Science.gov

Sample records for fermilab tevatron proton-antiproton

  1. Physics at the Fermilab Tevatron Proton-Antiproton Collider

    SciTech Connect

    Geer, S.

    1994-08-01

    These lectures discuss a selection of QCD and Electroweak results from the CDF and D0 experiments at the Fermilab Tevatron Proton-Antiproton Collider. Results are presently based on data samples of about 20 pb{sup {minus}1} at a center-of-mass energy of 1.8 TeV. Results discussed include jet production, direct photon production, W mass and width measurements, the triboson coupling, and most exciting of all, evidence for top quark production.

  2. Search for (W/Z → jets) + γ Events in Proton-Antiproton Collisions at the Fermilab Tevatron

    SciTech Connect

    Bocci, Andrea

    2005-01-01

    We present a study of the p¯p → W(Z)γ → γq¯q process at the center-of-mass energy √s = 1.96 TeV using data collected by the Collider Detector at Fermilab. The analysis is based on the selection of low transverse momentum photons produced in association with at least two jets. A modification of an existing photon trigger was studied and implemented in the data acquisition system to enhance the sensitivity of this analysis. The data presented are from approximately 184 pb-1 of integrated luminosity collected by this new trigger. A preliminary event sample is obtained requiring a central photon with ET > 12 GeV and two jets with ET > 15 GeV. The corresponding efficiency is studied using a Monte Carlo simulation of the W(Z)γ → γq¯q based on Standard Model predictions. Monte Carlo estimation of the background is not necessary as it is measured from the data. A more advanced selection based on a Neural Network method improves the signal-to-noise ratio from 1/333 to 1/71, and further optimization of the dijet mass search region increases the ratio to its final value of 1/41. No evidence of a W/Z → q¯q peak in the dijet mass distribution is visible when the background contribution is subtracted. Using a fully Bayesian approach, the 95% confidence level upper limit on σ(p¯p → Wγ) x Β(W → q¯q) + σ(p¯p → Zγ) x Β(Z → q¯q) is calculated to be 54 pb, which is consistent with the Standard Model prediction of 20.5 pb.

  3. E710, Proton, Antiproton Elastic Scattering at Tevatron Energies

    NASA Astrophysics Data System (ADS)

    Sadr, Sasan

    Experiment E710, located at site E0 of the Tevatron collider at Fermilab, was conceived in order to measure pp elastic scattering. The measured parameters were: the total cross section sigma_{t }, the ratio of the real to the imaginary part of the forward scattering amplitude rho, the nuclear slope parameter B, the nuclear curvature parameter C, the total elastic cross section sigma _{el}, and the single diffractive cross section sigma_{sd} . These measurements were taken at center-of-mass energies of sqrt{s}=1.02 and 1.8 TeV.

  4. Tevatron physics

    SciTech Connect

    John Womersley

    2003-01-03

    These lectures form a personal, and not necessarily comprehensive, survey of physics at the Fermilab Tevatron proton-antiproton collider. They cover detectors, analysis issues, and physics prospects for the current Tevatron run.

  5. Data preservation at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Amerio, S.; Behari, S.; Boyd, J.; Brochmann, M.; Culbertson, R.; Diesburg, M.; Freeman, J.; Garren, L.; Greenlee, H.; Herner, K.; Illingworth, R.; Jayatilaka, B.; Jonckheere, A.; Li, Q.; Naymola, S.; Oleynik, G.; Sakumoto, W.; Varnes, E.; Vellidis, C.; Watts, G.; White, S.

    2017-04-01

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. These efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.

  6. Data preservation at the Fermilab Tevatron

    DOE PAGES

    Boyd, J.; Herner, K.; Jayatilaka, B.; ...

    2015-12-23

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in bothmore » software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.« less

  7. Data preservation at the Fermilab Tevatron

    DOE PAGES

    Amerio, S.; Behari, S.; Boyd, J.; ...

    2017-01-22

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards inmore » both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. Lastly, these efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.« less

  8. Data preservation at the Fermilab Tevatron

    SciTech Connect

    Boyd, J.; Herner, K.; Jayatilaka, B.; Roser, R.; Sakumoto, W.

    2015-12-23

    The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.

  9. W+ jets production at the Fermilab Tevatron

    SciTech Connect

    Dittmann, J.R.; CDF Collaboration; D0 Collaboration

    1997-05-01

    The production properties of jets in W events have been measured using {radical}s = 1.8 TeV pp collisions at the Fermilab Tevatron Collider. Experimental results from several CDF and D0 analyses are compared to leading-order and next-to-leading-order QCD predictions.

  10. Tevatron status

    SciTech Connect

    Dugan, G.

    1989-03-01

    The Fermilab Tevatron is both the world's highest energy accelerator system and first large-scale superconducting synchrotron. Since Tevatron commissioning in July 1983, the accelerator has operated in 1984, 1985 and 1987 with extracted beams of 800 GeV for three runs of fixed target physics, and in 1987, and 1988, with proton-antiproton colliding beams at 900 /times/ 900 GeV. This paper will focus on the collider operation of the Tevatron: its present status and the outlook for its longer-term future evolution. 18 refs., 3 figs., 2 tabs.

  11. Fixed target experiments at the Fermilab Tevatron

    SciTech Connect

    Gutierrez, Gaston; Reyes, Marco A.

    2014-11-10

    This paper presents a review of the study of Exclusive Central Production at a Center of Mass energy of √s = 40 GeV at the Fermilab Fixed Target program. In all reactions reviewed in this paper, protons with an energy of 800 GeV were extracted from the Tevatron accelerator at Fermilab and directed to a Liquid Hydrogen target. The states reviewed include π⁺π⁻, K⁰s K⁰s, K⁰s K±π, φφ and D. Partial Wave Analysis results will be presented on the light states but only the cross-section will be reviewed in the diffractive production of D.

  12. Fixed target experiments at the Fermilab Tevatron

    DOE PAGES

    Gutierrez, Gaston; Reyes, Marco A.

    2014-11-10

    This paper presents a review of the study of Exclusive Central Production at a Center of Mass energy of √s = 40 GeV at the Fermilab Fixed Target program. In all reactions reviewed in this paper, protons with an energy of 800 GeV were extracted from the Tevatron accelerator at Fermilab and directed to a Liquid Hydrogen target. The states reviewed include π⁺π⁻, K⁰s K⁰s, K⁰s K±π∓, φφ and D*±. Partial Wave Analysis results will be presented on the light states but only the cross-section will be reviewed in the diffractive production of D*±.

  13. Sonic helium detectors in the Fermilab Tevatron

    SciTech Connect

    Bossert, R.J.; /Fermilab

    2006-01-01

    In the Fermilab Tevatron cryogenic system there are many remotely located low-pressure plate relief valves that must vent large volumes of cold helium gas when magnet quenches occur. These valves can occasionally stick open or not reseat completely, resulting in a large helium loss. As such, the need exists for a detector to monitor the relief valve's discharge area for the presence of helium. Due to the quantity needed, cost is an important factor. A unit has been developed and built for this purpose that is quite inexpensive. Its operating principle is based on the speed of sound, where two closely matched tubes operate at their acoustic resonant frequency. When helium is introduced into one of these tubes, the resulting difference in acoustic time of flight is used to trigger an alarm. At present, there are 39 of these units installed and operating in the Tevatron. They have detected many minor and major helium leaks, and have also been found useful in detecting a rise in the helium background in the enclosed refrigerator buildings. This paper covers the construction, usage and operational experience gained with these units over the last several years.

  14. Top Quark Pair Production Cross Section at the Tevatron

    SciTech Connect

    Peters, Reinhild Yvonne

    2015-09-25

    The top quark, discovered in 1995 by the CDF and D0 collaborations at the Tevatron proton antiproton collider at Fermilab, has undergone intense studies in the last 20 years. Currently, CDF and D0 converge on their measurements of top-antitop quark production cross sections using the full Tevatron data sample. In these proceedings, the latest results on inclusive and differential measurements of top-antitop quark production cross sections at the Tevatron are reported.

  15. The W boson transverse momentum spectrum in proton-antiproton collisions at radical s = 1. 8 TeV

    SciTech Connect

    Winer, B.L.

    1991-02-01

    The Collider Detector at Fermilab (CDF) was used to measure the transverse momentum distribution of W boson produced in proton-antiproton collisions at the Tevatron collider. The W bosons were identified by the decay W {yields} e{nu}. The results are in good agreement with a next-to-leading order calculation. The cross section for W production with P{sub T} > 50 GeV/c is 423 {plus minus} 58 (stat.) {plus minus} 108 (sys.) pb. 58 refs., 53 figs., 16 tabs.

  16. Increasing the energy of the Fermilab Tevatron accelerator

    SciTech Connect

    Fuerst, J.D.; Theilacker, J.C.

    1994-07-01

    The superconducting Tevatron accelerator at Fermilab has reached its eleventh year of operation since being commissioned in 1983. Last summer, four significant upgrades to the cryogenic system became operational which allow Tevatron operation at higher energy. This came after many years of R&D, power testing in sectors (one sixth) of the Tevatron, and final system installation. The improvements include the addition of cold helium vapor compressors, supporting hardware for subatmospheric operation, a new satellite refrigerator control system, and a higher capacity central helium liquefier. A description of each cryogenic upgrade, commissioning experience, and attempts to increase the energy of the Tevatron are presented.

  17. Recent results from the CDF (Collider Detector at Fermilab) experiment at the Tevatron proton-antiproton collider

    SciTech Connect

    Geer, S. . High Energy Physics Lab.)

    1989-09-01

    Recent results from the CDF experiment are described. The Standard Model gives a good description of jet production, and W/Z production and decay. There is no evidence yet for the top quark, for fourth generation quarks, or for deviations from the Standard Model ascribable to quark substructure, supersymmetric particles, or heavy additional W-like or Z-like bosons. Limits are given where applicable. A search for a light Higgs Boson is also described. 11 refs., 24 figs.

  18. Exclusive e+e-, di-photon and di-jet production at the Tevatron

    SciTech Connect

    Terashi, Koji; /Rockefeller U.

    2007-05-01

    Results from studies on exclusive production of electron-position pair, di-photon, and dijet production at CDF in proton-antiproton collisions at the Fermilab Tevatron are presented. THe first observation and cross section measurements of exclusive e{sup +}e{sup -} and di-jet production in hadron-hadron collisions are emphasized.

  19. Top Quark Mass Measurements at the Tevatron

    SciTech Connect

    Peters, Reinhild Yvonne

    2014-01-01

    Since the discovery of the top quark in 1995 by the CDF and D0 collaborations at the Fermilab Tevatron proton antiproton collider, precise measurements of its mass are ongoing. Using data recorded by the D0 and CDF experiment, corresponding to up to the full Tevatron data sample, top quark mass measurements performed in different final states using various extraction techniques are presented in this article. The recent Tevatron top quark mass combination yields m_t=173.20 +-0.87 GeV. Furthermore, measurements of the top antitop quark mass difference from the Tevatron are discussed.

  20. Recent Results of Top Quark Physics from the Tevatron

    SciTech Connect

    Peters, R. Y.

    2015-07-09

    Twenty years after its discovery in 1995 by the CDF and D0 collaborations at the Tevatron proton-antiproton collider at Fermilab, the top quark still undergoes intensive studies at the Tevatron and the LHC at CERN. In this article, recent top quark physics results from CDF and D0 are reported. In particular, measurements of single top quark and double top quark production, the $t\\bar{t}$ forward-backward asymmetry and the top quark mass are discussed.

  1. Channeling collimation studies at the Fermilab Tevatron

    SciTech Connect

    Carrigan, Richard A.; Drozhdin, Alexandr I.; Fliller, Raymond P., III; Mokhov, Nikolai V.; Shiltsev, Vladimir D.; Still, Dean A.; /Fermilab

    2006-08-01

    Bent crystal channeling has promising advantages for accelerator beam collimation at high energy hadron facilities such as the LHC. This significance has been amplified by several surprising developments including multi-pass channeling and the observation of enhanced deflections over the entire arc of a bent crystal. The second effect has been observed both at RHIC and recently at the Tevatron. Results are reported showing channeling collimation of the circulating proton beam halo at the Tevatron. Parenthetically, this study is the highest energy proton channeling experiment ever carried out. The study is continuing.

  2. Operations aspects of the Fermilab Central Helium Liquefier Facility

    SciTech Connect

    Geynisman, M.G.; Makara, J.N.

    1995-03-01

    The Fermilab Central Helium Liquefier (CHL) facility consists of helium and nitrogen reliquefier plants operated 24 hours-a-day to supply LHe at 4.6{degrees}K and LN{sub 2} for the Fermilab Tevatron superconducting proton-antiproton collider ring and to recover warm return gases. Operating aspects of CHL, including different equipment and systems reliability, availability, maintenance experience, safety concerns, and economics aspects are discussed.

  3. Fermilab Tevatron and Pbar source status report

    SciTech Connect

    Edwards, H.

    1986-08-01

    The antiproton production cycle is enumerated, and the commissioning of the antiproton source is described, giving milestones and major obstacles. The Tevatron collider operation is described, including procedure to load the Tevatron with three bunches of protons and three bunches of antiprotons. Commissioning of the Main Ring and Tevatron for collider operation is described. Development and accelerator studies in four areas were necessary: main ring RF manipulations; controls and applications software support; Tevatron storage and low-beta squeeze sequence; and study of various beam transfers, storage steps, and sequences. Final tests are described. A long range upgrade program is presently under evaluation to accomplish these goals: luminosity increase to 5 x 10/sup 31/ cm/sup -2/sec/sup -1/, production rates up to 4 x 10/sup 11/ antiprotons/hr, and intensity increase for fixed target operation. Beam quality is to be improved by the injector and main ring upgrades, and the luminosity goal is addressed by the Collider upgrade. (LEW)

  4. Study of substructure of high transverse momentum jets produced in proton-antiproton collisions at √s=1.96 TeV

    SciTech Connect

    Aaltonen, T.; Alon, R.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bauer, G.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Brisuda, A.; Bromberg, C.; Brucken, E.; Bucciantonio, M.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clarke, C.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; De Cecco, S.; De Lorenzo, G.; Dell’Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Devoto, F.; d’Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; D’Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Duchovni, E.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hidas, D.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirby, M.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Makhoul, K.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Perez, G.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Potamianos, K.; Poukhov, O.; Prokoshin, F.; Pronko, A.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rubbo, F.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sartori, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shreyber, I.; Simonenko, A.; Sinervo, P.; Sissakian, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Soha, A.; Somalwar, S.; Sorin, V.; Squillacioti, P.; Stancari, M.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tu, Y.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Wester, W. C.; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamaoka, J.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zucchelli, S.

    2012-05-03

    A study of the substructure of jets with transverse momentum greater than 400 GeV/c produced in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider and recorded by the CDF II detector is presented. The distributions of the jet mass, angularity, and planar flow are measured for the first time in a sample with an integrated luminosity of 5.95 fb⁻¹. The observed substructure for high mass jets is consistent with predictions from perturbative quantum chromodynamics.

  5. Diagnostics of the Fermilab Tevatron using an AC dipole

    SciTech Connect

    Miyamoto, Ryoichi

    2008-08-01

    The Fermilab Tevatron is currently the world's highest energy colliding beam facility. Its counter-rotating proton and antiproton beams collide at 2 TeV center-of-mass. Delivery of such intense beam fluxes to experiments has required improved knowledge of the Tevatron's beam optical lattice. An oscillating dipole magnet, referred to as an AC dipole, is one of such a tool to non-destructively assess the optical properties of the synchrotron. We discusses development of an AC dipole system for the Tevatron, a fast-oscillating (f ~ 20 kHz) dipole magnet which can be adiabatically turned on and off to establish sustained coherent oscillations of the beam particles without affecting the transverse emittance. By utilizing an existing magnet and a higher power audio amplifier, the cost of the Tevatron AC dipole system became relatively inexpensive. We discuss corrections which must be applied to the driven oscillation measurements to obtain the proper interpretation of beam optical parameters from AC dipole studies. After successful operations of the Tevatron AC dipole system, AC dipole systems, similar to that in the Tevatron, will be build for the CERN LHC. We present several measurements of linear optical parameters (beta function and phase advance) for the Tevatron, as well as studies of non-linear perturbations from sextupole and octupole elements.

  6. Vacuum control subsystem for the Fermilab Tevatron

    SciTech Connect

    Zagel, J.R.; Chapman, L.J.

    1981-06-01

    The CAMAC 170 module and CIA crate provide a convenient, cost effective method of interfacing any system requiring a large number of simple devices to be multiplexed into the Accelerator Control System. The system is ideal for relatively slowly changing systems where ten bit analog to digital conversions are sufficiently accurate. Together with vacuum interface CIA cards and prom-based software resident in the 170, this system is used to provide intelligent local monitoring and control for the Tevatron vacuum subsystems. Although not implemented in the vacuum interface, digital to analog converters could be included on the plug in modules as well, providing a total digital and analog multiplexing scheme. 2 refs.

  7. Fermilab Tevatron high level RF accelerating systems

    NASA Astrophysics Data System (ADS)

    Kerns, Q.; Kerns, C.; Miller, H.; Tawser, S.; Reid, J.; Webber, R.; Wildman, D.

    1985-06-01

    Eight tuned RF cavities have been installed and operated in the F0 straight section of the Tevatron. Their mechanical placement along the beam line enables them to be operated for colliding beams as two independent groups of four cavities, group 1-4 accelerating antiprotons and group 5-8 accelerating protons. The only difference is that the spacing between cavities 4 and 5 was increased to stay clear of the F0 colliding point. The cavities can easily be rephased by switching cables in a low-level distribution system (fan-out) so that the full accelerating capability of all eight cavities can be used during a fixed target operations. Likewise, the cables from capacitive probes on each cavity gap can be switched to proper lengths and summed in a fan-back system to give an RF signal representing the amplitude and phase as seen by the beam separately for protons and antiprotons. Such signals have been used to phase lock the Tevatron to the Main Ring for synchronous transfer.

  8. Review of recent Tevatron operations

    SciTech Connect

    Moore, R.S.; /Fermilab

    2007-06-01

    Fermilab's Tevatron proton-antiproton collider continues to improve its luminosity performance at the energy frontier {radical}s = 1.96 TeV. The recent Tevatron operation will be reviewed and notable tasks leading to advancements will be highlighted. The topics to be covered include: work performed during the 14-week shutdown in 2006, improved helical orbits, automatic orbit stabilization during high-energy physics (HEP) stores, optics corrections, improvements in the quench protection system, and avenues to maximizing the integrated luminosity delivered to the CDF and D0 experiments.

  9. Electroweak and B physics results from the Fermilab Tevatron Collider

    SciTech Connect

    Pitts, K.T.

    2001-01-30

    This writeup is an introduction to some of the experimental issues involved in performing electroweak and b physics measurements at the Fermilab Tevatron. In the electroweak sector, we discuss W and Z boson cross section measurements as well as the measurement of the mass of the W boson. For b physics, we discuss measurements of B{sup 0}/{bar B}{sup 0} mixing and CP violation. This paper is geared towards nonexperts who are interested in understanding some of the issues and motivations for these measurements and how the measurements are carried out.

  10. A simulation of modulational diffusion for the Fermilab Tevatron

    SciTech Connect

    Satogata, T. Fermi National Accelertor Laboratory, Batavia, Illinois 60510 ); Peggs, S. )

    1992-11-01

    A summary of the requirements for modulational (thick-layer) diffusion to exist in a particle synchrotron is presented and applied to a simple tune-modulated collider model of the Fermilab Tevatron where the only nonlinearities present are two beam-beam kicks. For certain realistic tune modulation parameters and single-particle base tunes, amplitude growth is observed over timescales appropriate to diffusive models. The character of this growth has qualitative features that are similar to those predicted by modulational diffusion models, but is significantly different in that the amplitude growth is exponential in time, not root-time as in classical diffusion. Some possible explanations for this effect are briefly noted, and impact of the possible existence of such a mechanism on future Fermilab collider upgrades is mentioned.

  11. A Search for the singlet-P state hc(11 P1) of charmonium in proton-antiproton annihilations at Fermilab experiment E835p

    SciTech Connect

    Joffe, David Noah

    2004-12-01

    The author presents the results of a search for the spin-singlet P-wave state hc(11 P1) of charmonium formed through proton-antiproton annihilation at Fermilab experiment E835. The decay channels which were studied were p$\\bar{p}$ → J/Ψ + X → e+e- + X, p$\\bar{p}$ → J/Ψ + π0 → e+e- + γγ, p$\\bar{p}$ → J/Ψ + π0π0 → e+e- + 4γ, and the neutral channel p$\\bar{p}$ → ηcγ → (γγ)γ. The decay p$\\bar{p}$ → J/Ψγ → e+e-γ, into which 1P1 decay is forbidden by C-parity conservation, was also examined for comparison. The 90% confidence upper limits for the decay channels studied in the mass range 3525.1-3527.3 MeV for a 1P1 resonance with a presumed width of 1.0 MeV were determined to be B(p$\\bar{p}$ → 1P1) x B(1P1 → J/Ψ + X) ≤ 1.8 x 10-7, B(p$\\bar{p}$ → 1P1) x B(1P1 → J/Ψ + π0) ≤ 1.2 x 10-7, and B(p$\\bar{p}$ → 1P1) x B(1P1 → J/Ψγ) ≤ 1.0 x 10-7. No evidence for a 1P1 enhancement was observed in either of the two additional reactions studied; p$\\bar{p}$ → J/Ψ + π0π0 → e+e- + 4γ and p$\\bar{p}$ → ηcγ → (γγ)γ.

  12. Selected Topics from Top Mass Measurements at the Tevatron

    SciTech Connect

    Schwienhorst, Reinhard

    2016-12-07

    The most recent results of the top-quark mass measurements at the Tevatron at Fermilab are presented. Data were collected in proton-antiproton collisions at sqrt{s}=1.96 TeV by the CDF and D0 experiments. Top quark mass measurements in the lepton+jets, dilepton and alljet final states as well as their combination and the extraction of the mass from the cross-section measurement are presented.

  13. Supersymmetry searches at the Collider Detector at Fermilab

    SciTech Connect

    D. Tsybychev

    2001-12-28

    This article presents the current experimental results of searches for Supersymmetry (SUSY) at the Collider Detector at Fermilab (CDF), using over 110 pb{sup -1} of proton-antiproton collision data with {radical}s = 1800 GeV collected during the period 1992-1995. Since no signal was found, limits on the production of supersymmetric particles are derived. The prospects for supersymmetry searches at Run II of the Tevatron, that began in March 2001, are also discussed here.

  14. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    DOE PAGES

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; ...

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transversemore » beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.« less

  15. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    SciTech Connect

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-16

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. Therefore, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics.

  16. Synchrotron radiation based beam diagnostics at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Thurman-Keup, R.; Cheung, H. W. K.; Hahn, A.; Hurh, P.; Lorman, E.; Lundberg, C.; Meyer, T.; Miller, D.; Pordes, S.; Valishev, A.

    2011-09-01

    Synchrotron radiation has been used for many years as a beam diagnostic at electron accelerators. It is not normally associated with proton accelerators as the intensity of the radiation is too weak to make detection practical. However, if one utilizes the radiation originating near the edge of a bending magnet, or from a short magnet, the rapidly changing magnetic field serves to enhance the wavelengths shorter than the cutoff wavelength, which for more recent high energy proton accelerators such as Fermilab's Tevatron, tends to be visible light. This paper discusses the implementation at the Tevatron of two devices. A transverse beam profile monitor images the synchrotron radiation coming from the proton and antiproton beams separately and provides profile data for each bunch. A second monitor measures the low-level intensity of beam in the abort gaps which poses a danger to both the accelerator's superconducting magnets and the silicon detectors of the high energy physics experiments. Comparisons of measurements from the profile monitor to measurements from the flying wire profile systems are presented as are a number of examples of the application of the profile and abort gap intensity measurements to the modelling of Tevatron beam dynamics. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  17. Search for quirks at the Fermilab Tevatron Collider

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; /Rio de Janeiro, CBPF /NIKHEF, Amsterdam

    2010-08-01

    We report results of a search for particles with anomalously high ionization in events with a high transverse energy jet and large missing transverse energy in 2.4 fb{sup -1} of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron p{bar p} collider. Production of such particles (quirks) is expected in scenarios with extra QCD-like SU(N) sectors, and this study is the first dedicated search for such signatures. We find no evidence of a signal and set a lower mass limit of 107 GeV for the mass of a charged quirk with strong dynamics scale {Lambda} in the range from 10 keV to 1 MeV.

  18. Correlations in bottom quark pair production at the Fermilab Tevatron

    SciTech Connect

    Galyardt, Jason Edward

    2009-01-01

    I present an analysis of b$\\bar{b}$ pair production correlations, using dimuon-triggered data collected with the Collider Detector at Fermilab (CDF) in p$\\bar{p}$ collisions at √s = 1.96 TeV during Run II of the TeVatron. The leading order (LO) and next-to-leading order (NLO) b quark production processes are discriminated by the angular and momentum correlations between the b{bar b} pair. Track-level jets containing a muon are classified by b quark content and used to estimate the momentum vector of the progenitor b quark. The theoretical distributions given by the MC@NLO event generator are tested against the data.

  19. A disoriented chiral condensate search at the Fermilab Tevatron

    SciTech Connect

    Convery, Mary Elizabeth

    1997-05-01

    MiniMax (Fermilab T-864) was a small test/experiment at the Tevatron designed to search for disoriented chiral condensates (DCC) in the forward direction. Relativistic quantum field theory treats the vacuum as a medium, with bulk properties characterized by long-range order parameters. This has led to suggestions that regions of "disoriented vacuum" might be formed in high-energy collision processes. In particular, the approximate chiral symmetry of QCD could lead to regions of vacuum which have chiral order parameters disoriented to directions which have non-zero isospin, i.e. disoriented chiral condensates. A signature of DCC is the resulting distribution of the fraction of produced pions which are neutral. The MiniMax detector at the C0 collision region of the Tevatron was a telescope of 24 multi-wire proportional chambers (MWPC`s) with a lead converter behind the eighth MWPC, allowing the detection of charged particles and photon conversions in an acceptance approximately a circle of radius 0.6 in pseudorapidity-azimuthal-angle space, centered on pseudorapidity η ≈ 4. An electromagnetic calorimeter was located behind the MWPC telescope, and hadronic calorimeters and scintillator were located in the upstream anti-proton direction to tag diffractive events.

  20. First Evidence of WW/WZ ---> l nu qq at the Tevatron

    SciTech Connect

    Haley, Joseph; /Princeton U.

    2009-07-01

    We present the first evidence from a hadron collider of WW + WZ production with semileptonic decays. The data were recorded by the D0 detector at the Fermilab Tevatron and correspond to 1.07 fb{sup -1} of integrated luminosity obtained in proton-antiproton collisions at {radical}s = 1.96 TeV. The cross section observed for WW + WZ production is 20.2 {+-} 4.5 pb with a significance of 4.4 standard deviations.

  1. Progress in Antiproton Production at the Fermilab Tevatron Collider

    SciTech Connect

    Pasquinelli, Ralph J.; Drendel, Brian; Gollwitzer, Keith; Johnson, Stan; Lebedev, Valeri; Leveling, Anthony; Morgan, James; Nagaslaev, Vladimir; Peterson, Dave; Sondgeroth, Alan; Werkema, Steve; /Fermilab

    2009-04-01

    Fermilab Collider Run II has been ongoing since 2001. During this time peak luminosities in the Tevatron have increased from approximately 10 x 10{sup 30} cm{sup -2}sec{sup -1} to 300 x 10{sup 30} cm{sup 02}sec{sup -1}. A major contributing factor in this remarkable performance is a greatly improved antiproton production capability. Since the beginning of Run II, the average antiproton accumulation rate has increased from 2 x 10{sup 10}{anti p}/hr to about 24 x 10{sup 10}{anti p}/hr. Peak antiproton stacking rates presently exceed 28 x 10{sup 10}{anti p}/hr. The antiproton stacking rate has nearly doubled since 2005. It is this recent progress that is the focus of this paper. The process of transferring antiprotons to the Recycler Ring for subsequent transfer to the collider has been significantly restructured and streamlined, yielding additional cycle time for antiproton production. Improvements to the target station have greatly increased the antiproton yield from the production target. The performance of the Antiproton Source stochastic cooling systems has been enhanced by upgrades to the cooling electronics, accelerator lattice optimization, and improved operating procedures. In this paper, we will briefly report on each of these modifications.

  2. Probing neutrino mass with displaced vertices at the Fermilab Tevatron

    SciTech Connect

    Campos, F. de; Eboli, O.J.P.; Magro, M.B.; Porod, W.; Restrepo, D.; Valle, J.W.F.

    2005-04-01

    Supersymmetric extensions of the standard model exhibiting bilinear R-parity violation can generate naturally the observed neutrino mass spectrum as well as mixings. One interesting feature of these scenarios is that the lightest supersymmetric particle (LSP) is unstable, with several of its decay properties predicted in terms of neutrino mixing angles. A smoking gun of this model in colliders is the presence of displaced vertices due to LSP decays in large parts of the parameter space. In this work we focus on the simplest model of this type that comes from minimal supergravity with universal R-parity conserving soft breaking of supersymmetry augmented with bilinear R-parity breaking terms at the electroweak scale (RmSUGRA). We evaluate the potential of the Fermilab Tevatron to probe the RmSUGRA parameters through the analysis of events possessing two displaced vertices stemming from LSP decays. We show that requiring two displaced vertices in the events leads to a reach in m{sub 1/2} twice the one in the usual multilepton signals in a large fraction of the parameter space.

  3. Studies of high-transverse momentum jet substructure and top quarks produced in 1.96 TeV proton-antiproton collisions

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Alon, R.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Duchovni, E.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Perez, G.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sinervo, P.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2015-02-01

    Results of a study of the substructure of the highest transverse momentum (pT) jets observed by the CDF Collaboration are presented. Events containing at least one jet with pT>400 GeV /c in a sample corresponding to an integrated luminosity of 5.95 fb-1 , collected in 1.96 TeV proton-antiproton collisions at the Fermilab Tevatron collider, are selected. A study of the jet mass, angularity, and planar-flow distributions is presented, and the measurements are compared with predictions of perturbative quantum chromodynamics. A search for boosted top-quark production is also described, leading to a 95% confidence level upper limit of 38 fb on the production cross section of top quarks with pT>400 GeV /c .

  4. Small t physics at the Tevatron Collider

    SciTech Connect

    Bertani, M.; Giacomalli, G.; Maleyran, R.; Manarin, A.; Amos, N.; DeSalvo, R.; Baker, W.; Ellsworth, R.; Dimitroyannis, D.; Block, M.

    1987-05-11

    The first physics run of the superconducting Tevatron Collider at Fermilab ended this morning. A status report will be presented on the progress of the small angle elastic scattering and total cross section experiment, E710. The goals of this experiment are to measure the total proton-antiproton cross section from ..sqrt..s = 300 to 2000 GeV, the slope of the diffraction peak and rho, the ratio of the real to imaginary part of the forward scattering amplitude, at these energies. 1 ref., 8 figs.

  5. Searching for SUSY at the Tevatron

    SciTech Connect

    Bortoletto, Daniela; /Purdue U.

    2004-12-01

    An overview of recent experimental searches for SUSY particles is presented. These searches are based on data collected by the CDF and the D0 experiments operating at the Fermilab Tevatron proton-antiproton collider with {radical}s = 1.96 TeV. The review focuses on searches for squarks and gluinos in final states with missing transverse energy and jets. Emphasis will be given to the search for the gluino decaying into a sbottom and b quark with each sbottom decaying into a b quark and a neutralino. This scenario yields events containing 4 b-jets and missing transverse energy.

  6. Recent QCD results from the Tevatron

    SciTech Connect

    Pickarz, Henryk; CDF and DO collaboration

    1997-02-01

    Recent QCD results from the CDF and D0 detectors at the Tevatron proton-antiproton collider are presented. An outlook for future QCD tests at the Tevatron collider is also breifly discussed. 27 refs., 11 figs.

  7. Diffractive Higgs boson production at the Fermilab Tevatron and the CERN Large Hadron Collider.

    PubMed

    Enberg, R; Ingelman, G; Kissavos, A; Tîmneanu, N

    2002-08-19

    Improved possibilities to find the Higgs boson in diffractive events, having less hadronic activity, depend on whether the cross section is large enough. Based on the soft color interaction models that successfully describe diffractive hard scattering at DESY HERA and the Fermilab Tevatron, we find that only a few diffractive Higgs events may be produced at the Tevatron, but we predict a substantial rate at the CERN Large Hadron Collider.

  8. Prospects for MSSM Higgs boson searches at the Fermilab Tevatron

    SciTech Connect

    Draper, Patrick; Liu, Tao; Wagner, Carlos E. M.

    2009-08-01

    We analyze the Tevatron reach for neutral Higgs bosons in the minimal supersymmetric standard model, using current exclusion limits on the standard model Higgs. We study four common benchmark scenarios for the soft supersymmetry-breaking parameters of the minimal supersymmetric standard model, including cases where the Higgs decays differ significantly from the standard model, and provide projections for the improvements in luminosity and efficiency required for the Tevatron to probe sizeable regions of the (m{sub A},tan{beta}) plane.

  9. Prospects for MSSM Higgs searches at the Fermilab Tevatron.

    SciTech Connect

    Draper, P.; Liu, T.; Wagner, C. E. M.; High Energy Physics; Univ. of Chicago

    2009-01-01

    We analyze the Tevatron reach for neutral Higgs bosons in the minimal supersymmetric standard model, using current exclusion limits on the standard model Higgs. We study four common benchmark scenarios for the soft supersymmetry-breaking parameters of the minimal supersymmetric standard model, including cases where the Higgs decays differ significantly from the standard model, and provide projections for the improvements in luminosity and efficiency required for the Tevatron to probe sizeable regions of the (m{sub A},tan-{beta}) plane.

  10. Proton-antiproton collider physics

    SciTech Connect

    Shochet, M.J.

    1995-07-01

    The 9th {anti p}p Workshop was held in Tsukuba, Japan in October, 1993. A number of important issues remained after that meeting: Does QCD adequately describe the large cross section observed by CDF for {gamma} production below 30 GeV? Do the CDF and D0 b-production cross sections agree? Will the Tevatron live up to its billing as a world-class b-physics facility? How small will the uncertainty in the W mass be? Is there anything beyond the Minimal Standard Model? And finally, where is the top quark? Presentations at this workshop addressed all of these issues. Most of them are now resolved, but new questions have arisen. This summary focuses on the experimental results presented at the meeting by CDF and D0 physicists. Reviews of LEP and HERA results, future plans for hadron colliders and their experiments, as well as important theoretical presentations are summarized elsewhere in this volume. Section 1 reviews physics beyond the Minimal Standard Model. Issues in b and c physics are addressed in section 3. Section 4 focuses on the top quark. Electroweak physics is reviewed in section 5, followed by QCD studies in section 6. Conclusions are drawn in section 7.

  11. Longitudinal momentum mining of antiprotons at the Fermilab Recycler: past, present and future

    SciTech Connect

    Bhat, C.M.; Chase, B.E.; Gattuso, C.; Joireman, P.W.; /Fermilab

    2007-06-01

    The technique of longitudinal momentum mining (LMM)[1] in the Fermilab Recycler was adopted in early 2005 to extract thirty-six equal intensity and equal 6D-emittance antiproton bunches for proton-antiproton collider operation in the Tevatron. Since that time, several improvements have been made in the Recycler and the mining technique to handle higher intensity beams. Consequently, the Recycler has become a key contributor to the increased luminosity performance observed during Tevatron Run IIb. In this paper, we present an overview of the improvements and the current status of the momentum mining technique.

  12. Summary of Single top quark production at the Tevatron

    SciTech Connect

    Schwienhorst, R.; CDF, on the

    2014-01-01

    The production of single-top quarks occurs via the weak interaction at the Fermilab Tevatron proton-antiproton collider. Single top quark events are selected in the lepton+jets final state by CDF and D0 and in the missing transverse energy plus jets final state by CDF. Multivariate classifiers separate the s-channel and t-channel single-top signals from the large backgrounds. The combination of CDF and D0 results leads to the first observation of the s-channel mode of single top quark production. The t-channel and single top combined cross sections have also been measured.

  13. Fully 3D Multiple Beam Dynamics Processes Simulation for the Fermilab Tevatron

    SciTech Connect

    Stern, E.; Amundson, J.; Spentzouris, P; Valishev, A.; /Fermilab

    2010-06-01

    The Fermilab Tevatron has been, until 2010, the premier high-energy physics collider in the world. The data collected over the last decade by high-energy physics experiments running at the Tevatron have been analyzed to make important measurements in fundamental areas such as B meson masses and flavor oscillation, searches for the Higgs boson, and supersymmetry. Collecting these data at the limits of detectability has required the Tevatron to operate reliably at high beam intensities to maximize the number of collisions to analyze. This impressive achievement has been assisted by the use of HPC resources and software provided through the SciDAC program. This paper describes the enhancements to the BeamBeam3d code to realistically simulate the Tevatron, the validation of these simulations, and the improvement in equipment reliability and personal safety achieved with the aid of simulations.

  14. Photo-Production of Proton Antiproton Pairs

    SciTech Connect

    Paul Eugenio; Burnham Stokes

    2007-02-01

    Results are reported on the reaction gammap --> ppp-bar . A high statistic data set was obtained at the Thomas Jefferson National Accelerator Facility utilizing the CLAS detector and a tagged photon beam of 4.8 to 5.2 GeV incident on a liquid hydrogen target. The focus of this study was to search for possible intermediate resonances which decay to proton-antiproton. Both final state protons were detected in the CLAS apparatus whereas the antiproton was identified via missing mass. General features of the data are presented along with results on narrow and broad resonance studies.

  15. DZero (D0) Experiment Results for B Physics from the Fermilab Tevatron

    DOE Data Explorer

    ,

    The DZero b-Physics Working Group studies all issues related to the b-quark at the Fermilab Tevatron Collider. Topics we are working on include CP violation, measurements of B hadron properties (masses, lifetimes, decay branching ratios, production mechanisms), and searches for rare decays. The D0 (DZero) Experiment consists of a worldwide collaboration of scientists conducting research on the fundamental nature of matter.

  16. Optimization of integrated luminosity in the Tevatron

    SciTech Connect

    Gattuso, C.; Convery, M.; Syphers, M.; /Fermilab

    2009-04-01

    We present the strategy which has been used recently to optimize the performance of the Fermilab Tevatron proton-antiproton collider. We use a relatively simple heuristic model based on the antiproton production rate, which optimizes the number of antiprotons in a store in order to maximize the integrated luminosity. A store is terminated as soon as the target number of antiprotons is reached and the Tevatron quickly resets to load another store. Since this procedure was implemented, the integrated luminosity has improved by {approx} 35%. Other recent operational improvements include decreasing the shot setup time, and reducing beam-beam effects by making the proton and antiproton brightness more compatible, for example by scraping protons to smaller emittances.

  17. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    NASA Astrophysics Data System (ADS)

    Baumbaugh, A.; Briegel, C.; Brown, B. C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J. D.; Marchionni, A.; Needles, C.; Olson, M.; Pordes, S.; Shi, Z.; Still, D.; Thurman-Keup, R.; Utes, M.; Wu, J.

    2011-11-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  18. Applications of barrier bucket RF systems at Fermilab

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2006-03-01

    In recent years, the barrier rf systems have become important tools in a variety of beam manipulation applications at synchrotrons. Four out of six proton synchrotrons at Fermilab are equipped with broad-band barrier rf systems. All of the beam manipulations pertaining to the longitudinal phase space in the Fermilab Recycler (synchrotron used for antiproton storage) are carried out using a barrier system. Recently, a number of new applications of barrier rf systems have been developed- the longitudinal momentum mining, longitudinal phase-space coating, antiproton stacking, fast bunch compression and more. Some of these techniques have been critical for the recent spectacular success of the collider performance at the Fermilab Tevatron. Barrier bunch coalescing to produce bright proton bunches has a high potential to increase proton antiproton luminosity significantly. In this paper, I will describe some of these techniques in detail. Finally, I make a few general remarks on issues related to barrier systems.

  19. Search for resonant second generation slepton production at the Fermilab Tevatron.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Agram, J-L; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; Asman, B; Jesus, A C S Assis; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Blumenschein, U; Boehnlein, A; Boeriu, O; Bolton, T A; Borcherding, F; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Cousinou, M-C; Cox, B; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Das, M; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Elvira, V D; Eno, S; Ermolov, P; Estrada, J; Evans, H; Evdokimov, A; Evdokimov, V N; Fatakia, S N; Feligioni, L; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gardner, J; Gavrilov, V; Gay, A; Gay, P; Gelé, D; Gelhaus, R; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Gounder, K; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Kesisoglou, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kozminski, J; Kryemadhi, A; Krzywdzinski, S; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lager, S; Lammers, S; Landsberg, G; Lazoflores, J; Bihan, A-C Le; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A-M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; Mattingly, S E K; McCarthy, R; McCroskey, R; Meder, D; Melnitchouk, A; Mendes, A; Mendoza, L; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Millet, T; Mitrevski, J; Molina, J; Mondal, N K; Monk, J; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundim, L; Mutaf, Y D; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'dell, V; O'neil, D C; Obrant, G; Oguri, V; Oliveira, N; Oshima, N; Otec, R; Y Garzón, G J Otero; Owen, M; Padley, P; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Perez, E; Peters, K; Pétroff, P; Petteni, M; Piegaia, R; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Pompos, A; Pope, B G; Popov, A V; da Silva, W L Prado; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rani, K J; Ranjan, K; Rapidis, P A; Ratoff, P N; Renkel, P; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Rud, V I; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shephard, W D; Shivpuri, R K; Shpakov, D; Siccardi, V; Sidwell, R A; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tiller, B; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tsybychev, D; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; van den Berg, P J; Kooten, R Van; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vlimant, J-R; Toerne, E Von; Voutilainen, M; Vreeswijk, M; Wahl, H D; Wang, L; Warchol, J; Watts, G; Wayne, M; Weber, M; Weerts, H; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xie, Y; Xuan, N; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhao, Z; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G

    2006-09-15

    We present a search for supersymmetry in the R-parity violating resonant production and decay of smuons and muon sneutrinos in the channels mu-->chi(1)(0)mu, mu-->chi(2,3,4)(0)mu, and nu(mu)-->chi(1,2)(+/-)mu. We analyzed 0.38 fb(-1) of integrated luminosity collected between April 2002 and August 2004 with the D0 detector at the Fermilab Tevatron Collider. The observed number of events is in agreement with the standard model expectation, and we calculate 95% C.L. limits on the slepton production cross section times branching fraction to gaugino plus muon, as a function of slepton and gaugino masses. In the framework of minimal supergravity, we set limits on the coupling parameter lambda(211)('), extending significantly previous results obtained in Run I of the Tevatron and at the CERN LEP collider.

  20. Microwave Schottky diagnostic systems for the Fermilab Tevatron, Recycler, and CERN LHC

    SciTech Connect

    Pasquinelli, Ralph J.; Jansson, Andreas; /ESS, Lund

    2011-02-01

    A means for non-invasive measurement of transverse and longitudinal characteristics of bunched beams in synchrotrons has been developed based on high sensitivity slotted waveguide pickups. The pickups allow for bandwidths exceeding hundreds of MHz while maintaining good beam sensitivity characteristics. Wide bandwidth is essential to allow bunch-by-bunch measurements by means of a fast gating system. The Schottky detector system is installed and successfully commissioned in the Fermilab Tevatron and Recycler and CERN LHC synchrotrons. Measurement capabilities include tune, chromaticity, and momentum spread of single or multiple beam bunches in any combination. With appropriate calibrations, emittance can also be measured by integrating the area under the incoherent tune sidebands.

  1. Longitudinal bunch monitoring at the Fermilab Tevatron and Main Injector synchrotrons

    DOE PAGES

    Thurman-Keup, R.; Bhat, C.; Blokland, W.; ...

    2011-10-17

    The measurement of the longitudinal behavior of the accelerated particle beams at Fermilab is crucial to the optimization and control of the beam and the maximizing of the integrated luminosity for the particle physics experiments. Longitudinal measurements in the Tevatron and Main Injector synchrotrons are based on the analysis of signals from resistive wall current monitors. This study describes the signal processing performed by a 2 GHz-bandwidth oscilloscope together with a computer running a LabVIEW program which calculates the longitudinal beam parameters.

  2. DZero (D0) Experiment Results for Higgs Physics from the Fermilab Tevatron

    DOE Data Explorer

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, at Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the Higgs Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the directories with their respective papers.

  3. DZero (D0) Experiment Results for QCD Physics from the Fermilab Tevatron

    DOE Data Explorer

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, at Fermilab. The research is focused on precise studies of interactions of protons and antiprotons at the highest available energies. It involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the QCD Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the same directories with their respective papers.

  4. DZero (D0) Experiment Results for Top Quark Physics from the Fermilab Tevatron

    DOE Data Explorer

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the Top Quark Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the directories with their respective papers.

  5. DZero (D0) Experiment Results for New Phenomena from the Fermilab Tevatron

    DOE Data Explorer

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the New Phenomena Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the same directories with their respective papers.

  6. DZero (D0) Experiment Results for Electroweak Physics from the Fermilab Tevatron

    DOE Data Explorer

    The D0 (DZero) Experiment is a worldwide collaboration of scientists conducting research on the fundamental nature of matter. The experiment is located at the Tevatron Collider, Fermilab. The research is focused on precise studies of interactions of protons and antiprotons and involves an intense search for subatomic clues that reveal the character of the building blocks of the universe. This web page provides access to Run II research results of the Electroweak Physics group, including preliminary, submitted, and published results. Figures and data plots are found in the directories with their respective papers.

  7. Tevatron electron lens magnetic system

    SciTech Connect

    Vladimir Shiltsev et al.

    2001-07-12

    In the framework of collaboration between IHEP and FNAL, a magnetic system of the Tevatron Electron Lens (TEL) has been designed and built. The TEL is currently installed in the superconducting ring of the Tevatron proton-antiproton collider and used for experimental studies of beam-beam compensation [1].

  8. Proposed Fermilab upgrade main injector project

    SciTech Connect

    Not Available

    1992-04-01

    The US Department of Energy (DOE) proposes to construct and operate a Fermilab Main Injector'' (FMI), a 150 GeV proton injector accelerator, at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The purpose and need for this action are given of this Environmental Assessment (EA). A description of the proposed FMI and construction activities are also given. The proposed FMI would be housed in an underground tunnel with a circumference of approximately 2.1 miles (3.4 kilometers), and the construction would affect approximately 135 acres of the 6,800 acre Fermilab site. The purpose of the proposed FMI is to construct and bring into operation a new 150 GeV proton injector accelerator. This addition to Fermilab's Tevatron would enable scientists to penetrate ever more deeply into the subatomic world through the detection of the super massive particles that can be created when a proton and antiproton collide head-on. The conversion of energy into matter in these collisions makes it possible to create particles that existed only an instant after the beginning of time. The proposed FMI would significantly extend the scientific reach of the Tevatron, the world's first superconducting accelerator and highest energy proton-antiproton collider.

  9. Heavy flavor baryon states at the Tevatron

    SciTech Connect

    Seidel, Sally; /New Mexico U.

    2011-08-01

    Precision measurements of the masses and widths of the bottom baryon resonances {Sigma}{sub b} and {Sigma}*{sub b} and charm baryons {Lambda}{sub c}(2595), {Lambda}{sub c}(2625), {Sigma}{sub c}(2455), and {Sigma}{sub c}(2520) are reported. A new measurement of {Lambda}{sub b} production is described. The studies include the first measurement of the widths and isospin mass splittings of the members of the {Sigma}{sub b} family. The charm baryons are examined through their strong decays to the {Lambda}{sub c} ground state, and measurements of their mass differences relative to the ground state, and corresponding decay widths, are reported. The data were collected by the CDF and D0 detectors for 1.96 TeV proton-antiproton collisions during Run II at the Fermilab Tevatron.

  10. Measurement of the single top production cross section in proton-antiproton collisions at 1.96 TeV

    SciTech Connect

    Tanasijczuk, Andres Jorge

    2010-03-25

    This thesis describes a search for singly produced top quarks via an electroweak vertex in head-on proton-antiproton collisions at a center of mass energy of √s = 1.96 TeV. The analysis uses a total of 2.3 fb-1 of data collected with the D0 detector at Fermilab, corresponding to two different run periods of the Tevatron collider. Two channels contribute to single top quark production at the Tevatron, the s-channel and the t-channel. In the s-channel, a virtual W boson is produced from the aniquilation of a quark and an antiquark and a top and a bottom quarks are produced from the W decay. The top quark decays almost exclusively into a W boson and a bottom quark. Final states are considered in which the W boson decays leptonically into an electron or a muon plus a neutrino. Thus, at the detector level, the final state characterizing the s-channel contains one lepton, missing energy accounting for the neutrino, and two jets from the two bottom quarks. In the t-channel, the final state has an additional jet coming from a light quark. Clearly, a precise reconstruction of the events requires a precise measurement of the energy of the jets. A multivariate technique, Bayesian neural networks, is used to extract the single top signal from the overwhelming background still left after event selection. A Bayesian likelihood probability is then computed to measure the single top cross section. Assuming the observed excess is due to single top events, the measured single top quark production cross section is σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.70+1.18-0.93 pb. The observed excess is associated with a p-value of (3.2 ± 2.3) x 10-8, assuming the background-only hypothesis. This p-value corresponds to an excess over background of 5.4 standard deviations for a Gaussian density. The p-value computed using the standard model signal cross section of 3.46 pb is (22.7 ± 0.6) x 10-6, corresponding to an expected significance

  11. Proposed Fermilab upgrade main injector project. Environmental Assessment

    SciTech Connect

    Not Available

    1992-04-01

    The US Department of Energy (DOE) proposes to construct and operate a ``Fermilab Main Injector`` (FMI), a 150 GeV proton injector accelerator, at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The purpose and need for this action are given of this Environmental Assessment (EA). A description of the proposed FMI and construction activities are also given. The proposed FMI would be housed in an underground tunnel with a circumference of approximately 2.1 miles (3.4 kilometers), and the construction would affect approximately 135 acres of the 6,800 acre Fermilab site. The purpose of the proposed FMI is to construct and bring into operation a new 150 GeV proton injector accelerator. This addition to Fermilab`s Tevatron would enable scientists to penetrate ever more deeply into the subatomic world through the detection of the super massive particles that can be created when a proton and antiproton collide head-on. The conversion of energy into matter in these collisions makes it possible to create particles that existed only an instant after the beginning of time. The proposed FMI would significantly extend the scientific reach of the Tevatron, the world`s first superconducting accelerator and highest energy proton-antiproton collider.

  12. Proposed Fermilab fixed target experiment: Kaons at the Tevatron. Environmental Assessment

    SciTech Connect

    Not Available

    1993-12-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0898, evaluating the impacts associated with the proposed fixed target experiment at the Fermi National Accelerator Laboratory (Femilab) in Batavia, Illinois, known as Kaons at the Tevatron (KTeV). The proposed KTeV project includes reconfiguration of an existing target station, enhancement of an existing beam transport system connected to existing utility facilities, and construction of a new experimental detector hall area. The study of the K meson, a type of subatomic particle, has been going on at Fermilab for 20 years. The proposed KTEV project advances the search for the origins of a violation of a fundamental symmetry of nature called charge parity (CP) violation. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  13. A search for z boson pair production at the Fermilab Tevatron Collider

    SciTech Connect

    Jarvis, Chad Ryan

    2007-01-01

    This dissertation describes a search for Z/γ* boson pair production decaying into μμμμ, μμee, and eeee final states with approximately 1 fb-1 of data at the Fermilab Tevatron Collider at √s = 1.96 TeV. The small cross section times branching ratio for each channel mandated a thorough study of the acceptance and efficiencies. After optimization, 1.7 ± 0.1 events are expected for Standard Model production with a background of 0.13 ± 0.03 events. One event was found in the μμee channel. A cross section limit of 4.4 pb is determined at a 95% confidence level for Standard Model production. Additionally, one parameter and two parameter 95% C.L. limits are found for the anomalous neutral trilinear gauge couplings ZZZ* and ZZγ*. The one parameter 95% C.L. coupling limits with a form factor scale of 1.2 TeV are: -0.28 < f$Z\\atop{40}$ < 0.28, -0.31 < f$Z\\atop{50}$ < 0.29, -0.26 < f$γ\\atop{40}$ < 0.26, and -0.30 < f$γ\\atop{50}$ < 0.28.

  14. Tevatron Top-Quark Combinations and World Top-Quark Mass Combination

    SciTech Connect

    Peters, Reinhild Yvonne

    2014-11-04

    Almost 20 years after its discovery, the top quark is still an interesting particle, undergoing precise investigation of its properties. For many years, the Tevatron proton antiproton collider at Fermilab was the only place to study top quarks in detail, while with the recent start of the LHC proton proton collider a top quark factory has opened. An important ingredient for the full understanding of the top quark is the combination of measurements from the individual experiments. In particular, the Tevaton combinations of single top-quark cross sections, the ttbar production cross section, the W helicity in top-quark decays as well as the Tevatron and the world combination of the top-quark mass are discussed.

  15. Search for single top production at the Tevatron

    SciTech Connect

    Schwienhorst, Reinhard; /Michigan State U.

    2004-11-01

    Searches for the electroweak production of single top quarks have been started at the Fermilab Tevatron proton-antiproton collider using Run II data by both the D0 and CDF collaborations. Using a dataset of approximately 160pb{sup -1}, neither experiment finds evidence for Single Top production and sets 95% C.L. upper limits on the production cross section. The D0 limits are 19pb on the s-channel production, 25pb on the t-channel production, and 23pb on the combined s+t-channel production. The CDF limits are 8.5pb on the t-channel production and 13.7pb on the combined s+t-channel production.

  16. Forward-Backward Asymmetry of Top Quark Pair Productionn at the Fermilab Tevatron

    SciTech Connect

    Hong, Ziqing

    2015-12-01

    This dissertation presents the final measurements of the forward-backward asymmetry (AFB) of top quark-antiquark pair events (t t-) at the Collider Detector at Fermilab (CDF) experiment. The t t- events are produced in proton{anti-proton collisions with a center of mass energy of 1:96 TeV during the Run II of the Fermilab Tevatron. The measurements are performed with the full CDF Run II data (9.1 fb-1) in the final state that contain two charged leptons (electrons or muons, the dilepton final state), and are designed to con rm or deny the evidence-level excess in the AFB measurements in the final state with a single lepton and hadronic jets (lepton+jets final state) as well as the excess in the preliminary measurements in the dilepton final state with the first half of the CDF Run II data. New measurements include the leptonic AFB (AlFB), the lepton-pair AFB (All FB) and the reconstructed top AFB (At t FB). Each are combined with the previous results from the lepton+jets final state measured at the CDF experiment. The inclusive Al FB, All FB, and At t FB measured in the dilepton final state are 0.072 ± 0.060, 0.076 ± 0.081, and 0.12 ± 0.13, to be compared with the Standard Model (SM) predictions of 0.038 ± 0.003, 0.048 ± 0.004, and 0.010 ± 0.006, respectively. The CDF combination of AlFB and At t FB are 0.090+0:028 -0.026, and 0.160 ± 0.045, respectively. The overall results are consistent with the SM predictions.

  17. Supersymmetry at the Tevatron?

    SciTech Connect

    Lammel, S.

    1998-02-01

    These lectures contain an introduction to the search for supersymmetry at hadron colliders. The Tevatron is one of high-energy physics most sophisticated tools. The high center-of-mass energy of its proton-antiproton collisions makes it an ideal place to search for physics beyond the Standard Model, such as supersymmetry. Two experiments, CDF and D0, completed a long data taking period in summer of 1995, yielding over 100 pb{sup -1} of proton-antiproton interactions. The data recorded by the experiments are still being analyzed. The lectures outline the strategies in the search for supersymmetry at the Tevatron and examine the major analyses in detail. Results obtained by the two experiments are included where available.

  18. Tevatron Electron Lenses: Design and Operation

    SciTech Connect

    Shiltsev, Vladimir; Bishofberger, Kip; Kamerdzhiev, Vsevolod; Kozub, Sergei; Kufer, Matthew; Kuznetsov, Gennady; Martinez, Alexander; Olson, Marvin; Pfeffer, Howard; Saewert, Greg; Scarpine, Vic; Seryi, Andrei; Solyak, Nikolai; Sytnik, Veniamin; Tiunov, Mikhail; Tkachenko, Leonid; Wildman, David; Wolff, Daniel; Zhang, Xiao-Long; /Fermilab

    2011-09-12

    Fermilab's Tevatron is currently the world's highest energy accelerator in which tightly focused beams of 980 GeV protons and antiprotons collide at two dedicated interaction points (IPs). Both beams share the same beam pipe and magnet aperture and, in order to avoid multiple detrimental head-on collisions, the beams are placed on separated orbits everywhere except the main IPs by using high-voltage (HV) electrostatic separators. The electromagnetic beam-beam interaction at the main IPs together with the long-range interactions between separated beams adversely affect the collider performance, reducing the luminosity integral per store (period of continuous collisions) by 10-30%. Tuning the collider operation for optimal performance becomes more and more cumbersome as the beam intensities and luminosity increase. The long-range effects which (besides being nonlinear) vary from bunch to bunch are particularly hard to mitigate. A comprehensive review of the beam-beam effects in the Tevatron Collider Run II can be found in Ref. [1]. The beam-beam effects have been the dominating sources of beam loss and lifetime limitations in the Tevatron proton-antiproton collider [1]. Electron lenses were originally proposed for compensation of electromagnetic long-range and head-on beam-beam interactions of proton and antiproton beams [2]. Results of successful employment of two electron lenses built and installed in the Tevatron are reported in [3,4,5]. In this paper we present design features of the Tevatron electron lenses (TELs), discuss the generation of electron beams, describe different modes of operation and outline the technical parameters of various subsystems.

