Sample records for fermionic cluster spin

  1. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    NASA Astrophysics Data System (ADS)

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; Dagotto, Elbio

    2015-06-01

    Lattice spin-fermion models are important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the "spins," are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The "traveling cluster approximation" (TCA) is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 103 sites. In this publication, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. This allows us to solve generic spin-fermion models easily on 104 lattice sites and with some effort on 105 lattice sites, representing the record lattice sizes studied for this family of models.

  2. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    DOE PAGES

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; ...

    2015-06-08

    Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less

  3. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris

    Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less

  4. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t-J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  5. Majorana-Based Fermionic Quantum Computation.

    PubMed

    O'Brien, T E; Rożek, P; Akhmerov, A R

    2018-06-01

    Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O(1) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.

  6. Majorana-Based Fermionic Quantum Computation

    NASA Astrophysics Data System (ADS)

    O'Brien, T. E.; RoŻek, P.; Akhmerov, A. R.

    2018-06-01

    Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O (1 ) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.

  7. Analysis of Bose system in spin-orbit coupled Bose-Fermi mixture to induce a spin current of fermions

    NASA Astrophysics Data System (ADS)

    Sakamoto, R.; Ono, Y.; Hatsuda, R.; Shiina, K.; Arahata, E.; Mori, H.

    2018-03-01

    We found that a spin current of fermions could be induced in spin-orbit coupled Bose-Fermi mixture at zero temperature. Since spatial change of the spin structure of the bosons is necessary to induce the spin current of the fermions, we analyzed the ground state of the bosons in the mixture system, using a variational method. The obtained phase diagram indicated the presence of a bosonic phase that allowed the fermions to have a spin current.

  8. Dynamical structure factor of the J1-J2 Heisenberg model in one dimension: The variational Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Ferrari, Francesco; Parola, Alberto; Sorella, Sandro; Becca, Federico

    2018-06-01

    The dynamical spin structure factor is computed within a variational framework to study the one-dimensional J1-J2 Heisenberg model. Starting from Gutzwiller-projected fermionic wave functions, the low-energy spectrum is constructed from two-spinon excitations. The direct comparison with Lanczos calculations on small clusters demonstrates the excellent description of both gapless and gapped (dimerized) phases, including incommensurate structures for J2/J1>0.5 . Calculations on large clusters show how the intensity evolves when increasing the frustrating ratio and give an unprecedented accurate characterization of the dynamical properties of (nonintegrable) frustrated spin models.

  9. Quantum-critical theory of the spin-fermion model and its application to cuprates: normal state analysis

    NASA Astrophysics Data System (ADS)

    Abanov, Ar.; Chubukov, Andrey V.; Schmalian, J.

    2003-03-01

    We present the full analysis of the normal state properties of the spin-fermion model near the antiferromagnetic instability in two dimensions. The model describes low-energy fermions interacting with their own collective spin fluctuations, which soften at the antiferromagnetic transition. We argue that in 2D, the system has two typical energies-an effective spin-fermion interaction bar g and an energy ysf below which the system behaves as a Fermi liquid. The ratio of the two determines the dimensionless coupling constant for spin-fermion interaction lambda (2) alpha /line g /omega _{sf} . We show that u scales with the spin correlation length and diverges at criticality. This divergence implies that the conventional perturbative expansion breaks down. We develop a novel approach to the problem-the expansion in either the inverse number of hot spots in the Brillouin zone, or the inverse number of fermionic flavours-which allows us to explicitly account for all terms which diverge as powers of u, and treat the remaining, O(logu) terms in the RG formalism. We apply this technique to study the properties of the spin-fermion model in various frequency and temperature regimes. We present the results for the fermionic spectral function, spin susceptibility, optical conductivity and other observables. We compare our results in detail with the normal state data for the cuprates, and argue that the spin-fermion model is capable of explaining the anomalous normal state properties of the high Tc materials. We also show that the conventional Ӓ theory of the quantum-critical behaviour is inapplicable in 2D due to the singularity of the Ӓ vertex.

  10. State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter

    DOE PAGES

    Bhardwaj, Lakshya; Gaiotto, Davide; Kapustin, Anton

    2017-04-18

    It is possible to describe fermionic phases of matter and spin-topological field theories in 2+1d in terms of bosonic “shadow” theories, which are obtained from the original theory by “gauging fermionic parity”. Furthemore, the fermionic/spin theories are recovered from their shadow by a process of fermionic anyon condensation: gauging a one-form symmetry generated by quasi-particles with fermionic statistics. We apply the formalism to theories which admit gapped boundary conditions. We obtain Turaev-Viro-like and Levin-Wen-like constructions of fermionic phases of matter. Here, we describe the group structure of fermionic SPT phases protected by Z 2f × G. The quaternion group makesmore » a surprise appearance.« less

  11. Bold Diagrammatic Monte Carlo for Fermionic and Fermionized Systems

    NASA Astrophysics Data System (ADS)

    Svistunov, Boris

    2013-03-01

    In three different fermionic cases--repulsive Hubbard model, resonant fermions, and fermionized spins-1/2 (on triangular lattice)--we observe the phenomenon of sign blessing: Feynman diagrammatic series features finite convergence radius despite factorial growth of the number of diagrams with diagram order. Bold diagrammatic Monte Carlo technique allows us to sample millions of skeleton Feynman diagrams. With the universal fermionization trick we can fermionize essentially any (bosonic, spin, mixed, etc.) lattice system. The combination of fermionization and Bold diagrammatic Monte Carlo yields a universal first-principle approach to strongly correlated lattice systems, provided the sign blessing is a generic fermionic phenomenon. Supported by NSF and DARPA

  12. Three-dimensional Majorana fermions in chiral superconductors

    DOE PAGES

    Kozii, Vladyslav; Venderbos, Jorn W. F.; Fu, Liang

    2016-12-07

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary naturemore » of chiral pairing in spin-orbit–coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs 4Sb 12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.« less

  13. Three-dimensional Majorana fermions in chiral superconductors.

    PubMed

    Kozii, Vladyslav; Venderbos, Jörn W F; Fu, Liang

    2016-12-01

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs 4 Sb 12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.

  14. Three-dimensional Majorana fermions in chiral superconductors

    PubMed Central

    Kozii, Vladyslav; Venderbos, Jörn W. F.; Fu, Liang

    2016-01-01

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit–coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs4Sb12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions. PMID:27957543

  15. Dark solitons with Majorana fermions in spin-orbit-coupled Fermi gases.

    PubMed

    Xu, Yong; Mao, Li; Wu, Biao; Zhang, Chuanwei

    2014-09-26

    We show that a single dark soliton can exist in a spin-orbit-coupled Fermi gas with a high spin imbalance, where spin-orbit coupling favors uniform superfluids over nonuniform Fulde-Ferrell-Larkin-Ovchinnikov states, leading to dark soliton excitations in highly imbalanced gases. Above a critical spin imbalance, two topological Majorana fermions without interactions can coexist inside a dark soliton, paving a way for manipulating Majorana fermions through controlling solitons. At the topological transition point, the atom density contrast across the soliton suddenly vanishes, suggesting a signature for identifying topological solitons.

  16. Universal Behavior of Quantum Spin Liquid and Optical Conductivity in the Insulator Herbertsmithite

    NASA Astrophysics Data System (ADS)

    Shaginyan, V. R.; Msezane, A. Z.; Stephanovich, V. A.; Popov, K. G.; Japaridze, G. S.

    2018-04-01

    We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to expose the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field. We consider an experimental manifestation (optical conductivity) of a new state of matter (so-called fermion condensate) realized in quantum spin liquids, for, in many ways, they exhibit typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite produce important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of a strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to reveal the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field.

  17. Creating Spin-One Fermions in the Presence of Artificial Spin-Orbit Fields: Emergent Spinor Physics and Spectroscopic Properties

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Doga Murat; de Melo, C. A. R. Sá

    2018-05-01

    We propose the creation and investigation of a system of spin-one fermions in the presence of artificial spin-orbit coupling, via the interaction of three hyperfine states of fermionic atoms to Raman laser fields. We explore the emergence of spinor physics in the Hamiltonian described by the interaction between light and atoms, and analyze spectroscopic properties such as dispersion relation, Fermi surfaces, spectral functions, spin-dependent momentum distributions and density of states. Connections to spin-one bosons and SU(3) systems is made, as well relations to the Lifshitz transition and Pomeranchuk instability are presented.

  18. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models

    NASA Astrophysics Data System (ADS)

    Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun

    2018-03-01

    The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.

  19. Spin interactions in Graphene-Single Molecule Magnets Hybrids

    NASA Astrophysics Data System (ADS)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Aña; Luis, Fernando; Rauschenbach, Stephan; Dressel, Martin; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2014-03-01

    Graphene is a potential component of novel spintronics devices owing to its long spin diffusion length. Besides its use as spin-transport channel, graphene can be employed for the detection and manipulation of molecular spins. This requires an appropriate coupling between the sheets and the single molecular magnets (SMM). Here, we present a comprehensive characterization of graphene-Fe4 SMM hybrids. The Fe4 clusters are anchored non-covalently to the graphene following a diffusion-limited assembly and can reorganize into random networks when subjected to slightly elevated temperature. Molecules anchored on graphene sheets show unaltered static magnetic properties, whilst the quantum dynamics is profoundly modulated. Interaction with Dirac fermions becomes the dominant spin-relaxation channel, with observable effects produced by graphene phonons and reduced dipolar interactions. Coupling to graphene drives the spins over Villain's threshold, allowing the first observation of strongly-perturbative tunneling processes. Preliminary spin-transport experiments at low-temperature are further presented.

  20. Dynamic origins of fermionic D -terms

    NASA Astrophysics Data System (ADS)

    Hudson, Jonathan; Schweitzer, Peter

    2018-03-01

    The D -term is defined through matrix elements of the energy-momentum tensor, similarly to mass and spin, yet this important particle property is experimentally not known any fermion. In this work we show that the D -term of a spin 1/2 fermion is of dynamical origin: it vanishes for a free fermion. This is in pronounced contrast to the bosonic case where already a free spin-0 boson has a non-zero intrinsic D -term. We illustrate in two simple models how interactions generate the D -term of a fermion with an internal structure, the nucleon. All known matter is composed of elementary fermions. This indicates the importance to study this interesting particle property in more detail, which will provide novel insights especially on the structure of the nucleon.

  1. Spin imbalance effect on the Larkin-Ovchinnikov-Fulde-Ferrel state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshii, Ryosuke; Tsuchiya, Shunji; Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521

    2011-07-01

    We study spin imbalance effects on the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state relevant for superconductors under a strong magnetic field and spin polarized ultracold Fermi gas. We obtain the exact solution for the condensates with arbitrary spin imbalance and the fermion spectrum perturbatively in the presence of small spin imbalance. We also obtain fermion zero mode exactly without perturbation theory.

  2. Unconventional States of Matter with Cold Atoms and Dipolar Molecules

    DTIC Science & Technology

    2014-08-20

    ferromagnetic state. For alkaline-earth fermions, the large SU(2N) symmetry greatly enhances quantum spin fluctuations, which give rises to novel...both bosons and fermions, novel quantum magnetism with large spin SU(2N) al- kaline fermions, novel topological states with synthetic gauge fields...presented in Sect. 1.1. The study of novel quantum magnetism with large spin alkaline earth atoms is presented in Sect. 1.2. In Sect. 1.3, we present our

  3. Spin-polaron nature of fermion quasiparticles and their d-wave pairing in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Dzebisashvili, D. M.; Barabanov, A. F.

    2016-11-01

    In the framework of the spin-fermion model, to which the Emery model is reduced in the limit of strong electron correlations, it is shown that the fermion quasiparticles in cuprate high- T c superconductors (HTSCs) arise under a strong effect of exchange coupling between oxygen holes and spins of copper ions. This underlies the spin-polaron nature of fermion quasiparticles in cuprate HTSCs. The Cooper instability with respect to the d-wave symmetry of the order parameter is revealed for an ensemble of such quasiparticles. For the normal phase, the spin-polaron concept allows us to reproduce the fine details in the evolution of the Fermi surface with the changes in the doping level x observed in experiment for La2-xSrxCuO4. The calculated T-x phase diagram correlates well with the available experimental data for cuprate HTSCs.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, Lakshya; Gaiotto, Davide; Kapustin, Anton

    It is possible to describe fermionic phases of matter and spin-topological field theories in 2+1d in terms of bosonic “shadow” theories, which are obtained from the original theory by “gauging fermionic parity”. Furthemore, the fermionic/spin theories are recovered from their shadow by a process of fermionic anyon condensation: gauging a one-form symmetry generated by quasi-particles with fermionic statistics. We apply the formalism to theories which admit gapped boundary conditions. We obtain Turaev-Viro-like and Levin-Wen-like constructions of fermionic phases of matter. Here, we describe the group structure of fermionic SPT phases protected by Z 2f × G. The quaternion group makesmore » a surprise appearance.« less

  5. Landau Levels of Majorana Fermions in a Spin Liquid.

    PubMed

    Rachel, Stephan; Fritz, Lars; Vojta, Matthias

    2016-04-22

    Majorana fermions, originally proposed as elementary particles acting as their own antiparticles, can be realized in condensed-matter systems as emergent quasiparticles, a situation often accompanied by topological order. Here we propose a physical system which realizes Landau levels-highly degenerate single-particle states usually resulting from an orbital magnetic field acting on charged particles-for Majorana fermions. This is achieved in a variant of a quantum spin system due to Kitaev which is distorted by triaxial strain. This strained Kitaev model displays a spin-liquid phase with charge-neutral Majorana-fermion excitations whose spectrum corresponds to that of Landau levels, here arising from a tailored pseudomagnetic field. We show that measuring the dynamic spin susceptibility reveals the Landau-level structure by a remarkable mechanism of probe-induced bound-state formation.

  6. (1) Majorana fermions in pinned vortices; (2) Manipulating and probing Majorana fermions using superconducting circuits; and (3) Controlling a nanowire spin-orbit qubit via electric-dipole spin resonance

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    2014-03-01

    We study a heterostructure which consists of a topological insulator and a superconductor with a hole. This system supports a robust Majorana fermion state bound to the vortex core. We study the possibility of using scanning tunneling spectroscopy (i) to detect the Majorana fermion in this setup and (ii) to study excited states bound to the vortex core. The Majorana fermion manifests itself as an H-dependent zero-bias anomaly of the tunneling conductance. The excited states spectrum differs from the spectrum of a typical Abrikosov vortex, providing additional indirect confirmation of the Majorana state observation. We also study how to manipulate and probe Majorana fermions using super-conducting circuits. In we consider a semiconductor nanowire quantum dot with strong spin-orbit coupling (SOC), which can be used to achieve a spin-orbit qubit. In contrast to a spin qubit, the spin-orbit qubit can respond to an external ac electric field, i.e., electric-dipole spin resonance. We develop a theory that can apply in the strong SOC regime. We find that there is an optimal SOC strength ηopt = √ 2/2, where the Rabi frequency induced by the ac electric field becomes maximal. Also, we show that both the level spacing and the Rabi frequency of the spin-orbit qubit have periodic responses to the direction of the external static magnetic field. These responses can be used to determine the SOC in the nanowire. FN is partly supported by the RIKEN CEMS, iTHES Project, MURI Center for Dynamic Magneto-Optics, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.

  7. Spin-Orbit Coupling and Novel Electronic States at the Interfaces of Heavy Fermion Materials

    DTIC Science & Technology

    2016-02-22

    idea, which is to study novel electronic phases at the interfaces of heavy fermion heterostructures. The key physics is that the strong and tunable...of Heavy Fermion Materials The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 2D heavy fermions, quantum criticality, spin-orbit

  8. Multiple Types of Topological Fermions in Transition Metal Silicides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Peizhe; Zhou, Quan; Zhang, Shou -Cheng

    Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, whichmore » is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.« less

  9. Multiple Types of Topological Fermions in Transition Metal Silicides

    DOE PAGES

    Tang, Peizhe; Zhou, Quan; Zhang, Shou -Cheng

    2017-11-17

    Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, whichmore » is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.« less

  10. Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea

    NASA Astrophysics Data System (ADS)

    Balram, Ajit C.; Jain, J. K.

    2017-12-01

    The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν <1 /2 but kF*=√{4 π ρh } for ν >1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .

