    DeMar, Phil; Andrews, Chuck; Bobyshev, Andrey; Crawford, Matt; Colon, Orlando; Fry, Steve; Grigaliunas, Vyto; Lamore, Donna; Petravick, Don; /Fermilab

    2007-09-01

    Advances in wide area network service offerings, coupled with comparable developments in local area network technology have enabled many research sites to keep their offsite network bandwidth ahead of demand. For most sites, the more difficult and costly aspect of increasing wide area network capacity is the local loop, which connects the facility LAN to the wide area service provider(s). Fermilab, in coordination with neighboring Argonne National Laboratory, has chosen to provide its own local loop access through leasing of dark fiber to nearby network exchange points, and procuring dense wave division multiplexing (DWDM) equipment to provide data channels across those fibers. Installing and managing such optical network infrastructure has broadened the Laboratory's network support responsibilities to include operating network equipment that is located off-site, and is technically much different than classic LAN network equipment. Effectively, the Laboratory has assumed the role of a local service provider. This paper will cover Fermilab's experiences with deploying and supporting a Metropolitan Area Network (MAN) infrastructure to satisfy its offsite networking needs. The benefits and drawbacks of providing and supporting such a service will be discussed.

  11. WAN emulation development and testing at Fermilab

    SciTech Connect

    Bobyshev, A.; Rechenmacher, R.; Demar, P.; Ernst, M.; /DESY

    2004-12-01

    The Compact Muon Solenoid (CMS) experiment at CERN's Large Hadron Collider (LHC) is scheduled to come on-line in 2007. Fermilab will act as the CMS Tier-1 centre for the US and make experiment data available to more than 400 researchers in the US participating in the CMS experiment. The US CMS Users Facility group, based at Fermilab, has initiated a project to develop a model for optimizing movement of CMS experiment data between CERN and the various tiers of US CMS data centres and to design a WAN emulation facility which will enable controlled testing of unmodified or modified CMS applications and TCP implementations locally under conditions that emulate WAN connectivity. The WAN emulator facility is configurable for latency, jitter, and packet loss. The initial implementation is based on the NISTnet software product. In this paper we will describe the status of this project to date, the results of validation and comparison of performance measurements obtained in emulated and real environment for different applications including multistreams GridFTP. We also will introduce future short term and intermediate term plans, as well as outstanding problems and issues.

  12. Medium-energy electrons and heavy ions in Jupiter's magnetosphere - Effects of lower hybrid wave-particle interactions

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1986-01-01

    A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.

  13. Simulation Needs and Priorities of the Fermilab Intensity Frontier

    SciTech Connect

    Elvira, V. D.; Genser, K. L.; Hatcher, R.; Perdue, G.; Wenzel, H. J.; Yarba, J.

    2015-06-11

    Over a two-year period, the Physics and Detector Simulations (PDS) group of the Fermilab Scientific Computing Division (SCD), collected information from Fermilab Intensity Frontier experiments on their simulation needs and concerns. The process and results of these activities are documented here.

  14. CDF evidence for the top quark & B physics at Fermilab

    SciTech Connect

    Yao, Weiming

    1997-02-01

    We present the first direct evidence for the top quark with the Collider Detector at Fermilab (CDF) in a sample of {bar p}p collisions at {radical}s=1.8 TeV with an integrated luminosity of 19.3 pb{sup -1}. The recent B physics results at Fermilab from both collider and fixed target experiments are reviewed.

  15. Implementation of Stochastic Cooling Hardware at Fermilab's Tevatron Collider

    SciTech Connect

    Pasquinelli, Ralph J.; /Fermilab

    2011-08-01

    The invention of Stochastic cooling by Simon van der Meer made possible the increase in phase space density of charged particle beams. In particular, this feedback technique allowed the development of proton antiproton colliders at both CERN and Fermilab. This paper describes the development of hardware systems necessary to cool antiprotons at the Fermilab Tevatron Collider complex.

  16. A data handling system for modern and future Fermilab experiments

    NASA Astrophysics Data System (ADS)

    Illingworth, R. A.

    2014-06-01

    Current and future Fermilab experiments such as Minerva, NOνA, and MicroBoone are now using an improved version of the Fermilab SAM data handling system. SAM was originally used by the CDF and D0 experiments for Run II of the Fermilab Tevatron to provide file metadata and location cataloguing, uploading of new files to tape storage, dataset management, file transfers between global processing sites, and processing history tracking. However SAM was heavily tailored to the Run II environment and required complex and hard to deploy client software, which made it hard to adapt to new experiments. The Fermilab Computing Sector has progressively updated SAM to use modern, standardized, technologies in order to more easily deploy it for current and upcoming Fermilab experiments, and to support the data preservation efforts of the Run II experiments.

  17. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    SciTech Connect

    Wester, W.

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  18. The initial mass function and global rates of mass, momentum, and energy input to the interstellar medium via stellar winds

    NASA Technical Reports Server (NTRS)

    Van Buren, D.

    1985-01-01

    Published observational data are compiled and analyzed, using theoretical stellar-evolution models to determine the global rates of mass, momentum, and energy injected into the interstellar medium (ISM) by stellar winds. Expressions derived include psi = 0.00054 x (M to the -1.03) stars formed/sq kpc yr log M (where M is the initial mass function in solar mass units) and mass-loss = (2 x 10 to the -13th) x (L to the 1.25) solar mass/yr (with L in solar luminosity units). It is found that the wind/supernova injection of energy into the ISM and the mass loss from stars of 5 solar mass or more are approximately balanced by the dissipation of energy by cloud-cloud collisions and the formation of stars, respectively.

  19. The initial mass function and global rates of mass, momentum, and energy input to the interstellar medium via stellar winds

    NASA Technical Reports Server (NTRS)

    Van Buren, D.

    1985-01-01

    Published observational data are compiled and analyzed, using theoretical stellar-evolution models to determine the global rates of mass, momentum, and energy injected into the interstellar medium (ISM) by stellar winds. Expressions derived include psi = 0.00054 x (M to the -1.03) stars formed/sq kpc yr log M (where M is the initial mass function in solar mass units) and mass-loss = (2 x 10 to the -13th) x (L to the 1.25) solar mass/yr (with L in solar luminosity units). It is found that the wind/supernova injection of energy into the ISM and the mass loss from stars of 5 solar mass or more are approximately balanced by the dissipation of energy by cloud-cloud collisions and the formation of stars, respectively.

  20. Angular distributions of sputtered atoms for low-energy heavy ions, medium ions and light ions

    NASA Astrophysics Data System (ADS)

    Yamamura, Yasunori; Mizuno, Yoshiyuki; Kimura, Hidetoshi

    1986-03-01

    The angular distributions of sputtered atoms for the near-threshold sputtering of heavy ions, medium ions, and light ions have been investigated by a few-collision model and the ACAT computer simulation code. For heavy-ion sputtering the preferential angle of sputtered atoms is about 50° which is measured from the surface normal, while in the case of the near-threshold light-ion sputtering the preferential angles are nearly equal to the surface normal and do not depend on angle of incidence. It is found that the agreement between the ACAT preferential angles and theoretical values due to a few-collision model is very good.

  1. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    NASA Astrophysics Data System (ADS)

    Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.

    2014-06-01

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.

  2. Search for Centauro events in the DO Detector at Fermilab collider

    SciTech Connect

    Rao, M.V.S.; DO Collaboration

    1994-09-01

    We report preliminary results of a Monte Carlo study to search for Centauro events in the DO Detector at Fermilab. Montecarlo simulation of minimum bias events are being carried out using the ISAJET and DOGEANT packages to study the detector response for low energy particles and to understand the background. Preliminary indications are that the detector is capable of resolving individual particles. Further work on developing reconstruction algorithms for individual particles is in progress.

  3. Results from a MHz gravitational wave search using the Fermilab Holometer

    NASA Astrophysics Data System (ADS)

    Kamai, Brittany; Holometer Collaboration Collaboration

    2017-01-01

    The Fermilab Holometer, two nested 40 meter Michelson interferometers, has extended the accessible gravitational wave frequency range from kHz to a broad range of MHz frequencies. I will present results from a 130-hr campaign that measured the energy density of gravitational waves in the MHz band. Additionally, this dataset was used to place constraints on the abundance of primordial black hole binaries.

  4. Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab

    SciTech Connect

    Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.

    2014-06-15

    In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.

  5. New beam line for time-of-flight medium energy ion scattering with large area position sensitive detector

    NASA Astrophysics Data System (ADS)

    Linnarsson, M. K.; Hallén, A.; Åström, J.; Primetzhofer, D.; Legendre, S.; Possnert, G.

    2012-09-01

    A new beam line for medium energy ion mass scattering (MEIS) has been designed and set up at the Ångström laboratory, Uppsala University, Sweden. This MEIS system is based on a time-of-flight (ToF) concept and the electronics for beam chopping relies on a 4 MHz function generator. Repetition rates can be varied between 1 MHz and 63 kHz and pulse widths below 1 ns are typically obtained by including beam bunching. A 6-axis goniometer is used at the target station. Scattering angle and energy of backscattered ions are extracted from a time-resolved and position-sensitive detector. Examples of the performance are given for three kinds of probing ions, 1H+, 4He+, and 11B+. Depth resolution is in the nanometer range and 1 and 2 nm thick Pt layers can easily be resolved. Mass resolution between nearby isotopes can be obtained as illustrated by Ga isotopes in GaAs. Taking advantage of the large size detector, a direct imaging (blocking pattern) of crystal channels are shown for hexagonal, 4H-SiC. The ToF-MEIS system described in this paper is intended for use in semiconductor and thin film areas. For example, depth profiling in the sub nanometer range for device development of contacts and dielectric interfaces. In addition to applied projects, fundamental studies of stopping cross sections in this medium energy range will also be conducted.