  19. Phase modulation of the bucket stops bunch oscillations at the Fermilab Tevatron

    SciTech Connect

    Tan, C.Y.; Burov, A.; /Fermilab

    2012-04-02

    Bunches in the Tevatron are known to exhibit longitudinal oscillations which persist indefinitely. These oscillations are colloquially called 'dancing bunches.' Although the dancing proton bunches do not cause single bunch emittance growth or beam loss at injection, they lead to bunch lengthening at collisions. In Tevatron operations, a longitudinal damper has been built which stops this dance and damps out coupled bunch modes. Recent theoretical work predicts that the dance can also be stopped by an appropriate change in the bunch distribution. This paper describes the Tevatron experiments which support this theory.

  20. Looking for the top squark at the Fermilab Tevatron with four jets

    SciTech Connect

    Choudhury, Debajyoti; Datta, Madhumita; Maity, Manas

    2006-03-01

    The scalar partner of the top quark is relatively light in many models of supersymmetry breaking. We study the production of top squarks (stops) at the Tevatron collider and their subsequent decay through baryon-number violating couplings such that the final state contains no leptons. Performing a detector-level analysis, we demonstrate that, even in the absence of leptons or missing energy, stop masses up to 210 GeV/c{sup 2} can be accessible at the Tevatron.

  1. Exclusive Central $\\pi^{+}\\pi^{-}$ Production in Proton Antiproton Collisions at the CDF

    SciTech Connect

    Zurek, Maria

    2015-01-01

    Exclusive $\\pi^{=}\\pi^{-}$ production in proton-antiproton collisions at $\\sqrt{s}$ = 0.9 and 1.96 TeV in the Collider Detector at Fermilab has been measured. We select events with two particles with opposite charge in pseudorapidity region -1.3 < $\\eta$ < 1.3 with no other particles detected in -5.9 < $\\eta$ < 5.9. Particles are assumed to be pions. The $\\pi^{+}\\pi^{-}$system is required to have rapidity -1.0 < $y$ < 1.0. The data are expected to be dominated by the double pomeron exchange mechanism. Therefore, the quantum numbers of the central state are constrained. The data extend up to dipion mass M($\\pi^{+}\\pi^{-}$) = 5000 MeV/$c^2$. Resonance structures consistent with $f_0$ and $f_2$(1270) mesons are visible. The results are valuable for light hadron spectroscopy and for providing information about the nature of the pomeron in a region between non-perturbative and perturbative quantum chromodynamics

  2. Properties of W + jet events in proton-antiproton collisions at 1.8 TeV

    SciTech Connect

    Drucker, Robert Brian

    1993-11-22

    W boson + QCD Jet events, produced in 1.8 TeV proton-antiproton collisions and measured by the Collider Detector at Fermilab (CDF), were used to measure the center-of-mass production angle of the W + jet system, and were also used to place limits on the production of excited quark states. The center-of-mass production angular distribution agrees well with leading order and next-to-leading order QCD predictions. Excited quark states were searched for in the reaction q + g → q* → q + W. Upper limits on the q* cross section, as a function of the q* mass, are shown. Comparison with a theoretical prediction for q* production excludes excited quark states with a mass in the range 150--530 GeV/c2, at 95% confidence.

  3. Simulation of Hollow Electron Beam Collimation in the Fermilab Tevatron Collider

    SciTech Connect

    Morozov, I.A.; Stancari, G.; Valishev, A.; Shatilov, D.N.; /Novosibirsk, IYF

    2012-05-01

    The concept of augmenting the conventional collimation system of high-energy storage rings with a hollow electron beam was successfully demonstrated in experiments at the Tevatron. A reliable numerical model is required for understanding particle dynamics in the presence of a hollow beam collimator. Several models were developed to describe imperfections of the electron beam profile and alignment. The features of the imperfections are estimated from electron beam profile measurements. Numerical simulations of halo removal rates are compared with experimental data taken at the Tevatron.

  4. A search for the Higgs boson in the zh channel with the D0 detector at the Fermilab Tevatron collider

    SciTech Connect

    Heinmiller, James Matthew

    2006-01-01

    This analysis describes a search for a standard model Higgs boson produced in association with a Z boson through the decay mode ZH → e+e-b$\\bar{b}$ in p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron Collider. The data sample used in this analysis corresponds to 452 pb-1 of integrated luminosity accumulated with the D0 detector. Agreement between data and standard model predictions is observed. A 95% confidence level upper exclusion limit for the σ(p$\\bar{p}$ → ZH) x BR(H → b$\\bar{b}$) channel is set between 3.2-8.2 pb for Higgs masses of 105 to 145 GeV.

  5. First measurements of inclusive W and Z cross sections from run II of the fermilab tevatron collider.

    PubMed

    Acosta, D; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Calafiura, P; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerri, C; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chu, M L; Chuang, S; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J; Frisch, H; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Grosso-Pilcher, C; Guenther, M; Guimaraes da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, M; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; Ncnulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Moulik, T; Movilla Fernandez, P A; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A-S; Nigmanov, T; Nodulman, L; Norniella, O; Oesterberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reichold, A; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Ruiz, A; Ryan, D; Saarikko, H; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schemitz, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sisakyan, A; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stefanini, A; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, S; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vataga, E; Vejcik, S; Velev, G; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Volobouev, I; von der Mey, M; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2005-03-11

    We report the first measurements of inclusive W and Z cross sections times leptonic branching ratios for pp collisions at square root[s]=1.96 TeV, based on their decays to electrons and muons. The data correspond to an integrated luminosity of 72 pb(-1) recorded with the CDF detector at the Fermilab Tevatron. We test e-mu universality in W decays, and we measure the ratio of leptonic W and Z rates from which the leptonic branching fraction B(W-->lnu) can be extracted as well as an indirect value for the total width of the W and the Cabibbo-Kobayashi-Maskawa matrix element, |V(cs)|.

  6. Physics at an upgraded proton driver at Fermilab

    SciTech Connect

    Steve Geer

    2004-07-28

    The accelerator-based particle physics program in the US is entering a period of transition. This is particularly true at Fermilab which for more than two decades has been the home of the Tevatron Proton-Antiproton Collider, the World's highest energy hadron collider. In a few years time the energy frontier will move to the LHC at CERN. Hence, if an accelerator-based program is to survive at Fermilab, it must evolve. Fermilab is fortunate in that, in addition to hosting the Tevatron Collider, the laboratory also hosts the US accelerator-based neutrino program. The recent discovery that neutrino flavors oscillate has opened a new exciting world for us to explore, and has created an opportunity for the Fermilab accelerator complex to continue to address the cutting-edge questions of particle physics beyond the Tevatron Collider era. The presently foreseen neutrino oscillation experiments at Fermilab (MiniBooNE [1] and MINOS [2]) will enable the laboratory to begin contributing to the Global oscillation physics program in the near future, and will help us better understand the basic parameters describing the oscillations. However, this is only a first step. To be able to pin down all of the oscillation parameters, and hopefully make new discoveries along the way, we will need high statistics experiments, which will require a very intense neutrino beam, and one or more very massive detectors. In particular we will require new MW-scale primary proton beams and perhaps ultimately a Neutrino Factory [3]. Plans to upgrade the Fermilab Proton Driver are presently being developed [4]. The upgrade project would replace the Fermilab Booster with a new 8 GeV accelerator with 0.5-2 MW beam power, a factor of 15-60 more than the current Booster. It would also make the modifications needed to the Fermilab Main Injector (MI) to upgrade it to simultaneously provide 120 GeV beams of 2 MW. This would enable a factor of 5-10 increase in neutrino beam intensities at the MI, while also

  7. Measurements of Transverse Beam Diffusion Rates in the Fermilab Tevatron Collider

    SciTech Connect

    Stancari, G.; Annala, G.; Johnson, T.R.; Still, D.A.; Valishev, A.; /Fermilab

    2011-08-01

    The transverse beam diffusion rate vs. particle oscillation amplitude was measured in the Tevatron using collimator scans. All collimator jaws except one were retracted. As the jaw of interest was moved in small steps, the local shower rates were recorded as a function of time. By using a diffusion model, the time evolution of losses could be related to the diffusion rate at the collimator position. Preliminary results of these measurements are presented.

  8. Phenomenological study of the atypical heavy flavor production observed at the Fermilab Tevatron

    SciTech Connect

    Apollinari, G.; Barone, M.; Fiori, I.; Giromini, P.; Happacher, F.; Miscetti, S.; Parri, A.; Ptohos, F.; /Frascati /Fermilab /INFN, Pisa /Cyprus U.

    2005-11-01

    The authors address known discrepancies between the heavy flavor properties of jets produced at the Tevatron collider and the prediction of conventional-QCD simulations. In this study, they entertain the possibility that these effects are real and due to new physics. They show that all anomalies can be simultaneously fitted by postulating the additional pair production of light bottom squarks with a 100% semileptonic branching fraction.

  9. Recent QCD Results from the Tevatron

    SciTech Connect

    Vellidis, Costas

    2015-10-10

    Four years after the shutdown of the Tevatron proton-antiproton collider, the two Tevatron experiments, CDF and DZero, continue producing important results that test the theory of the strong interaction, Quantum Chromodynamics (QCD). The experiments exploit the advantages of the data sample acquired during the Tevatron Run II, stemming from the unique pp initial state, the clean environment at the relatively low Tevatron instantaneous luminosities, and the good understanding of the data sample after many years of calibrations and optimizations. A summary of results using the full integrated luminosity is presented, focusing on measurements of prompt photon production, weak boson production associated with jets, and non-perturbative QCD processes.

  10. Measurement of Prompt Photon Production in 1.8-TeV Proton - Antiproton Collisions

    SciTech Connect

    Ino, Takashi

    1996-06-01

    The inclusive production cross section of prompt photons with transverse energies 27 < EtEt < 40 GeV and in pseudorapidity 1.32 < ηη < 2.22 has been measured in proton antiproton collisions at s√s = 1.8 TeV. Using the data recorded by the CDF detector during the 1988-1989 TEVATRON collider run, corresponding to an integrated lurminosity of 3.8 ± 0.1 pb-1 3995 prompt photon candidate events are selected in the endplug electromagnetic calorimeter. From differences in the longitudinal cascade shower profile between a single photon and multi-photons from π0π0 and ηη meson decays, the number of prompt photon events in the candidates is extracted to be 1972 ± 353.The differences in the shower shape are obtained by a GEANT3 based Monte Carlo detector simulation, which has been careful1y studied and found to wel1 reproduce the electromagnetic cascade of electrons at various energies as wel1 as incident angles. The inclusive production cross section has been obtained to be σσ = 1.44 ± 0.09(stat..) ± 0.27(syst.) nb. The measurement agrees with the next-to-leading order QCD calculation using recent parton distribution functions. The differential cross section with respect to pseudorapidity has also been measured and found to be in good agreement with the QCD calculation. The photon event fraction and its dependence on the photon isolation are studied. The isolation dependence of the photon event fraction shows a consistency with the QCD prediction. Future prospects of prompt photon measurernents in the endplug region for the new data, which has been col1ected during 1992 to 1995 correspondingto roughly 110 pb-1 are also discussed.

  11. Search for Associated Chargino-Neutralino Production in Proton-Antiproton Collisions at 1.96 TeV

    SciTech Connect

    Blumenschein, Ulla

    2005-08-01

    interacting, carrying away energy and momentum and leading to detector signatures with large missing energy. Supersymmetric particles have been searched for at the electron-positron collider LEP up to the kinematic limit. No evidence for these particles has been observed which results in lower limits on their masses. Additional constraints stem from precision measurements of quantities, which are sensitive to corrections from SUSY particles and from the search for dark matter in cosmological experiments. The search for SUSY particles beyond the reach of LEP is continued at larger energy regimes at present and future hadron colliders. In its second phase of data taking (Run II), the center-of-mass energy of the proton-antiproton collider Tevatron at Fermilab has been raised and the luminosity has been increased considerably. The D0 experiment, one of the two Tevatron experiments, has been upgraded accordingly. The Tevatron collider allows to probe a substantial SUSY mass range beyond the LEP limits. The search will be continued at the Large Hadron Collider (LHC) which is presently being constructed at the European Research laboratory for particle physics CERN in Geneva. At hadron colliders the supersymmetric partners of quarks and gluons are copiously produced in strong interactions, provided they are light enough. Within most of the established SUSY models, these particles are too heavy to be produced at a sufficient rate at the Tevatron collider and the production of the lighter super-partners of the Higgs and gauge bosons, the charginos and neutralinos, becomes an important source of SUSY particles. Decays of these particles result in final states with leptons or hadrons and large missing energy. Leptonic final states can be separated more easily from the large background of hadronic Standard Model processes. A search for the associated production of the lightest chargino and the second lightest neutralino has been performed in final states with two electrons, an additional

  12. Operating Procedure Changes to Improve Antiproton Production at the Fermilab Tevatron Collider

    SciTech Connect

    Drendel, B.; Morgan, J.P.; Vander Meulen, D.; /Fermilab

    2009-04-01

    Since the start of Fermilab Collider Run II in 2001, the maximum weekly antiproton accumulation rate has increased from 400 x 10{sup 10} Pbars/week to approximately 3,700 x 10{sup 10} Pbars/week. There are many factors contributing to this increase, one of which involves changes to operational procedures that have streamlined and automated Antiproton Source production. Automation has been added to the beam line orbit control, stochastic cooling power level management, and RF settings. In addition, daily tuning efforts have been streamlined by implementing sequencer driven tuning software.

  13. Kickers and power supplies for the Fermilab Tevatron I antiproton source

    SciTech Connect

    Castellano, T.; Bartoszek, L.; Tilles, E.; Petter, J.; McCarthy, J.

    1985-05-01

    The Fermilab Antiproton Source Accumulator and Debuncher rings require 5 kickers in total. These range in design from conventional ferrite delay line type magnets, with ceramic beam tubes to mechanically complex shuttered kickers situated entirely in the Accumulator Ring's 10/sup -10/ torr vacuum. Power supplies are thyratron switched pulse forming networks that produce microsecond width pulses of several kiloamps with less than 30 nanoseconds rise and fall times. Kicker and power supply design requirements for field strength, vacuum, rise and fall time, timing and magnetic shielding of the stacked beam in the accumulator by the eddy current shutter will be discussed. 8 refs., 3 figs., 2 tabs.

  14. Coherent production of pions and rho mesons in neutrino charged current interactions on neon nuclei at the Fermilab Tevatron

    SciTech Connect

    Willocq, S.

    1992-05-01

    The coherent production of single pions and and {rho} mesons in charged current interactions of neutrinos and antineutrinos on neon nuclei has been studied. The data were obtained using the Fermilab 15-foot Bubble Chamber, filled with a heavy Ne-H{sub 2} mixture and exposed to the Quadrupole Triplet neutrino beam produced by 800 GeV protons from the Tevatron. The average beam energy was 86 GeV. In a sample of 330000 frames, 1032 two-prong {nu}{sub {mu}} + {bar {nu}}{sub {mu}} charged current interactions were selected. The goal of this study was to investigate the low Q{sup 2} high {nu} region where the hadron dominance model can be tested. In this model, the vector and axial-vector parts of the weak hadronic current are dominated by the {rho} and a{sub 1} mesons respectively. Moreover, the Partially Conserved Axial Current (PCAC) hypothesis can be tested by studying the coherent production of single pions.

  15. Observation of exclusive dijet production at the Fermilab Tevatron pmacr p collider

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M. G.; González, B. Álvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Aoki, M.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Azzi-Bacchetta, P.; Azzurri, P.; Bacchetta, N.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Baroiant, S.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Bednar, P.; Behari, S.; Bellettini, G.; Bellinger, J.; Belloni, A.; Benjamin, D.; Beretvas, A.; Beringer, J.; Berry, T.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bolshov, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cooper, B.; Copic, K.; Cordelli, M.; Cortiana, G.; Crescioli, F.; Almenar, C. Cuenca; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lentdecker, G.; de Lorenzo, G.; Dell'Orso, M.; Demortier, L.; Deng, J.; Deninno, M.; de Pedis, D.; Derwent, P. F.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Forrester, S.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Genser, K.; Gerberich, H.; Gerdes, D.; Giagu, S.; Giakoumopolou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; da Costa, J. Guimaraes; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Hamilton, A.; Han, B.-Y.; Han, J. Y.; Handler, R.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hauser, J.; Hays, C.; Heck, M.; Heijboer, A.; Heinemann, B.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; Iyutin, B.; James, E.; Jayatilaka, B.; Jeans, D.; Jeon, E. J.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Kerzel, U.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Klute, M.; Knuteson, B.; Ko, B. R.; Koay, S. A.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhlmann, S. E.; Kuhr, T.; Kulkarni, N. P.; Kusakabe, Y.; Kwang, S.; Laasanen, A. T.; Lai, S.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, J.; Lee, J.; Lee, Y. J.; Lee, S. W.; Lefèvre, R.; Leonardo, N.; Leone, S.; Levy, S.; Lewis, J. D.; Lin, C.; Lin, C. S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lu, R.-S.; Lucchesi, D.; Lueck, J.; Luci, C.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; Lytken, E.; Mack, P.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, M.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzemer, S.; Menzione, A.; Merkel, P.; Mesropian, C.; Messina, A.; Miao, T.; Miladinovic, N.; Miles, J.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M.; Fernandez, P. Movilla; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Oldeman, R.; Orava, R.; Osterberg, K.; Griso, S. Pagan; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Piedra, J.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Portell, X.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Reisert, B.; Rekovic, V.; Renton, P.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Salamanna, G.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Scheidle, T.; Schlabach, P.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scott, A. L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sfyria, A.; Shalhout, S. Z.; Shapiro, M. D.; Shears, T.; Shepard, P. F.; Sherman, D.; Shimojima, M.; Shochet, M.; Shon, Y.; Shreyber, I.; Sidoti, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soderberg, M.; Soha, A.; Somalwar, S.; Sorin, V.; Spalding, J.; Spinella, F.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Stuart, D.; Suh, J. S.; Sukhanov, A.; Sun, H.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Tiwari, V.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Tourneur, S.; Trischuk, W.; Tu, Y.; Turini, N.; Ukegawa, F.; Uozumi, S.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Veszpremi, V.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Würthwein, F.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner-Kuhr, J.; Wagner, W.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Wynne, S. M.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yamashita, T.; Yang, C.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zaw, I.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2008-03-01

    We present the first observation and cross section measurement of exclusive dijet production in pmacr p interactions, pmacr p→ pmacr +dijet+p. Using a data sample of 310pb-1 collected by the Run II Collider Detector at Fermilab at s=1.96TeV, exclusive cross sections for events with two jets of transverse energy ETjet≥10GeV have been measured as a function of minimum ETjet. The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of expected dijet signal and background shapes. The simulated background distribution shapes are checked in a study of a largely independent data sample of 200pb-1 of b-tagged jet events, where exclusive dijet production is expected to be suppressed by the Jz=0 total angular momentum selection rule. Results obtained are compared with theoretical expectations, and implications for exclusive Higgs boson production at the pp Large Hadron Collider at s=14TeV are discussed.

  16. Observation of Exclusive Dijet Production at the Fermilab Tevatron p-pbar Collider

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M.G.; Gonzalez, B.Alvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Aoki, M.; /Illinois U., Urbana /Fermilab

    2007-12-01

    The authors present the first observation and cross section measurement of exclusive dijet production in {bar p}p interactions, {bar p}p {yields} {bar p} + dijet + p. Using a data sample of 310 pb{sup -1} collected by the Run II Collider Detector at Fermilab at {radical}s = 1.96 TeV, exclusive cross sections for events with two jets of transverse energy E{sub T}{sup jet} {ge} 10 GeV have been measured as a function of minimum E{sub T}{sup jet}. The exclusive signal is extracted from fits to data distributions based on Monte Carlo simulations of expected dijet signal and background shapes. The simulated background distribution shapes are checked in a study of a largely independent data sample of 200 pb{sup -1} of b-tagged jet events, where exclusive dijet production is expected to be suppressed by the J{sub z} = 0 total angular momentum selection rule. Results obtained are compared with theoretical expectations, and implications for exclusive Higgs boson production at the pp Large Hadron Collider at {radical}s = 14 TeV are discussed.

  17. Tevatron Electron Lenses: Design and Operation

    SciTech Connect

    Shiltsev, Vladimir; Bishofberger, Kip; Kamerdzhiev, Vsevolod; Kozub, Sergei; Kufer, Matthew; Kuznetsov, Gennady; Martinez, Alexander; Olson, Marvin; Pfeffer, Howard; Saewert, Greg; Scarpine, Vic; /Fermilab /SLAC /Fermilab /Serpukhov, IHEP /Novosibirsk, IYF /Serpukhov, IHEP /Fermilab

    2008-08-01

    The beam-beam effects have been the dominating sources of beam loss and lifetime limitations in the Tevatron proton-antiproton collider [1]. Electron lenses were originally proposed for compensation of electromagnetic long-range and head-on beam-beam interactions of proton and antiproton beams [2]. Results of successful employment of two electron lenses built and installed in the Tevatron are reported in [3,4,5]. In this paper we present design features of the Tevatron electron lenses (TELs), discuss the generation of electron beams, describe different modes of operation and outline the technical parameters of various subsystems.

  18. Search for Electroweak Single Top Quark Production in 1.96 TeV Proton-Antiproton Collisions

    SciTech Connect

    Stelzer, Bernd

    2005-01-01

    This thesis describes the first search for electroweak single top quark production in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The data sample used for this analysis corresponds to 162 pb-1 recorded by the upgraded Collider Detector at Fermilab. The search is performed by doing a classic maximum likelihood fit to the HT distribution in data. The kinematic variable HT is the scalar sum of transverse energies of all final state particles in the event. This variable has the advantage that its distribution looks very similar for both contributing (s-channel and t-channel) single top processes, but is different for background processes. The combination of both channels to one signal improves the sensitivity of the search. No significant evidence for electroweak single top quark production is found and we set an upper limit at the 95% confidence level on the combined single top quark production cross section of 17.8 pb.

  19. Search for WH associated production in 5.3 fb-1 of pp¯ collisions at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    D0 Collaboration; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Ancu, L. S.; Aoki, M.; Arov, M.; Askew, A.; Åsman, B.; Atramentov, O.; Avila, C.; Backusmayes, J.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Beale, S.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Bolton, T. A.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burnett, T. H.; Buszello, C. P.; Calpas, B.; Camacho-Pérez, E.; Carrasco-Lizarraga, M. A.; Casey, B. C. K.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chen, G.; Chevalier-Théry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Christoudias, T.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de, K.; de Jong, S. J.; de La Cruz-Burelo, E.; Déliot, F.; Demarteau, M.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Devaughan, K.; Diehl, H. T.; Diesburg, M.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Gadfort, T.; Garcia-Bellido, A.; Gavrilov, V.; Gay, P.; Geist, W.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guo, F.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-de La Cruz, I.; Herner, K.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hossain, S.; Hubacek, Z.; Huske, N.; Hynek, V.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jain, S.; Jamin, D.; Jesik, R.; Johns, K.; Johnson, M.; Johnston, D.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Khatidze, D.; Kirby, M. H.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Kvita, J.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Liu, Z.; Lobodenko, A.; Lokajicek, M.; Love, P.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Muanza, G. S.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Novaes, S. F.; Nunnemann, T.; Obrant, G.; Orduna, J.; Osman, N.; Osta, J.; Otero Y Garzón, G. J.; Owen, M.; Padilla, M.; Pangilinan, M.; Parashar, N.; Parihar, V.; Park, S. K.; Parsons, J.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, K.; Peters, Y.; Petrillo, G.; Pétroff, P.; Piegaia, R.; Piper, J.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pol, M.-E.; Polozov, P.; Popov, A. V.; Prewitt, M.; Price, D.; Protopopescu, S.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Rijssenbeek, M.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Royon, C.; Rubinov, P.; Ruchti, R.; Safronov, G.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Sanghi, B.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schliephake, T.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Sirotenko, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Sopczak, A.; Sosebee, M.; Soustruznik, K.; Spurlock, B.; Stark, J.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Strom, D.; Stutte, L.; Suter, L.; Svoisky, P.; Takahashi, M.; Tanasijczuk, A.; Taylor, W.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Tuts, P. M.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vint, P.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weber, M.; Welty-Rieger, L.; White, A.; Wicke, D.; Williams, M. R. J.; Wilson, G. W.; Wimpenny, S. J.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Xu, C.; Yacoob, S.; Yamada, R.; Yang, W.-C.; Yasuda, T.; Yatsunenko, Y. A.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J.; Zelitch, S.; Zhao, T.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2011-03-01

    We present a search for associated production of Higgs and W bosons in pp¯ collisions at a center of mass energy of s=1.96 TeV in 5.3 fb-1 of integrated luminosity recorded by the D0 experiment. Multivariate analysis techniques are applied to events containing one lepton, an imbalance in transverse energy, and one or two b-tagged jets to discriminate a potential WH signal from Standard Model backgrounds. We observe good agreement between data and expected backgrounds, and set an upper limit of 4.5 (at 95% confidence level and for m=115 GeV) on the ratio of the WH cross section multiplied by the branching fraction of H→bb¯ to its Standard Model prediction, which is consistent with an expected limit of 4.8.KeywordsTevatronStandard ModelHiggs bosonElectroweak symmetry breakingReferencesALEPH CollaborationDELPHI CollaborationL3 CollaborationOPAL CollaborationLEP Working Group for Higgs Boson SearchesPhys. Lett. B565200361LEP Electroweak Working Grouphttp://lepewwg.web.cern.ch/LEPEWWG/T.AaltonenCDF CollaborationPhys. Rev. Lett.1042010061803V.M.AbazovD0 CollaborationPhys. Rev. Lett.1042010061804T.AaltonenCDF CollaborationD0 CollaborationPhys. Rev. Lett.1042010061802T. Aaltonen, et al., CDF Collaboration, D0 Collaboration, FERMILAB-CONF-10-257-E, 2010.V.M.AbazovD0 CollaborationPhys. Rev. Lett.942005091802V.M.AbazovD0 CollaborationPhys. Lett. B663200826V.M.AbazovD0 CollaborationPhys. Rev. Lett.1022009051803D.AcostaCDF CollaborationPhys. Rev. Lett.942005091802T.AaltonenCDF CollaborationPhys. Rev. Lett.1002008041801T.AaltonenCDF CollaborationPhys. Rev. Lett.1032009101802V.M.AbazovD0 CollaborationNucl. Instrum. Methods Phys. Res. A5652006463Pseudorapidity η=-ln[tanθ2], where θ is the polar angle as measured from the beam axis; ϕ is the azimuthal angle. The separation between two objects in η, ϕ space is ΔR=(Δ+(Δ.S.AbachiNucl. Instrum. Methods Phys. Res. A3381994185R.AngstadtNucl. Instrum. Methods Phys. Res. A6222010298M.AbolinsNucl. Instrum. Methods Phys. Res. A

  20. Measurement of electroweak single top quark production in proton-antiproton collisions at 1.96 TeV

    SciTech Connect

    Dong, Peter Joseph

    2008-01-01

    The top quark is an extremely massive fundamental particle that is predominantly produced in pairs at particle collider experiments. The Standard Model of particle physics predicts that top quarks can also be produced singly by the electroweak force; however, this process is more difficult to detect because it occurs at a smaller rate and is more difficult to distinguish from background processes. The cross section of this process is related to the Cabbibo-Kobayashi-Maskawa matrix element |V tb|, and measurement of the single top quark production cross section is currently the only method to directly measure this quantity without assuming the number of generations of fermions. This thesis describes a measurement of the cross section of electroweak single top quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. This analysis uses 2.2 fb-1 of integrated luminosity recorded by the Collider Detector at Fermilab. The search is performed using a matrix element method which calculates the differential cross section for each event for several signal and background hypotheses. These numbers are combined into a single discriminant and used to construct templates from Monte Carlo simulation. A maximum likelihood fit to the data distribution gives a measurement of the cross section. This analysis measures a value of 2.2$+0.8\\atop{-0.7}$ pb, which corresponds to a value of |V tb| = 0.88$+0.16\\atop{-0.14}$experimental±0.7(theoretical). The probability that this result originates from a background fluctuation in the absence of single top production (p-value) is 0.0003, which is equivalent to 3.4 standard deviations in Gaussian statistics. The expected (median) p-value as estimated from pseudo-experiments for this analysis is 0.000003, which corresponds to 4.5 standard deviations in Gaussian statistics.

  1. Study on the top quark pair production mechanism in 1.96 TeV proton-antiproton collisions

    SciTech Connect

    Naganoma, Junji

    2008-03-01

    The study of the top quark pair production mechanism in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV is described. The main subjects are the measurements of the top quark pair production cross section, the top quark mass and a search for a new particle decaying to the top quark pair. The analyses are based on 1.9 fb-1 of data collected by the Collider Detector at Fermilab (CDF) Run II experiment between March 2002 and May 2007, using the lepton+jets events. The measured top quark pair production cross section is 8.2 ± 0.5 (stat.) ± 0.8 (syst.) ± 0.5 (lum.) pb, which is slightly higher than the standard model prediction at the top mass of 175 GeV/c2. The top quark mass is an important parameter in the standard model, and also in the experimental studies. The measured top quark mass if 171.6 ± 2.0 (stat.) ± 1.3(syst.) GeV/c2. Finally, they report on a search for a new gauge boson decaying to t$\\bar{t}$, which interferes with the standard model gluon in the q$\\bar{q}$ → t$\\bar{t}$ production process. They call such a hypothetical particle a 'Massive Gluon'. The observed t$\\bar{t}$ invariant mass distribution is consistent with the standard model expectations, and also the measured massive gluon coupling strength with quarks is consistent within a statistical fluctuation of the standard model expectation in the wide range of the massive gluon masses and widths. They set the upper and lower limits on the coupling strength of the massive gluon.

  2. Measurement of the production rate of the charm jet recoiling against the W boson using the D0 detector at the Fermilab Tevatron Collider

    SciTech Connect

    Ahsan, Mahsana

    2008-01-01

    This dissertation describes a measurement of the rate of associated production of the W boson with the charm jet in the proton and anti-proton collisions at the center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider. The measurement has direct sensitivity to the strange quark content inside the proton. A direct measurement of the momentum distribution of the strange quark inside the proton is essential for a reliable calculation of new physics signal as well as the background processes at the collider experiments. The identification of events containing a W boson and a charm jet is based on the leptonic decays of the W boson together with a tagging technique for the charm jet identification based on the semileptonic decay of the charm quark into the muon. The charm jet recoiling against the W boson must have a minimum transverse momentum of 20 GeV and an absolute value of pseudorapidity less than 2.5. This measurement utilizes the data collected by the D0 detector at the Fermilab Collider. The measured rate of the charm jet production in association with the W boson in the inclusive jet production with the W boson is 0.074 ± 0.023, which is in agreement with the theoretical predictions at the leading order in Quantum Chromodynamics.

  3. Measurement of the Top Quark Mass by Dynamical Likelihood Method using the Lepton plus Jets Events in 1.96 Tev Proton-Antiproton Collisions

    SciTech Connect

    Yorita, Kohei

    2005-03-01

    We have measured the top quark mass with the dynamical likelihood method (DLM) using the CDF II detector at the Fermilab Tevatron. The Tevatron produces top and anti-top pairs in pp collisions at a center of mass energy of 1.96 TeV. The data sample used in this paper was accumulated from March 2002 through August 2003 which corresponds to an integrated luminosity of 162 pb-1.

  4. Single Top Quark Measurements at the Tevatron

    SciTech Connect

    Ronzani, Manfredi

    2014-12-01

    This paper reports the most recent measurements of single top quark production performed by CDF and D0 collaborations in proton-antiproton collisions at Tevatron. Events are selected in the lepton+jets final state by CDF and D0 and in the missing transverse energy plus jets final state by CDF. The small single top signal in s-channel, t-channel and inclusive s+t channel is separated from the large background by using different multivariate techniques. We also present the most recent results on extraction of the CKM matrix element $|V_{tb}|$ from the single top quark cross section.

  5. Double Transverse-Spin Asymmetries in DRELL-YAN and J/Φ Production from PROTON-ANTIPROTON Collisions

    NASA Astrophysics Data System (ADS)

    Guzzi, M.; Barone, V.; Cafarella, A.; Corianò, C.; Ratcliffe, P. G.

    We perform a NLO numerical study of the double transverse-spin asymmetries in the J/Φ resonance region for proton-antiproton collisions. We analyze the large x kinematic region, relevant for the proposed PAX experiment at GSI, and discuss the implication of the results for the extraction of the transversity densities.

  6. Measurement of Event Shapes in Proton-Antiproton Collisions at Center-of-Mass Energy 1.96 TeV

    SciTech Connect

    Aaltonen, T.; Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; /Purdue U. /Waseda U. /Dubna, JINR

    2011-03-01

    A study of event shape observables in proton-antiproton collisions at {radical}s = 1.96 TeV is presented. The data for this analysis were recorded by the CDF II detector at the Tevatron collider. The variables studied are the transverse thrust and thrust minor, both defined in the plane perpendicular to the beam direction. The observables are measured using energies from unclustered calorimeter cells. In addition to studies of the differential distributions, we present the dependence of event shape mean values on the leading jet transverse energy. Data are compared with pythia Tune A and to resummed parton level predictions that were matched to fixed order results at NLO accuracy (NLO+NLL). Predictions from pythia Tune A agree fairly well with the data. However, the underlying event contributes significantly to these observables, making it difficult to make direct comparisons to the NLO+NLL predictions, which do not account for the underlying event. To overcome this difficulty, we introduce a new observable, a weighted difference of the mean values of the thrust and thrust minor, which is less sensitive to the underlying event, allowing for a comparison with NLO+NLL. Both pythia Tune A and the NLO+NLL calculations agree well within the 20% theoretical uncertainty with the data for this observable, indicating that perturbative QCD successfully describes shapes of the hadronic final states.

  7. Top and higgs physics at the Tevatron

    SciTech Connect

    Pierre Savard

    2002-12-23

    We present a summary of our experimental understanding of the top quark and discuss the significant improvements expected in Run II at the Fermilab Tevatron Collider. We also discuss prospects for a Higgs boson discovery at the Tevatron.

  8. Search for Standard Model Higgs Boson Produced in Association with a Top-Antitop Quark Pair in 1.96 TeV Proton-Antiproton Collisions

    SciTech Connect

    Lai, Stanley T.

    2007-01-01

    This thesis describes the first search for Standard Model Higgs boson production in association with a top-antitop quark pair in proton-antiproton collisions at a centre of mass energy of 1.96 TeV. The integrated luminosity for othis search corresponds to 319 pb-1 of data recorded by the Collider Detector at Fermilab. We outline the even selection criteria, evaluate the even acceptance and estimate backgrounds from Standard Model sources. These events are observed that satisfy our event selection, while 2.16 ± 0.66 events are expected from background processes. no significant excess of events above background is thus observed, and we set 95% confidence level upper limits on the production cross section for this process as a function of the Higgs mass. For a Higgs boson mass of 115 GeV/c2 we find that σ$t\\bar{t}H$ x BR (Hbb) < 690 fb at 95% C.L. These are the first limits set for $t\\bar{t}H$ production. This search also allows us to anticipate the challenges and necessary strategies needed for future searches of $t\\bar{t}H$ production.

  9. Two-Jet Differential Cross-Section and Structure Functions in Proton-Antiproton Collisions at SQRT.S = 1.8 Tev

    NASA Astrophysics Data System (ADS)

    Harris, Robert M.

    Data from the 1987 run of the Collider Detector at Fermilab has been used to measure the two jet differential cross section d^3sigma/dE_ t deta_1 deta_2 in proton antiproton collisions at sqrt{s} = 1.8 TeV. For this measurement, one jet was restricted to the central region |eta_1 | < 0.6, where eta_1 and eta_2 are the pseudorapidity of the two jets with largest transverse energy in the event, and E_ t is the transverse energy of the centrally produced jet. Leading order QCD and the similarity of subprocess scattering angular distributions in a modified "single effective subprocess" approximation have been used to extract the "proton effective structure function" in parametric form. Using lowest order QCD, and quark and anti-quark structure functions evolved from deep inelastic scattering measurements, the gluon structure function of the proton has been estimated from the measured two jet differential cross section. The two jet differential cross section, effective structure function, and gluon structure function from CDF are all in agreement with the predictions of lowest order QCD and structure functions evolved from deep inelastic scattering measurements.

  10. Role of pentaquark components in ϕ meson production proton-antiproton annihilation reactions

    NASA Astrophysics Data System (ADS)

    Srisuphaphon, S.; Kaewsnod, A.; Limphirat, A.; Khosonthongkee, K.; Yan, Y.

    2016-02-01

    The pentaquark component uuds s ¯ is included in the proton wave functions to study ϕ meson production proton-antiproton annihilation reactions. With all possible configurations of the uuds subsystem proposed for describing the strangeness spin and magnetic moment of the proton, we estimate the branching ratios of the annihilation reactions at rest p p ¯→ϕ X (X =π0,η ,ρ0,ω ) from atomic p p ¯ S - and P -wave states by using effective quark line diagrams incorporating the 3P0 model. The best agreement of theoretical prediction with the experimental data is found when the pentaquark configuration of the proton wave function takes the flavor-spin symmetry [4] FS[22] F[22] S .

  11. The Fermilab recycler ring

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  12. Observation of Central Exclusive Diphoton Production at the Tevatron

    SciTech Connect

    Brucken, Jens Erik

    2013-01-01

    We have observed exclusive γγ production in proton-antiproton collisions at the Tevatron at √ s = 1.96 TeV. We use data corresponding to 1.11 ± 0.07 fb-1 integrated luminosity taken by the Run II Collider Detector at Fermilab, with a trigger requiring two electromagnetic showers, each with transverse energy ET > 2 GeV, and vetoing on hits in the forward beam shower counters. We select events with two electromagnetic showers, each with transverse energy ET > 2.5 GeV and pseudorapidity |η| < 1.0, with no other particles detected in -7.4 < η < +7.4. The two showers have similar ET and an azimuthal angle separation Δφ ~ π; we find 34 events with exactly two matching charged particle tracks, agreeing with expectations for the QED process p¯p → p+e+e- + ¯p by two photon exchange; and we find 43 events with no tracks. The latter are candidates for the exclusive process p¯p → p + γγ + ¯p by double pomeron exchange. We use the strip and wire chambers at the longitudinal shower maximum position within the calorimeter to measure a possible exclusive background from IP + IP → π0π0, and conclude that it is consistent with zero and is < 15 events at 95% C.L. The measured cross section is σγγ,excl(|η| < 1, ET (γ) > 2.5 GeV) = 2.48 +0.40 -0.35(stat) +0.40 -0.51(syst) pb and in agreement with the theoretical predictions. This process is closely related to exclusive Higgs boson production pp → p + H + p at the Large Hadron Collider. The observation of the exclusive production of diphotons shows that exclusive Higgs production can happen and could be observed with a proper experimental setup.

  13. CP Violation Measurements at the Tevatron

    SciTech Connect

    Williams, Mark .R.J.; /Lancaster U.

    2010-07-09

    The two colliding beam experiments at the Tevatron proton-antiproton collider, CDF and D0, continue to publish world-leading measurements of CP Violation parameters in the B meson sector. I will present several recent results from both experiments, including measurements of direct CP violating parameters in decays of B{sup +}{sub u}, B{sup 0}{sub d} and B{sup 0}{sub s} mesons; a new D0 measurement of a{sup s}{sub sl} using time-dependent analysis of B{sub s} {yields} {mu}{sup +}{nu}D{sup -}{sub s}X decays; and the latest Tevatron combination of the CP violating phase {beta}{sub s}, measured in the 'golden mode' B{sub s} {yields} J/{psi}{phi}.

  14. A study of the energy dependence of the underlying event in proton-antiproton collisions

    DOE PAGES

    Aaltonen, T.

    2015-11-23

    We study charged particle production (pT > 0.5 GeV/c, |η| < 0.8) in proton-antiproton collisions at 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of η-Φspace; “toward”, “away”, and “transverse”. Furthermore, the average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the “underlying event”. The transverse region is divided into a MAX and MIN transverse region, which helps separate the “hard component” (initial and final-state radiation) from the “beam-beammore » remnant” and multiple parton interaction components of the scattering. We found that the center-of-mass energy dependence of the various components of the event are studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.« less

  15. A study of the energy dependence of the underlying event in proton-antiproton collisions

    SciTech Connect

    Aaltonen, T.

    2015-11-23

    We study charged particle production (pT > 0.5 GeV/c, |η| < 0.8) in proton-antiproton collisions at 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of η-Φspace; “toward”, “away”, and “transverse”. Furthermore, the average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the “underlying event”. The transverse region is divided into a MAX and MIN transverse region, which helps separate the “hard component” (initial and final-state radiation) from the “beam-beam remnant” and multiple parton interaction components of the scattering. We found that the center-of-mass energy dependence of the various components of the event are studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.

  16. Study of the energy dependence of the underlying event in proton-antiproton collisions

    SciTech Connect

    Nodulman, L.; Aaltonen, T; Albrow, M; Amerio, S.; Amidei, D; Anastassov, A.; Annovi, A; Antos, J; Apollinari, G.; Appel, J A; Arisawa, T

    2015-11-23

    We study charged particle production (p(T) > 0.5 GeV/c, vertical bar eta vertical bar < 0.8) in proton-antiproton collisions at total center-of-mass energies root s = 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of eta - phi space: "toward", "away", and "transverse." The average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the "underlying event." The transverse region is divided into a MAX and MIN transverse region, which helps separate the "hard component" (initial and final-state radiation) from the "beam-beam remnant" and multiple parton interaction components of the scattering. The center-of-mass energy dependence of the various components of the event is studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.

  17. A Analysis of Monojet Data in Proton-Antiproton Collisions at SQRT.S = 1.8 Tev

    NASA Astrophysics Data System (ADS)

    Markeloff, Richard Alan

    An analysis is presented of events with a single jet and significant missing transverse energy selected from 4.7 pb^{-1} of data collected at the Fermilab Tevatron with the CDF detector. The goal is to identify events of the type p| pto Z^0 + jet; Z^0 to v| v. Event selection and backgrounds are discussed. The number of observed monojet events is compared to the number of observed Z^0to e^+e^- events in which the Z ^0 is accompanied by a jet. We measure the number of light neutrino species to be N_ {v} = 2.2 +/- 1.5 and we place an upper limit on the number of neutrino species at N _{v}< 5 (90% C.L.).

  18. Measurement of Z+ γ production and search for anomalous triple gauge couplings in proton-antiproton collisions at √S = 1.96 TeV

    SciTech Connect

    Deng, Jianrong

    2008-01-01

    The author presents a measurement of p$\\bar{p}$ → Zγ + X → e+e-γ + X production using proton-antiproton collisions data collected at the Collider Detector at Fermilab at a center of mass energy of 1.96 TeV. Zγ production provides a direct test of the triple neutral gauge couplings. A measurement of Zγ production cross section and search for anomalous ZZγ and Zγγ couplings are presented. The data presented are from 1.1 fb-1 of p$\\bar{p}$ integrated luminosity collected at the CDF Detector. Electrons from Z decays are selected with Et > 20 Gev. Photons (Et > 7 GeV) are required to be well-separated from the electrons. There are 390 eeγ candidate events found with 1.1 fb-1 of data, compared to the SM prediction of 375.3 ± 25.2 events. The Standard Model prediction for the cross section for p$\\bar{p}$ → e+e-γ + X production at √s = 1.96 TeV is 4.5 ± 0.4 pb. The measured cross section is 4.7 ± 0.6 pb. The cross section and kinematic distributions of the eeγ events are in good agreement with theoretical predictions. Limits on the ZZγ and Zγγ couplings are extracted using the photon Et distribution of eeγ events with meeγ > 100 GeV/c2. These are the first limits measured using CDF Run II data. These limits provide important test of the interaction of the photon and the Z boson.

  19. Coupling in the Tevatron

    SciTech Connect

    Gelfand, N.M.

    1994-12-01

    The performance of the Fermilab Tevatron Collider at the commencement of run Ib was far below expectations. After a frustrating period of several months, a low-{beta} quad downstream of the interaction point at B0 was found to be rolled. This rolled quadrupole coupled the horizontal and vertical motion of the Tevatron beams. It also made matching the beam from the Main Ring to the Tevatron impossible, resulting in emittance blow up on injection. The net result of the roll was a significant reduction in the Tevatron luminosity. When the roll in the quadrupole was corrected the performance of the Tevatron improved dramatically. This note will discuss the experimental data indicating the presence of coupling and subsequent calculations which show how coupling an affect the luminosity. It is not intended to exhaust a discussion of coupling, which hopefully will be understood well enough to be discussed in a subsequent note.

  20. Tevatron constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quark pairs.

    PubMed

    Aaltonen, T; Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Agnew, J P; Alexeev, G D; Alkhazov, G; Alton, A; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Askew, A; Atkins, S; Auerbach, B; Augsten, K; Aurisano, A; Avila, C; Azfar, F; Badaud, F; Badgett, W; Bae, T; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barbaro-Galtieri, A; Barberis, E; Baringer, P; Barnes, V E; Barnett, B A; Barria, P; Bartlett, J F; Bartos, P; Bassler, U; Bauce, M; Bazterra, V; Bean, A; Bedeschi, F; Begalli, M; Behari, S; Bellantoni, L; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bhat, P C; Bhatia, S; Bhatnagar, V; Bhatti, A; Bland, K R; Blazey, G; Blessing, S; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bortoletto, D; Borysova, M; Boudreau, J; Boveia, A; Brandt, A; Brandt, O; Brigliadori, L; Brock, R; Bromberg, C; Bross, A; Brown, D; Brucken, E; Bu, X B; Budagov, J; Budd, H S; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burkett, K; Busetto, G; Bussey, P; Buszello, C P; Butti, P; Buzatu, A; Calamba, A; Camacho-Pérez, E; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Casey, B C K; Castilla-Valdez, H; Castro, A; Catastini, P; Caughron, S; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chakrabarti, S; Chan, K M; Chandra, A; Chapon, E; Chen, G; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Cho, S W; Choi, S; Chokheli, D; Choudhary, B; Cihangir, S; Claes, D; Clark, A; Clarke, C; Clutter, J; Convery, M E; Conway, J; Cooke, M; Cooper, W E; Corbo, M; Corcoran, M; Cordelli, M; Couderc, F; Cousinou, M-C; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; Cutts, D; Das, A; d'Ascenzo, N; Datta, M; Davies, G; de Barbaro, P; de Jong, S J; De La Cruz-Burelo, E; Déliot, F; Demina, R; Demortier, L; Deninno, M; Denisov, D; Denisov, S P; D'Errico, M; Desai, S; Deterre, C; DeVaughan, K; Devoto, F; Di Canto, A; Di Ruzza, B; Diehl, H T; Diesburg, M; Ding, P F; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Dubey, A; Dudko, L V; Duperrin, A; Dutt, S; Eads, M; Ebina, K; Edgar, R; Edmunds, D; Elagin, A; Ellison, J; Elvira, V D; Enari, Y; Erbacher, R; Errede, S; Esham, B; Evans, H; Evdokimov, V N; Farrington, S; Fauré, A; Feng, L; Ferbel, T; Fernández Ramos, J P; Fiedler, F; Field, R; Filthaut, F; Fisher, W; Fisk, H E; Flanagan, G; Forrest, R; Fortner, M; Fox, H; Franklin, M; Freeman, J C; Frisch, H; Fuess, S; Funakoshi, Y; Galloni, C; Garbincius, P H; Garcia-Bellido, A; García-González, J A; Garfinkel, A F; Garosi, P; Gavrilov, V; Geng, W; Gerber, C E; Gerberich, H; Gerchtein, E; Gershtein, Y; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Ginther, G; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gogota, O; Gold, M; Goldin, D; Golossanov, A; Golovanov, G; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grannis, P D; Greder, S; Greenlee, H; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grosso-Pilcher, C; Group, R C; Grünendahl, S; Grünewald, M W; Guillemin, T; Guimaraes da Costa, J; Gutierrez, G; Gutierrez, P; Hahn, S R; Haley, J; Han, J Y; Han, L; Happacher, F; Hara, K; Harder, K; Hare, M; Harel, A; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hauptman, J M; Hays, C; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinrich, J; Heinson, A P; Heintz, U; Hensel, C; Heredia-De La Cruz, I; Herndon, M; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hocker, A; Hoeneisen, B; Hogan, J; Hohlfeld, M; Holzbauer, J L; Hong, Z; Hopkins, W; Hou, S; Howley, I; Hubacek, Z; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Hynek, V; Iashvili, I; Ilchenko, Y; Illingworth, R; Introzzi, G; Iori, M; Ito, A S; Ivanov, A; Jabeen, S; Jaffré, M; James, E; Jang, D; Jayasinghe, A; Jayatilaka, B; Jeon, E J; Jeong, M S; Jesik, R; Jiang, P; Jindariani, S; Johns, K; Johnson, E; Johnson, M; Jonckheere, A; Jones, M; Jonsson, P; Joo, K K; Joshi, J; Jun, S Y; Jung, A W; Junk, T R; Juste, A; Kajfasz, E; Kambeitz, M; Kamon, T; Karchin, P E; Karmanov, D; Kasmi, A; Kato, Y; Katsanos, I; Kaur, M; Kehoe, R; Kermiche, S; Ketchum, W; Keung, J; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Kiselevich, I; Knoepfel, K; Kohli, J M; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kozelov, A V; Kraus, J; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kumar, A; Kupco, A; Kurata, M; Kurča, T; Kuzmin, V A; Laasanen, A T; Lammel, S; Lammers, S; Lancaster, M; Lannon, K; Latino, G; Lebrun, P; Lee, H S; Lee, H S; Lee, J S; Lee, S W; Lee, W M; Lei, X; Lellouch, J; Leo, S; Leone, S; Lewis, J D; Li, D; Li, H; Li, L; Li, Q Z; Lim, J K; Limosani, A; Lincoln, D; Linnemann, J; Lipaev, V V; Lipeles, E; Lipton, R; Lister, A; Liu, H; Liu, H; Liu, Q; Liu, T; Liu, Y; Lobodenko, A; Lockwitz, S; Loginov, A; Lokajicek, M; Lopes de Sa, R; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Luna-Garcia, R; Lungu, G; Lyon, A L; Lys, J; Lysak, R; Maciel, A K A; Madar, R; Madrak, R; Maestro, P; Magaña-Villalba, R; Malik, S; Malik, S; Malyshev, V L; Manca, G; Manousakis-Katsikakis, A; Mansour, J; Marchese, L; Margaroli, F; Marino, P; Martínez-Ortega, J; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McCarthy, R; McGivern, C L; McNulty, R; Mehta, A; Mehtala, P; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Mesropian, C; Meyer, A; Meyer, J; Miao, T; Miconi, F; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondal, N K; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Mulhearn, M; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nagy, E; Nakano, I; Napier, A; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Nett, J; Neu, C; Neustroev, P; Nguyen, H T; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Nunnemann, T; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Orduna, J; Ortolan, L; Osman, N; Osta, J; Pagliarone, C; Pal, A; Palencia, E; Palni, P; Papadimitriou, V; Parashar, N; Parihar, V; Park, S K; Parker, W; Partridge, R; Parua, N; Patwa, A; Pauletta, G; Paulini, M; Paus, C; Penning, B; Perfilov, M; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pleier, M-A; Podstavkov, V M; Pondrom, L; Popov, A V; Poprocki, S; Potamianos, K; Pranko, A; Prewitt, M; Price, D; Prokopenko, N; Prokoshin, F; Ptohos, F; Punzi, G; Qian, J; Quadt, A; Quinn, B; Ratoff, P N; Razumov, I; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ripp-Baudot, I; Ristori, L; Rizatdinova, F; Robson, A; Rodriguez, T; Rolli, S; Rominsky, M; Ronzani, M; Roser, R; Rosner, J L; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sajot, G; Sakumoto, W K; Sakurai, Y; Sánchez-Hernández, A; Sanders, M P; Santi, L; Santos, A S; Sato, K; Savage, G; Saveliev, V; Savitskyi, M; Savoy-Navarro, A; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schlabach, P; Schmidt, E E; Schwanenberger, C; Schwarz, T; Schwienhorst, R; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Sekaric, J; Semenov, A; Severini, H; Sforza, F; Shabalina, E; Shalhout, S Z; Shary, V; Shaw, S; Shchukin, A A; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simak, V; Simonenko, A; Skubic, P; Slattery, P; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, H; Sonnenschein, L; Sorin, V; Soustruznik, K; St Denis, R; Stancari, M; Stark, J; Stentz, D; Stoyanova, D A; Strauss, M; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Suter, L; Svoisky, P; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Titov, M; Toback, D; Tokar, S; Tokmenin, V V; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Ukegawa, F; Uozumi, S; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vázquez, F; Velev, G; Vellidis, C; Verkheev, A Y; Vernieri, C; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vidal, M; Vilanova, D; Vilar, R; Vizán, J; Vogel, M; Vokac, P; Volpi, G; Wagner, P; Wahl, H D; Wallny, R; Wang, M H L S; Wang, S M; Warchol, J; Waters, D; Watts, G; Wayne, M; Weichert, J; Welty-Rieger, L; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Williams, M R J; Wilson, G W; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wobisch, M; Wolbers, S; Wolfe, H; Wood, D R; Wright, T; Wu, X; Wu, Z; Wyatt, T R; Xie, Y; Yamada, R; Yamamoto, K; Yamato, D; Yang, S; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yasuda, T; Yatsunenko, Y A; Ye, W; Ye, Z; Yeh, G P; Yi, K; Yin, H; Yip, K; Yoh, J; Yorita, K; Yoshida, T; Youn, S W; Yu, G B; Yu, I; Yu, J M; Zanetti, A M; Zeng, Y; Zennamo, J; Zhao, T G; Zhou, B; Zhou, C; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zucchelli, S

    2015-04-17

    Combined constraints from the CDF and D0 Collaborations on models of the Higgs boson with exotic spin J and parity P are presented and compared with results obtained assuming the standard model value JP=0+. Both collaborations analyzed approximately 10  fb(-) of proton-antiproton collisions with a center-of-mass energy of 1.96 TeV collected at the Fermilab Tevatron. Two models predicting exotic Higgs bosons with JP=0- and JP=2+ are tested. The kinematic properties of exotic Higgs boson production in association with a vector boson differ from those predicted for the standard model Higgs boson. Upper limits at the 95% credibility level on the production rates of the exotic Higgs bosons, expressed as fractions of the standard model Higgs boson production rate, are set at 0.36 for both the JP=0- hypothesis and the JP=2+ hypothesis. If the production rate times the branching ratio to a bottom-antibottom pair is the same as that predicted for the standard model Higgs boson, then the exotic bosons are excluded with significances of 5.0 standard deviations and 4.9 standard deviations for the JP=0- and JP=2+ hypotheses, respectively.