  11. Strong coupling between localized 5f moments and itinerant quasiparticles in the ferromagnetic superconductor UGe2

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Liu, Yi; Wang, Xiaoying; Zhang, Yun; Xie, Donghua

    2018-03-01

    The heavy fermion physics arises from the complex interplay of nearly localized 4f/5f electrons and itinerant band-like ones, yielding heavy quasiparticles with an effective mass about 100 times (or more) of the bare electrons. Recently, experimental and theoretical investigations point out a localized and delocalized dual nature in actinide compounds, where itinerant quasiparticles account for the unconventional superconductivity in the vicinity of a magnetic instability. Here we report the strong coupling between localized 5f moments and itinerant quasiparticles in the ferromagnetic superconductor UGe2. The coupling is nearly antiferromagnetic. As embedded in the ferromagnetic matrix of localized 5f moments below {T}{{C}}≈ 52 {{K}}, this coupling leads to short-range dynamic correlations of heavy quasiparticles, characterized by fluctuations of magnetic clusters. Those cluster-like spins of itinerant quasiparticles show a broad hump of magnetization at {T}X≈ 28 {{K}}, which is typical for the spin-glass freezing. Thus, our results present the direct observation of itinerant quasiparticles coexisting with localized 5f moments by conventional magnetic measurements, providing a new route into the coexistence between ferromagnetism and superconductivity in heavy fermion systems. Project supported by the National Natural Science Foundation of China (Grant No. 11404297), the Science Challenge Project (Grant No. TZ2016004), and the Science and Technology Foundation of China Academy of Engineering Physics (Grant Nos. 2013B0301050 and 2014A0301013).

  12. Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Qing; Zhang, Dan-Wei; Yan, Hui; Xing, Ding-Yu; Zhu, Shi-Liang

    2017-09-01

    The discovery of relativistic spin-1/2 fermions such as Dirac and Weyl fermions in condensed-matter or artificial systems opens a new era in modern physics. An interesting but rarely explored question is whether other relativistic spinal excitations could be realized with artificial systems. Here, we construct two- and three-dimensional tight-binding models realizable with cold fermionic atoms in optical lattices, where the low energy excitations are effectively described by the spin-1 Maxwell equations in the Hamiltonian form. These relativistic (linear dispersion) excitations with unconventional integer pseudospin, beyond the Dirac-Weyl-Majorana fermions, are an exotic kind of fermions named as Maxwell fermions. We demonstrate that the systems have rich topological features. For instance, the threefold degenerate points called Maxwell points may have quantized Berry phases and anomalous quantum Hall effects with spin-momentum locking may appear in topological Maxwell insulators in the two-dimensional lattices. In three dimensions, Maxwell points may have nontrivial monopole charges of ±2 with two Fermi arcs connecting them, and the merging of the Maxwell points leads to topological phase transitions. Finally, we propose realistic schemes for realizing the model Hamiltonians and detecting the topological properties of the emergent Maxwell quasiparticles in optical lattices.

  13. Fermionic spin liquid analysis of the paramagnetic state in volborthite

    NASA Astrophysics Data System (ADS)

    Chern, Li Ern; Schaffer, Robert; Sorn, Sopheak; Kim, Yong Baek

    2017-10-01

    Recently, thermal Hall effect has been observed in the paramagnetic state of volborthite, which consists of distorted kagome layers with S =1 /2 local moments. Despite the appearance of magnetic order below 1 K , the response to external magnetic field and unusual properties of the paramagnetic state above 1 K suggest possible realization of exotic quantum phases. Motivated by these discoveries, we investigate possible spin liquid phases with fermionic spinon excitations in a nonsymmorphic version of the kagome lattice, which belongs to the two-dimensional crystallographic group p 2 g g . This nonsymmorphic structure is consistent with the spin model obtained in the density functional theory calculation. Using projective symmetry group analysis and fermionic parton mean field theory, we identify twelve distinct Z2 spin liquid states, four of which are found to have correspondence in the eight Schwinger boson spin liquid states we classified earlier. We focus on the four fermionic states with bosonic counterpart and find that the spectrum of their corresponding root U (1 ) states features spinon Fermi surface. The existence of spinon Fermi surface in candidate spin liquid states may offer a possible explanation of the finite thermal Hall conductivity observed in volborthite.

  14. Solution to the sign problem in a frustrated quantum impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hann, Connor T., E-mail: connor.hann@yale.edu; Huffman, Emilie; Chandrasekharan, Shailesh

    2017-01-15

    In this work we solve the sign problem of a frustrated quantum impurity model consisting of three quantum spin-half chains interacting through an anti-ferromagnetic Heisenberg interaction at one end. We first map the model into a repulsive Hubbard model of spin-half fermions hopping on three independent one dimensional chains that interact through a triangular hopping at one end. We then convert the fermion model into an inhomogeneous one dimensional model and express the partition function as a weighted sum over fermion worldline configurations. By imposing a pairing of fermion worldlines in half the space we show that all negative weightmore » configurations can be eliminated. This pairing naturally leads to the original frustrated quantum spin model at half filling and thus solves its sign problem.« less

  15. Three-Dimensional Majorana Fermions in Chiral Superconductors

    NASA Astrophysics Data System (ADS)

    Kozii, Vladyslav; Venderbos, Jorn; Fu, Liang

    Through a systematic symmetry and topology analysis we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-non-degenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the non-unitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions, and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface that form arcs in momentum space. This work is supported by DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award de-sc0010526 (LF and VK), and the Netherlands Organization for Scientific Research (NWO) through a Rubicon Grant (JV).

  16. Auxiliary-fermion approach to critical fluctuations in the two-dimensional quantum antiferromagnetic Heisenberg model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinckmann, Jan; Woelfle, Peter

    2004-11-01

    The nearest-neighbor quantum antiferromagnetic (AF) Heisenberg model for spin-1/2 on a two-dimensional square lattice is studied in the auxiliary-fermion representation. Expressing spin operators by canonical fermionic particles requires a constraint on the fermion charge Q{sub i}=1 on each lattice site i, which is imposed approximately through the thermal average. The resulting interacting fermion system is first treated in mean-field theory (MFT), which yields an AF ordered ground state and spin waves in quantitative agreement with conventional spin-wave theory. At finite temperature a self-consistent approximation beyond mean field is required in order to fulfill the Mermin-Wagner theorem. We first discuss amore » fully self-consistent approximation, where fermions are renormalized due to fluctuations of their spin density, in close analogy to FLEX. While static properties like the correlation length, {xi}(T){proportional_to}exp(aJ/T), come out correctly, the dynamical response lacks the magnon-like peaks which would reflect the appearance of short-range order at low T. This drawback, which is caused by overdamping, is overcome in a 'minimal self-consistent approximation' (MSCA), which we derive from the equations of motion. The MSCA features dynamical scaling at small energy and temperature and is qualitatively correct both in the regime of order-parameter relaxation at long wavelengths {lambda}>{xi} and in the short-range-order regime at {lambda}<{xi}. We also discuss the impact of vertex corrections and the problem of pseudo-gap formation in the single-particle density of states due to long-range fluctuations. Finally we show that the (short-range) magnetic order in MFT and MSCA helps to fulfill the constraint on the local fermion occupancy.« less

  17. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    NASA Astrophysics Data System (ADS)

    Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.

    2014-10-01

    Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.

  18. Topological superconductivity in monolayer transition metal dichalcogenides.

    PubMed

    Hsu, Yi-Ting; Vaezi, Abolhassan; Fischer, Mark H; Kim, Eun-Ah

    2017-04-11

    Theoretically, it has been known that breaking spin degeneracy and effectively realizing spinless fermions is a promising path to topological superconductors. Yet, topological superconductors are rare to date. Here we propose to realize spinless fermions by splitting the spin degeneracy in momentum space. Specifically, we identify monolayer hole-doped transition metal dichalcogenide (TMD)s as candidates for topological superconductors out of such momentum-space-split spinless fermions. Although electron-doped TMDs have recently been found superconducting, the observed superconductivity is unlikely topological because of the near spin degeneracy. Meanwhile, hole-doped TMDs with momentum-space-split spinless fermions remain unexplored. Employing a renormalization group analysis, we propose that the unusual spin-valley locking in hole-doped TMDs together with repulsive interactions selectively favours two topological superconducting states: interpocket paired state with Chern number 2 and intrapocket paired state with finite pair momentum. A confirmation of our predictions will open up possibilities for manipulating topological superconductors on the device-friendly platform of monolayer TMDs.

  19. Magnitude of the magnetic exchange interaction in the heavy-fermion antiferromagnet CeRhIn 5

    DOE PAGES

    Das, Pinaki; Lin, S. -Z.; Ghimire, N. J.; ...

    2014-12-08

    We have used high-resolution neutron spectroscopy experiments to determine the complete spin wave spectrum of the heavy-fermion antiferromagnet CeRhIn₅. The spin wave dispersion can be quantitatively reproduced with a simple frustrated J₁-J₂ model that also naturally explains the magnetic spin-spiral ground state of CeRhIn₅ and yields a dominant in-plane nearest-neighbor magnetic exchange constant J₀=0.74(3) meV. Our results lead the way to a quantitative understanding of the rich low-temperature phase diagram of the prominent CeTIn₅ (T = Co, Rh, Ir) class of heavy-fermion materials.

  20. The realization of Majorana fermions in Kitaev Quantum Spin Lattice

    NASA Astrophysics Data System (ADS)

    Do, Seung-Hwan; Park, Sang-Youn; Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi; Kwon, Y. S.; Adroja, D. T.; Voneshen, D.; Park, J.-H.; Choi, Kwang-Yong; Ji, Sungdae

    The Kitaev honeycomb lattice is envisioned as an ideal host for Majorana fermions that are created out of the spin liquid background. Combining specific heat and neutron scattering experiments with theoretical calculations, here, we establish a hitherto unparalleled spin fractionalization to two species of Majorana fermions in the Kitaev material α-RuCl3. The specific heat data unveil a two-stage release of magnetic entropy by (R/2)ln2 and the T-linear dependence at intermediate temperatures. Our inelastic neutron scattering measurements further corroborate two distinct characters of fractionalized excitations: an Y-like, dispersive, magnetic continuum at higher energies and a dispersionless excitation at low energies around the Brillouin zone center. These dual features are well described by a Ferromagnetic Kitaev model, providing a smoking gun proof of the itinerant and localized Majorana fermions emergent in Kitaev magnets.

  1. Superconductivity from a non-Fermi-liquid metal: Kondo fluctuation mechanism in slave-fermion theory

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Seok

    2010-03-01

    We propose Kondo fluctuation mechanism of superconductivity, differentiated from the spin-fluctuation theory as the standard model for unconventional superconductivity in the weak-coupling approach. Based on the U(1) slave-fermion representation of an effective Anderson lattice model, where localized spins are described by the Schwinger boson theory and hybridization or Kondo fluctuations weaken antiferromagnetic correlations of localized spins, we found an antiferromagnetic quantum critical point from an antiferromagnetic metal to a heavy-fermion metal in our recent study. The Kondo-induced antiferromagnetic quantum critical point was shown to be described by both conduction electrons and fermionic holons interacting with critical spin fluctuations given by deconfined bosonic spinons with a spin quantum number 1/2. Surprisingly, such critical modes turned out to be described by the dynamical exponent z=3 , giving rise to the well-known non-Fermi-liquid physics such as the divergent Grüneisen ratio with an exponent 2/3 and temperature-linear resistivity in three dimensions. We find that the z=3 antiferromagnetic quantum critical point becomes unstable against superconductivity, where critical spinon excitations give rise to pairing correlations between conduction electrons and between fermionic holons, respectively, via hybridization fluctuations. Such two kinds of pairing correlations result in multigap unconventional superconductivity around the antiferromagnetic quantum critical point of the slave-fermion theory, where s -wave pairing is not favored generically due to strong correlations. We show that the ratio between each superconducting gap for conduction electrons Δc and holons Δf and the transition temperature Tc is 2Δc/Tc˜9 and 2Δf/Tc˜O(10-1) , remarkably consistent with CeCoIn5 . A fingerprint of the Kondo mechanism is emergence of two kinds of resonance modes in not only spin but also charge fluctuations, where the charge resonance mode at an antiferromagnetic wave vector originates from d -wave pairing of spinless holons. We discuss how the Kondo fluctuation theory differs from the spin-fluctuation approach.

  2. Quasiclassical Theory of Spin Dynamics in Superfluid ^3He: Kinetic Equations in the Bulk and Spin Response of Surface Majorana States

    NASA Astrophysics Data System (ADS)

    Silaev, M. A.

    2018-06-01

    We develop a theory based on the formalism of quasiclassical Green's functions to study the spin dynamics in superfluid ^3He. First, we derive kinetic equations for the spin-dependent distribution function in the bulk superfluid reproducing the results obtained earlier without quasiclassical approximation. Then, we consider spin dynamics near the surface of fully gapped ^3He-B-phase taking into account spin relaxation due to the transitions in the spectrum of localized fermionic states. The lifetimes of longitudinal and transverse spin waves are calculated taking into account the Fermi-liquid corrections which lead to a crucial modification of fermionic spectrum and spin responses.

  3. Magnetic and metal-insulator transitions in coupled spin-fermion systems

    DOE PAGES

    Mondaini, R.; Paiva, T.; Scalettar, R. T.

    2014-10-14

    We use quantum Monte Carlo to determine the magnetic and transport properties of coupled square lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins with an intra-layer exchange constant J interact with the electronic spins of several adjoining metallic sheets via a coupling JH. When the chemical potential cuts across the band center, that is, at half-filling, the Neel temperature of antiferromagnetic (J > 0) Ising spins is enhanced by the coupling to the metal, while in the ferromagnetic case (J < 0) the metallic degrees of freedom reduce the ordering temperature.more » In the former case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits a non-monotonic dependence on JH. For doped lattices an interesting charge disproportionation occurs where electrons move to the interface layer to maintain half-filling there.« less

  4. Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui

    2016-05-01

    We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.

  5. Theoretical princi les of constructing the equations of motion for a spin color-charged particle in gauge and fermion fields

    NASA Astrophysics Data System (ADS)

    Markov, Yu. A.; Shishmarev, A. A.

    2010-11-01

    Based on the most general principles of materiality, gauge, and re-parameterized invariance, the problem of constructing an action describing the dynamics of a classical color-charged particle moving in external non-Abelian gauge and fermion fields is considered. The case of a linear Lagrangian dependence on the external fermion fields is discussed. Within the framework of the description of the color degree of freedom of the particle with half-integer spin by the Grassmann color charges, a new concept of the Grassmann color source of the particle being a fermion analog of the conventional color current is introduced.

  6. Ladder physics in the spin fermion model

    NASA Astrophysics Data System (ADS)

    Tsvelik, A. M.

    2017-05-01

    A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. It is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d -Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.

  7. Coherent vs. incoherent pairing in 2D systems near magnetic instability

    NASA Astrophysics Data System (ADS)

    Abanov, Ar.; Chubukov, A. V.; Finkel'stein, A. M.

    2001-05-01

    We study the superconductivity in 2D fermionic systems near antiferromagnetic instability, assuming that the pairing is mediated by spin fluctuations. This pairing involves fully incoherent fermions and diffusive spin excitations. We show that the competition between fermionic incoherence and strong pairing interaction yields the pairing instability temperature Tins which increases and saturates as the magnetic correlation length ξ → ∞. We argue that in this quantum-critical regime the pairing problem is qualitatively different from the BCS one.

  8. Spin-orbit-coupled Fermi gases of two-electron ytterbium atoms

    NASA Astrophysics Data System (ADS)

    He, Chengdong; Song, Bo; Haciyev, Elnur; Ren, Zejian; Seo, Bojeong; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2017-04-01

    Spin-orbit coupling (SOC) has been realized in bosonic and fermionic atomic gases opening an avenue to novel physics associated with spin-momentum locking. In this talk, we will demonstrate all-optical method coupling two hyperfine ground states of 173Yb fermions through a narrow optical transition 1S0 -> 3P1. An optical AC Stark shift is applied to split the ground hyperfine levels and separate out an effective spin-1/2 subspace from other spin states for the realization of SOC. The spin dephasing dynamics and the asymmetric momentum distribution of the spin-orbit coupled Fermi gas are observed as a hallmark of SOC. The implementation of all-optical SOC for ytterbium fermions should offer a new route to a long-lived spin-orbit coupled Fermi gas and greatly expand our capability in studying novel spin-orbit physics with alkaline-earth-like atoms. Other ongoing experimental works related to SOC will be also discussed. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants); MOST (Grant No. 2016YFA0301604) and NSFC (No. 11574008).

  9. Nonlinear Bogolyubov-Valatin transformations: Two modes

    NASA Astrophysics Data System (ADS)

    Scharnhorst, K.; van Holten, J.-W.