  6. Medium energy measurements of N-N parameters. Final technical report, April 1, 1994--September 30, 1996

    SciTech Connect

    Ambrose, D.; Betts, W.; Coffey, P.; Glass, G.; McDonough, J.; Riley, P.; Tang, J.L.

    1998-08-01

    This document is a final technical report describing the accomplishments of the medium/high energy nuclear physics research program at the University of Texas at Austin. The research program had four main thrusts, only one of which can be considered as measurements of N-N parameters: (1) finishing the data analyses associated with recent LAMPF and TRIUMPF N-N experiments, whose overall purpose has been the determination of the nucleon-nucleon amplitudes, both for isospin 0 and 1 at medium energies; (2) continuing work on BNL E871, a search for rare decay modes of the K{sub L}; (3) work on the RHIC-STAR project, an experiment to create and study a quark gluon plasma and nuclear matter at high energy density; (4) beginning a new AGS experiment (E896) which will search for the lowest mass state of the predicted strange di-baryons, the Ho, and other exotic states of nuclear matter through nucleus-nucleus collisions.

  7. Depicting the Gamma-ray Realm with the All-sky Medium Energy Gamma-Ray Observatory (AMEGO)

    NASA Astrophysics Data System (ADS)

    Buson, Sara; ComPair Team

    2017-01-01

    The energy band from a few hundred keV to a few hundred GeV offers a unique window for studying both thermal and the non-thermal astrophysical processes. Important science can be gleaned fom investigations of emission mechanisms and environments of the most extreme objects that populate this mostly unexplored energy range. The All-sky Medium Energy Gamma-Ray Observatory (AMEGO) is a next-generation mission concept builing on the pioneering observations by COMPEL, on the Compton Gamma-Ray Observatory, and the heritage of recent successful missions, such as Fermi-LAT, AGILE, AMS and PAMELA. With its capability of detecting both Compton-scattering events at lower energy and pair-production events at higher energy, AMEGO can explore the energy regime from 300 keV to > 10 GeV with unprecedented sensitivity. We describe the concept of this wide-aperture instrument and discuss its power to address fundamental questions from a broad variety of astrophysical topics. NPP Fellow at NASA/GSFC.

  8. Energy Efficient Medium Access Control Protocol for Clustered Wireless Sensor Networks with Adaptive Cross-Layer Scheduling.

    PubMed

    Sefuba, Maria; Walingo, Tom; Takawira, Fambirai

    2015-09-18

    This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols.

  9. Energy Efficient Medium Access Control Protocol for Clustered Wireless Sensor Networks with Adaptive Cross-Layer Scheduling

    PubMed Central

    Sefuba, Maria; Walingo, Tom; Takawira, Fambirai

    2015-01-01

    This paper presents an Energy Efficient Medium Access Control (MAC) protocol for clustered wireless sensor networks that aims to improve energy efficiency and delay performance. The proposed protocol employs an adaptive cross-layer intra-cluster scheduling and an inter-cluster relay selection diversity. The scheduling is based on available data packets and remaining energy level of the source node (SN). This helps to minimize idle listening on nodes without data to transmit as well as reducing control packet overhead. The relay selection diversity is carried out between clusters, by the cluster head (CH), and the base station (BS). The diversity helps to improve network reliability and prolong the network lifetime. Relay selection is determined based on the communication distance, the remaining energy and the channel quality indicator (CQI) for the relay cluster head (RCH). An analytical framework for energy consumption and transmission delay for the proposed MAC protocol is presented in this work. The performance of the proposed MAC protocol is evaluated based on transmission delay, energy consumption, and network lifetime. The results obtained indicate that the proposed MAC protocol provides improved performance than traditional cluster based MAC protocols. PMID:26393608

  10. Determination of the energy dependence of the BC-408 plastic scintillation detector in medium energy x-ray beams

    NASA Astrophysics Data System (ADS)

    Yücel, H.; Çubukçu, Ş.; Uyar, E.; Engin, Y.

    2014-11-01

    The energy dependence of the response of BC-408 plastic scintillator (PS), an approximately water-equivalent material, has been investigated by employing standardized x-ray beams. IEC RQA and ISO N series x-ray beam qualities, in the range of 40-100 kVp, were calibrated using a PTW-type ionization chamber. The energy response of a thick BC-408 PS detector was measured using the multichannel pulse height analysis method. The response of BC-408 PS increased gradually with increasing energy in the energy range of 40-80 kVp and then showed a flat behavior at about 80 to 120 kVp. This might be due to the self-attenuation of scintillation light by the scintillator itself and may also be partly due to the ionization quenching, leading to a reduction in the intensity of the light output from the scintillator. The results indicated that the sensitivity drop in BC-408 PS material at lower photon energies may be overcome by adding some high-Z elements to its polyvinyltoluene (PVT) base. The material modification may compensate for the drop in the response at lower photon energies. Thus plastic scintillation dosimetry is potentially suitable for applications in diagnostic radiology.

  11. Low and medium energy deuteron-induced reactions on {sup 27}Al

    SciTech Connect

    Bem, P.; Simeckova, E.; Honusek, M.; Fischer, U.; Simakov, S. P.; Forrest, R. A.; Avrigeanu, M.; Obreja, A. C.; Roman, F. L.; Avrigeanu, V.

    2009-04-15

    The activation cross sections of (d,p), (d,2p), and (d,p{alpha}) reactions on {sup 27}Al were measured in the energy range from 4 to 20 MeV using the stacked-foils technique. Following a previous extended analysis of elastic scattering, breakup, and direct reaction of deuterons on {sup 27}Al, for energies from 3 to 60 MeV, the preequilibrium and statistical emissions are considered in the same energy range. Finally, all deuteron-induced reactions on {sup 27}Al including the present data measured up to 20 MeV deuteron energy are properly described due to a simultaneous analysis of the elastic scattering and reaction data.

  12. Innovative Medium-Speed Drivetrain Design Program and Dynamometer Testing; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Keller, Jonathan; Halse, Christopher

    2015-05-19

    Presented at the American Wind Energy Association WINDPOWER 2015 conference. This presentation covers the concept of the next-generation drivetrain, including its impacts, innovations, design and design benefits, instrumentation, assembly, and testing programs.

  13. Spin relaxation length for medium-energy electrons in palladium thin films

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.; Ustinov, A. B.; Petrov, V. N.

    2016-11-01

    The development of spintronics (the field of science that examines the behavior of systems, based not only on charge transfer, but on magnetic properties of nano-objects as well) requires study of various magnetic and electrical properties of nanoscale systems. To create a new device it is often important to know a length of spin relaxation not only for electrons with energies close to the Fermi surface, but also with energy of several hundred eV. In this study we measured such lengths in palladium at room temperature. Results obtained by secondary electron spectroscopy show that spin relaxation length for energy 100 eV is 11,9±1,6Å and for energy 500 eV is 27,1±10,5Å.

  14. Radiation mapping inside the bunkers of medium energy accelerators using a robotic carrier.

    PubMed

    Ravishankar, R; Bhaumik, T K; Bandyopadhyay, T; Purkait, M; Jena, S C; Mishra, S K; Sharma, S; Agashe, V; Datta, K; Sarkar, B; Datta, C; Sarkar, D; Pal, P K

    2013-10-01

    The knowledge of ambient and peak radiation levels prevailing inside the bunkers of the accelerator facilities is essential in assessing the accidental human exposure inside the bunkers and in protecting sensitive electronic equipments by minimizing the exposure to high intensity mixed radiation fields. Radiation field mapping dynamically, inside bunkers are rare, though generally dose-rate data are available in every particle accelerator facilities at specific locations. Taking into account of the fact that the existing neutron fields with a spread of energy from thermal up to the energy of the accelerated charged projectiles, prompt photons and other particles prevailing during cyclotron operation inside the bunkers, neutron and gamma survey meters with extended energy ranges attached to a robotic carrier have been used. The robotic carrier movement was controlled remotely from the control room with the help of multiple visible range optical cameras provided inside the bunkers and the wireless and wired protocols of communication helped its movement and data acquisition from the survey meters. Variable Energy Cyclotron Centre, Kolkata has positive ion accelerating facilities such as K-130 room Temperature Cyclotron, K-500 Super Conducting Cyclotron and a forthcoming 30 MeV Proton Medical Cyclotron with high beam current. The dose rates data for K-130 Room Temperature Cyclotron, VECC were collected for various energies of alpha and proton beams losing their total energy at different stages on different materials at various strategic locations of radiological importance inside the bunkers. The measurements established that radiation levels inside the machine bunker dynamically change depending upon the beam type, beam energy, machine operation parameters, deflector condition, slit placement and central region beam tuning. The obtained inference from the association of dose rates with the parameters like beam intensity, type and energy of projectiles, helped in

  15. Neutrino self-energy in a magnetized medium in arbitrary /ξ-gauge

    NASA Astrophysics Data System (ADS)

    Erdas, A.; Isola, C.