  1. Tevatron Constraints on Models of the Higgs Boson with Exotic Spin and Parity Using Decays to Bottom-Antibottom Quark Pairs

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Askew, A.; Atkins, S.; Auerbach, B.; Augsten, K.; Aurisano, A.; Avila, C.; Azfar, F.; Badaud, F.; Badgett, W.; Bae, T.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barbaro-Galtieri, A.; Barberis, E.; Baringer, P.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartlett, J. F.; Bartos, P.; Bassler, U.; Bauce, M.; Bazterra, V.; Bean, A.; Bedeschi, F.; Begalli, M.; Behari, S.; Bellantoni, L.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Bhatti, A.; Bland, K. R.; Blazey, G.; Blessing, S.; Bloom, K.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bortoletto, D.; Borysova, M.; Boudreau, J.; Boveia, A.; Brandt, A.; Brandt, O.; Brigliadori, L.; Brock, R.; Bromberg, C.; Bross, A.; Brown, D.; Brucken, E.; Bu, X. B.; Budagov, J.; Budd, H. S.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buszello, C. P.; Butti, P.; Buzatu, A.; Calamba, A.; Camacho-Pérez, E.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Casey, B. C. K.; Castilla-Valdez, H.; Castro, A.; Catastini, P.; Caughron, S.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Cho, S. W.; Choi, S.; Chokheli, D.; Choudhary, B.; Cihangir, S.; Claes, D.; Clark, A.; Clarke, C.; Clutter, J.; Convery, M. E.; Conway, J.; Cooke, M.; Cooper, W. E.; Corbo, M.; Corcoran, M.; Cordelli, M.; Couderc, F.; Cousinou, M.-C.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; Cutts, D.; Das, A.; d'Ascenzo, N.; Datta, M.; Davies, G.; de Barbaro, P.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Demortier, L.; Deninno, M.; Denisov, D.; Denisov, S. P.; D'Errico, M.; Desai, S.; Deterre, C.; DeVaughan, K.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dittmann, J. R.; Dominguez, A.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Ebina, K.; Edgar, R.; Edmunds, D.; Elagin, A.; Ellison, J.; Elvira, V. D.; Enari, Y.; Erbacher, R.; Errede, S.; Esham, B.; Evans, H.; Evdokimov, V. N.; Farrington, S.; Fauré, A.; Feng, L.; Ferbel, T.; Fernández Ramos, J. P.; Fiedler, F.; Field, R.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Flanagan, G.; Forrest, R.; Fortner, M.; Fox, H.; Franklin, M.; Freeman, J. C.; Frisch, H.; Fuess, S.; Funakoshi, Y.; Galloni, C.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Garfinkel, A. F.; Garosi, P.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gerberich, H.; Gerchtein, E.; Gershtein, Y.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Ginther, G.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gogota, O.; Gold, M.; Goldin, D.; Golossanov, A.; Golovanov, G.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grosso-Pilcher, C.; Group, R. C.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Guimaraes da Costa, J.; Gutierrez, G.; Gutierrez, P.; Hahn, S. R.; Haley, J.; Han, J. Y.; Han, L.; Happacher, F.; Hara, K.; Harder, K.; Hare, M.; Harel, A.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hauptman, J. M.; Hays, C.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinrich, J.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herndon, M.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hocker, A.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Hong, Z.; Hopkins, W.; Hou, S.; Howley, I.; Hubacek, Z.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Introzzi, G.; Iori, M.; Ito, A. S.; Ivanov, A.; Jabeen, S.; Jaffré, M.; James, E.; Jang, D.; Jayasinghe, A.; Jayatilaka, B.; Jeon, E. J.; Jeong, M. S.; Jesik, R.; Jiang, P.; Jindariani, S.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jones, M.; Jonsson, P.; Joo, K. K.; Joshi, J.; Jun, S. Y.; Jung, A. W.; Junk, T. R.; Juste, A.; Kajfasz, E.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Karmanov, D.; Kasmi, A.; Kato, Y.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Ketchum, W.; Keung, J.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kiselevich, I.; Knoepfel, K.; Kohli, J. M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kozelov, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kumar, A.; Kupco, A.; Kurata, M.; Kurča, T.; Kuzmin, V. A.; Laasanen, A. T.; Lammel, S.; Lammers, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lebrun, P.; Lee, H. S.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Leo, S.; Leone, S.; Lewis, J. D.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Limosani, A.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipeles, E.; Lipton, R.; Lister, A.; Liu, H.; Liu, H.; Liu, Q.; Liu, T.; Liu, Y.; Lobodenko, A.; Lockwitz, S.; Loginov, A.; Lokajicek, M.; Lopes de Sa, R.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Luna-Garcia, R.; Lungu, G.; Lyon, A. L.; Lys, J.; Lysak, R.; Maciel, A. K. A.; Madar, R.; Madrak, R.; Maestro, P.; Magaña-Villalba, R.; Malik, S.; Malik, S.; Malyshev, V. L.; Manca, G.; Manousakis-Katsikakis, A.; Mansour, J.; Marchese, L.; Margaroli, F.; Marino, P.; Martínez-Ortega, J.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McCarthy, R.; McGivern, C. L.; McNulty, R.; Mehta, A.; Mehtala, P.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Mesropian, C.; Meyer, A.; Meyer, J.; Miao, T.; Miconi, F.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondal, N. K.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Mulhearn, M.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nagy, E.; Nakano, I.; Napier, A.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Nett, J.; Neu, C.; Neustroev, P.; Nguyen, H. T.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Nunnemann, T.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Orduna, J.; Ortolan, L.; Osman, N.; Osta, J.; Pagliarone, C.; Pal, A.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parashar, N.; Parihar, V.; Park, S. K.; Parker, W.; Partridge, R.; Parua, N.; Patwa, A.; Pauletta, G.; Paulini, M.; Paus, C.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pleier, M.-A.; Podstavkov, V. M.; Pondrom, L.; Popov, A. V.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prewitt, M.; Price, D.; Prokopenko, N.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ripp-Baudot, I.; Ristori, L.; Rizatdinova, F.; Robson, A.; Rodriguez, T.; Rolli, S.; Rominsky, M.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sajot, G.; Sakumoto, W. K.; Sakurai, Y.; Sánchez-Hernández, A.; Sanders, M. P.; Santi, L.; Santos, A. S.; Sato, K.; Savage, G.; Saveliev, V.; Savitskyi, M.; Savoy-Navarro, A.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlabach, P.; Schmidt, E. E.; Schwanenberger, C.; Schwarz, T.; Schwienhorst, R.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Sekaric, J.; Semenov, A.; Severini, H.; Sforza, F.; Shabalina, E.; Shalhout, S. Z.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simak, V.; Simonenko, A.; Skubic, P.; Slattery, P.; Sliwa, K.; Smirnov, D.; Smith, J. R.; Snider, F. D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Song, H.; Sonnenschein, L.; Sorin, V.; Soustruznik, K.; St. Denis, R.; Stancari, M.; Stark, J.; Stentz, D.; Stoyanova, D. A.; Strauss, M.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Suter, L.; Svoisky, P.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Titov, M.; Toback, D.; Tokar, S.; Tokmenin, V. V.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Ukegawa, F.; Uozumi, S.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Vázquez, F.; Velev, G.; Vellidis, C.; Verkheev, A. Y.; Vernieri, C.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vidal, M.; Vilanova, D.; Vilar, R.; Vizán, J.; Vogel, M.; Vokac, P.; Volpi, G.; Wagner, P.; Wahl, H. D.; Wallny, R.; Wang, M. H. L. S.; Wang, S. M.; Warchol, J.; Waters, D.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Williams, M. R. J.; Wilson, G. W.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wobisch, M.; Wolbers, S.; Wolfe, H.; Wood, D. R.; Wright, T.; Wu, X.; Wu, Z.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yamamoto, K.; Yamato, D.; Yang, S.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yeh, G. P.; Yi, K.; Yin, H.; Yip, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Youn, S. W.; Yu, G. B.; Yu, I.; Yu, J. M.; Zanetti, A. M.; Zeng, Y.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhou, C.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; Zucchelli, S.; CDF Collaboration

    2015-04-01

    Combined constraints from the CDF and D0 Collaborations on models of the Higgs boson with exotic spin J and parity P are presented and compared with results obtained assuming the standard model value JP=0+. Both collaborations analyzed approximately 10 fb-1 of proton-antiproton collisions with a center-of-mass energy of 1.96 TeV collected at the Fermilab Tevatron. Two models predicting exotic Higgs bosons with JP=0- and JP=2+ are tested. The kinematic properties of exotic Higgs boson production in association with a vector boson differ from those predicted for the standard model Higgs boson. Upper limits at the 95% credibility level on the production rates of the exotic Higgs bosons, expressed as fractions of the standard model Higgs boson production rate, are set at 0.36 for both the JP=0- hypothesis and the JP=2+ hypothesis. If the production rate times the branching ratio to a bottom-antibottom pair is the same as that predicted for the standard model Higgs boson, then the exotic bosons are excluded with significances of 5.0 standard deviations and 4.9 standard deviations for the JP=0- and JP=2+ hypotheses, respectively.

  2. Inclusive Production of Strange Particles at the CERN Proton-Antiproton Collider

    NASA Astrophysics Data System (ADS)

    Tan, Ching-Hua

    1994-01-01

    During the 1987 run of the CERN Proton-Antiproton Collider, at sqrt{s} = 630 GeV, the UA1 experiment collected about 2.4 times 10^6 (65 murm b^{-1}) events with a minimum bias trigger. An extensive study of the strange particle productions in this data set was performed. The measured masses of the strange particles are in very good agreement with the particle data group values and demonstrate the superb quality of the data. The production cross sections of K_sp{S}{0}, K^+/- , Lambda and |{Lambda} are measured. K_sp{S}{0 }, K^+/- production cross section measurements are in agreement with an available new NLO QCD prediction. The K_sp{S }{0} to the charged hadrons production ratio and that of Lambda + |{Lambda} to the charged hadrons as a function of multiplicity are measured. They are well explained by the quark model. We have also compared these features with those in heavy ion experiments. The strangeness suppression factor lambda is measured to be exactly the world average value. The average p_{t} of K _sp{S}{0}, K/ pi ratio and lambda are found to increase with sqrt{s}. The predictions for K/pi and lambda are made at the LHC energy 15 TeV pp collisions. The initial energy density that UA1 reached is given and the expectations at the LHC 6300 GeV/A Pb-Pb and RHIC Au-Au 200 GeV/A collisions are illustrated. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  3. Measurement of the Top Quark Mass by Dynamical Likelihood Method using the Lepton + Jets Events with the Collider Detector at Fermilab

    SciTech Connect

    Kubo, Taichi

    2008-02-01

    We have measured the top quark mass with the dynamical likelihood method. The data corresponding to an integrated luminosity of 1.7fb-1 was collected in proton antiproton collisions at a center of mass energy of 1.96 TeV with the CDF detector at Fermilab Tevatron during the period March 2002-March 2007. We select t$\\bar{t}$ pair production candidates by requiring one high energy lepton and four jets, in which at least one of jets must be tagged as a b-jet. In order to reconstruct the top quark mass, we use the dynamical likelihood method based on maximum likelihood method where a likelihood is defined as the differential cross section multiplied by the transfer function from observed quantities to parton quantities, as a function of the top quark mass and the jet energy scale(JES). With this method, we measure the top quark mass to be 171.6 ± 2.0 (stat.+ JES) ± 1.3(syst.) = 171.6 ± 2.4 GeV/c2.

  4. Status of the Fermilab Recycler

    SciTech Connect

    Derwent, P.F.; /Fermilab

    2007-09-01

    The author presents the current operational status of the Fermilab Recycler Ring. Using a mix of stochastic and electron cooling, we prepare antiproton beams for the Fermilab Tevatron Collider program. Included are discussion of stashing and cooling performance, operational scenarios, and collider performance.

  5. Support of hadroproduction of bottom using the 800 GeV/c primary proton beam at the Fermilab tevatron. Final performance report, June 14, 1988--May 14, 1992

    SciTech Connect

    Judd, D.J.

    1992-05-14

    The High Energy Physics (HEP) group at Prairie View A&M University is a collaborator with Fermi National Accelerator Laboratory (Fermilab), and the universities listed below. The purpose of this collaboration is to contribute to the understanding of heavy quark hadroproduction. Our efforts began in the early 1980`s at Fermilab with the study of the charmonium states, J/{psi} and {chi}, (DE-FG-86ER-40297) and presently with the continued studies of the charmonium system and direct photon production (Fermilab experiment E705) and new studies on bottom production (Fermilab experiment E771) in the High Intensity Laboratory (Proton-West Area) of Fermilab. The Prairie View group will, as a part of their task, be directly responsible for a major part of the PWC system upgrade by developing the electronics for the readouts of the PWC pad chambers. Six in all, these chambers, are a part of new multilevel triggering scheme and represents a departure from the triggering methodology of the previous trigger processors in earlier experiments. The Prairie View group is also involved with the Bottom Collider Detector (BCD) Collaboration which is proposing to study bottom production at the Fermilab Collider and at the Superconducting Super Collider (SSC).

  6. Search for Diphoton Events with Large Missing Transverse Energy in 6.3 fb-1 of p$\\bar{p}$ Collisions using the D0 Detector at the Fermilab Tevatron Collider

    SciTech Connect

    Cooke, Mark Stephen

    2010-01-01

    A search for diphoton events with large missing transverse energy produced in p$\\bar{p}$ collisions at √s = 1.96 TeV is presented. The data were collected with the D0 detector at the Fermilab Tevatron Collider between 2002 and 2010, and correspond to 6.3 fb-1 of integrated luminosity. The observed missing transverse energy distribution is well described by the Standard Model prediction, and 95% C.L. limits are derived on two realizations of theories beyond the Standard Model. In a gauge mediated supersymmetry breaking scenario, the breaking scale Λ is excluded for Λ < 124 TeV. In a universal extra dimension model including gravitational decays, the compactification radius Rc is excluded for Rc-1 < 477 GeV.

  7. Overview of sigma, /rho/ and dsigma/dt in high energy proton-antiproton scattering

    SciTech Connect

    Cahn, R.N.

    1988-07-12

    Recent results on the total cross section, real-to-imaginary ratio of the forward scattering amplitude, and the slope parameter are discussed. The ability of future Tevatron data to distinguish between alternative explanations of the large value of /rho/ measured by UA-4 is emphasized. 8 refs., 1 tab.

  8. Measurement of the inclusive jet cross section in proton-antiproton collisions at the center-of-mass energy of 1.96 TeV

    SciTech Connect

    Voutilainen, Mikko Antero

    2008-07-01

    This thesis studies the high-energy collisions of protons and antiprotons. The data used in the measurement were collected during 2004-2005 with the D0 detector at the Tevatron Collider of the Fermi National Accelerator Laboratory and correspond to 0.7 fb-1 of integrated luminosity. High energy hadron collisions usually produce collimated sprays of particles called jets. The energy of the jets is measured using a liquid Argon-Uranium calorimeter and the production angle is determined with the help of silicon microstrip and scintillating fiber trackers. The inclusive jet cross section in proton-antiproton collisions is measured as a function of jet transverse momentum pT in six bins of jet rapidity at the center-of-mass energy √s = 1.96 TeV. The measurement covers jet transerve momenta from 50 GeV up to 600 GeV and jet rapidities up to |y| = 2.4. The data are collected using a set of seven single jet triggers. Event and jet cuts are applied to remove non-physical backgrounds and cosmic-ray interactions. The data are corrected for jet energy calibration, cut and trigger efficiencies and finite jet pT resolution. The corrections are determined from data and the methods are tested with Monte Carlo simulation. The main experimental challenges in the measurement are the calibration of jet energies and the determination of the jet pT resolution. New methods are developed for the jet energy calibration that take into account physical differences between the {gamma}+jet and dijet calibration samples arising from quark and gluon jet differences. The uncertainty correlations are studied and provided as a set of uncertainty sources. The production of particle jets in hadron collisions is described by the theory of quantum chromodynamics (QCD). When the transverse jet momentum is large, the contributions from long-distance physics processes are small and the production rates of jets can be predicted by perturbative QCD. The

  9. Search for Wh Production Using High-PT Isolated Like-Sign Dilepton Events in 1.96-TeV Proton-Antiproton Collisions

    SciTech Connect

    Wakisaka, Takayuki

    2009-04-01

    The thesis describes search for the neutral Higgs production associated with the W boson using high-PT isolated like-sign (LS) dilepton events in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV.

  10. Search for the production of ZW and ZZ boson pairs decaying into charged leptons and jets in proton-antiproton collisions at sqrt[s]=1.96 TeV

    SciTech Connect

    Aaltonen, Timo Antero; et al,

    2013-11-01

    We present a measurement of the production cross section for ZW and ZZ boson pairs in final states with a pair of charged leptons, from the decay of a Z boson, and at least two jets, from the decay of a W or Z boson, using the full sample of proton-antiproton collisions recorded with the CDF II detector at the Tevatron, corresponding to 8.9 fb^(-1) of integrated luminosity. We increase the sensitivity to vector boson decays into pairs of quarks using a neural network discriminant that exploits the differences between the spatial spread of energy depositions and charged-particle momenta contained within the jet of particles originating from quarks and gluons. Additionally, we employ new jet energy corrections to Monte Carlo simulations that account for differences in the observed energy scales for quark and gluon jets. The number of signal events is extracted through a simultaneous fit to the dijet mass spectrum in three classes of events: events likely to contain jets with a heavy-quark decay, events likely to contain jets originating from light quarks, and events that fail these identification criteria. We determine the production cross section to be 2.5 +2.0 -1.0 pb (< 6.1 pb at the 95% confidence level), consistent with the standard model prediction of 5.1 pb.

  11. Search for first-generation leptoquarks in the jets and missing transverse energy topology in proton-antiproton collisions at center-of-mass energy 1.96 TeV

    SciTech Connect

    Tsybychev, Dmitri

    2004-04-01

    The authors performed a search for the pair production of first-generation leptoquarks using 191 pb-1 of proton-antiproton collision data recorded by the CDF experiment during Run II of the Tevatron. The leptoquarks are sought via their decay into a neutrino and quark, which yields missing transverse energy and several high-ET jets. Several control regions were studied to check the background estimation from Standard Model sources, with good agreement observed in data. In the leptoquark signal region, 124 events were observed with 118.3 ± 14.5 expected from background. Therefore, no evidence for leptoquark production was observed, and limits were set on the cross section times the squared branching ratio. Using the next-to-leading order cross section for leptoquark production, they excluded the mass interval 78 to 117 GeV/c2 at the 95% confidence level for 100% branching ratio into neutrino plus quark.

  12. Twenty Years of Tevatron Operation

    NASA Astrophysics Data System (ADS)

    Theilacker, J. C.

    2004-06-01

    The superconducting Tevatron accelerator at Fermi National Accelerator Laboratory (Fermilab) has surpassed twenty years of operation. The Tevatron is still the highest energy particle accelerator in the world and will remain so until the commissioning of the LHC in Europe later this decade. The Tevatron has operated in a Fixed Target mode, accelerating a proton beam into stationary targets/detectors, as well as a Colliding Beam mode, continuously colliding counter rotating beams of protons and antiprotons. Upon completion, the Tevatron cryogenic system became the world's largest helium refrigeration system. In 1993, the Tevatron cryogenic system was given the designation of International Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers. The operational history, experiences and statistics of the Tevatron, with an emphasis on the cryogenic system, is presented. Improvements, upgrades and current challenges of the cryogenic system are discussed.

  13. Twenty Years of Tevatron Operation

    SciTech Connect

    Jay C. Theilacker

    2004-07-15

    The superconducting Tevatron accelerator at Fermi National Accelerator Laboratory (Fermilab) has surpassed twenty years of operation. The Tevatron is still the highest energy particle accelerator in the world and will remain so until the commissioning of the LHC in Europe later this decade. The Tevatron has operated in a Fixed Target mode, accelerating a proton beam into stationary targets/detectors, as well as a Colliding Beam mode, continuously colliding counter rotating beams of protons and antiprotons. Upon completion, the Tevatron cryogenic system became the world's largest helium refrigeration system. In 1993, the Tevatron cryogenic system was given the designation of International Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers. The operational history, experiences and statistics of the Tevatron, with an emphasis on the cryogenic system, is presented. Improvements, upgrades and current challenges of the cryogenic system are discussed.

  14. A Measurement of Z Boson Production and Rapidity Distribution in Proton-Antiproton Collisions at √s = 1.96 TeV

    SciTech Connect

    Robson, Aidan

    2004-12-25

    High-precision measurements are made of Z boson production in proton-antiproton collisions at √s = 1.96 TeV recorded by the Collider Detector at Fermilab, using the electron decay channel. The cross-section times branching ratio is measured to be σZ · Br(Z → e+e-) = (255.7 ± 2.4stat ± 5.2sys ± 15.2lum)pb in a dataset of 194 pb-1 collected between March 2002 and June 2003. This agrees well with theoretical predictions. The cross-section for W boson production in the electron channel has also been measured in the subset of this dataset of 72 pb-1 collected up until January 2003. Using this smaller dataset the ratio of cross-sections is determined to be R ≡ σW · Br(W → eν)/σZ · Br(Z → ee) = 10.82 ± 0.18stat ± 0.16sys. Combining these results with measurements made in the muon channel gives R = 10.92 ± 0.15stat ± 0.14sys (e + μ channels), from which the branching ratio of the W to electrons and muons, and the total width of the W, have been extracted: Br(W → lν) = 0.1089 ± 0.0022 (l = e,μ); Γ(W) = 2078.8 ± 41.4 MeV, which are in good agreement with the Standard Model values and with other measurements. The CKM quark mixing matrix element |Vcs| has been extracted: |Vcs| = 0.967 ± 0.030. The rapidity distribution dσ/dy for Z → ee has also been measured over close to the full kinematic range using 194 pb-1 of data, and is found to be in good agreement with the NNLO prediction.

  15. Direct measurement of the W boson decay width in proton-antiproton collisions at √s = 1.96-TeV

    SciTech Connect

    Zhu, Jun-jie

    2004-01-01

    This dissertation describes a direct measurement of the W boson total decay width, ΓW, using the D0 detector at the Fermilab Tevatron Collider. The measurement uses an integrated luminosity of 177.3 pb-1 data, collected during the 2002-2003 run. The width is determined from the shape of the transverse mass distribution, MT, by fitting the data in the tail region 100 < MT < 200 GeV. The result if ΓW = 2.011 ± 0.093(stat) ± 0.107(syst) GeV.

  16. A measurement of forward-backward charge asymmetry of electron-positron pairs in proton-antiproton collision at 1.8 TeV

    SciTech Connect

    Veramendi, Gregory Francisco

    2003-01-01

    The authors present a measurement of the mass dependence of the forward-backward charge asymmetry for e+e- pairs resulting from γ*/Z decays with mass Mee > 40 GeV/c2. The Run II data sample consists of 72 pb-1 of data, which was collected by the CDF detector in $\\bar{p}$p collisions at √s = 1.96 TeV at the Fermilab Tevatron. The measurement is compared with predictions from the Standard Model.

  17. Observation and study of bottom-meson decays to a charm meson, a proton-antiproton pair, and pions

    SciTech Connect

    Hong, Tae Min

    2010-04-27

    Bottom-meson decays with baryons show two unusual features—the branching fractions are enhanced for multibody decays and the baryon-antibaryon subsystem recoils against the other decay products—and their reasons are not yet well understood. Moreover, measurements using explicit reconstruction techniques constitute only about 1% out of about 8% of such decays. This Dissertation reports the study of ten bottom-meson decays (labeled 0– 9) to a proton-antiproton pair, a charm meson, and a system of up to two pions, using the BABAR Experiment’s 455×106 BB pairs produced with the PEP-II asymmetric-energy e+e- collider at the Stanford Linear Accelerator Center.

  18. Search for new particles decaying into dijets in proton-antiproton collisions at s=1.96TeV

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Azzurri, P.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beringer, J.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burke, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cordelli, M.; Cortiana, G.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Derwent, P. F.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Genser, K.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heijboer, A.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Knuteson, B.; Ko, B. R.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C.-S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lucchesi, D.; Luci, C.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Merkel, P.; Mesropian, C.; Miao, T.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Nett, J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Sidoti, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Spalding, J.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Stuart, D.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Trovato, M.; Tsai, S.-Y.; Tu, Y.; Turini, N.; Ukegawa, F.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Würthwein, F.; Xie, S.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2009-06-01

    We present a search for new particles which produce narrow two-jet (dijet) resonances using proton-antiproton collision data corresponding to an integrated luminosity of 1.13fb-1 collected with the CDF II detector. The measured dijet mass spectrum is found to be consistent with next-to-leading-order perturbative QCD predictions, and no significant evidence of new particles is found. We set upper limits at the 95% confidence level on cross sections times the branching fraction for the production of new particles decaying into dijets with both jets having a rapidity magnitude |y|<1. These limits are used to determine the mass exclusions for the excited quark, axigluon, flavor-universal coloron, E6 diquark, color-octet techni-ρ, W', and Z'.

  19. Space charge measurements with a high intensity bunch at the Fermilab Main Injector

    SciTech Connect

    Seiya, K.; Chase, B.; Dey, J.; Joireman, P.; Kourbanis, I.; Yagodnitsyna, A.; /Novosibirsk State U.

    2011-03-01

    For Project X, the Fermilab Main Injector will be required to operate with 3 times higher bunch intensity. The plan to study the space charge effects at the injection energy with intense bunches will be discussed. A multi-MW proton facility has been established as a critical need for the U.S. HEP program by HEPAP and P5. Utilization of the Main Injector (MI) as a high intensity proton source capable of delivering in excess of 2 MW beam power will require a factor of three increase in bunch intensity compared to current operations. Instabilities associated with beam loading, space charge, and electron cloud effects are common issues for high intensity proton machines. The MI intensities for current operations and Project X are listed in Table 1. The MI provides proton beams for Fermilab's Tevatron Proton-Antiproton Collider and MINOS neutrino experiments. The proposed 2MW proton facility, Project X, utilizes both the Recycler (RR) and the MI. The RR will be reconfigured as a proton accumulator and injector to realize the factor 3 bunch intensity increase in the MI. Since the energy in the RR and the MI at injection will be 6-8 GeV, which is relatively low, space charge effects will be significant and need to be studied. Studies based on the formation of high intensity bunches in the MI will guide the design and fabrication of the RF cavities and space-charge mitigation devices required for 2 MW operation of the MI. It is possible to create the higher bunch intensities required in the MI using a coalescing technique that has been successfully developed at Fermilab. This paper will discuss a 5 bunch coalescing scheme at 8 GeV which will produce 2.5 x 10{sup 11} protons in one bunch. Bunch stretching will be added to the coalescing process. The required RF parameters were optimized with longitudinal simulations. The beam studies, that have a goal of 85% coalescing efficiency, were started in June 2010.

  20. B Physics at the Tevatron

    SciTech Connect

    Manfred Paulini

    2004-02-10

    After a five year upgrade period, the Fermilab experiments CDF and D0 are taking high quality data in Run II of the Tevatron Collider. We report on the start-up of both detectors and present a selection of first B physics results from the Tevatron. We also compare different B hadron producers such as the {Upsilon}(4S) with the hadron collider environment and discuss general features of B physics at a hadron collider.

  1. [Support of HadroProduction of bottom using the 800 GeV/c primary photon beam at the Fermilab tevatron]. 1993 E771 status report

    SciTech Connect

    Not Available

    1994-04-01

    This report is a proposal from the group at Prairie View A&M University for an extension of their involvement with the E771 experiment at Fermilab. They describe their work on data analysis of this experiment, and effort involved in porting analysis codes from different work stations. This analysis is ongoing. They also propose to be a part of the extension of the E771 experiment (P867), which is proposed for the next fixed target run, in 1994/1995.

  2. Fermilab recycler stochastic cooling commissioning and performance

    SciTech Connect

    D. Broemmelsiek; Ralph Pasquinelli

    2003-06-04

    The Fermilab Recycler is a fixed 8 GeV kinetic energy storage ring located in the Fermilab Main Injector tunnel near the ceiling. The Recycler has two roles in Run II. First, to store antiprotons from the Fermilab Antiproton Accumulator so that the antiproton production rate is no longer compromised by large numbers of antiprotons stored in the Accumulator. Second, to receive antiprotons from the Fermilab Tevatron at the end of luminosity periods. To perform each of these roles, stochastic cooling in the Recycler is needed to preserve and cool antiprotons in preparation for transfer to the Tevatron. The commissioning and performance of the Recycler stochastic cooling systems will be reviewed.

  3. Flying wires at Fermilab

    SciTech Connect

    Gannon, J.; Crawford, C.; Finley, D.; Flora, R.; Groves, T.; MacPherson, M.

    1989-03-01

    Transverse beam profile measurement systems called ''Flying Wires'' have been installed and made operational in the Fermilab Main Ring and Tevatron accelerators. These devices are used routinely to measure the emittance of both protons and antiprotons throughout the fill process, and for emittance growth measurements during stores. In the Tevatron, the individual transverse profiles of six proton and six antiproton bunches are obtained simultaneously, with a single pass of the wire through the beam. Essential features of the hardware, software, and system operation are explained in the rest of the paper. 3 refs., 4 figs.

  4. Magnetic field data on Fermilab Energy-Saver quadrupoles

    SciTech Connect

    Schmidt, E.E.; Brown, B.C.; Cooper, W.E.; Fisk, H.E.; Gross, D.A.; Hanft, R.; Ohnuma, S.; Turkot, F.T.

    1983-03-01

    The Fermilab Energy Saver/Doubler (Tevatron) accelerator contains 216 superconducting quadrupole magnets. Before installation in the Tevatron ring, these magnets plus an additional number of spares were extensively tested at the Fermilab Magnet Test Facility (MTF). Details on the results of the tests are presented here.

  5. Considerations of bunch-spacing options for multi-bunch operation of the Tevatron Collider

    SciTech Connect

    Dugan, G.

    1989-12-14

    This discussion will consider a number of points relevant to limitations, advantages and disadvantages of various arrangements of bunches in the Tevatron proton-antiproton collider. The considerations discussed here will be limited to: (a) bunch spacing symmetry and relation to the relative luminosity at B0 and D0 and the beam-beam interaction with separated beams; (b) bunch spacing constraints imposed by Main Ring RF coalescing and the optics of beam separation at B0 and D0; and (c) bunch spacing constraints imposed by injection and abort kicker timing requirements, and by the Antiproton Source RF unstacking process. 20 figs., 17 tabs.

  6. Probing the leading-twist transverse-momentum-dependent parton distribution function h1T⊥ via the polarized proton-antiproton Drell-Yan process

    NASA Astrophysics Data System (ADS)

    Zhu, Jiacai; Ma, Bo-Qiang

    2010-12-01

    We show that the polarized proton-antiproton Drell-Yan process is ideal to probe the pretzelosity distribution (h1T⊥), which is one of the new transverse-momentum-dependent parton distributions of the nucleon. We present predictions of the cos⁡(2ϕ+ϕa-ϕb) asymmetry in the transversely polarized proton-antiproton Drell-Yan process at PAX kinematics and find that the results are significantly larger compared with those of the sin⁡(3ϕh-ϕS) asymmetry in the semi-inclusive deep inelastic scattering process at HERMES, COMPASS, and JLab kinematics. We conclude that the cos⁡(2ϕ+ϕa-ϕb) asymmetry in the PAX experiment can probe the new physical quantity of the pretzelosity distribution.

  7. Tau identification at the Tevatron

    SciTech Connect

    Levy, Stephen; /Chicago U., EFI

    2005-07-01

    Methods for reconstructing and identifying the hadronic decays of tau leptons with the CDF and D0 detectors at the Fermilab Tevatron collider in Run II are described. Precision electroweak measurements of W and Z gauge boson cross sections are presented as well as results of searches for physics beyond the Standard Model with hadronically decaying tau leptons in the final state.

  8. Recent Results from the Tevatron

    SciTech Connect

    Demorden, L.

    1998-06-01

    We review recent results from fixed-target and collider experiments at the Fermilab Tevatron. Among the topics discussed are jet production rates, {alpha}{sub S} measurements, the {anti d}/{anti u} ratio in the proton sea, diffraction, heavy quark physics and leptoquark searches.

  9. The Charge Asymmetry in W Boson Decays Produced in Proton-Antiproton Collisions

    NASA Astrophysics Data System (ADS)

    Dickson, Mark Richard

    The charge asymmetry as a function of lepton rapidity, A(y), has been measured at sqrt{s} = 1.8 TeV for mid ymid < 1.8, using the W decays to electrons and muons recorded by the CDF detector during the 1992-93 run of the Tevatron Collider. The large sample of 19,039 W to lv events ({~} 20 pb^{-1} of integrated luminosity) and detector improvements have made discrimination between sets of modern parton distributions possible, for the first time, using p=p collider data. The asymmetry data is sensitive to the ratio of the d/u quark momentum distributions in the proton. The data favor the most recent parton distributions and demonstrate the value of collider data in the measurement of the proton's structure. In particular it is found that of the two current sets, those of Martin, Roberts and Stirling (MRS) are favored over the sets produced by the CTEQ collaboration; this difference is seen even though both sets are found to agree, at the level of the nuclear shadowing corrections, with the recent measurements of F_sp{2} {n}/F_sp{2}{p } performed by NMC. This measurement probes the quark distributions to x < 0.01 at Q^2 = M_sp{W }{2}, where nonperturbative effects are minimal.

  10. Subjet multiplicity of quark and gluon jets reconstructed with the relative transverse momenta algorithm in proton- antiproton collisions

    NASA Astrophysics Data System (ADS)

    Snihur, Robert Michael

    2000-12-01

    This thesis presents some of the first experimental results of the k⊥ jet algorithm at a hadron collider. Gluon jets dominate the final state of proton-antiproton (pp¯) collisions at high center-of- mass energies ( s = 1800 GeV). Quark jets make up a significant fraction of the jet cross section only at high jet transverse momentum pT or low s . For fixed pT, we compare jets at s = 1800 GeV to s = 630 GeV, and interpret differences in terms of differing contributions from gluon and quark jets. We define jets with a successive combination algorithm based on relative transverse momenta ( k⊥ ). To study jet structure, the k⊥ algorithm is then applied within the jet to resolve subjets. We measure the number of subjets within mixed quark and gluon jet samples at s = 1800 and 630 GeV. A simple method is used to extract measurements of pure quark and gluon jet samples separately. The method requires knowledge of the relative mix of quarks and gluons in the two s samples, which we derive from Monte Carlo and a detailed detector simulation. The number of subjets emitted in gluon jets is measured to be approximately twice that in quark jets.

  11. Search for $W'\\to t b $ in Events with Large Missing Transverse Energy and Jets with the CDF detector at the Fermilab Tevatron Collider

    SciTech Connect

    Bianchi, Ludovico

    2012-01-01

    In the scope of the strong ongoing data analysis efforts of the CDF col- laboration at Fermilab, we present a search for the production of mas sive W1 bosons decaying to a top and a bottom quark in p$\\bar{p}$ collisions at √s = 1.96 TeV. To perform this search, we select events with large Missing Transverse Energy plus two or three jets, in which the W generated from top decays leptonically, and either the e or µ is lost or the τ is reconstructed as a jet. A complete study of the selected sample is discussed, including the creation and subsequent optimization of a Neural Network-based multivariate tool to reject the QCD multijet background from the signal region. Finally, we perform a likelihood-based multichannel Bayesian fit procedure on the invariant transverse mass of the Missing Transverse Energy and jets to extract 95% CL limits on σ(p$\\bar{p}$ . → W') × B(W' → tb) for MW' = 200 GeV/c2

  12. Recent results in light-quark meson spectroscopy from Fermilab experiment E-760

    SciTech Connect

    Hasan, M.A.; Bharadwaj, V.; Church, M.; Hahn, A.; Hasan, M.A.; Hsueh, S.; Marsh, W.; Peoples, J. Jr.; Pordes, S.; Rapidis, P.

    1994-09-01

    Fermilab experiment E-760 light-quark meson spectroscopy data for proton-antiproton annihilation to 3{pi}{sup 0}, 2{pi}{sup 0}{eta}, {pi}{sup 0}2{eta}, and 3{eta} in-flight have confirmed the 1500 MeV state at rest seen previously at CERN. Structures above this energy are complex, and preliminary results of amplitude analysis, in progress, for extracting spin quantum numbers show the possibility of nearly degenerate states for some of these structures. 9 refs., 6 figs., 3 tabs.

  13. Search for new physics in electron-tau final states in proton - antiproton collisions at 1.96 TeV

    SciTech Connect

    Noeding, Carsten

    2006-04-01

    large energy regimes. Hence there are strong reasons to believe that the Standard Model is only a low-energy approximation to a more fundamental theory. One of the best studied candidates for an extension of the Standard Model is supersymmetry, which predicts the existence of a supersymmetric partner for each fundamental particle that differs only in spin. To allow different masses for Standard Model particles and their corresponding supersymmetric partners, supersymmetry must be broken. The mechanism behind supersymmetry breaking is currently unknown, however, various hypotheses exist. Supersymmetric models do not only solve the problem of the large quantum corrections to the Higgs boson mass, but they also allow the unification of the coupling constants at a common scale. In addition, certain supersymmetric models provide a suitable candidate for cold dark matter, which represents a large fraction of mass in our universe. Searches for supersymmetric particles have been performed by the four LEP experiments (ALEPH, DELPHI, L3, OPAL) up to the kinematic limit. Since no evidence for supersymmetric particles has been found, lower limits on their masses have been derived. The search for supersymmetry is now continuing at the Tevatron collider, located at the Fermi National Accelerator Laboratory in Batavia, Illinois. Two dedicated detector systems, CDF and D0, are installed at the Tevatron to analyze proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. A particular promising discovery channel for supersymmetry within the Tevatron energy range is the trilepton channel. In this channel, the lighter supersymmetric partners of the Higgs and gauge bosons, the charginos and neutralinos, decay into final states with leptons or hadrons and missing energy. Using the leptonic final states, the signal can be separated from the large Standard Model background. Supersymmetry requires an extension of the Standard Model Higgs sector, leading to more than one neutral Higgs

  14. Measurements of the Top Quark at the Tevatron Collider

    SciTech Connect

    Cerrito, Lucio

    2007-01-01

    The authors present recent preliminary measurements of the top-antitop pair production cross section and determinations of the top quark pole mass, performed using the data collected by the CDF and D0 Collaborations at the Tevatron Collider. In the lepton plus jets final state, with semileptonic B decay, the pair production cross section has now been measured at CDF using {approx} 760 pb{sup -1} of proton-antiproton collisions at a center-of-mass energy of {radical}s = 1.96 TeV. A measurement of the production cross section has also been made with {approx} 1 fb{sup -1} of data in the all-jets final state by the CDF Collaboration. The mass of the top quark has now been measured using {approx} 1 fb{sup -1} of collision data using all decay channels of the top quark pair, yielding the most precise measurements of the top mass to date.

  15. Operation and maintenance of Fermilab`s satellite refrigerator expansion engines

    SciTech Connect

    Soyars, W.M.

    1996-09-01

    Fermilab`s superconducting Tevatron accelerator is cooled to liquid helium temperatures by 24 satellite refrigerators, each of which uses for normal operations a reciprocating `wet` expansion engine. These expanders are basically Process System (formerly Koch) Model 1400 expanders installed in standalone cryostats designed by Fermilab. This paper will summarize recent experience with operations and maintenance of these expansion engines. Some of the statistics presented will include total engine hours, mean time between major and minor maintenance, and frequent causes of major maintenance.

  16. Crystal extraction at the Tevatron

    SciTech Connect

    Carrigan, Richard A., Jr.; /Fermilab

    2005-06-01

    Luminosity-driven channeling extraction was observed for the first time in a 900 GeV study at the Fermilab Tevatron carried out in the 1995-1996 period. This experiment, Fermilab E853, demonstrated that useful TeV level beams can be extracted from a superconducting accelerator during high luminosity collider operations without unduly affecting the background at the collider detectors. Multipass extraction was found to increase the efficiency of the process significantly. The beam extraction efficiency was in the range of 25%. The history of the experiment is reviewed. Special attention is paid to results related to collimation.

  17. Measurement of the Λ0b lifetime in Λ0b → Λ+cπ- decays at the Collider Detector at Fermilab

    SciTech Connect

    Mumford, Jonathan Reid

    2008-09-01

    The lifetime of the Λ0b baryon (consisting of u, d and b quarks) is the theoretically most interesting of all b-hadron lifetimes. The lifetime of Λ0b probes our understanding of how baryons with one heavy quark are put together and how they decay. Experimentally however, measurements of the Λ0b lifetime have either lacked precision or have been inconsistent with one another. This thesis describes the measurement of Λ0b lifetime in proton-antiproton collisions with center of mass energy of 1.96 TeV at Fermilab's Tevatron collider. Using 1070 ± 60pb-1 of data collected by the Collider Detector at Fermilab (CDF), a clean sample of about 3,000 fully-reconstructed Λ0b →Λc+π- decays (with Λ+c subsequently decaying via Λ+c → p+ K- π+) is used to extract the lifetime of the Λ0b baryon, which is found to be cτ(Λ0b) = 422.8 ± 13.8(stat) ± 8.8(syst)μm. This is the most precise measurement of its kind, and is even better than the current world average. It also settles the recent controversy regarding the apparent inconsistency between CDF's other measurement and the rest of the world.

  18. Precision measurements of the top quark mass from the Tevatron in the pre-LHC era.

    PubMed

    Galtieri, Angela Barbaro; Margaroli, Fabrizio; Volobouev, Igor

    2012-05-01

    The top quark is the heaviest of the six quarks of the standard model (SM). Precise knowledge of its mass is important for imposing constraints on a number of physics processes, including interactions of the as yet unobserved Higgs boson. The Higgs boson is the only missing particle of the SM, central to the electroweak symmetry breaking mechanism and generation of particle masses. In this review, experimental measurements of the top quark mass accomplished at the Tevatron, a proton-antiproton collider located at the Fermi National Accelerator Laboratory, are described. Topologies of top quark events and the methods used to separate signal events from background sources are discussed. Data analysis techniques used to extract information about the top mass value are reviewed. The combination of several of the most precise measurements performed with the two Tevatron particle detectors, CDF and DØ, yields a value of M(t) = 173.2 ± 0.9 GeV/c(2).

  19. Top physics at the Tevatron Collider

    SciTech Connect

    Margaroli, Fabrizio; /Purdue U.

    2007-10-01

    The top quark has been discovered in 1995 at the CDF and DO experiments located in the Tevatron ring at the Fermilab laboratory. After more than a decade the Tevatron collider, with its center-of-mass energy collisions of 1.96 TeV, is still the only machine capable of producing such exceptionally heavy particle. Here I present a selection of the most recent CDF and DO measurements performed analyzing {approx} 1 fb{sup -1} of integrated luminosity.

  20. Searches for supersymmetry at the Tevatron

    SciTech Connect

    Mary R. M. Bishai

    2001-05-15

    We review current experimental results of searches for Supersymmetry (SUSY) at the Fermilab Tevatron Collider using the Run I data collected during 1992-1996. New results from the CDF detector in the jets + missing E{sub t} and lepton-photon channels are presented. Recent results from model independent searches at D0 using the SLEUTH algorithm are reviewed. We discuss the prospects for supersymmetry searches at Run II of the Tevatron, scheduled to start in March, 2001.

  1. Electroweak results from the tevatron

    SciTech Connect

    Wood, D.

    1997-01-01

    Electroweak results are presented from the CDF and DO experiments based on data collected in recent runs of the Fermilab Tevatron Collider. The measurements include the mass and width of the W boson, the production cross sections of the W and Z bosons, and the W charge asymmetry. Additional results come from studies of events with pairs of electroweak gauge bosons and include limits on anomalous couplings.

  2. B States at the Tevatron

    SciTech Connect

    Paulini, Manfred; /Carnegie Mellon U.

    2009-06-01

    The CDF and D0 experiments have produced a wealth of heavy flavor physics results since the beginning of RunII of the Fermilab Tevatron. They review recent measurements of B hadron states including excited B states (B**, B{sub s}**) and the B{sub c}{sup +} meson. They also summarize the discoveries of the {Sigma}{sub b} baryon states and the {Xi}{sub b}{sup -} baryon.

  3. Diboson physics at the Tevatron

    SciTech Connect

    Neubauer, Mark S.; /UC, San Diego

    2006-05-01

    At the Fermilab Tevatron, the CDF and D0 detectors are being used to study diboson production in p{bar p} collisions at {radical}s = 1.96 TeV. The authors summarize recent measurements of the W{gamma}, Z{gamma}, and WW cross-sections and limits on WZ and ZZ production. Limits on anomalous trilinear gauge couplings are also presented.

  4. Power tests of the Fermilab Lithium Lens for antiproton collection

    SciTech Connect

    Biallas, G.; Dugan, G.; Hangst, J.; Hanson, R.; Hojvat, C.; Lange, F.; Lennox, A.J.; McCarthy, J.

    1983-08-01

    A prototpye Lithium Lens to be used for the collection of antiprotons in the Fermilab Tevatron I project has been constructed. Some of the fabrication details, the procedure for lithium filling and the results of the initial operation are discussed.

  5. Measurement of the branching fraction Br (B0s → Ds*Ds* using the D0 detector at Fermilab

    SciTech Connect

    Walder, James William

    2008-05-01

    This thesis describes a measurement of the branching fraction Br (B0s → Ds*Ds*) made using a data sample collected from proton-antiproton collisions at a centre-of-mass energy of 1.96 TeV, corresponding to approximately 1.3 fb-1 of integrated luminosity collected in 2002--2006 by the D0 detector at the Fermilab Tevatron Collider. One D*s meson was partially reconstructed in the decay Ds → Φμv, and the other D*s meson was identified using the decay Ds → Φπ where no attempt was made to distinguish Ds and D*s states. The resulting measurement is Br (B0s → Ds*Ds*) = 0.039+0.019-0.017(stat) +0.016-0.015(syst). This was subsequently used to estimate the width difference ΔΓCPs in the B0s-$\\bar{B}$0s system: ΔΓCPss = 0.079+0.038-0.035(stat)+0.031-0.030(syst), and is currently one of the most precise estimates of this quantity and consistent with the Standard Model.

  6. Results on Charm Baryon Spectroscopy from Tevatron

    SciTech Connect

    Wick, Felix

    2011-05-01

    Due to an excellent mass resolution and a large amount of available data, the CDF experiment, located at the Tevatron proton-antiproton accelerator, allows the precise measurement of spectroscopic properties, like mass and decay width, of a variety of states. This was exploited to examine the first orbital excitations of the {Lambda}{sub c} baryon, the resonances {Lambda}{sub c}(2595) and {Lambda}{sub c}(2625), in the decay channel {Lambda}{sub c}{sup +} {pi}{sup +}{pi}{sup -}, as well as the {Lambda}{sub c} spin excitations {Sigma}{sub c}(2455) and {Sigma}{sub c}(2520) in its decays to {Lambda}{sub c}{sup +} {pi}{sup -} and {Lambda}{sub c}{sup +} {pi}{sup -} final states in a data sample corresponding to an integrated luminosity of 5.2 fb{sup -1}. We present measurements of the mass differences with respect to the {Lambda}{sub c} and the decay widths of these states, using significantly higher statistics than previous experiments.

  7. Forward-Backward Asymmetry at High Mass in Top Quark Pair Production in Proton-Antiproton Collisions at Center of Mass Energy = 1.96 TeV

    NASA Astrophysics Data System (ADS)

    Eppig, Andrew Peter

    We present a new measurement of the inclusive forward-backward tt¯ production asymmetry and its mass dependence. The measurements are performed with data corresponding to an integrated luminosity of L = 5.3 fb-1 of pp¯ collisions at s = 1.96 TeV, recorded with the CDF II Detector at the Fermilab Tevatron. Significant inclusive asymmetries are observed in both the laboratory frame and the tt¯ rest frame, and in both cases are found to be consistent with CP conservation under interchange of t and t¯. In the tt¯ rest frame, the asymmetry is observed to increase with the invariant mass, Mtt¯, of the tt¯ system. Fully corrected parton-level asymmetries are derived in two regions of Mtt¯, and the asymmetry is found to be most significant at large Mtt¯ . For Mtt¯ ≥ 450 GeV/ c2, the parton-level asymmetry in the tt¯ rest frame is Att¯ = 0.475 +/- 0.114 compared to a next-to-leading order QCD prediction of 0.088 +/- 0.013.

  8. A Measurement of the Top Quark Mass in 1.96 TeV Proton-Antiproton Collisions Using a Novel Matrix Element Method

    SciTech Connect

    Freeman, John

    2007-01-01

    A measurement of the top quark mass in t$\\bar{t}$ → l + jets candidate events, obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t$\\bar{t}$ production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb-1 data sample, using events with a high-pT lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find Mmeas = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c2.

  9. Measurements of the B Production Cross Section in Proton-Antiproton Collisions at √s = 1.96 TeV using semileptonic decays of b hadrons

    SciTech Connect

    Kraus, James Alexander

    2006-07-01

    The authors present a measurement of the cross section of b hadron (Hb) production in p$\\bar{p}$ collisions at √s = 1.96 TeV using the CDF II detector at the Fermilab Tevatron. They use 83 pb-1 of data taken between october 2002 and May 2003 that was collected with a trigger sensitive to high momentum muons and displaced tracks. They use partially reconstructed decays in the following modes: Hb → μ- $\\bar{v}$μD0X, D0 → K-π+, and Hb → μ-$\\bar{v}$μD*+ X, D*+ → D0π+, D0 → K- π+, and their charge conjugates. They correct for the backgrounds from c$\\bar{c}$ and b$\\bar{b}$ decays, for trigger and reconstruction efficiencies, and for detector acceptance. They report the total cross section above a minimum transverse momentum (pT) of 9 GeV/c for the rapidity range |y| ≤ 0.6.

  10. A measurement of the top quark mass in 1.96 TeV proton-antiproton collisions using a novel matrix element method

    SciTech Connect

    Freeman, John C

    2007-01-01

    A measurement of the top quark mass in t$\\bar{t}$ → l + jets candidate events, obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix elements techniques, the method involves an integration using the Standard Model matrix element for tt production and decay. however, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb-1 data sample, using events with a high-pT lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find Mmeas = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c2.

  11. B(s) properties at the Tevatron

    SciTech Connect

    Gomez-Ceballos, Guillelmo; /Cantabria U., Santander

    2005-11-01

    The Tevatron collider at Fermilab provides a very rich environment for the study B{sub s} mesons. In this paper they show a few selected topics from the CDF and D0 collaborations, giving special attention to the B{sub s} Mixing analyses. This note corresponds to the proceedings of the Hadron Collider Physics 2005 conference.

  12. Tevatron targets three-year extension

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2010-09-01

    Fermilab's Tevatron collider could get a new lease on life following a campaign to keep the facility running beyond the end of 2011, when the rival Large Hadron Collider (LHC) at CERN is scheduled to shut down for 15 months of repairs.

  13. New particle searches at Tevatron (II)

    SciTech Connect

    Kamon, T.; CDF and D0 Collaborations

    1996-05-01

    Various recent results of new particle searches at the Fermilab Tevatron are presented. No evidence is found for supersymmetric particles (chargino, gluino), leptoquark bosons and heavy gauge bosons in {ital p{anti P}} collisions at {radical}s = 1.8 TeV. Excluded mass regions for each particle are determined.

  14. WW and WZ production at the tevatron

    SciTech Connect

    Fuess, T.A.

    1995-04-01

    Direct limits are set on WWZ and WW{gamma} three-boson couplings in a search for WW and WZ production in p{bar p} collisions at {radical}s = 1.8 TeV using the D(0) and CDF detectors at the Fermilab Tevatron.

  15. Measurement of the forward-backward asymmetry in low-mass bottom-quark pairs produced in proton-antiproton collisions

    DOE PAGES

    Aaltonen, T.; Amerio, S.; Amidei, D.; ...

    2016-06-02

    Here, we report a measurement of the forward-backward asymmetry, AFB, inmore » $$b\\bar{b}$$ pairs produced in proton-antiproton collisions and identified by muons from semileptonic b-hadron decays. The event sample is collected at a center-of-mass energy of √s = 1.96 TeV with the CDF II detector and corresponds to 6.9 fb–1 of integrated luminosity. We obtain an integrated asymmetry of AFB($$b\\bar{b}$$)=(1.2±0.7)% at the particle level for b-quark pairs with invariant mass, m$$b\\bar{b}$$, down to 40 GeV/c2 and measure the dependence of AFB($$b\\bar{b}$$) on m$$b\\bar{b}$$. The results are compatible with expectations from the standard model.« less

  16. Measurement of the forward-backward asymmetry in low-mass bottom-quark pairs produced in proton-antiproton collisions

    SciTech Connect

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D’Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D’Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Majersky, O.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W. -M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2016-06-02

    Here, we report a measurement of the forward-backward asymmetry, AFB, in $b\\bar{b}$ pairs produced in proton-antiproton collisions and identified by muons from semileptonic b-hadron decays. The event sample is collected at a center-of-mass energy of √s = 1.96 TeV with the CDF II detector and corresponds to 6.9 fb–1 of integrated luminosity. We obtain an integrated asymmetry of AFB($b\\bar{b}$)=(1.2±0.7)% at the particle level for b-quark pairs with invariant mass, m$b\\bar{b}$, down to 40 GeV/c2 and measure the dependence of AFB($b\\bar{b}$) on m$b\\bar{b}$. The results are compatible with expectations from the standard model.

  17. Supporting multiple control systems at Fermilab

    SciTech Connect

    Nicklaus, Dennis J.; /Fermilab

    2009-10-01

    The Fermilab control system, ACNET, is used for controlling the Tevatron and all of its pre-accelerators. However, other smaller experiments at Fermilab have been using different controls systems, in particular DOOCS and EPICS. This paper reports some of the steps taken at Fermilab to integrate support for these outside systems. We will describe specific tools that we have built or adapted to facilitate interaction between the architectures. We also examine some of the difficulties that arise from managing this heterogeneous environment. Incompatibilities as well as common elements will be described.

  18. The CDF upgrade

    SciTech Connect

    Newman-Holmes, C.; CDF Collaboration

    1995-01-01

    The Collider Detector at Fermilab (CDF) has been used to study proton-antiproton collisions at the Fermilab Tevatron since 1985. Over the years, the detector has evolved steadily to increase its physics capability and to keep pace with improvements to the Tevatron. Fermilab is currently building a new Main Injector accelerator which will lead to even larger luminosity values. This paper describes upgrades to CDF that will allow one to exploit the higher luminosity of the Main Injector.

  19. Search for Higgs Boson Production in Association with a W Boson in 1.96-TeV Proton - Antiproton Collisions

    SciTech Connect

    Masubuchi, Tatusya

    2008-02-01

    We have searched for the Standard Model Higgs boson production in association with a W± boson. This search is based on the data collected between February 2002 and May 2007, corresponding to an integrated luminosity of 1.9 fb-1 collected by the Collider Detector at Fermilab (CDF) at the Tevatron which is a p$\\bar{p}$ collider at a center of mass energy 1.96 TeV. W+Higgs channel is one of the most promising channels for the Higgs search at Tevatron in the low Higgs mass region (mH < 135 GeV/c2), where Higgs boson decays into b$\\bar{b}$ dominantly. The detection of lepton from the W boson decay makes the W+Higgs events much cleaner than the direct Higgs production events which have the largest production cross section. Experimentally we select events with a high pT lepton, high missing transverse energy and two b-quark jets. This signature is same as for the W+jets background which has a huge cross section. To reduce the W+jets background, b-jet identification algorithms are applied to at least one jet. The expected signal events in 1.9fb-1 are 1.82 ± 0.15 and 1.68 ± 0.20 for one b-tagged events and two b-tagged events, respectively. The observed data is 805 for one b-tagged events and 173 for two b-tagged events. They are consistent with the Standard Model background expectation. After selecting the events, Neural Network (NN) discriminant technique is performed to distinguish the signal events from still residual backgrounds. We see no evidence for a Higgs signal in the dijet mass distribution and in the NN output distribution. We set a 95% confidence level upper limit on the W+Higgs production cross section times the branching ratio of the Higgs decaying into a b$\\bar{b}$ pair. We obtained σ(p$\\bar{p}$ → W±H) x BR(H → b$\\bar{b}$) < 1.4 to 0.9 pb for Higgs masses from 110 GeV/c2 to 150 GeV/c2 using the NN output distribution. The limits are about 10

  20. Hydro static water level systems at Fermilab

    SciTech Connect

    Volk, J.T.; Guerra, J.A.; Hansen, S.U.; Kiper, T.E.; Jostlein, H.; Shiltsev, V.; Chupyra, A.; Kondaurov, M.; Singatulin, S.

    2006-09-01

    Several Hydrostatic Water Leveling systems (HLS) are in use at Fermilab. Three systems are used to monitor quadrupoles in the Tevatron and two systems are used to monitor ground motion for potential sites for the International Linear Collider (ILC). All systems use capacitive sensors to determine the water level of water in a pool. These pools are connected with tubing so that relative vertical shifts between sensors can be determined. There are low beta quadrupoles at the B0 and D0 interaction regions of Tevatron accelerator. These quadrupoles use BINP designed and built sensors and have a resolution of 1 micron. All regular lattice superconducting quadrupoles (a total of 204) in the Tevatron use a Fermilab designed system and have a resolution of 6 microns. Data on quadrupole motion due to quenches, changes in temperature will be presented. In addition data for ground motion for ILC studies caused by natural and cultural factors will be presented.

  1. Supersymmetry searches at the Tevatron

    SciTech Connect

    Thomas J. LeCompte

    2000-10-10

    The CDF and D0 experiments have each collected over 110 pb{sup {minus}1} of proton-antiproton collision data with {radical}s = 1,800 GeV during the period 1992--1995. Limits on the production of supersymmetric particles are presented here.

  2. Search for Fermiophobic Higgs using the 3γ+X Final State in 1.96-TeV Proton-Antiproton Collisions

    SciTech Connect

    Hamaguchi, Atsunari

    2012-01-01

    We search for a fermiophobic Higgs boson using 3γ+X events in p$\\bar{p}$ collisions at √ s = 1.96 TeV. In the Standard Model (SM), the Higgs boson is introduced to explain the electroweak symmetry breaking (EWSB) and the origin of fermion masses. The minimal extension of the SM contains an additional Higgs doublet, the “two Higgs doublet model” (2HDM). In this model a fermiophobic Higgs boson (hf) which signifies very suppressed or zero coupling to the fermions, may arise in a paticular version of the 2HDM called type I. The data were collected with the CDF-II detector at the Fermilab Tevatron collider and correspond to an integrated luminosity of 6.0 fb -1. We estimate the fake-photon backgrounds and Direct Triphoton Production(DTP) backgrounds. The expected number of signal events is 17.7 for the fermiophobic higgs of the mass 75 GeV/c2 and H± of the mass 120 GeV/c2. The expected number of backgrounds is 1.9±0.9, From these results, we obtain the expected limits on σ(p$\\bar{p}$ → H±hf ) × Br(H± → W*hf ) × (Br(hf → γγ))2 of 8.0 fb for the fermiophobic Higgs of 75 GeV/c2 and H± of the mass 120 GeV/c2 at the 95% confidence level, while the observed limit is 10 fb.

  3. Measurement of the top quark pair production cross-section in dimuon final states in proton-antiproton collisions at 1.96 TeV

    SciTech Connect

    Konrath, Jens Peter

    2008-10-24

    Particle physics deals with the fundamental building blocks of matter and their interactions. The vast number of subatomic particles can be reduced to twelve fundamental fermions, which interact by the exchange of spin-1 particles as described in the Standard Model (SM) of particle physics. The SM provides the best description of the subatomic world to date, despite the fact it does not include gravitation. Following the relation Λ = h/p, where h is Planck's constant, for the examination of physics at subatomic scales with size Λ probes with high momenta p are necessary. These high energies are accessible through particle colliders. Here, particles are accelerated and brought to collision at interaction points at which detectors are installed to record these particle collisions. Until the anticipated start-up of the Large Hadron Collider at CERN, the Tevatron collider at Fermilab near Chicago is the highest energy collider operating in the world, colliding protons and anti-protons at a center-of-mass energy of √s = 1.96 TeV. Its two interaction points are covered by the multi purpose particle detectors D0 and CDF. During the first data-taking period, known as Run I, the Tevatron operated at a center-of-mass energy of 1.8 TeV. This run period lasted from 1992 to 1996. During this period, the long-predicted top quark was discovered. From 1996 and 2001, the accelerator was upgraded to deliver higher instantaneous luminosities at its current center-of-mass energy. At the same time, the experiments were upgraded to take full advantage of the upgraded accelerator complex. The Tevatron is currently the only accelerator in the world with a sufficient energy to produce top quarks. Studying top quark production, decay and properties is an important part of the D0 and CDF physics programs. Because of its large mass, the top quark is a unique probe of the Standard Model, and an interesting environment to search for new physics. In this thesis, a measurement of the

  4. A search for B$0\\atop{S}$ oscillations at the Tevatron collider experiment D0

    SciTech Connect

    Krop, Dan N.