    2011-11-01

    Extending our earlier study of nonlinear Bogolyubov-Valatin transformations (canonical transformations for fermions) for one fermionic mode, in the present paper, we perform a thorough study of general (nonlinear) canonical transformations for two fermionic modes. We find that the Bogolyubov-Valatin group for n=2 fermionic modes, which can be implemented by means of unitary SU(2n=4) transformations, is isomorphic to SO(6;R)/Z2. The investigation touches on a number of subjects. As a novelty from a mathematical point of view, we study the structure of nonlinear basis transformations in a Clifford algebra [specifically, in the Clifford algebra C(0,4)] entailing (supersymmetric) transformations among multivectors of different grades. A prominent algebraic role in this context is being played by biparavectors (linear combinations of products of Dirac matrices, quadriquaternions, sedenions) and spin bivectors (antisymmetric complex matrices). The studied biparavectors are equivalent to Eddington's E-numbers and can be understood in terms of the tensor product of two commuting copies of the division algebra of quaternions H. From a physical point of view, we present a method to diagonalize any arbitrary two-fermion Hamiltonians. Relying on Jordan-Wigner transformations for two-spin- {1}/{2} and single-spin- {3}/{2} systems, we also study nonlinear spin transformations and the related problem of diagonalizing arbitrary two-spin- {1}/{2} and single-spin- {3}/{2} Hamiltonians. Finally, from a calculational point of view, we pay due attention to explicit parametrizations of SU(4) and SO(6;R) matrices (of respective sizes 4×4 and 6×6) and their mutual relation.

  10. Raman spectroscopic signature of fractionalized excitations in the harmonic-honeycomb iridates β- and γ-Li2IrO3

    PubMed Central

    Glamazda, A.; Lemmens, P.; Do, S. -H.; Choi, Y. S.; Choi, K. -Y.

    2016-01-01

    The fractionalization of elementary excitations in quantum spin systems is a central theme in current condensed matter physics. The Kitaev honeycomb spin model provides a prominent example of exotic fractionalized quasiparticles, composed of itinerant Majorana fermions and gapped gauge fluxes. However, identification of the Majorana fermions in a three-dimensional honeycomb lattice remains elusive. Here we report spectroscopic signatures of fractional excitations in the harmonic-honeycomb iridates β- and γ-Li2IrO3. Using polarization-resolved Raman spectroscopy, we find that the dynamical Raman response of β- and γ-Li2IrO3 features a broad scattering continuum with distinct polarization and composition dependence. The temperature dependence of the Raman spectral weight is dominated by the thermal damping of fermionic excitations. These results suggest the emergence of Majorana fermions from spin fractionalization in a three-dimensional Kitaev–Heisenberg system. PMID:27457278

  11. Correlated spin currents generated by resonant-crossed Andreev reflections in topological superconductors

    PubMed Central

    He, James J.; Wu, Jiansheng; Choy, Ting-Pong; Liu, Xiong-Jun; Tanaka, Y.; Law, K. T.

    2014-01-01

    Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors. PMID:24492649

  12. Vacuum Cherenkov radiation for Lorentz-violating fermions

    NASA Astrophysics Data System (ADS)

    Schreck, M.

    2017-11-01

    The current work focuses on the process of vacuum Cherenkov radiation for Lorentz-violating fermions that are described by the minimal standard-model extension (SME). To date, most considerations of this important hypothetical process have been restricted to Lorentz-violating photons, as the necessary theoretical tools for the SME fermion sector have not been available. With their development in a very recent paper, we are now in a position to compute the decay rates based on a modified Dirac theory. Two realizations of the Cherenkov process are studied. In the first scenario, the spin projection of the incoming fermion is assumed to be conserved, and in the second, the spin projection is allowed to flip. The first type of process is shown to be still forbidden for the dimensionful a and b coefficients where there are strong indications that it is energetically disallowed for the H coefficients, as well. However, it is rendered possible for the dimensionless c , d , e , f , and g coefficients. For large initial fermion energies, the decay rates for the c and d coefficients were found to grow linearly with momentum and to be linearly suppressed by the smallness of the Lorentz-violating coefficient where for the e , f , and g coefficients this suppression is even quadratic. The decay rates vanish in the vicinity of the threshold, as expected. The decay including a fermion spin-flip plays a role for the spin-nondegenerate operators and it was found to occur for the dimensionful b and H coefficients as well as for the dimensionless d and g . The characteristics of this process differ much from the properties of the spin-conserving one, e.g., there is no threshold. Based on experimental data of ultra-high-energy cosmic rays, new constraints on Lorentz violation in the quark sector are obtained from the thresholds. However, it does not seem to be possible to derive bounds from the spin-flip decays. This work reveals the usefulness of the quantum field theoretic methods recently developed to study the phenomenology of high-energy fermions within the framework of the SME.

  13. Ladder physics in the spin fermion model

    DOE PAGES

    Tsvelik, A. M.

    2017-05-01

    A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. Here, it is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d-Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface.more » Hence, the SF model provides an adequate description of the pseudogap.« less

  14. Spin-orbit-coupled fermions in an optical lattice clock

    NASA Astrophysics Data System (ADS)

    Kolkowitz, S.; Bromley, S. L.; Bothwell, T.; Wall, M. L.; Marti, G. E.; Koller, A. P.; Zhang, X.; Rey, A. M.; Ye, J.

    2017-02-01

    Engineered spin-orbit coupling (SOC) in cold-atom systems can enable the study of new synthetic materials and complex condensed matter phenomena. However, spontaneous emission in alkali-atom spin-orbit-coupled systems is hindered by heating, limiting the observation of many-body effects and motivating research into potential alternatives. Here we demonstrate that spin-orbit-coupled fermions can be engineered to occur naturally in a one-dimensional optical lattice clock. In contrast to previous SOC experiments, here the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states in 87Sr atoms. We use clock spectroscopy to prepare lattice band populations, internal electronic states and quasi-momenta, and to produce spin-orbit-coupled dynamics. The exceptionally long lifetime of the excited clock state (160 seconds) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We use these capabilities to study Bloch oscillations, spin-momentum locking and Van Hove singularities in the transition density of states. Our results lay the groundwork for using fermionic optical lattice clocks to probe new phases of matter.

  15. Spin correlations and entanglement in partially magnetised ensembles of fermions

    NASA Astrophysics Data System (ADS)

    Thekkadath, G. S.; Jiang, Liang; Thywissen, J. H.

    2016-11-01

    We show that the singlet fraction p s and total magnetisation (or polarisation) m can bound the minimum concurrence in an ensemble of spins. We identify {p}{{s}}\\gt (1-{m}2)/2 as a sufficient and tight condition for bipartite entanglement. Our proof makes no assumptions about the state of the system or symmetry of the particles, and can therefore be used as a witness for spin entanglement between fermions. We discuss the implications for recent experiments in which spin correlations were observed, and the prospect to study entanglement dynamics in the demagnetisation of a cold Fermi gas.

  16. Quantum Szilard engines with arbitrary spin.

    PubMed

    Zhuang, Zekun; Liang, Shi-Dong

    2014-11-01

    The quantum Szilard engine (QSZE) is a conceptual quantum engine for understanding the fundamental physics of quantum thermodynamics and information physics. We generalize the QSZE to an arbitrary spin case, i.e., a spin QSZE (SQSZE), and we systematically study the basic physical properties of both fermion and boson SQSZEs in a low-temperature approximation. We give the analytic formulation of the total work. For the fermion SQSZE, the work might be absorbed from the environment, and the change rate of the work with temperature exhibits periodicity and even-odd oscillation, which is a generalization of a spinless QSZE. It is interesting that the average absorbed work oscillates regularly and periodically in a large-number limit, which implies that the average absorbed work in a fermion SQSZE is neither an intensive quantity nor an extensive quantity. The phase diagrams of both fermion and boson SQSZEs give the SQSZE doing positive or negative work in the parameter space of the temperature and the particle number of the system, but they have different behaviors because the spin degrees of the fermion and the boson play different roles in their configuration states and corresponding statistical properties. The critical temperature of phase transition depends sensitively on the particle number. By using Landauer's erasure principle, we give the erasure work in a thermodynamic cycle, and we define an efficiency (we refer to it as information-work efficiency) to measure the engine's ability of utilizing information to extract work. We also give the conditions under which the maximum extracted work and highest information-work efficiencies for fermion and boson SQSZEs can be achieved.

  17. Unveiling the thermal entanglement in a mixed-spin XXZ model with Dzyaloshinskii-Moriya interaction under a homogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Cheng; Xu, Shuai; He, Juan; Ye, Liu

    2015-10-01

    We analytically investigate the thermal entanglement of three-mixed-spin (1/2, 1, 1/2) XXZ model with the DM interaction under an external magnetic field B. Two different cases are considered: one subsystem (1/2, 1/2) consists of two spin-1/2 fermions and the other subsystem (1/2, 1) contains a spin-1/2 fermion and a spin-1 boson. It is shown that the DM interaction parameter D, the external magnetic field strength B and coupling constant J have different effects on Fermi and mixed Fermi-Bose systems. All of the factors mentioned above can be utilized to control entanglement switch of any two particles in mixed spins model.

  18. Magnetotransport in Layered Dirac Fermion System Coupled with Magnetic Moments

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yoshiki; Morinari, Takao

    2018-03-01

    We theoretically investigate the magnetotransport of Dirac fermions coupled with localized moments to understand the physical properties of the Dirac material EuMnBi2. Using an interlayer hopping form, which simplifies the complicated interaction between the layers of Dirac fermions and the layers of magnetic moments in EuMnBi2, the theory reproduces most of the features observed in this system. The hysteresis observed in EuMnBi2 can be caused by the valley splitting that is induced by the spin-orbit coupling and the external magnetic field with the molecular field created by localized moments. Our theory suggests that the magnetotransport in EuMnBi2 is due to the interplay among Dirac fermions, localized moments, and spin-orbit coupling.

  19. Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock

    NASA Astrophysics Data System (ADS)

    Bromley, S. L.; Kolkowitz, S.; Bothwell, T.; Kedar, D.; Safavi-Naini, A.; Wall, M. L.; Salomon, C.; Rey, A. M.; Ye, J.

    2018-04-01

    Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.

  20. Fermion superfluid with hybridized s- and p-wave pairings

    NASA Astrophysics Data System (ADS)

    Zhou, LiHong; Yi, Wei; Cui, XiaoLing

    2017-12-01

    Ever since the pioneering work of Bardeen, Cooper and Schrieffer in the 1950s, exploring novel pairing mechanisms for fermion superfluids has become one of the central tasks in modern physics. Here, we investigate a new type of fermion superfluid with hybridized s- and p-wave pairings in an ultracold spin-1/2 Fermi gas. Its occurrence is facilitated by the co-existence of comparable s- and p-wave interactions, which is realizable in a two-component 40K Fermi gas with close-by s- and p-wave Feshbach resonances. The hybridized superfluid state is stable over a considerable parameter region on the phase diagram, and can lead to intriguing patterns of spin densities and pairing fields in momentum space. In particular, it can induce a phase-locked p-wave pairing in the fermion species that has no p-wave interactions. The hybridized nature of this novel superfluid can also be confirmed by measuring the s- and p-wave contacts, which can be extracted from the high-momentum tail of the momentum distribution of each spin component. These results enrich our knowledge of pairing superfluidity in Fermi systems, and open the avenue for achieving novel fermion superfluids with multiple partial-wave scatterings in cold atomic gases.

  1. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.

    PubMed

    Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun

    2017-08-15

    Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.

  2. Duality and topology

    NASA Astrophysics Data System (ADS)

    Sacramento, P. D.; Vieira, V. R.

    2018-04-01

    Mappings between models may be obtained by unitary transformations with preservation of the spectra but in general a change in the states. Non-canonical transformations in general also change the statistics of the operators involved. In these cases one may expect a change of topological properties as a consequence of the mapping. Here we consider some dualities resulting from mappings, by systematically using a Majorana fermion representation of spin and fermionic problems. We focus on the change of topological invariants that results from unitary transformations taking as examples the mapping between a spin system and a topological superconductor, and between different fermionic systems.

  3. Production of a Scalar Boson and a Fermion Pair in Arbitrarily Polarized e - e + Beams

    NASA Astrophysics Data System (ADS)

    Abdullayev, S. K.; Gojayev, M. Sh.; Nasibova, N. A.

    2018-05-01

    Within the framework of the Standard Model (Minimal Supersymmetric Standard Model) we consider the production of the scalar boson HSM (h; H) and a fermion pair ff- in arbitrarily polarized, counterpropagating electron-positron beams e - e + ⇒ HSM (h; H) ff-. Characteristic features of the behavior of the cross sections and polarization characteristics (right-left spin asymmetry, degree of longitudinal polarization of the fermion, and transverse spin asymmetry) are investigated and elucidated as functions of the energy of the electron-positron beams and the mass of the scalar boson.

  4. Pauli Exclusion Principle

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A principle of quantum theory, devised in 1925 by Wolfgang Pauli (1900-58), which states that no two fermions may exist in the same quantum state. The quantum state of a particle is defined by a set of numbers that describe quantities such as energy, angular momentum and spin. Fermions are particles such as quarks, protons, neutrons and electrons, that have spin = ½ (in units of h/2π, where h is ...

  5. Strongly Interacting Fermi Gases: Non-Equilibrium Dynamics and Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Sommer, Ariel

    2015-05-01

    Strongly interacting atomic Fermi gases near Feshbach resonances give access to a rich variety of phenomena in many-fermion physics and superfluidity. This flexible and microscopically well-characterized system provides a pristine platform in which to benchmark many-body theories. I will describe three experiments on gases of fermionic 6Li atoms. In the first experiment, we study spin transport in the return to equilibrium after a spin excitation. From the dynamics near equilibrium, we obtain spin transport coefficients over a range of temperatures and interaction strengths, and observe quantum-limited spin diffusion at unitarity. In separate experiments, we study the effect of dimensionality on the binding of pairs of fermions. We tune the system from three to two dimensions by adjusting the strength of a one-dimensional optical lattice, and measure the binding energy of fermion pairs using radio-frequency spectroscopy. In a third set of experiments, we study nonlinear excitations of a fermionic superfluid. Imprinting a phase jump on the superfluid order parameter causes a long-lived, localized density depletion that oscillates through the cloud. We measure the oscillation period and find that it corresponds to an emergent particle with an effective mass of up to several hundred times the bare mass. This excitation has been identified as a solitonic vortex that results from the decay of a planar soliton. This work was performed at the Massachusetts Institute of Technology under the supervision of Prof. Martin Zwierlein.

  6. Multi-pole orders and Kondo screening: Implications for quantum phase transitions in multipolar heavy-fermion systems

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Hua; Nica, Emilian; Si, Qimiao

    Motivated by the properties of the heavy-fermion Ce3Pd20Si6 compound which exhibits both antiferro-magnetic (AFM) and antiferro-quadrupolar (AFQ) orders, we study a simplified quantum non-linear sigma model for spin-1 systems, with generalized multi-pole Kondo couplings to conduction electrons. We first consider the case when an SU(3) symmetry relates the spin and quadrupolar channels. We then analyze the effect of breaking the SU(3) symmetry, so that the interaction parameters in the spin and quadrupolar sectors are no longer equivalent, and different stages of Kondo screenings are allowed. A renormalization group analysis is used to analyze the interplay between the Kondo effect and the AFM/AFQ orders. Our work paves the way for understanding the global phase diagram in settings beyond the prototypical spin-1/2 cases. We also discuss similar considerations in the non-Kramers systems such as the heavy fermion compound PrV2Al20

  7. Modeling electron fractionalization with unconventional Fock spaces.

    PubMed

    Cobanera, Emilio

    2017-08-02

    It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality [Formula: see text] of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.