    2000-11-01

    We calculate the one-loop neutrino self-energy in a magnetized plasma to all orders in the magnetic field. The calculation is done in a general gauge. We obtain the dispersion relation and effective potential for neutrinos in a CP-symmetric plasma under various conditions, and show that, while the self-energy depends on the gauge parameter /ξ, the dispersion relation and effective potential to leading order are independent of it.

  16. Some recent experimental results from Fermilab

    SciTech Connect

    Montgomery, H.E.

    1994-02-01

    The aim of this talk was to give an impression of the tremendous range and depth of the data being produced by experiments at Fermilab, both fixed target and collider. Despite the generous allotment of time it was not possible to do more than scratch the surface of some subjects. The collider experiments, using the measurements of the W mass and with top search and mass limits, are approaching the situation where a statement about the Higgs mass, or a sensitive test of the consistency of the standard model become a possibility. Subjects discussed were: (1) cross-sections, QCD measurements; (2) decay physics; (3) W/Z physics; (4) searches for new physics; and (5) search for top quark.

  17. Early history of the Fermilab Main Ring

    SciTech Connect

    Malamud, E.; /Fermilab

    1983-10-01

    This note is written in response to a request from Phil Livdahl for corrections, and additions to a TM he is writing on Staffing Levels at Fermilab during Initial Construction Years and to a note that Hank Hinterberger is preparing on milestones. In my spare time over the past few years I have taken the original files of the Main Ring Section, my own notes from that period, and various other collections of relevant paper, and arranged them in a set of 44 large loose leaf binders in chronological order. I call this set of volumes the 'Main Ring Chronological Archives'. In response to Phil's request I have recently skimmed through these records of the period and extracted a small subset of documents which relate to the specific questions that Phil is addressing: staffing. administration, and milestones.

  18. Alignment of the Fermilab D0 Detector

    SciTech Connect

    Babatunde O'Sheg Oshinowo

    2001-07-20

    The Fermilab D0 detector was used for the discovery of the top quark during Run I in 1996. It is currently being upgraded to exploit the physics potential to be presented by the Main Injector and the Tevatron Collider during Run II in the Fall of 2000. Some of the essential elements of this upgrade is the upgrade of the Solenoid Magnet, the Central Fiber Tracker, the Preshower Detectors, the Calorimeter System, and the Muon System. This paper discusses the survey and alignment of the these detectors with emphasis on the Muon detector system. The alignment accuracy is specified as better than 0.5mm. A combination of the Laser Tracker, BETS, and V-STARS systems are used for the survey.

  19. Fermilab Physics Department Fastbus TDC module

    SciTech Connect

    Cancelo, G.; Hansen, S.; Cotta-Ramusino, A.

    1991-07-01

    A prototype 64 channel Fastbus TDC built at Fermilab is described. The module features a full custom CMOS four channel gated integrator chip. One level of analog buffering at the inputs is implemented on chip. A four event deep output queue at the bus interface allows a high event rate with low dead time. Each channel can record up to two hits per event. With an occupation rate of 10%, the module can operate at 40,000 events per second with dead time on the order of 15%. The TDC operates in common stop mode with a full scale of 1 {mu}sec and a resolution of 1 nsec. 5 refs., 6 figs.

  20. Tune control in the Fermilab Main Injector

    SciTech Connect

    G. Wu et al.

    1999-04-16

    We describe methods used to measure and control tunes in the Fermilab Main Injector (FMI). Emphasis is given to software implementation of the operator interface, to the front-end embedded computer system, and handling of hysteresis of main dipole and quadrupole magnets. Techniques are developed to permit control of tune of the Main Injector through several acceleration cycles: from 8.9 GeV/c to 120 GeV/c, from 8.9 GeV/c to 150 GeV/c, and from 150 GeV/c to 8.9 GeV/c. Systems which automate the complex interactions between tune measurement and the variety of ramping options are described. Some results of tune measurements and their comparison with the design model are presented.

  1. Siberian snakes for the Fermilab Main Injector

    SciTech Connect

    Anferov, V.A.; Baiod, R.; Courant, E.D.

    1993-04-01

    Appropriate Siberian snakes were designed to maintain the proton beam polarization during acceleration in the Fermilab Main Injector from 8 to 150 GeV. Various snake designs were investigated to find one fitting into the 14 m straight section spaces with the required spin rotation axis and the minimum orbit excursion. The authors studied both cold and warm discrete magnet snakes as well as warm snakes with helical magnets. For the warm discrete magnet snake, obtaining small orbit excursions required a nearly longitudinal snake axis, while axes near {+-}45{degrees} are needed when using two snakes in a ring. The authors found acceptable snakes either by using superconducting magnets or by using warm magnets with a helical dipole field.

  2. Unified description of charmonium suppression in a quark-gluon plasma medium at RHIC and LHC energies

    NASA Astrophysics Data System (ADS)

    Singh, R., Captain; Srivastava, P. K.; Ganesh, S.; Mishra, M.

    2015-09-01

    Recent experimental and theoretical studies suggest that the quarkonium suppression in a thermal QCD medium created in heavy ion collisions is a complex interplay of various physical processes. In this article we put together most of these processes in a unified way to calculate the charmonium survival probability (nuclear modification factor) at energies available at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) experiments. We include shadowing as the dominant cold-nuclear-matter effect. Further, gluonic dissociation and collision damping are included, which provide width to the spectral function of charmonia in a thermal medium and cause the dissociation of charmonium along with the usual color screening. We include color screening by using our recently proposed modified Chu-Matsui model. Furthermore, we incorporate the recombination of uncorrelated charm and anticharm quarks for the regeneration of charmonium over the entire temporal evolution of the QGP medium. Finally, we do a feed-down correction from the excited states to calculate the survival probability of charmonium. We find that our unified model suitably and simultaneously describes the experimental nuclear modification data of J /ψ at RHIC and LHC.

  3. Medium Duty ARRA Data Reporting and Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Kelly, Kenneth; Duran, Adam; Ragatz, Adam; Prohaska, Robert; Walkowicz, Kevin

    2015-06-11

    Medium-duty (MD) electric vehicle (EV) data collection and analysis will help drive design, purchase, and research investments. Over 4 million miles and 160,000 driving days of EV driving data were collected under this project. Publicly available data help drive technology research, development, and deployment. Feeding the vocational database for future analysis will lead to a better understanding of usage and will result in better design optimization and technology implementation. The performance of a vehicle varies with drive cycle and cargo load - MD vehicles are 'multi-functional.' Environment and accessory loads affect vehicle range and in turn add cost by adding battery capacity. MD EV vehicles can function in vocations traditionally serviced by gasoline or diesel vehicles. Facility implications (i.e., demand charges) need to be understood as part of site-based analysis for EV implementation.

  4. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  5. Nuclear Modification of Excited Quarkonia States from SPS to LHC Energies

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.

    2017-05-01

    The study of quarkonia spectroscopy in the presence of hadronic or deconfined medium is a powerful procedure to study density and temperature of different kinds of nuclear matter. Most of the efforts are made with the ground states J/ψ and Υ (1S), but excited state quarkonia offers a rich spectrum of binding energies and particle sizes for nuclear medium studies. This report summarizes measurements of several quarkonium excited states in the last three decades by Fermilab, SPS, HERA, RHIC and LHC experiments along with the current understanding on how nuclear medium affects their yields.

  6. Study of microdosimetric energy deposition patterns in tissue-equivalent medium due to low-energy neutron fields using a graphite-walled proportional counter.

    PubMed

    Waker, A J; Aslam

    2011-06-01

    To improve radiation protection dosimetry for low-energy neutron fields encountered in nuclear power reactor environments, there is increasing interest in modeling neutron energy deposition in metrological instruments such as tissue-equivalent proportional counters (TEPCs). Along with these computational developments, there is also a need for experimental data with which to benchmark and test the results obtained from the modeling methods developed. The experimental work described in this paper is a study of the energy deposition in tissue-equivalent (TE) medium using an in-house built graphite-walled proportional counter (GPC) filled with TE gas. The GPC is a simple model of a standard TEPC because the response of the counter at these energies is almost entirely due to the neutron interactions in the sensitive volume of the counter. Energy deposition in tissue spheres of diameter 1, 2, 4 and 8 µm was measured in low-energy neutron fields below 500 keV. We have observed a continuously increasing trend in microdosimetric averages with an increase in neutron energy. The values of these averages decrease as we increase the simulated diameter at a given neutron energy. A similar trend for these microdosimetric averages has been observed for standard TEPCs and the Rossi-type, TE, spherical wall-less counter filled with propane-based TE gas in the same energy range. This implies that at the microdosimetric level, in the neutron energy range we employed in this study, the pattern of average energy deposited by starter and insider proton recoil events in the gas is similar to those generated cumulatively by crosser and stopper events originating from the counter wall plus starter and insider recoil events originating in the sensitive volume of a TEPC.

  7. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  8. Development of the 3-D Track Imager for Medium and High-Energy Gamma-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2006-01-01

    The Advanced Compton Telescope (ACT) and Advanced Pair Telescope (APT) are envisioned as the next medium (0.3 ^ 50 MeV) and high-energy (30 MeV - greater than 100 GeV) gamma-ray missions. These missions will address many research focus areas of the Structure and Evolution of the Universe Roadmap. These areas include: element formation, matter, energy, & magnetic field interactions in galaxies, AGN & GRB emission, and behavior of matter in extreme environments of black holes & pulsars. Achieving these science goals requires a substantial increases in telescope sensitivity and angular resolution. This talk will discuss how these goals can be met with the three-dimensional track imager (3-DTI), a large volume, low density, time projection chamber with two-dimensional micro-well detector readout and report on our development of a 10 cm x 10 cm x 30 prototype instrument.