    2007-04-01

    We present a search for B$0\\atop{S}$ oscillations using semileptonic BS → DsμX (Ds → K$0\\atop{S}$K). The data were collected using the D0 detector from events produced in √s = 1.96 TeV proton-antiproton collisions at the Fermilab Tevatron. The Tevatron is currently the only place in the world that produces B$0\\atop{S}$ mesons and will be until early 2008 when the Large Hadron Collider begins operating at CERN. One of the vital ingredients for the search for B s oscillations is the determination of the flavor of the B$0\\atop{S}$ candidate (B$0\\atop{S}$ or $\\bar{B}$$0\\atop{S}$ ) at the time of its production, called initial state flavor tagging. We develop an likelihood based initial state flavor tagger that uses objects on the side of the event opposite to the reconstructed B meson candidate. To improve the performance of this flavor tagger, we have made it multidimensional so that it takes correlations between discriminants into account. This tagging is then certified by applying it to sample of semimuonic B(0,+) decays and measuring the well-known oscillation frequency Δmd. We obtain Δmd = 0.486 ± 0.021 ps-1, consistent with the world average. The tagging performance is characterized by the effective efficiency, ϵD2 = (1.90 ± 0.41)%. We then turn to the search for B$0\\atop{S}$ oscillations in the above-named channel. A special two-dimensional mass fitting procedure is developed to separate kinematic reflections from signal events. Using this mass fitting procedure in an unbinned likelihood framework, we obtain a 95% C.L. of Δms > 1.10 ps-1 and a sensitivity of 1.92 ps-1. This result is combined with other analyzed B$0\\atop{S}$ decay channels at D0 to obtain a combined 95% C.L. of Δms > 14.9 ps-1 and a sensitivity of 16.5 ps-1. The corresponding log likelihood scan has a preferred value of

  5. Bs Mixing at the Tevatron

    SciTech Connect

    Gomez-Ceballos, Guillelmo; /Cantabria Inst. of Phys.

    2006-04-01

    The Tevatron collider at Fermilab provides a very rich environment for the study of B{sub s} mesons. B{sub s} Mixing is the most important analysis within the B Physics program of both experiments. In this paper they summarize the most recent results on this topic from both D0 and CDF experiments. There were very important updates in both experiments after his last talk, hence the organizers warmly recommended me to include the latest available results on B{sub s} mixing, instead of what he presents there.

  6. Single Z Production at the Tevatron

    SciTech Connect

    Phillips, Thomas J.

    2012-05-01

    The production of single Z bosons has been studied at Fermilab's Tevatron by the CDF and D0 collaborations. Measurements include the weak mixing angle, vector and axial-vector couplings between Z bosons and light quarks, and angular coefficients in electronic decays which are sensitive to the spin of the gluon. The collaborations have looked for and indication of new physics above the mass scale that can be directly produced at the Tevatron by studying the interference between Z and photon propagators. All measurements are consistent with Standard Model expectations.

  7. Top quark mass measurement at the Tevatron

    SciTech Connect

    Guimaraes da Costa, Joao; /Harvard U.

    2004-12-01

    The authors report on the latest experimental measurements of the top quark mass by the CDF and D0 Collaborations at the Fermilab Tevatron. They present a new top mass measurement using the t{bar t} events collected by the D0 Collaboration in Run I between 1994 and 1996. This result is combined with previous measurements to yield a new world top mass average. They also describe several preliminary results using up to 193 pb{sup -1} of t{bar t} events produced in {bar p}p collisions at {radical}s = 1.96 TeV during the Run II of the Tevatron.

  8. Mesure de la section efficace de production de paires de quarks top dans le canal μ + jets + τ + b-jet(s) + Energie transverse manquante auprès de l'expérience DØ du Tevatron

    SciTech Connect

    Jammes, Jerome

    2011-09-09

    The purpose of high energy physics is to improve our knowledge about the fundamental structure of matter, in particular about particles that constitute the world. One of these is the top quark, that was discovered in 1995 by the CDF and D0 collaborations at the Tevatron protons-antiprotons collider. One of the primary aim of the Tevatron has been then the fine study of the top quark properties, in particular the top-antitop production cross section. Different analysis have been performed in the leptons (μ,e,τ) + jets, dileptons, and all hadronic channels to determine accurately the values of these parameters, and thus to test the validity of the Standard Model. The main goal of this thesis is to verify one of the theoretical predictions of the Standard Model of particle physics, the top-antitop production cross section, at the Tevatron collider.

  9. Tevatron results

    SciTech Connect

    Lefevre, R.; /Barcelona, Autonoma U.

    2005-01-01

    Recent results obtained by the CDF and D0 experiments at the Tevatron Run II are presented. A first part is dedicated to QCD physics where inclusive jet production, dijet azimuthal decorrelations and jet shapes measurements are reported. Electroweak physics is then discussed relating measurements of the W and Z bosons productions, of the forward-backward charge asymmetry in W production, of the W width and of the top quarks mass. The extensive Run II exploration program is finally approached reporting about searches for neutral supersymmetric Higgs bosons in multijet events and for sbottom quark from gluino decays.

  10. Central Exclusive $\\pi^{+}\\pi^{-}$ Production in $p\\bar{p}$ Collisions at $\\sqrt{s} = 0.9$ and 1.96 TeV at the Tevatron

    SciTech Connect

    Žurek, Maria; Albrow, Michael

    2014-01-01

    Exclusive $\\pi^{+}\\pi^{-}$ production in proton-antiproton collisions at $\\sqrt{s} = 0.9$ and 1.96 TeV in the Collider Detector at Fermilab has been measured. We selected events with exactly two particles with opposite charge, in $|\\eta|<1.3$, with no other particles detected in $|\\eta| < 5.9$. We require the central $\\pi^{+}\\pi^{-}$ to have rapidity $|y|<1$. Since these events are dominated by double pomeron exchange, the quantum numbers of the central state are constrained. The data show resonance structures attributed to the $f_0$ and $f_2$ mesons.

  11. Some remarks about simulation of cosmic ray phenomena with use of nuclear interaction models based on the current SPS proton-antiproton data

    NASA Technical Reports Server (NTRS)

    Wrotniak, J. A.; Yodh, G. B.

    1985-01-01

    The x-y controversy is studied by introducing models with as many features (except for x and y distributions) in common, as possible, to avoid an extrapolation problem, only primary energies of 500 TeV are considered. To prove the point, Monte Carlo simulations are performed of EAS generated by 500 TeV vertical primary protons. Four different nuclear interaction models were used. Two of them are described elsewhere. Two are: (1) Model M-Y00 - with inclusive x and y distributions behaving in a scaling way; and (2) Model M-F00 - at and below ISR energies (1 TeV in Lab) exactly equivalent to the above, then gradually changing to provide the distributions in rapidity at 155 TeV as given by SPS proton-antiproton. This was achieved by gradual decrease in the scale unit in x distributions of produced secondaries, as interaction energy increases. Other modifications to the M-Y00 model were made.

  12. Physics History Books in the Fermilab Library

    SciTech Connect

    Sara Tompson

    1999-09-17

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the world�s most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.

  13. Physics History Books in the Fermilab Library

    SciTech Connect

    Sara Tompson.

    1999-09-17

    Fermilab is a basic research high-energy physics laboratory operated by Universities Research Association, Inc. under contract to the U.S. Department of Energy. Fermilab researchers utilize the Tevatron particle accelerator (currently the worlds most powerful accelerator) to better understand subatomic particles as they exist now and as they existed near the birth of the universe. A collection review of the Fermilab Library monographs was conducted during the summers of 1998 and 1999. While some items were identified for deselection, the review proved most fruitful in highlighting some of the strengths of the Fermilab monograph collection. One of these strengths is history of physics, including biographies and astrophysics. A bibliography of the physics history books in the collection as of Summer, 1999 follows, arranged by author. Note that the call numbers are Library of Congress classification.

  14. Intensity Frontier Computing at Fermilab

    SciTech Connect

    Wolbers, Stephen

    2013-10-11

    The Intensity Frontier (IF) experiments at Fermilab require computing, software, data handling, and infrastructure development for detector and beamline design and to extract maximum scientific output from the data. The emphasis of computing at Fermilab for many years has been on the Tevatron collider Run 2 experiments and CMS. Using the knowledge and experience gained from those experiments as well as new computing developments, preparations for computing for IF experiments are ramping up. There are many challenges in IF computing. These include event generators and detector simulation, beamline simulation, detector design and optimization, data acquisition, data handling, data analysis, and all of the associated services required. In this presentation the computing challenges and requirements will be described and the approaches being taken to address them will be shown.

  15. Searches for gauge mediated supersymmetry at the Tevatron

    SciTech Connect

    Lutz, Pierre; /Saclay

    2010-01-01

    We report the results of searches for new physics in events with two photons and large missing transverse energy collected with both detectors at the Fermilab Tevatron collider. Several models of physics beyond the Standard Model motivate searches in this final state, in particular supersymmetry (SUSY) with gauge-mediated supersymmetry breaking. The D0 collaboration interprets also its search in the framework of universal extra dimensions (UED) with gravity-mediated Kaluza-Klein excitation decays. The results presented use 2.6 fb{sup -1} (CDF) and 6.3 fb{sup -1} (D0) of data collected at the Fermilab Tevatron collider.

  16. Antiproton production for Tevatron

    SciTech Connect

    Azhgirey, I.L.; Mokhov, N.V.; Striganov, S.I. . Inst. Fiziki Vysokikh Ehnergij)

    1991-03-01

    Needs to improve the Fermilab Pbar Source for the Tevatron Upgrade and discrepancies in predictions of the antiproton yields have forced us to develop the production model based on the modern data and to incorporate this model to the current version of MARS10 code. The inclusive scheme of this code with the use of statistical weights allows the production of antiprotons to be enhanced within the phase space region of interest, which is extremely effective for optimization of Pbar Source parameters and for developing of such an idea as a beam sweeping system. Antiproton production model included in the modified version of our Monte Carlo program MARS10M for the inclusive simulation of hadronic cascades, as for other particles throughout the program, is based on a factorization approach for hadron-nucleus differential cross-section. To describe antiproton inclusive spectra in pp-collisions a phenomenological model has been used modified in the low-Pt region. The antiproton production in pion-nucleon interactions is described in the frame of our simple phenomenological model based on the modern data. In describing of the of antiproton production cross-sections ratio in hadron-nucleus and hadron-nucleon collisions the ideas of soft hadronization of color strings and all the present experimental data have been used. Some comparisons of our model with experimental data are presented in the wide intervals of initial momenta, antiproton kinematical variables and nuclei. In all the cases the agreement is pretty good what gives us an assurance in the consequent studies carried out for the Fermilab Pbar Source. The results of such study are presented in this paper.

  17. Future hadron physics at Fermilab

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2005-09-01

    Today, hadron physics research occurs at Fermilab as parts of broader experimental programs. This is very likely to be the case in the future. Thus, much of this presentation focuses on our vision of that future--a future aimed at making Fermilab the host laboratory for the International Linear Collider (ILC). Given the uncertainties associated with the ILC--the level of needed R&D, the ILC costs, and the timing--Fermilab is also preparing for other program choices. I will describe these latter efforts, efforts focused on a Proton Driver to increase the numbers of protons available for experiments. As examples of the hadron physics which will be coming from Fermilab, I summarize three experiments: MIPP/E907 which is running currently, and MINERvA and Drell-Yan/E906 which are scheduled for future running periods. Hadron physics coming from the Tevatron Collider program will be summarized by Arthur Maciel in another talk at Hadron05.

  18. Non SUSY Searches at the Tevatron

    SciTech Connect

    Cortabitarte, R. Vilar

    2004-08-26

    The Fermilab Tevatron collider experiments, CDF and D0, have collected {approx} 200 pb{sup -1} of data at {radical}s = 1.96 TeV since March 2002 (RunII). Both experiments have investigated physics beyond the standard model; this paper reviews some of the recent results on the searches for new phenomena, concentrating on Z', extra dimensions, excited electrons and lepto quarks. No signal was observed, therefore stringent limits on the signatures and models were derived.

  19. $B$ mixing and lifetimes at the Tevatron

    SciTech Connect

    Gomez-Ceballos, G.; Piedra, J.

    2006-04-01

    The Tevatron collider at Fermilab provides a very rich environment for the study of b-hadrons. Both the D0 and CDF experiments have collected a sample of about 1 fb{sup -1}. they report results on three topics: b-hadron lifetimes, polarization amplitudes and the decay width difference in B{sub s}{sup 0} {yields} J/{psi}{phi}, and B{sub s}{sup 0} mixing.

  20. Twenty years of diffraction at the Tevatron

    SciTech Connect

    Goulianos, K.; /Rockefeller U.

    2005-10-01

    Results on diffractive particle interactions from the Fermilab Tevatron {bar p}p collider are placed in perspective through a QCD inspired phenomenological approach, which exploits scaling and factorization properties observed in data. The results discussed are those obtained by the CDF Collaboration from a comprehensive set of single, double, and multigap soft and hard diffraction processes studied during the twenty year period since 1985, when the CDF diffractive program was proposed and the first Blois Workshop was held.

  1. Di-boson production at the Tevatron

    SciTech Connect

    De Lentdecker, Gilles; /Rochester U.

    2005-05-01

    The authors present some precision measurements on electroweak physics performed at the Tevatron collider at Fermilab. Namely they report on the boson-pair production cross sections and on triple gauge boson couplings using proton anti-proton collisions collected by the CDF and D0 experiments at the center-of-mass energy of 1.96 TeV. The data correspond to an integrated luminosity of up to 324 pb{sup -1}.

  2. Top quark physics at the Tevatron

    SciTech Connect

    D. Gerdes

    2004-01-28

    Precision studies of the top quark are a prime goal of the Run II physics program at the Fermilab Tevatron. Since the start of Run II in early 2002, the CDF and D0 experiments have analyzed approximately 100 pb{sup -1} of data and have re-established the top quark signal. In this article the author summarizes recent measurements of the top production cross section and mass.

  3. Roll measurement of Tevatron dipoles and quadrupoles

    SciTech Connect

    Volk, J.T.; Elementi, L.; Gollwitzer, K.; Jostlein, H.; Nobrega, F.; Shiltsev, V.; Stefanski, R.

    2006-09-01

    In 2003 a simple digital level system was developed to allow for rapid roll measurements of all dipoles and quadrupoles in the Tevatron. The system uses a Mitutoyo digital level and a PC running MS WINDOWS XP and LAB VIEW to acquire data on the upstream and downstream roll of each magnet. The system is sufficiently simple that all 1,000 magnets in the Tevatron can be measured in less than 3 days. The data can be quickly processed allowing for correction of rolled magnets by the Fermilab alignment group. Data will be presented showing the state of the Tevatron in 2003 and the changes in rolls as measured in each shutdown since then.

  4. Commisioning of the second Tevatron electron lens and beam study results

    SciTech Connect

    Kamerdzhiev, V.; Fellenz, B.; Hively, R.; Kuznetsov, G.; Olson, M.; Pfeffer, H.; Saewert, G.; Scarpine, V.; Shiltsev, V.; Zhang, X.L.; /Fermilab

    2007-06-01

    In the framework of Fermilab's Beam-Beam Compensation (BBC) project, the 2nd Tevatron Electron Lens (TEL2) was installed in the Tevatron during Spring 2006 shutdown. It was successfully commissioned and a series of beam studies has been carried out in single bunch and all-bunch modes. The paper describes TEL2 commissioning and beam studies results.

  5. Production of c and b quarks in $p\\bar{p}$ collisions at the Tevatron collider at $\\sqrt{s}$ = 1.96 ТеV; Народження $c$ та $b$ кварків в $p\\bar{p}$ зіткненнях на колайдері Tevatron при $Е_{цм}$ = 1.96 ТеВ

    SciTech Connect

    Gogota, Olga

    2016-01-01

    The results of the measurements of c and b quarks productions in proton-antiproton collisions at the D0 experiment at the Tevatron are presented in this thesis. Measurements have been done in 2 aspects: measurement of the W +b-jet and W +c-jet differential production cross sections and a measurement of the fiducial cross sections of quarkonium productions of c quark, simultaneously production of two J/ψ mesons, simultaneously production of J/ψ and Υ mesons in the muon channel decay.

  6. The Fermilab Main Injector: current status and future

    SciTech Connect

    Bhat, C.M.

    1996-09-01

    The Fermilab Main Injector is a 8-150 GeV proton synchrotron being built as a high intensity injector to the Tevatron. The design incorporates many novel features to achieve {ital p{anti p}} luminosity in the Tevatron exceeding 8 x 10{sup 31} cm{sup -2}sec{sup -1}. An overview of the Main Injector project, current status and future prospects will be discussed.

  7. Collider Detector at Fermilab (CDF): Data from B Hadrons Research

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group is organized into six working groups, each with a specific focus. The Bottom group studies the production and decay of B hadrons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  8. Search for Higgs boson production in proton-antiproton collisions at √s = 1.96 TeV

    SciTech Connect

    Kusakabe, Yoshiaki

    2006-12-01

    We performed a search for Standard Model Higgs boson production in association with W boson (p$\\bar{p}$ → W±H → ℓvb$\\bar{b}$) in p$\\bar{p}$ collisions at √s = 1.96 TeV. The search uses the data collected between February 2002 and February 2006 at Collider Detector at Fermilab (CDF), which corresponds to an integrated luminosity of about 1 fb-1. The experimental final state of WH → ℓvb$\\bar{b}$ process is lepton (e±±), missing transverse energy and two jets. The largest background in lepton+jets events is W+light flavor process, therefore the identification of jets as b-jets reduces this kind of background significantly. We used displaced SECondary VerTeX b-tagging (SECVTX) technique, which utilizes the signature that b-jets have secondary vertex displaced away from primary vertex because of the long life time of B-mesons. However, there is still much contamination in SECVTX b-tagged jets. Finite resolution of secondary vertex tracking measurements results in false tags, and c-jets are also identified as b-jets due to the long life time of D-mesons frequently. For the purpose of increasing the purity of the SECVTX b-tagged jets, we applied Neural Network to SECVTX tagged jets for the first time by using secondary vertex variables and some variables independent of it. Neural Network filter rejects 65% of light flavor jets and 50% of c-jets from the SECVTX tagged jets. We improved the sensitivity of the Higgs boson signal search by 10% with Neural Network b-tagging technique. Events with one high pT electron or muon, large missing transverse energy and either single SECVTX b-tagged jet which passes the Neural Network filter or at least two SECVTX b-tagged jets are selected. The number of selected events and dijet mass distributions are consistent with the Standard Model background expectations. Therefore we set an upper limit on σ(p$\\bar{p}$ → WH) • Br(H → b$\\bar{b}$) as 3.9 to 1

  9. Search for non-SM light Higgs Boson in the h $\\to \\gamma \\gamma$ channel

    SciTech Connect

    Melnitchouk, Alexander Stepanovych

    2004-05-01

    We present first results on the search for Higgs Boson with an enhanced branching fraction into photons in the h → γγ decay channel using recent Run II data collected by the D0 detector at the Fermilab Tevatron proton-antiproton collider. We discuss event selection, backgrounds, analysis optimization, and the limits on the Higgs boson mass obtained in this analysis.

  10. A study of events with the highest total transverse energy in CDF

    SciTech Connect

    CDF Collaboration

    1993-08-01

    The properties of proton-antiproton interactions in which the total transverse energy exceeds 320 GeV are described. The events have been recorded at the Fermilab Tevatron collider operating at a center-of-mass energy of 1.8 TeV. The differential cross-section is in good agreement with the QCD predictions.

  11. Fixed-target physics at Fermilab

    SciTech Connect

    Bjorken, J.D.

    1985-03-01

    The Fermilab Energy Saver is now successfully commissioned and fixed-target experimentation at high energy (800 GeV) has begun. In addition, a number of new experiments designed to exploit the unique features of the Tevatron are yet to come on-line. In this talk, we will review recent accomplishments in the fixed-target program and describe experiments in progress and others yet to come.

  12. Preparations for Muon Experiments at Fermilab

    SciTech Connect

    Syphers, M.J.; Popovic, M.; Prebys, E.; Ankenbrandt, C.; /Muons Inc., Batavia

    2009-05-01

    The use of existing Fermilab facilities to provide beams for two muon experiments--the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment--is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration.

  13. Study of the production of the Σ b with the CDF detector at the Tevatron

    SciTech Connect

    Calancha Paredes, Constantino

    2011-02-01

    understanding of the Standard Model and its limitations. In particular, it is very important the measurement of those observables which they are not able to be calculated from theory by perturbation theory. Particle accelerators have played and play nowadays a major role for past and new physics discoverements and has been for many years the source of many precision measurements. Unprecedent discoveries have been made and are yet to come. These measurements allow to select the models that best fit the results and also they can be used as input for those models to get further predictions. Tevatron has been for many years the highest energy particle collider operational in the world. It is located in the high energy physics laboratory Fermilab in Batavia, in the State of Illinois (USA). Tevatron produce proton-antiproton collisions with an energy of 1.96 TeV at the center of the mass. This thesis is based on the data taken by the CDF II detector, one of the two multipurpose detectors located in the two interaction points at Tevatron. In this thesis a precise measurement of the mass and width of four heavy baryon states are performed. These states are described together by the symbol Σ b. They are built by two light quarks and one heavy b quark as it is shown in Fig. 1.2. Baryons containing one bottom quark and two light quarks are described by Heavy Quark Effective Theories (HQET).

  14. The Fermilab Main Injector

    SciTech Connect

    Mishra, C.S.

    1992-11-01

    The Fermilab Main Injector is a new 150 GeV proton synchrotron, designed to replace the Main Ring and improve the high energy physics potential of Fermilab. The status of the Fermilab accelerator complex upgrade will be discussed.

  15. Review of physics results from the Tevatron: Heavy flavor physics

    DOE PAGES

    Lewis, Jonathan; van Kooten, Rick

    2015-02-28

    In this study, we present a review of heavy flavor physics results from the CDF and DØ Collaborations operating at the Fermilab Tevatron Collider. A summary of results from Run 1 is included, but we concentrate on legacy results of charm and b physics from Run 2, including results up to Summer 2014.

  16. Measurement of the inclusive b$\\bar{b}$ jet cross section at the Collidor Detector at Fermilab

    SciTech Connect

    Gajjar, Anant

    2005-09-01

    Data collected by the Fermilab CDF detector are used to measure the inclusive b$\\bar{b}$ jet production cross section in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. Vertices displaced from the primary interaction point (secondary vertices) are a signature for long-lived decay and are used to identify jets originating from b quarks. An event sample containing two jets, each having an identified secondary vertex, is used. The jets are required to be within the pseudo-rapidity region |η| < 1.2. One of the jets is required to have a transverse energy greater than 30 GeV and the other jet is required to have a transverse energy greater than 20 GeV. The results are compared to Leading Order (Pythia and Herwig) and Next to Leading Order (MC@NLO) predictions.

  17. Collider Detector at Fermilab (CDF): Data from Supersymmetry, New Phenomena Research of the CDF Exotics Group

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Exotics group searches for Supersymmetry and other New Phenomena. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  18. Collider Detector at Fermilab (CDF): Data from the Top Group's Top Quark Research

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Top group studies the properties of the top quark, the heaviest known fundamental particle. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  19. Physics overview of the Fermilab Low Energy Antiproton Facility Workshop

    SciTech Connect

    Chanowitz, M.S.

    1986-05-01

    A physics overview is presented of the Fermilab workshop to consider a possible high flux, low energy antiproton facility that would use cooled antiprotons from the accumulator ring of the Tevatron collider. Two examples illustrate the power of each a facility to produce narrow states at high rates. Physics topics to which such a facility may be applied are reviewed.

  20. Initial operation of the Tevatron collider

    SciTech Connect

    Johnson, R.

    1987-03-01

    The Tevatron is now the highest energy proton synchrotron and the only accelerator made with superconducting magnets. Operating since 1983 as a fixed-target machine at energies up to 800 GeV, it has now been modified to operate as a 900 GeV antiproton-proton collider. This paper describes the initial operation of the machine in this mode. The new features of the Fermilab complex, including the antiproton source and the Main Ring injector with its two overpasses and new rf requirements, are discussed. Beam characteristics in the Tevatron (including lifetimes, emittances, luminosity, beam-beam tune shifts, backgrounds, and low beta complications), the coordination of the steps in the accelerator chain, and the commissioning history are also discussed. Finally, some plans for the improvement of the collider are presented.

  1. Control system for Fermilab`s low temperature upgrade

    SciTech Connect

    Norris, B.L.

    1996-09-01

    Fermilab recently upgraded the Tevatron Cryogenic Systems to allow for lower temperature operation. This Lower Temperature Upgrade grew out of a desire to increase the Colliding Beam Physics energy from 900 GeV to 1000 GeV. A key element in achieving this goal is the new cryogenic control system designed at Fermilab and installed in 24 satellite refrigerators and 8 compressor buildings. The cryogenic improvements and addition hardware like cold compressors exceeded the capability of the original distributed controls package. The new distributed controls package uses a Multibus II platform and Intel`s 80386 microprocessor. Token Ring is used as the link to the systems 6 primary crate locations with Arcnet used as the connection to the systems numerous I/O crates. I/0 capabilities are double the capabilities of the original system. Software has also been upgraded with the introduction of more flexible control loop strategies and Finite State Machines used for automatic sequential control, like quench recovery or cold compressor pump down.

  2. Physics at the Tevatron

    NASA Astrophysics Data System (ADS)

    Field, R.

    2008-10-01

    The theme of the XXXIV International Meeting on Fundamental Physics on April 27, 2006 was "From HERA and the TEVATRON to the LHC". At that meeting I presented four lectures on "Physics at the Tevatron". This is a summary of two lectures on "Physics at the Tevatron: IMFP06 IMFP08" presented at the XXXVI International Meeting on Fundamental Physics held in Baeza, Spain on February 4-8, 2008. These two lectures are an attempt to highlight what we have learned at the Tevatron since my lectures in 2006. I will also look back at the "old days" of Feynman-Field collider phenomenology.

  3. Search for the Standard Model Higgs Boson in Missing Transverse Energy and $b$-quark Final States Using Proton-Antiproton Collisions at 1.96 TeV

    SciTech Connect

    Dorland, Tyler McMillan

    2011-01-01

    A search for the standard model Higgs boson is performed in 6.4 fb-1 of p$\\bar{p}$ collisions at √s = 1.96 TeV, collected with the DØ detector during Run II of the Fermilab Tevatron. The final state considered is a pair of jets originating from b quarks and missing transverse energy, as expected from p$\\bar{p}$ → ZH → v$\\bar{v}$b$\\bar{b}$ production. The search is also sensitive to the WH → ℓvb$\\bar{b}$ channel, where the charged lepton is not identified. Boosted decision trees are used to discriminate signal from background. Good agreement is observed between data and expected backgrounds, and a limit is set at 95% C.L. on the section multiplied by branching fraction of (p$\\bar{p}$ → (Z/W)H) x (H → b$\\bar{b}$). For a Higgs boson mass of 115 GeV, the observed limit is a factor of 3.5 larger than the value expected from the standard model.

  4. First search at CDF for the Higgs boson decaying to a W-boson pair in proton-antiproton collisions at the center-of-mass energy of 1.96 TeV

    SciTech Connect

    Chuang, Shan-Huei S.

    2006-01-01

    By way of retaining the gauge invariance of the Standard Model (SM) and giving masses to the W± and Z0 bosons and the fermions, the Higgs mechanism predicts the existence of a neutral scalar bosonic particle, whose mass is not exactly known. The Higgs boson is the only experimentally unconfirmed SM particle to date. This thesis documents a search for the Higgs boson in p$\\bar{p}$ collisions at √s = 1.96 TeV at the Tevatron, using 360 ± pb -1 data collected by the Run II Collider Detector at Fermilab (CDF II), as part of the most important quest for contemporary particle physicists. The search was for a Higgs boson decaying to a pair of W± bosons, where each W boson decays to an electron, a muon or a tau that further decays to an electron or a muon with associated neutrinos. Events with two charged leptons plus large missing energy were selected in data triggered on a high p$\\bar{p}$ lepton and compared to the signal and backgrounds modeled using Monte Carlo and jet data. No signal-like excess was observed in data. Therefore, upper limits on the HWW production cross-section in the analyzed mass range were extracted using the binned likelihood maximum from distributions of dilepton azimuthal angle at 95% Bayesian credibility level (CL), as shown in the table below.

  5. Critical speed measurements in the Tevatron cold compressors

    SciTech Connect

    DeGraff, B.; Bossert, R.; Martinez, A.; Soyars, W.M.; /Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high energy operations. Nominal operating range for these compressors is 43,000 to 85,000 rpm. Past foil bearing failures prompted investigation to determine if critical speeds for operating compressors fall within operating range. Data acquisition hardware and software settings will be discussed for measuring liftoff, first critical and second critical speeds. Several tests provided comparisons between an optical displacement probe and accelerometer measurements. Vibration data and analysis of the 20 Tevatron ring cold compressors will be presented.

  6. Recent top quark physics results at the Tevatron

    SciTech Connect

    Valls, J.A.

    1996-07-01

    The evidence of top quark pair production in pp collisions has been firmly established by both the CDF and the D{O} collaborations at Fermilab. In this paper the latest top quark physics results from both experiments at the Tevatron Collider are presented. The experimental analyses have concentrated in improving the accuracy of top quark production and decay measurements like cross sections, mass and, branching fractions. The results shown correspond to the final data set collected with both detectors during the complete Tevatron Run L. This represents a total recorded integrated luminosity of {approximately}110 pb{sup -1} for CDF and {approximately}100 pb{sup -1} for D{O}.

  7. New phenomena searches at CDF

    SciTech Connect

    Soha, Aron; /UC, Davis

    2006-04-01

    The authors report on recent results from the Collider Detector at Fermilab (CDF) experiment, which is accumulating data from proton-antiproton collisions with {radical}s = 1.96 TeV at Run II of the Fermilab Tevatron. The new phenomena being explored include Higgs, Supersymmetry, and large extra dimensions. They also present the latest results of searches for heavy objects, which would indicate physics beyond the Standard Model.

  8. A measurement of the top-antitop production cross section in the dimuon final state with the D0 detector for proton-antiproton collisions as √s = 1.96 TeV

    SciTech Connect

    Burke, Susan Elizabeth

    2007-01-01

    A measurement of the top pair production cross section in the dimuon final state for proton-antiproton collisions at √s = 1.96 TeV is presented. Approximately 420 pb-1 of data collected with the Run II D0 detector are used for this measurement. Two data events are observed with a total expected signal plus background yield of 3.6 events. Assuming a top mass of 175 GeV, the measured cross section is: σt$\\bar{t}$= 3.13$+4.17\\atop{-2.60}$(stat)$+0.92\\atop{-0.86}$(sys)±0.19(lumi)pb, which is consistent with a NNLO prediction of 6.77 ± 0.42 pb.

  9. Superconducting radiofrequency linac development at Fermilab

    SciTech Connect

    Holmes, Stephen D.; /Fermilab

    2009-10-01

    As the Fermilab Tevatron Collider program draws to a close, a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and the study of rare processes. Based on technology shared with the International Linear Collider, Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X also supports development of a Muon Collider as a future facility at the energy frontier.

  10. Seismic studies for Fermilab future collider projects

    SciTech Connect

    Lauh, J.; Shiltsev, V.

    1997-11-01

    Ground motion can cause significant beam emittance growth and orbit oscillations in large hadron colliders due to a vibration of numerous focusing magnets. Larger accelerator ring circumference leads to smaller revolution frequency and, e.g. for the Fermilab Very Large Hadron Collider(VLHC) 50-150 Hz vibrations are of particular interest as they are resonant with the beam betatron frequency. Seismic measurements at an existing large accelerator under operation can help to estimate the vibrations generated by the technical systems in future machines. Comparison of noisy and quiet microseismic conditions might be useful for proper choice of technical solutions for future colliders. This article presents results of wide-band seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, and in two deep tunnels in the Illinois dolomite which is though to be a possible geological environment of the future accelerators.

  11. Collider Detector at Fermilab (CDF): Data from Standard Model and Supersymmetric Higgs Bosons Research of the Higgs Group

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Higgs group searches for Standard Model and Supersymmetric Higgs bosons. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  12. Collider Detector at Fermilab (CDF): Data from the QCD Group's Research into Properties of the Strong Interaction

    DOE Data Explorer

    ,

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The QCD group studies the properties of the strong interaction. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  13. New particle signals at the SSC and at an upgraded Tevatron collider

    SciTech Connect

    Barnett, R.M.; Hollebeek, R.J.; White, A.P.; Yoh, J.; Baer, H.A.; Barnett, B.A.; Eichten, E.; Freeman, J.E.; Gamberini, G.; Grifols, J.A.

    1988-01-01

    We have studied the production and detection of several types of new particles at the Superconducting Super Collider (SSC) and at three possible upgrades of the Fermilab Tevatron Collider. We compare the physics potential of the SSC with that of an upgraded collider, and we discuss in depth the relative capabilities of the three Tevatron Collider upgrades. From a physics standpoint, we suggest that one of the proposed upgrades has several advantages. 34 refs., 21 figs., 5 tabs.

  14. Prospect for discovering a light higgs at the Tevatron in Run II

    SciTech Connect

    G. Velev

    2001-06-22

    The present upgrades of the CDF and DO detectors as well as of the Fermilab Tevatron have dramatically improved their sensitivity for Standard Model and minimal supersymmetry Higgs bosons searches in Run II. This paper reviews the recent estimates of this sensitivity in terms of Higgs discovery and exclusion reach based on a total expected Run II Tevatron luminosity of 15 fb{sup {minus}1} delivered to each experiment.

  15. Measurement of the Oscillation Frequency of Bs Mesons in the Hadronic Decay Mode Bs→ π Ds(Φ π)X with the D0 Detector at the Fermilab Tevatron Collider

    SciTech Connect

    Weber, Gernot August

    2009-03-01

    The standard model (SM) of particle physics is a theory, describing three out of four fundamental forces. In this model the Cabibbo-Kobayashi-Maskawa (CKM) matrix describes the transformation between the mass and weak eigenstates of quarks. The matrix properties can be visualized as triangles in the complex plane. A precise measurement of all triangle parameters can be used to verify the validity of the SM. The least precisely measured parameter of the triangle is related to the CKM element |Vtd|, accessible through the mixing frequency (oscillation) of neutral B mesons, where mixing is the transition of a neutral meson into its anti-particle and vice versa. It is possible to calculate the CKM element |Vtd| and a related element |Vts| by measuring the mass differences Δmd(Δms) between neutral Bd and $\\bar{B}$d (Bs and $\\bar{B}$s) meson mass eigenstates. This measurement is accomplished by tagging the initial and final state of decaying B mesons and determining their lifetime. Currently the Fermilab Tevatron Collider (providing p$\\bar{p}$ collisions at {radical}s = 1.96 TeV) is the only place, where Bs oscillations can be studied. The first selection of the 'golden', fully hadronic decay mode Bs → πDs(Φπ)X at D0 is presented in this thesis. All data, taken between April 2002 and August 2007 with the D0 detector, corresponding to an integrated luminosity of integral Ldt = 2.8 fb-1 is used. The oscillation frequency Δms and the ratio |Vtd|/|Vts| are determined as Δms = (16.6-0.4+0.5(stat)-0.3+0.4(sys)) ps-1, |Vtd|/|Vts| = 0.213-0.003+0.004(exp) ± 0.008(theor). These results are consistent with the standard model expectations and no evidence for new physics is observable.

  16. Non-SUSY Searches at the Tevatron

    SciTech Connect

    Strologas, John; /New Mexico U.

    2011-08-01

    We present recent results from searches for new physics beyond supersymmetry performed at the Tevatron accelerator at Fermilab. The CDF and D0 analyses presented here utilized data of integrated luminosity up to 6 fb{sup -1}. We cover leptonic and bosonic resonances interpreted in the Randall-Sundrum graviton and new-boson models, rare final states, and the search for vector-like quarks. The search for new phenomena beyond the weak-scale supersymmetry is a vital part of the Fermilab program. Both CDF and D0 experiments at the Tevatron collider actively look for signals not expected by the standard model (SM) or minimal supersymmetric models. The searches can be sorted in three categories: (a) searches for generic resonances that can be interpreted in several new-physics models; (b) searches for exotic combinations of final-state objects or abnormal kinematics (not necessarily predicted by current theories); and (c) model-dependent searches that test a particular theory. We present here latest results from all these categories: searches for new dilepton and diboson resonances (interpreted as gravitons and new gauge bosons), searches for anomalous {gamma} + E{sub T} + X production, and searches for vector-like quarks.

  17. Summary of Fermilab's Recycler Electron Cooler Operation and Studies

    SciTech Connect

    Prost, L.R.; Shemyakin, A.; /Fermilab

    2012-05-15

    Fermilab's Recycler ring was used as a storage ring for accumulation and subsequent manipulations of 8 GeV antiprotons destined for the Tevatron collider. To satisfy these missions, a unique electron cooling system was designed, developed and successfully implemented. The most important features that distinguish the Recycler cooler from other existing electron coolers are its relativistic energy, 4.3 MV combined with 0.1-0.5 A DC beam current, a weak continuous longitudinal magnetic field in the cooling section, 100 G, and lumped focusing elsewhere. With the termination of the Tevatron collider operation, so did the cooler. In this article, we summarize the experience of running this unique machine.

  18. Review of Physics Results from the Tevatron: Top Quark Physics

    SciTech Connect

    Gerber, Cecilia E.; Vellidis, Costas

    2014-09-17

    We present results on top quark physics from the CDF and D0 collaborations at the Fermilab Tevatron proton anti-proton collider. These include legacy results from Run II that were published or submitted for publication before mid-2014, as well as a summary of Run I results. The historical perspective of the discovery of the top quark in Run I is also described.

  19. Searches for BSM (non-SUSY) physics at the Tevatron

    SciTech Connect

    Gerberich, Heather K.; /Illinois U., Urbana

    2005-11-01

    As of July 2005, the Tevatron at Fermilab has delivered {approx} 1 fb{sup -1} of data to the CDF and D0 experiments. Each experiment has recorded more than 80% of the delivered luminosity. Results of searches for physics (non-SUSY and non-Higgs) beyond the Standard Model using 200 pb{sup -1} to 480 pb{sup -1} at D0 and CDF are presented.

  20. Evidence for Single Top Production at the Tevatron

    SciTech Connect

    Jain, Supriya; /Oklahoma U.

    2008-05-01

    We present first evidence for the production of single top quarks at the Fermilab Tevatron p{bar p} collider. Both D0 and CDF experiments have measured the single top production cross section with a 3-standard-deviation significance using 0.9 fb{sup -1} and 2.2 fb{sup -1} of lepton+jets data, respectively. A direct measurement of the CKM matrix element that describes the Wtb coupling is also performed for the first time.

  1. Studies of QCD at the Tevatron with the D0 detector

    SciTech Connect

    Stephens, R.W.; D0 Collaboration

    1996-12-01

    QCD studies at Fermilab`s Tevatron encompass a rich variety of topics. We present some of the latest results from the D0 experiment including probes of the standard model given by the inclusive jet cross section, the dijet invariant mass spectrum and several studies with direct photons. To complement these probes, we also present new results from precision examinations of the color interactions including studies of color coherence and jet azimuthal decorrelation. 22 refs., 14 figs.

  2. Surge recovery techniques for the Tevatron cold compressors

    SciTech Connect

    Martinez, A.; Klebaner, A.L.; Makara, J.N.; Theilacker, J.C.; /Fermilab

    2006-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success.

  3. Surge Recovery Techniques for the Tevatron Cold Compressors

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Klebaner, A. L.; Makara, J. N.; Theilacker, J. C.

    2006-04-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, made by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations. The compressor is designed to pump 60 g/s of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/s and operating speeds between 40 and 95 krpm. Since initial commissioning in 1993, Tevatron transient conditions such as quench recovery have led to multiple-location machine trips as a result of the cold compressors entering the surge regime. Historically, compressors operating at lower inlet pressures and higher speeds have been especially susceptible to these machine trips and it was not uncommon to have multiple compressor trips during large multiple-house quenches. In order to cope with these events and limit accelerator down time, surge recovery techniques have been implemented in an attempt to prevent the compressors from tripping once the machine entered this surge regime. This paper discusses the different methods of surge recovery that have been employed. Data from tests performed at the Cryogenic Test Facility at Fermilab as well as actual Tevatron operational data were utilized. In order to aid in the determination of the surge region, a full mapping study was undertaken to characterize the entire pressure field of the cold compressor. These techniques were then implemented and tested at several locations in the Tevatron with some success.

  4. Search for 3rd Generation Vector Leptoquarks in the Di-tau Di-jet Channel in Proton Antiproton Collisions at square √s = 1.96 TeV

    SciTech Connect

    Forrester, Stanley Scott

    2006-01-01

    We search for third generation vector leptoquarks (V LQ3) produced in colliding p$\\bar{p}$ beams operating at √s = 1.96 TeV at the CDF experiment in Run II of the Fermilab Tevatron. We use 322 pb-1 of data to search for the V LQ3 signal in the di-tau plus di-jet channel. For the first time, the full matrix element is used in the Monte Carlo simulation of this signal. With no events observed in the signal region, we set a 95% C.L. upper limit on the V LQ3 pair production cross section of σ < 344fb, assuming Yang-Mills couplings and Br(V LQ3 → bτ) = 1, and a lower limit on the V LQ3 mass of mV LQ3 > 317 GeV=c2. If theoretical uncertainties on the cross section are applied in the least favorable manner the results are σ < 360fb and mV LQ3 > 294 GeV=c2. The Minimal coupling V LQ3 result is an upper limit on the cross section of σ < 493fb (σ < 610fb) and the lower limit on the mass is mV LQ3 > 251 GeV=c2 (mV LQ3 > 223 GeV=c2) for the nominal (1σ varied) theoretical expectation.

  5. Diffractive W and Z Production at the Fermilab Tevatron

    SciTech Connect

    Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR

    2010-07-01

    We report on a measurement of the fraction of events with a W or Z boson produced diffractively in {bar p}p collisions at {radical}s = 1.96 TeV, using data from 0.6 fb{sup -1} of integrated luminosity collected with the CDF II detector equipped with a Roman-pot spectrometer that detects the {bar p} from {bar p} + p {yields} {bar p}+[X+W/Z]. We find that (0.97 {+-} 0.11)% of Ws and (0.85 {+-} 0.22)% of Zs are produced diffractively in a region of (anti)proton fractional momentum loss {zeta} of 0.03 < {zeta} < 0.10 and 4-momentum transferred squared t of -1 < t < 0 (GeV/c){sup 2}. We also report on searches for W and Z production in double Pomeron exchange, p+{bar p} {yields} p+[X+W/z]+{bar p}, and on exclusive Z production, {bar p}p {yields} {bar p}+Z+p. No signal is seen above background for these processes, and comparisons are made with expectations.

  6. Soft QCD at Tevatron

    SciTech Connect

    Rangel, Murilo; /Orsay, LAL

    2010-06-01

    Experimental studies of soft Quantum Chromodynamics (QCD) at Tevatron are reported in this note. Results on inclusive inelastic interactions, underlying events, double parton interaction and exclusive diffractive production and their implications to the Large Hadron Collider (LHC) physics are discussed.

  7. Tevatron admittance measurement

    SciTech Connect

    Zhang, X.L.; Shiltsev, V.; Tan, C.Y.; /Fermilab

    2005-05-01

    We measured the Tevatron beam admittance by the means of exciting the beam with noise and causing emittance growth. The noise power was about 3W with a bandwidth of 100Hz and centered either in the horizontal betatron frequency or vertical betatron frequency. We were able to controllably blow the beam emittance up quickly. From the point where the beam emittance stopped growing, we measured the beam acceptance of the Tevatron.

  8. Search for the Standard Model Higgs Boson in associated production with w boson at the Tevatron

    SciTech Connect

    Chun, Xu

    2009-11-01

    A search for the Standard Model Higgs boson in proton-antiproton collisions with center-of-mass energy 1.96 TeV at the Tevatron is presented in this dissertation. The process of interest is the associated production of W boson and Higgs boson, with the W boson decaying leptonically and the Higgs boson decaying into a pair of bottom quarks. The dataset in the analysis is accumulated by the D0 detector from April 2002 to April 2008 and corresponding to an integrated luminosity of 2.7 fb-1. The events are reconstructed and selected following the criteria of an isolated lepton, missing transverse energy and two jets. The D0 Neural Network b-jet identification algorithm is further used to discriminate b jets from light jets. A multivariate analysis combining Matrix Element and Neural Network methods is explored to improve the Higgs boson signal significance. No evidence of the Higgs boson is observed in this analysis. In consequence, an observed (expected) limit on the ratio of σ (p$\\bar{p}$ → WH) x Br (H → b$\\bar{b}$) to the Standard Model prediction is set to be 6.7 (6.4) at 95% C.L. for the Higgs boson with a mass of 115 GeV.

  9. Combination of the top-quark mass measurements from the Tevatron collider

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Álvarez González, B.; Alverson, G.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Askew, A.; Atkins, S.; Auerbach, B.; Augsten, K.; Aurisano, A.; Avila, C.; Azfar, F.; Badaud, F.; Badgett, W.; Bae, T.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barbaro-Galtieri, A.; Barberis, E.; Baringer, P.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartlett, J. F.; Bartos, P.; Bassler, U.; Bauce, M.; Bazterra, V.; Bean, A.; Bedeschi, F.; Begalli, M.; Behari, S.; Bellantoni, L.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Bhatti, A.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blazey, G.; Blessing, S.; Bloom, K.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bortoletto, D.; Bose, T.; Boudreau, J.; Boveia, A.; Brandt, A.; Brandt, O.; Brigliadori, L.; Brock, R.; Bromberg, C.; Bross, A.; Brown, D.; Brown, J.; Brucken, E.; Bu, X. B.; Budagov, J.; Budd, H. S.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buszello, C. P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camacho-Pérez, E.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Casey, B. C. K.; Castilla-Valdez, H.; Castro, A.; Catastini, P.; Caughron, S.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chen, Y. C.; Chertok, M.; Chevalier-Théry, S.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, D. K.; Cho, K.; Cho, S. W.; Choi, S.; Chokheli, D.; Choudhary, B.; Chung, W. H.; Chung, Y. S.; Cihangir, S.; Ciocci, M. A.; Claes, D.; Clark, A.; Clarke, C.; Clutter, J.; Compostella, G.; Convery, M. E.; Conway, J.; Cooke, M.; Cooper, W. E.; Corbo, M.; Corcoran, M.; Cordelli, M.; Couderc, F.; Cousinou, M.-C.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Croc, A.; Cuevas, J.; Culbertson, R.; Cutts, D.; Dagenhart, D.; Das, A.; d'Ascenzo, N.; Datta, M.; Davies, G.; de Barbaro, P.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Dell'Orso, M.; Demina, R.; Demortier, L.; Deninno, M.; Denisov, D.; Denisov, S. P.; d'Errico, M.; Desai, S.; Deterre, C.; DeVaughan, K.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dittmann, J. R.; Dominguez, A.; Donati, S.; Dong, P.; D'Onofrio, M.; Dorigo, M.; Dorigo, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Ebina, K.; Edmunds, D.; Elagin, A.; Ellison, J.; Elvira, V. D.; Enari, Y.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Farrington, S.; Feindt, M.; Feng, L.; Ferbel, T.; Fernandez, J. P.; Fiedler, F.; Field, R.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Flanagan, G.; Forrest, R.; Fortner, M.; Fox, H.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Fuess, S.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia, J. E.; Garcia-Bellido, A.; García-González, J. A.; García-Guerra, G. A.; Garfinkel, A. F.; Garosi, P.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gerberich, H.; Gerchtein, E.; Gershtein, Y.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Ginther, G.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Golovanov, G.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grosso-Pilcher, C.; Group, R. C.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Guimaraes da Costa, J.; Gutierrez, G.; Gutierrez, P.; Hagopian, S.; Hahn, S. R.; Haley, J.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Han, L.; Happacher, F.; Hara, K.; Harder, K.; Hare, D.; Hare, M.; Harel, A.; Harr, R. F.; Hatakeyama, K.; Hauptman, J. M.; Hays, C.; Hays, J.; Head, T.; Hebbeker, T.; Heck, M.; Hedin, D.; Hegab, H.; Heinrich, J.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herndon, M.; Herner, K.; Hesketh, G.; Hewamanage, S.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hocker, A.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Hopkins, W.; Horn, D.; Hou, S.; Howley, I.; Hubacek, Z.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Introzzi, G.; Iori, M.; Ito, A. S.; Ivanov, A.; Jabeen, S.; Jaffré, M.; James, E.; Jang, D.; Jayasinghe, A.; Jayatilaka, B.; Jeon, E. J.; Jeong, M. S.; Jesik, R.; Jindariani, S.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jones, M.; Jonsson, P.; Joo, K. K.; Joshi, J.; Jun, S. Y.; Jung, A. W.; Junk, T. R.; Juste, A.; Kaadze, K.; Kajfasz, E.; Kamon, T.; Karchin, P. E.; Karmanov, D.; Kasmi, A.; Kasper, P. A.; Kato, Y.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Ketchum, W.; Keung, J.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kiselevich, I.; Klimenko, S.; Knoepfel, K.; Kohli, J. M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kozelov, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurata, M.; Kurča, T.; Kuzmin, V. A.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lammers, S.; Lancaster, M.; Lander, R. L.; Landsberg, G.; Lannon, K.; Lath, A.; Latino, G.; Lebrun, P.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Lee, W. M.; Lee, S. W.; Lei, X.; Lellouch, J.; Leo, S.; Leone, S.; Lewis, J. D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Limosani, A.; Lin, C.-J.; Lincoln, D.; Lindgren, M.; Linnemann, J.; Lipaev, V. V.; Lipeles, E.; Lipton, R.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, H.; Liu, Q.; Liu, T.; Liu, Y.; Lobodenko, A.; Lockwitz, S.; Loginov, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Luna-Garcia, R.; Lungu, G.; Lyon, A. L.; Lys, J.; Lysak, R.; Maciel, A. K. A.; Madar, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Magaña-Villalba, R.; Malik, S.; Malik, S.; Malyshev, V. L.; Manca, G.; Manousakis-Katsikakis, A.; Maravin, Y.; Margaroli, F.; Marino, C.; Martínez, M.; Martínez-Ortega, J.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McCarthy, R.; McFarland, K. S.; McGivern, C. L.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Mesropian, C.; Meyer, A.; Meyer, J.; Miao, T.; Miconi, F.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondal, N. K.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Mulhearn, M.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nagy, E.; Naimuddin, M.; Nakano, I.; Napier, A.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Nett, J.; Neu, C.; Neubauer, M. S.; Neustroev, P.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Nunnemann, T.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Orduna, J.; Ortolan, L.; Osman, N.; Osta, J.; Padilla, M.; Pagan Griso, S.; Pagliarone, C.; Pal, A.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patrick, J.; Patwa, A.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penning, B.; Penzo, A.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pondrom, L.; Popov, A. V.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prewitt, M.; Price, D.; Prokopenko, N.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Qian, J.; Quadt, A.; Quinn, B.; Rahaman, A.; Ramakrishnan, V.; Rangel, M. S.; Ranjan, K.; Ranjan, N.; Ratoff, P. N.; Razumov, I.; Redondo, I.; Renkel, P.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ripp-Baudot, I.; Ristori, L.; Rizatdinova, F.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Rominsky, M.; Roser, R.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sajot, G.; Sakumoto, W. K.; Sakurai, Y.; Salcido, P.; Sánchez-Hernández, A.; Sanders, M. P.; Santi, L.; Santos, A. S.; Sato, K.; Savage, G.; Saveliev, V.; Savoy-Navarro, A.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlabach, P.; Schlobohm, S.; Schmidt, A.; Schmidt, E. E.; Schwanenberger, C.; Schwarz, T.; Schwienhorst, R.; Scodellaro, L.; Scribano, A.; Scuri, F.; Seidel, S.; Seiya, Y.; Sekaric, J.; Semenov, A.; Severini, H.; Sforza, F.; Shabalina, E.; Shalhout, S. Z.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shivpuri, R. K.; Shochet, M.; Shreyber-Tecker, I.; Simak, V.; Simonenko, A.; Sinervo, P.; Skubic, P.; Slattery, P.; Sliwa, K.; Smirnov, D.; Smith, J. R.; Smith, K. J.; Snider, F. D.; Snow, G. R.; Snow, J.; Snyder, S.; Soha, A.; Söldner-Rembold, S.; Song, H.; Sonnenschein, L.; Sorin, V.; Soustruznik, K.; Squillacioti, P.; Denis, R. St.; Stancari, M.; Stark, J.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Stoyanova, D. A.; Strauss, M.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Suter, L.; Svoisky, P.; Takahashi, M.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Titov, M.; Toback, D.; Tokar, S.; Tokmenin, V. V.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Ukegawa, F.; Uozumi, S.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varganov, A.; Varnes, E. W.; Vasilyev, I. A.; Vázquez, F.; Velev, G.; Vellidis, C.; Verdier, P.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vidal, M.; Vila, I.; Vilanova, D.; Vilar, R.; Vizán, J.; Vogel, M.; Vokac, P.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wahl, H. D.; Wakisaka, T.; Wallny, R.; Wang, M. H. L. S.; Wang, S. M.; Warburton, A.; Warchol, J.; Waters, D.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Wester, W. C., III; White, A.; Whiteson, D.; Wick, F.; Wicke, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, H. H.; Williams, M. R. J.; Wilson, G. W.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wobisch, M.; Wolbers, S.; Wolfe, H.; Wood, D. R.; Wright, T.; Wu, X.; Wu, Z.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yamamoto, K.; Yamato, D.; Yang, S.; Yang, T.; Yang, U. K.; Yang, W.-C.; Yang, Y. C.; Yao, W.-M.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yeh, G. P.; Yin, H.; Yi, K.; Yip, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Youn, S. W.; Yu, G. B.; Yu, I.; Yu, J. M.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zennamo, J.; Zhao, T.; Zhao, T. G.; Zhou, B.; Zhou, C.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; Zucchelli, S.

    2012-11-01

    The top quark is the heaviest known elementary particle, with a mass about 40 times larger than the mass of its isospin partner, the bottom quark. It decays almost 100% of the time to a W boson and a bottom quark. Using top-antitop pairs at the Tevatron proton-antiproton collider, the CDF and D0 Collaborations have measured the top quark’s mass in different final states for integrated luminosities of up to 5.8fb-1. This paper reports on a combination of these measurements that results in a more precise value of the mass than any individual decay channel can provide. It describes the treatment of the systematic uncertainties and their correlations. The mass value determined is 173.18±0.56(stat)±0.75(syst)GeV or 173.18±0.94GeV, which has a precision of ±0.54%, making this the most precise determination of the top-quark mass.

  10. Inclusive jet production at the Tevatron

    SciTech Connect

    Norniella, Olga; /Barcelona, IFAE

    2006-08-01

    Preliminary results on inclusive jet production in proton-antiproton collisions at {radical}s = 1.96 TeV based on 1 fb{sup -1} of CDF Run II data are presented. Measurements are preformed using different jet algorithms in a wide range of jet transverse momentum and jet rapidity. The measured cross sections are compared to next-to-leading order perturbative QCD calculations

  11. Search for associated production of z and Higgs bosons in proton-antiproton collisions at 1.96 TeV

    SciTech Connect

    BackusMayes, John Alexander

    2010-01-01

    We present a search for associated production of Z and Higgs bosons in 4.2 fb-1 of $\\bar{p}$p collisions at √s = 1.96 TeV, produced in RunII of the Tevatron and recorded by the D0 detector. The search is performed in events containing at least two muons and at least two jets. The ZH signal is distinguished from the expected backgrounds by means of multivariate classifiers known as random forests. Binned random forest output distributions are used in comparing the data to background-only and signal+background hypotheses. No excess is observed in the data, so we set upper limits on ZH production with a 95% confidence level.

  12. Magnetic performance of new Fermilab high gradient quadrupoles

    SciTech Connect

    Hanft, R.; Brown, B.C.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; McInturff, A.D.; Mokhtarani, A.; Riddiford, A.

    1991-05-01

    For the Fermilab Tevatron low beta insertions installed in 1990--1991 as part of a luminosity upgrade there were built approximately 35 superconducting cold iron quadrupoles utilizing a two layer cos 2{theta} coil geometry with 76 mm diameter aperature. The field harmonics and strengths of these magnets obtained by measurement at cryogenic conditions are presented. Evidence for a longitudinal periodic structure in the remnant field is shown. 6 refs., 2 figs., 3 tabs.

  13. Accelerator Preparations for Muon Physics Experiments at Fermilab

    SciTech Connect

    Syphers, M.J.; /Fermilab

    2009-10-01

    The use of existing Fermilab facilities to provide beams for two muon experiments - the Muon to Electron Conversion Experiment (Mu2e) and the New g-2 Experiment - is under consideration. Plans are being pursued to perform these experiments following the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. Operating scenarios being investigated and anticipated accelerator improvements or reconfigurations will be presented.

  14. Fermilab E791

    SciTech Connect

    Amato, S.; Anjos, J.C.; Bediaga, I.; Costa, I.; de Mello Neto, J.R.T.; de Miranda, J.M.; Santoro, A.F.S.; Souza, M.H.G.; Blaylock, G.; Burchat, P.R.; Gagnon, P.; Sugano, K.; d`Oliveria, A.B.; Santha, A.; Sokologg, M.D.; Appel, J.A.; Banerjee, S.; Carter, T.; Denisenko, K.; Halling, M.; James, C.; Lundberg, B.; Thorne, K.; Burnstein, R.; Kasper, P.A.; Peng, K.C.; Rubin, H.; Cremaldi, L.M.; Aitala, E.M.; Gounder, K.; Rafatian, A.; Ramalho, A.J.; Reidy, J.J.; Summers, D.J.; Yi, D.; Granite, D.; Nguyen, A.; Reay, N.W.; Reibel, K.; Sidwell, R.A.; Stanton, N.; Tripathi, A.; Witchey, N.; Purohit, M.V.; Schwartz, A.; Wiener, J.; Almeida, F.M.L.; daSilva Carvalho, H.; Ashery, D.; Beck, S.; Gerzon, S.; Lichtenstadt, J.; Trumer, D.; Bracker, S.B.; Astroga, J.; Milburn, R.; Napier, A.; Radeztsky, S.; Sheaff, M.; Darling, C.; Slaughter, J.; Takach, S.; Wolin, E.

    1992-10-01

    Fermilab E791, a very high statistics charm particle experiment, recently completed its data taking at Fermilab`s Tagged Photon Laboratory. Over 20 billionevents were recorded through a loose transverse energy trigger and written to 8mm tape in the 1991--92 fixed target run at Fermilab. This unprecedented data sample containing charm is being analysis on many-thousand MIP RISC computing farms set up at sites in the collaboration. A glimpse of the data taking and analysis effort is presented. We also show some preliminary results for common charm decay modes. Our present analysis indicates a very rich yield of over 200K reconstructed charm decays.