  8. Infrared problem in non-Abelian gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Y.

    1976-03-22

    I extend the Bloch--Nordsieck idea to show that in the lowest nontrivial order of radiative correction the fermion--fermion and gauge-meson--fermion scattering rates are finite, provided that they are averaged over the initial and summed over the final internal spin states. Questions of the physical gauge coupling and infrared slavery are discussed. (AIP)

  9. Hawking fluxes, fermionic currents, W{sub 1+{infinity}} algebra, and anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonora, L.; Cvitan, M.; Theoretical Physics Department, Faculty of Science, University of Zagreb Bijenicka cesta 32, HR-10002 Zagreb

    2009-10-15

    We complete the analysis carried out in previous papers by studying the Hawking radiation for a Kerr black hole carried to infinity by fermionic currents of any spin. We find agreement with the thermal spectrum of the Hawking radiation for fermionic degrees of freedom. We start by showing that the near-horizon physics for a Kerr black hole is approximated by an effective two-dimensional field theory of fermionic fields. Then, starting from two-dimensional currents of any spin that form a W{sub 1+{infinity}} algebra, we construct an infinite set of covariant currents, each of which carries the corresponding moment of the Hawkingmore » radiation. All together they agree with the thermal spectrum of the latter. We show that the predictive power of this method is based not on the anomalies of the higher-spin currents (which are trivial) but on the underlying W{sub 1+{infinity}} structure. Our results point toward the existence in the near-horizon geometry of a symmetry larger than the Virasoro algebra, which very likely takes the form of a W{sub {infinity}} algebra.« less

  10. Symmetry-protected gapless Z2 spin liquids

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Ming

    2018-03-01

    Despite rapid progress in understanding gapped topological states, much less is known about gapless topological phases of matter, especially in strongly correlated electrons. In this work, we discuss a large class of robust gapless quantum spin liquids in frustrated magnets made of half-integer spins, which are described by gapless fermionic spinons coupled to dynamical Z2 gauge fields. Requiring U(1 ) spin conservation, time-reversal, and certain space-group symmetries, we show that certain spinon symmetry fractionalization class necessarily leads to a gapless spectrum. These gapless excitations are stable against any perturbations, as long as the required symmetries are preserved. Applying these gapless criteria to spin-1/2 systems on square, triangular, and kagome lattices, we show that all gapped symmetric Z2 spin liquids in Abrikosov-fermion representation can also be realized in Schwinger-boson representation. This leads to 64 gapped Z2 spin liquids on square lattice, and 8 gapped states on both kagome and triangular lattices.

  11. Fermionic Spinon Theory of Square Lattice Spin Liquids near the Néel State

    NASA Astrophysics Data System (ADS)

    Thomson, Alex; Sachdev, Subir

    2018-01-01

    Quantum fluctuations of the Néel state of the square lattice antiferromagnet are usually described by a CP1 theory of bosonic spinons coupled to a U(1) gauge field, and with a global SU(2) spin rotation symmetry. Such a theory also has a confining phase with valence bond solid (VBS) order, and upon including spin-singlet charge-2 Higgs fields, deconfined phases with Z2 topological order possibly intertwined with discrete broken global symmetries. We present dual theories of the same phases starting from a mean-field theory of fermionic spinons moving in π flux in each square lattice plaquette. Fluctuations about this π -flux state are described by (2 +1 )-dimensional quantum chromodynamics (QCD3 ) with a SU(2) gauge group and Nf=2 flavors of massless Dirac fermions. It has recently been argued by Wang et al. [Deconfined Quantum Critical Points: Symmetries and Dualities, Phys. Rev. X 7, 031051 (2017)., 10.1103/PhysRevX.7.031051] that this QCD3 theory describes the Néel-VBS quantum phase transition. We introduce adjoint Higgs fields in QCD3 and obtain fermionic dual descriptions of the phases with Z2 topological order obtained earlier using the bosonic CP1 theory. We also present a fermionic spinon derivation of the monopole Berry phases in the U(1) gauge theory of the VBS state. The global phase diagram of these phases contains multicritical points, and our results imply new boson-fermion dualities between critical gauge theories of these points.

  12. Momentum-space cluster dual-fermion method

    NASA Astrophysics Data System (ADS)

    Iskakov, Sergei; Terletska, Hanna; Gull, Emanuel

    2018-03-01

    Recent years have seen the development of two types of nonlocal extensions to the single-site dynamical mean field theory. On one hand, cluster approximations, such as the dynamical cluster approximation, recover short-range momentum-dependent correlations nonperturbatively. On the other hand, diagrammatic extensions, such as the dual-fermion theory, recover long-ranged corrections perturbatively. The correct treatment of both strong short-ranged and weak long-ranged correlations within the same framework is therefore expected to lead to a quick convergence of results, and offers the potential of obtaining smooth self-energies in nonperturbative regimes of phase space. In this paper, we present an exact cluster dual-fermion method based on an expansion around the dynamical cluster approximation. Unlike previous formulations, our method does not employ a coarse-graining approximation to the interaction, which we show to be the leading source of error at high temperature, and converges to the exact result independently of the size of the underlying cluster. We illustrate the power of the method with results for the second-order cluster dual-fermion approximation to the single-particle self-energies and double occupancies.

  13. Emergent Topological order from Spin-Orbit Density wave

    NASA Astrophysics Data System (ADS)

    Gupta, Gaurav; Das, Tanmoy

    We study the emergence of a Z2 -type topological order because of Landau type symmetry breaking order parameter. When two Rashba type SOC bands of different chirality become nested by a magic wavevector [(0, ∖pi) or (∖pi,0)], it introduces the inversion of chirality between different lattice sites. Such a density wave state is known as spin-orbit density wave. The resulting quantum order is associated with the topological order which is classified by a Z2 invariant. So, this system can simultaneously be classified by both a symmetry breaking order parameter and the associated Z2 topological invariant. This order parameter can be realized or engineered in two- or quasi-two-dimensional fermionic lattices, quantum wires, with tunable RSOC and correlation strength. The work is facilitated by the computer cluster facility at Department of Physics, Indian Institute of Science.

  14. Model of chiral spin liquids with Abelian and non-Abelian topological phases

    NASA Astrophysics Data System (ADS)

    Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; Tsvelik, A. M.

    2017-12-01

    We present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, the Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.

  15. Bold Diagrammatic Monte Carlo Method Applied to Fermionized Frustrated Spins

    NASA Astrophysics Data System (ADS)

    Kulagin, S. A.; Prokof'ev, N.; Starykh, O. A.; Svistunov, B.; Varney, C. N.

    2013-02-01

    We demonstrate, by considering the triangular lattice spin-1/2 Heisenberg model, that Monte Carlo sampling of skeleton Feynman diagrams within the fermionization framework offers a universal first-principles tool for strongly correlated lattice quantum systems. We observe the fermionic sign blessing—cancellation of higher order diagrams leading to a finite convergence radius of the series. We calculate the magnetic susceptibility of the triangular-lattice quantum antiferromagnet in the correlated paramagnet regime and reveal a surprisingly accurate microscopic correspondence with its classical counterpart at all accessible temperatures. The extrapolation of the observed relation to zero temperature suggests the absence of the magnetic order in the ground state. We critically examine the implications of this unusual scenario.

  16. Simple Z2 lattice gauge theories at finite fermion density

    NASA Astrophysics Data System (ADS)

    Prosko, Christian; Lee, Shu-Ping; Maciejko, Joseph

    2017-11-01

    Lattice gauge theories are a powerful language to theoretically describe a variety of strongly correlated systems, including frustrated magnets, high-Tc superconductors, and topological phases. However, in many cases gauge fields couple to gapless matter degrees of freedom, and such theories become notoriously difficult to analyze quantitatively. In this paper we study several examples of Z2 lattice gauge theories with gapless fermions at finite density, in one and two spatial dimensions, that are either exactly soluble or whose solution reduces to that of a known problem. We consider complex fermions (spinless and spinful) as well as Majorana fermions and study both theories where Gauss' law is strictly imposed and those where all background charge sectors are kept in the physical Hilbert space. We use a combination of duality mappings and the Z2 slave-spin representation to map our gauge theories to models of gauge-invariant fermions that are either free, or with on-site interactions of the Hubbard or Falicov-Kimball type that are amenable to further analysis. In 1D, the phase diagrams of these theories include free-fermion metals, insulators, and superconductors, Luttinger liquids, and correlated insulators. In 2D, we find a variety of gapped and gapless phases, the latter including uniform and spatially modulated flux phases featuring emergent Dirac fermions, some violating Luttinger's theorem.

  17. Charge and spin transport in edge channels of a ν=0 quantum Hall system on the surface of topological insulators.

    PubMed

    Morimoto, Takahiro; Furusaki, Akira; Nagaosa, Naoto

    2015-04-10

    Three-dimensional topological insulators of finite thickness can show the quantum Hall effect (QHE) at the filling factor ν=0 under an external magnetic field if there is a finite potential difference between the top and bottom surfaces. We calculate energy spectra of surface Weyl fermions in the ν=0 QHE and find that gapped edge states with helical spin structure are formed from Weyl fermions on the side surfaces under certain conditions. These edge channels account for the nonlocal charge transport in the ν=0 QHE which is observed in a recent experiment on (Bi_{1-x}Sb_{x})_{2}Te_{3} films. The edge channels also support spin transport due to the spin-momentum locking. We propose an experimental setup to observe various spintronics functions such as spin transport and spin conversion.

  18. Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce1−xYbxCoIn5

    PubMed Central

    Song, Yu; Van Dyke, John; Lum, I. K.; White, B. D.; Jang, Sooyoung; Yazici, Duygu; Shu, L.; Schneidewind, A.; Čermák, Petr; Qiu, Y.; Maple, M. B.; Morr, Dirk K.; Dai, Pengcheng

    2016-01-01

    The neutron spin resonance is a collective magnetic excitation that appears in the unconventional copper oxide, iron pnictide and heavy fermion superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1−xYbxCoIn5 with x=0, 0.05 and 0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with a random phase approximation calculation using the electronic structure and the momentum dependence of the -wave superconducting gap determined from scanning tunnelling microscopy (STM) for CeCoIn5, we conclude that the robust upward-dispersing resonance mode in Ce1−xYbxCoIn5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario. PMID:27677397

  19. Stationary states of fermions in a sign potential with a mixed vector–scalar coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castilho, W.M., E-mail: castilho.w@gmail.com; Castro, A.S. de, E-mail: castro@pq.cnpq.br

    2014-01-15

    The scattering of a fermion in the background of a sign potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling under the Sturm–Liouville perspective. When the vector coupling and the scalar coupling have different magnitudes, an isolated solution shows that the fermion under a strong potential can be trapped in a highly localized region without manifestation of Klein’s paradox. It is also shown that the lonely bound-state solution disappears asymptotically as one approaches the conditions for the realization of spin and pseudospin symmetries. --more » Highlights: •Scattering of fermions in a sign potential assessed under a Sturm–Liouville perspective. •An isolated bounded solution. •No pair production despite the high localization. •No bounded solution under exact spin and pseudospin symmetries.« less

  20. Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki

    In all known fermionic super fluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound states. The "spin" of a Bloch electron, however, is xed by the symmetries of the crystal and the atomic orbitals from which it is derived, and in some cases can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or even septet pairs. Here, we report evidence of unconventional superconductivity emerging from a spin-3/2 quasiparticle electronic structure in the half-Heuslermore » semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ 8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic super fluid state. We propose a k ∙ p model of the j = 3/2 fermions to explain how a dominant J=3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically non-trivial band structure, the unconventional pairing in this system represents a truly novel form of super fluidity that has strong potential for leading the development of a new generation of topological superconductors.« less

  1. Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal

    DOE PAGES

    Kim, Hyunsoo; Wang, Kefeng; Nakajima, Yasuyuki; ...

    2018-04-06

    In all known fermionic super fluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound states. The "spin" of a Bloch electron, however, is xed by the symmetries of the crystal and the atomic orbitals from which it is derived, and in some cases can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or even septet pairs. Here, we report evidence of unconventional superconductivity emerging from a spin-3/2 quasiparticle electronic structure in the half-Heuslermore » semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ 8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic super fluid state. We propose a k ∙ p model of the j = 3/2 fermions to explain how a dominant J=3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically non-trivial band structure, the unconventional pairing in this system represents a truly novel form of super fluidity that has strong potential for leading the development of a new generation of topological superconductors.« less

  2. Quantum phases of spinful Fermi gases in optical cavities

    NASA Astrophysics Data System (ADS)

    Colella, E.; Citro, R.; Barsanti, M.; Rossini, D.; Chiofalo, M.-L.

    2018-04-01

    We explore the quantum phases emerging from the interplay between spin and motional degrees of freedom of a one-dimensional quantum fluid of spinful fermionic atoms, effectively interacting via a photon-mediating mechanism with tunable sign and strength g , as it can be realized in present-day experiments with optical cavities. We find the emergence, in the very same system, of spin- and atomic-density wave ordering, accompanied by the occurrence of superfluidity for g >0 , while cavity photons are seen to drive strong correlations at all g values, with fermionic character for g >0 , and bosonic character for g <0 . Due to the long-range nature of interactions, to infer these results we combine mean-field and exact-diagonalization methods supported by bosonization analysis.

  3. Spin waves, vortices, fermions, and duality in the Ising and Baxter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogilvie, M.C.

    1981-10-15

    Field-theoretic methods are applied to a number of two-dimensional lattice models with Abelian symmetry groups. It is shown, using a vortex+spin-wave decomposition, that the Z/sub p/-Villain models are related to a class of continuum field theories with analogous duality properties. Fermion operators for these field theories are discussed. In the case of the Ising model, the vortices and spin-waves conspire to produce a free, massive Majorana field theory in the continuum limit. The continuum limit of the Baxter model is also studied, and the recent results of Kadanoff and Brown are rederived and extended.

  4. From r-spin intersection numbers to Hodge integrals

    NASA Astrophysics Data System (ADS)

    Ding, Xiang-Mao; Li, Yuping; Meng, Lingxian

    2016-01-01

    Generalized Kontsevich Matrix Model (GKMM) with a certain given potential is the partition function of r-spin intersection numbers. We represent this GKMM in terms of fermions and expand it in terms of the Schur polynomials by boson-fermion correspondence, and link it with a Hurwitz partition function and a Hodge partition by operators in a widehat{GL}(∞) group. Then, from a W 1+∞ constraint of the partition function of r-spin intersection numbers, we get a W 1+∞ constraint for the Hodge partition function. The W 1+∞ constraint completely determines the Schur polynomials expansion of the Hodge partition function.

  5. Tunable Fermi Contour Anisotropy in GaAs Electron and Hole Systems

    NASA Astrophysics Data System (ADS)

    Kamburov, Dobromir G.

    This Thesis explores the ballistic transport of quasi two-dimensional (2D) electron and hole systems confined to GaAs quantum wells and subjected to a periodic, strain-induced density modulation. In the presence of an applied perpendicular magnetic field, whenever the diameter of the charged carriers' cyclotron orbit becomes commensurate with the period of the density modulation, the sample's resistance exhibits commensurability features. We use the commensurability effects to directly probe the size of the cyclotron orbit, the Fermi contour, and the spin-polarization of particles at low magnetic field and of composite fermions near even-denominator Landau level filling factors (nu). We establish how the commensurability signatures depend on the sample parameters, including the carrier density, the modulation period, and the width of the confining quantum well. In the presence of a small perpendicular magnetic field (B⊥ ), both 2D electrons and holes are essentially spin-unpolarized and their Fermi contours are nearly circular. When an additional parallel component B∥ is introduced, it couples to the carriers' out-of-plane motion and leads to a severe distortion of the energy bands and the Fermi contours. The degree of anisotropy is typically stronger in the wider quantum wells but it also depends on the carrier type. For a given QW width, holes become anisotropic more readily than electrons. The application of B ∥ also affects the spin-polarization of the carriers. Hole samples, for example, become more spin-polarized compared to electrons. We can semi-quantitatively explain the shape and size of the electron and hole Fermi contours with a theoretical calculation with no adjustable parameters based on an 8 x 8 Kane Hamiltonian. In addition to the electron and hole data at low perpendicular magnetic fields, we observe commensurability features for composite fermions near Landau level filling factors nu = 3=2, 1/2, and 1/4. Our data reveal an asymmetry of the composite fermion commensurability features on the two sides of filling factors nu = 1=2 and 3=2. The asymmetry is a fascinating manifestation of a subtle breaking of the particle-hole equivalence in the ballistic transport of composite fermions. It is consistent with a transport picture in which the minority carriers capture flux quanta to form composite fermions. We also employ commensurability oscillations as a tool to probe and quantify the effect of B∥ on the composite fermion Fermi contours. Our measurements reveal that, thanks to the finite layer thickness of the carriers and the coupling of their out-of-plane motion to B∥, the Fermi contours of nu = 1=2 and 3/2 composite fermions are significantly distorted. Furthermore, depending on the width of the quantum well and the sample density, in the vicinity of nu = 3=2 the spin-polarization of the composite fermions varies while near nu = 1=2 they remain fully spin-polarized.