  9. Implementation of subcellular water mapping by electron energy loss spectroscopy in a medium-voltage scanning transmission electron microscope.

    PubMed

    Terryn, C; Michel, J; Thomas, X; Laurent-Maquin, D; Balossier, G

    2004-07-01

    The water concentration in biological cells plays a predominant role in cellular life. Using electron energy loss spectroscopy, the feasibility to measure the water content in cells has already been demonstrated. In this paper, we present an upgrade of water measurement in hydrated cryosections by spectrum imaging mode in a medium-voltage scanning transmission electron microscope. The electron energy loss spectra are recorded in spectrum imaging mode in a 2(n)x2(n) pixels array. Each spectrum is processed in order to determine the water mass content in the corresponding pixel. Then a parametric image is obtained in which grey levels are related to water concentration. In this image, it is possible to recognize the different subcellular compartments. By averaging the water concentration over the relevant pixels, we can determine the water mass content in the concerned subcellular compartment. As an example, we present water mass content measurement at subcellular level in rat hepatocytes.

  10. Exploring the particle nature of dark matter with the All-sky Medium Energy Gamma-ray Observatory (AMEGO)

    NASA Astrophysics Data System (ADS)

    Caputo, Regina; Meyer, Manuel

    2017-08-01

    The era of precision cosmology has revealed that ~80% of the matter in the universe is dark matter. Two leading candidates, motivated by both particle and astrophysics, are Weakly Interacting Massive Particles (WIMPs) and Weakly Interacting Sub-eV Particles (WISPs) like axions and axionlike particles. Both WIMPs and WISPs have distinct gamma-ray signatures. Data from the Fermi Large Area Telescope (Fermi-LAT) continues to be an integral part of the search for these dark matter signatures spanning the 50 MeV to >300 GeV energy range in a variety of astrophysical targets. Thus far, there are no conclusive detections; however, there is an intriguing excess of gamma rays associated with Galactic center (GCE) that could be explained with WIMP annihilation. The angular resolution of the LAT at lower energies makes source selection challenging and the true nature of the detected signal remains unknown. WISP searches using, e.g. supernova explosions, spectra of blazars, or strongly magnetized environments, would also greatly benefit from increased angular and energy resolution, as well as from polarization measurements. To address these, we are developing AMEGO, the All-sky Medium Energy Gamma-ray Observatory. This instrument has a projected energy and angular resolution that will increase sensitivity by a factor of 20-50 over previous instruments. This will allow us to explore new areas of dark matter parameter space and provide unprecedented access to its particle nature.

  11. Scenario Development and Analysis of Hydrogen as a Large-Scale Energy Storage Medium (Presentation)

    SciTech Connect

    Steward, D. M.

    2009-06-10

    The conclusions from this report are: (1) hydrogen has several important advantages over competing technologies, including - very high storage energy density (170 kWh/m{sup 3} vs. 2.4 for CAES and 0.7 for pumped hydro) which allows for potential economic viability of above-ground storage and relatively low environmental impact in comparison with other technologies; and (2) the major disadvantage of hydrogen energy storage is cost but research and deployment of electrolyzers and fuel cells may reduce cost significantly.

  12. First measurement of the spectral function at high energy and momentum in medium-heavy nuclei

    SciTech Connect

    Daniela Rohe; E97-006 collaboration

    2005-09-26

    The experiment E97-006 was performed at Jefferson Lab to measure the momentum and energy distribution of protons in the nucleus far from the region of the (approximate) validity of the mean field description, i.e. at high momentum and energies. The occurrence of this strength is long known from occupation numbers less than one. In the experiment reported here this strength was directly measured for the first time. The results are compared to modern many-body theories. Further the transparency factor of C12 was determined in the Q{sup 2}-region of 0.6 to 1.8 (GeV/c){sup 2}.

  13. Exploring QCD dynamics in medium energy γA semiexclusive collisions

    NASA Astrophysics Data System (ADS)

    Larionov, A. B.; Strikman, M.

    2016-09-01

    We demonstrate that studies of the semiexclusive large angle photon-nucleus reactions: γ + A →h1 +h2 +(A - 1) * with tagged photon beams of energies 6 ÷ 10 GeV which can be performed in Hall D at Thomas Jefferson National Acceleration Facility (TJNAF) would allow to probe several aspects of the QCD dynamics: establish the t-range in which transition from soft to hard dynamics occurs, compare the strength of the interaction of various mesons and baryons with nucleons at the energies of few GeV, as well as look for the color transparency effects.

  14. Double-to-single photoionization ratio of lithium at medium energies

    SciTech Connect

    Wehlitz, R.; Bluett, J.B.; Martinez, M.M.; Lukic, D.; Whitfield, S.B.

    2004-06-01

    The double-to-single photoionization ratio of atomic lithium has been measured for photon energies ranging from 120 eV to 910 eV. Through extensive use of various filters we were able to significantly extend the previous range of measurements [M.-T. Huang et al., Phys. Rev. A 59, 3397 (1999)]. We find that our data are in agreement with the predicted high-energy limit of 3.4%. By applying simple model curves to our data, we believe that sequential processes contribute substantially to the double-photoionization cross-section ratio as predicted by theory.

  15. Medium effect on the nuclear modification factor of protons and pions in intermediate-energy heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Lv, M.; Ma, Y. G.; Chen, J. H.; Fang, D. Q.; Zhang, G. Q.

    2017-02-01

    Nuclear modification factors Rcp of protons and pions are investigated by simulating Au+Au collisions from 0.8 A to 1.8 A GeV in a framework of an isospin-dependent quantum molecular dynamics (IQMD) model. The Rcp of protons rise with an increase in the transverse particle momentum pT at different beam energies owing to radial flow and the multiple-collision effect. The rate of increase of Rcp is suppressed at higher beam energies. While the Rcp of pions display weaker pT dependence. By changing the in-medium nucleon-nucleon cross section, the Rcp of protons change a lot, while the Rcp of pions do not. In addition, by deactivating the N Δ →N N and π N →Δ channels, the Rcp of protons change slightly in their increasing rates compared with the "original" case (with these two channels). However, the Rcp of pions is shifted down for the "no N Δ →N N " case and has an inverse trend for the "no π N →Δ " case. Based on these observations, we argue that the observable Rcp is a suitable tool to better distinguish in-medium effects of protons and pions.

  16. Proton and light ion deflection at medium energies with planar bent crystals

    NASA Astrophysics Data System (ADS)

    Ray, C.; Dauvergne, D.

    2017-07-01

    The transmission of protons in planar channeling or in the regime of crystal reflection in bent crystals is now routinely used at high energy. We used the property that channeling critical angle increases as the incident particle momentum decreases, to explore the region of moderate energies (100 MeV-1 GeV). Indeed, such energies are particularly interesting since medical applications such as particle therapy have to face the constraints of being compatible with hospital-based accelerators. Therefore, replacing tens- or even hundreds-tons gantries by bent crystals would - if feasible - meet societal applications. We used binary-encounter simulations of trajectories inside crystals oriented along planar directions. The Molière potential with thermally vibrating lattice atoms was used, and additional transverse heating was introduced to account for multiple elastic scattering by close-collisions on electrons, which depends on the transverse energy of the channeled ions. The survival yield (i.e. the fraction of ions keeping trajectories within plus-minus one critical planar channeling angle with respect to lattice planes) was simulated for protons and carbon ions, as a function of crystal nature (silicon or germanium), crystal temperature, thickness and curvature. Although the transmitted yields are far from the necessary yields required to treat patients, significant survival yields were found through cm-thick crystals at angles beyond 10°. We will discuss possible experimental verification of these findings, and in particular practical aspects of such very large bending angles.

  17. Commissioning of polarized-proton and antiproton beams at Fermilab

    SciTech Connect

    Yokosawa, A.

    1988-05-04

    The author described the polarized-proton and polarized-antiproton beams up to 200 GeV/c at Fermilab. The beam line, called MP, consists of the 400-m long primary and 350-m long secondary beam line followed by 60-m long experimental hall. We discuss the characteristics of the polarized beams. The Fermilab polarization projects are designated at E-581/704 initiated and carried out by an international collaboration, Argonne (US), Fermilab (US), Kyoto-Kyushu-Hiroshima-KEK (Japan), LAPP (France), Northwestern University (US), Los Alamos Laboratory (US), Rice (US), Saclay (France), Serpukhov (USSR), INFN Trieste (Italy), and University of Texas (US).