  15. Fermilab Program and Plans

    SciTech Connect

    Denisov, Dmitri

    2014-01-01

    This article is a short summary of the talk presented at 2014 Instrumentation Conference in Novosibirsk about Fermilab's experimental program and future plans. It includes brief description of the P5 long term planning progressing in US as well as discussion of the future accelerators considered at Fermilab.

  16. Fermilab`s DART DA system

    SciTech Connect

    Pordes, R.; Anderson, J.; Berg, D.; Black, D.; Forster, R.; Franzen, J.; Kent, S.; Kwarciany, R.; Meadows, J.; Moore, C.

    1994-04-01

    DART is the new data acquisition system designed and implemented for six Fermilab experiments by the Fermilab Computing Division and the experiments themselves. The complexity of the experiments varies greatly. Their data taking throughput and event filtering requirements range from a few (2-5) to tens (80) of CAMAC, FASTBUS and home built front end crates; from a few 100 KByte/sec to 160 MByte/sec front end data collection rates; and from 0-3000 Mips of level 3 processing. The authors report on the architecture and implementation of DART to this date, and the hardware and software components that are being developed and supported.

  17. Injury reduction at Fermilab

    SciTech Connect

    Griffing, Bill; /Fermilab

    2005-06-01

    In a recent DOE Program Review, Fermilab's director presented results of the laboratory's effort to reduce the injury rate over the last decade. The results, shown in the figure below, reveal a consistent and dramatic downward trend in OSHA recordable injuries at Fermilab. The High Energy Physics Program Office has asked Fermilab to report in detail on how the laboratory has achieved the reduction. In fact, the reduction in the injury rate reflects a change in safety culture at Fermilab, which has evolved slowly over this period, due to a series of events, both planned and unplanned. This paper attempts to describe those significant events and analyze how each of them has shaped the safety culture that, in turn, has reduced the rate of injury at Fermilab to its current value.

  18. The Tevatron Chromaticity tracker

    SciTech Connect

    Tan, Cheng-Yang; /Fermilab

    2008-12-01

    The Tevatron chromaticity tracker (CT) has been successfully commissioned and is now operational. The basic idea behind the CT is that when the phase of the Tevatron RF is slowly modulated, the beam momentum is also modulated. This momentum modulation is coupled transversely via chromaticity to manifest as a phase modulation on the betatron tune. Thus by phase demodulating the betatron tune, the chromaticity can be recovered. However, for the phase demodulation to be successful, it is critical that the betatron tune be a coherent signal that can be easily picked up by a phase detector. This is easily done because the Tevatron has a phase locked loop (PLL) based tune tracker which coherently excites the beam at the betatron tune.

  19. Tevatron AC dipole system

    SciTech Connect

    Miyamoto, R.; Kopp, S.E.; Jansson, A.; Syphers, M.J.; /Fermilab

    2007-06-01

    The AC dipole is an oscillating dipole magnet which can induce large amplitude oscillations without the emittance growth and decoherence. These properties make it a good tool to measure optics of a hadron synchrotron. The vertical AC dipole for the Tevatron is powered by an inexpensive high power audio amplifier since its operating frequency is approximately 20 kHz. The magnet is incorporated into a parallel resonant system to maximize the current. The use of a vertical pinger magnet which has been installed in the Tevatron made the cost relatively inexpensive. Recently, the initial system was upgraded with a more powerful amplifier and oscillation amplitudes up to 2-3{sigma} were achieved with the 980 GeV proton beam. This paper discusses details of the Tevatron AC dipole system and also shows its test results.

  20. Tests of Enhanced Leading Order QCD in W Boson plus Jet Production in 1.96-TeV Proton-Antiproton Collisions

    SciTech Connect

    Tsuno, Soushi

    2004-01-01

    The authors have studied the W + ≥ n jets process in Tevatron Run II experiment. The data used correspond to a total integrated luminosity of 72 pb-1 taken from March 2002 through January 2003. The lowest order QCD predictions have been tested with a new prescription of the parton-jet matching, which allows to construct the enhanced LO phase space. According to this procedure, one gets unique results which do not depend on unphysical bias of kinematical cuts to avoid the collinear/infrared divergence in calculation. Namely, one can get the meaningful results in the lowest order prediction. The controllable event samples of the W boson plus jets events by the enhanced lowest order prediction will lead smaller systematic uncertainty than the naive prediction without any cares of the collinear/infrared divergence. They expect their method will be also useful to make systematically small samples as the background estimates in the top quark analysis. They found a good agreement between data and theory in typical kinematics distributions. The number of events for each inclusive sample up to 3 jets are compared with Monte Carlo calculations. A comparison with Run I results is also presented. This is the first result for the CDF Run II experiment.

  1. Search for Exotic S=-2 Baryons in proton-antiproton Collisions at sqrt(s) = 1.96 TeV

    SciTech Connect

    Abulencia, A.; Adelman, J.; Affolder, T.; Akimoto, T.; Albrow, M.G.; Ambrose, D.; Amerio, S.; Amidei, D.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Taiwan, Inst. Phys. /Argonne /Barcelona, IFAE /Baylor U. /Bologna U. /Brandeis U. /UC, Davis /UCLA /UC, San Diego /UC, Santa Barbara /Cantabria Inst. of Phys.

    2006-12-01

    A search for a manifestly exotic S = -2 baryon state decaying to {Xi}{sup -}{pi}{sup -}, and its neutral partner decaying to {Xi}{sup -}{pi}{sup +}, has been performed using 220 pb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV collected by the Collider Detector at Fermilab. The {Xi}{sup -} trajectories were measured in a silicon tracker before their decay, resulting in a sample with low background and excellent position resolution. No evidence was found for S = -2 pentaquark candidates in the invariant mass range of 1600-2100 MeV/c{sup 2}. Upper limits on the product of pentaquark production cross section times its branching fraction to {Xi}{sup -}{pi}{sup +,-}, relative to the cross section of the well established {Xi}(1530) resonance, are presented for neutral and doubly negative candidates with p{sub T} > 2 GeV/c and |y| < 1 as a function of pentaquark mass. At 1862 MeV/c{sup 2}, these upper limits for neutral and doubly negative final states were found to be 3.2% and 1.7% at the 90% confidence level, respectively.

  2. Search for charged Higgs bosons in decays of top quarks in proton - antiproton collisions at √s = 1.96 TeV

    SciTech Connect

    Yu, Geum Bong

    2009-01-01

    In this dissertation we report on the first direct search for charged Higgs bosons in decays of top quarks in p$\\bar{p}$ collisions at √s = 1.96 TeV. The search uses a data sample with an integrated luminosity of 2.2 fb-1 collected by the CDF II detector at Fermilab and looks for a resonance in the invariant mass distribution of two jets in the lepton+jets sample of t$\\bar{t}$ candidates. We observe no evidence of charged Higgs bosons in top quark decays; hence 95% C.L. upper limits on the branching ratio are placed at β(t → H+b) < 0.1 to 0.3 for charged Higgs boson masses of 60 to 150 GeV/c2 assuming β(H+ → c$\\bar{s}$) = 1.0 and β(t → Wb)+β(t → H+b) = 1.0. The upper limits on β(t → H+b) are also used as model independent limits on the decay branching ratio of top quarks to any charged scalar bosons beyond the standard model.

  3. Search for Charged Higgs in t$\\bar{t}$ Decay Products from Proton-Antiproton Collisions at √s = 1.96 TeV

    SciTech Connect

    Eusebi, Ricardo

    2005-10-01

    This dissertation reports the results of a search for charged Higgs bosons in the decays of t$\\bar{t}$ pairs produced in p$\\bar{p}$ collisions at a center-of-mass energy of 1.96 TeV. The search is performed on a data sample recorded by the upgraded Collider Detector at Fermilab and corresponding to an integrated luminosity of 193 pb-1. The search is based on the relative rates of events in the different t$\\bar{t}$ decay channels. Results are obtained in the context of different models. In the context of the minimal supersymmetric extension of the Standard Model (MSSM), for which they fully account for radiative and Yukawa coupling corrections, regions in the (mH±, tan (β)) plane are excluded. In the Tauonic Higgs Model in which the charged Higgs is assumed to decay exclusively to $\\bar{τ}$, the BR(t → H+b) is constrained to be less than 0.4 at 95% C.L. If no assumption is made on the charged Higgs decay, the BR(t → H+b) is constrained to be less than 0.90 at 95% C.L. No evidence for charged Higgs production is found.

  4. Diffraction at the Tevatron: CDF results

    SciTech Connect

    Goulianos, Konstantin; /Rockefeller U.

    2006-11-01

    The diffractive program of the CDF Collaboration at the Fermilab Tevatron p{bar p} Collider is reviewed with emphasis on recent results from Run II at {radical}s = 1.96 TeV. Updated results on the x{sub B{sub j}} and Q{sup 2} dependence of the diffractive structure function obtained from dijet production, and on the slope parameter of the t-distribution of diffractive events as a function of Q{sup 2} in the range 1 GeV{sup 2} < Q{sup 2} < 10{sup 4} GeV{sup 2}, are presented and compared with theoretical expectations. Results on cross sections for exclusive dijet and diphoton production are also presented and used to calibrate theoretical estimates for exclusive Higgs production at the Large Hadron Collider.

  5. Higgs boson studies at the tevatron

    DOE PAGES

    Herner, Kenneth

    2016-05-31

    We present the combination of searches for the Standard Model Higgs boson at a center-of-mass energy of √s = 1.96 TeV , using the full Run 2 dataset collected with the CDF and D0 detectors at the Fermilab Tevatron collider. We also present combined measurements of Higgs Boson production cross sections, branching ratios, and couplings to fermions and bosons. Lastly, we present tests of different spin and parity hypotheses for a particle H of mass 125 GeV produced in association with a vector boson and decaying into a pair of b quarks, and place constraints on such hypotheses using the D0more » data.« less

  6. Higgs boson studies at the tevatron

    SciTech Connect

    Herner, Kenneth

    2016-05-31

    We present the combination of searches for the Standard Model Higgs boson at a center-of-mass energy of √s = 1.96 TeV , using the full Run 2 dataset collected with the CDF and D0 detectors at the Fermilab Tevatron collider. We also present combined measurements of Higgs Boson production cross sections, branching ratios, and couplings to fermions and bosons. Lastly, we present tests of different spin and parity hypotheses for a particle H of mass 125 GeV produced in association with a vector boson and decaying into a pair of b quarks, and place constraints on such hypotheses using the D0 data.

  7. Initial performance of upgraded Tevatron cryogenic systems

    SciTech Connect

    Norris, B.L.

    1996-09-01

    Fermilab began operating a re-designed satellite refrigerator systems in November 1993. Upgrades were installed to operate the Tevatron at a magnet temperature of 3.5 K, approximately 1K lower than the original design. Refrigerator upgrades included new valve boxes, larger reciprocating expanders, the installation of cold vapor compressors, new sub-atmospheric instrumentation and an entirely new distributed controls system. Cryogenic system reliability data for Colliding Physics Run 1B is presented emphasizing a failure analysis for each aspect of the upgrade. Comparison to data for Colliding Physics Run 1A (previous to upgrade) is presented to show the impact of a major system overhaul. New operational problems and their solutions are presented in detail.

  8. Collider Detector at Fermilab (CDF): Data from W, Z bosons and Drell Yan lepton pairs research of the CDF Electroweak Group

    DOE Data Explorer

    The Collider Detector at Fermilab (CDF) is a Tevatron experiment at Fermilab. The Tevatron, a powerful particle accelerator, accelerates protons and antiprotons close to the speed of light, and then makes them collide head-on inside the CDF detector. The CDF detector is used to study the products of such collisions. The CDF Physics Group at Fermilab is organized into six working groups, each with a specific focus. The Electroweak group studies production and properties of W, Z bosons and Drell Yan lepton pairs. Their public web page makes data and numerous figures available from both CDF Runs I and II.

  9. Measurement of the Top Quark Mass with the Collider Detector at Fermilab

    SciTech Connect

    Sato, Koji

    2005-02-01

    We present a measurement of the top quark mass using tt pair creation events decaying into the lepton+jets channel in pp collisions at √s = 1.96 TeV. The data sample used in this analysis was collected with the Collider Detector at Fermilab (CDF) in Tevatron Run II during the period from March 2002 through August 2003.

  10. Operation of the CDF Silicon Vertex Detector with colliding beams at Fermilab

    SciTech Connect

    Bedeschi, F.; Bolognesi, V.; Dell'Agnello, S.; Galeotti, S.; Grieco, G.; Mariotti, M.; Menzione, A.; Punzi, G.; Raffaelli, F.; Ristori, L.; Tartarelli, F.; Turini, N.; Wenzel, H.; Zetti, F. ); Bailey, M.W.; Garfinkel, A.F.; Kruse, M.C.; Shaw, N.M. ); Carithers, W.C.; Ely, R.; Haber, C.; Holland, S.; Kleinfelder, S.; Merrick, T.; Schneide

    1992-10-01

    In this paper we briefly describe the main features of the CDF Silicon Vertex Detector (SVX) and discuss its performance during actual colliding beam operation at the Fermilab Tevatron. Details on S/N ratio, alignment, resolution and efficiency are given.

  11. Fermilab E791

    SciTech Connect

    Amato, S.; Anjos, J.C.; Bediaga, I.; Costa, I.; de Mello Neto, J.R.T.; de Miranda, J.M.; Santoro, A.F.S.; Souza, M.H.G. , Rio de Janeiro, RJ ); Blaylock, G.; Burchat, P.R.; Gagnon, P.; Sugano, K. ); d'Oliveria, A.B.; Santha, A.; Sokologg, M.D. ); Appel, J.A.; Banerjee, S.

    1992-10-01

    Fermilab E791, a very high statistics charm particle experiment, recently completed its data taking at Fermilab's Tagged Photon Laboratory. Over 20 billionevents were recorded through a loose transverse energy trigger and written to 8mm tape in the 1991--92 fixed target run at Fermilab. This unprecedented data sample containing charm is being analysis on many-thousand MIP RISC computing farms set up at sites in the collaboration. A glimpse of the data taking and analysis effort is presented. We also show some preliminary results for common charm decay modes. Our present analysis indicates a very rich yield of over 200K reconstructed charm decays.

  12. Fermilab Cryogenic Workshop Report

    SciTech Connect

    Hassenzahl, W. V.

    1980-06-18

    A workshop to discuss recent pressing problems experienced in the operation of helium refrigerators at the national laboratories was proposed by DOE. Early in 1980 it was decided that the workshop should be held at the Fermi National Accelerator Laboratory (Fermilab). The reasoning behind the selection of Fermilab included the proposed initial tests of the Central Liquefier, the recently experienced problems with refrigeration systems at Fermilab, and the fact that a previous workshop had been held at the Brookhaven National Laboratory, which, at present, would be the other logical choice for the workshop.

  13. Pressure field study of the Tevatron cold compressors

    SciTech Connect

    Klebaner, A.L.; Martinez, A.; Soyars, W.M.; Theilacker, J.C.; /Fermilab

    2003-01-01

    The Fermilab Tevatron cryogenic system utilizes high-speed centrifugal cold compressors, manufactured by Ishikawajima-Harima Heavy Industries Co. Ltd. (IHI), for high-energy operations [1]. The compressor is designed to pump 60 g/sec of 3.6 K saturated helium vapor at a pressure ratio of 2.8, with an off-design range of 40 to 70 g/sec. Operating speeds are between 40 and 95 krpm, with a speed of 80 krpm at the design point. Different heat loads and magnet quench performance of each of the twenty-four satellite refrigerators dictates different process pressure and flow rates of the cold compressors. Reducing the process flow rate can cause the centrifugal cold compressor to stop pumping and subsequently surge. Tests have been conducted at the Cryogenic Test Facility at Fermilab to map the pressure field and appropriate efficiency of the IHI hydrodynamic cold compressor. The information allows tuning of each of the twenty-four Tevatron satellite refrigerators to avoid cold compressor operation near the surge and choke lines. A new impeller has also been tested. The Tevatron cold compressor pressure field and efficiency data with the new impeller are presented in this paper.

  14. Highlights from Fermilab

    NASA Astrophysics Data System (ADS)

    Oddone, P. J.

    2010-12-01

    DISCUSSION by CHAIRMAN: P.J. ODDONE, Scientific Secretaries: W. Fisher, A. Holzner Note from Publisher: The Slides of the Lecture: "Highlights from Fermilab" can be found at http://www.ccsem.infn.it/issp2007/

  15. Fermilab recycler diagnostics

    SciTech Connect

    Martin Hu

    2001-07-24

    The Fermilab Recycler Ring is a permanent magnet storage ring for the storage and cooling of antiprotons. The following note describes the diagnostic tools currently available for commissioning, as well as the improvements and upgrades planned for the near future.

  16. Stochastic cooling at Fermilab

    SciTech Connect

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system.

  17. Measurement of cross section of quark pair production top with the D0 experiment at the Tevatron and determination the top quark mass using this measure

    SciTech Connect

    Chevalier-Thery, Solene

    2010-06-01

    The top quark has been discovered by CDF and D0 experiments in 1995 at the proton-antiproton collider Tevatron. The amount of data recorded by both experiments makes it possible to accurately study the properties of this quark: its mass is now known to better than 1% accuracy. This thesis describes the measurement of the top pair cross section in the electron muon channel with 4, 3 fb -1 recorded data between 2006 and 2009 by the D0 experiment. Since the final state included a muon, improvements of some aspects of its identification have been performed : a study of the contamination of the cosmic muons and a study of the quality of the muon tracks. The cross section measurement is in good agreement with the theoretical calculations and the other experimental measurements. This measurement has been used to extract a value for the top quark mass. This method allows for the extraction of a better defined top mass than direct measurements as it depends less on Monte Carlo simulations. The uncertainty on this extracted mass, dominated by the experimental one, is however larger than for direct measurements. In order to decrease this uncertainty, the ratio of the Z boson and the top pair production cross sections has been studied to look for some possible theoretical correlations. At the Tevatron, the two cross sections are not theoretically correlated: no decrease of the uncertainty on the extracted top mass is therefore possible.

  18. Fermilab: Science at Work

    ScienceCinema

    Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha

    2016-07-12

    Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.

  19. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema

    None

    2016-07-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  20. Lambda Hyperon and Anti-Lambda Hyperon Production in Proton-Antiproton Collisions at SQRT.S = 1.8 Tev

    NASA Astrophysics Data System (ADS)

    Wesson, Dennis Keith

    1990-01-01

    The characteristics of Lambda and |Lambda production have been studied from data obtained from p p collisions at sqrt{rm s} = 1.8 TeV during the first running period of experiment E735 from January to May of 1987. The experiment was conducted at the Fermi National Laboratory Tevatron collider. Five million triggers from an integrated luminosity of about 1over 3 nb^{ -1} were written to tape during this initial run of E735. Using a magnetic spectrometer arm a sample of 413 Lambda's + = Lambda's were found in these events. The transverse momentum spectrum, the ratio Lambda/(all charged particles) and the ratio Lambda/proton were studied from this sample. These were compared to the findings at lower energies and also to the results of a Monte Carlo program from another experiment. The average transverse momentum was found to be 0.77 +/- 0.06 +/- 0.08, an increase of about 24% from the value found at sqrt{rm s} = 540 GeV (CERN SPS) and an increase of about 55% from sqrt{rm s} = 53 GeV (CERN ISR). The Lambda/(all charged particle) ratio was also found to increase from 0.009 +/- 0.001 at sqrt{rm s} = 53 GeV (CERN ISR) and 0.019 +/- 0.004 at sqrt{rm s} = 540 GeV (CERN SPS), to 0.026 +/- 0.002 +/- 0.004 at our energy of sqrt{rm s} = 1.8 TeV. The lambda/proton ratio was found to be 0.38 +/- 0.03 +/- 0.06. This ratio shows no increase from lower energies. The lambda/proton ratio was used to find the strangeness suppression factor (lambda) from the quark combinatoric model of hadron production. We obtain a value lambda = 0.34 +/- 0.05 in agreement with the values found at lower energies. The increase in the ratio lambda/all charged particles as a function of center of mass energy is not inconsistent with the formation of quark-gluon plasma. However, the constant ratio of lambda/proton production is not expected in quark-gluon plasma production. Moreover, our data seem to agree with the UA5 Monte Carlo data, which does not include quark-gluon plasma production. Based on Lambda

  1. Differential cross section for /w boson production as a function of transverse momentum in /pp¯ collisions at /sqrt(s)=1.8 TeV

    NASA Astrophysics Data System (ADS)

    DØ Collaboration; Abazov, V. M.; Abbott, B.; Abdesselam, A.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adams, D. L.; Adams, M.; Ahmed, S. N.; Alexeev, G. D.; Alves, G. A.; Amos, N.; Anderson, E. W.; Baarmand, M. M.; Babintsev, V. V.; Babukhadia, L.; Bacon, T. C.; Baden, A.; Baldin, B.; Balm, P. W.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer, D.; Bean, A.; Begel, M.; Belyaev, A.; Beri, S. B.; Bernardi, G.; Bertram, I.; Besson, A.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Blazey, G.; Blessing, S.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Bos, K.; Brandt, A.; Breedon, R.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchholz, D.; Buehler, M.; Buescher, V.; Burtovoi, V. S.; Butler, J. M.; Canelli, F.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chan, K. M.; Chekulaev, S. V.; Cho, D. K.; Choi, S.; Chopra, S.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cochran, J.; Coney, L.; Connolly, B.; Cooper, W. E.; Coppage, D.; Cummings, M. A. C.; Cutts, D.; Davis, G. A.; Davis, K.; De, K.; de Jong, S. J.; Del Signore, K.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Di Loreto, G.; Doulas, S.; Draper, P.; Ducros, Y.; Dudko, L. V.; Duensing, S.; Duflot, L.; Dugad, S. R.; Dyshkant, A.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, H.; Evdokimov, V. N.; Fahland, T.; Feher, S.; Fein, D.; Ferbel, T.; Filthaut, F.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Fleuret, F.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gao, M.; Gavrilov, V.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gilmartin, R.; Ginther, G.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Graham, G.; Grannis, P. D.; Green, J. A.; Greenlee, H.; Grinstein, S.; Groer, L.; Grünendahl, S.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hays, C.; Hebert, C.; Hedin, D.; Heinson, A. P.; Heintz, U.; Heuring, T.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Huang, Y.; Illingworth, R.; Ito, A. S.; Jaffré, M.; Jain, S.; Jesik, R.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Juste, A.; Kahn, S.; Kajfasz, E.; Kalinin, A. M.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kharchilava, A.; Kim, S. K.; Klima, B.; Knuteson, B.; Ko, W.; Kohli, J. M.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krivkova, P.; Krzywdzinski, S.; Kubantsev, M.; Kuleshov, S.; Kulik, Y.; Kunori, S.; Kupco, A.; Kuznetsov, V. E.; Landsberg, G.; Leflat, A.; Leggett, C.; Lehner, F.; Li, J.; Li, Q. Z.; Lima, J. G. R.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Lucotte, A.; Lueking, L.; Lundstedt, C.; Luo, C.; Maciel, A. K. A.; Madaras, R. J.; Malyshev, V. L.; Manankov, V.; Mao, H. S.; Marshall, T.; Martin, M. I.; Martin, R. D.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miao, C.; Miettinen, H.; Mihalcea, D.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Moore, R. W.; Mostafa, M.; da Motta, H.; Nagy, E.; Nang, F.; Narain, M.; Narasimham, V. S.; Neal, H. A.; Negret, J. P.; Negroni, S.; Nunnemann, T.; O'Neil, D.; Oguri, V.; Olivier, B.; Oshima, N.; Padley, P.; Pan, L. J.; Papageorgiou, K.; Para, A.; Parashar, N.; Partridge, R.; Parua, N.; Paterno, M.; Patwa, A.; Pawlik, B.; Perkins, J.; Peters, M.; Peters, O.; Pétroff, P.; Piegaia, R.; Piekarz, H.; Pope, B. G.; Popkov, E.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Raja, R.; Rajagopalan, S.; Ramberg, E.; Rapidis, P. A.; Reay, N. W.; Reucroft, S.; Rha, J.; Ridel, M.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sabirov, B. M.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Schwartzman, A.; Sen, N.; Shabalina, E.; Shivpuri, R. K.; Shpakov, D.; Shupe, M.; Sidwell, R. A.; Simak, V.; Singh, H.; Singh, J. B.; Sirotenko, V.; Slattery, P.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sorín, V.; Sosebee, M.; Sotnikova, N.; Soustruznik, K.; Souza, M.; Stanton, N. R.; Steinbrück, G.; Stephens, R. W.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Strovink, M.; Stutte, L.; Sznajder, A.; Taylor, W.; Tentindo-Repond, S.; Tripathi, S. M.; Trippe, T. G.; Turcot, A. S.; Tuts, P. M.; van Gemmeren, P.; Vaniev, V.; Van Kooten, R.; Varelas, N.; Vertogradov, L. S.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, H.; Wang, Z.-M.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Whiteson, D.; Wightman, J. A.; Wijngaarden, D. A.; Willis, S.; Wimpenny, S. J.; Womersley, J.; Wood, D. R.; Yamada, R.; Yamin, P.; Yasuda, T.; Yatsunenko, Y. A.; Yip, K.; Youssef, S.; Yu, J.; Yu, Z.; Zanabria, M.; Zheng, H.; Zhou, Z.; Zielinski, M.; Zieminska, D.; Zieminski, A.; Zutshi, V.; Zverev, E. G.; Zylberstejn, A.

    2001-08-01

    We report a measurement of the differential cross section for /W boson production as a function of its transverse momentum in proton-antiproton collisions at sqrt(s)=1.8 TeV. The data were collected by the DØ experiment at the Fermilab Tevatron Collider during 1994-1995 and correspond to an integrated luminosity of 85 pb-1. The results are in good agreement with quantum chromodynamics over the entire range of transverse momentum.

  2. Status of searches for Higgs and physics beyond the standard model at CDF

    SciTech Connect

    Tsybychev, D.; /Florida U.

    2004-12-01

    This article presents selected experimental results on searches for Higgs and physics beyond the standard model (BSM) at the Collider Detector at Fermilab (CDF). The results are based on about 350 pb{sup -1} of proton-antiproton collisions data at {radical}s = 1.96 TeV, collected during Run II of the Tevatron. No evidence of signal was found and limits on the production cross section of various physics processes BSM are derived.

  3. Search for Higgs Boson Production in Association with the W boson in 1.96-TeV Proton-Antiproton Collisions

    SciTech Connect

    Ishizawa, Yoshio

    2005-09-01

    A search for the Standard Model Higgs boson was carried out in WH → ℓvb$\\bar{b}$ process in p$\\bar{p}$ collisions at a center of mass energy of 1.96 TeV, where W, H, ℓ, v, b and p denote either a W+ or W- boson, Higgs boson, lepton (electron or muon), neutrino, bottom quark and proton, respectively. The data were collected with the Collider Detector at Fermilab from February 2002 to August 2004. The corresponding integrated luminosity is 319 pb-1. We select events containing a single high-pT electron or muon, a large imbalance of the total transverse energy from a neutrino and two b quark jets. The main backgrounds are the W + light flavor/gluon jets and W + heavy flavor jets processes. Requiring the secondary vertex b-tagging enables us to reject the W + light flavor/gluon jets events effectively. After all event selections, they observe 187 events which is in agreement with the Standard Model background expectation of 175.2 ± 26.3 events, and there is no significant excess originating from the Higgs boson in the reconstructed dijet invariant mass distribution. They thus set a 95% confidence level upper limit on the production cross section times branching ratio decaying into bb, σ(p$\\bar{p}$ → W H) x Br(H → b$\\bar{b}$). The detection efficiency for the W H events, which is necessary for calculating the upper limit, is determined by the Monte Carlo except for the lepton identification efficiency, the lepton trigger efficiency and the b-tagging efficiency which are estimated from the CDF real data. The resultant 95% confidence level upper limits are 10.0 pb to 2.8 pb using at least one b-tagging method and 9.7 pb to 6.6 pb using double b-tagging method for the Higgs boson mass region 110 GeV/c2 to 150 GeV/c2, where the Standard Model prediction is approximately one or two order of magnitude lower than the results.

  4. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  5. Accelerators Beyond The Tevatron?

    SciTech Connect

    Lach, Joseph

    2010-07-29

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?.

  6. Experimental study of magnetically confined hollow electron beams in the Tevatron as collimators for intense high-energy hadron beams

    SciTech Connect

    Stancari, G.; Annala, G.; Shiltsev, V.; Still, D.; Valishev, A.; Vorobiev, L.; /Fermilab

    2011-03-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable losses. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and tested at Fermilab for this purpose. It was installed in one of the Tevatron electron lenses in the summer of 2010. We present the results of the first experimental tests of the hollow-beam collimation concept on 980-GeV antiproton bunches in the Tevatron.

  7. Alignment of the Fermilab D0 Detector

    SciTech Connect

    Babatunde O'Sheg Oshinowo

    2001-07-20

    The Fermilab D0 detector was used for the discovery of the top quark during Run I in 1996. It is currently being upgraded to exploit the physics potential to be presented by the Main Injector and the Tevatron Collider during Run II in the Fall of 2000. Some of the essential elements of this upgrade is the upgrade of the Solenoid Magnet, the Central Fiber Tracker, the Preshower Detectors, the Calorimeter System, and the Muon System. This paper discusses the survey and alignment of the these detectors with emphasis on the Muon detector system. The alignment accuracy is specified as better than 0.5mm. A combination of the Laser Tracker, BETS, and V-STARS systems are used for the survey.

  8. The Tevatron tune tracker pll - theory, implementation and measurements

    SciTech Connect

    Tan, Cheng-Yang; /Fermilab

    2004-12-01

    The Tevatron tune tracker is based on the idea that the transverse phase response of the beam can be measured quickly and accurately enough to allow us to track the betatron tune with a phase locked loop (PLL). The goal of this paper is to show the progress of the PLL project at Fermilab. We will divide this paper into three parts: theory, implementation and measurements. In the theory section, we will use a simple linear model to show that our design will track the betatron tune under conditions that occur in the Tevatron. In the implementation section we will break down and examine each part of the PLL and in some cases calculate the actual PLL parameters used in our system from beam measurements. And finally in the measurements section we will show the results of the PLL performance.

  9. Review of physics results from the Tevatron: QCD physics

    SciTech Connect

    Mesropian, Christina; Bandurin, Dmitry

    2015-02-17

    We present a summary of results from studies of quantum chromodynamics at the Fermilab Tevatron collider by the CDF and the D0 experiments. These include Run II results for the time period up to the end of Summer 2014. A brief description of Run I results is also given. This review covers a wide spectrum of topics, and includes measurements with jet and vector boson final states in the hard (perturbative) energy regime, as well as studies of soft physics such as diffractive and elastic scatterings, underlying and minimum bias events, hadron fragmentation, and multiple parton interactions.

  10. Detector-accelerator interface studies at the Tevatron

    SciTech Connect

    Drozhdin, A.I.; Mokhov, N.V.

    1998-04-10

    A summary of studies is presented towards minimization of beam loss in the critical locations at the Fermilab Tevatron to reduce background rates in the collider detectors and to protect machine components. Based on detailed Monte-Carlo simulations, measures have been proposed and incorporated in the machine to reduce accelerator-related instantaneous and residual background levels in the D0 and CDF detectors. Measurements performed are in good agreement with the predictions. Most recent results on acceptance and background rates in the D0 and CDF forward detectors are presented and discussed in detail.

  11. Minimax: Multiparticle physics at the TeVatron collider

    SciTech Connect

    Bjorken, J.D.

    1994-01-01

    The author and two dozen others are engaged in a small test/experiment in the Fermilab Tevatron collider. It is called Minimax, and its purpose is to explore large-cross-section physics in the forward direction. The primary goal of Minimax is search for events containing the residue of disoriented chiral condensate (dcc) produced in the primary collision. The theoretical ideas are very speculative. But if they are right, they could provide an interpretation of the Centauro/anti-Centauro anomalies claimed to have been seen in cosmic-ray events. In this paper, the history and status of Minimax is described.

  12. The dijet invariant mass at the Tevatron Collider

    SciTech Connect

    Giannetti, P. )

    1990-05-09

    The differential cross section of the process p + pbar {yields} jet + jet + X as a function of the dijet invariant mass has been measured with the CDF detector at a center of mass energy of 1.8 TeV at the Tevatron Collider in Fermilab. The present analysis is based on the sample of events collected in the 1988/89 run, amounting to a total integrated luminosity of 4.2 pb{sup {minus}1}. A comparison to leading order QCD and quark compositeness predictions is presented as well as a study of the sensitivity of the mass spectrum to the gluon radiation. 10 refs., 6 figs.

  13. Resonant second generation slepton production at the Tevatron

    SciTech Connect

    Autermann, Christian Tobias

    2006-12-01

    A search for R-parity violating supersymmetry with the D0 detector at the Fermilab Tevatron p$\\bar{p}$-collider is presented. Assuming a non-zero LQ$\\bar{d}$ coupling λ$'\\atop{2jk}$ leads to final state with two muons and jets. A total integrated luminosity of 375 pb-1 collected between April 2002 and August 2004 is utilized. The observed number of events is in agreement with the Standard Model expectation, and limits on Rp supersymmetry are derived.

  14. QCD aspects of W/Z production at the Tevatron

    SciTech Connect

    Guglielmo, G.; CDF and D0 Collaborations

    1997-07-01

    Hadron colliders are providing valuable opportunities for studying the influence of the strong force on electroweak interactions in both the perturbative and non-perturbative regions. At the Fermilab Tevatron, analysis by CDF and D0 of p{anti p} {yields} W/Z + X events at {radical}s = 1.8 TeV have been used to test a variety of leading order and next-to-leading order QCD predictions. Among the many promising benefits are improvements of parton distribution functions at high Q{sup 2} , demonstration of soft gluon radiation patterns which survive hadronization, and tests of perturbative QCD and resummation calculations.

  15. Prospects in CP violation measurements at the Tevatron Collider

    SciTech Connect

    Diego Tonelli

    2004-06-22

    The Fermilab Tevatron Collider is currently the most copious source of b-hadrons, thanks to the large b{bar b} production cross-section in 1.96 TeV p{bar p} collisions. Recent detector upgrades allow for a wide range of CP violation and flavor-mixing measurements that are fully competitive (direct asymmetries in self-tagging modes) or complementary (asymmetries of B{sub s} and b-baryons decays) with B-factories. In this paper we review some recent CP violation results from the D0 and CDF II Collaborations and we discuss the prospects for future measurements.

  16. BTeV - A dedicated B experiment at the Tevatron

    SciTech Connect

    David C. Christian

    2002-12-17

    BTeV is a dedicated b-physics experiment that is expected to begin operation at the Fermilab Tevatron in 2008. BTeV is designed to take full advantage of the large production cross section of b particles (including B{sub S}) in high energy hadron collisions. A quick description of the BTeV spectrometer is given in this paper. Two unique aspects of BTeV, the pixel-based trigger and the high quality lead tungstate electromagnetic calorimeter, are described in slightly greater detail.

  17. Studying Z/γ*+Jet Production in proton-antiproton collisions at √s = 1.96 TeV

    SciTech Connect

    Nilsen, Henrik Wold

    2009-07-01

    The production of jets in association with a Z/γ* boson is an example of an important class of processes at hadron colliders, namely vector boson + jet (V + jet) production. Comparisons of measurements of this class of processes with theory predictions constitute an important, fundamental test of the Standard Model of particle physics, and of the theory of QCD in particular. While having a smaller cross section than other V +jet processes, Z/γ*(→ e+e-) + jets production, with Z/γ* {yields} e+e-+μ-, has a distinct experimental signature allowing for measurements characterized by low backgrounds and a direct, precise measurement of the properties of the decay products of the Z/γ* boson. In this thesis, several new measurements of the properties of jets produced in association with a Z/γ* boson in p$\\bar{p}$ collisions at √s = 1.96 TeV are presented. The cross section for Z/γ*(→ e+e-) + N jet production (N ≤ 3) is measured, differential in the transverse momentum of the Nth jet in the event, normalized to the inclusive Z/γ* cross section. Also, the cross section for Z/γ*(→e+e-) + N jets (N ≥ 1) is measured, differential in the difference in azimuthal angle between the di-electron system and any jet in the event, normalized to unity. The data used in the measurements were collected by the D0 experiment located at the Tevatron Collider of the Fermi National Accelerator Laboratory and correspond to an integrated luminosity of 1.04 fb-1. The measured jet transverse momentum spectra are compared with the predictions of perturbative calculations at the next-to-leading order in the strong coupling constant. Given the low sensitivity of the calculations to model parameters, these comparisons represent a stringent test of perturbative QCD. One of the main goals currently being pursued in particle physics is the discovery of the only

  18. Fermilab and Latin America

    NASA Astrophysics Data System (ADS)

    Lederman, Leon M.

    2006-09-01

    As Director of Fermilab, starting in 1979, I began a series of meetings with scientists in Latin America. The motivation was to stir collaboration in the field of high energy particle physics, the central focus of Fermilab. In the next 13 years, these Pan American Symposia stirred much discussion of the use of modern physics, created several groups to do collaborative research at Fermilab, and often centralized facilities and, today, still provides the possibility for much more productive North-South collaboration in research and education. In 1992, I handed these activities over to the AAAS, as President. This would, I hoped, broaden areas of collaboration. Such collaboration is unfortunately very sensitive to political events. In a rational world, it would be the rewards, cultural and economic, of collaboration that would modulate political relations. We are not there yet.

  19. Status of antiproton accumulation and cooling at Fermilab's Recycler

    SciTech Connect

    Prost, L.R.; Bhat, C.M.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Crisp, J.; Derwent, P.; Eddy, N.; Gattuso, C.; Hu, M.; Pruss, S.; /Fermilab

    2009-08-01

    The Recycler ring is an 8 GeV permanent magnet storage ring where antiprotons are accumulated and prepared for Fermilab's Tevatron Collider program. With the goal of maximizing the integrated luminosity delivered to the experiments, storing, cooling and extracting antiprotons with high efficiency has been pursued. Over the past two years, while the average accumulation rate doubled, the Recycler continued to operate at a constant level of performance thanks to changes made to the Recycler Electron Cooler (energy stability and regulation, electron beam optics), RF manipulations and operating procedures. In particular, we discuss the current accumulation cycle in which {approx} 400 x 10{sup 10} antiprotons are accumulated and extracted to the Tevatron every {approx}15 hours.

  20. P-986 Letter of Intent: Medium-Energy Antiproton Physics at Fermilab

    SciTech Connect

    Asner, David M.; Phillips, Thomas J.; Apollinari, Giorgio; Broemmelsiek, Daniel R.; Brown, Charles N.; Christian, David C.; Derwent, Paul; Gollwitzer, Keith; Hahn, Alan; Papadimitriou, Vaia; Stefanski, Ray; /Fermilab /INFN, Ferrara /Hbar Technol., West Chicago /IIT, Chicago /CHEP, Taegu /Luther Coll. /Michigan U. /Northwestern U. /Notre Dame U. /St. Xavier U., Chicago

    2009-02-05

    Fermilab has long had the world's most intense antiproton source. Despite this, the opportunities for medium-energy antiproton physics at Fermilab have been limited in the past and - with the antiproton source now exclusively dedicated to serving the needs of the Tevatron Collider - are currently nonexistent. The anticipated shutdown of the Tevatron in 2010 presents the opportunity for a world-leading medium-energy antiproton program. We summarize the current status of the Fermilab antiproton facility and review some physics topics for which the experiment we propose could make the world's best measurements. Among these, the ones with the clearest potential for high impact and visibility are in the area of charm mixing and CP violation. Continued running of the Antiproton Source following the shutdown of the Tevatron is thus one of the simplest ways that Fermilab can restore a degree of breadth to its future research program. The impact on the rest of the program will be minor. We request a small amount of effort over the coming months in order to assess these issues in more detail.

  1. Scintillator manufacture at Fermilab

    SciTech Connect

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  2. B physics at the Tevatron

    NASA Astrophysics Data System (ADS)

    de Troconiz, Jorge F.

    1998-10-01

    Precision B-physics results from the CDF and D0 Collaborations based on data collected during the Tevatron 1992-96 run are presented. In particular we discuss the measurement of the Bs meson lifetime, Bc meson observation, and B0-B0 mixing results obtained using time-evolution analyses. Prospects for the next Tevatron run, starting in 1999, are also reported.

  3. Fast Bunch Integrators at Fermilab During Run II

    SciTech Connect

    Meyer, Thomas; Briegel, Charles; Fellenz, Brian; Vogel, Greg; /Fermilab

    2011-07-13

    The Fast Bunch Integrator is a bunch intensity monitor designed around the measurements made from Resistive Wall Current Monitors. During the Run II period these were used in both Tevatron and Main Injector for single and multiple bunch intensity measurements. This paper presents an overview of the design and use of these systems during this period. During the Run II era the Fast Bunch integrators have found a multitude of uses. From antiproton transfers to muti-bunch beam coalescing, Main Injector transfers to halo scraping and lifetime measurements, the Fast Bunch Integrators have proved invaluable in the creation and maintenance of Colliding Beams stores at Fermilab.

  4. Gun and optics calculations for the Fermilab recirculation experiment

    SciTech Connect

    Kroc, T.

    1997-10-01

    Fermilab is investigating electron cooling to recycle 8 Gev antiprotons recovered from the Tevatron. To do so, it is developing an experiment to recirculate 2 Mev electrons generated by a Pelletron at National Electrostatics Corporation. This paper reports on the optics calculations done in support of that work. We have used the computer codes EGN2 and MacTrace to represent the gun area and acceleration columns respectively. In addition to the results of our simulations, we discuss some of the problems encountered in interfacing the two codes.

  5. Project X: A Multi-MW Proton Source at Fermilab

    SciTech Connect

    Holmes, Stephen D.; /Fermilab

    2010-05-01

    As the Fermilab Tevatron Collider program draws to a close a strategy has emerged of an experimental program built around the high intensity frontier. The centerpiece of this program is a superconducting H- linac that will support world leading programs in long baseline neutrino experimentation and he study of rare processes. Based on technology shared with the International Linear Collider (ILC), Project X will provide multi-MW beams at 60-120 GeV from the Main Injector, simultaneous with very high intensity beams at lower energies. Project X will also support development of a Muon Collider as a uture facility at the energy frontier.

  6. Impedances and beam stability issues of the Fermilab recycler ring

    SciTech Connect

    Ng, King-Yuen

    1996-04-01

    The Fermilab Recycler Ring (permanent magnets) will be built on top of the Fermilab Main Injector sharing the same tunnel; its main function is to recycle the anti-protons after a store in the Tevatron and to provide storage for them after after accumulation and cooling in the Accumulator. Estimates of coupling impedances show domination by space charge. Examination of longitudinal instabilities shows that microwave instability will not occur if there are only N = 2.53 x 10{sup 12} anti-protons in the beam. Longitudinal coupling-bunch instability during injection stacking does not appear possible because of long bunch lengths/short bunch gaps and lack of sharp resonances. Transverse instability, on the other hand, cannot be Landau damped by the momentum spread in the beam, but it can be cured by a small spread in the betatron tunes (either from space charge or an octupole).

  7. HTS power lead testing at the Fermilab magnet test facility

    SciTech Connect

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  8. Report of the Fermilab ILC Citizens' Task Force

    SciTech Connect

    2008-06-01

    Fermi National Accelerator Laboratory convened the ILC Citizens' Task Force to provide guidance and advice to the laboratory to ensure that community concerns and ideas are included in all public aspects of planning and design for a proposed future accelerator, the International Linear Collider. In this report, the members of the Task Force describe the process they used to gather and analyze information on all aspects of the proposed accelerator and its potential location at Fermilab in northern Illinois. They present the conclusions and recommendations they reached as a result of the learning process and their subsequent discussions and deliberations. While the Task Force was charged to provide guidance on the ILC, it became clear during the process that the high cost of the proposed accelerator made a near-term start for the project at Fermilab unlikely. Nevertheless, based on a year of extensive learning and dialogue, the Task Force developed a series of recommendations for Fermilab to consider as the laboratory develops all successor projects to the Tevatron. The Task Force recognizes that bringing a next-generation particle physics project to Fermilab will require both a large international effort and the support of the local community. While the Task Force developed its recommendations in response to the parameters of a future ILC, the principles they set forth apply directly to any large project that may be conceived at Fermilab, or at other laboratories, in the future. With this report, the Task Force fulfills its task of guiding Fermilab from the perspective of the local community on how to move forward with a large-scale project while building positive relationships with surrounding communities. The report summarizes the benefits, concerns and potential impacts of bringing a large-scale scientific project to northern Illinois.

  9. Fermilab Steering Group Report

    SciTech Connect

    Beier, Eugene; Butler, Joel; Dawson, Sally; Edwards, Helen; Himel, Thomas; Holmes, Stephen; Kim, Young-Kee; Lankford, Andrew; McGinnis, David; Nagaitsev, Sergei; Raubenheimer, Tor; /SLAC /Fermilab

    2007-01-01

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOVA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components

  10. Fermilab Steering Group Report

    SciTech Connect

    Steering Group, Fermilab; /Fermilab

    2007-12-01

    The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design Effort's technically driven timeline, Fermilab would continue neutrino science with the NOvA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac. Project X's intense proton beams would open a path to discovery in neutrino science and in precision physics with charged leptons and quarks. World-leading experiments would allow physicists to address key questions of the Quantum Universe: How did the universe come to be? Are there undiscovered principles of nature: new symmetries, new physical laws? Do all the particles and forces become one? What happened to the antimatter? Building Project X's ILC-like linac would offer substantial support for ILC development by accelerating the industrialization of ILC components

  11. Measurement of Beam Tunes in the Tevatron Using the BBQ System

    SciTech Connect

    Edstrom, Dean R.; /Indiana U.

    2009-04-01

    Measuring the betatron tunes in any synchrotron is of critical importance to ensuring the stability of beam in the synchrotron. The Base Band Tune, or BBQ, measurement system was developed by Marek Gasior of CERN and has been installed at Brookhaven and Fermilab as a part of the LHC Accelerator Research Program, or LARP. The BBQ was installed in the Tevatron to evaluate its effectiveness at reading proton and antiproton tunes at its flattop energy of 980 GeV. The primary objectives of this thesis are to examine the methods used to measure the tune using the BBQ tune measurement system, to incorporate the system into the Fermilab accelerator controls system, ACNET, and to compare the BBQ to existing tune measurement systems in the Tevatron.

  12. Study of the heavy flavour fractions in z+jets events from $p\\bar{p}$ collisions at energy √s = 1.96 TeV with the CDF II detector at the Tevatron collider

    SciTech Connect

    Mastrandrea, Paolo

    2008-06-01

    to provide collisions for the experiments at the end of 2008. In the meanwhile the only running accelerator able to provide collisions suitable for the search of the Higgs boson is the Tevatron at Fermilab, a proton-antiproton collider with a center of mass energy of 1.96 TeV working at 3 • 1032cm-2s-1 peak luminosity. These features make the Tevatron able for the direct search of the Higgs boson in the 115-200 GeV mass range. Since the coupling of the Higgs boson is proportional to the masses of the particles involved, the decay in b{bar b} has the largest branching ratio for Higgs mass < 135 GeV and thus the events Z/W + $b\\bar{b}$ are the main background to the Higgs signal in the most range favored by Standard Model fits. In this thesis a new technique to identify Heavy Flavour quarks inside high - PT jets is applied to events with a reconstructed Z boson to provide a measurement of the Z+b and Z+c inclusive cross sections. The study of these channels represent also a test of QCD in high transferred momentum regime, and can provide information on proton pdf. This new Heavy Flavour identication technique (tagger) provides an increased statistical separation between b, c and light flavours, using a new vertexing algorithm and a chain of artificial Neural Networks to exploit as much information as possible in each event. For this work I collaborated with the Universita di Roma 'La Sapienza' group working in the CDF II experiment at Tevatron, that has at first developed this tagger. After a brief theoretical introduction (chapter 1) and a description of the experimental apparatus (chapter 2), the tagger itself and its calibration procedure are described in chapter 3 and 4. The chapter 5 is dedicated to the event selection and the chapter 6 contains the results of the measurement and the study of the systematic errors.

  13. Fermilab Library projects

    SciTech Connect

    Garrett, P.; Ritchie, D.

    1990-05-03

    Preprint database management as done at various centers -- the subject of this workshop -- is hard to separate from the overall activities of the particular center. We therefore present the wider context at the Fermilab Library into which preprint database management fits. The day-to-day activities of the Library aside, the dominant activity at present is that of the ongoing Fermilab Library Automation. A less dominant but relatively time-consuming activity is that of doing more online searches in commercial databases on behalf of laboratory staff and visitors. A related activity is that of exploring the benefits of end-user searching of similar sources as opposed to library staff searching of the same. The Library Automation Project, which began about two years ago, is about to go fully online.'' The rationale behind this project is described in the documents developed during the December 1988--February 1989 planning phase.

  14. Development of 3D beam-beam simulation for the Tevatron

    SciTech Connect

    Stern, E.; Amundson, J.; Spentzouris, P.; Valishev, A.; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2007-06-01

    We present status of development of a 3D Beam-Beam simulation code for simulating the Fermilab Tevatron collider. The essential features of the code are 3D particle-in-cell Poisson solver for calculating the Beam-Beam electromagnetic interactions with additional modules for linear optics, machine impedance and chromaticity, and multiple bunch tracking. The simulations match synchrobetatron oscillations measured at the VEPP-2M collider. The impedance calculations show beam instability development consistent with analytic expressions.

  15. Tevatron instrumentation: boosting collider performance

    SciTech Connect

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  16. Recent results from the Tevatron

    SciTech Connect

    Vellidis, Costas; Bravina, L.; Foka, Y.; Kabana, S.

    2015-01-01

    The Tevatron p$\\bar{p}$ collider was shut down in 2011, after 10 years of high performance operation at a center-of-mass energy √s = 1.96 TeV in Run II. The two experiments, CDF and DZero, continue to analyze the collected data, aiming to extract all possible information regarding studies of the standard model and searches for new physics. A short review of some of the recent measurements at the Tevatron, and of the impact of the Tevatron program to high energy physics, is presented.

  17. The physics of proton antiproton collisions

    SciTech Connect

    Shochet, M. )

    1991-12-03

    This paper contains information information on: accelerator and detector; QCD studies; studies of the electroweak force; The search for the top quark; {beta} physics at hadron colliders; and the search for exotic objects and prospects for the future.

  18. SUSY searches at the Tevatron

    SciTech Connect

    Jane Nachtman

    2000-10-10

    Recent results of a variety of searches for Supersymmetry in the data collected by the CDF and D0 experiments at the Tevatron are presented. As no signal was found, limits on the signatures and models are derived.

  19. QCD results from the Tevatron

    SciTech Connect

    C. Mesropian

    2002-07-12

    The Tevatron hadron collider provides the unique opportunity to study Quantum Chromodynamics, QCD, at the highest energies. The results summarized in this talk, although representing different experimental objects, as hadronic jets and electromagnetic clusters, serve to determine the fundamental input ingredients of QCD as well as to search for new physics. The authors present results from QCD studies at the Tevatron from Run 1 data, including jet and direct photon production, and a measurement of the strong coupling constant.

  20. Updated overview of the Tevatron control system

    SciTech Connect

    Lucas, P.

    1987-10-01

    A single unified control system is used for all of the Fermilab accelerators and storage rings, from the LINAC to the Tevatron and antiproton source. A review of the general features is given - these include a 'host' system consisting of a number of minicomputers integrated with many distributed microprocessors in a variety of subsystems, usage of an in-house developed protocol, GAS, for communication between the two classes of machines, and a Parameter Page program, designed in conjunction with the system database, which allows a wide variety of quantities to be read and set in a coherent fashion. Recent developments include the implementation of a block transfer and 'fast time plot' facility through CAMAC, inclusion of several new computers in the host, a better understanding of system throughput, greatly improved reliability, advent of programs which sequence a large number of independent operations, and the construction of new hardware subsystems. Possible future system upgrades will be briefly presented. A summary of the utilization of a quite large software staff, at a time when the system is no longer under construction, will be discussed.

  1. Top quark physics at the Tevatron

    SciTech Connect

    Bhat, P.C.

    1998-04-01

    The authors review the analyses of t{bar t} candidate events in various decay channels, carried out using the p{bar p} collider data at {radical}s = 1.8 TeV by the CDF and D0 collaborations at the Fermilab Tevatron. The measurements of the top quark mass (m{sub t}) using lepton+jets channel yield m{sub t} = 173.3 {+-} 7.8 GeV/c{sup 2} from D0 analysis and m{sub t} = 175.9 {+-} 6.9 GeV/c{sup 2} from CDF analysis. The production cross section is measured to be {sigma}{sub t{bar t}} = 7.6{sub -1.5}{sup +1.8} pb by CDF and {sigma}{sub t{bar t}} = 5.6 {+-} 1.8 pb by D0. Further investigations using t{bar t} decays and future prospects are briefly discussed.

  2. Commissioning of Fermilab's electron cooling system for 8-GeV antiprotons

    SciTech Connect

    Nagaitsev, S.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Gattuso, C.; Hu, M.; Kramper, B.; Kroc, T.; Leibfritz, J.; Prost, L.; Pruss, S.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; Seletsky, S.; Gai, W.; Kazakevich, Grigory M.; /Novosibirsk, IYF

    2005-05-01

    A 4.3-MeV electron cooling system [1] has been installed at Fermilab in the Recycler antiproton storage ring and is currently being commissioned. The cooling system is designed to assist accumulation of 8.9-GeV/c antiprotons for the Tevatron collider operations. This paper reports on the progress of the electron beam commissioning effort as well as on detailed plans of demonstrating the cooling of antiprotons.

  3. Fermilab Library directions

    SciTech Connect

    Garrett, P.; Ritchie, D.

    1990-05-04

    In this document, we indicate our current thinking about the directions of the Fermilab Library. The ideas relate to the preprint management issue in a number of ways. The ideas are subject to revision as we come to understand what is possible as well as what is needed by the Laboratory community. This document should therefore be regarded as our personal view--the availability of off-the-shelf technology, of funding as well as feedback from the laboratory community about their needs will all affect how far we actually proceed in any of these directions.

  4. Neutrino Physics at Fermilab

    ScienceCinema

    Saoulidou, Niki

    2016-07-12

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  5. Searches in photon and jet states

    SciTech Connect

    Soha, A.; /UC, Davis

    2007-06-01

    The authors present recent results from the Collider Detector at Fermilab (CDF) and D0 experiments using data from proton-antiproton collisions with {radical}s = 1.96 TeV at Run II of the Fermilab Tevatron. New physics may appear in events with high transverse momentum objects, including photons and quark or gluon jets. The results described here are of signature-based searches and model-based searches probing supersymmetry, leptoquarks, 4th generation quarks, and large extra dimensions.

  6. Fermilab R{ampersand}D program in medium energyelectron cooling

    SciTech Connect

    MacLachlan, J.A.

    1996-07-01

    Fermilab began an R & D program in medium energy electron cooling in April 1995 with the object of cooling 8 GeV antiprotons in a new 3.3 km permanent magnet storage ring (Recycler) to be built in the same tunnel as the Main Injector (MI). The MI is to be completed in 1998, and it is planned to install the Recycler by the end of 1997 to reduce interference during the final rush of MI installation. Although the Recycler will employ stochastic cooling initially, its potential for contributing an order of magnitude to Tevatron collider luminosity is tied to electron cooling. The short time scale and Fermilab`s limited familiarity with low energy electron beams has given rise to a two-phase development plan. The first phase is to build a cooling system based on an electron beam of {ge} 200 mA before year 2000. The second phase of about 3 years is planned to reach electron current of 2 A or more. This report describes the general scheme for high luminosity collider operation as well as the R & D plan and progress to date. 17 refs., 5 figs., 1 tab.

  7. Multiple Parton Interactions in p$bar{p}$ Collisions in D0 Experiment at the Tevatron Collider

    SciTech Connect

    Golovanov, Georgy

    2016-01-01

    The thesis is devoted to the study of processes with multiple parton interactions (MPI) in a ppbar collision collected by D0 detector at the Fermilab Tevatron collider at sqrt(s) = 1.96 TeV. The study includes measurements of MPI event fraction and effective cross section, a process-independent parameter related to the effective interaction region inside the nucleon. The measurements are done using events with a photon and three hadronic jets in the final state. The measured effective cross section is used to estimate background from MPI for WH production at the Tevatron energy

  8. Prospects for 6 to 10 tesla magnets for a TEVATRON upgrade

    SciTech Connect

    Mantsch, Paul M.

    1988-07-08

    The first SSC physics is at least 10 years away. An upgrade of the Fermilab Tevatron will ensure the continuity of a vigorous high-energy physics program until the SSC turns on. Three basic proposals are under consideration: /bar p/p at 3 /times/ 10/sup 31/ --Increase luminosity by improvements to the p source. pp at 1 TeV and 2 /times/ 10/sup 32/--Move the main ring to a new tunnel, build a second Tevatron ring, and /bar p/p > 1.5 TeV and 7 /times/ 10/sup 30/--Replace the tevatron with a higher energy ring. The last two options requires about a hundred 6.6-tesla dipoles in addition to a ring of Tevatron strength (4.4 T) magnets. These higher-field magnets are necessary in both rings to lengthen the straight sections in order to realize the collision optics. The third option requires a ring of magnets of 6.6 T or slightly higher to replace the present Tevatron plus a number of special 8--9 tesla magnets. The viability of the high-energy option then depends on the practicality of sizable numbers of reliable 8--9 tesla dipoles as well as 800 6.6-tesla dipoles. The following develops a specification for an 8.8 T dipole, examines the design considerations and reviews the current state of high-field magnet development. 22 figs., 3 tabs.

  9. Title I Design Report: Fermilab Linac Upgrade

    SciTech Connect

    Fermilab,

    1990-02-01

    The Fermilab Linac Upgrade Project is motivated by the requirement to increase Collider luminosity which will increase the physics discovery potential of the Tevatron Collider. The Linac Upgrade is one of several steps which will increase the Collider luminosity. The basic accelerator physics motivation for the project is the following chain of logic. The existing Main Ring Accelerator has a fixed, relatively small admittance for 8 GeV protons injected from the Booster Accelerator. While it is demonstrably p088ible to increase the number of protons accelerated in the Booster, space charge effects at injection into the Booster from the Linac increase the emittance of the beam delivered from the Booster to the Main Ring beyond the available admittance of the Main Ring. An increase in the energy of the protons injected into the Booster, however, will reduce the emittance growth due to the space charge effects at injection. Therefore, for a given admittance into the Main Ring, a greater number of protons will be accelerated in the Booster with a matching emittance if the injection energy is raised. The goal of the Linac Upgrade is to double the output energy of the Linac from 200MeV to 400MeV.