  6. Composite Fermions: Motivation, Successes, and Application to Fractional Quantum Hall Effect in Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Jainendra

    2011-07-15

    The fractional quantum Hall effect (FQHE) is one of the most amazing collective states discovered in modern times. A remarkably detailed and accurate understanding of its nonperturbative physics has been achieved in terms of a new class of exotic particles called composite fermions. I will begin with a brief review of the composite fermion theory and its outstanding successes. The rest of the talk will be concerned with fractional quantum Hall effect in graphene, observed recently. I will present results of theoretical studies that demonstrate that composite fermions are formed in graphene as well, but the spin and valley degeneraciesmore » and the linear dispersion of electrons produce interesting new physics relative to that in the usual two-dimensional GaAs systems. Composite fermion theory allows detailed predictions about FQHE in graphene in regimes when either or both of the spin and valley degeneracies are broken. I will discuss the relevance of our theory to recent experiments. This work on FQHE in graphene has been performed in collaboration with Csaba Toke.« less

  7. Majorana surface modes of nodal topological pairings in spin-3/2 semimetals

    NASA Astrophysics Data System (ADS)

    Yang, Wang; Xiang, Tao; Wu, Congjun

    2017-10-01

    When solid state systems possess active orbital-band structures subject to spin-orbit coupling, their multicomponent electronic structures are often described in terms of effective large-spin fermion models. Their topological structures of superconductivity are beyond the framework of spin singlet and triplet Cooper pairings for spin-1/2 systems. Examples include the half-Heusler compound series of RPtBi, where R stands for a rare-earth element. Their spin-orbit coupled electronic structures are described by the Luttinger-Kohn model with effective spin-3/2 fermions and are characterized by band inversion. Recent experiments provide evidence to unconventional superconductivity in the YPtBi material with nodal spin-septet pairing. We systematically study topological pairing structures in spin-3/2 systems with the cubic group symmetries and calculate the surface Majorana spectra, which exhibit zero energy flat bands, or, cubic dispersion depending on the specific symmetry of the superconducting gap functions. The signatures of these surface states in the quasiparticle interference patterns of tunneling spectroscopy are studied, which can be tested in future experiments.

  8. Model of chiral spin liquids with Abelian and non-Abelian topological phases

    DOE PAGES

    Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; ...

    2017-12-15

    In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less

  9. SU(N ) fermions in a one-dimensional harmonic trap

    NASA Astrophysics Data System (ADS)

    Laird, E. K.; Shi, Z.-Y.; Parish, M. M.; Levinsen, J.

    2017-09-01

    We conduct a theoretical study of SU (N ) fermions confined by a one-dimensional harmonic potential. First, we introduce a numerical approach for solving the trapped interacting few-body problem, by which one may obtain accurate energy spectra across the full range of interaction strengths. In the strong-coupling limit, we map the SU (N ) Hamiltonian to a spin-chain model. We then show that an existing, extremely accurate ansatz—derived for a Heisenberg SU(2) spin chain—is extendable to these N -component systems. Lastly, we consider balanced SU (N ) Fermi gases that have an equal number of particles in each spin state for N =2 ,3 ,4 . In the weak- and strong-coupling regimes, we find that the ground-state energies rapidly converge to their expected values in the thermodynamic limit with increasing atom number. This suggests that the many-body energetics of N -component fermions may be accurately inferred from the corresponding few-body systems of N distinguishable particles.

  10. Hierarchy of Modes in an Interacting One-Dimensional System

    NASA Astrophysics Data System (ADS)

    Tsyplyatyev, O.; Schofield, A. J.; Jin, Y.; Moreno, M.; Tan, W. K.; Ford, C. J. B.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.

    2015-05-01

    Studying interacting fermions in one dimension at high energy, we find a hierarchy in the spectral weights of the excitations theoretically, and we observe evidence for second-level excitations experimentally. Diagonalizing a model of fermions (without spin), we show that levels of the hierarchy are separated by powers of R2/L2, where R is a length scale related to interactions and L is the system length. The first-level (strongest) excitations form a mode with parabolic dispersion, like that of a renormalized single particle. The second-level excitations produce a singular power-law line shape to the first-level mode and multiple power laws at the spectral edge. We measure momentum-resolved tunneling of electrons (fermions with spin) from or to a wire formed within a GaAs heterostructure, which shows parabolic dispersion of the first-level mode and well-resolved spin-charge separation at low energy with appreciable interaction strength. We find structure resembling the second-level excitations, which dies away quite rapidly at high momentum.

  11. Observation of a hierarchy of modes in an interacting one-dimensional system

    NASA Astrophysics Data System (ADS)

    Ford, Christopher; Moreno, Maria; Jin, Yiqing; Tan, Wooi Kiat; Griffiths, Jon; Farrer, Ian; Jones, Geb; Anthore, Anne; Ritchie, David; Tsyplyatyev, Oleksandr; Schofield, Andrew

    2015-03-01

    Studying interacting fermions in 1D at high energy, we find a hierarchy in the spectral weights of the excitations theoretically and we observe evidence for second-level excitations experimentally. Diagonalising a model of fermions (without spin), we show that levels of the hierarchy are separated by powers of 2 /L2 , where  is a length-scale related to interactions and L is the system length. The first-level (strongest) excitations form a mode with parabolic dispersion, like that of a renormalised single particle. The second-level excitations produce a singular power-law line shape to the first-level mode and multiple power-laws at the spectral edge. We measure momentum-resolved tunneling of electrons (fermions with spin) from/to a wire formed within a GaAs heterostructure, which shows parabolic dispersion of the first-level mode and well-resolved spin-charge separation at low energy with appreciable interaction strength. We find structure resembling the second-level excitations, which dies away quite rapidly at high momentum.

  12. Model of chiral spin liquids with Abelian and non-Abelian topological phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio

    In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less

  13. I.I. Rabi in Atomic, Molecular & Optical Physics Prize Talk: Strongly Interacting Fermi Gases of Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Zwierlein, Martin

    2017-04-01

    Strongly interacting fermions govern physics at all length scales, from nuclear matter to modern electronic materials and neutron stars. The interplay of the Pauli principle with strong interactions can give rise to exotic properties that we do not understand even at a qualitative level. In recent years, ultracold Fermi gases of atoms have emerged as a new type of strongly interacting fermionic matter that can be created and studied in the laboratory with exquisite control. Feshbach resonances allow for unitarity limited interactions, leading to scale invariance, universal thermodynamics and a superfluid phase transition already at 17 Trapped in optical lattices, fermionic atoms realize the Fermi-Hubbard model, believed to capture the essence of cuprate high-temperature superconductors. Here, a microscope allows for single-atom, single-site resolved detection of density and spin correlations, revealing the Pauli hole as well as anti-ferromagnetic and doublon-hole correlations. Novel states of matter are predicted for fermions interacting via long-range dipolar interactions. As an intriguing candidate we created stable fermionic molecules of NaK at ultralow temperatures featuring large dipole moments and second-long spin coherence times. In some of the above examples the experiment outperformed the most advanced computer simulations of many-fermion systems, giving hope for a new level of understanding of strongly interacting fermions.

  14. Anisotropic Weyl fermions from the quasiparticle excitation spectrum of a 3D Fulde-Ferrell superfluid.

    PubMed

    Xu, Yong; Chu, Rui-Lin; Zhang, Chuanwei

    2014-04-04

    Weyl fermions, first proposed for describing massless chiral Dirac fermions in particle physics, have not been observed yet in experiments. Recently, much effort has been devoted to explore Weyl fermions around band touching points of single-particle energy dispersions in certain solid state materials (named Weyl semimetals), similar as graphene for Dirac fermions. Here we show that such Weyl semimetals also exist in the quasiparticle excitation spectrum of a three-dimensional spin-orbit-coupled Fulde-Ferrell superfluid. By varying Zeeman fields, the properties of Weyl fermions, such as their creation and annihilation, number and position, as well as anisotropic linear dispersions around band touching points, can be tuned. We study the manifestation of anisotropic Weyl fermions in sound speeds of Fulde-Ferrell fermionic superfluids, which are detectable in experiments.

  15. Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce 1–xYb xCoIn 5

    DOE PAGES

    Song, Yu; Van Dyke, John; Lum, I. K.; ...

    2016-09-28

    Here, the neutron spin resonance is a collective magnetic excitation that appears in copper oxide, iron pnictide, and heavy fermion unconventional superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s ±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce 1–xYb xCoIn 5 with x=0,0.05,0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with random phase approximation calculation usingmore » the electronic structure and the momentum dependence of the d x2 –y2-wave superconducting gap determined from scanning tunneling microscopy for CeCoIn 5, we conclude the robust upward dispersing resonance mode in Ce 1–xYb xCoIn 5 is inconsistent with the downward dispersion predicted within the spin-exciton scenari« less

  16. Resolution of the EPR Paradox for Fermion Spin Correlations

    NASA Astrophysics Data System (ADS)

    Close, Robert

    2011-10-01

    The EPR paradox addresses the question of whether a physical system can have a definite state independent of its measurement. Bell's Theorem places limits on correlations between local measurements of particles whose properties are established prior to measurement. Experimental violation of Bell's theorem has been regarded as evidence against the existence of a definite state prior to measurement. We model fermions as having a spatial distribution of spin values, so that a Stern-Gerlach device samples the spin distribution differently at different orientations. The computed correlations agree with quantum mechanical predictions and experimental observations. Bell's Theorem is not applicable because for any sampling of angles, different points on the sphere have different density of states.

  17. Localized Magnetic Moments with Tunable Spin Exchange in a Gas of Ultracold Fermions

    NASA Astrophysics Data System (ADS)

    Riegger, L.; Darkwah Oppong, N.; Höfer, M.; Fernandes, D. R.; Bloch, I.; Fölling, S.

    2018-04-01

    We report on the experimental realization of a state-dependent lattice for a two-orbital fermionic quantum gas with strong interorbital spin exchange. In our state-dependent lattice, the ground and metastable excited electronic states of 173Yb take the roles of itinerant and localized magnetic moments, respectively. Repulsive on-site interactions in conjunction with the tunnel mobility lead to spin exchange between mobile and localized particles, modeling the coupling term in the well-known Kondo Hamiltonian. In addition, we find that this exchange process can be tuned resonantly by varying the on-site confinement. We attribute this to a resonant coupling to center-of-mass excited bound states of one interorbital scattering channel.

  18. Probing density and spin correlations in two-dimensional Hubbard model with ultracold fermions

    NASA Astrophysics Data System (ADS)

    Chan, Chun Fai; Drewes, Jan Henning; Gall, Marcell; Wurz, Nicola; Cocchi, Eugenio; Miller, Luke; Pertot, Daniel; Brennecke, Ferdinand; Koehl, Michael

    2017-04-01

    Quantum gases of interacting fermionic atoms in optical lattices is a promising candidate to study strongly correlated quantum phases of the Hubbard model such as the Mott-insulator, spin-ordered phases, or in particular d-wave superconductivity. We experimentally realise the two-dimensional Hubbard model by loading a quantum degenerate Fermi gas of 40 K atoms into a three-dimensional optical lattice geometry. High-resolution absorption imaging in combination with radiofrequency spectroscopy is applied to spatially resolve the atomic distribution in a single 2D layer. We investigate in local measurements of spatial correlations in both the density and spin sector as a function of filling, temperature and interaction strength. In the density sector, we compare the local density fluctuations and the global thermodynamic quantities, and in the spin sector, we observe the onset of non-local spin correlation, signalling the emergence of the anti-ferromagnetic phase. We would report our recent experimental endeavours to investigate further down in temperature in the spin sector.

  19. Topological phase in a two-dimensional metallic heavy-fermion system

    NASA Astrophysics Data System (ADS)

    Yoshida, Tsuneya; Peters, Robert; Fujimoto, Satoshi; Kawakami, Norio

    2013-04-01

    We report on a topological insulating state in a heavy-fermion system away from half filling, which is hidden within a ferromagnetic metallic phase. In this phase, the cooperation of the RKKY interaction and the Kondo effect, together with the spin-orbit coupling, induces a spin-selective gap, bringing about topologically nontrivial properties. This topological phase is robust against a change in the chemical potential in a much wider range than the gap size. We analyze these remarkable properties by using dynamical mean field theory and the numerical renormalization group. Its topological properties support a gapless chiral edge mode, which exhibits a non-Tomonaga-Luttinger liquid behavior due to the coupling with bulk ferromagnetic spin fluctuations. We also propose that the effects of the spin fluctuations on the edge mode can be detected via the NMR relaxation time measurement.

  20. A spin-orbital-entangled quantum liquid on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Kitagawa, K.; Takayama, T.; Matsumoto, Y.; Kato, A.; Takano, R.; Kishimoto, Y.; Bette, S.; Dinnebier, R.; Jackeli, G.; Takagi, H.

    2018-02-01

    The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin-orbital-entangled pseudospin-1/2 moments have been proposed, including the 5d-electron systems α-Na2IrO3 (ref. 5) and α-Li2IrO3 (ref. 6) and the 4d-electron system α-RuCl3 (ref. 7). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures, owing to non-Kitaev interactions. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5d-electron honeycomb compound H3LiIr2O6. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 100 kelvin. We observe signatures of low-energy fermionic excitations that originate from a small number of spin defects in the nuclear-magnetic-resonance relaxation and the specific heat. We therefore conclude that H3LiIr2O6 is a quantum spin liquid. This result opens the door to finding exotic quasiparticles in a strongly spin-orbit-coupled 5d-electron transition-metal oxide.

  1. Grassmann phase space methods for fermions. I. Mode theory

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Jeffers, J.; Barnett, S. M.

    2016-07-01

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggest the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. The theory of Grassmann phase space methods for fermions based on separate modes is developed, showing how the distribution function is defined and used to determine quantum correlation functions, Fock state populations and coherences via Grassmann phase space integrals, how the Fokker-Planck equations are obtained and then converted into equivalent Ito equations for stochastic Grassmann variables. The fermion distribution function is an even Grassmann function, and is unique. The number of c-number Wiener increments involved is 2n2, if there are n modes. The situation is somewhat different to the bosonic c-number case where only 2 n Wiener increments are involved, the sign of the drift term in the Ito equation is reversed and the diffusion matrix in the Fokker-Planck equation is anti-symmetric rather than symmetric. The un-normalised B distribution is of particular importance for determining Fock state populations and coherences, and as pointed out by Plimak, Collett and Olsen, the drift vector in its Fokker-Planck equation only depends linearly on the Grassmann variables. Using this key feature we show how the Ito stochastic equations can be solved numerically for finite times in terms of c-number stochastic quantities. Averages of products of Grassmann stochastic variables at the initial time are also involved, but these are determined from the initial conditions for the quantum state. The detailed approach to the numerics is outlined, showing that (apart from standard issues in such numerics) numerical calculations for Grassmann phase space theories of fermion systems could be carried out without needing to represent Grassmann phase space variables on the computer, and only involving processes using c-numbers. We compare our approach to that of Plimak, Collett and Olsen and show that the two approaches differ. As a simple test case we apply the B distribution theory and solve the Ito stochastic equations to demonstrate coupling between degenerate Cooper pairs in a four mode fermionic system involving spin conserving interactions between the spin 1 / 2 fermions, where modes with momenta - k , + k-each associated with spin up, spin down states, are involved.

  2. Motions in Taub-NUT-de Sitter spinning spacetime

    NASA Astrophysics Data System (ADS)

    Banu, Akhtara

    2012-09-01

    We investigate the geodesic motion of pseudo-classical spinning particles in the Taub-NUT-de Sitter spacetime. We obtain the conserved quantities from the solutions of the generalized Killing equations for spinning spaces. Applying the formalism the motion of a pseudo-classical Dirac fermion is analyzed on a cone and plane.

  3. Quantum transport in d-dimensional lattices

    DOE PAGES

    Manzano, Daniel; Chuang, Chern; Cao, Jianshu

    2016-04-28

    We show that both fermionic and bosonic uniform d-dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. Lastly, we then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour ofmore » uniform spin lattices is a consequence of the interaction between different excitations.« less

  4. Spin-0± portal induced Dark Matter

    NASA Astrophysics Data System (ADS)

    Dutta, Sukanta; Goyal, Ashok; Saini, Lalit Kumar

    2018-02-01

    Standard model (SM) spin-zero singlets are constrained through their di-Bosonic decay channels via an effective coupling induced by a vector-like quark (VLQ) loop at the LHC for √{s}=13 TeV. These spin-zero resonances are then considered as portals for scalar, vector or fermionic dark matter particle interactions with SM gauge bosons. We find that the model is validated with respect to the observations from LHC data and from cosmology, indirect and direct detection experiments for an appreciable range of scalar, vector and fermionic DM masses greater than 300 GeV and VLQ masses ≥ 400 GeV, corresponding to the three choice of portal masses 270 GeV, 500 GeV and 750 GeV respectively.