  18. On the Exchange of Kinetic and Magnetic Energy between Clouds and the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco; Jones, T. W.; Ryu, Dongsu

    1999-05-01

    We investigate, through two-dimensional MHD numerical simulations, the interaction of a uniform magnetic field oblique to a moving interstellar cloud. In particular we explore the transformation of cloud kinetic energy into magnetic energy as a result of field line stretching. Some previous simulations have emphasized the possible dynamical importance of a ``magnetic shield'' formed around clouds when the magnetic field is perpendicular to the cloud motion. It was not clear, however, how dependent those findings were on the assumed field configuration and cloud properties. To expand our understanding of this effect, we examine several new cases by varying the magnetic field orientation angle with respect to the cloud motion (θ), the cloud-background density contrast, and the cloud Mach number. We show that in two dimensions and with θ large enough, the magnetic field tension can become dominant in the dynamics of the motion of high density contrast, low Mach number clouds. In such a case, a significant fraction of the cloud's kinetic energy can be transformed into magnetic energy with the magnetic pressure at the cloud's nose exceeding the ram pressure of the impinging flow. We derive a characteristic timescale, τma, for this process of energy ``conversion.'' We find also that unless the cloud motion is highly aligned with the magnetic field, reconnection through tearing-mode instabilities in the cloud wake limits the formation of a strong flux-rope feature following the cloud. Finally we attempt to interpret some observed properties of the magnetic field in view of our results.

  19. The Fermilab program for the next decade a response to the Gilman HEPAP subpanel

    SciTech Connect

    Pordes, S.

    1997-10-01

    We have divided this description of our plans for the Laboratory program into seven parts. The first five sections describe the ongoing technical work and the broad range of physics opportunities available at Fermilab. These are organized into: our plans for the accelerator complex; our plans for facilities for performing experiments; the program of experiments we presently foresee; our plans for involvement with the LHC; and our plans for R & D towards a future facility which recaptures the energy frontier. The final sections summarize: our priorities and our planning strategy for making choices for the future, and our budget request to support the Fermilab program as we approach the fundamental challenges of elementary particle physics over the next ten years.

  20. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    DOEpatents

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  1. Development of a High Resolution Liquid Xenon Imaging Telescope for Medium Energy Gamma Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1992-01-01

    In the third year of the research project, we have (1) tested a 3.5 liter prototype of the Liquid Xenon Time Projection Chamber, (2) used a prototype having a 4.4 cm drift gap to study the charge and energy resolution response of the 3.5 liter chamber, (3) obtained an energy resolution as good as that previously measured by us using chambers with drift gaps of the order of millimeters, (4) observed the induction signals produced by MeV gamma rays, (4) used the 20 hybrid charge sensitive preamplifiers for a nondestructive readout of the electron image on the induction wires, (5) performed extensive Monte Carlo simulations to obtain results on efficiency, background rejection capability, and source flux sensitivity, and (6) developed a reconstruction algorithm for events with multiple interaction points.

  2. Control of Energy Density inside a Disordered Medium by Coupling to Open or Closed Channels

    NASA Astrophysics Data System (ADS)

    Sarma, Raktim; Yamilov, Alexey G.; Petrenko, Sasha; Bromberg, Yaron; Cao, Hui

    2016-08-01

    We demonstrate experimentally the efficient control of light intensity distribution inside a random scattering system. The adaptive wave front shaping technique is applied to a silicon waveguide containing scattering nanostructures, and the on-chip coupling scheme enables access to all input spatial modes. By selectively coupling the incident light to the open or closed channels of the disordered system, we not only vary the total energy stored inside the system by a factor of 7.4, but also change the energy density distribution from an exponential decay to a linear decay and to a profile peaked near the center. This work provides an on-chip platform for controlling light-matter interactions in turbid media.

  3. Dose to tissue medium or water cavities as surrogate for the dose to cell nuclei at brachytherapy photon energies.

    PubMed

    Enger, Shirin A; Ahnesjö, Anders; Verhaegen, Frank; Beaulieu, Luc

    2012-07-21

    It has been suggested that modern dose calculation algorithms should be able to report absorbed dose both as dose to the local medium, D(m,m,) and as dose to a water cavity embedded in the medium, D(w,m), using conversion factors from cavity theory. Assuming that the cell nucleus with its DNA content is the most important target for biological response, the aim of this study is to investigate, by means of Monte Carlo (MC) simulations, the relationship of the dose to a cell nucleus in a medium, D(n,m,) to D(m,m) and D(w,m), for different combinations of cell nucleus compositions and tissue media for different photon energies used in brachytherapy. As D(n,m) is very impractical to calculate directly for routine treatment planning, while D(m,m) and D(w,m) are much easier to obtain, the questions arise which one of these quantities is the best surrogate for D(n,m) and which cavity theory assumptions should one use for its estimate. The Geant4.9.4 MC code was used to calculate D(m,m,) D(w,m) and D(n,m) for photon energies from 20 (representing the lower energy end of brachytherapy for ¹⁰³Pd or ¹²⁵I) to 300 keV (close to the mean energy of (¹⁹²Ir) and for the tissue media adipose, breast, prostate and muscle. To simulate the cell and its nucleus, concentric spherical cavities were placed inside a cubic phantom (10 × 10 × 10 mm³). The diameter of the simulated nuclei was set to 14 µm. For each tissue medium, three different setups were simulated; (a) D(n,m) was calculated with nuclei embedded in tissues (MC-D(n,m)). Four different published elemental compositions of cell nuclei were used. (b) D(w,m) was calculated with MC (MC-D(w,m)) and compared with large cavity theory calculated D(w,m) (LCT-D(w,m)), and small cavity theory calculated D(w,m) (SCT-D(w,m)). (c) D(m,m) was calculated with MC (MC-D(m,m)). MC-D(w,m) is a good substitute for MC-D(n,m) for all photon energies and for all simulated nucleus compositions and tissue types. SCT-D(w,m) can be used

  4. The calorimeter of the Mu2e experiment at Fermilab

    DOE PAGES

    Atanov, N.; Baranov, V.; Budagov, J.; ...

    2017-01-23

    Here, the Mu2e experiment at Fermilab looks for Charged Lepton Flavor Violation (CLFV) improving by 4 orders of magnitude the current experimental sensitivity for the muon to electron conversion in a muonic atom. A positive signal could not be explained in the framework of the current Standard Model of particle interactions and therefore would be a clear indication of new physics. In 3 years of data taking, Mu2e is expected to observe less than one background event mimicking the electron coming from muon conversion. Achieving such a level of background suppression requires a deep knowledge of the experimental apparatus: amore » straw tube tracker, measuring the electron momentum and time, a cosmic ray veto system rejecting most of cosmic ray background and a pure CsI crystal calorimeter, that will measure time of flight, energy and impact position of the converted electron. The calorimeter has to operate in a harsh radiation environment, in a 10-4 Torr vacuum and inside a 1 T magnetic field. The results of the first qualification tests of the calorimeter components are reported together with the energy and time performances expected from the simulation and measured in beam tests of a small scale prototype.« less

  5. Field measurements in the Fermilab electron cooling solenoid prototype

    SciTech Connect

    A. C. Crawford et al.

    2003-10-02

    To increase the Tevatron luminosity, Fermilab is developing a high-energy electron cooling system [1] to cool 8.9-GeV/c antiprotons in the Recycler ring. The schematic layout of the Recycler Electron Cooling (REC) system is shown in Figure 1. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through a cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 10{sup -4} rad, the cooling section will be immersed into a solenoidal field of 50-150G. As part of the R&D effort, a cooling section prototype consisting of 9 modules (90% of the total length of a future section) was assembled and measured. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of solenoid prototype field measurements. The design of the cooling section solenoid is discussed in Chapter 2. Chapter 3 describes details of a dedicated measurement system, capable of measuring small transverse field components, while the system's measurement errors are analyzed in Chapter 4. Chapter 5 contains measured field distributions of individual elements of the cooling section as well as an evaluation of the magnetic shielding efficiency. An algorithm of field adjustments for providing lowest possible electron trajectory perturbations is proposed in Chapter 6; also, this chapter shows the results of our first attempts of implementing the algorithm.

  6. The calorimeter of the Mu2e experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Atanov, N.; Baranov, V.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Dané, E.; Davydov, Y. I.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Flood, K.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D. G.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pezzullo, G.; Porter, F.; Raffaelli, F.; Radicioni, T.; Ricci, M.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Tereshchenko, V.; Usubov, Z.; Zhu, R. Y.

    2017-01-01

    The Mu2e experiment at Fermilab looks for Charged Lepton Flavor Violation (CLFV) improving by 4 orders of magnitude the current experimental sensitivity for the muon to electron conversion in a muonic atom. A positive signal could not be explained in the framework of the current Standard Model of particle interactions and therefore would be a clear indication of new physics. In 3 years of data taking, Mu2e is expected to observe less than one background event mimicking the electron coming from muon conversion. Achieving such a level of background suppression requires a deep knowledge of the experimental apparatus: a straw tube tracker, measuring the electron momentum and time, a cosmic ray veto system rejecting most of cosmic ray background and a pure CsI crystal calorimeter, that will measure time of flight, energy and impact position of the converted electron. The calorimeter has to operate in a harsh radiation environment, in a 10-4 Torr vacuum and inside a 1 T magnetic field. The results of the first qualification tests of the calorimeter components are reported together with the energy and time performances expected from the simulation and measured in beam tests of a small scale prototype.

  7. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    SciTech Connect

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.

  8. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE PAGES

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; ...