  10. Top properties at the Tevatron

    SciTech Connect

    Chiarelli, G.; The CDF Collaboration

    1997-05-01

    We present the latest results associated with top properties at the Tevatron. The large data set collected in four years of running has allowed, after top discovery, the study of various top properties. The results presented here include the measurement of the CKM matrix element {vert_bar}V{sub if}{vert_bar}, the search for top FCNC, the study of properties of W in t decays and the search for heavy states decaying to tt pairs. Future measurements in top physics at the Tevatron are briefly discussed.

  11. B physics at the Tevatron

    SciTech Connect

    J. Cranshaw

    2002-09-30

    A vibrant B physics program is being pursued at the Tevatron for Run II using the upgraded accelerator complex and the upgraded CDF and D0 detectors with the goal of collecting 2 fb{sup -1} of integrated luminosity. This will provide measurements of various CP parameters which both complement and extend the programs at the B factories. There are also a variety of spectroscopy measurements currently available only at the Tevatron. The detectors are now largely commissioned and data acquisition is underway.

  12. The Fermilab Particle Astrophysics Center

    SciTech Connect

    Not Available

    2004-11-01

    The Particle Astrophysics Center was established in fall of 2004. Fermilab director Michael S. Witherell has named Fermilab cosmologist Edward ''Rocky'' Kolb as its first director. The Center will function as an intellectual focus for particle astrophysics at Fermilab, bringing together the Theoretical and Experimental Astrophysics Groups. It also encompasses existing astrophysics projects, including the Sloan Digital Sky Survey, the Cryogenic Dark Matter Search, and the Pierre Auger Cosmic Ray Observatory, as well as proposed projects, including the SuperNova Acceleration Probe to study dark energy as part of the Joint Dark Energy Mission, and the ground-based Dark Energy Survey aimed at measuring the dark energy equation of state.

  13. Jet decorrelation and jet shapes at the Tevatron

    SciTech Connect

    Heuring, T.C.

    1996-07-01

    We present results on measurements of jet shapes and jet azimuthal decorrelation from {bar p}P collisions at {radical}s = 1.8 TeV using data collected during the 1992-1993 run of the Fermilab Tevatron. Jets are seen to narrow both with increasing Awe {sub TTY} and increasing rapidity. While HERWIG, a puritan shower Monte Carlo, predicts slightly narrower jets, it describes the trend of the data well; NO CD described qualitative features of the data but is sensitive to both renormalization scale and jet definitions. Jet azimuthal decorrelation has been measured out to five units of pseudorapidity. While next-to-leading order CD and a leading-log approximation based on BFKL resummation fail to reproduce the effect, HERWIG describes the data well.

  14. Properties of b {anti b} Production at the Tevatron

    SciTech Connect

    Stichelbaut, Frederic

    1997-05-01

    The authors present a number of recent results obtained at the Fermilab Tevatron for b{bar b} production in p{bar p} interactions. The preliminary CDF and D0 measurements of the inclusive b-quark production cross section at {radical}s = 630 GeV are compared with the UA1 results and the next-to-leading order QCD predictions. These results are used to compute the ratio of the cross sections at 630 GeV to 1800 GeV. The CDF results on the B meson differential cross section and {Lambda}{sub b}{sup 0} baryon production and decay properties at {radical}s = 1800 GeV are also presented.

  15. Jet properties at the Tevatron

    SciTech Connect

    D'Onofrio, Monica; /Barcelona, IFAE

    2006-07-01

    The RunII physics program at the Tevatron started in spring 2001 with protons and antiprotons colliding at an energy of {radical}s = 1.96 TeV. More than 1 fb{sup -1} of data have been collected by both the CDF and D0 experiments. In this contribution, some of the new QCD results are presented.

  16. IPM measurements in the Tevatron

    SciTech Connect

    Jansson, Andreas; Bowie, K.; Fitzpatrick, T.; Kwarciany, R.; Lundberg, C.; Slimmer, D.; Valerio, L.; Zagel, James; /Fermilab

    2007-06-01

    Two Ionization Profile Monitors (IPMs) were installed in the Tevatron in 2006. The detectors are capable of resolving single bunches turn-by-turn. This paper presents recent improvements to the system hardware and its use for beam monitoring. In particular, the correction of beam size oscillations observed at injection is discussed.

  17. Higgs searches at the Tevatron

    SciTech Connect

    Qizhong Li

    2003-06-10

    One of the highest priority physics goals for the upgraded Tevatron experiments, CDF and D0, is the search for the Higgs boson. We present the initial results from both experiments, based on 40-90 pb{sup -1} integrated luminosity, of Higgs searches in several final states, including WH and ZH, H {yields} WW, and doubly-charged Higgs.

  18. Vertically Integrated Circuits at Fermilab

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2010-01-01

    The exploration of vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning, and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. For the first time, Fermilab has organized a 3D MPW run, to which more than 25 different designs have been submitted by the consortium.

  19. Vertically Integrated Circuits at Fermilab

    SciTech Connect

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  20. Stochastic cooling technology at Fermilab

    NASA Astrophysics Data System (ADS)

    Pasquinelli, Ralph J.

    2004-10-01

    The first antiproton cooling systems were installed and commissioned at Fermilab in 1984-1985. In the interim period, there have been several major upgrades, system improvements, and complete reincarnation of cooling systems. This paper will present some of the technology that was pioneered at Fermilab to implement stochastic cooling systems in both the Antiproton Source and Recycler accelerators. Current performance data will also be presented.

  1. Measurement of the intensity of the beam in the abort gap at the Tevatron utilizing synchrotron light

    SciTech Connect

    Thurman-Keup, R.; Lorman, E.; Meyer, T.; Pordes, S.; De Santis, S.; /LBL, Berkeley

    2005-05-01

    This paper discusses the implementation of abort gap beam intensity monitoring at the Tevatron collider at Fermilab. There are two somewhat independent monitors which measure the intensity of the synchrotron light emitted by particles in the abort gaps. One system uses a gated Photomultiplier Tube (PMT) to measure the light intensity, and the other system uses a single lens telescope, gated image intensifier, and Charge Injection Device (CID) camera to image the beam.

  2. Search for resonant second generation slepton production at the Tevatron

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota

    2006-05-01

    The authors present a search for supersymmetry in the R-parity violating resonant production and decay of smuons and muon-sneutrinos in the channels {tilde {mu}} {yields} {tilde {chi}}{sub 1}{sup 0} {mu}, {tilde {mu}} {yields} {tilde {chi}}{sub 2,3,4}{sup 0} {mu}, and {tilde {nu}}{sub {mu}} {yields} {tilde {chi}}{sub 1,2}{sup {+-}} {mu}. They analyzed 0.38 fb{sup -1} of integrated luminosity collected between April 2002 and August 2004 with the D0 detector at the Fermilab Tevatron Collider. The observed number of events is in agreement with the standard model expectation, and we calculate 95% C.L. limits on the slepton production cross section times branching fraction to gaugino plus muon, as a function of slepton and gaugino masses. In the framework of minimal supergravity, we set limits on the coupling parameter {lambda}'{sub 211}, extending significantly previous results obtained in Run I of the Tevatron and at the CERN LEP collider.

  3. A tevatron collider beauty factory. [Final report, 1980--1992

    SciTech Connect

    Not Available

    1992-12-31

    This document which is labeled a final report consists of several different items. The first is a proposal for a detector to be developed for beauty physics. The detector is proposed for the Fermilab Tevatron, and would be designed to measure mixing reactions, rare decay modes, and even CP violation in hadron collider beauty production. The general outline of the work proposed is given, and an estimate of the time to actually design the detector is presented, along with proposed changes to the Tevatron to accommodate the system. A preliminary report on an experiment to verify a reported observation of a 17 keV neutrino in tritium decay is presented. The present results in the decay spectra actually show a depression below expected levels, which is not consistent with a massive neutrino. Additional interest has been shown in finishing an electrostatic beta spectrometer which was started several years previously. The instrument uses hemispherical electrostatic electric fields to retard electrons emitted in tritium decay, allowing measurement of integral spectra. The design goal has a 5 eV energy resolution, which may be achievable. A new PhD student is pursuing this experiment. Also the report contains a proposal for additional work in the field of non-perturbative quantum field theory by the theoretical group at OU. The work which is proposed will be applied to electroweak and strong interactions, as well as to quantum gravitational phenomena.

  4. a Measurement of SINE(2)THETA(W) from the Forward-Backward Asymmetry in Proton-Antiproton Going to Z Boson Positron-Electron Interactions at SQRT.S = 1.8 Tev

    NASA Astrophysics Data System (ADS)

    Hurst, Peter Todd

    1990-01-01

    An analysis of the forward-backward asymmetry in Z^{0} decays using data from the Collider Detector at Fermilab provides a measurement of sin^2|theta _{rm W}. The forward-backward asymmetry is measured to be (5.2 +/- 5.9 (stat) +/- 0.4 (sys))%, which implies sin^2|theta_ {rm W} = 0.288_sp {-0.015}{+0.017} (stat) +/- 0.002 (sys), after QCD, QED, and weak corrections. When higher order weak corrections are included, the measured value of sin^2theta_{ rm W} is consistent with previous measurements over a broad range of top quark masses.

  5. Measurement of the $B \\to J/\\psi X$ inclusive cross-section at the collider detector at Fermilab

    SciTech Connect

    Waschke, Simon

    2004-01-01

    The Collider Detector at Fermilab (CDF) is a multi-purpose detector designed to study proton-antiproton collisions at center-of-mass energies of 1.96 TeV/c2. One of the most importatn components of CDF is the silicon tracking detector. A detailed description of the testing and construction of the CDF silicon tracker is presented. Measurements of the tracking efficiency of the completed detector are also provided. Using 36 pb-1 of the J/Ψ data sample collected by CDF between February and October 2002, the inclusive B → J/Ψ X cross-section is measured in p$\\bar{p}$ interactions at √s = 1.96 TeV/c2. The fraction of J/Ψ events arising from the decay of b hadrons is extracted using an unbinned maximum likelihood fit to the decay length of the J/Ψ candidates. The pT dependent differential cross section for inclusive B → J/Ψ X events with rapidity |y| < 0.6 is obtained by combining the B-fraction result with a measurement of the J/Ψ differential cross-section. For 2.0 < pT(J/Ψ) < 17.0 GeV/c, the integrated B → J/Ψ X cross-section is measured to be σ(J/Ψ, B) • β(J/Ψ → μμ) = 16.02 ± 0.24(stat)$+2.26\\atop{-2.20}$(syst) nb.

  6. Summary of the Persistent Current Effect Measurements in Nb 3 Sn and NbTi Accelerator Magnets at Fermilab

    DOE PAGES

    Velev, G. V.; Chlachidze, G.; DiMarco, J.; ...

    2016-01-06

    In the past 10 years, Fermilab has been executing an intensive R&D program on accelerator magnets based on Nb3Sn superconductor technology. This R&D effort includes dipole and quadrupole models for different programs, such as LARP and 11 T dipoles for the LHC high-luminosity upgrade. Before the Nb3Sn R&D program, Fermilab was involved in the production of the low-beta quadrupole magnets for LHC based on the NbTi superconductor. Additionally, during the 2003-2005 campaign to optimize the operation of the Tevatron, a large number of Tevatron magnets were re-measured. As a result of this field analysis, a systematic study of the persistentmore » current decay and snapback effect in these magnets was performed. This paper summarizes the result of this study and presents a comparison between Nb3Sn and NbTi dipoles and quadrupoles.« less

  7. The Fermilab Antiproton Source Design Report April, 1981

    SciTech Connect

    None, None

    1981-04-01

    The purpose of the Fermilab Antiproton source is to provide at least $10^{11}$ cooled, accumulated antiprotons for acceleration in the Main Ring and Tevatron for colliding-beams experiments with 1-TeV protons. This will provide the highest available energy in the world for particle-physics experiments through at least the 1980's. Collisions at 2 TeV in the center of mass will provide a unique experimental tool in a new energy range. The design of the Antiproton Source has been carried out by the Colliding Beams Department of the Accelerator Division in collaboration with Argonne National Laborator.y, Lawrence Berkeley Laboratory, the Institute of Nuclear Physics at Novosibirsk, and the University of Wisconsin...

  8. Survey of the Fermilab D0 detector collision hall

    SciTech Connect

    Babatunde O'Sheg Oshinowo

    2001-07-20

    The Fermilab D0 detector was used for the discovery of the top quark during Run I in 1996. It had been upgraded to exploit the physics potential to be presented by the Main Injector and the Tevatron Collider during Run II. The upgrade of the D0 detector was fully commissioned on March 1, 2001, and thus marked the official start of the Run II experiment. The detector which weighs about 5500 tons, was assembled in the Assembly Hall. Prior to moving the detector into the Collision Hall, the existing survey monuments were densified in the Collision Hall with new monuments. This paper discusses the survey of the Collision Hall using a combination of the Laser Tracker, BETS, V-Stars, and other Optical systems to within the specified accuracy of {+-}0.5mm.

  9. Observation of the s-channel and other studies of single top quarks at the Tevatron

    SciTech Connect

    Group, Robert Craig

    2014-01-01

    First observation of single-top-quark production in the s channel is reported. The result is based on the combination of the CDF and D0 measurements of the cross section in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. A summary of other recent single-top-quark results are also included.

  10. Theoretical Astrophysics at Fermilab

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Theoretical Astrophysics Group works on a broad range of topics ranging from string theory to data analysis in the Sloan Digital Sky Survey. The group is motivated by the belief that a deep understanding of fundamental physics is necessary to explain a wide variety of phenomena in the universe. During the three years 2001-2003 of our previous NASA grant, over 120 papers were written; ten of our postdocs went on to faculty positions; and we hosted or organized many workshops and conferences. Kolb and collaborators focused on the early universe, in particular and models and ramifications of the theory of inflation. They also studied models with extra dimensions, new types of dark matter, and the second order effects of super-horizon perturbations. S tebbins, Frieman, Hui, and Dodelson worked on phenomenological cosmology, extracting cosmological constraints from surveys such as the Sloan Digital Sky Survey. They also worked on theoretical topics such as weak lensing, reionization, and dark energy. This work has proved important to a number of experimental groups [including those at Fermilab] planning future observations. In general, the work of the Theoretical Astrophysics Group has served as a catalyst for experimental projects at Fennilab. An example of this is the Joint Dark Energy Mission. Fennilab is now a member of SNAP, and much of the work done here is by people formerly working on the accelerator. We have created an environment where many of these people made transition from physics to astronomy. We also worked on many other topics related to NASA s focus: cosmic rays, dark matter, the Sunyaev-Zel dovich effect, the galaxy distribution in the universe, and the Lyman alpha forest. The group organized and hosted a number of conferences and workshop over the years covered by the grant. Among them were:

  11. Search for electroweak top quark production in the electron + jets channel in the D0 experiment at the Tevatron

    SciTech Connect

    Busato, Emmanuel

    2005-04-01

    The top quark, whose mass approaches the electroweak symmetry breaking scale, is by far the heaviest known elementary particle. New physics is therefore expected to have its most important effect in the top sector. The Tevatron is, currently, the only collider able to produce the top quark. Among all possible production processes in the standard model, the top-antitop pair production via strong interaction, first observed in 1995, is the one with the largest cross section. The production via electroweak interaction (known as single top production), more difficult to extract from the background because of a lower cross section and of a lower signal to background ratio, has never been observed. In this thesis, we have searched for these processes by studying proton-antiproton collisions at $\\sqrt{s}$ =1.96 TeV produced by the Tevatron and detected with the DØ detector. The experimental study of the top quark is very sensitive to the quality of the data taken by the calorimeter. This detector showed, at the beginning of the Run II, rather important noise problems. Having identified the origin of the noise, new treatments at the offline level were implemented and their effects studied. It has been shown that these treatments reduce very significantly the effect of the noise in the reconstruction of physical quantities without notable degradation of the signal. Within the standard model, the top quark decays into W b with a branching ratio close to 100%. Leptonic decays of the into electron + neutrino have been used to identify the from the top decay. The main backgrounds to the single top signal ( +jets and QCD) are made essentially of light quark jets in the final state. Two ..-tagging algorithms have therefore been applied in order to improve the signal to background ratio. No evidence for electroweak top quark production has been found. Upper limits at the 95 % confidence level on the observed (expected) cross sections have be computed. They are found to be 14

  12. Higgs searches at the Tevatron

    SciTech Connect

    Mastrandrea, Paolo; /INFN, Siena

    2010-09-01

    The search for the Standard Model Higgs boson in p{bar p} collisions at 1.96 TeV performed by CDF and D0 collaborations at the Tevatron collider is reported in this paper. The Higgs candidate events are reconstructed using different final states in order to optimize the sensitivity in the full range of the Higgs mass. The presented results use different statistical samples collected by the Tevatron up to 5.9 fb{sup -1}. Combining the most updated limits provided by the two experiments for all the final states analyzed, the Standard Model Higgs boson is excluded at 95% C.L. in the mass range 158-175 GeV/c{sup 2}, in good agreement with the prediction for the analyzed data sample.

  13. Higgs physics at the Tevatron

    SciTech Connect

    Margaroli, Fabrizio

    2014-09-15

    We show the latest results from the CDF and D0 collaborations on the study of the Higgs boson, stemming from the analysis of the entire Tevatron Run\\,II dataset. Combining the results of many individual analyses, most of which use the full data set available, an excess with a significance of approximately three standard deviations with respect to the Standard Model hypothesis is observed at a Higgs boson mass of 125\\,GeV/$c^2$. The Tevatron unique environment allows in addition to study for the first time the spin-parity hypothesis of the Higgs boson in events where it decays to quarks. Within the current experimental uncertainties, the newly discovered boson behaves as expected by the SM in the fermionic sector.

  14. W mass from the Tevatron

    SciTech Connect

    Rijssenbeek, M.; D0 and CDF Collaborations

    1996-10-01

    We report the preliminary W mass measurement at the Tevatron by the D0 collaboration using central electrons from the 1992-1995 data set: M{sub W}=80.37{+-}0.15 GeV/c{sup 2}. This value is combined with the previously reported measurement of M{sub W} by the CDF collaboration from their 1992-1993 data set of central electrons and muons, to obtain a new world average: M{sub W}=80.35{+-}0.13 GeV/c{sup 2}. We discuss the measurement procedure and its systematical uncertainties and indicate prospects for the full 1992- 1995 result from the Tevatron. 16 refs., 3 figs., 1 tab.

  15. Hot topics from the Tevatron

    SciTech Connect

    Glenzinski, D.; /Fermilab

    2008-01-01

    The Tevatron Run-II began in March 2001. To date, both the CDF and D0 experiments have collected 1 fb{sup -1} of data each. The results obtained from this data set were summarized at this conference in 39 parallel session presentations covering a wide range of topics. The author summarizes the most important of those results here and comments on some of the prospects for the future.

  16. Higgs searches at the Tevatron

    SciTech Connect

    L. Moneta

    2001-06-22

    This paper describes the searches for the Higgs boson performed by the CDF and DO collaborations at the Tevatron p{bar p} Collider using the data collected in the 1992-95 run. Searches for standard model Higgs and as well for neutral and charged minimal SUSY Higgs bosons are also presented. No signal has been observed and limits are set for production cross sections.

  17. Initial OTR Measurements of 150 GeV Protons in the Tevatron at FNAL

    NASA Astrophysics Data System (ADS)

    Scarpine, V. E.; Lumpkin, A. H.; Tassotto, G. R.

    2006-11-01

    Fermilab has developed standard optical transition radiation (OTR) detectors as part of its Run II upgrade program for measuring intense proton and antiproton beams. These detectors utilize radiation-hardened CID cameras to image the OTR and produce high-resolution two-dimensional beam profiles. One of these detectors has been installed in the Tevatron next to the new ionization profile monitor (IPM). Initial OTR measurements are presented for 150 GeV injected coalesced and uncoalesced proton bunches. OTR images are taken for one-turn and two-turn injections over an intensity range of 1.5e11 to 3.5e11 protons. Preliminary profile measurements give uncoalesced beam size sigmas of 1.0 mm horizontally by 0.7 mm vertically and coalesced beam size sigmas of 1.8 mm horizontally by 0.7 mm vertically. OTR images are also presented for changes in the Tevatron skew quadrupole magnet currents, which produce a rotation to the OTR image, and for changes to the Tevatron RF, which can be used to measure single-turn dispersion. Operational aspects of this detector for beam studies and Tevatron tune-up are also discussed.

  18. Studies of top quark properties and search for electroweak single top quark production at the Tevatron

    SciTech Connect

    Datta, Mousumi; /Fermilab

    2007-10-01

    The top quark was discovered in 1995 by the CDF and D0 experiments at the Fermilab Tevatron during the Run I operation. Since the start of the Tevatron Run II in 2001, both experiments have collected {approx}2 fb{sup -1} data samples, which are over twenty times larger than that used in the Run 1 discovery. This larger data sample allows more precise studies of top-quark properties; differences between observed top-quark properties and the Standard Model (SM) prediction may give hints to possible physics beyond the SM. Here we present the latest results on the measurements of top-quark properties and the search for electroweak (EW) single top quark production from the CDF and D0 collaborations. The integrated luminosity used for the measurements corresponds to about 1 fb{sup -1}.

  19. New measurements of sextupole field decay and snapback effect on Tevatron dipole magnets

    SciTech Connect

    Velev, G.V.; Bauer, P.; Carcagno, R.; DiMarco, J.; Lamm, M.; Orris, D.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.; /Fermilab

    2006-07-01

    To perform detailed studies of the dynamic effects in superconducting accelerator magnets, a fast continuous harmonics measurement system based on the application of a digital signal processor (DSP) has been built at Fermilab. Using this new system, the dynamic effects in the sextupole field, such as the field decay during the dwell at injection and the rapid subsequent ''snapback'' during the first few seconds of the energy ramp, are evaluated for more than ten Tevatron dipoles from the spare pool. The results confirm the previously observed fast drift in the first several seconds of the sextupole decay and provide additional information on a scaling law for predicting snapback duration. The information presented here can be used for an optimization of the Tevatron and for future LHC operations.

  20. Hydromechanical Properties at Fermilab

    NASA Astrophysics Data System (ADS)

    Potier, C. E.; Volk, J.; Fratta, D.; Wang, H. F.

    2012-12-01

    Tiltmeter arrays in the MINOS Near Detector Hall at Fermilab record solid earth tides, large earthquakes, and displacements during a monthly sump pump test. The arrays and sump pit lie in the Galena Wise Lake Formation directly below the floor of the hall, which is approximately 100m underground. Beginning in November 2005 the MINOS-I tiltmeter array was deployed. This array was composed of seven Budker capacitive hydrostatic level sensors (HLS) located in MINOS Hall. Four 30 meter apart HLS ran in the north-south direction and three HLS 8 meters apart ran in the east-west direction. The north-south components of this array were removed in May 2012 due to anticipation of construction of a new cavern for the Off-Axis Neutrino Appearance Experiment (NOvA). A new MINOS-II tiltmeter array was then placed in the fire corridor adjacent to MINOS Hall and began recording in February 2012. The MINOS-II array consists of eight Budker capacitive HLS oriented approximately north-south along with the east-west sensors from the MINOS-I array. Earth-tide data are presented for this new location. We use the sump pump tests recorded by both arrays to characterize the geophysical and hydromechanical behavior of the Wise Lake Formation. There are two sump pumps that alternate to pump the water out of the MINOS Hall sump pit. Once a month a 20 to 30 minute backup sump pump test is run. The tiltmeter array records a response from this test. Five minutes after the test is started tilt is generated, and once the test is complete the tiltmeters slowly equilibrate. Previously, the recorded tilt has been around 30 micrometers depending on the length of the sump pump test. A normal force solution gives expected tilts of less than one micrometer. The difference between these two is too large to be due to a difference in Young's modulus in a lab setting versus a field setting. The tiltmeter array will also record the mechanical unloading effect of the excavation of the NOvA cavern, along with

  1. First measurement of the W-boson mass in run II of the Tevatron.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Daronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-10-12

    We present a measurement of the W-boson mass using 200 pb{-1} of data collected in pp[over ] collisions at sqrt[s]=1.96 TeV by the CDF II detector at run II of the Fermilab Tevatron. With a sample of 63 964 W-->enu candidates and 51 128 W-->munu candidates, we measure M_{W}=80 413+/-34{stat}+/-34{syst}=80,413+/-48 MeV/c;{2}. This is the most precise single measurement of the W-boson mass to date.

  2. Measurements of the persistent current decay and snapback effect in Tevatron dipole magnets

    SciTech Connect

    Velev, G.V.; Bauer, P.; DiMarco, J.; Hanft, R.; Lamm, M.; Schlabach, P.; Sylvester, C.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2006-08-01

    A systematic study of the persistent current decay and snapback effect in the fields of Tevatron accelerator dipoles was performed at the Fermilab Magnet Test Facility (MTF). The decay and snapback were measured under a range of conditions including variations of the current ramp parameters and magnet operational history. The study has mostly focused on the dynamic behavior of the normal sextupole component. In addition, the paper presents the persistent current effects observed in the other allowed field harmonics as well. The results provide new information about the previously observed ''excess'' decay during the first several seconds of the sextupole decay during injection and the correlation between the snapback amplitude and its duration.

  3. Searches for New Physics at the Tevatron in Photon and Jet Final States

    SciTech Connect

    Yu, Shin-Shan

    2009-05-01

    We present the results of searches for non-standard model phenomena in photon and jet final states. These searches use data from integrated luminosities of 0.7-2.7 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV, collected with the CDF and D0 detectors at the Fermilab Tevatron. No significant excess in data has been observed. We report limits on the parameters of several models, including: large extra dimension, compositeness, leptoquarks, and supersymmetry.

  4. Review of Physics Results from the Tevatron: Searches for New Particles and Interactions

    SciTech Connect

    Toback, David; ŽIvković, Lidija

    2015-02-17

    We present a summary of results for searches for new particles and interactions at the Fermilab Tevatron collider by the CDF and the D0 experiments. These include results from Run I as well as Run II for the time period up to July 2014. We focus on searches for supersymmetry, as well as other models of new physics such as new fermions and bosons, various models of excited fermions, leptoquarks, technicolor, hidden-valley model particles, long-lived particles, extra dimensions, dark matter particles, and signature-based searches.

  5. Study of sequential semileptonic decays of b hadrons produced at the Tevatron

    SciTech Connect

    Apollinari, G.; Fiori, I.; Giromini, P.; Happacher, F.; Miscetti, S.; Parri, A.; Ptohos, F.; /Frascati /Fermilab /INFN, Pisa /Pisa, Scuola Normale Superiore

    2005-07-01

    The authors present a study of rates and kinematical properties of lepton pairs contained in central jets with transverse energy E{sub T} {ge} 15 GeV that re produced at the Fermilab Tevatron collider. They compare the data to a QCD prediction based on the HERWIG and QQ Monte Carlo generator programs. They find that the data are poorly described by the simulation, in which sequential semileptonic decays of single b quarks (b {yields} l c X with c {yields} l s X) are the major source of such lepton pairs.

  6. Factorization Breaking in High-Transverse-Momentum Charged-Hadron Production at the Tevatron?

    SciTech Connect

    Albino, S.; Kniehl, B. A.; Kramer, G.

    2010-06-18

    We compare the transverse-momentum (p{sub T}) distribution of inclusive light-charged-particle production measured by the CDF Collaboration at the Fermilab Tevatron with the theoretical prediction evaluated at next-to-leading order in quantum chromodynamics using fragmentation functions recently determined through a global data fit. While in the lower p{sub T} range the data agree with the prediction within the theoretical error or slightly undershoot it, they significantly exceed it in the upper p{sub T} range, by several orders of magnitude at the largest values of p{sub T}, potentially challenging the factorization theorem.

  7. First measurement of the W boson mass in run II of the Tevatron

    SciTech Connect

    Aaltonen, T.; Abulencia, A.; Adelman, J.; Affolder, Anthony Allen; Akimoto, T.; Albrow, Michael G.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Anikeev, K.; Annovi, A.; /Fermilab /Frascati /Comenius U.

    2007-07-01

    We present a measurement of the W boson mass using 200 pb{sup -1} of data collected in p{bar p} collisions at {radical}s = 1.96 TeV by the CDF II detector at Run II of the Fermilab Tevatron. With a sample of 63964 W {yields} ev candidates and 51128 W W {yields} {mu}v candidates, we measure M{sub W} = (80413 {+-} 34{sub stat} {+-}34{sub syst} = 80413 {+-} 48) MeV/c{sup 2}. This is the most precise single measurement of the W boson mass to date.

  8. Upgrade of the D0 detector: The Tevatron beyond 2 fb**(-1)

    SciTech Connect

    Quinn, Breese; /Mississippi U.

    2005-01-01

    Recent performance of Fermilab's Tevatron has exceeded this year's design goals and further accelerator upgrades are underway. The high-luminosity period which follows these improvements is known as Run IIb. The D0 experiment is in the midst of a comprehensive upgrade program designed to enable it to thrive with much higher data rate and occupancy. Extensive modifications of and additions to all levels of the trigger and the silicon tracker are in progress. All upgrade projects are on schedule for installation in the 2005 shutdown.

  9. Inclusive jet production at the tevatron collider in the Regge limit of quantum chromodynamics

    NASA Astrophysics Data System (ADS)

    Saleev, V. A.; Shipilova, A. V.; Yatsenko, E. V.

    2012-03-01

    We consider the inclusive hadroproduction of jets, prompt photons, and b-quark jets in the quasimulti-Regge kinematics approach based on the hypothesis of gluon and quark reggeization in t-channel exchanges at high energies. The data taken by CDF and D0 collaborations at the Fermilab Tevatron collider are well described in the region of x_T = 2p_T /sqrt s lesssim 0.1 without the introduction of any free parameters. In numeric calculations we use the Kimber-Martin-Ryskin prescription for unintegrated gluon and quark distribution functions with Martin-Roberts-Stirling-Thorne collinear parton distribution functions taken as input.

  10. High p{sub T} jet physics at the Tevatron Collider

    SciTech Connect

    Buckley-Geer, E.

    1996-09-01

    We present results on high {ital p{sub T}} jet physics from the CDF and D{null} experiments at the Fermilab Tevatron Collider. Recent results on the inclusive jet cross-section at {radical}{ital s} = 1.8 TeV will be presented and compared with QCD. We will also present results on the dijet angular distribution. Limits on quark compositeness are presented from the CDF dijet angular distribution. Finally we will discuss the results on the inclusive jet cross section at {radical}{ital s} = 0.63 TeV and tests of scaling.

  11. B, Lambda{sub b} and charm results from the Tevatron

    SciTech Connect

    F. Azfar

    2003-09-18

    Recent results on B{sub d}, B{sub u}{sup {+-}}, B{sub s}, {Lambda}{sub b} and Charm hadrons are reported from {approx} 75 pb{sup -1} and {approx} 40 pb{sup -1} of data accumulated at the upgraded CDF and D0 experiments at the Fermilab Tevatron {bar p}-p collider, during Run-II. These include lifetime and mass measurements of B and Charm hadrons, searches for rare decays in charm and B hadrons and CP-violation in Charm decays. Results relevant to CP-violation in B-decays are also reported.

  12. Digitral Down Conversion Technology for Tevatron Beam Line Tuner at FNAL

    SciTech Connect

    Schappert, W.; Lorman, E.; Scarpine, V.; Ross, M.C.; Sebek, J.; Straumann, T.; /Fermilab /SLAC

    2008-03-17

    Fermilab is presently in Run II collider operations and is developing instrumentation to improve luminosity. Improving the orbit matching between accelerator components using a Beam Line Tuner (BLT) can improve the luminosity. Digital Down Conversion (DDC) has been proposed as a method for making more accurate beam position measurements. Fermilab has implemented a BLT system using a DDC technique to measure orbit oscillations during injections from the Main Injector to the Tevatron. The output of a fast ADC is downconverted and filtered in software. The system measures the x and y positions, the intensity, and the time of arrival for each proton or antiproton bunch, on a turn-by-turn basis, during the first 1024 turns immediately following injection. We present results showing position, intensity, and time of arrival for both injected and coasting beam. Initial results indicate a position resolution of {approx}20 to 40 microns and a phase resolution of {approx}25 ps.

  13. Tevatron beam-beam compensation project progress

    SciTech Connect

    Shiltsev, V.; Zhang, X.L.; Kuznetsov, G.; Pfeffer, H.; Saewert, G.; Zimmermann, F.; Tiunov, M.; Bishofberger, K.; Bogdanov, I.; Kashtanov, E.; Kozub, S.; Sytnik, V.; Tkachenko, L.; /Serpukhov, IHEP

    2005-05-01

    In this paper, we report the progress of the Tevatron Beam-Beam Compensation (BBC) project [1]. Electron beam induced proton and antiproton tuneshifts have been reported in [2], suppression of an antiproton emittance growth has been observed, too [1]. Currently, the first electron lens (TEL1) is in operational use as the Tevatron DC beam cleaner. We have made a lot of the upgrades to improve its stability [3]. The 2nd Tevatron electron lens (TEL2) is under the final phase of development and preparation for installation in the Tevatron.

  14. Beam Trail Tracking at Fermilab

    SciTech Connect

    Nicklaus, Dennis J.; Carmichael, Linden Ralph; Neswold, Richard; Yuan, Zongwei

    2015-01-01

    We present a system for acquiring and sorting data from select devices depending on the destination of each particular beam pulse in the Fermilab accelerator chain. The 15 Hz beam that begins in the Fermilab ion source can be directed to a variety of additional accelerators, beam lines, beam dumps, and experiments. We have implemented a data acquisition system that senses the destination of each pulse and reads the appropriate beam intensity devices so that profiles of the beam can be stored and analysed for each type of beam trail. We envision utilizing this data long term to identify trends in the performance of the accelerators

  15. The Fermilab data storage infrastructure

    SciTech Connect

    Jon A Bakken et al.

    2003-02-06

    Fermilab, in collaboration with the DESY laboratory in Hamburg, Germany, has created a petabyte scale data storage infrastructure to meet the requirements of experiments to store and access large data sets. The Fermilab data storage infrastructure consists of the following major storage and data transfer components: Enstore mass storage system, DCache distributed data cache, ftp and Grid ftp for primarily external data transfers. This infrastructure provides a data throughput sufficient for transferring data from experiments' data acquisition systems. It also allows access to data in the Grid framework.

  16. Looking to the future: A Fermilab viewpoint

    SciTech Connect

    Montgomery, H.E.; /Fermilab

    2005-08-01

    This is a short paper summarizing a presentation of the evolution of the Fermilab program for the next five to ten years. Emphasis is given to the Fermilab accelerator complex, but external collaboration is emphasized.

  17. Future hadron physics facilities at Fermilab

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2004-12-01

    Fermilab's hadron physics research continues in all its accelerator-based programs. These efforts will be identified, and the optimization of the Fermilab schedules for physics will be described. In addition to the immediate plans, the Fermilab Long Range Plan will be cited, and the status and potential role of a new proton source, the Proton Driver, is described.

  18. The Holometer: A Fermilab Experiment

    SciTech Connect

    Chou, Aaron

    2015-12-16

    Do we live in a two-dimensional hologram? A group of Fermilab scientists has designed an experiment to find out. It’s called the Holometer, and this video gives you a behind-the-scenes look at the device that could change the way we see the universe.

  19. The FIFE Project at Fermilab

    SciTech Connect

    Box, D.; Boyd, J.; Di Benedetto, V.; Ding, P.; Dykstra, D.; Fattoruso, M.; Garzoglio, G.; Herner, K.; Levshina, T.; Kirby, M.; Kreymer, A.; Mazzacane, A.; Mengel, M.; Mhashilkar, P.; Podstavkov, V.; Retzke, K.; Sharma, N.

    2016-01-01

    The FabrIc for Frontier Experiments (FIFE) project is an initiative within the Fermilab Scientific Computing Division designed to steer the computing model for non-LHC Fermilab experiments across multiple physics areas. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying size, needs, and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of solutions for high throughput computing, data management, database access and collaboration management within an experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid compute sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including a common job submission service, software and reference data distribution through CVMFS repositories, flexible and robust data transfer clients, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken the leading role in defining the computing model for Fermilab experiments, aided in the design of experiments beyond those hosted at Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.

  20. D0 Project at Fermilab

    SciTech Connect

    Marx, M.D.

    1984-01-01

    The D0 Project will explore 2 TeV anti pp collisions at Fermilab using a highly optimized calorimetric detector, to elucidate the new physics coming out of the SppS, and to explore the new higher energy regime. The design and physics potential of the detector system are described.

  1. The Holometer: A Fermilab Experiment

    ScienceCinema

    Chou, Aaron

    2016-07-12

    Do we live in a two-dimensional hologram? A group of Fermilab scientists has designed an experiment to find out. It’s called the Holometer, and this video gives you a behind-the-scenes look at the device that could change the way we see the universe.

  2. Search for the Standard Model Higgs Boson in the Missing Transverse Energy and b-jet signature in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV

    SciTech Connect

    Apresyan, Artur

    2009-05-01

    We report on the results of a search for the standard model Higgs boson produced in association with a W or Z boson in p$\\bar{p}$ collisions at √s = 1.96 TeV recorded by the CDF II experiment at the Tevatron in a data sample corresponding to an integrated luminosity of 2.1 fb-1. We consider events having no identified charged leptons, a large imbalance in transverse momentum, and two or three jets where at least one jet contains a secondary vertex consistent with the decay of a b hadron. The main backgrounds are modeled with innovative techniques using data. The sensitivity of the search is optimized using multivariate discriminant techniques. We find good agreement between data and the standard model predictions. We place 95% confidence level upper limits on production cross section times branching ratio for several Higgs boson masses ranging from 110 GeV=c2 to 150 GeV=c2. For a mass of 115 GeV=c2 the observed (expected) limit is 6.9 (5.6) times the standard model prediction.

  3. Supersymmetry results at the Tevatron

    SciTech Connect

    Manca, Giulia; /Liverpool U.

    2005-05-01

    The Run II physics programme of the Tevatron is proceeding with more than 300 pb{sup -1} of analysis quality data, collected at a center-of-mass energy of 1.96 TeV. Searches for supersymmetric particles are starting to set new limits, improving over the LEP and Run I results and exploring new regions of parameter space. They present recent results in Supersymmetry with the upgraded CDF and D0 detectors and give some prospects for the future of these searches.

  4. The Tevatron Ionization Profile Monitors

    SciTech Connect

    Jansson, A.; Fitzpatrick, T.; Bowie, K.; Kwarciany, R.; Lundberg, C.; Slimmer, D.; Valerio, L.; Zagel, J.; /Fermilab

    2006-05-01

    In designing an ionization profile monitor system for the Tevatron some novel approaches were taken, in particular for the readout electronics. This was motivated by the desire to resolve the individual bunches in both beams simultaneously. For this purpose, custom made electronics originally developed for Particle Physics experiments was used to provide a fast charge integration with very low noise. The various parts of the read-out electronics have been borrowed or adapted from the KTev, CMS, MINOS and BTev experiments. The detector itself also had to be modified to provide clean signals with sufficient bandwidth. The system design will be described along with the initial results.

  5. Supersymmetry searches at the Tevatron

    SciTech Connect

    A. N. Safonov

    2003-06-10

    For Run II, both CDF and D0 underwent significant improvement of the detectors to enhance their sensitivity to new physics. The detectors are commissioned and are taking data. The Tevatron is operating at a record center of mass energy of 1.96 TeV. Despite earlier difficulties, the luminosity situation is improving and both detectors have accumulated amounts of data comparable or higher than those available in Run I. This is a report on the status and prospects of SUSY searches at CDF and D0 in Run II. Recent SUSY analyses from run I are also reported.

  6. Measurement of B(t --> Wb)/B(t--> Wq) at the collider detector at fermilab.

    PubMed

    Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Casarsa, M; Carlsmith, D; Carosi, R; Carron, S; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chuang, S; Chung, K; Chung, W-H; Chung, Y S; Cijliak, M; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Cruz, A; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; de Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R D; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T; Kamon, T; Kang, J; Unel, M Karagoz; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, L; Miller, R; Miller, J S; Mills, C; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P A Movilla; Muelmenstaedt, J; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Nelson, T; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rahaman, M A; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spinella, F; Squillacioti, P; Stadie, H; Stanitzki, M; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yamashita, T; Yamamoto, K; Yamaoka, J; Yang, C; Yang, U K; Yao, W; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zucchelli, S

    2005-09-02

    We present a measurement of the ratio of top-quark branching fractions R = B(t --> Wb)/B(t --> Wq), where q can be a b, s, or a d quark, using lepton-plus-jets and dilepton data sets with an integrated luminosity of approximately 162 pb(-1) collected with the Collider Detector at Fermilab during Run II of the Tevatron. The measurement is derived from the relative numbers of tt events with different multiplicity of identified secondary vertices. We set a lower limit of R > 0.61 at 95% confidence level.

  7. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    SciTech Connect

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  8. Determination of the jet energy scale at the collider detector at Fermilab

    SciTech Connect

    Bhatti, A.; Canelli, Florencia; Heinemann, B.; Adelman, J.; Ambrose, D.; Arguin, J.-F.; Barbaro-Galtieri, A.; Budd, H.; Chung, Y.S.; Chung, K.; Cooper, B.; Currat, C.; D'Onofrio, M.; Dorigo, T.; Erbacher, R.; Field, R.; Flanagan, G.; Gibson, A.; Hatakeyama, K.; Happacher, F.; Hoffman, D.; /Argonne /UCLA /Carnegie Mellon U. /Chicago U., EFI /Fermilab /Florida U. /Frascati /Geneva U. /LBL, Berkeley /Liverpool U. /University Coll. London /Michigan State U. /Toronto U. /Padua U. /INFN, Padua /Pavia U. /INFN, Pavia /Pennsylvania U. /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore

    2005-10-01

    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron p{bar p} collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50 GeV the jet energy scale is determined with a 3% systematic uncertainty.

  9. Electron Lens Construction for the Integrable Optics Test Accelerator at Fermilab

    SciTech Connect

    McGee, Mike; Carlson, Kermit; Nobrega, Lucy; Stancari, Giulio; Valishev, Alexander

    2016-06-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. Construction of an electron lens for IOTA is necessary for both electron and proton operation. Components required for the Electron Lens design include; a 0.8 T conventional water-cooled main solenoid, and magnetic bending and focusing elements. The foundation of the design relies on repurposing the Fermilab Tevatron Electron Lens II (TELII) gun and collector under ultra-high vacuum (UHV) conditions.

  10. Tevatron electron lens and it's applications

    SciTech Connect

    Zhang, X.L.; Shiltsev, V.; Valishev, A.; Kamerdzhiev, V.; Romnov, A.; /Novosibirsk, IYF

    2009-08-01

    The Tevatron Electron Lens (TEL) is designed for the purpose of the Beam-beam tuneshift compensation. Now it's one of the vital parts of the Tevatron. In this report, its daily operations and beam study results are presented. And its possible future applications are also discussed as well.

  11. The special applications of Tevatron electron lens

    SciTech Connect

    Xiaolong Zhang et al.

    2003-08-11

    Besides the Tevatron Electron Lens (TEL) runs as a R and D project for Tevatron Beam-Beam Compensation, it is used daily as a Beam Abort Gap Cleaner for collider operations. It can also be served as beam exciter for beam dynamics measurements and slow proton or antiproton bunch remover. This report describes all these applications and observations.

  12. Proton synchrotron radiation at Fermilab

    SciTech Connect

    Thurman-Keup, Randy; /Fermilab

    2006-05-01

    While protons are not generally associated with synchrotron radiation, they do emit visible light at high enough energies. This paper presents an overview of the use of synchrotron radiation in the Tevatron to measure transverse emittances and to monitor the amount of beam in the abort gap. The latter is necessary to ensure a clean abort and prevent quenches of the superconducting magnets and damage to the silicon detectors of the collider experiments.

  13. Measurement of the Single Top Quark Cross Section in the Lepton Plus Jets Final State in Proton-Antiproton Collisions at a Center of Mass Energy of 1.96 TeV Using the CDF II Detector

    SciTech Connect

    Wu, Zhenbin

    2012-01-01

    We present a measurement of the single top quark cross section in the lepton plus jets final state using an integrated luminosity corresponding to 7.5 fb-1 of p\\bar p collision data collected by the Collider Detector at Fermilab. The single top candidate events are identified by the signature of a charged lepton, large missing transverse energy, and two or three jets with at least one of them identified as originating from a bottom quark. A new Monte Carlo generator POWHEG is used to model the single top quark production processes, which include s-channel, t-channel, and Wt-channel. A neural network multivariate method is exploited to discriminate the single top quark signal from the comparatively large backgrounds. We measure a single top production cross section of $3.04^{+0.57}_{-0.53} (\\mathrm{stat.~+~syst.})$ pb assuming $m_{\\rm top}=172.5$~GeV/$c^2$. In addition, we extract the CKM matrix element value $|V_{tb}|=0.96\\pm 0.09~(\\mathrm{stat.~+~syst.})\\ ± 0.05~(\\mathrm{theory})$ and set a lower limit of $|V_{tb}|>0.78$ at the 95% credibility level.

  14. Rapidity Density Fluctuations in Hadron-Nucleus Interactions: Spikes, Intermittency, and Fractal Properties of Multiple Production in Silver, Gold, and Magnesium Targets with Proton, Antiproton, Positive Pion, and Negative Pion Projectiles at 100 and 320 Gev/c

    NASA Astrophysics Data System (ADS)

    Mattingly, Margarita Claudia Krieghoff

    The space-time development of hadron-nucleus interactions is examined using bubble chamber and downstream particle identifier data from the hybrid spectrometer of Fermilab experiment E597. 5583 events representing 12 interactions are studied with conventional and fractal techniques. Comparisons are made to simulated events from the Lund Monte Carlo FRITIOF 1.6. Multiplicities are studied conventionally. Negative binomial descriptions of produced particle multiplicities are interpreted in terms of clusters and cascading and in terms of partial stimulated emission; forward-backward correlations, in terms of short- and long-range correlations and multiple scattering. Multiplicities are consistent with a multiple collision view of multiparticle production mechanisms and are investigated in terms of the number of collisions nu. Rapidity density fluctuations are studied fractally. The possibility of new dynamics is considered on the basis of event-by-event studies of spike phenomena, intermittency, and fractal dimensions. Results from these exploratory studies are consistent with predictions made for quark-gluon plasma transitions. 131 spike events are analyzed; intermittency is investigated with normalized factorial moments and cumulants; and fractal dimensions and correlations dimensions are calculated. Seagull effects and production region sizes from Bose-Einstein pion interferometry are also considered.

  15. Measurement of the asymmetry in angular distributions of leptons produced in dilepton tt¯ final states in pp¯ collisions at s=1.96 TeV

    SciTech Connect

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapelain, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, V. N.; Falkowski, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.

    2013-12-02

    We present measurements of asymmetries in angular distributions of leptons produced in ttbar events in proton-antiproton collisions at the Fermilab Tevatron Collider. We consider final states where the W bosons from top quark and antiquark decays both decay into l nu (l=e, mu) resulting in oppositely charged dilepton final states with accompanying jets. Using 9.7 fb-1 of integrated luminosity collected with the D0 detector, we find the asymmetries in lepton pseudorapidity compatible with predictions based on the standard model.

  16. Study of double parton interactions in diphoton + dijet events in $$p\\bar{p}$$ collisions at $$\\sqrt{s} = 1.96$$ TeV

    DOE PAGES

    Abazov, Victor Mukhamedovich

    2016-03-01

    We use a sample of diphoton+dijet events to measure the effective cross section of double parton interactions, which characterizes the area containing the interacting partons in proton-antiproton collisions, and find it to be σeff=19.3±1.4(stat)±7.8(syst) mb. The sample was collected by the D0 detector at the Fermilab Tevatron collider inmore » $$p\\bar{p}$$ collisions at $$\\sqrt{s} = 1.96$$ TeV and corresponds to an integrated luminosity of 8.7 fb-1.« less

  17. Study of double parton interactions in diphoton + dijet events in $p\\bar{p}$ collisions at $\\sqrt{s} = 1.96$ TeV

    SciTech Connect

    Abazov, Victor Mukhamedovich

    2016-03-01

    We use a sample of diphoton+dijet events to measure the effective cross section of double parton interactions, which characterizes the area containing the interacting partons in proton-antiproton collisions, and find it to be σeff=19.3±1.4(stat)±7.8(syst) mb. The sample was collected by the D0 detector at the Fermilab Tevatron collider in $p\\bar{p}$ collisions at $\\sqrt{s} = 1.96$ TeV and corresponds to an integrated luminosity of 8.7 fb-1.

  18. Measurement of the W + b-jet and W + c-jet differential production cross sections in p p bar collisions at √{ s} = 1.96 TeV

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Borysov, O.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2015-04-01

    We present a measurement of the cross sections for the associated production of a W boson with at least one heavy quark jet, b or c, in proton-antiproton collisions. Data corresponding to an integrated luminosity of 8.7 fb-1 recorded with the D0 detector at the Fermilab Tevatron p p bar Collider at √{ s} = 1.96 TeV are used to measure the cross sections differentially as a function of the jet transverse momenta in the range 20 to 150 GeV. These results are compared to calculations of perturbative QCD theory as well as predictions from Monte Carlo generators.

  19. Study of double parton interactions in diphoton +dijet events in p p ¯ collisions at √{s }=1.96 TeV

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, V.; Aushev, Y.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gaspar, P.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stefaniuk, N.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; D0 Collaboration

    2016-03-01

    We use a sample of diphoton+dijet events to measure the effective cross section of double parton interactions, which characterizes the area containing the interacting partons in proton-antiproton collisions, and find it to be σeff=19.3 ±1.4 (stat)±7.8 (syst) mb . The sample was collected by the D0 detector at the Fermilab Tevatron collider in p p ¯ collisions at √{s }=1.96 TeV and corresponds to an integrated luminosity of 8.7 fb-1 .

  20. Measurement of the direct C P violating charge asymmetry in B±→μ±νμD0 decays

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, V.; Aushev, Y.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brochmann, M.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shkola, O.; Simak, V.; Skubic, P.; Slattery, P.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stefaniuk, N.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; D0 Collaboration

    2017-02-01

    We present the first measurement of the C P violating charge asymmetry in B±→μ±νμD0 decays using the full Run II integrated luminosity of 10.4 fb-1 in proton-antiproton collisions collected with the D0 detector at the Fermilab Tevatron Collider. We measure a difference in the yield of B- and B+ mesons in these decays by fitting the reconstructed invariant mass distributions. This results in an asymmetry of Aμ D0=[-0.14 ±0.20 ] % , which is consistent with standard model predictions.

  1. Study of double parton interactions in diphoton+dijet events in pp¯ collisions at s=1.96 TeV

    SciTech Connect

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, V.; Aushev, Y.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gaspar, P.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stefaniuk, N.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2016-03-01

    We use a sample of diphoton + dijet events to measure the effective cross section of double parton interactions, which characterizes the area containing the interacting partons in proton-antiproton collisions, and find it to be σ eff = 19.3 ± 1.4 ( stat ) ± 7.8 ( syst ) mb . The sample was collected by the D0 detector at the Fermilab Tevatron collider in p$\\bar{p}$ collisions at √ s = 1.96 TeV and corresponds to an integrated luminosity of 8.7 fb - 1 .

  2. Measurement of the forward-backward charge asymmetry in top-quark pair production.

    PubMed

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Banerjee, P; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Borissov, G; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chan, K; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, J; Guo, F; Gutierrez, P; Gutierrez, G; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kajfasz, E; Kalinin, A M; Kalk, J R; Kalk, J M; Kappler, S; Karmanov, D; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kozelov, A V; Krop, D; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Leveque, J; Lewis, P; Li, J; Li, Q Z; Li, L; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, J; Meyer, A; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nogima, H; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schliephake, T; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, J; Snow, G R; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Strauss, E; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, S; Uvarov, L; Uzunyan, S; Vachon, B; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vokac, P; Von Toerne, E; Voutilainen, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Weber, G; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zatserklyaniy, A; Zeitnitz, C; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2008-04-11

    We present the first measurement of the integrated forward-backward charge asymmetry in top-quark-top-antiquark pair (tt) production in proton-antiproton (pp) collisions in the lepton+jets final state. Using a b-jet tagging algorithm and kinematic reconstruction assuming tt + X production and decay, a sample of 0.9 fb(-1) of data, collected by the D0 experiment at the Fermilab Tevatron Collider, is used to measure the asymmetry for different jet multiplicities. The result is also used to set upper limits on tt+X production via a Z' resonance.

  3. Elastic and diffractive scattering at D0

    SciTech Connect

    Edwards, Tamsin; /Manchester U.

    2004-04-01

    The first search for diffractively produced Z bosons in the muon decay channel is presented, using a data set collected by the D0 detector at the Fermilab Tevatron at {radical}s = 1.96 TeV between April and September 2003, corresponding to an integrated luminosity of approximately 110 pb{sup -1}. The first dN/d|t| distribution for proton-antiproton elastic scattering at this c.o.m. energy is also presented, using data collected by the D0 Forward Proton Detector between January and May 2002. The measured slope is reproduced by theoretical predictions.

  4. Search for the Higgs Boson Produced in Association with a Vector Boson Using Like-Sign Dilepton Events in 1.96-TeV Proton-Antiproton Collisions

    SciTech Connect

    Yamato, Daisuke

    2013-01-01

    This thesis presents a search for the standard model and fermiophobic Higgs bosons produced in association with a vector boson using like-sign dilepton events collected by Collider Detector at Fermilab (CDF II). This analysis uses the data corresponding to an integrated luminosity of 9.4 fb -1. The search is characterized by minimally biased cuts which maximize the acceptance of the Higgs bosons. The numbers of expected signal events passing requirements for like-sign dilepton are 5.6 for the fermiophobic Higgs on the mass of 110 GeV/c2 assuming the standard model production cross section, and 1.7 for the standard model on the mass of 160 GeV/c2. The expectation of background events are 696.1, while the number of observed events are 624. To discriminate signal events from backgrounds, the search employs a multivariate analysis based on boosted decision trees. There are no significant disagreements in the BDT outputs, then, upper limits at a 95% confidence level are set on σ(p$\\bar{p}$→V h) × B(h→WW ) for both Higgs bosons scenarios. The expected and observed limits are 5.9 and 9.2, respectively, relative to the standard model expectation for the standard model Higgs boson mass of 160 GeV/c2. For the fermiophobic Higgs boson corresponding to the mass of 110 GeV/c2, the expected and observed limits are 2.6 and 4.4, respectively.

  5. Beam instrumentation for the Tevatron Collider

    SciTech Connect

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  6. Min-Bias at the Tevatron

    SciTech Connect

    Field, Rick; /Florida U.

    2007-10-01

    As illustrated in Fig. 1, the total proton-antiproton cross section is the sum of the elastic and inelastic components, {sigma}{sub tot} = {sigma}{sub EL} + {sigma}{sub IN}. The inelastic cross section consists of three terms; single diffraction, double-diffraction, and everything else (referred to as the 'hard core'), {sigma}{sub IN} = {sigma}{sub SD} + {sigma}{sub DD} + {sigma}{sub HC}. For elastic scattering neither of the beam particles breaks apart (i.e. color singlet exchange). For single and double diffraction one or both of the beam particles are excited into a high mass color singlet state (i.e. N* states) which then decays. Single and double diffraction also corresponds to color singlet exchange between the beam hadrons. When color is exchanged the outgoing remnants are no longer color singlets and one has a separation of color resulting in a multitude of quark-antiquark pairs being pulled out of the vacuum. The 'hard core' component, {sigma}{sub HC}, involves color exchange and the separation of color. However, the 'hard core' contribution has both a 'soft' and 'hard' component. Most of the time the color exchange between partons in the beam hadrons occurs through a soft interaction (i.e. no high transverse momentum) and the two beam hadrons 'ooze' through each other producing lots of soft particles with a uniform distribution in rapidity and many particles flying down the beam pipe. Occasionally there is a hard scattering among the constituent partons producing outgoing particles and 'jets' with high transverse momentum.

  7. A 6 kV arbitrary waveform generator for the Tevatron Electron Lens

    NASA Astrophysics Data System (ADS)

    Pfeffer, H.; Saewert, G.

    2011-11-01

    This paper reports on a 6 kV modulator built and installed at Fermilab to drive the electron gun anode for the Tevatron Electron Lens (TEL). The TEL was built with the intention of shifting the individual (anti)proton bunch tunes to even out the tune spread among all 36 bunches with the desire of improving Tevatron integrated luminosity. This modulator is essentially a 6 kV arbitrary waveform generator that enables the TEL to define the electron beam intensity on a bunch-by-bunch basis. A voltage waveform is constructed having a 7 μs duration that corresponds to the tune shift requirements of a 12-bunch (anti)proton beam pulse train. This waveform is played out for any one or all three bunch trains in the Tevatron. The programmed waveform voltages transition to different levels at time intervals corresponding to the 395 ns bunch spacing. Thus, complex voltage waveforms can be played out at a sustained rate of 143 kHz over the full 6 kV output range. This paper describes the novel design of the inductive adder topology employing five transformers. It describes the design aspects that minimize switching losses for this multi-kilovolt, high repetition rate and high duty factor application.

  8. A 6 kV arbitrary waveform generator for the Tevatron Electron Lens

    DOE PAGES

    Pfeffer, H.; Saewert, G.

    2011-11-09

    This paper reports on a 6 kV modulator built and installed at Fermilab to drive the electron gun anode for the Tevatron Electron Lens (TEL). The TEL was built with the intention of shifting the individual (anti)proton bunch tunes to even out the tune spread among all 36 bunches with the desire of improving Tevatron integrated luminosity. This modulator is essentially a 6 kV arbitrary waveform generator that enables the TEL to define the electron beam intensity on a bunch-by-bunch basis. A voltage waveform is constructed having a 7 μs duration that corresponds to the tune shift requirements of amore » 12-bunch (anti)proton beam pulse train. This waveform is played out for any one or all three bunch trains in the Tevatron. The programmed waveform voltages transition to different levels at time intervals corresponding to the 395 ns bunch spacing. In addition, complex voltage waveforms can be played out at a sustained rate of 143 kHz over the full 6 kV output range. This paper describes the novel design of the inductive adder topology employing five transformers. It describes the design aspects that minimize switching losses for this multi-kilovolt, high repetition rate and high duty factor application.« less

  9. A 6 kV arbitrary waveform generator for the Tevatron Electron Lens

    SciTech Connect

    Pfeffer, H.; Saewert, G.