  5. Graphene based d-character Dirac Systems

    NASA Astrophysics Data System (ADS)

    Li, Yuanchang; Zhang, S. B.; Duan, Wenhui

    From graphene to topological insulators, Dirac material continues to be the hot topics in condensed matter physics. So far, almost all of the theoretically predicted or experimentally observed Dirac materials are composed of sp -electrons. By using first-principles calculations, we find the new Dirac system of transition-metal intercalated epitaxial graphene on SiC(0001). Intrinsically different from the conventional sp Dirac system, here the Dirac-fermions are dominantly contributed by the transition-metal d-electrons, which paves the way to incorporate correlation effect with Dirac-cone physics. Many intriguing quantum phenomena are proposed based on this system, including quantum spin Hall effect with large spin-orbital gap, quantum anomalous Hall effect, 100% spin-polarized Dirac fermions and ferromagnet-to-topological insulator transition.

  6. Local and global Λ polarization in a vortical fluid

    DOE PAGES

    Li, Hui; Petersen, Hannah; Pang, Long -Gang; ...

    2017-09-25

    We compute the fermion spin distribution in the vortical fluid created in off-central high energy heavy-ion collisions. We employ the event-by-event (3+1)D viscous hydrodynamic model. The spin polarization density is proportional to the local fluid vorticity in quantum kinetic theory. As a result of strong collectivity, the spatial distribution of the local vorticity on the freeze-out hyper-surface strongly correlates to the rapidity and azimuthal angle distribution of fermion spins. We investigate the sensitivity of the local polarization to the initial fluid velocity in the hydrodynamic model and compute the global polarization of Λ hyperons by the AMPT model. The energymore » dependence of the global polarization agrees with the STAR data.« less

  7. Local and global Λ polarization in a vortical fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Petersen, Hannah; Pang, Long -Gang

    We compute the fermion spin distribution in the vortical fluid created in off-central high energy heavy-ion collisions. We employ the event-by-event (3+1)D viscous hydrodynamic model. The spin polarization density is proportional to the local fluid vorticity in quantum kinetic theory. As a result of strong collectivity, the spatial distribution of the local vorticity on the freeze-out hyper-surface strongly correlates to the rapidity and azimuthal angle distribution of fermion spins. We investigate the sensitivity of the local polarization to the initial fluid velocity in the hydrodynamic model and compute the global polarization of Λ hyperons by the AMPT model. The energymore » dependence of the global polarization agrees with the STAR data.« less

  8. Novel foamy origin for singlet fermion masses

    NASA Astrophysics Data System (ADS)

    Ellis, John; Mavromatos, Nick E.; Nanopoulos, Dimitri V.

    2017-10-01

    We show how masses for singlet fermions can be generated by interactions with a D-particle model of space-time foam inspired by brane theory. It has been shown previously by one of the authors (N. E. M.) that such interactions may generate dynamically small masses for charged fermions via the recoils of D-particle defects interacting with photons. In this work we consider the direct interactions of D-particle with uncharged singlet fermions such as right-handed neutrinos. Quantum fluctuations of the lattice of D-particles have massless vector (spin-one) excitations that are analogues of phonons. These mediate forces with the singlet fermions, generating large dynamical masses that may be communicated to light neutrinos via the seesaw mechanism.

  9. Many-body physics using cold atoms

    NASA Astrophysics Data System (ADS)

    Sundar, Bhuvanesh

    Advances in experiments on dilute ultracold atomic gases have given us access to highly tunable quantum systems. In particular, there have been substantial improvements in achieving different kinds of interaction between atoms. As a result, utracold atomic gases oer an ideal platform to simulate many-body phenomena in condensed matter physics, and engineer other novel phenomena that are a result of the exotic interactions produced between atoms. In this dissertation, I present a series of studies that explore the physics of dilute ultracold atomic gases in different settings. In each setting, I explore a different form of the inter-particle interaction. Motivated by experiments which induce artificial spin-orbit coupling for cold fermions, I explore this system in my first project. In this project, I propose a method to perform universal quantum computation using the excitations of interacting spin-orbit coupled fermions, in which effective p-wave interactions lead to the formation of a topological superfluid. Motivated by experiments which explore the physics of exotic interactions between atoms trapped inside optical cavities, I explore this system in a second project. I calculate the phase diagram of lattice bosons trapped in an optical cavity, where the cavity modes mediates effective global range checkerboard interactions between the atoms. I compare this phase diagram with one that was recently measured experimentally. In two other projects, I explore quantum simulation of condensed matter phenomena due to spin-dependent interactions between particles. I propose a method to produce tunable spin-dependent interactions between atoms, using an optical Feshbach resonance. In one project, I use these spin-dependent interactions in an ultracold Bose-Fermi system, and propose a method to produce the Kondo model. I propose an experiment to directly observe the Kondo effect in this system. In another project, I propose using lattice bosons with a large hyperfine spin, which have Feshbach-induced spin-dependent interactions, to produce a quantum dimer model. I propose an experiment to detect the ground state in this system. In a final project, I develop tools to simulate the dynamics of fermionic superfluids in which fermions interact via a short-range interaction.

  10. Fermion localization on a split brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.

    2011-05-15

    In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.

  11. Superconductivity mediated by quantum critical antiferromagnetic fluctuations: the rise and fall of hot spots

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyu; Schattner, Yoni; Berg, Erez; Fernandes, Rafael

    The maximum transition temperature Tc observed in the phase diagrams of several unconventional superconductors takes place in the vicinity of a putative antiferromagnetic quantum critical point. This observation motivated the theoretical proposal that superconductivity in these systems may be driven by quantum critical fluctuations, which in turn can also promote non-Fermi liquid behavior. In this talk, we present a combined analytical and sign-problem-free Quantum Monte Carlo investigation of the spin-fermion model - a widely studied low-energy model for the interplay between superconductivity and magnetic fluctuations. By engineering a series of band dispersions that interpolate between near-nested and open Fermi surfaces, and by also varying the strength of the spin-fermion interaction, we find that the hot spots of the Fermi surface provide the dominant contribution to the pairing instability in this model. We show that the analytical expressions for Tc and for the pairing susceptibility, obtained within a large-N Eliashberg approximation to the spin-fermion model, agree well with the Quantum Monte Carlo data, even in the regime of interactions comparable to the electronic bandwidth. DE-SC0012336.

  12. Realization of Massive Relativistic Spin- 3 / 2 Rarita-Schwinger Quasiparticle in Condensed Matter Systems

    NASA Astrophysics Data System (ADS)

    Tang, Feng; Luo, Xi; Du, Yongping; Yu, Yue; Wan, Xiangang

    Very recently, there has been significant progress in realizing high-energy particles in condensed matter system (CMS) such as the Dirac, Weyl and Majorana fermions. Besides the spin-1/2 particles, the spin-3/2 elementary particle, known as the Rarita-Schwinger (RS) fermion, has not been observed or simulated in the laboratory. The main obstacle of realizing RS fermion in CMS lies in the nontrivial constraints that eliminate the redundant degrees of freedom in its representation of the Poincaré group. In this Letter, we propose a generic method that automatically contains the constraints in the Hamiltonian and prove the RS modes always exist and can be separated from the other non-RS bands. Through symmetry considerations, we show that the two dimensional (2D) massive RS (M-RS) quasiparticle can emerge in several trigonal and hexagonal lattices. Based on ab initio calculations, we predict that the thin film of CaLiX (X=Ge and Si) may host 2D M-RS excitations near the Fermi level. and Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.

  13. Long-time behavior of the momentum distribution during the sudden expansion of a spin-imbalanced Fermi gas in one dimension.

    PubMed

    Bolech, C J; Heidrich-Meisner, F; Langer, S; McCulloch, I P; Orso, G; Rigol, M

    2012-09-14

    We study the sudden expansion of spin-imbalanced ultracold lattice fermions with attractive interactions in one dimension after turning off the longitudinal confining potential. We show that the momentum distribution functions of majority and minority fermions quickly approach stationary values due to a quantum distillation mechanism that results in a spatial separation of pairs and majority fermions. As a consequence, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations are lost during the expansion. Furthermore, we argue that the shape of the stationary momentum distribution functions can be understood by relating them to the integrals of motion in this integrable quantum system. We discuss our results in the context of proposals to observe FFLO correlations, related to recent experiments by Liao et al., Nature (London) 467, 567 (2010).

  14. Exact expression of the t-J model in terms of local spin and fermionic holon operators

    NASA Astrophysics Data System (ADS)

    Wang, Y. R.; Rice, M. J.

    1994-02-01

    An exact expression for the Hamiltonian H of the t-J model in terms of local spin (Si) and fermionic holon (ei) operators is derived which requires no constraint between these operators. The result for the Hamiltonian H is H=-t tsumijeie°j(1/2+2Si.Sj)+(J/2)t smij(1-e°iei)(Si.Sj-1/4)(1-e°je The number of electrons at site i is given by ni=1-e°iei, and the true spin operator S~i, is related to the local spin operator by S~i=(1-e°iei)Si. The expression correctly produces the Nagaoka theorem in the limit J-->0, and preserves the time-reversal symmetry of the original model. For a bipartite lattice, H describes a competition between ferromagnetism, favored by the hopping term, and antiferromagnetism, favored by the Heisenberg term.

  15. Bethe vectors for XXX-spin chain

    NASA Astrophysics Data System (ADS)

    Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei

    2014-11-01

    The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included.

  16. Symmetry-protected topological phases of one-dimensional interacting fermions with spin-charge separation

    NASA Astrophysics Data System (ADS)

    Montorsi, Arianna; Dolcini, Fabrizio; Iotti, Rita C.; Rossi, Fausto

    2017-06-01

    The low energy behavior of a huge variety of one-dimensional interacting spinful fermionic systems exhibits spin-charge separation, described in the continuum limit by two sine-Gordon models decoupled in the charge and spin channels. Interaction is known to induce, besides the gapless Luttinger liquid phase, eight possible gapped phases, among which are the Mott, Haldane, charge-/spin-density, and bond-ordered wave insulators, and the Luther Emery liquid. Here we prove that some of these physically distinct phases have nontrivial topological properties, notably the presence of degenerate protected edge modes with fractionalized charge/spin. Moreover, we show that the eight gapped phases are in one-to-one correspondence with the symmetry-protected topological (SPT) phases classified by group cohomology theory in the presence of particle-hole symmetry P. The latter result is also exploited to characterize SPT phases by measurable nonlocal order parameters which follow the system evolution to the quantum phase transition. The implications on the appearance of exotic orders in the class of microscopic Hubbard Hamiltonians, possibly without P symmetry at higher energies, are discussed.

  17. Photonic topological insulator with broken time-reversal symmetry

    PubMed Central

    He, Cheng; Sun, Xiao-Chen; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yulin; Feng, Liang; Chen, Yan-Feng

    2016-01-01

    A topological insulator is a material with an insulating interior but time-reversal symmetry-protected conducting edge states. Since its prediction and discovery almost a decade ago, such a symmetry-protected topological phase has been explored beyond electronic systems in the realm of photonics. Electrons are spin-1/2 particles, whereas photons are spin-1 particles. The distinct spin difference between these two kinds of particles means that their corresponding symmetry is fundamentally different. It is well understood that an electronic topological insulator is protected by the electron’s spin-1/2 (fermionic) time-reversal symmetry Tf2=−1. However, the same protection does not exist under normal circumstances for a photonic topological insulator, due to photon’s spin-1 (bosonic) time-reversal symmetry Tb2=1. In this work, we report a design of photonic topological insulator using the Tellegen magnetoelectric coupling as the photonic pseudospin orbit interaction for left and right circularly polarized helical spin states. The Tellegen magnetoelectric coupling breaks bosonic time-reversal symmetry but instead gives rise to a conserved artificial fermionic-like-pseudo time-reversal symmetry, Tp (Tp2=−1), due to the electromagnetic duality. Surprisingly, we find that, in this system, the helical edge states are, in fact, protected by this fermionic-like pseudo time-reversal symmetry Tp rather than by the bosonic time-reversal symmetry Tb. This remarkable finding is expected to pave a new path to understanding the symmetry protection mechanism for topological phases of other fundamental particles and to searching for novel implementations for topological insulators. PMID:27092005

  18. Hyperquarks and generation number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchmann, Alfons J.; Schmid, Michael L.

    2005-03-01

    In a model in which quarks and leptons are built up from two spin-(1/2) preons as fundamental entities, a new class of fermionic bound states (hyperquarks) arises. It turns out that these hyperquarks are necessary to fulfill the 't Hooft anomaly constraint, which then links the number of fermionic generations to the number of colors and hypercolors.

  19. Fidelity Witnesses for Fermionic Quantum Simulations

    NASA Astrophysics Data System (ADS)

    Gluza, M.; Kliesch, M.; Eisert, J.; Aolita, L.

    2018-05-01

    The experimental interest and developments in quantum spin-1 /2 chains has increased uninterruptedly over the past decade. In many instances, the target quantum simulation belongs to the broader class of noninteracting fermionic models, constituting an important benchmark. In spite of this class being analytically efficiently tractable, no direct certification tool has yet been reported for it. In fact, in experiments, certification has almost exclusively relied on notions of quantum state tomography scaling very unfavorably with the system size. Here, we develop experimentally friendly fidelity witnesses for all pure fermionic Gaussian target states. Their expectation value yields a tight lower bound to the fidelity and can be measured efficiently. We derive witnesses in full generality in the Majorana-fermion representation and apply them to experimentally relevant spin-1 /2 chains. Among others, we show how to efficiently certify strongly out-of-equilibrium dynamics in critical Ising chains. At the heart of the measurement scheme is a variant of importance sampling specially tailored to overlaps between covariance matrices. The method is shown to be robust against finite experimental-state infidelities.

  20. Magnetic Majorana Fermions

    NASA Astrophysics Data System (ADS)

    Moessner, Roderich

    Condensed matter systems provide emergent mini-universes in which quasiparticles may exist which do not correspond to any experimentally detected elementary particle. Topological quantum materials have been particularly productive in this regard, with the present search focussing on Majorana fermions, known theoretically already for decades. Here, we discuss manifestations of magnetic Majorana fermions in the Kitaev model. We place particular emphasis on their fate when perturbations, such as Heisenberg terms, are added to the ideal model system, and address experimental signatures of their vestiges in phases adjacent to the spin liquid.

  1. Magnetotransport study of Dirac fermions in YbMnBi 2 antiferromagnet

    DOE PAGES

    Wang, Aifeng; Zaliznyak, I.; Ren, Weijun; ...

    2016-10-15

    We report quantum transport and Dirac fermions in YbMnBi 2 single crystals. YbMnBi 2 is a layered material with anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, and small cyclotron mass indicate the presence of Dirac fermions. Lastly, angular-dependent magnetoresistance indicates a possible quasi-two-dimensional Fermi surface, whereas the deviation from the nontrivial Berry phase expected for Dirac states suggests the contribution of parabolic bands at the Fermi level or spin-orbit coupling.

  2. Quantum Spin Liquids and Fractionalization

    NASA Astrophysics Data System (ADS)

    Misguich, Grégoire

    This chapter discusses quantum antiferromagnets which do not break any symmetries at zero temperature - also called "spin liquids" - and focuses on lattice spin models with Heisenberg-like (i.e. SU(2)-symmetric) interactions in dimensions larger than one. We begin by discussing the Lieb-Schultz-Mattis theorem and its recent extension to D > 1 by Hastings (2004), which establishes an important distinction between spin liquids with an integer and with a half-integer spin per unit cell. Spin liquids of the first kind, "band insulators", can often be understood by elementary means, whereas the latter, "Mott insulators", are more complex (featuring "topological order") and support spin-1/2 excitations (spinons). The fermionic formalism (Affleck and Marston, 1988) is described and the effect of fluctuations about mean-field solutions, such as the possible creation of instabilities, is discussed in a qualitative way. In particular, we explain the emergence of gauge modes and their relation to fractionalization. The concept of the projective symmetry group (X.-G. Wen, 2002) is introduced, with the aid of some examples. Finally, we present the phenomenology of (gapped) short-ranged resonating-valence-bond spin liquids, and make contact with the fermionic approach by discussing their description in terms of a fluctuating Z 2 gauge field. Some recent references are given to other types of spin liquid, including gapless ones.

  3. Antiferromagnetic spin fluctuations in the heavy-fermion superconductor Ce2PdIn8

    NASA Astrophysics Data System (ADS)

    Tran, V. H.; Hillier, A. D.; Adroja, D. T.; Kaczorowski, D.