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  9. Ground-state energies and charge radii of medium-mass nuclei in the unitary-model-operator approach

    NASA Astrophysics Data System (ADS)

    Miyagi, Takayuki; Abe, Takashi; Okamoto, Ryoji; Otsuka, Takaharu

    2014-09-01

    In nuclear structure theory, one of the most fundamental problems is to understand the nuclear structure based on nuclear forces. This attempt has been enabled due to the progress of the computational power and nuclear many-body approaches. However, it is difficult to apply the first-principle methods to medium-mass region, because calculations demand the huge model space as increasing the number of nucleons. The unitary-model-operator approach (UMOA) is one of the methods which can be applied to medium-mass nuclei. The essential point of the UMOA is to construct the effective Hamiltonian which does not induce the two-particle-two-hole excitations. A many-body problem is reduced to the two-body subsystem problem in an entire many-body system with the two-body effective interaction and one-body potential determined self-consistently. In this presentation, we will report the numerical results of ground-state energies and charge radii of 16O, 40Ca, and 56Ni in the UMOA, and discuss the saturation property by comparing our results with those in the other many-body methods and also experimental data. In nuclear structure theory, one of the most fundamental problems is to understand the nuclear structure based on nuclear forces. This attempt has been enabled due to the progress of the computational power and nuclear many-body approaches. However, it is difficult to apply the first-principle methods to medium-mass region, because calculations demand the huge model space as increasing the number of nucleons. The unitary-model-operator approach (UMOA) is one of the methods which can be applied to medium-mass nuclei. The essential point of the UMOA is to construct the effective Hamiltonian which does not induce the two-particle-two-hole excitations. A many-body problem is reduced to the two-body subsystem problem in an entire many-body system with the two-body effective interaction and one-body potential determined self-consistently. In this presentation, we will report the

  10. Enhanced performances for top-emitting white organic light-emitting diodes by utilizing green phosphor as energy transfer medium

    NASA Astrophysics Data System (ADS)

    Deng, Lingling; Bao, Yiyang; Zhang, Yanan; Peng, Ling; Zhu, Wenjing; Zhao, Yue; Xu, Yewen; Chen, Shufen

    2016-06-01

    In top-emitting white organic light-emitting diodes (TWOLEDs), the device performances attribute to the several important factors, such as exciton profile, energy transfer, and microcavity effect. In this paper, a TWOLED containing a heterojunction blue emission layer (EML) and a red EML is reported. A host material with high triplet energy level is employed for the adjacent blue and red EML, while the inefficient red emission reduces the emission efficiency of the TWOLED. In order to enhance the red emission efficiency, mixed-host and co-doping technologies are used in the red EML. By mixing the hole transporting and electron transporting host materials, the exciton recombination zone extends to the red EML to increase the red emission intensity and reduce the efficiency roll-off. And by co-doping a green phosphor into the red EML as the energy transfer medium, the energy transfer rate is enhanced, and then the current efficiency increases. Besides, both the mixed-host and co-doping change the carrier transport and the exciton recombination zone, which further affects the microcavity resonance in the devices. Due to the enhancement on the red emission intensity and the shift of resonant wavelength, the chromaticity of the TWOLED is improved.

  11. The ZOOM Fermilab physics class libraries

    SciTech Connect

    Mark Fischler, Walter Brown, Philippe Canal and John Marraffino

    1998-11-01

    Several years ago, the two major collider experiments at Fermilab (D and CDF) decided that new software development for Run II will be largely done in C++. The run is slated to start in 1.5 years, an aggressive time frame for a major change in development language and style. If despite the transition each experiment (and sometimes multiple groups within an experiment) were to develop each needed mod- ule, the C++ strategy would not be advantageous. Thus it was deemed useful to have a library development group speci cally responsive to Run II needs. This Fer- milab Physics Class Library Task Force (ZOOM) would also expand the core of C++ expertise available for Fermilab physicists to draw upon. C++ di ers from Fortran in that the for common use of routines and libraries is greater. But this potential is not realized automatically. Unless coordina- tion issues are considered from the start, utilities produced by one group generally do mot meet the needs of other groups|and each group ends up creating independant software. To help increase code sharing, the centralized ZOOM task force must: Actively pursue outside (commercial and free-ware) packages. If ZOOM can verify that package X meets some needs in a sensible manner, then people can gravitate to that and not expend valuable development time. Act as a core for joint develpment of packages needed by both experiments. Develop relevant packages of su ciently high quality as to overcome the natu- ral reluctance of highly skilled physicists to rely on code developed by others. This means more extensive design thought and testing work than might be practical for some groups. Participate in cooperation with HEP groups outside the FNAL community, to acquire tools suitable for the Fermilab e orts. Of particular concern are areas where standardization is important, and thus a single product is more valuable than two, even discounting any savings in e ort. We must bring the ability to contribute some packages and the

  12. Energy efficient medium access protocol for wireless medical body area sensor networks.

    PubMed

    Omeni, O; Wong, A; Burdett, A J; Toumazou, C

    2008-12-01

    This paper presents a novel energy-efficient MAC Protocol designed specifically for wireless body area sensor networks (WBASN) focused towards pervasive healthcare applications. Wireless body area networks consist of wireless sensor nodes attached to the human body to monitor vital signs such as body temperature, activity or heart-rate. The network adopts a master-slave architecture, where the body-worn slave node periodically sends sensor readings to a central master node. Unlike traditional peer-to-peer wireless sensor networks, the nodes in this biomedical WBASN are not deployed in an ad hoc fashion. Joining a network is centrally managed and all communications are single-hop. To reduce energy consumption, all the sensor nodes are in standby or sleep mode until the centrally assigned time slot. Once a node has joined a network, there is no possibility of collision within a cluster as all communication is initiated by the central node and is addressed uniquely to a slave node. To avoid collisions with nearby transmitters, a clear channel assessment algorithm based on standard listen-before-transmit (LBT) is used. To handle time slot overlaps, the novel concept of a wakeup fallback time is introduced. Using single-hop communication and centrally controlled sleep/wakeup times leads to significant energy reductions for this application compared to more ldquoflexiblerdquo network MAC protocols such as 802.11 or Zigbee. As duty cycle is reduced, the overall power consumption approaches the standby power. The protocol is implemented in hardware as part of the Sensiumtrade system-on-chip WBASN ASIC, in a 0.13- mum CMOS process.

  13. Two-loop self-energy for the ground state of medium-Z hydrogenlike ions

    SciTech Connect

    Yerokhin, V. A.

    2009-10-15

    The two-loop self-energy correction to the ground-state Lamb shift is calculated for hydrogenlike ions with the nuclear charge Z=10-30 without any expansion in the binding field of the nucleus. A calculational technique is reported for treatment of Feynman diagrams in the mixed coordinate-momentum representation, which yields significant improvement in numerical accuracy as compared to previous results. An extrapolation of the all-order numerical data yields a result for the higher-order remainder function for hydrogen. The previously reported disagreement between the all-order and the perturbative approaches is reduced to the marginal agreement.

  14. A comparison of methods for determining neutron detector efficiencies at medium energies

    NASA Astrophysics Data System (ADS)

    Watson, J. W.; Anderson, B. D.; Baldwin, A. R.; Lebo, C.; Flanders, B.; Pairsuwan, W.; Madey, R.; Foster, C. C.

    1983-10-01

    We compare the "Lithium Activation" (LiA) method and the "Isospin Clebsch-Gordan Ratio" (ICGR) method for determining detection efficiencies of neutrons between 100 and 160 MeV. Each method was used to determine the efficiency by relating a measured neutron yield to a cross section measured in another way: γ-ray activation cross sections for LiA; (p, p') cross sections from experiments at the Indiana University Cyclotron Facility for ICGR. Efficiencies determined by the two methods disagree substantially. Efficiencies calculated with the Monte Carlo code of Cecil et al. agree with the ICGR results. We conclude that the Lithium Activation method is inconsistent at these energies.

  15. Fermilab's Proton Accelerator Complex : World Record Performance and Upgrade Plans

    NASA Astrophysics Data System (ADS)

    Shiltsev, Vladimir

    2017-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  16. The Fermilab ISDN Pilot Project: Experiences and future plans

    SciTech Connect

    Martin, D.E.; Lego, A.J.; Clifford, A.E.

    1995-12-31

    Fully operational in June of 1994, the Fermilab ISDN Pilot Project was started to gain insight into the costs and benefits of providing ISDN service to the homes of Fermilab researchers. Fourteen users were chosen from throughout Fermilab, but the number of Fermilab-employed spouses pushed the total user count to 20. Each home was equipped with a basic rate ISDN (BRI) line, a BRI Ethernet half-bridge, and an NT-1. An inter-departmental team coordinated the project. Usage at each home was tracked and frequent surveys were attempted. Lessons learned include: working with Ameritech can be difficult; careful monitoring is essential; and configuration of home computing equipment is very time consuming. Plans include moving entirely to primary rate ISDN hubs, support for different home ISDN equipment and better usage and performance tracking.

  17. Power tests of the Fermilab Lithium Lens for antiproton collection

    SciTech Connect

    Biallas, G.; Dugan, G.; Hangst, J.; Hanson, R.; Hojvat, C.; Lange, F.; Lennox, A.J.; McCarthy, J.

    1983-08-01

    A prototpye Lithium Lens to be used for the collection of antiprotons in the Fermilab Tevatron I project has been constructed. Some of the fabrication details, the procedure for lithium filling and the results of the initial operation are discussed.

  18. A Radiation shielding study for the Fermilab Linac

    SciTech Connect

    Rakhno, I.; Johnstone, C.; /Fermilab

    2006-02-01

    Radiation shielding calculations are performed for the Fermilab Linac enclosure and gallery. The predicted dose rates around the access labyrinth at normal operation and a comparison to measured dose rates are presented. An accident scenario is considered as well.