    2011-11-09

    This paper reports on a 6 kV modulator built and installed at Fermilab to drive the electron gun anode for the Tevatron Electron Lens (TEL). The TEL was built with the intention of shifting the individual (anti)proton bunch tunes to even out the tune spread among all 36 bunches with the desire of improving Tevatron integrated luminosity. This modulator is essentially a 6 kV arbitrary waveform generator that enables the TEL to define the electron beam intensity on a bunch-by-bunch basis. A voltage waveform is constructed having a 7 μs duration that corresponds to the tune shift requirements of a 12-bunch (anti)proton beam pulse train. This waveform is played out for any one or all three bunch trains in the Tevatron. The programmed waveform voltages transition to different levels at time intervals corresponding to the 395 ns bunch spacing. In addition, complex voltage waveforms can be played out at a sustained rate of 143 kHz over the full 6 kV output range. This paper describes the novel design of the inductive adder topology employing five transformers. It describes the design aspects that minimize switching losses for this multi-kilovolt, high repetition rate and high duty factor application.

  10. Observation of diffractive J/psi production at the Fermilab Tevatron.

    PubMed

    Affolder, T; Akimoto, H; Akopian, A; Albrow, M G; Amaral, P; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Bailey, S; de Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Berge, J P; Berryhill, J; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, A; Bokhari, W; Bolla, G; Bonushkin, Y; Borras, K; Bortoletto, D; Boudreau, J; Brandl, A; van den Brink, S; Bromberg, C; Brozovic, M; Brubaker, E; Bruner, N; Buckley-Geer, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Byon-Wagner, A; Byrum, K L; Cabrera, S; Calafiura, P; Campbell, M; Carithers, W; Carlson, J; Carlsmith, D; Caskey, W; Castro, A; Cauz, D; Cerri, A; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I; Chlachidze, G; Chlebana, F; Christofek, L; Chu, M L; Chung, Y S; Ciobanu, C I; Clark, A G; Connolly, A; Convery, M E; Conway, J; Cordelli, M; Cranshaw, J; Cropp, R; Culbertson, R; Dagenhart, D; D'Auria, S; DeJongh, F; Dell'Agnello, S; Dell'Orso, M; Demortier, L; Deninno, M; Derwent, P F; Devlin, T; Dittmann, J R; Dominguez, A; Donati, S; Done, J; D'Onofrio, M; Dorigo, T; Eddy, N; Einsweiler, K; Elias, J E; Engels, E; Erbacher, R; Errede, D; Errede, S; Fan, Q; Feild, R G; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flaugher, B; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Fukui, Y; Furic, I; Galeotti, S; Gallas, A; Gallinaro, M; Gao, T; Garcia-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Gerdes, D W; Giannetti, P; Glagolev, V; Glenzinski, D; Gold, M; Goldstein, J; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Green, C; Grim, G; Gris, P; Groer, L; Grosso-Pilcher, C; Guenther, M; Guillian, G; Guimaraes da Costa, J; Haas, R M; Haber, C; Hahn, S R; Hall, C; Handa, T; Handler, R; Hao, W; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Herndon, M; Hill, C; Hoffman, K D; Holck, C; Hollebeek, R; Holloway, L; Hughes, R; Huston, J; Huth, J; Ikeda, H; Incandela, J; Introzzi, G; Iwai, J; Iwata, Y; James, E; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Karr, K; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R; Khazins, D; Kikuchi, T; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Koehn, P; Kondo, K; Konigsberg, J; Korn, A; Korytov, A; Kovacs, E; Kroll, J; Kruse, M; Kuhlmann, S E; Kurino, K; Kuwabara, T; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lath, A; Latino, G; LeCompte, T; Lee, A M; Lee, K; Leone, S; Lewis, J D; Lindgren, M; Liss, T M; Liu, J B; Liu, Y C; Litvintsev, D O; Lobban, O; Lockyer, N; Loken, J; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, M; Mariotti, M; Martignon, G; Martin, A; Matthews, J A; Mayer, J; Mazzanti, P; McFarland, K S; McIntyre, P; McKigney, E; Menguzzato, M; Menzione, A; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Moggi, N; Moore, E; Moore, R; Morita, Y; Moulik, T; Mulhearn, M; Mukherjee, A; Muller, T; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakada, H; Nakano, I; Nelson, C; Nelson, T; Neu, C; Neuberger, D; Newman-Holmes, C; Ngan, C Y; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Oh, Y D; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D; Pescara, L; Phillips, T J; Piacentino, G; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Popovic, M; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Rakitine, A; Ratnikov, F; Reher, D; Reichold, A; Ribon, A; Riegler, W; Rimondi, F; Ristori, L; Riveline, M; Robertson, W J; Robinson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Roy, A; Ruiz, A; Safonov, A; Denis, R S; Sakumoto, W K; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sato, H; Savard, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A; Scribano, A; Segler, S; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Shah, T; Shapiro, M D; Shepard, P F; Shibayama, T; Shimojima, M; Shochet, M; Sidoti, A; Siegrist, J; Sill, A; Sinervo, P; Singh, P; Slaughter, A J; Sliwa, K; Smith, C; Snider, F D; Solodsky, A; Spalding, J; Speer, T; Sphicas, P; Spinella, F; Spiropulu, M; Spiegel, L; Steele, J; Stefanini, A; Strologas, J; Strumia, F; Stuart, D; Sumorok, K; Suzuki, T; Takano, T; Takashima, R; Takikawa, K; Tamburello, P; Tanaka, M; Tannenbaum, B; Tecchio, M; Tesarek, R; Teng, P K; Terashi, K; Tether, S; Thompson, A S; Thurman-Keup, R; Tipton, P; Tkaczyk, S; Toback, D; Tollefson, K; Tollestrup, A; Tonelli, D; Toyoda, H; Trischuk, W; de Troconiz, J F; Tseng, J; Turini, N; Ukegawa, F; Vaiciulis, T; Valls, J; Vejcik, S; Velev, G; Veramendi, G; Vidal, R; Vila, I; Vilar, R; Volobouev, I; von der Mey, M; Vucinic, D; Wagner, R G; Wagner, R L; Wallace, N B; Wan, Z; Wang, C; Wang, M J; Ward, B; Waschke, S; Watanabe, T; Waters, D; Watts, T; Webb, R; Wenzel, H; Wester, W C; Wicklund, A B; Wicklund, E; Wilkes, T; Williams, H H; Wilson, P; Winer, B L; Winn, D; Wolbers, S; Wolinski, D; Wolinski, J; Wolinski, S; Worm, S; Wu, X; Wyss, J; Yao, W; Yeh, G P; Yeh, P; Yoh, J; Yosef, C; Yoshida, T; Yu, I; Yu, S; Yu, Z; Zanetti, A; Zetti, F; Zucchelli, S

    2001-12-10

    We report the first observation of diffractive J/psi(--> mu+mu-) production in pp collisions at root square[s] = 1.8 TeV. Diffractive events are identified by their rapidity gap signature. In a sample of events with two muons of transverse momentum p(mu)T>2 GeV/c within the pseudorapidity region /eta/ < 1.0, the ratio of diffractive to total J/psi production rates is found to be R(J/psi) = [1.45 +/- 0.25]%. The ratio R(J/psi)(x) is presented as a function of x-Bjorken. By combining it with our previously measured corresponding ratio R(jj)(x) for diffractive dijet production, we extract a value of 0.59 +/- 0.15 for the gluon fraction of the diffractive structure function of the proton.

  11. First run II measurement of the W boson mass at the Fermilab Tevatron

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Abulencia, A.; Adelman, J.; Akimoto, T.; Albrow, M. G.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Azzi-Bacchetta, P.; Azzurri, P.; Bacchetta, N.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Baroiant, S.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Bednar, P.; Behari, S.; Bellettini, G.; Bellinger, J.; Belloni, A.; Benjamin, D.; Beretvas, A.; Beringer, J.; Berry, T.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bolshov, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cooper, B.; Copic, K.; Cordelli, M.; Cortiana, G.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lentdecker, G.; de Lorenzo, G.; Dell'Orso, M.; Demortier, L.; Deng, J.; Deninno, M.; de Pedis, D.; Derwent, P. F.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Forrester, S.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Gerberich, H.; Gerdes, D.; Giagu, S.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Goldstein, J.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Hamilton, A.; Han, B.-Y.; Han, J. Y.; Handler, R.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hauser, J.; Hays, C.; Heck, M.; Heijboer, A.; Heinemann, B.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; Iyutin, B.; James, E.; Jayatilaka, B.; Jeans, D.; Jeon, E. J.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Kerzel, U.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Klute, M.; Knuteson, B.; Ko, B. R.; Koay, S. A.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhlmann, S. E.; Kuhr, T.; Kulkarni, N. P.; Kusakabe, Y.; Kwang, S.; Laasanen, A. T.; Lai, S.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, J.; Lee, J.; Lee, Y. J.; Lee, S. W.; Lefèvre, R.; Leonardo, N.; Leone, S.; Levy, S.; Lewis, J. D.; Lin, C.; Lin, C. S.; Lindgren, M.; Lipeles, E.; Liss, T. M.; Lister, A.; Litvintsev, D. O.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lu, R.-S.; Lucchesi, D.; Lueck, J.; Luci, C.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; Lytken, E.; Mack, P.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, M.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzemer, S.; Menzione, A.; Merkel, P.; Mesropian, C.; Messina, A.; Miao, T.; Miladinovic, N.; Miles, J.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Oldeman, R.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Piedra, J.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Portell, X.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Reisert, B.; Rekovic, V.; Renton, P.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Salamanna, G.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savard, P.; Savoy-Navarro, A.; Scheidle, T.; Schlabach, P.; Schmidt, E. E.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scott, A. L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sfyrla, A.; Shalhout, S. Z.; Shapiro, M. D.; Shears, T.; Shepard, P. F.; Sherman, D.; Shimojima, M.; Shochet, M.; Shon, Y.; Shreyber, I.; Sidoti, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soderberg, M.; Soha, A.; Somalwar, S.; Sorin, V.; Spalding, J.; Spinella, F.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Stuart, D.; Suh, J. S.; Sukhanov, A.; Sun, H.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Tiwari, V.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Tourneur, S.; Trischuk, W.; Tu, Y.; Turini, N.; Ukegawa, F.; Uozumi, S.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Veszpremi, V.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Würthwein, F.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, J.; Wagner, W.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Wynne, S. M.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yamashita, T.; Yang, C.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zaw, I.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2008-06-01

    We describe a measurement of the W boson mass mW using 200pb-1 of s=1.96TeV p pmacr collision data taken with the CDF II detector. With a sample of 63 964 W→eν candidates and 51 128 W→μν candidates, we measure mW=[80.413±0.034(stat)±0.034(sys)=80.413±0.048]GeV/c2. This is the single most precise mW measurement to date. When combined with other measured electroweak parameters, this result further constrains the properties of new unobserved particles coupling to W and Z bosons.

  12. Conceptual Design Report: Fermilab Upgrade: Main Injector - Technical Components and Civil Construction, January 1990 (Rev. 2)

    SciTech Connect

    none,

    1990-01-10

    This report contains a description of the design and cost estimate of a new 150 GeV accelerator, designated the Main Injector, which will be required to support the upgrade of the Fermilab Accelerator Complex. The construction of this accelerator will simultaneously result in significant enhancements to both the Fermilab collider and fixed target programs. The Main Injector (MI) is to be located south of the Antiproton Source and tangent to the Tevatron ring at the FO straight section as shown in Figure 1-1. The MI will perform all duties currently required of the existing Main Ring. Thus, operation of the Main Ring will cease following commissioning of the MI, with a concurrent reduction in background rates as seen in the colliding beam detectors. The performance of the MI, as measured in terms of protons per second delivered to the antiproton production target or total protons delivered to the Tevatron, is expected to exceed that of the Main Ring by a factor of two to three. In addition the MI will provide high duty factor 120 GeV beam to the experimental areas during collider operation, a capability which does not presently exist in the Main Ring.

  13. Measurement of the top quark pair production cross section in proton-antiproton collisions at a center of mass energy of 1.96 TeV, hadronic top decays with the D0 detector

    SciTech Connect

    Hegeman, Jeroen Guido

    2009-01-16

    is important to measure the cross section (or branching fraction) in each channel independently to fully verify the standard model. Top quark pair production proceeds through the strong interaction, placing the scene for top quark physics at hadron colliders. This adds an additional challenge: the huge background from multi-jet QCD processes. At the Tevatron, for example, t$\\bar{t}$ production is completely hidden in light q$\\bar{q}$ pair production. The light (i.e. not bottom or top) quark pair production cross section is six orders of magnitude larger than that for t$\\bar{t}$ production. Even including the full signature of hadronic t$\\bar{t}$ decays, two b-jets and four additional jets, the QCD cross section for processes with similar signature is more than five times larger than for t$\\bar{t}$ production. The presence of isolated leptons in the (semi)leptonic t$\\bar{t}$ decay channels provides a clear characteristic to distinguish the t$\\bar{t}$ signal from QCD background but introduces a multitude of W- and Z-related backgrounds.

  14. Non SUSY searches at the Tevatron

    SciTech Connect

    Duflot, Laurent; /Orsay, LAL

    2005-06-01

    The CDF and D0 experiments have collected and analyzed about 300 pb{sup -1} of data during the Run II of the Tevatron. Results of searches for new non supersymmetric particles based on these datasets will be presented.

  15. CPS and the Fermilab farms

    SciTech Connect

    Fausey, M.R.

    1992-06-01

    Cooperative Processes Software (CPS) is a parallel programming toolkit developed at the Fermi National Accelerator Laboratory. It is the most recent product in an evolution of systems aimed at finding a cost-effective solution to the enormous computing requirements in experimental high energy physics. Parallel programs written with CPS are large-grained, which means that the parallelism occurs at the subroutine level, rather than at the traditional single line of code level. This fits the requirements of high energy physics applications, such as event reconstruction, or detector simulations, quite well. It also satisfies the requirements of applications in many other fields. One example is in the pharmaceutical industry. In the field of computational chemistry, the process of drug design may be accelerated with this approach. CPS programs run as a collection of processes distributed over many computers. CPS currently supports a mixture of heterogeneous UNIX-based workstations which communicate over networks with TCP/IR CPS is most suited for jobs with relatively low I/O requirements compared to CPU. The CPS toolkit supports message passing remote subroutine calls, process synchronization, bulk data transfers, and a mechanism called process queues, by which one process can find another which has reached a particular state. The CPS software supports both batch processing and computer center operations. The system is currently running in production mode on two farms of processors at Fermilab. One farm consists of approximately 90 IBM RS/6000 model 320 workstations, and the other has 85 Silicon Graphics 4D/35 workstations. This paper first briefly describes the history of parallel processing at Fermilab which lead to the development of CPS. Then the CPS software and the CPS Batch queueing system are described. Finally, the experiences of using CPS in production on the Fermilab processor farms are described.

  16. Intensity-Frontier Antiproton Physics with The Antiproton Annihilation Spectrometer (TAPAS) at Fermilab

    SciTech Connect

    Apollinari, Giorgio; Asner, David M.; Baldini, Wander; Bartoszek, Larry; Broemmelsiek, Daniel R.; Brown, Charles N.; Chakravorty, Alak; Colas, Paul; Derwent, Paul; Drutskoy, Alexey; Fortner, Michael; /Northern Illinois U. /Saclay /Indian Inst. Tech., Hyderabad

    2011-11-01

    The Fermilab Antiproton Source is the world's most intense source of antimatter. With the Tevatron program now behind us, this unique facility can help make the case for Fermilab's continued accelerator operations. The Antiproton Source can be used for unique, dedicated antimatter studies, including medium-energy {bar p}-annihilation experiments. We propose to assemble a powerful, yet cost-effective, solenoidal magnetic spectrometer for antiproton-annihilation events, and to use it at the Fermilab Antiproton Accumulator to measure the charm production cross section, study rare hyperon decays, search for hyperon CP asymmetry, precisely measure the properties of several charmonium and nearby states, and make the first measurements of the Drell-Yan continuum in medium-energy antiproton annihilation. Should the charm production cross section be as large as some have proposed, we will also be able to measure D{sup 0}-{bar D}{sup 0} mixing with high precision and discover (or sensitively limit) charm CP violation. The observation of charm or hyperon CP violation would be evidence for physics beyond the Standard Model, with possible implications for the origin of the baryon asymmetry of the universe - the question of what happened to all the antimatter that must have been produced in the Big Bang. The experiment will be carried out by an international collaboration and will require some four years of running time. As possibly the sole hadron experiment in progress at Fermilab during that time, it will play an important role in maintaining a broad particle physics program at Fermilab and in the U.S. It will thus help us to continue attracting creative and capable young people into science and technology, and introducing them to the important technologies of accelerators, detectors, and data acquisition and analysis - key roles in society that accelerator-based particle physics has historically played.

  17. Search for the Standard Model Higgs boson produced in association with a W Boson in the isolated-track charged-lepton channel using the Collider Detector at Fermilab

    SciTech Connect

    Buzatu, Adrian

    2011-08-01

    The Higgs boson is the only elementary particle predicted by the Standard Model (SM) that has not yet been observed experimentally. If it exists, it explains the spontaneous electroweak symmetry breaking and the origin of mass for gauge bosons and fermions. We test the validity of the SM by performing a search for the associated production of a Higgs boson and a W boson in the channel where the Higgs boson decays to a bottom-antibottom quark pair and the W boson decays to a charged lepton and a neutrino (the WH channel). We study a dataset of proton-antiproton collisions at a centre-of-mass energy √s = 1.96 TeV provided by the Tevatron accelerator, corresponding to an integrated luminosity of 5.7 fb-1, and recorded using the Collider Detector at Fermilab (CDF).We select events consistent with the signature of exactly one charged lepton (electron or muon), missing transverse energy due to the undetected neutrino (MET) and two collimated streams of particles (jets), at least one of which is required to be identified as originating from a bottom quark. We improve the discrimination of Higgs signal from backgrounds through the use of an artificial neural network. Using a Bayesian statistical inference approach, we set for each hypothetical Higgs boson mass in the range 100-150 GeV/c2 with 5 GeV/c2 increments a 95% credibility level (CL) upper limit on the ratio between the Higgs production cross section times branching fraction and the SM prediction. Our main original contributions are the addition of a novel charged lepton reconstruction algorithm with looser requirements (ISOTRK) with respect the electron or muon tight criteria (TIGHT), as well as the introduction of a novel trigger-combination method that allows to maximize the event yield while avoiding trigger correlations and that is used for the ISOTRK category. The ISOTRK candidate is a high-transverse-momentum good-quality track isolated from other activity in the tracking

  18. Bs decays at the Tevatron

    SciTech Connect

    Giurgiu, Gavril; /Johns Hopkins U.

    2010-09-01

    The authors present measurements of the branching ratio and of the polarization amplitudes in charmless B{sub s} {yields} {phi}{phi} decays using data corresponding to 2.9 fb{sup -1} of integrated luminosity, collected by the CDF experiment at the Tevatron. The branching ratio in B{sub s} {yields} {phi}{phi} decays is measured relative to the normalization mode B{sub s} {yields} J/{Psi}{phi} be {Beta}(B{sub s} {yields} {phi}{phi})/{Beta}(B{sub s} {yields} J/{Psi}{phi}) = [1.78 {+-} 0.14(stat) {+-} 0.20(syst)] x 10{sup -2}. Using the experimental value of {Beta}(B{sub s} {yields} J/{Psi}{phi}) they determine the B{sub s} {yields} {phi}{phi} branching ratio {Beta}(B{sub s} {yields} {phi}{phi}) = 2.40 {+-} 0.21(stat) {+-} 0.27(syst) {+-} 0.82(BR) x 10{sup -5}. The polarization fractions are measured for the first time in this analysis and found to be: |A{sub 0}|{sup 2} = 0.348 {+-} 0.041(stat) {+-} 0.021(syst); |A{sub {parallel}}|{sup 2} = 0.287 {+-} 0.043(stat) {+-} 0.011(syst); and |A{sub {perpendicular}}|{sup 2} = 0.365 {+-} 0.044(stat) {+-} 0.027(syst).

  19. Extruding plastic scintillator at Fermilab

    SciTech Connect

    Anna Pla-Dalmau; Alan D. Bross; Victor V. Rykalin

    2003-10-31

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R&D program at Fermilab.

  20. Combination of Tevatron searches for the standard model Higgs boson in the W+W- decay mode.

    PubMed

    Aaltonen, T; Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Adelman, J; Aguilo, E; Alexeev, G D; Alkhazov, G; Alton, A; Alvarez González, B; Alverson, G; Alves, G A; Amerio, S; Amidei, D; Anastassov, A; Ancu, L S; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Appel, J; Apresyan, A; Arisawa, T; Arnoud, Y; Arov, M; Artikov, A; Asaadi, J; Ashmanskas, W; Askew, A; Asman, B; Atramentov, O; Attal, A; Aurisano, A; Avila, C; Azfar, F; BackusMayes, J; Badaud, F; Badgett, W; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barbaro-Galtieri, A; Barberis, E; Barfuss, A-F; Baringer, P; Barnes, V E; Barnett, B A; Barreto, J; Barria, P; Bartlett, J F; Bartos, P; Bassler, U; Bauer, D; Bauer, G; Beale, S; Bean, A; Beauchemin, P-H; Bedeschi, F; Beecher, D; Begalli, M; Begel, M; Behari, S; Belanger-Champagne, C; Bellantoni, L; Bellettini, G; Bellinger, J; Benitez, J A; Benjamin, D; Beretvas, A; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blazey, G; Blessing, S; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boehnlein, A; Boisvert, V; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bortoletto, D; Bose, T; Boudreau, J; Boveia, A; Brandt, A; Brau, B; Bridgeman, A; Brigliadori, L; Brock, R; Bromberg, C; Brooijmans, G; Bross, A; Brown, D; Brubaker, E; Bu, X B; Buchholz, D; Budagov, J; Budd, H S; Budd, S; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burkett, K; Burnett, T H; Busetto, G; Bussey, P; Buszello, C P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Calfayan, P; Calpas, B; Calvet, S; Camacho-Pérez, E; Camarda, S; Cammin, J; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrasco-Lizarraga, M A; Carrera, E; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Casey, B C K; Castilla-Valdez, H; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chang, S H; Chen, Y C; Chertok, M; Cheu, E; Chevalier-Théry, S; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Cho, D K; Cho, S W; Choi, S; Chokheli, D; Chou, J P; Choudhary, B; Christoudias, T; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Cihangir, S; Ciobanu, C I; Ciocci, M A; Claes, D; Clark, A; Clark, D; Clutter, J; Compostella, G; Convery, M E; Conway, J; Cooke, M; Cooper, W E; Corbo, M; Corcoran, M; Cordelli, M; Couderc, F; Cousinou, M-C; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Cutts, D; Cwiok, M; Dagenhart, D; d'Ascenzo, N; Das, A; Datta, M; Davies, G; Davies, T; De, K; de Barbaro, P; De Cecco, S; Deisher, A; de Jong, S J; De la Cruz-Burelo, E; Déliot, F; Dell'Orso, M; De Lorenzo, G; Deluca, C; Demarteau, M; Demina, R; Demortier, L; Deng, J; Deninno, M; Denisov, D; Denisov, S P; d'Errico, M; Desai, S; DeVaughan, K; Di Canto, A; Diehl, H T; Diesburg, M; Di Ruzza, B; Dittmann, J R; Dominguez, A; Donati, S; Dong, P; D'Onofrio, M; Dorigo, T; Dorland, T; Dube, S; Dubey, A; Dudko, L V; Duflot, L; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Ebina, K; Edmunds, D; Elagin, A; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Ferapontov, A V; Ferbel, T; Fernandez, J P; Ferrazza, C; Fiedler, F; Field, R; Filthaut, F; Fisher, W; Fisk, H E; Flanagan, G; Forrest, R; Fortner, M; Fox, H; Frank, M J; Franklin, M; Freeman, J C; Fuess, S; Furic, I; Gadfort, T; Galea, C F; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garcia-Bellido, A; Garfinkel, A F; Garosi, P; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gerberich, H; Gerdes, D; Gershtein, Y; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gillberg, D; Gimmell, J L; Ginsburg, C M; Ginther, G; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Golovanov, G; Gómez, B; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gresele, A; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grosso-Pilcher, C; Group, R C; Grundler, U; Grünendahl, S; Grünewald, M W; Guimaraes da Costa, J; Gunay-Unalan, Z; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Haber, C; Haefner, P; Hagopian, S; Hahn, S R; Haley, J; Halkiadakis, E; Hall, I; Han, B-Y; Han, J Y; Han, L; Happacher, F; Hara, K; Harder, K; Hare, D; Hare, M; Harel, A; Harr, R F; Hartz, M; Hatakeyama, K; Hauptman, J M; Hays, C; Hays, J; Hebbeker, T; Heck, M; Hedin, D; Hegeman, J G; Heinrich, J; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herndon, M; Herner, K; Hesketh, G; Heuser, J; Hewamanage, S; Hidas, D; Hildreth, M D; Hill, C S; Hirosky, R; Hirschbuehl, D; Hoang, T; Hobbs, J D; Hocker, A; Hoeneisen, B; Hohlfeld, M; Hossain, S; Houben, P; Hou, S; Houlden, M; Hsu, S-C; Hu, Y; Hubacek, Z; Hughes, R E; Hurwitz, M; Husemann, U; Huske, N; Hussein, M; Huston, J; Hynek, V; Iashvili, I; Illingworth, R; Incandela, J; Introzzi, G; Iori, M; Ito, A S; Ivanov, A; Jabeen, S; Jaffré, M; Jain, S; James, E; Jamin, D; Jang, D; Jayatilaka, B; Jeon, E J; Jesik, R; Jha, M K; Jindariani, S; Johns, K; Johnson, C; Johnson, M; Johnson, W; Johnston, D; Jonckheere, A; Jones, M; Jonsson, P; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Juste, A; Kajfasz, E; Kamon, T; Karchin, P E; Kar, D; Karmanov, D; Kasper, P A; Kato, Y; Katsanos, I; Kaushik, V; Kehoe, R; Kephart, R; Kermiche, S; Ketchum, W; Keung, J; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirby, M H; Kirsch, L; Kirsch, M; Klimenko, S; Kohli, J M; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kozelov, A V; Kraus, J; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kumar, A; Kupco, A; Kurata, M; Kurca, T; Kuzmin, V A; Kvita, J; Kwang, S; Laasanen, A T; Lam, D; Lami, S; Lammel, S; Lammers, S; Lancaster, M; Lander, R L; Landsberg, G; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lebrun, P; LeCompte, T; Lee, E; Lee, H S; Lee, H S; Lee, J S; Lee, S W; Lee, W M; Leflat, A; Lellouch, J; Leone, S; Lewis, J D; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Linacre, J; Lincoln, D; Lin, C-J; Lindgren, M; Linnemann, J; Lipaev, V V; Lipeles, E; Lipton, R; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Liu, Y; Liu, Z; Lobodenko, A; Lockyer, N S; Loginov, A; Lokajicek, M; Lovas, L; Love, P; Lubatti, H J; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Luna-Garcia, R; Lungu, G; Lyon, A L; Lysak, R; Lys, J; Maciel, A K A; Mackin, D; MacQueen, D; Madrak, R; Maeshima, K; Magaña-Villalba, R; Makhoul, K; Maksimovic, P; Mal, P K; Malde, S; Malik, S; Malik, S; Malyshev, V L; Manca, G; Manousakis-Katsikakis, A; Maravin, Y; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Martínez-Ortega, J; Mastrandrea, P; Mathis, M; Mättig, P; Mattson, M E; Mazzanti, P; McCarthy, R; McFarland, K S; McGivern, C L; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Meijer, M M; Melnitchouk, A; Mendoza, L; Menezes, D; Menzione, A; Mercadante, P G; Merkin, M; Mesropian, C; Meyer, A; Meyer, J; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondal, N K; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Moulik, T; Movilla Fernandez, P; Muanza, G S; Mukherjee, A; Mulhearn, M; Muller, Th; Mülmenstädt, J; Mundal, O; Mundim, L; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nagy, E; Naimuddin, M; Nakamura, K; Nakano, I; Napier, A; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Neustroev, P; Nielsen, J; Nilsen, H; Nodulman, L; Nogima, H; Norman, M; Norniella, O; Novaes, S F; Nunnemann, T; Nurse, E; Oakes, L; Obrant, G; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Onoprienko, D; Orava, R; Orduna, J; Osman, N; Osta, J; Osterberg, K; Otec, R; Otero y Garzón, G J; Owen, M; Padilla, M; Padley, P; Pagan Griso, S; Pagliarone, C; Palencia, E; Pangilinan, M; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parashar, N; Parihar, V; Park, S-J; Park, S K; Parks, B; Parsons, J; Partridge, R; Parua, N; Pashapour, S; Patrick, J; Patwa, A; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penning, B; Penzo, A; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Phillips, T J; Piacentino, G; Pianori, E; Piegaia, R; Pinera, L; Piper, J; Pitts, K; Plager, C; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Pondrom, L; Popov, A V; Potamianos, K; Poukhov, O; Prewitt, M; Price, D; Prokoshin, F; Pronko, A; Protopopescu, S; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Qian, J; Quadt, A; Quinn, B; Rademacker, J; Rahaman, A; Ramakrishnan, V; Rangel, M S; Ranjan, K; Ranjan, N; Ratoff, P N; Razumov, I; Redondo, I; Renkel, P; Renton, P; Renz, M; Rescigno, M; Rich, P; Richter, S; Rijssenbeek, M; Rimondi, F; Ripp-Baudot, I; Ristori, L; Rizatdinova, F; Robinson, S; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Rominsky, M; Roser, R; Rossi, M; Rossin, R; Roy, P; Royon, C; Rubinov, P; Ruchti, R; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Safronov, G; Sajot, G; Sakumoto, W K; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santi, L; Sartori, L; Sato, K; Savage, G; Saveliev, V; Savoy-Navarro, A; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schlabach, P; Schliephake, T; Schlobohm, S; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwanenberger, C; Schwarz, T; Schwienhorst, R; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Sekaric, J; Semenov, A; Severini, H; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shabalina, E; Shalhout, S Z; Shary, V; Shchukin, A A; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shivpuri, R K; Shochet, M; Shon, Y; Shreyber, I; Simak, V; Simonenko, A; Sinervo, P; Sirotenko, V; Sisakyan, A; Skubic, P; Slattery, P; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Snow, G R; Snow, J; Snyder, S; Soha, A; Söldner-Rembold, S; Somalwar, S; Sonnenschein, L; Sopczak, A; Sorin, V; Sosebee, M; Soustruznik, K; Spurlock, B; Squillacioti, P; Stanitzki, M; Stark, J; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Stolin, V; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, E; Strauss, M; Ströhmer, R; Strologas, J; Strom, D; Strycker, G L; Stutte, L; Suh, J S; Sukhanov, A; Suslov, I; Svoisky, P; Taffard, A; Takahashi, M; Takashima, R; Takeuchi, Y; Tanaka, R; Tanasijczuk, A; Tang, J; Taylor, W; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tiller, B; Tipton, P; Titov, M; Tkaczyk, S; Toback, D; Tokar, S; Tokmenin, V V; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, S-Y; Tsybychev, D; Ttito-Guzmán, P; Tuchming, B; Tu, Y; Tully, C; Turini, N; Tuts, P M; Ukegawa, F; Unalan, R; Uozumi, S; Uvarov, L; Uvarov, S; Uzunyan, S; van den Berg, P J; Van Kooten, R; van Leeuwen, W M; van Remortel, N; Varelas, N; Varganov, A; Varnes, E W; Vasilyev, I A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vidal, M; Vila, I; Vilanova, D; Vilar, R; Vint, P; Vogel, M; Vokac, P; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wahl, H D; Wakisaka, T; Wallny, R; Wang, M H L S; Wang, S M; Warburton, A; Warchol, J; Waters, D; Watts, G; Wayne, M; Weber, G; Weber, M; Weinberger, M; Weinelt, J; Wester, W C; Wetstein, M; White, A; Whitehouse, B; Whiteson, D; Wicke, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Williams, M R J; Wilson, G W; Wilson, P; Wimpenny, S J; Winer, B L; Wittich, P; Wobisch, M; Wolbers, S; Wolfe, C; Wolfe, H; Wood, D R; Wright, T; Wu, X; Würthwein, F; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yagil, A; Yamada, R; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, W-C; Yang, Y C; Yao, W M; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yeh, G P; Yi, K; Yin, H; Yip, K; Yoh, J; Yoo, H D; Yorita, K; Yoshida, T; Youn, S W; Yu, G B; Yu, I; Yu, J; Yu, S S; Yun, J C; Zanetti, A; Zeitnitz, C; Zelitch, S; Zeng, Y; Zhang, X; Zhao, T; Zheng, Y; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L; Zucchelli, S; Zutshi, V; Zverev, E G

    2010-02-12

    We combine searches by the CDF and D0 Collaborations for a Higgs boson decaying to W+W-. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb(-1) of pp collisions at square root(s) = 1.96 TeV at the Fermilab Tevatron collider. No excess is observed above background expectation, and resulting limits on Higgs boson production exclude a standard model Higgs boson in the mass range 162-166 GeV at the 95% C.L.

  1. Combination of Tevatron searches for the standard model Higgs boson in the W+W- decay mode

    SciTech Connect

    Aaltonen, T.; Abazov, V.M.; Gregores, E.M.; Mercadante, P.G.; Hebbeker, T.; Kirsch, M.; Meyer, A.; Sonnenschein, L.; Avila, C.; Gomez, B.; Mendoza, L.; /Andes U., Bogota /Argonne /Arizona U. /Athens U. /Barcelona, IFAE /Baylor U. /Bonn U. /Boston U. /Brandeis U.

    2010-01-01

    We combine searches by the CDF and D0 collaborations for a Higgs boson decaying to W{sup +}W{sup -}. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron collider. No excess is observed above background expectation, and resulting limits on Higgs boson production exclude a standard-model Higgs boson in the mass range 162-166 GeV at the 95% C.L.

  2. Combination of Tevatron Searches for the Standard Model Higgs Boson in the W+W- Decay Mode

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.; Adelman, J.; Aguilo, E.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Álvarez González, B.; Alverson, G.; Alves, G. A.; Amerio, S.; Amidei, D.; Anastassov, A.; Ancu, L. S.; Annovi, A.; Antos, J.; Aoki, M.; Apollinari, G.; Appel, J.; Apresyan, A.; Arisawa, T.; Arnoud, Y.; Arov, M.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Askew, A.; Åsman, B.; Atramentov, O.; Attal, A.; Aurisano, A.; Avila, C.; Azfar, F.; Backusmayes, J.; Badaud, F.; Badgett, W.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barbaro-Galtieri, A.; Barberis, E.; Barfuss, A.-F.; Baringer, P.; Barnes, V. E.; Barnett, B. A.; Barreto, J.; Barria, P.; Bartlett, J. F.; Bartos, P.; Bassler, U.; Bauer, D.; Bauer, G.; Beale, S.; Bean, A.; Beauchemin, P.-H.; Bedeschi, F.; Beecher, D.; Begalli, M.; Begel, M.; Behari, S.; Belanger-Champagne, C.; Bellantoni, L.; Bellettini, G.; Bellinger, J.; Benitez, J. A.; Benjamin, D.; Beretvas, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blazey, G.; Blessing, S.; Blocker, C.; Bloom, K.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boehnlein, A.; Boisvert, V.; Boline, D.; Bolton, T. A.; Boos, E. E.; Borissov, G.; Bortoletto, D.; Bose, T.; Boudreau, J.; Boveia, A.; Brandt, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Brock, R.; Bromberg, C.; Brooijmans, G.; Bross, A.; Brown, D.; Brubaker, E.; Bu, X. B.; Buchholz, D.; Budagov, J.; Budd, H. S.; Budd, S.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burkett, K.; Burnett, T. H.; Busetto, G.; Bussey, P.; Buszello, C. P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Calfayan, P.; Calpas, B.; Calvet, S.; Camacho-Pérez, E.; Camarda, S.; Cammin, J.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrasco-Lizarraga, M. A.; Carrera, E.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Casey, B. C. K.; Castilla-Valdez, H.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Cheu, E.; Chevalier-Théry, S.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Cho, D. K.; Cho, S. W.; Choi, S.; Chokheli, D.; Chou, J. P.; Choudhary, B.; Christoudias, T.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Cihangir, S.; Ciobanu, C. I.; Ciocci, M. A.; Claes, D.; Clark, A.; Clark, D.; Clutter, J.; Compostella, G.; Convery, M. E.; Conway, J.; Cooke, M.; Cooper, W. E.; Corbo, M.; Corcoran, M.; Cordelli, M.; Couderc, F.; Cousinou, M.-C.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Cutts, D.; Ćwiok, M.; Dagenhart, D.; D'Ascenzo, N.; Das, A.; Datta, M.; Davies, G.; Davies, T.; de, K.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Jong, S. J.; de La Cruz-Burelo, E.; Déliot, F.; Dell'Orso, M.; de Lorenzo, G.; Deluca, C.; Demarteau, M.; Demina, R.; Demortier, L.; Deng, J.; Deninno, M.; Denisov, D.; Denisov, S. P.; D'Errico, M.; Desai, S.; Devaughan, K.; di Canto, A.; Diehl, H. T.; Diesburg, M.; di Ruzza, B.; Dittmann, J. R.; Dominguez, A.; Donati, S.; Dong, P.; D'Onofrio, M.; Dorigo, T.; Dorland, T.; Dube, S.; Dubey, A.; Dudko, L. V.; Duflot, L.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Ebina, K.; Edmunds, D.; Elagin, A.; Ellison, J.; Elvira, V. D.; Enari, Y.; Eno, S.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Ferapontov, A. V.; Ferbel, T.; Fernandez, J. P.; Ferrazza, C.; Fiedler, F.; Field, R.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Flanagan, G.; Forrest, R.; Fortner, M.; Fox, H.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Fuess, S.; Furic, I.; Gadfort, T.; Galea, C. F.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garcia-Bellido, A.; Garfinkel, A. F.; Garosi, P.; Gavrilov, V.; Gay, P.; Geist, W.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gerberich, H.; Gerdes, D.; Gershtein, Y.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gillberg, D.; Gimmell, J. L.; Ginsburg, C. M.; Ginther, G.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Golovanov, G.; Gómez, B.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gresele, A.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Grünendahl, S.; Grünewald, M. W.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Guo, F.; Guo, J.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Haber, C.; Haefner, P.; Hagopian, S.; Hahn, S. R.; Haley, J.; Halkiadakis, E.; Hall, I.; Han, B.-Y.; Han, J. Y.; Han, L.; Happacher, F.; Hara, K.; Harder, K.; Hare, D.; Hare, M.; Harel, A.; Harr, R. F.; Hartz, M.; Hatakeyama, K.; Hauptman, J. M.; Hays, C.; Hays, J.; Hebbeker, T.; Heck, M.; Hedin, D.; Hegeman, J. G.; Heinrich, J.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-de La Cruz, I.; Herndon, M.; Herner, K.; Hesketh, G.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hildreth, M. D.; Hill, C. S.; Hirosky, R.; Hirschbuehl, D.; Hoang, T.; Hobbs, J. D.; Hocker, A.; Hoeneisen, B.; Hohlfeld, M.; Hossain, S.; Houben, P.; Hou, S.; Houlden, M.; Hsu, S.-C.; Hu, Y.; Hubacek, Z.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Huske, N.; Hussein, M.; Huston, J.; Hynek, V.; Iashvili, I.; Illingworth, R.; Incandela, J.; Introzzi, G.; Iori, M.; Ito, A. S.; Ivanov, A.; Jabeen, S.; Jaffré, M.; Jain, S.; James, E.; Jamin, D.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jesik, R.; Jha, M. K.; Jindariani, S.; Johns, K.; Johnson, C.; Johnson, M.; Johnson, W.; Johnston, D.; Jonckheere, A.; Jones, M.; Jonsson, P.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Juste, A.; Kajfasz, E.; Kamon, T.; Karchin, P. E.; Kar, D.; Karmanov, D.; Kasper, P. A.; Kato, Y.; Katsanos, I.; Kaushik, V.; Kehoe, R.; Kephart, R.; Kermiche, S.; Ketchum, W.; Keung, J.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Khatidze, D.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirby, M. H.; Kirsch, L.; Kirsch, M.; Klimenko, S.; Kohli, J. M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kozelov, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kulkarni, N. P.; Kumar, A.; Kupco, A.; Kurata, M.; Kurča, T.; Kuzmin, V. A.; Kvita, J.; Kwang, S.; Laasanen, A. T.; Lam, D.; Lami, S.; Lammel, S.; Lammers, S.; Lancaster, M.; Lander, R. L.; Landsberg, G.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lebrun, P.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Lee, W. M.; Leflat, A.; Lellouch, J.; Leone, S.; Lewis, J. D.; Li, L.; Li, Q. Z.; Lietti, S. M.; Lim, J. K.; Linacre, J.; Lincoln, D.; Lin, C.-J.; Lindgren, M.; Linnemann, J.; Lipaev, V. V.; Lipeles, E.; Lipton, R.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Liu, Y.; Liu, Z.; Lobodenko, A.; Lockyer, N. S.; Loginov, A.; Lokajicek, M.; Lovas, L.; Love, P.; Lubatti, H. J.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Luna-Garcia, R.; Lungu, G.; Lyon, A. L.; Lysak, R.; Lys, J.; Maciel, A. K. A.; Mackin, D.; MacQueen, D.; Madrak, R.; Maeshima, K.; Magaña-Villalba, R.; Makhoul, K.; Maksimovic, P.; Mal, P. K.; Malde, S.; Malik, S.; Malik, S.; Malyshev, V. L.; Manca, G.; Manousakis-Katsikakis, A.; Maravin, Y.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Martínez-Ortega, J.; Mastrandrea, P.; Mathis, M.; Mättig, P.; Mattson, M. E.; Mazzanti, P.; McCarthy, R.; McFarland, K. S.; McGivern, C. L.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Meijer, M. M.; Melnitchouk, A.; Mendoza, L.; Menezes, D.; Menzione, A.; Mercadante, P. G.; Merkin, M.; Mesropian, C.; Meyer, A.; Meyer, J.; Miao, T.; Mietlicki, D.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moed, S.; Moggi, N.; Mondal, N. K.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Moulik, T.; Movilla Fernandez, P.; Muanza, G. S.; Mukherjee, A.; Mulhearn, M.; Muller, Th.; Mülmenstädt, J.; Mundal, O.; Mundim, L.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nagy, E.; Naimuddin, M.; Nakamura, K.; Nakano, I.; Napier, A.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Nett, J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Neustroev, P.; Nielsen, J.; Nilsen, H.; Nodulman, L.; Nogima, H.; Norman, M.; Norniella, O.; Novaes, S. F.; Nunnemann, T.; Nurse, E.; Oakes, L.; Obrant, G.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Onoprienko, D.; Orava, R.; Orduna, J.; Osman, N.; Osta, J.; Osterberg, K.; Otec, R.; Otero Y Garzón, G. J.; Owen, M.; Padilla, M.; Padley, P.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Pangilinan, M.; Papadimitriou, V.; Papaikonomou, A.; Paramanov, A. A.; Parashar, N.; Parihar, V.; Park, S.-J.; Park, S. K.; Parks, B.; Parsons, J.; Partridge, R.; Parua, N.; Pashapour, S.; Patrick, J.; Patwa, A.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penning, B.; Penzo, A.; Perfilov, M.; Peters, K.; Peters, Y.; Pétroff, P.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Piegaia, R.; Pinera, L.; Piper, J.; Pitts, K.; Plager, C.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pol, M.-E.; Polozov, P.; Pondrom, L.; Popov, A. V.; Potamianos, K.; Poukhov, O.; Prewitt, M.; Price, D.; Prokoshin, F.; Pronko, A.; Protopopescu, S.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Qian, J.; Quadt, A.; Quinn, B.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Rangel, M. S.; Ranjan, K.; Ranjan, N.; Ratoff, P. N.; Razumov, I.; Redondo, I.; Renkel, P.; Renton, P.; Renz, M.; Rescigno, M.; Rich, P.; Richter, S.; Rijssenbeek, M.; Rimondi, F.; Ripp-Baudot, I.; Ristori, L.; Rizatdinova, F.; Robinson, S.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Rominsky, M.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Royon, C.; Rubinov, P.; Ruchti, R.; Ruiz, A.; Russ, J.; Rusu, V.; Rutherford, B.; Saarikko, H.; Safonov, A.; Safronov, G.; Sajot, G.; Sakumoto, W. K.; Sánchez-Hernández, A.; Sanders, M. P.; Sanghi, B.; Santi, L.; Sartori, L.; Sato, K.; Savage, G.; Saveliev, V.; Savoy-Navarro, A.; Sawyer, L.; Scanlon, T.; Schaile, D.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlabach, P.; Schliephake, T.; Schlobohm, S.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwanenberger, C.; Schwarz, T.; Schwienhorst, R.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Sekaric, J.; Semenov, A.; Severini, H.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shalhout, S. Z.; Shary, V.; Shchukin, A. A.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shivpuri, R. K.; Shochet, M.; Shon, Y.; Shreyber, I.; Simak, V.; Simonenko, A.; Sinervo, P.; Sirotenko, V.; Sisakyan, A.; Skubic, P.; Slattery, P.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smirnov, D.; Smith, J. R.; Snider, F. D.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Soha, A.; Söldner-Rembold, S.; Somalwar, S.; Sonnenschein, L.; Sopczak, A.; Sorin, V.; Sosebee, M.; Soustruznik, K.; Spurlock, B.; Squillacioti, P.; Stanitzki, M.; Stark, J.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Stolin, V.; Stoyanova, D. A.; Strandberg, J.; Strang, M. A.; Strauss, E.; Strauss, M.; Ströhmer, R.; Strologas, J.; Strom, D.; Strycker, G. L.; Stutte, L.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Svoisky, P.; Taffard, A.; Takahashi, M.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tanasijczuk, A.; Tang, J.; Taylor, W.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Tiller, B.; Tipton, P.; Titov, M.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tokmenin, V. V.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tsai, S.-Y.; Tsybychev, D.; Ttito-Guzmán, P.; Tuchming, B.; Tu, Y.; Tully, C.; Turini, N.; Tuts, P. M.; Ukegawa, F.; Unalan, R.; Uozumi, S.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; van den Berg, P. J.; van Kooten, R.; van Leeuwen, W. M.; van Remortel, N.; Varelas, N.; Varganov, A.; Varnes, E. W.; Vasilyev, I. A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Verdier, P.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vidal, M.; Vila, I.; Vilanova, D.; Vilar, R.; Vint, P.; Vogel, M.; Vokac, P.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wahl, H. D.; Wakisaka, T.; Wallny, R.; Wang, M. H. L. S.; Wang, S. M.; Warburton, A.; Warchol, J.; Waters, D.; Watts, G.; Wayne, M.; Weber, G.; Weber, M.; Weinberger, M.; Weinelt, J.; Wester, W. C., III; Wetstein, M.; White, A.; Whitehouse, B.; Whiteson, D.; Wicke, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Williams, M. R. J.; Wilson, G. W.; Wilson, P.; Wimpenny, S. J.; Winer, B. L.; Wittich, P.; Wobisch, M.; Wolbers, S.; Wolfe, C.; Wolfe, H.; Wood, D. R.; Wright, T.; Wu, X.; Würthwein, F.; Wyatt, T. R.; Xie, Y.; Xu, C.; Yacoob, S.; Yagil, A.; Yamada, R.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, W.-C.; Yang, Y. C.; Yao, W. M.; Yasuda, T.; Yatsunenko, Y. A.; Ye, Z.; Yeh, G. P.; Yi, K.; Yin, H.; Yip, K.; Yoh, J.; Yoo, H. D.; Yorita, K.; Yoshida, T.; Youn, S. W.; Yu, G. B.; Yu, I.; Yu, J.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeitnitz, C.; Zelitch, S.; Zeng, Y.; Zhang, X.; Zhao, T.; Zheng, Y.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; Zucchelli, S.; Zutshi, V.; Zverev, E. G.; CDF Collaboration; D0 Collaboration

    2010-02-01

    We combine searches by the CDF and D0 Collaborations for a Higgs boson decaying to W+W-. The data correspond to an integrated total luminosity of 4.8 (CDF) and 5.4 (D0) fb-1 of pp¯ collisions at s=1.96TeV at the Fermilab Tevatron collider. No excess is observed above background expectation, and resulting limits on Higgs boson production exclude a standard model Higgs boson in the mass range 162-166 GeV at the 95% C.L.

  3. Search for top quark at Fermilab Collider

    SciTech Connect

    Sliwa, K.; The CDF Collaboration

    1991-10-01

    The status of a search for the top quark with Collider Detector at Fermilab (CDF), based on a data sample recorded during the 1988--1989 run is presented. The plans for the next Fermilab Collider run in 1992--1993 and the prospects of discovering the top quark are discussed. 19 refs., 4 figs., 2 tabs.

  4. Physics at an upgraded Fermilab proton driver

    SciTech Connect

    Geer, S.; /Fermilab

    2005-07-01

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. Over the last few months a physics study has developed the physics case for the Fermilab Proton Driver. The potential physics opportunities are discussed.

  5. Medium-Energy Antiproton Physics with the Antiproton Annihilation Spectrometer (TApAS*) at Fermilab

    SciTech Connect

    Bartoszek, Larry; Piacentino, Giovanni M.; Phillips, Thomas J.; Apollinari, Giorgio; Broemmelsiek, Daniel R.; Brown, Charles N.; Christian, David C.; Derwent, Paul; Gollwitzer, Keith; Hahn, Alan; Papadimitriou, Vaia; /Fermilab /INFN, Pisa /Hbar Technologies, West Chicago /Houston U. /IIT, Chicago /IIT, Hyderabad /ITEP /KyungPook National U. /LPI

    2008-01-01

    We propose to assemble a cost-effective, yet powerful, solenoidal magnetic spectrometer for antiproton-annihilation events and use it at the Fermilab Antiproton Accumulator to measure the charm production cross section, study rare hyperon decays, search for hyperon CP asymmetry, and precisely measure the properties of several charmonium and nearby states. Should the charm production cross section be as large as some have proposed, we will also be able to measure D{sup 0}-{bar D}{sup 0} mixing with high precision and discover (or sensitively limit) charm CP violation. The experiment will be carried out by an international collaboration, with installation occurring during the accelerator downtime following the completion of the Tevatron run, and with funding largely from university research grants. The experiment will require some four years of running time. As possibly the sole hadron experiment in progress at Fermilab during that time, it will play an important role in maintaining a broad particle-physics program at Fermilab and in the U.S.

  6. Beam Based Measurements for Stochastic Cooling Systems at Fermilab

    SciTech Connect

    Lebedev, V.A.; Pasquinelli, R.J.; Werkema, S.J.; /Fermilab

    2007-09-13

    Improvement of antiproton stacking rates has been pursued for the last twenty years at Fermilab. The last twelve months have been dedicated to improving the computer model of the Stacktail system. The production of antiprotons encompasses the use of the entire accelerator chain with the exception of the Tevatron. In the Antiproton Source two storage rings, the Debuncher and Accumulator are responsible for the accumulation of antiprotons in quantities that can exceed 2 x 10{sup 12}, but more routinely, stacks of 5 x 10{sup 11} antiprotons are accumulated before being transferred to the Recycler ring. Since the beginning of this recent enterprise, peak accumulation rates have increased from 2 x 10{sup 11} to greater than 2.3 x 10{sup 11} antiprotons per hour. A goal of 3 x 10{sup 11} per hour has been established. Improvements to the stochastic cooling systems are but a part of this current effort. This paper will discuss Stacktail system measurements and experienced system limitations.

  7. Search for a Standard Model Higgs boson in the $\\tau\\tau$ decay channel produced in $p\\bar{p}$ collisions at $\\sqrt{s}$ = 1.96 TeV at Tevatron

    SciTech Connect

    Totaro, Pierluigi

    2011-01-01

    This thesis describes the search for the Standard Model Higgs boson decaying to tau lepton pairs, in the Tevatron proton-antiproton collisions at a center of mass energy $\\sqrt{s}$ = 1.96 TeV. The search is based on approximately 2.3 fb$^{-1}$ of CDF Run II data and is performed by considering the following signal processes: WH($\\rightarrow\\tau\\tau$), ZH($\\rightarrow\\tau\\tau$), qHq'$\\rightarrow$q$\\tau\\tau$q' and gg$\\rightarrow$H$\\rightarrow\\tau\\tau$. Events are selected by requiring an hadronic tau and one isolated electron or muon, coming from the leptonic decay of one of the two taus. In addition, at least one calorimeter jet must be present in the final state. We expect 921.8$\\pm$48.9 background events in the 1 jet channel and 159.4$\\pm$11.6 in the $\\ge$ 2 jets channel, while in data we observe 965 and 166 events, respectively. In order to improve the search sensitivity we employ a multivariate technique, based on a set of Boosted Decision Trees trained to get the best sep aration between signal and the dominant sources of background. We observe no evidence for a Higgs boson signal and therefore we set a 95\\% confidence level (C.L.) upper limit on the cross section relative to the SM predictions ($\\sigma/\\sigma_{\\mathrm{SM}}$). Results are presented for the Higgs boson mass varying from M$_\\mathrm{H}$ = 100 GeV/$c^2$ to M$_\\mathrm{H}$ = 150 GeV/$c^2$. For the mass hypothesis of 120 GeV/c$^2$ the observed limit is 27.2, while the corresponding expected value is 23.4$^{+9.8}_{-6.4}$.

  8. Challenging the standard model at the Tevatron collider

    SciTech Connect

    Filthaut, Frank; /Nijmegen U.

    2011-03-01

    Even at a time where the world's eyes are focused on the Large Hadron Collider at CERN, which has reached the energy frontier in 2010, many important results are still being obtained from data analyses performed at the Tevatron collider at Fermilab. This contribution discusses recent highlights in the areas of B hadron, electroweak, top quark, and Higgs boson physics. The standard model (SM) of particle physics forms the cornerstone of our understanding of elementary particles and their interactions, and many of its aspects have been investigated in great detail. Yet it is generally suspected to be incomplete (e.g. by not allowing for the incorporation of gravity in a field theoretical setting) and un-natural (e.g. the mass of the Higgs boson is not well protected against radiative corrections). In addition, it does not explain the dark matter and dark energy content of the Universe. It is therefore of eminent importance to test the limits of validity of the SM. In the decade since its upgrade to a centre-of-mass energy {radical}s = 1.96 TeV, the Tevatron p{bar p} collider has delivered an integrated luminosity of about 10 fb{sup -1}, up to 9 fb{sup -1} of which are available for analysis by its CDF and D0 collaborations. These large datasets allow for stringent tests of the SM in two areas: direct searches for particles or final states that are not very heavy but that suffer from small production cross sections (e.g. the Higgs boson), and searches for indirect manifestations of beyond-the-standard-model (BSM) effects through virtual effects. The latter searches can often be carried out by precise measurements of otherwise known processes. This contribution describes such tests of the SM carried out by the CDF and D0 collaborations. In particular, recent highlights in the areas of B hadron physics, electroweak physics, top quark physics, and Higgs boson physics are discussed. Recent results of tests of QCD and of direct searches for new phenomena are described in

  9. Top and Electroweak Measurements at the Tevatron

    SciTech Connect

    Bartos, P.

    2016-01-01

    In this report, we summarize the latest results of the top-quark mass and electroweak measurements from the Tevatron. Since the world combination of top-quark mass measurements was done, CDF and D0 experiments improved the precision of several results. Some of them reach the relative precition below 1% for a single measurement. From the electroweak results, we report on the WW and WZ production cross section, measurements of the weak mixing angle and indirect measurements of W boson mass. The Tevatron results of the weak mixing angle are still the most precise ones of hadron colliders.

  10. MCFM for the Tevatron and the LHC

    SciTech Connect

    Campbell, John M.; Ellis, R.K.; /Fermilab

    2010-07-01

    A summary is given of the current status of the next-to-leading order (NLO) parton-level integrator MCFM. Some details are given about the Higgs + 2-jet process and the production and decay of t{bar t}, both of which have recently been added to the code. Using MCFM, comparisons between the Tevatron running at {radical}s = 2 TeV and the LHC running at {radical}s = 7 TeV are made for standard model process including the production of Higgs bosons. The case for running the Tevatron until 16fb{sup -1} are accumulated by both detectors is sketched.

  11. Top quark mass measurements at the Tevatron

    SciTech Connect

    Youn, S. W.

    2014-03-01

    We present recent measurements of the mass of the top quark performed at the Tevatron $p\\bar{p}$ collider at a center-of-mass energy of 1.96 TeV. These measurements use the full Run II data samples corresponding to an integrated luminosity of up to 9.3 fb$^{-1}$. We also report the first world combination of the measurements from the Large Hadron Collider and Tevatron experiments resulting in a top mass of 173.34 {\\pm} 0.76 GeV with a relative precision of 0.44\\%.

  12. $B$ and $D$ Physics from the Tevatron

    SciTech Connect

    Squillacioti, Paola

    2011-10-01

    The CDF and D0 experiments at the Tevatron pp collider established that extensive and detailed exploration of the b-quark dynamics is possible in hadron collisions, with results competitive and supplementary to B-factories. In this paper we review the current state of Tevatron's heavy flavor measurements considering two main categories: searches for non standard model physics (results on rare decays and CP-violation) and determinations of standard model parameters (annihilation in B {yields} h{sup +}h{sup -} decays and {gamma} angle measurement through B {yields} DK modes).