    2012-09-01

    Inelastic neutron scattering and muon spin relaxation/rotation (μSR) measurements were performed on the heavy-fermion superconductor Ce2PdIn8. The observed scaling of the imaginary part of the dynamical susceptibility χ''Tα∝f(ℏω/kBT) with α=3/2 revealed a non-Fermi liquid character of the normal state, being due to critical antiferromagnetic fluctuations near a T=0 quantum phase transition. The longitudinal-field μSR measurements indicated that superconductivity and antiferromagnetic spin fluctuations coexist in Ce2PdIn8 on a microscopic scale. The observed power-law temperature dependence of the magnetic penetration depth λ∝T3/2, deduced from the transverse-field μSR data, strongly confirms an unconventional superconductivity in this compound.

  4. Fractionally charged skyrmions in fractional quantum Hall effect

    PubMed Central

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  5. Grassmann phase space methods for fermions. II. Field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, B.J., E-mail: bdalton@swin.edu.au; Jeffers, J.; Barnett, S.M.

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, thoughmore » fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.« less

  6. Helical Spin Order from Topological Dirac and Weyl Semimetals

    DOE PAGES

    Sun, Xiao-Qi; Zhang, Shou-Cheng; Wang, Zhong

    2015-08-14

    In this paper, we study dynamical mass generation and the resultant helical spin orders in topological Dirac and Weyl semimetals, including the edge states of quantum spin Hall insulators, the surface states of weak topological insulators, and the bulk materials of Weyl semimetals. In particular, the helical spin textures of Weyl semimetals manifest the spin-momentum locking of Weyl fermions in a visible manner. Finally, the spin-wave fluctuations of the helical order carry electric charge density; therefore, the spin textures can be electrically controlled in a simple and predictable manner.

  7. NMR study of heavy fermion compound EuNi2P2

    NASA Astrophysics Data System (ADS)

    Magishi, K.; Watanabe, R.; Hisada, A.; Saito, T.; Koyama, K.; Fujiwara, T.

    2015-03-01

    We report the results of 31P-nuclear magnetic resonance (NMR) measurements on heavy fermion compound EuNi2P2 in order to investigate the magnetic properties at low temperatures from a microscopic view point. The Knight shift has a negative value in an entire temperature range, and the absolute value increases with decreasing temperature but exhibits a broad maximum around 40 K, which is similar to the behavior of the magnetic susceptibility. Also, the nuclear spin-lattice relaxation rate 1/T1 is almost constant at high temperatures above 200 K, which is reminiscent of the relaxation mechanism dominated by the interaction of the 31P nucleus with fluctuating Eu-4f moments. Below 200 K, 1/T1 gradually decreases on cooling due to the change of the valence in the Eu ion. At low temperatures, 1/T1 does not obey the Korringa relation, in contrast to typical heavy fermion compounds. The nuclear spin-spin relaxation rate 1/T2 shows the similar behavior as 1/T1 at high temperatures. But, below 50 K, 1/T2 increases upon cooling due to the development of the magnetic excitation.

  8. Dual fermionic variables and renormalization group approach to junctions of strongly interacting quantum wires

    NASA Astrophysics Data System (ADS)

    Giuliano, Domenico; Nava, Andrea

    2015-09-01

    Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within the bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.

  9. Spin-orbital quantum liquid on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Corboz, Philippe

    2013-03-01

    The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.

  10. Locality of Temperature

    NASA Astrophysics Data System (ADS)

    Kliesch, M.; Gogolin, C.; Kastoryano, M. J.; Riera, A.; Eisert, J.

    2014-07-01

    This work is concerned with thermal quantum states of Hamiltonians on spin- and fermionic-lattice systems with short-range interactions. We provide results leading to a local definition of temperature, thereby extending the notion of "intensivity of temperature" to interacting quantum models. More precisely, we derive a perturbation formula for thermal states. The influence of the perturbation is exactly given in terms of a generalized covariance. For this covariance, we prove exponential clustering of correlations above a universal critical temperature that upper bounds physical critical temperatures such as the Curie temperature. As a corollary, we obtain that above the critical temperature, thermal states are stable against distant Hamiltonian perturbations. Moreover, our results imply that above the critical temperature, local expectation values can be approximated efficiently in the error and the system size.

  11. Bose-Fermi symmetry in the odd-even gold isotopes

    NASA Astrophysics Data System (ADS)

    Thomas, T.; Régis, J.-M.; Jolie, J.; Heinze, S.; Albers, M.; Bernards, C.; Fransen, C.; Radeck, D.

    2014-05-01

    In this work the results of an in-beam experiment on 195Au are presented, yielding new spins, multipole mixing ratios, and new low-lying states essential for the understanding of this nucleus. The positive-parity states from this work together with compiled data from the available literature for 185-199Au are compared to Interacting Boson Fermion Model calculations employing the Spin(6) Bose-Fermi symmetry. The evolution of the parameters for the τ splitting and the J splitting reveals a smooth behavior. Thereby, a common description based on the Bose-Fermi symmetry is found for 189-199Au. Furthermore, the calculated E2 transition strengths are compared to experimental values with fixed effective boson and fermion charges for all odd-even gold isotopes, emphasizing that the Spin(6) Bose-Fermi symmetry is valid for the gold isotopes.

  12. Fermionic topological quantum states as tensor networks

    NASA Astrophysics Data System (ADS)

    Wille, C.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  13. Materials science with muon spin rotation

    NASA Technical Reports Server (NTRS)

    1988-01-01

    During this reporting period, the focus of activity in the Materials Science with Muon Spin Rotation (MSMSR) program was muon spin rotation studies of superconducting materials, in particular the high critical temperature and heavy-fermion materials. Apart from these studies, work was continued on the analysis of muon motion in metal hydrides. Results of these experiments are described in six papers included as appendices.

  14. Observation of topological states in an optical Raman lattice with ultracold fermions

    NASA Astrophysics Data System (ADS)

    Song, Bo; He, Chengdong; Zhang, Long; Poon, Ting Fung Jeffrey; Hajiyev, Elnur; Ren, Zejian; Seo, Bojeong; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2017-04-01

    The spin-orbit coupling with cold atoms, especially in optical lattices, provides a versatile platform to investigate the intriguing topological matters. In this talk, we will present the realization of one-dimensional spin-dependent lattice dressed by the periodic Raman field. Ultracold 173Yb fermions loaded into an optical Raman lattice reveal non-trivial spin textures due to the band topology, by which we measured topological invariants and determined a topological phase transition. In addition, we explored the non-equilibrium quench dynamics between the topological and the trivial states by suddenly changing the band topology of the optical Raman lattice. The optical Raman lattice demonstrated here opens a new avenue to study the spin-orbit coupling physics and furthermore to realize novel quantum matters such as symmetry-protected topological states. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants); MOST (Grant No. 2016YFA0301604) and NSFC (No. 11574008).

  15. Fermionic Tunneling Effect and Hawking Radiation in a Non Commutative FRW Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhalouf, H.; Aissaoui, H.; Mebarki, N.

    2010-10-31

    The formalism of a non commutative gauge gravity is applied to an FRW universe and the corresponding modified metric, veirbein and spin connection components are obtained. Moreover, using the Hamilton-Jacobi method and as a pure space-time deformation effect, the NCG Hawking radiation via a fermionic tunneling transition through the dynamical NCG horizon is also studied.

  16. Exact results for the star lattice chiral spin liquid

    NASA Astrophysics Data System (ADS)

    Kells, G.; Mehta, D.; Slingerland, J. K.; Vala, J.

    2010-03-01

    We examine the star lattice Kitaev model whose ground state is a chiral spin liquid. We fermionize the model such that the fermionic vacua are toric-code states on an effective Kagome lattice. This implies that the Abelian phase of the system is inherited from the fermionic vacua and that time-reversal symmetry is spontaneously broken at the level of the vacuum. In terms of these fermions we derive the Bloch-matrix Hamiltonians for the vortex-free sector and its time-reversed counterpart and illuminate the relationships between the sectors. The phase diagram for the model is shown to be a sphere in the space of coupling parameters around the triangles of the lattices. The Abelian phase lies inside the sphere and the critical boundary between topologically distinct Abelian and non-Abelian phases lies on the surface. Outside the sphere the system is generically gapped except in the planes where the coupling parameters between the vertices on triangles are zero. These cases correspond to bipartite lattice structures and the dispersion relations are similar to that of the original Kitaev honeycomb model. In a further analysis we demonstrate the threefold non-Abelian ground-state degeneracy on a torus by explicit calculation.

  17. Wigner functions for fermions in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun

    2018-02-01

    We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.

  18. Inconsistency of topologically massive hypergravity

    NASA Technical Reports Server (NTRS)

    Aragone, C.; Deser, S.

    1985-01-01

    The coupled topologically massive spin-5/2 gravity system in D = 3 dimensions whose kinematics represents dynamical propagating gauge invariant massive spin-5/2 and spin-2 excitations, is shown to be inconsistent, or equivalently, not locally hypersymmetric. In contrast to D = 4, the local constraints on the system arising from failure of the fermionic Bianchi identities do not involve the 'highest spin' components of the field, but rather the auxiliary spinor required to construct a consistent massive model.

  19. Spin fluctations and heavy fermions in the Kondo lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaliullin, G.G.

    1994-09-01

    This paper studies the spectrum of the spin and electronic excitations of the Kondo lattice at low temperatures. To avoid unphysical states, the Mattis {open_quotes}drone{close_quotes}-fermion representation for localized spins is employed. First, the known Fermi liquid properties of a single impurity are examined. The behavior of the correlator between a localized spin and the electron spin density at large distances shows that the effective interaction between electrons on the Fermi level and low-energy localized spin fluctuations scales as {rho}{sup {minus}1}, where {rho} is the band-state density. This fact is developed into a renormalization of the band spectrum in a periodicmore » lattice. If the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between localized spins is much smaller than the Kondo fluctuation frequency {omega}{sub k}, the temperature of the crossover to the single-parameter Fermi liquid mode is determined by {omega}{sub k}. When the RKKY interaction becomes of order {omega}{sub k}, there is a new scale {omega}{sub sf}, the energy of the (antiferromagnetic) paramagnon mode, with {omega}{sub sf}{much_lt}{omega}{sub k}. Here the coherent Fermi liquid regime is realized only below a temperature T{sub coh} of order {omega}{sub sf}, while above T{sub coh} quasiparticle damping exhibits a linear temperature dependence. Finally, the nuclear-spin relaxation rate is calculated. 42 refs.« less

  20. Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model

    NASA Astrophysics Data System (ADS)

    Borcherding, Daniel; Frahm, Holger

    2018-05-01

    The contribution of anyonic degrees of freedom emerging in the non-Abelian spin sector of a one-dimensional system of interacting fermions carrying both spin and SU(N f ) orbital degrees of freedom to the thermodynamic properties of the latter is studied based on the exact solution of the model. For sufficiently small temperatures and magnetic fields the anyons appear as zero energy modes localized at the massive kink excitations (Tsvelik 2014 Phys. Rev. Lett. 113 066401). From their quantum dimension they are identified as spin- anyons. The density of kinks (and anyons) can be controlled by an external magnetic field leading to the formation of a collective state of these anyons described by a parafermion conformal field theory for large fields. Based on the numerical analysis of the thermodynamic Bethe ansatz equations we propose a phase diagram for the anyonic modes.

  1. Creation of half-metallic f -orbital Dirac fermion with superlight elements in orbital-designed molecular lattice

    NASA Astrophysics Data System (ADS)

    Cui, Bin; Huang, Bing; Li, Chong; Zhang, Xiaoming; Jin, Kyung-Hwan; Zhang, Lizhi; Jiang, Wei; Liu, Desheng; Liu, Feng

    2017-08-01

    Magnetism in solids generally originates from the localized d or f orbitals that are hosted by heavy transition-metal elements. Here, we demonstrate a mechanism for designing a half-metallic f -orbital Dirac fermion from superlight s p elements. Combining first-principles and model calculations, we show that bare and flat-band-sandwiched (FBS) Dirac bands can be created when C20 molecules are deposited into a two-dimensional hexagonal lattice, which are composed of f -molecular orbitals (MOs) derived from s p -atomic orbitals (AOs). Furthermore, charge doping of the FBS Dirac bands induces spontaneous spin polarization, converting the system into a half-metallic Dirac state. Based on this discovery, a model of a spin field effect transistor is proposed to generate and transport 100% spin-polarized carriers. Our finding illustrates a concept to realize exotic quantum states by manipulating MOs, instead of AOs, in orbital-designed molecular crystal lattices.

  2. Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.

    PubMed

    Yurovsky, Vladimir A

    2017-05-19

    Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.

  3. Fractionally charged skyrmions in fractional quantum Hall effect

    DOE PAGES

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; ...

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less

  4. Chiral Tricritical Point: A New Universality Class in Dirac Systems

    NASA Astrophysics Data System (ADS)

    Yin, Shuai; Jian, Shao-Kai; Yao, Hong

    2018-05-01

    Tricriticality, as a sister of criticality, is a fundamental and absorbing issue in condensed-matter physics. It has been verified that the bosonic Wilson-Fisher universality class can be changed by gapless fermionic modes at criticality. However, the counterpart phenomena at tricriticality have rarely been explored. In this Letter, we study a model in which a tricritical Ising model is coupled to massless Dirac fermions. We find that the massless Dirac fermions result in the emergence of a new tricritical point, which we refer to as the chiral tricritical point (CTP), at the phase boundary between the Dirac semimetal and the charge-density wave insulator. From functional renormalization group analysis of the effective action, we obtain the critical behaviors of the CTP, which are qualitatively distinct from both the tricritical Ising universality and the chiral Ising universality. We further extend the calculations of the chiral tricritical behaviors of Ising spins to the case of Heisenberg spins. The experimental relevance of the CTP in two-dimensional Dirac semimetals is also discussed.

  5. Monotop signature from a fermionic top partner

    NASA Astrophysics Data System (ADS)

    Gonçalves, Dorival; Kong, Kyoungchul; Sakurai, Kazuki; Takeuchi, Michihisa

    2018-01-01

    We investigate monotop signatures arising from phenomenological models of fermionic top partners, which are degenerate in mass and decay into a bosonic dark matter candidate, either spin 0 or spin 1. Such a model provides a monotop signature as a smoking gun, while conventional searches with t t ¯ + missing transverse momentum are limited. Two such scenarios, (i) a phenomenological third generation extradimensional model with excited top and electroweak sectors, and (ii) a model where only a top partner and a dark matter particle are added to the standard model, are studied in the degenerate mass regime. We find that in the case of extra dimension a number of different processes give rise to effectively the same monotop final state, and a great gain can be obtained in the sensitivity for this channel. We show that the monotop search can explore top-partner masses up to 630 and 300 GeV for the third generation extradimensional model and the minimal fermionic top-partner model, respectively, at the high luminosity LHC.

  6. A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Yu; Cao, Jianshu

    2018-01-01

    We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.

  7. Characterizing Higgs portal dark matter models at the ILC

    NASA Astrophysics Data System (ADS)

    Kamon, Teruki; Ko, P.; Li, Jinmian

    2017-09-01

    We study the dark matter (DM) discovery prospect and its spin discrimination in the theoretical framework of gauge invariant and renormalizable Higgs portal DM models at the ILC with √{s} = 500 GeV. In such models, the DM pair is produced in association with a Z boson. In the case of the singlet scalar DM, the mediator is just the SM Higgs boson, whereas for the fermion or vector DM there is an additional singlet scalar mediator that mixes with the SM Higgs boson, which produces significant observable differences. After careful investigation of the signal and backgrounds both at parton level and at detector level, we find the signal with hadronically decaying Z boson provides a better search sensitivity than the signal with leptonically decaying Z boson. Taking the fermion DM model as a benchmark scenario, when the DM-mediator coupling g_χ is relatively small, the DM signals are discoverable only for benchmark points with relatively light scalar mediator H_2. The spin discriminating from scalar DM is always promising, while it is difficult to discriminate from vector DM. As for g_χ approaching the perturbative limit, benchmark points with the mediator H_2 in the full mass region of interest are discoverable. The spin discriminating aspects from both the scalar and the fermion DM are quite promising.

  8. Generalized Kondo lattice model and its spin-polaron realization by the projection method for cuprates

    NASA Astrophysics Data System (ADS)

    Valkov, V. V.; Dzebisashvili, D. M.; Barabanov, A. F.

    2017-05-01

    The spin-fermion model, which is an effective low-energy realization of the three-band Emery model after passing to the Wannier representation for the px and py orbitals of the subsystem of oxygen ions, reduces to the generalized Kondo lattice model. A specific feature of this model is the existence of spin-correlated hoppings of the current carriers between distant cells. Numerical calculations of the spectrum of spin-electron excitations highlight the important role of the long-range spin-correlated hoppings.