  19. Hyperon polarization, crystal channeling, and E781 at Fermilab

    SciTech Connect

    Lach, J.

    1994-01-01

    Early experiments at Fermilab observed significant polarization of inclusively produced hyperons. these and subsequent experiments showed that {Lambda}{degree} were produced polarized while {bar {Lambda}}{degree} had no polarization in the same kinematical region. Other hyperons and antihyperons were also seen to be polarized. Recent Fermilab experiments have showed this to be a rich and complex phenomena. Theoretical understanding is still lacking. Fermilab E761 has shown that bent single crystals can be used to process the polarization of hyperons and from the precession angle measure the hyperon`s magnetic moment. This opens the possibility of measuring the magnetic moments of charmed baryons. Finally, I will briefly discuss Fermilab E781, an experiment designed to study charmed particle production by {Sigma} {sup {minus}} hyperons.

  20. A review of the Fermilab fixed-target program

    SciTech Connect

    Rameika, R.

    1994-12-01

    All eyes are now on the Fermilab collider program as the intense search for the top quark continues. Nevertheless, Fermilab`s long tradition of operating a strong, diverse physics program depends not only on collider physics but also on effective use of the facilities the Laboratory was founded on, the fixed-target beamlines. In this talk the author presents highlights of the Fermilab fixed-target program from its (not too distant) past, (soon to be) present, and (hopefully, not too distant) future program. The author concentrates on those experiments which are unique to the fixed-target program, in particular hadron structure measurements which use the varied beams and targets available in this mode and the physics results from kaon, hyperon and high statistics charm experiments which are not easily accessible in high p{sub T} hadron collider detectors.

  1. Electrification pathways for Kenya–linking spatial electrification analysis and medium to long term energy planning

    NASA Astrophysics Data System (ADS)

    Moksnes, Nandi; Korkovelos, Alexandros; Mentis, Dimitrios; Howells, Mark

    2017-09-01

    In September 2015 UN announced 17 Sustainable Development goals (SDG) from which goal number 7 envisions universal access to modern energy services for all by 2030. In Kenya only about 46% of the population currently has access to electricity. This paper analyses hypothetical scenarios, and selected implications, investigating pathways that would allow the country to reach its electrification targets by 2030. Two modelling tools were used for the purposes of this study, namely OnSSET and OSeMOSYS. The tools were soft-linked in order to capture both the spatial and temporal dynamics of their nature. Two electricity demand scenarios were developed representing low and high end user consumption goals respectively. Indicatively, results show that geothermal, coal, hydro and natural gas would consist the optimal energy mix for the centralized national grid. However, in the case of the low demand scenario a high penetration of stand-alone systems is evident in the country, reaching out to approximately 47% of the electrified population. Increasing end user consumption leads to a shift in the optimal technology mix, with higher penetration of mini-grid technologies and grid extension.

  2. Dissociative ionization of the H 2O molecule induced by medium-energy singly charged projectiles

    NASA Astrophysics Data System (ADS)

    Kovács, S. T. S.; Herczku, P.; Juhász, Z.; Sarkadi, L.; Gulyás, L.; Sulik, B.

    2017-09-01

    We report on the fragmentation of the water molecule by 1 MeV H+ and He+ and 650 keV N+ ion impact. The fragment-ion energy spectra were measured by an electrostatic spectrometer at different observation angles. The obtained double-differential fragmentation cross sections for N+ are found to be more than an order of magnitude higher than that for H+. The relative ratios of the fragmentation channels are also different for the three projectiles. Additional fragmentation channels were observed in the spectra for He+ and for N+ impact, which are missing in the case of H+. From the analysis of the kinetic energy of the fragments, the maximum observed degree of ionization was found to be qmax=3 , 4, and 5 for H + , He + , and N + impact, respectively. Absolute multiple-ionization cross sections have been determined. They are compared with the predictions of the classical trajectory Monte Carlo and continuum-distorted-wave eikonal-initial-state theories. At lower degrees of ionization, theories provide reasonable agreement with experiment. The systematic overestimation of the cross section by the theories towards higher degrees of ionization indicates the failure of the independent particle model.

  3. Integrated FASTBUS, VME and CAMAC diagnostic software at Fermilab

    SciTech Connect

    Anderson, J.; Forster, R.; Franzen, J.; Wilcer, N.

    1992-10-01

    A fully integrated system for the diagnosis and repair of data acquisition hardware in FASTBUS, VME and CAMAC is described. A short cost/benefit analysis of using a distributed network of personal computers for diagnosis is presented. The SPUDS (Single Platform Uniting Diagnostic Software) software package developed at Fermilab by the authors is introduced. Examples of how SPUDS is currently used in the Fermilab equipment repair facility, as an evaluation tool and for field diagnostics are given.

  4. Jet production in muon scattering at Fermilab E665

    SciTech Connect

    Salgado, C.W.; E665 Collaboration

    1993-11-01

    Measurements of multi-jet production rates from Muon-Nucleon and Muon-Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Nucleon deep-inelastic scattering are compared to Monte Carlo model predictions. Preliminary results from jet production on heavy targets, in the shadowing region, show a higher suppression of two-forward jets as compared to one-forward jet production.

  5. Simulations and Measurements of Stopbands in the Fermilab Recycler

    SciTech Connect

    Ainsworth, Robert; Adamson, Philip; Hazelwood, Kyle; Kourbanis, Ioanis; Stern, Eric

    2016-06-01

    Fermilab has recently completed an upgrade to the complex with the goal of delivering 700 kW of beam power as 120 GeV protons to the NuMI target. A major part of boosting beam power is to use the Fermilab Recycler to stack protons. Simulations focusing on the betatron resonance stopbands are presented taking into account different effects such as intensity and chromaticity. Simulations are compared with measurements.

  6. Operations aspects of the Fermilab Central Helium Liquefier Facility

    SciTech Connect

    Geynisman, M.G.; Makara, J.N.

    1995-03-01

    The Fermilab Central Helium Liquefier (CHL) facility consists of helium and nitrogen reliquefier plants operated 24 hours-a-day to supply LHe at 4.6{degrees}K and LN{sub 2} for the Fermilab Tevatron superconducting proton-antiproton collider ring and to recover warm return gases. Operating aspects of CHL, including different equipment and systems reliability, availability, maintenance experience, safety concerns, and economics aspects are discussed.

  7. Integrated FASTBUS, VME and CAMAC diagnostic software at Fermilab

    SciTech Connect

    Anderson, J.; Forster, R.; Franzen, J.; Wilcer, N.

    1992-10-01

    A fully integrated system for the diagnosis and repair of data acquisition hardware in FASTBUS, VME and CAMAC is described. A short cost/benefit analysis of using a distributed network of personal computers for diagnosis is presented. The SPUDS (Single Platform Uniting Diagnostic Software) software package developed at Fermilab by the authors is introduced. Examples of how SPUDS is currently used in the Fermilab equipment repair facility, as an evaluation tool and for field diagnostics are given.

  8. Characterization of desert sand as a sensible thermal energy storage medium

    NASA Astrophysics Data System (ADS)

    Diago, Miguel; Iniesta, Alberto Crespo; Delclos, Thomas; Soum-Glaude, Audrey; Shamim, Tariq; Calvet, Nicolas

    2016-05-01

    Desert sand from the United Arab Emirates (UAE) is considered as a possible sensible heat, thermal energy storage (TES) material. Its thermal stability, specific heat capacity and tendency to agglomerate are studied at high temperatures. The analyses show that it is possible to use desert sand as a TES material up to 800-1000 °C. Above 800 °C, weak agglomeration effects start to become significant. The samples become solid above 1000 °C. This may represent a major operating limit depending on the handling mechanism in place for the possible transport of the sand. The sand chemical composition is analyzed with the XRF and XRD techniques, which reveal the dominance of quartz and carbonates. Finally, the spectral absorptivity of the samples is measured before and after a thermal cycle, as it may be possible to use the desert sand not only as a TES material but also as a direct solar absorber.

  9. Theoretical aspects of electroweak and other interactions in medium energy physics

    SciTech Connect

    Mukhopadhyay, N.C.

    1990-11-01

    The project, supported by the Department of Energy grant, deals with the theory of electroweak and other interactions of nucleons and nuclei, with emphasis on the electromagnetic production of mesons, and the theory of hadron structure inspired by quantum chromodynamics. On these topics, twenty-seven papers and other scientific communications have been completed during the current project period, April 1988 to present, including a number of invited papers presented at international meetings and workshops. One student has got his Ph.D. degree, and two working toward it; the latter have been rewarded by the organizers of the PANIC-XII Conference at MIT (June 1990) with financial support to present their papers A DEC-3100 workstation has been installed for the dedicated use of this project, and it has been upgraded with additional funding from Rensselaer and Digital Equipment Corporation. A new research collaboration with Professor F. Iachello, a theorist from Yale University has been started.

  10. Theoretical aspects of electroweak and other interactions in medium energy physics

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Nimai C.

    1990-11-01

    The project, supported by the Department of Energy grant, deals with the theory of electroweak and other interactions of nucleons and nuclei, with emphasis on the electromagnetic production of mesons, and the theory of hadron structure inspired by quantum chromodynamics. On these topics, twenty-seven papers and other scientific communications have been completed during the current project period, April 1988 to present, including a number of invited papers presented at international meetings and workshops. One student has got his Ph.D. degree, and two working toward it; the latter have been rewarded by the organizers of the PANIC-XII Conference at MIT (June 1990) with financial support to present their papers. A DEC-3100 workstation has been installed for the dedicated use of this project, and it has been upgraded with additional funding from Rensselaer and Digital Equipment Corporation. A new research collaboration with Professor F. Iachello, a theorist from Yale University has been started.