  13. Top quark properties from the Tevatron

    SciTech Connect

    Klute, Markus; /MIT, LNS

    2006-05-01

    This report describes latest measurements and studies of top quark properties from the Tevatron in Run II with an integrated luminosity of up to 750 pb{sup -1}. Due to its large mass of about 172 GeV/c{sup 2}, the top quark provides a unique environment for tests of the Standard Model and is believed to yield sensitivity to new physics beyond the Standard Model. With data samples of close to 1 fb{sup -1} the CDF and D0 collaborations at the Tevatron enter a new area of precision top quark measurements.

  14. Tune measurement methods of the Tevatron

    SciTech Connect

    Cheng-Yang Tan; Xiaolong Zhang; Paul Lebrun

    2003-06-10

    We will discuss several methods for measuring the tunes in the Tevatron. These methods can be separated into three classes: active, passive and hybrid. In the active method, the beam is tickled in order to obtain a frequency response. In the passive method, a Schottky detector which uses a resonant stripline is used to measure the Schottky spectrum of the beam. In the hybrid method, we tickle the beam using kickers, or the Tevatron Electron Lens (TEL) in order to bring the tune signal above the noise floor of the Schottky detectors. An automatic tune fitting algorithm is also under development which allows us to measure the tune without human intervention.

  15. The Muon g-2 experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Chapelain, Antoine

    2017-03-01

    The upcoming Fermilab E989 experiment will measure the muon anomalous magnetic moment aμ. This measurement is motivated by the previous measurement performed in 2001 by the BNL E821 experiment that reported a 3-4 standard deviation discrepancy between the measured value and the Standard Model prediction. The new measurement at Fermilab aims to improve the precision by a factor of four reducing the total uncertainty from 540 parts per billion (BNL E821) to 140 parts per billion (Fermilab E989). This paper gives the status of the experiment.

  16. A Study for Doubly-Charged Higgs Boson at the Tevatron

    SciTech Connect

    Baroiant, Sasha

    2006-01-01

    We search for the pair production of doubly charged Higgs particles followed by the lepton-flavor violating decay of each Higgs into electron-and-tau and muonand- tau pairs using 350 pb-1 of data collected by the CDF II experiment at the Fermilab Tevatron. Separate searches investigate cases where three or four finalstate leptons are detected, and the limits for each exclusive decay mode reflect the combined results of both searches. Assuming the H$±±\\atop{L}$ decays exclusively into likesign electron-and-tau pairs, we set a lower limit on its mass of 114 GeV/c2 at the 95 % confidence level. In the case of exclusive muon-and-tau decays, we set a lower mass limit of 112 GeV/c2 also at the 95% confidence level.

  17. A search for double-charged Higgs bosons at the Tevatron

    SciTech Connect

    Baraoiant, Sasha

    2006-01-01

    We search for the pair production of doubly charged Higgs particles followed by the lepton-flavor violating decay of each Higgs into electron-and-tau and muon-and-tau pairs using 350 pb-1 of data collected by the CDF II experiment at the Fermilab Tevatron. Separate searches investigate cases where three or four final state leptons are detected, and the limits for each exclusive decay mode reflect the combined results of both searches. Assuming the H$±±\\atop{L}$ decays exclusively into like sign electron-and-tau pairs, we set a lower limit on its mass of 114 GeV/c2 at the 95 % confidence level. In the case of exclusive muon-and-tau decays, we set a lower mass limit of 112 GeV/c2 also at the 95% confidence level.

  18. Status of the observed and predicted b anti-b production at the Tevatron

    SciTech Connect

    Happacher, F.; Giromini, P.; Ptohos, F.; /Cyprus U.

    2005-09-01

    The authors review the experimental status of the b-quark production at the Fermilab Tevatron. They compare all available measurements to perturbative QCD predictions (NLO and FONLL) and also to the parton-level cross section evaluated with parton-shower Monte Carlo generators. They examine both the single b cross section and the so called b{bar b} correlations. The review shows that the experimental situation is quite complicated because the measurements appear to be inconsistent among themselves. In this situation, there is no solid basis to either claim that perturbative QCD is challenged by these measurements or, in contrast, that long-standing discrepancies between data and theory have been resolved by incrementally improving the measurements and the theoretical prediction.

  19. First observation of vector boson pairs in a hadronic final state at the tevatron collider.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; Di Canto, A; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-08-28

    We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V = W, Z) where one boson decays to a dijet final state. The data correspond to 3.5 fb(-1) of integrated luminosity of pp[over ] collisions at sqrt[s] = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516 + or - 239(stat) + or - 144(syst) diboson candidate events and measure a cross section sigma(pp[over ]-->VV + X) of 18.0 + or - 2.8(stat) + or - 2.4(syst) + or -1.1(lumi) pb, in agreement with the expectations of the standard model.

  20. Measurements of a newly designed BPM for the Tevatron Electron Lens 2

    SciTech Connect

    Scarpine, V.E.; Fellenz, B.; Kuznetsov, G.; Kamerdzhiev, V.; Olson, M.; Shiltsev, V.D.; Zhang, X.L.; /Fermilab

    2006-05-01

    Fermilab has developed a second electron lens (TEL-2) for beam-beam compensation in the Tevatron as part of its Run II upgrade program. Operation of the beam position monitors (BPMs) in the first electron lens (TEL-1) showed a systematic transverse position difference between short proton bunches (2 ns sigma) and long electron pulses ({approx}1 us) of up to {approx}1.5 mm. This difference was attributed to frequency dependence in the BPM system. The TEL-2 BPMs utilize a new compact four plate design with grounding strips between plates to minimize crosstalk. In-situ measurements of these new BPMs are made using a stretched wire pulsed with both proton and electron beam formats. In addition, longitudinal impedance measurements of the TEL-2 are presented. Signal processing algorithm studies indicate that the frequency dependent transverse position offset may be reduced to {approx}0.1 mm for the beam structures of interest.

  1. First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider

    SciTech Connect

    Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.

    2009-05-01

    We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V = W,Z) where one boson decays to a dijet final state. The data correspond to 3.5 fb{sup -1} of integrated luminosity of p{bar p} collisions at {radical}s = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516 {+-} 239(stat) {+-} 144(syst) diboson candidate events and measure a cross section {sigma}(p{bar p} {yields} VV + X) of 18.0 {+-} 2.8(stat) {+-} 2.4(syst) {+-} 1.1(lumi) pb, in agreement with the expectations of the standard model.

  2. Asymmetries in W^+/- and Z^0/gamma^* production at the Tevatron

    SciTech Connect

    Halkiadakis, E.; /Rochester U.

    2004-12-01

    The authors describe a measurement of the charge asymmetry of electrons from W{sup {+-}} boson decays using p{bar p} {yields} W {yields} e{nu} events. They also present a measurement of the forward-backward charge asymmetry of electron-positron pairs resulting from the process p{bar p} {yields} Z{sup 0}/{gamma}* {yields} e{sup +}e{sup -}, from which they extract the Z{sup 0}-quark and Z{sup 0}-electron coupling constants and measure the sensitivity of the CDF experiment to these couplings. These analyses use integrated luminosities of 170 pb{sup -1} and 72 pb{sup -1}, respectively, of data collected by the CDF Run II detector at the Fermilab Tevatron.

  3. Search for neutral Higgs bosons in events with multiple bottom quarks at the Tevatron

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Álvarez González, B.; Alverson, G.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Askew, A.; Atkins, S.; Auerbach, B.; Augsten, K.; Aurisano, A.; Avila, C.; Azfar, F.; Badaud, F.; Badgett, W.; Bae, T.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barbaro-Galtieri, A.; Barberis, E.; Baringer, P.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartlett, J. F.; Bartos, P.; Bassler, U.; Bauce, M.; Bazterra, V.; Bean, A.; Bedeschi, F.; Begalli, M.; Behari, S.; Bellantoni, L.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blazey, G.; Blessing, S.; Bloom, K.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bortoletto, D.; Bose, T.; Boudreau, J.; Boveia, A.; Brandt, A.; Brandt, O.; Brigliadori, L.; Brock, R.; Bromberg, C.; Bross, A.; Brown, D.; Brown, J.; Brucken, E.; Budagov, J.; Bu, X. B.; Budd, H. S.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buszello, C. P.; Buzatu, A.; Calamba, A.; Calancha, C.; Camacho-Pérez, E.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Casey, B. C. K.; Castilla-Valdez, H.; Castro, A.; Catastini, P.; Caughron, S.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chen, Y. C.; Chertok, M.; Chevalier-Théry, S.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, D. K.; Cho, K.; Cho, S. W.; Choi, S.; Chokheli, D.; Choudhary, B.; Chung, W. H.; Chung, Y. S.; Cihangir, S.; Ciocci, M. A.; Claes, D.; Clark, A.; Clarke, C.; Clutter, J.; Compostella, G.; Convery, M. E.; Conway, J.; Cooke, M.; Cooper, W. E.; Corbo, M.; Corcoran, M.; Cordelli, M.; Couderc, F.; Cousinou, M.-C.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Croc, A.; Cuevas, J.; Culbertson, R.; Cutts, D.; Dagenhart, D.; d'Ascenzo, N.; Das, A.; Datta, M.; Davies, G.; de Barbaro, P.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Dell'Orso, M.; Demina, R.; Demortier, L.; Deninno, M.; Denisov, D.; Denisov, S. P.; d'Errico, M.; Desai, S.; Deterre, C.; DeVaughan, K.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dittmann, J. R.; Dominguez, A.; Donati, S.; Dong, P.; D'Onofrio, M.; Dorigo, M.; Dorigo, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Ebina, K.; Edmunds, D.; Elagin, A.; Ellison, J.; Elvira, V. D.; Enari, Y.; Eppig, A.; Erbacher, R.; Errede, S.; Ershaidat, N.; Eusebi, R.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Farrington, S.; Feindt, M.; Feng, L.; Ferbel, T.; Fernandez, J. P.; Fiedler, F.; Field, R.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Flanagan, G.; Forrest, R.; Fortner, M.; Fox, H.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Fuess, S.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Garcia-Bellido, A.; Garcia, J. E.; García-González, J. A.; García-Guerra, G. A.; Garfinkel, A. F.; Garosi, P.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gerberich, H.; Gerchtein, E.; Gershtein, Y.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Ginther, G.; Giokaris, N.; Giromini, P.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Golovanov, G.; Gomez-Ceballos, G.; Gomez, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grosso-Pilcher, C.; Group, R. C.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Guimaraes da Costa, J.; Gutierrez, G.; Gutierrez, P.; Hagopian, S.; Hahn, S. R.; Haley, J.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Han, L.; Happacher, F.; Hara, K.; Harder, K.; Hare, D.; Hare, M.; Harel, A.; Harr, R. F.; Hatakeyama, K.; Hauptman, J. M.; Hays, C.; Hays, J.; Head, T.; Hebbeker, T.; Heck, M.; Hedin, D.; Hegab, H.; Heinrich, J.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herndon, M.; Herner, K.; Hesketh, G.; Hewamanage, S.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hocker, A.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Hopkins, W.; Horn, D.; Hou, S.; Howley, I.; Hubacek, Z.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Introzzi, G.; Iori, M.; Ito, A. S.; Ivanov, A.; Jabeen, S.; Jaffré, M.; James, E.; Jang, D.; Jayasinghe, A.; Jayatilaka, B.; Jeon, E. J.; Jeong, M. S.; Jesik, R.; Jindariani, S.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jones, M.; Jonsson, P.; Joo, K. K.; Joshi, J.; Jun, S. Y.; Jung, A. W.; Junk, T. R.; Juste, A.; Kaadze, K.; Kajfasz, E.; Kamon, T.; Karchin, P. E.; Karmanov, D.; Kasmi, A.; Kasper, P. A.; Kato, Y.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Ketchum, W.; Keung, J.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Kiselevich, I.; Klimenko, S.; Knoepfel, K.; Kohli, J. M.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kozelov, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Krop, D.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kulikov, S.; Kumar, A.; Kupco, A.; Kurata, M.; Kurča, T.; Kuzmin, V. A.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lammers, S.; Lancaster, M.; Lander, R. L.; Landsberg, G.; Lannon, K.; Lath, A.; Latino, G.; Lebrun, P.; LeCompte, T.; Lee, E.; Lee, H. S.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Leo, S.; Leone, S.; Lewis, J. D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Limosani, A.; Lincoln, D.; Lin, C.-J.; Lindgren, M.; Linnemann, J.; Lipaev, V. V.; Lipeles, E.; Lipton, R.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, H.; Liu, H.; Liu, Q.; Liu, T.; Liu, Y.; Lobodenko, A.; Lockwitz, S.; Loginov, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Luna-Garcia, R.; Lungu, G.; Lyon, A. L.; Lysak, R.; Lys, J.; Maciel, A. K. A.; Madar, R.; Madrak, R.; Maeshima, K.; Maestro, P.; Magaña-Villalba, R.; Malik, S.; Malik, S.; Malyshev, V. L.; Manca, G.; Manousakis-Katsikakis, A.; Maravin, Y.; Margaroli, F.; Marino, C.; Martínez, M.; Martínez-Ortega, J.; Mastrandrea, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McCarthy, R.; McFarland, K. S.; McGivern, C. L.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Mesropian, C.; Meyer, A.; Meyer, J.; Miao, T.; Miconi, F.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondal, N. K.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Mulhearn, M.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nagy, E.; Naimuddin, M.; Nakano, I.; Napier, A.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Nett, J.; Neubauer, M. S.; Neu, C.; Neustroev, P.; Nielsen, J.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Nunnemann, T.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Orduna, J.; Ortolan, L.; Osman, N.; Osta, J.; Padilla, M.; Pagan Griso, S.; Pagliarone, C.; Pal, A.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patrick, J.; Patwa, A.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penning, B.; Penzo, A.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Pondrom, L.; Popov, A. V.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prewitt, M.; Price, D.; Prokopenko, N.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Qian, J.; Quadt, A.; Quinn, B.; Rahaman, A.; Ramakrishnan, V.; Rangel, M. S.; Ranjan, K.; Ranjan, N.; Ratoff, P. N.; Razumov, I.; Redondo, I.; Renkel, P.; Renton, P.; Rescigno, M.; Riddick, T.; Rimondi, F.; Ripp-Baudot, I.; Ristori, L.; Rizatdinova, F.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Rominsky, M.; Roser, R.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sajot, G.; Sakumoto, W. K.; Sakurai, Y.; Salcido, P.; Sánchez-Hernández, A.; Sanders, M. P.; Santi, L.; Santos, A. S.; Sato, K.; Savage, G.; Saveliev, V.; Savoy-Navarro, A.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlabach, P.; Schlobohm, S.; Schmidt, A.; Schmidt, E. E.; Schwanenberger, C.; Schwarz, T.; Schwienhorst, R.; Scodellaro, L.; Scribano, A.; Scuri, F.; Seidel, S.; Seiya, Y.; Sekaric, J.; Semenov, A.; Severini, H.; Sforza, F.; Shabalina, E.; Shalhout, S. Z.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shivpuri, R. K.; Shochet, M.; Shreyber-Tecker, I.; Simak, V.; Simonenko, A.; Sinervo, P.; Skubic, P.; Slattery, P.; Sliwa, K.; Smirnov, D.; Smith, J. R.; Smith, K. J.; Snider, F. D.; Snow, G. R.; Snow, J.; Snyder, S.; Soha, A.; Söldner-Rembold, S.; Song, H.; Sonnenschein, L.; Sorin, V.; Soustruznik, K.; Squillacioti, P.; St. Denis, R.; Stancari, M.; Stark, J.; Stelzer-Chilton, O.; Stelzer, B.; Stentz, D.; Stoyanova, D. A.; Strauss, M.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Suter, L.; Svoisky, P.; Takahashi, M.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Titov, M.; Toback, D.; Tokar, S.; Tokmenin, V. V.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Ukegawa, F.; Uozumi, S.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varganov, A.; Varnes, E. W.; Vasilyev, I. A.; Vázquez, F.; Velev, G.; Vellidis, C.; Verdier, P.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vidal, M.; Vila, I.; Vilanova, D.; Vilar, R.; Vizán, J.; Vogel, M.; Vokac, P.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wahl, H. D.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Wang, M. H. L. S.; Warburton, A.; Warchol, J.; Waters, D.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Wester, W. C., III; White, A.; Whiteson, D.; Wick, F.; Wicke, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, H. H.; Williams, M. R. J.; Wilson, G. W.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wobisch, M.; Wolbers, S.; Wolfe, H.; Wood, D. R.; Wright, T.; Wu, X.; Wu, Z.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yamamoto, K.; Yamato, D.; Yang, S.; Yang, T.; Yang, U. K.; Yang, W.-C.; Yang, Y. C.; Yao, W.-M.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yeh, G. P.; Yi, K.; Yin, H.; Yip, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Youn, S. W.; Yu, G. B.; Yu, I.; Yu, J. M.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zennamo, J.; Zhao, T.; Zhao, T. G.; Zhou, B.; Zhou, C.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; Zucchelli, S.

    2012-11-01

    The combination of searches performed by the CDF and D0 collaborations at the Fermilab Tevatron Collider for neutral Higgs bosons produced in association with b quarks is reported. The data, corresponding to 2.6fb-1 of integrated luminosity at CDF and 5.2fb-1 at D0, have been collected in final states containing three or more b jets. Upper limits are set on the cross section multiplied by the branching ratio varying between 44 pb and 0.7 pb in the Higgs boson mass range 90 to 300 GeV, assuming production of a narrow scalar boson. Significant enhancements to the production of Higgs bosons can be found in theories beyond the standard model, for example, in supersymmetry. The results are interpreted as upper limits in the parameter space of the minimal supersymmetric standard model in a benchmark scenario favoring this decay mode.

  4. First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beringer, J.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burke, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cordelli, M.; Cortiana, G.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Almenar, C. Cuenca; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Derwent, P. F.; di Canto, A.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Genser, K.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heijboer, A.; Heinemann, B.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Knuteson, B.; Ko, B. R.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C.-S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lucchesi, D.; Luci, C.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Merkel, P.; Mesropian, C.; Miao, T.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Fernandez, P. Movilla; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Nett, J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Griso, S. Pagan; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Rutherford, B.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Trovato, M.; Tsai, S.-Y.; Tu, Y.; Turini, N.; Ukegawa, F.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Würthwein, F.; Xie, S.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2009-08-01

    We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V=W, Z) where one boson decays to a dijet final state. The data correspond to 3.5fb-1 of integrated luminosity of p pmacr collisions at s=1.96TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516±239(stat)±144(syst) diboson candidate events and measure a cross section σ(p pmacr →VV+X) of 18.0±2.8(stat)±2.4(syst)±1.1(lumi)pb, in agreement with the expectations of the standard model.

  5. Bottom and charm masses and lifetimes at the Tevatron; and a pentaquark search

    SciTech Connect

    B. Todd Huffman

    2003-06-09

    The Fermilab Tevatron, operating at {radical}s = 1.96 TeV, provides a rich environment for the study of the bottom and charmed hadrons and for searches of other bound states. Presented here are recent measurements of the masses of the following states using fully reconstructed events: B{sup +}, B{sup 0}, B{sub s}, {Lambda}{sub b}, and the neutral B**. Lifetimes from both CDF and D0 in exclusive decays for all of these modes are also presented (sans the B**). A search was conducted at CDF for the {Xi}{sup 2} and {Xi}{sup 0} pentaquark states in the decay {Xi}(1860) {yields} {Xi}{sup -} {pi}{sup {+-}} setting a limit on their production in p-{bar p} collisions relative to the number of {Xi}(1530) baryons seen.

  6. Fermilab Recycler damper requirements and design

    SciTech Connect

    Crisp, J.; Hu, M.; Tupikov, V.; /Fermilab

    2005-05-01

    The design of transverse dampers for the Fermilab Recycler storage ring is described. An observed instability and analysis of subsequent measurements where used to identify the requirements. The digital approach being implemented is presented.

  7. Improvement Plans of Fermilab's Proton Accelerator Complex

    SciTech Connect

    Shiltsev, Vladimir

    2016-01-01

    The flagship of Fermilab's long term research program is the Deep Underground Neutrino Experiment (DUNE), located Sanford Underground Research Facility (SURF) in Lead, South Dakota, which will study neutrino oscillations with a baseline of 1300 km. The neutrinos will be produced in the Long Baseline Neutrino Facility (LBNF), a proposed new beam line from Fermilab's Main Injector. The physics goals of the DUNE require a proton beam with a power of some 2.4 MW at 120 GeV, which is roughly four times the current maximum power. Here I discuss current performance of the Fermilab proton accelerator complex, our plans for construction of the SRF proton linac as key part of the Proton Improvement Plan-II (PIP-II), outline the main challenges toward multi-MW beam power operation of the Fermilab accelerator complex and the staged plan to achieve the required performance over the next 15 years.

  8. The Tevatron bunch by bunch longitudinal dampers

    SciTech Connect

    Cheng-Yang Tan and James Steimel

    2002-09-25

    We describe in this paper the Tevatron bunch by bunch dampers. The goal of the dampers is to stop the spontaneous longitudinal beam size blowup of the protons during a store. We will go through the theory and also show the measured results during the commissioning of this system. The system is currently operational and have stopped the beam blowups during a store.

  9. WW and WZ production at the Tevatron

    SciTech Connect

    Lipeles, Elliot; /UC, San Diego

    2007-01-01

    This report summarizes recent measurements of the production properties of WW and WZ pairs of bosons at the Tevatron. This includes measurements of the cross-section and triple gauge couplings in the WW process and the first evidence for WZ production.

  10. Top Mass Measurements at the Tevatron

    SciTech Connect

    Wang, M.H.L.S.; /Fermilab

    2009-04-01

    We present the latest measurements of the top quark mass from the Tevatron. The different top decay channels and measurement techniques used for these results are also described. The world average of the top quark mass based on some of these new results combined with previous results is m{sub top} = 172.6 {+-} 1.4 GeV.

  11. Top quark production at the Tevatron

    SciTech Connect

    Elizaveta Shabalina

    2003-10-20

    Preliminary results on the t{bar t} production cross section measurement at a center-of-mass energy of 1.96 TeV carried out by the CDF and D0 collaborations are presented. The data samples used for the analyses are collected in the current Tevatron run.

  12. Photon final states at the Tevatron

    SciTech Connect

    Campanelli, Mario; /University Coll. London

    2008-04-01

    The authors present here several recent measurements involving associate production of photons and jets at the Tevatron. In particular, inclusive photon + met from D0, and photon + b-jets and photon + b-jet + leptons + MET from CDF are described in some detail. These measurements offer a good test of QCD predictions in rather complex final states.

  13. Top quark physics at the Tevatron

    SciTech Connect

    Antonio Sidoti

    2004-03-17

    After the successful Run I of the Tevatron (1992-1996),with the top quark discovery, both CDF and D0 experiments were extensively upgraded to meet the challenges of the Tevatron Run II collider. The energy of p{bar p} collisions at the Tevatron was increased from {radical}s = 1.8 TeV to {radical}s = 1.96 TeV. t{bar t} production cross section is expected to increase by a factor of {approx} 30%. Major upgrades in the Tevatron accelerator chain will increase the Run II instantaneous luminosity: the goal is to achieve L = 5 - 20 x 10{sup 31} cm{sup 2}s{sup -1} while the highest luminosity reached up to now (September 2003) is 5.2 x 10{sup 31} cm{sup 2} s{sup -1}. In this paper we will present the top quark properties measured by both CDF and D0 with the first physics-quality data collected during the Run II (March 2002-January 2003). First we will review t{bar t} cross section measurements in the various decay channels; then top quark mass measurements will be presented.

  14. Searches for supersymmetry at the Tevatron

    SciTech Connect

    Lytken, Else; /Purdue U.

    2006-05-01

    The results for searches for Supersymmetry at the Tevatron Collider are summarized in this paper. They focus here on searches for chargino/neutralino and the lightest stop, as well as scenarios with R-parity violation and split supersymmetry. No significant excesses with respect to the Standard Model were observed and constraints are set on the SUSY parameter space.

  15. Fermilab Recycler Collimation System Design

    SciTech Connect

    Brown, B. C.; Adamson, P.; Ainsworth, R.; Capista, D.; Hazelwood, K.; Kourbanis, I.; Mokhov, N. V.; Morris, D. K.; Murphy, M.; Sidorov, V.; Stern, E.; Tropin, I.; Yang, M-J.

    2016-10-04

    To provide 700 kW proton beams for neutrino production in the NuMI facility, we employ slip stacking in the Recycler with transfer to the Main Injector for recapture and acceleration. Slip stacking with 12 Booster batches per 1.33 sec cycle of the Main Injector has been implemented and briefly tested while extensive operation with 8 batches and 10 batches per MI cycle has been demonstrated. Operation in this mode since 2013 shows that loss localization is an essential component for long term operation. Beam loss in the Recycler will be localized in a collimation region with design capability for absorbing up to 2 kW of lost protons in a pair of 20-Ton collimators (absorbers). This system will employ a two stage collimation with a thin molybdenum scattering foil to define the bottom edge of both the injected and decelerated-for-slipping beams. Optimization and engineering design of the collimator components and radiation shielding are based on comprehensive MARS15 simulations predicting high collimation efficiency as well as tolerable levels of prompt and residual radiation. The system installation during the Fermilab 2016 facility shutdown will permit commissioning in the subsequent operating period.

  16. Discovery and measurement of excited b hadrons at the Collider Detector at Fermilab

    SciTech Connect

    Pursley, Jennifer Marie

    2007-08-01

    This thesis presents evidence for the B**0 and Σ$(*)±\\atop{b}$ hadrons in proton-antiproton collisions at a center of mass energy of 1.96 TeV, using data collected by the Collider Detector at Fermilab. In the search for B**0 → B± π, two B± decays modes are reconstructed: B± → J/ΨK±, where J/Ψ → μ+μ-, and B± → $\\bar{D}$0π±, where $\\bar{D}$0 → K± π±. Both modes are reconstructed using 370 ± 20 pb-1 of data. Combining the B± meson with a charged pion to reconstruct B**0 led to the observation and measurement of the masses of the two narrow B**0 states, B$1\\atop{0}$ and B$*0\\atop{2}$, of m(B$1\\atop{0}$) = 5734 ± 3(stat.) ± 2(syst.) MeV/c2; m(B$*0\\atop{2}$) = 5738 ± 5(stat.) ± 1(syst.) MeV/c{sup 2}. In the search for Σ$(*)±\\atop{b}$ → Λ$0\\atop{b}$π±, the Λ$0\\atop{b}$ is reconstructed in the decay mode Λ$0\\atop{b}$ → Λ$+\\atop{c}$π-, where Λ$+\\atop{c}$→ pK- π+, using 1070 ± 60 pb-1 of data. Upon combining the Λ$0\\atop{b}$ candidate with a charged pion, all four of the Σ$(*)±\\atop{b}$ states are observed and their masses measured to be: m(Σ$+\\atop{b}$) = 5807.8$+2.0\\atop{-2.2}$(stat.) ± 1.7(syst.) MeV/c2; m(Σ$+\\atop{b}$) = 5815.2 ± 1.0(stat.) ± 1.7(syst.) MeV/c2; m(Σ$*+\\atop{b}$) = 5829.0$+1.6\\atop{-1.8}$(stat.)$+1.7\\atop{-1.8}$(syst.) MeV/c 2; M(Σ$*-±\\atop{b}$) - 5836.4 ± 2.0(stat.)$+1.8\\atop{-1.7}$(syst.) MeV/c2. This is the first observation of Σ$(*)±\\atop{b}$ baryons.

  17. Deterioration of the skew quadrupole moment in Tevatron dipoles over time

    SciTech Connect

    Syphers, M.J.; Harding, D.J.; /Fermilab

    2005-05-01

    During the 20 years since it was first commissioned, the Fermilab Tevatron has developed strong coupling between the two transverse degrees of freedom. A circuit of skew quadrupole magnets is used to correct for coupling and, though capable, its required strength has increased since 1983 by more than an order of magnitude. In more recent years changes to the Tevatron for colliding beams operation have altered the skew quadrupole corrector distribution and strong local coupling become evident, often encumbering routine operation during the present physics run. Detailed magnet measurements were performed on each individual magnet during construction, and in early 2003 it was realized that measurements could be performed on the magnets in situ which could determine coil movements within the iron yoke since the early 1980's. It was discovered that the superconducting coils had become vertically displaced relative to their yokes since their construction. The ensuing systematic skew quadrupole field introduced by this displacement accounts for the required corrector settings and observed beam behavior. An historical account of the events leading to this discovery and progress toward its remedy are presented.

  18. Radiative proton-antiproton annihilation to a lepton pair

    SciTech Connect

    Ahmadov, A. I.; Bytev, V. V.; Kuraev, E. A.; Tomasi-Gustafsson, E.

    2010-11-01

    The annihilation of proton and antiproton to an electron-positron pair, including radiative corrections due to the emission of virtual and real photons is considered. The results are generalized to leading and next-to leading approximations. The relevant distributions are derived and numerical applications are given in the kinematical range accessible to the PANDA experiment at the FAIR facility.

  19. Conceptual Design Report: Fermilab Main Injector - Technical Components and Civil Construction, April 1992 (Rev. 3.1)

    SciTech Connect

    1992-04-01

    This report contains a description of the design and cost estimate of a new 150 GeV accelerator, designated the Fermilab Main Injector (FMI). The construction of this accelerator will simultaneously result in significant enhancements to both the Fermilab collider and fixed target programs. The FMI is to be located south of the Antiproton Source and tangent to the Tevatron ring at the FO straight section as shown in Figure 1-1. The FMI will perform all duties currently required of the existing Main Ring. Thus, operation of the Main Ring will cease following commissioning of the FMI, with a concurrent reduction in background rates as seen in the colliding beam detectors. The performance of the FMI, as measured in terms of protons per second delivered to the antiproton production target or total protons delivered to the Tevatron, is expected to exceed that of the Main Ring by a factor of two-tothree. In addition the FMI will provide high duty factor 120 GeV beam to the experimental areas during collider operation, a capability which does not presently exist in the Main Ring.

  20. Flux creep in a TEVATRON cable

    SciTech Connect

    Kuchnir, M.; Tollestrup, A.V.

    1988-08-22

    We have measured the slow magnetization decay of a short sample (2.3 cm) of Tevatron cable in fields up to 0.3 T. The special susceptometer in development for these measurements is based on a commercial SQUID and is described in detail. The observed decay is logarithmic in time as expected from flux creep in the NbTi filaments. A strong correlation was found between the decay and the magnetization status of the sample. It is too early yet to present a quantitative correlation between what we observed and the decay observed in the sextupole component of Tevatron dipoles. The detailed understanding of this phenomenon may be instrumental in guiding the search for efficient superconducting synchrotron operational procedures. 3 refs., 5 figs.

  1. The Tevatron Hadron Collider: A short history

    SciTech Connect

    Tollestrup, A.V.

    1994-11-01

    The subject of this presentation was intended to cover the history of hadron colliders. However this broad topic is probably better left to historians. I will cover a much smaller portion of this subject and specialize my subject to the history of the Tevatron. As we will see, the Tevatron project is tightly entwined with the progress in collider technology. It occupies a unique place among accelerators in that it was the first to make use of superconducting magnets and indeed the basic design now forms a template for all machines using this technology. It was spawned in an incredibly productive era when new ideas were being generated almost monthly and it has matured into our highest energy collider complete with two large detectors that provide the major facility in the US for probing high Pt physics for the coming decade.

  2. Novel tune diagnostics for the Tevatron

    SciTech Connect

    Tan, Cheng-Yang; /Fermilab

    2005-04-01

    In the Tevatron collider, protons and antiprotons share the same beam pipe. This poses a challenge in the measurement of tunes for both species simultaneously because of the possibility of signal contamination from the other species. The tune of each bunch is also very different because of beam-beam effects from parasitic crossing points. This means that the tune diagnostics must be able to differentiate between protons and anti-protons, it also has to measure tunes from each bunch. There are three different tune pickups used in the Tevatron: 1.7 GHz Schottky pickups, 21.4 MHz Schottky pickups and baseband pickups. These devices will be discussed in detail in this paper.

  3. A new high-gradient correction quadrupole for the Fermilab luminosity upgrade

    SciTech Connect

    Mantsch, P.; Carson, J.; Riddiford, A.; Lamm, M.J.

    1989-03-01

    Special superconducting correction quadrupoles are needed for the luminosity upgrade of the Fermilab Tevatron Collider. These correctors are part of the low-beta system for the interaction regions at B/phi/ and D/phi/. The requirements are high gradient and low current. A quadrupole has been designed that meets the operating gradient of 0.63 T/cm at 1086 A. The one-layer quadrupole is wound with a cable consisting of five individually insulated rectangular strands. The five strands are overwrapped with Kapton and epoxy impregnated glass tape. The winding, curing and collaring of the magnet is accomplished in the same manner as Tevatron-like magnets using Rutherford style cable. Once the magnet is complete the five strands are connected in series. A prototype quadrupole has been assembled and tested. The magnet reached a plateau current of 1560 A corresponding to a gradient of 0.91 T/cm without training. The measured field harmonics are substantially better than required. 8 refs., 6 figs., 4 tabs.

  4. Characterizing luminosity evolution in the Tevatron

    SciTech Connect

    Shiltsev, V.; McCrory, E.; /Fermilab

    2005-05-01

    We derive an approximate form of a luminosity evolution in a high intensity hadron collider taking into account the most important phenomena of intrabeam scattering (IBS), beam burn-up due to luminosity and beam-beam effects. It is well known that an exponential decay does not describe luminosity evolution very well unless the lifetime is allowed to vary with time. However, a ''1/time'' evolution, which this derivation shows is a good approximation, fits data from the Tevatron well.

  5. Longitudinal damping in the Tevatron collider

    SciTech Connect

    Kerns, Q.A.; Jackson, G.; Kerns, C.R.; Miller, H.; Reid, J.; Siemann, R.; Wildman, D.

    1989-03-01

    This paper describes the damper design for 6 proton on 6 pbar bunches in the Tevatron collider. Signal pickup, transient phase detection, derivative networks, and phase correction via the high-level rf are covered. Each rf station is controlled by a slow feedback loop. In addition, global feedback loops control each set of four cavities, one set for protons and one set for antiprotons. Operational experience with these systems is discussed. 7 refs., 9 figs.

  6. Probing physics beyond the SM at Tevatron

    SciTech Connect

    C. Pagliarone

    2002-10-14

    Tevatron Experiments: CDF and 6 D0 collected during October 1992 and February 1996 (Run I) a data sample of roughly 120 pb{sup -1} p {bar p} collisions at a center of mass energy {radical}s = 1.8 TeV. A large variety of physical studies have been performed using these data. Current paper reviews last results obtained searching for physics beyond the Standard Model. Direct Supersymmetry (SUSY) searches are not part of this review.

  7. Higgs results from the Tevatron Run II

    SciTech Connect

    Tuchming, B.; /DAPNIA, Saclay

    2005-01-01

    The data taken at the Tevatron experiments have been analyzed to search for Higgs bosons. For the Standard Model Higgs searches, no excess is observed, the data are in good agreement with the expectations, so that limits are set on the production rates. For various theoretical models beyond the Standard Model, there is no excess either, which allows to derive constraints in their respective parameter spaces.

  8. The CDF data handling system

    SciTech Connect

    Dmitry O. Litvintsev

    2003-11-05

    The Collider Detector at Fermilab (CDF) records proton-antiproton collisions at center of mass energy of 2.0 TeV at the Tevatron collider. A new collider run, Run II, of the Tevatron started in April 2001. Increased luminosity will result in about 1 PB of data recorded on tapes in the next two years. Currently the CDF experiment has about 260 TB of data stored on tapes. This amount includes raw and reconstructed data and their derivatives. The data storage and retrieval are managed by the CDF Data Handling (DH) system. This system has been designed to accommodate the increased demands of the Run II environment and has proven robust and reliable in providing reliable flow of data from the detector to the end user. This paper gives an overview of the CDF Run II Data Handling system which has evolved significantly over the course of this year. An outline of the future direction of the system is given.

  9. Studies and calculations of transverse emittance growth in high-energy proton storage rings

    SciTech Connect

    Mane, S.R.; Jackson, G.

    1989-03-01

    In the operation of proton-antiproton colliders, an important goal is to maximize the integrated luminosity. During such operations in the Fermilab Tevatron, the transverse beam emittances were observed to grow unexpectedly quickly, thus causing a serious reduction of the luminosity. We have studied this phenomenon experimentally and theoretically. A formula for the emittance growth rate, due to random dipole kicks, is derived. In the experiment, RF phase noise of known amplitude was deliberately injected into the Tevatron to kick the beam randomly, via dispersion at the RF cavities. Theory and experiment are found to agree reasonably well. We also briefly discuss the problem of quadrupole kicks. 14 refs., 2 figs., 3 tabs.

  10. First observation of dijet events with an antiproton tag at √s = 1.96 TeV using the D0 Forward Proton Detector

    SciTech Connect

    Strang, Michael Allen

    2005-08-01

    The Forward Proton Detector (FPD) is a new sub-system of the D0 detector, a 5000 ton particle physics detector located at the Fermilab Tevatron proton-antiproton collider. The FPD was implemented for the Tevatron Run II and gives access to a wide range of diffractive scattering processes, where one or both of the beam particles remain intact. The analysis described in this thesis makes use of the dipole spectrometer of the FPD to tag outgoing antiprotons in events that have a dijet signature in the central D0 calorimeter. Properties of jets with a diffractive tag signature are compared to jets without such a signature yielding the first observation of tagged diffractive dijets at a 1.96 TeV center-of-mass energy.

  11. Tevatron QCD for Cosmic-Rays

    SciTech Connect

    Sonnenschein, Lars; /RWTH Aachen U.

    2010-12-01

    The two multi-purpose experiments D0 and CDF are operated at the Tevatron collider, where proton anti-proton collisions take place at a centre of mass energy of 1.96 TeV in Run II. In the kinematic plane of Q{sup 2}-scale and (anti-)proton momentum fraction x, Tevatron jet measurements cover a wide range, with phase space regions in common and beyond the HERA ep-collider reach. The kinematic limit of the Auger experiment is given by a centre of mass energy of 100 TeV. Cosmic rays cover a large region of the kinematic phase space at low momenta x, corresponding to forward proton/diffractive physics and also at low scales, corresponding to the hadronization scale and the underlying event. Therefore of particular interest are exclusive and diffractive measurements as well as underlying event, double parton scattering and minimum bias measurements. The kinematic limit of the Tevatron corresponds to the PeV energy region below the knee of the differential cosmic particle flux energy distribution. The data discussed here are in general corrected for detector effects, such as efficiency and acceptance. Therefore they can be used directly for testing and improving existing event generators and any future calculations/models. Comparisons take place at the hadronic final state (particle level).

  12. Physics with W`s, Z`s and leptons at the Tevatron collider

    SciTech Connect

    Bodek, A.

    1996-10-01

    Recent data from proton-antiproton collisions at high energy provide information on the masses of the Top quark and W boson. The W asymmetry data constrains the slope of the d/u quark distributions and significantly reduces the systematic error on the extracted value of the W mass. Drell-Yan dilepton production at high invariant mass yield limits on extra Z` bosons, and place strong limits on quark substructure. Compositeness limits from CDF Run 1, and expected sensitivity in Run II and TEV33 are presented.

  13. The 1994 Fermilab Fixed Target Program

    SciTech Connect

    Conrad, J. |

    1994-11-01

    This paper highlights the results of the Fermilab Fixed Target Program that were announced between October, 1993 and October, 1994. These results are drawn from 18 experiments that took data in the 1985, 1987 and 1990/91 fixed target running periods. For this discussion, the Fermilab Fixed Target Program is divided into 5 major topics: hadron structure, precision electroweak measurements, heavy quark production, polarization and magnetic moments, and searches for new phenomena. However, it should be noted that most experiments span several subtopics. Also, measurements within each subtopic often affect the results in other subtopics. For example, parton distributions from hadron structure measurements are used in the studies of heavy quark production.

  14. Combination of CDF and D0 results on the mass of the top quark using up to 9.7 fb$^{-1}$ at the Tevatron

    SciTech Connect

    Tevatron Electroweak Working Group, Tevatron Group

    2014-07-10

    We summarize the current top-quark mass measurements from the CDF and D0 experiments at Fermilab. We combine published Run I (1992--1996) results with the most precise published and preliminary Run II (2001--2011) measurements based on data corresponding to up to 9.7 fb$^{-1}$ of $p\\bar{p}$ collisions. Taking correlations of uncertainties into account, and combining the statistical and systematic uncertainties, the resulting preliminary Tevatron average mass of the top quark is $M_{top} = 174.34 \\pm 0.64 ~GeV/c^2$, corresponding to a relative precision of 0.37%.

  15. Charm and beauty measurements at Fermilab fixed target

    SciTech Connect

    Mishra, C.S.

    1993-10-01

    Eighteen months after a successful run of the Fermilab fixed target program, interesting results from several experiments are available. This is the first time that more than one Fermilab fixed target experiment has reported the observation of beauty mesons. In this paper we review recent results from charm and beauty fixed target experiments at Fermilab.

  16. Cloud services for the Fermilab scientific stakeholders

    SciTech Connect

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; Boyd, J.; Bernabeu, G.; Sharma, N.; Peregonow, N.; Kim, H.; Noh, S.; Palur, S.; Raicu, I.

    2015-12-23

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic ray simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. As a result, we present in detail the technological improvements that were used to make this work a reality.

  17. Photoproduction of charm particles at Fermilab

    SciTech Connect

    Cumalat, John P.

    1997-03-15

    A brief description of the Fermilab Photoproduction Experiment E831 or FOCUS is presented. The experiment concentrates on the reconstruction of charm particles. The FOCUS collaboration has participants from several Central American and Latin American institutions; CINVESTAV and Universidad Autonoma de Puebla from Mexico, University of Puerto Rico from the United States, and Centro Brasileiro de Pesquisas Fisicas in Rio de Janeiro from Brasil.

  18. Cloud services for the Fermilab scientific stakeholders

    DOE PAGES

    Timm, S.; Garzoglio, G.; Mhashilkar, P.; ...

    2015-12-23

    As part of the Fermilab/KISTI cooperative research project, Fermilab has successfully run an experimental simulation workflow at scale on a federation of Amazon Web Services (AWS), FermiCloud, and local FermiGrid resources. We used the CernVM-FS (CVMFS) file system to deliver the application software. We established Squid caching servers in AWS as well, using the Shoal system to let each individual virtual machine find the closest squid server. We also developed an automatic virtual machine conversion system so that we could transition virtual machines made on FermiCloud to Amazon Web Services. We used this system to successfully run a cosmic raymore » simulation of the NOvA detector at Fermilab, making use of both AWS spot pricing and network bandwidth discounts to minimize the cost. On FermiCloud we also were able to run the workflow at the scale of 1000 virtual machines, using a private network routable inside of Fermilab. As a result, we present in detail the technological improvements that were used to make this work a reality.« less

  19. Recent results on charm physics from Fermilab

    NASA Astrophysics Data System (ADS)

    Anjos, J. C.; Cuautle, E.

    2000-08-01

    New high statistics, high resolution fixed target experiments producing 105-106 fully reconstructed charm particles are allowing a detailed study of the charm sector. Recent results on charm quark production from Fermilab fixed target experiments E-791, SELEX and FOCUS are presented. .

  20. Exclusive K+K- production by double pomeron exchange at the Fermilab Bevatron

    NASA Astrophysics Data System (ADS)

    Albrow, Michael; CDF Collaboration

    2017-01-01

    We present data from proton-antiproton collisions at √{ s} = 1.96 TeV collected by the CDF experiment, in which a K+K- pair is reconstructed in the central region | η | < 1.0, and no other particles are detected in the range -5.9 < η < +5.9. Hadron collisions with such large rapidity gaps are described by double pomeron exchange where the central state has Q = B = S = 0, isospin I = 0, even spin J, positive parity P and positive charge parity C.It is therefore a quantum number filter, of particular interest for states with high gluon content, such as hybrids and glueballs.

  1. A Search for Supersymmetry via Chargino-Neutralino Production in Low-$p_T$ Dimuon with the Collider Detector at Fermilab

    SciTech Connect

    Rekovic, Vladimir

    2007-05-01

    We have searched for evidence of supersymmetry with 1 $fb^-1$ with collected with low-$p_T$ dimuon triggers of the Collider Detector on Tevatron Run II, at Fermilab. We looked for trilepton events in $p\\bar{p}$ collisions at $\\sqrt{s} = 1.96$ TeV. In the Minimal Supersymmetric Standard Model (MSSM) we expect chargino-neutralino pair production, with subsequent decay into three isolated leptons. We observe one event of three isolated muons, a possible hint of supersymmetry.

  2. Electron beam generation in Tevatron electron lenses

    SciTech Connect

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF

    2006-08-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

  3. Emittance growth due to Tevatron flying wires

    SciTech Connect

    Syphers, M; Eddy, Nathan

    2004-06-01

    During Tevatron injection, Flying Wires have been used to measure the transverse beam size after each transfer from the Main Injector in order to deduce the transverse emittances of the proton and antiproton beams. This amounts to 36 + 9 = 45 flies of each of 3 wire systems, with an individual wire passing through each beam bunch twice during a single ''fly''. below they estimate the emittance growth induced by the interaction of the wires with the particles during these measurements. Changes of emittance from Flying Wire measurements conducted during three recent stores are compared with the estimations.

  4. Review of Physics Results from the Tevatron

    SciTech Connect

    Bandurin, D.; Bernardi, G.; Gerber, C.; Junk, T.; Juste, A.; Kotwal, A.; Lewis, J.; Mesropian, C.; Schellman, H.; Sekaric, J.; Toback, D.; Van Kooten, R.; Vellidis, C.; Zivkovic, L.

    2015-02-27

    We present a comprehensive review of the physics results obtained by the CDF and D0 collaborations up to summer 2014, with emphasis on those achieved in the Run II of the Tevatron collider which delivered a total integrated luminosity of ~10 fb$^{-1}$ at $\\sqrt{s} = 1.96~{\\rm TeV}$. The results are presented in six main physics topics: QCD, Heavy Flavor, Electroweak, Top quark, Higgs boson and searches for New Particles and Interactions. The characteristics of the accelerator, detectors, and the techniques used to achieve these results are also briefly summarized.

  5. New diffractive results from the Tevatron

    SciTech Connect

    Gallinaro, Michele; /Rockefeller U.

    2005-05-01

    Experimental results in diffractive processes are summarized and a few notable characteristics described in terms of Quantum Chromodynamics. Exclusive dijet production is used to establish a benchmark for future experiments in the quest for diffractive Higgs production at the Large Hadron Collider. Using new data from the Tevatron and dedicated diffractive triggers, no excess over a smooth falling distribution for exclusive dijet events could be found. Stringent upper limits on the exclusive dijet production cross section are presented. The quark/gluon composition of dijet final states is used to provide additional hints on exclusive dijet production.

  6. Recent Tevatron Results on CP-Violation

    SciTech Connect

    Garbincius, Peter H.

    2014-08-25

    Using their full Tevatron Run II data sets, the CDF and D0 Experiments present measurements of CP-violating asymmetries in the charmless decay of bottom baryons Lambda-b => p pi-, Lambda-b => p K-, and also for Bs0 => K- pi+, B0 => K+ pi-, Ds => phi pi, and for single muons and like-sign dimuons in p-pbar collisions. Except for the like-sign dimuon asymmetry, these asymmetry measurements are consistent with available predictions of the standard model.

  7. B Physics at the TeVatron

    SciTech Connect

    Morello, Michael Joseph; /Pisa U. /INFN, Pisa

    2011-10-01

    The CDF and D0 experiments at the Tevatron p{bar p} collider established that extensive and detailed exploration of the b-quark dynamics is possible in hadron collisions, with results competitive and supplementary to those from e{sup +}e{sup -} colliders. This provides a rich, and highly rewarding program that is currently reaching full maturity. I report a few recent world-leading results on rare decays, CP-violation in B{sub s}{sup 0} mixing, b {yields} s penguin decays, and charm physics.

  8. B lifetimes and mixing at the Tevatron

    SciTech Connect

    Bedeschi, Franco; /INFN, Pisa

    2005-05-01

    The authors present recent results on b-hadron lifetimes and mixing obtained from the analysis of the data collected at the Tevatron Collider by the CDF and D0 Collaborations in the period 2002-2004. Many lifetime measurements have been updated since the Summer 2004 conferences, sometimes improving significantly the accuracy. Likewise the measurement of the B{sub d} oscillation frequency has been updated. New limits on the B{sub s} oscillation frequency have been determined using for the first time Run II data.

  9. Recent Tevatron Results on CP-Violation

    SciTech Connect

    Garbincius, Peter H.

    2014-08-27

    Using their full Tevatron Run II data sets, the CDF and D0 Experiments present measurements of CP -violating asymmetries in the charmless decays of bottom baryons Λ0 → pπ-, Λ0 → pK-, and also for B0 → K-π+, B0 → K+π-, b b s Ds → φπ± , and for single muons and like-sign dimuons in pp collisions. Except for the like-sign dimuon asymmetry, these asymmetry measurements are consistent with available predictions of the standard model.

  10. Charm (and Beauty) Production at the Tevatron

    SciTech Connect

    Rademacker, Jonas; /Bristol U.

    2007-11-01

    The authors present recent results on heavy flavor production at Tevatron Run II for typically {approx} 1 fb{sup -1} of analyzed p{bar p} data at {radical}s = 1.96 TeV. This includes results on single and correlated open charm and bottom cross sections, charm pair production kinematics, J/{psi}, {psi}(2S) and {chi}{sub cJ} cross sections and polarization measurements in J/{psi}, {psi}(2S), {Upsilon}(1S), and {Upsilon}(2S).

  11. Electroweak physics results from the Tevatron

    SciTech Connect

    Demarteau, M.

    1996-11-01

    An overview of recent electroweak physics results from the Tevatron is given. Properties of the W{sup {+-}} and Z{sup 0} gauge bosons using final states containing electrons and muons based on large integrated luminosities are presented. In particular, measurements of the W{sup {+-}} and Z{sup 0} production cross sections, the W-charge asymmetry and the measurement of the W-mass are summarized. Gauge boson self interactions are measured by studying gauge boson pair production and Emits on anomalous gauge boson couplings are discussed.

  12. B_s mixing at the Tevatron

    SciTech Connect

    Lucchesi, Donatella; /Padua U.

    2006-08-01

    The measurement of the B{sub s} mixing oscillation frequency, {Delta}m{sup s}, has been the main goal for both experiments CDF and D0 which are running at the Tevatron collider. With 1 fb{sup -1} of data collected during the last four years D0 set a lower and upper limit on this frequency, 17 < {Delta}m{sub s} < 21 ps{sup -1}. CDF measured {Delta}m{sub s} with a precision better than 2% and the probability that the data could randomly fluctuate to mimic such a signature is 0.2%.

  13. Antiproton cooling in the Fermilab Recycler Ring

    SciTech Connect

    Nagaitsev, S.; Bolshakov, A.; Broemmelsiek, D.; Burov, Alexey V.; Carlson, K.; Gattuso, C.; Hu, M.; Kazakevich, G.; Kramper, B.; Kroc, T.; Leibfritz, J.; Prost, L.; Pruss, S.; Saewert, G; Schmidt, C.W.; Seletskiy, S.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; Zenkevich, P.; /Fermilab /Moscow, ITEP /Novosibirsk, IYF /Rochester U.

    2005-12-01

    The 8.9-GeV/c Recycler antiproton storage ring is equipped with both stochastic and electron cooling systems. These cooling systems are designed to assist accumulation of antiprotons for the Tevatron collider operations. In this paper we report on an experimental demonstration of electron cooling of high-energy antiprotons. At the time of writing this report, the Recycler electron cooling system is routinely used in collider operations. It has helped to set recent peak luminosity records.

  14. Electroweak, top and bottom physics at the Tevatron

    SciTech Connect

    Ukegawa, Fumihiko; /Tsukuba U.

    2004-10-01

    The Tevatron Run-II program has been in progress since 2001, and the CDF and D0 experiments have been operational with upgraded detectors. Coupled with recent improvements in the Tevatron accelerator performance, the experiments have started producing important physics results and measurements. They report these measurements as well as prospects in the near future.

  15. Tevatron Results on Heavy Flavor Production and Decay

    SciTech Connect

    Scuri, Fabrizio

    2014-09-02

    The most recent results on heavy flavor production and decays from the Tevatron experiments CDF and D0 are summarized and compared with some LHC experiment results. The collected data sample refers to the full Tevatron Run II operation and it corresponds to about 10 inverse fb of integrated luminosity per experiment.

  16. An ionization profile monitor for the Tevatron

    SciTech Connect

    Jansson, A.; Bowden, M.; Bowie, K.; Bross, A.; Dysert, R.; Fitzpatrick, T.; Kwarciany, R.; Lundberg, C.; Nguyen, H.; Rivetta, C.; Slimmer, D.; Valerio, L.; Zagel, J.; /Fermilab

    2005-05-01

    Primarily to study emittance blowup during injection and ramping, an ionization profile monitor has been developed for the Tevatron. It is based on a prototype installed in the Main Injector, although with extensive modifications. In particular, the electromagnetic shielding has been improved, the signal path has been cleaned up, and provisions have been made for an internal electron source. Due to the good Tevatron vacuum, a local pressure bump is introduced to increase the primary signal, which is then amplified by a microchannel plate and detected on anode strips. For the DAQ, a custom ASIC developed for the CMS experiment is used. It is a combined charge integrator and digitizer, with a sensitivity of a few fC, and a time-resolution that allows single bunch measurement. Digitization is done in the tunnel to reduce noise. Preparations for detector installation were made during the long 2004 shutdown, with the installation of magnets, vacuum chambers, vacuum pumps and cabling. The actual detector will be installed during the fall 2005 shutdown. This paper describes the design of the detector and associated electronics, and presents various bench test results.

  17. Bucket shaking stops bunch dancing in Tevatron

    SciTech Connect

    Burov, A.; Tan, C.Y.; /Fermilab

    2011-03-01

    Bunches in Tevatron are known to be longitudinally unstable: their collective oscillations, also called dancing bunches, persist without any signs of decay. Typically, a damper is used to stop these oscillations, but recently, it was theoretically predicted that the oscillations can be stabilized by means of small bucket shaking. Dedicated measurements in Tevatron have shown that this method does stop the dancing. According to predictions of Refs. [2,3], the flattening of the bunch distribution at low amplitudes should make the bunch more stable against LLD. An experiment has been devised to flatten the distribution by modulating the RF phase at the low-amplitude synchrotron frequency for a few degrees of amplitude. These beam studies show that stabilisation really happens. After several consecutive shakings, the dancing disappears and the resulting bunch profile becomes smoother at the top. Although not shown in this report, sometimes a little divot forms at the centre of the distribution. These experiments confirm that resonant RF shaking flattens the bunch distribution at low amplitudes, and the dancing stops.

  18. QCD, Tevatron results and LHC prospects

    SciTech Connect

    Elvira, V.Daniel; /Fermilab

    2008-08-01

    We present a summary of the most recent measurements relevant to Quantum Chromodynamics (QCD) delivered by the D0 and CDF Tevatron experiments by May 2008. CDF and D0 are moving toward precision measurements of QCD based on data samples in excess of 1 fb-1. The inclusive jet cross sections have been extended to forward rapidity regions and measured with unprecedented precision following improvements in the jet energy calibration. Results on dijet mass distributions, bbbar dijet production using tracker based triggers, underlying event in dijet and Drell-Yan samples, inclusive photon and diphoton cross sections complete the list of measurements included in this paper. Good agreement with pQCD within errors is observed for jet production measurements. An improved and consistent theoretical description is needed for photon+jets processes. Collisions at the LHC are scheduled for early fall 2008, opening an era of discoveries at the new energy frontier, 5-7 times higher than that of the Tevatron.

  19. Preliminary consideration of a double, 480 GeV, fast cycling proton accelerator for production of neutrino beams at Fermilab

    SciTech Connect

    Piekarz, Henryk; Hays, Steven; /Fermilab

    2007-03-01

    We propose to build the DSF-MR (Double Super-Ferric Main Ring), 480 GeV, fast-cycling (2 second repetition rate) two-beam proton accelerator in the Main Ring tunnel of Fermilab. This accelerator design is based on the super-ferric magnet technology developed for the VLHC, and extended recently to the proposed LER injector for the LHC and fast cycling SF-SPS at CERN. The DSF-MR accelerator system will constitute the final stage of the proton source enabling production of two neutrino beams separated by 2 second time period. These beams will be sent alternately to two detectors located at {approx} 3000 km and {approx} 7500 km away from Fermilab. It is expected that combination of the results from these experiments will offer more than 3 order of magnitudes increased sensitivity for detection and measurement of neutrino oscillations with respect to expectations in any current experiment, and thus may truly enable opening the window into the physics beyond the Standard Model. We examine potential sites for the long baseline neutrino detectors accepting beams from Fermilab. The current injection system consisting of 400 MeV Linac, 8 GeV Booster and the Main Injector can be used to accelerate protons to 45 GeV before transferring them to the DSF-MR. The implementation of the DSF-MR will allow for an 8-fold increase in beam power on the neutrino production target. In this note we outline the proposed new arrangement of the Fermilab accelerator complex. We also briefly describe the DSF-MR magnet design and its power supply, and discuss necessary upgrade of the Tevatron RF system for the use with the DSF-MR accelerator. Finally, we outline the required R&D, cost estimate and possible timeline for the implementation of the DSF-MR accelerator.

  20. J/ψ polarization at the Tevatron and the LHC: nonrelativistic-QCD factorization at the crossroads.

    PubMed

    Butenschoen, Mathias; Kniehl, Bernd A

    2012-04-27

    We study the polarization observables of J/ψ hadroproduction at next-to-leading order within the factorization formalism of nonrelativistic quantum chromodynamics. We complete the present knowledge of the relativistic corrections by also providing the contribution due to the intermediate (3)P(J)([8]) color-octet states at this order, which turns out to be quite significant. Exploiting the color-octet long-distance matrix elements previously extracted through a global fit to experimental data of unpolarized J/ψ production, we provide theoretical predictions in the helicity and Collins-Soper frames and compare them with data taken by CDF at Fermilab Tevatron I and II and by ALICE at CERN LHC. The notorious CDF J/ψ polarization anomaly familiar from leading-order analyses persists at the quantum level, while the situation looks promising for the LHC, which is bound to bring final clarification.