  11. Magnesium fluoride as energy storage medium for spacecraft solar thermal power systems

    NASA Technical Reports Server (NTRS)

    Lurio, Charles A.

    1992-01-01

    MgF2 was investigated as a phase-change energy-storage material for LEO power systems using solar heat to run thermal cycles. It provides a high heat of fusion per unit mass at a high melting point (1536 K). Theoretical evaluation showed the basic chemical compatibility of liquid MgF2 with refractory metals at 1600 K, though transient high pressures of H2 can occur in a closed container due to reaction with residual moisture. The compatibility was tested in two refractory metal containers for over 2000 h. Some showed no deterioration, while there was evidence that the fluoride reacted with hafnium in others. Corollary tests showed that the MgF2 supercooled by 10-30 K and 50-90 K.

  12. Medium and high-energy neutrino physics from a lunar base

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    1990-01-01

    Neutrino astronomy at high energy levels conducted from the moon is treated by considering 'particle astronomy' as a part of physics and the moon as a neutrino detector. The ability to observe the Galactic center is described by means of a 1-1000 TeV 'window' related to the drop in flux of atmospheric neutrinos from the earth. The long-baseline particle physics which are described in terms of a lunar observatory are found to be possible exclusively from a lunar station. The earth's neutrinos can be eliminated for the observations of astrophysical sources, and other potential areas of investigation include neutrino oscillation and the moon's interior. Neutrino exploration of the earth-moon and antineutrino radionuclide imaging are also considered. The moon is concluded to be a significantly more effective orbital platform for the study of neutrino physics than orbiting satellites developed on earth.

  13. Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?

    DOE PAGES

    Aarts, G.; Aichelin, J.; Allton, C.; ...

    2017-05-16

    Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Some recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, which was held in October 2016 in Leiden, The Netherlands. Here, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profoundmore » knowledge of the dynamical properties of the quark-gluon plasma.« less

  14. Medium and high-energy neutrino physics from a lunar base

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    1990-01-01

    Neutrino astronomy at high energy levels conducted from the moon is treated by considering 'particle astronomy' as a part of physics and the moon as a neutrino detector. The ability to observe the Galactic center is described by means of a 1-1000 TeV 'window' related to the drop in flux of atmospheric neutrinos from the earth. The long-baseline particle physics which are described in terms of a lunar observatory are found to be possible exclusively from a lunar station. The earth's neutrinos can be eliminated for the observations of astrophysical sources, and other potential areas of investigation include neutrino oscillation and the moon's interior. Neutrino exploration of the earth-moon and antineutrino radionuclide imaging are also considered. The moon is concluded to be a significantly more effective orbital platform for the study of neutrino physics than orbiting satellites developed on earth.

  15. Low and medium energy deuteron-induced reactions on {sup 63,65}Cu nuclei

    SciTech Connect

    Simeckova, E.; Bem, P.; Honusek, M.; Stefanik, M.; Fischer, U.; Simakov, S. P.; Forrest, R. A.; Koning, A. J.; Sublet, J.-C.; Avrigeanu, M.; Roman, F. L.; Avrigeanu, V.

    2011-07-15

    The activation cross sections of (d,p), (d,2n), (d,3n), and (d,2p) reactions on {sup 63,65}Cu were measured in the energy range from 4 to 20 MeV using the stacked-foil technique. Then, following the available elastic-scattering data analysis that provided the optical potential for reaction cross-section calculations, an increased effort was devoted to the breakup mechanism, direct reaction stripping, and pre-equilibrium and compound-nucleus cross-section calculations, corrected for the breakup and stripping decrease of the total reaction cross section. The overall agreement between the measured and calculated deuteron activation cross sections proves the correctness of the nuclear mechanism account, next to the simultaneous analysis of the elastic-scattering and reaction data.

  16. Measurement of Electromagnetic Energy Flow Through a Sparse Particulate Medium: A Perspective

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    2013-01-01

    First-principle analysis of the functional design of a well-collimated radiometer (WCR) reveals that in general, this instrument does not record the instantaneous directional flow of electromagnetic energy. Only in special cases can a sequence of measurements with a WCR yield the magnitude and direction of the local time-averaged Poynting vector. Our analysis demonstrates that it is imperative to clearly formulate the physical nature of the actual measurement afforded by a directional radiometer rather than presume desirable measurement capabilities. Only then can the directional radiometer be considered a legitimate part of physically based remote sensing and radiation-budget applications. We also emphasize the need for a better understanding of the nature of measurements with panoramic radiometers.

  17. Heavy-flavor production and medium properties in high-energy nuclear collisions -What next?

    NASA Astrophysics Data System (ADS)

    Aarts, G.; Aichelin, J.; Allton, C.; Arnaldi, R.; Bass, S. A.; Bedda, C.; Brambilla, N.; Bratkovskaya, E.; Braun-Munzinger, P.; Bruno, G. E.; Dahms, T.; Das, S. K.; Dembinski, H.; Djordjevic, M.; Ferreiro, E.; Frawley, A.; Gossiaux, P.-B.; Granier de Cassagnac, R.; Grelli, A.; He, M.; Horowitz, W. A.; Innocenti, G. M.; Jo, M.; Kaczmarek, O.; Kuijer, P. G.; Laine, M.; Lombardo, M. P.; Mischke, A.; Munhoz, M. G.; Nahrgang, M.; Nguyen, M.; Oliveira da Silva, A. C.; Petreczky, P.; Rothkopf, A.; Schmelling, M.; Scomparin, E.; Song, T.; Stachel, J.; Suaide, A. A. P.; Tolos, L.; Trzeciak, B.; Uras, A.; van Doremalen, L.; Vermunt, L.; Vigolo, S.; Xu, N.; Ye, Z.; Zanoli, H. J. C.; Zhuang, P.

    2017-05-01

    Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results from experiments and theoretical developments regarding open and hidden heavy-flavor dynamics have been debated at the Lorentz Workshop Tomography of the Quark-Gluon Plasma with Heavy Quarks, which was held in October 2016 in Leiden, The Netherlands. In this contribution, we summarize identified common understandings and developed strategies for the upcoming five years, which aim at achieving a profound knowledge of the dynamical properties of the quark-gluon plasma.

  18. Beam dynamics and error study of the medium energy beam transport line in the Korea Heavy-Ion Medical Accelerator

    NASA Astrophysics Data System (ADS)

    Kim, Chanmi; Kim, Eun-San; Hahn, Garam

    2016-11-01

    The Korea Heavy Ion Medical Accelerator consists of an injector and a synchrotron for an ion medical accelerator that is the first carbon-ion therapy system in Korea. The medium energy beam transport(MEBT) line connects the interdigital H-mode drift tube linac and the synchrotron. We investigated the beam conditions after the charge stripper by using the LISE++ and the SRIM codes. The beam was stripped from C4+ into C6+ by using the charge stripper. We investigated the performance of a de-buncher in optimizing the energy spread and the beam distribution in z-dW/W (direction of beam progress-beam and energy) phase. We obtained the results of the tracking simulation and the error analysis by using the TRACK code. Possible misalignments and rotations of the magnets were considered in the simulations. States of the beam were examined when errors occurred in the magnets by the applying analytic fringe field model in TRACK code. The condition for the beam orbit was optimized by using correctors and profile monitors to correct the orbit. In this paper, we focus on the beam dynamics and the error studies dedicated to the MEBT beam line and show the optimized beam parameters for the MEBT.

  19. Fermilab Main Injector Beam Position Monitor Upgrade

    NASA Astrophysics Data System (ADS)

    Banerjee, B.; Barker, W.; Bledsoe, S.; Boes, T.; Briegel, C.; Capista, D.; Deuerling, G.; Dysert, R.; Forster, R.; Foulkes, S.; Haynes, W.; Hendricks, B.; Kasza, T.; Kutschke, R.; Marchionni, A.; Olson, M.; Pavlicek, V.; Piccoli, L.; Prieto, P.; Rapisarda, S.; Saewert, A.; Van Bogaert, J.; Votava, M.; Webber, R.; Wendt, M.; Wilcer, N.; Wolbers, S.

    2006-11-01

    An upgrade of the Beam Position Monitor (BPM) signal processing and data acquisition system for the Fermilab Main Injector is described. The Main Injector is a fast cycling synchrotron that accelerates protons or antiprotons from 8 to 150 GeV, Each Main Injector cycle can have a totally different magnet ramp, RF frequency configuration, beam bunch structure, and injection/extraction pattern from the previous cycle. The new BPM system provides the capabilities and flexibility required by the dynamic and complex machine operations. The system offers measurement capability in the 2.5 MHz and 53 MHz channels to detect the range of bunch structures for protons and antiprotons in both wideband (turn-by-turn) and narrowband (closed-orbit) modes. The new BPM read-out system is based on the digital receiver concept and is highly configurable, allowing the signal processing of nearly all Main Injector beam conditions, including the detection of individual batches. An overview of the BPM system in the Main Injector operating environment, some technology details and first beam measurements are presented.

  20. Sonic helium detectors in the Fermilab Tevatron

    SciTech Connect

    Bossert, R.J.; /Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.