  9. Effective interaction of electroweak-interacting dark matter with Higgs boson and its phenomenology

    NASA Astrophysics Data System (ADS)

    Hisano, Junji; Kobayashi, Daiki; Mori, Naoya; Senaha, Eibun

    2015-03-01

    We study phenomenology of electroweak-interacting fermionic dark matter (DM) with a mass of O (100) GeV. Constructing the effective Lagrangian that describes the interactions between the Higgs boson and the SU (2)L isospin multiplet fermion, we evaluate the electric dipole moment (EDM) of electron, the signal strength of Higgs boson decay to two photons and the spin-independent elastic-scattering cross section with proton. As representative cases, we consider the SU (2)L triplet fermions with zero/nonzero hypercharges and SU (2)L doublet fermion. It is found that the electron EDM gives stringent constraints on those model parameter spaces. In the cases of the triplet fermion with zero hypercharge and the doublet fermion, the Higgs signal strength does not deviate from the standard model prediction by more than a few % once the current DM direct detection constraint is taken into account, even if the CP violation is suppressed. On the contrary, O (10- 20)% deviation may occur in the case of the triplet fermion with nonzero hypercharge. Our representative scenarios may be tested by the future experiments.

  10. Transverse Momentum Distributions of Electron in Simulated QED Model

    NASA Astrophysics Data System (ADS)

    Kaur, Navdeep; Dahiya, Harleen

    2018-05-01

    In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.

  11. Solution of the sign problem in the Potts model at fixed fermion number

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Bergner, Georg; Schaich, David; Wenger, Urs

    2018-06-01

    We consider the heavy-dense limit of QCD at finite fermion density in the canonical formulation and approximate it by a three-state Potts model. In the strong-coupling limit, the model is free of the sign problem. Away from the strong coupling, the sign problem is solved by employing a cluster algorithm which allows to average each cluster over the Z (3 ) sectors. Improved estimators for physical quantities can be constructed by taking into account the triality of the clusters, that is, their transformation properties with respect to Z (3 ) transformations.

  12. Search for Majorana Fermions in S-Wave Fermionic Superfluids

    DTIC Science & Technology

    2016-04-01

    Understanding and controlling bandstructure in new ways therefore allows access to new phenomena . Spin-orbit coupling (SOC) plays a fundamental role in most...gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any ...Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing

  13. Einstein-Podolsky-Rosen correlations in a hybrid system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caban, Pawel; Rembielinski, Jakub; Witas, Piotr

    2011-03-15

    We calculate the relativistic correlation function for a hybrid system of a photon and a Dirac particle. Such a system can be produced in decay of another spin-(1/2) fermion. We show that the relativistic correlation function, which depends on particle momenta, may have local extrema for fermion velocity of the order 0.5c. This influences the degree of violation of the Clauser-Horne-Shimony-Holt inequality.

  14. Persistence of the gapless spin liquid in the breathing kagome Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Iqbal, Yasir; Poilblanc, Didier; Thomale, Ronny; Becca, Federico

    2018-03-01

    The nature of the ground state of the spin S =1 /2 Heisenberg antiferromagnet on the kagome lattice with breathing anisotropy (i.e., with different superexchange couplings J▵ and J▿ within elementary up- and down-pointing triangles) is investigated within the framework of Gutzwiller projected fermionic wave functions and Monte Carlo methods. We analyze the stability of the U(1 ) Dirac spin liquid with respect to the presence of fermionic pairing that leads to a gapped Z2 spin liquid. For several values of the ratio J▿/J▵ , the size scaling of the energy gain due to the pairing fields and the variational parameters are reported. Our results show that the energy gain of the gapped spin liquid with respect to the gapless state either vanishes for large enough system size or scales to zero in the thermodynamic limit. Similarly, the optimized pairing amplitudes (responsible for opening the spin gap) are shown to vanish in the thermodynamic limit. Our outcome is corroborated by the application of one and two Lanczos steps to the gapless and gapped wave functions, for which no energy gain of the gapped state is detected when improving the quality of the variational states. Finally, we discuss the competition with the "simplex" Z2 resonating-valence-bond spin liquid, valence-bond crystal, and nematic states in the strongly anisotropic regime, i.e., J▿≪J▵ .

  15. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling.

    PubMed

    Mawrie, Alestin; Verma, Sonu; Ghosh, Tarun Kanti

    2017-10-25

    We investigate the effect of k-cubic spin-orbit interaction on the electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions [Formula: see text] with [Formula: see text]. We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of k-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of a quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in the low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant.

  16. Numerical analysis of spin-orbit-coupled one-dimensional Fermi gas in a magnetic field

    NASA Astrophysics Data System (ADS)

    Chan, Y. H.

    2015-06-01

    Based on the density-matrix renormalization group and the infinite time-evolving block decimation methods we study the interacting spin-orbit-coupled 1D Fermi gas in a transverse magnetic field. We find that the system with an attractive interaction can have a polarized insulator phase, a superconducting (SC) phase, a Luther-Emery (LE) phase, and a band insulator phase as we vary the chemical potential and the strength of the magnetic field. Spin-orbit coupling (SOC) enhances the triplet pairing order at zero momentum in both the SC and the LE phase, which leads to an algebraically decaying correlation with the same exponent as that of the singlet pairing one. In contrast to the Fulde-Ferrell-Larkin-Ovchinnikov phase found in the spin imbalanced system without SOC, pairings at finite momentum in these two phases have larger exponents hence do not dictate the long-range behavior. We also test for the presence of Majorana fermions in this system. Unlike results from the mean-field study, we do not find positive evidence of Majorana fermions.

  17. Fermions tunneling from a general static Riemann black hole

    NASA Astrophysics Data System (ADS)

    Chen, Ge-Rui; Huang, Yong-Chang

    2015-05-01

    In this paper we investigate the tunneling of fermions from a general static Riemann black hole by following Kerner and Mann (Class Quantum Gravit 25:095014, 2008a; Phys Lett B 665:277-283, 2008b) methods. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the Dirac equation, we obtain the standard Hawking temperature. Furthermore, Kerner and Mann (Class Quantum Gravit 25:095014, 2008a; Phys Lett B 665:277-283, 2008b) only calculated the tunneling spectrum of the Dirac particles with spin-up, and we extend the methods to investigate the tunneling of Dirac particles with arbitrary spin directions and also obtain the expected Hawking temperature. Our result provides further evidence for the universality of black hole radiation.

  18. Multi-component dark matter through a radiative Higgs portal

    DOE PAGES

    DiFranzo, Anthony; Univ. of California, Irvine, CA; Rutgers Univ., Piscataway, NJ; ...

    2017-01-18

    Here, we study a multi-component dark matter model where interactions with the Standard Model are primarily via the Higgs boson. The model contains vector-like fermions charged undermore » $$SU(2)_W \\times U(1)_Y$$ and under the dark gauge group, $$U(1)^\\prime$$. This results in two dark matter candidates. A spin-1 and a spin-1/2 candidate, which have loop and tree-level couplings to the Higgs, respectively. We explore the resulting effect on the dark matter relic abundance, while also evaluating constraints on the Higgs invisible width and from direct detection experiments. Generally, we find that this model is highly constrained when the fermionic candidate is the predominant fraction of the dark matter relic abundance.« less

  19. Electronic behavior of highly correlated metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reich, A.

    1988-10-01

    This thesis addresses the question of the strongly interacting many-body problem: that is, systems where the interparticle correlations are so strong as to defy perturbative approaches. These subtle correlations occur in narrow band materials, such as the lanthanides and actinides, wherein the f-electrons are so localized that a variety of new phenomena, including intermediate-valence and heavy-fermionic behavior, may occur. As well, one has the alloying problem, where local interactions are paramount in determining the overall behavior. The technique employed in dealing with these systems is the Small Cluster method, wherein the full many-body Hamiltonian for a small grouping of atoms,more » coupled with periodic boundary conditions, is solved exactly. This is tantamount to solving a bulk crystal at the high points of symmetry in the Brillouin Zone. The mathematical overhead is further reduced by employing the full space group and spin symmetries. By its very nature, the Small Cluster method is well able to handle short-range interactions, as well as the combinatorial complexity of the many-body problem, on an equal footing. The nature of long-range order and phase transition behavior cannot be incorporated, but sometimes clues as to their origin can be discerned. The calculations presented include: a two-band Anderson model for an intermediate-valence system, wherein photoemission and fluctuation behavior is examined; a single-band Hubbard model for a ternary alloy system, such as copper-silver-gold; and a Hubbard model for a heavy- fermion system, wherein Fermi surface, transport, magnetic and superconducting properties are discussed. 148 refs., 31 figs., 24 tabs.« less

  20. Hierarchy of low-energy models of the electronic structure of cuprate HTSCs: The role of long-range spin-correlated hops

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Mitskan, V. A.; Dzebisashvili, D. M.; Barabanov, A. F.

    2018-02-01

    It is shown that for the three-band Emery p-d-model that reflects the real structure of the CuO2-plane of high-temperature superconductors in the regime of strong electron correlations, it is possible to carry out a sequence of reductions to the effective models reproducing low-energy features of elementary excitation spectrum and revealing the spin-polaron nature of the Fermi quasiparticles. The first reduction leads to the spin-fermion model in which the subsystem of spin moments, coupled by the exchange interaction and localized on copper ions, strongly interacts with oxygen holes. The second reduction deals with the transformation from the spin-fermion model to the φ-d-exchange model. An important feature of this transformation is the large energy of the φ-d-exchange coupling, which leads to the formation of spin polarons. The use of this fact allows us to carry out the third reduction, resulting in the t ˜-J˜ *-I -model. Its distinctive feature is the importance of spin-correlated hops as compared to the role of such processes in the commonly used t-J*-model derived from the Hubbard model. Based on the comparative analysis of the spectrum of Fermi excitations calculated for the obtained effective models of the CuO2-plane of high-temperature superconductors, the important role of the usually ignored long-range spin-correlated hops is determined.

  1. Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions

    PubMed Central

    Hankiewicz, Ewelina M.; Culcer, Dimitrie

    2017-01-01

    Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions in Weyl semimetal thin films, taking into account both intrinsic and extrinsic spin-orbit interactions. The physics is governed by the complex interplay of the chiral spin texture, quasiparticle mass, and scalar and spin-orbit scattering. We demonstrate that terms linear in the extrinsic spin-orbit scattering are generally present in the Bloch and momentum relaxation times in all topological materials, and the correction to the diffusion constant is linear in the strength of the extrinsic spin-orbit. In topological insulators, which have zero quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to an observable density dependence in the weak antilocalization correction. They produce substantial qualitative modifications to the magnetoconductivity, differing greatly from the conventional Hikami-Larkin-Nagaoka formula traditionally used in experimental fits, which predicts a crossover from weak localization to antilocalization as a function of the extrinsic spin-orbit strength. In contrast, our analysis reveals that topological insulators always exhibit weak antilocalization. In Weyl semimetal thin films having intermediate to large values of the quasiparticle mass, we show that extrinsic spin-orbit scattering strongly affects the boundary of the weak localization to antilocalization transition. We produce a complete phase diagram for this transition as a function of the mass and spin-orbit scattering strength. Throughout the paper, we discuss implications for experimental work, and, at the end, we provide a brief comparison with transition metal dichalcogenides. PMID:28773167

  2. Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions.

    PubMed

    Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W; Glazman, Leonid I; von Oppen, Felix

    2016-12-23

    We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2π. This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8π-periodic (or Z_{4}) fractional Josephson effect in the context of recent experiments.

  3. Characterizing Higgs portal dark matter models at the ILC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamon, Teruki; Ko, P.; Li, Jinmian

    For this article, we study the dark matter (DM) discovery prospect and its spin discrimination in the theoretical framework of gauge invariant and renormalizable Higgs portal DM models at the ILC withmore » $$\\sqrt{s}$$= 500 GeV. In such models, the DM pair is produced in association with a Z boson. In the case of the singlet scalar DM, the mediator is just the SM Higgs boson, whereas for the fermion or vector DM there is an additional singlet scalar mediator that mixes with the SM Higgs boson, which produces significant observable differences. After careful investigation of the signal and backgrounds both at parton level and at detector level, we find the signal with hadronically decaying Z boson provides a better search sensitivity than the signal with leptonically decaying Z boson. Taking the fermion DM model as a benchmark scenario, when the DM-mediator coupling g χ is relatively small, the DM signals are discoverable only for benchmark points with relatively light scalar mediator H 2. The spin discriminating from scalar DM is always promising, while it is difficult to discriminate from vector DM. As for g χ approaching the perturbative limit, benchmark points with the mediator H 2 in the full mass region of interest are discoverable. The spin discriminating aspects from both the scalar and the fermion DM are quite promising.« less

  4. Characterizing Higgs portal dark matter models at the ILC

    DOE PAGES

    Kamon, Teruki; Ko, P.; Li, Jinmian

    2017-09-27

    For this article, we study the dark matter (DM) discovery prospect and its spin discrimination in the theoretical framework of gauge invariant and renormalizable Higgs portal DM models at the ILC withmore » $$\\sqrt{s}$$= 500 GeV. In such models, the DM pair is produced in association with a Z boson. In the case of the singlet scalar DM, the mediator is just the SM Higgs boson, whereas for the fermion or vector DM there is an additional singlet scalar mediator that mixes with the SM Higgs boson, which produces significant observable differences. After careful investigation of the signal and backgrounds both at parton level and at detector level, we find the signal with hadronically decaying Z boson provides a better search sensitivity than the signal with leptonically decaying Z boson. Taking the fermion DM model as a benchmark scenario, when the DM-mediator coupling g χ is relatively small, the DM signals are discoverable only for benchmark points with relatively light scalar mediator H 2. The spin discriminating from scalar DM is always promising, while it is difficult to discriminate from vector DM. As for g χ approaching the perturbative limit, benchmark points with the mediator H 2 in the full mass region of interest are discoverable. The spin discriminating aspects from both the scalar and the fermion DM are quite promising.« less

  5. Physical states and finite-size effects in Kitaev's honeycomb model: Bond disorder, spin excitations, and NMR line shape

    NASA Astrophysics Data System (ADS)

    Zschocke, Fabian; Vojta, Matthias

    2015-07-01

    Kitaev's compass model on the honeycomb lattice realizes a spin liquid whose emergent excitations are dispersive Majorana fermions and static Z2 gauge fluxes. We discuss the proper selection of physical states for finite-size simulations in the Majorana representation, based on a recent paper by F. L. Pedrocchi, S. Chesi, and D. Loss [Phys. Rev. B 84, 165414 (2011), 10.1103/PhysRevB.84.165414]. Certain physical observables acquire large finite-size effects, in particular if the ground state is not fermion-free, which we prove to generally apply to the system in the gapless phase and with periodic boundary conditions. To illustrate our findings, we compute the static and dynamic spin susceptibilities for finite-size systems. Specifically, we consider random-bond disorder (which preserves the solubility of the model), calculate the distribution of local flux gaps, and extract the NMR line shape. We also predict a transition to a random-flux state with increasing disorder.

  6. Magnetic manipulation of topological states in p-wave superconductors

    NASA Astrophysics Data System (ADS)

    Mercaldo, Maria Teresa; Cuoco, Mario; Kotetes, Panagiotis

    2018-05-01

    Substantial experimental investigation has provided evidence for spin-triplet pairing in diverse classes of materials and in a variety of artificial heterostructures. One of the fundamental challenges in this framework is how to manipulate the topological behavior of p-wave superconductors (PSC). In this work we investigate the magnetic field response of one-dimensional (1d) PSCs and we focus on the relation between the structure of the Cooper pair spin-configuration and the occurrence of topological phases with an enhanced number N of Majorana fermions per edge. The topological phase diagram, consisting of phases harboring Majorana modes, becomes significantly modified when one tunes the strength of the applied field, the direction of the d-vector and allows for long range hopping amplitudes in the 1d PSC. We find transitions between phases with different number N of Majorana fermions per edge and we show how they can be both induced by a variation of the hopping strength and a spin rotation of d.

  7. Pairing Instability and Quasiparticle Properties of an Unconventional Superconductor with a Skyrmion Texture of Localized Spins

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Xin; Tai, Yuan-Yen

    Majorana fermions are believed to perform better than regular fermions in keeping quantum coherence, which is an important factor for quantum computation. Recently there has been intensive interest in their realization in solid-state systems. Zero-energy quasiparticle modes in a superconductor serve as a promising candidate. We present a theoretical study on the influence of a two-dimensional (2D) skyrmion texture of localized spins on the pairing instability and quasiparticle properties in an unconventional superconductor. By solving the Bogoliubov-de Gennes equations for an effective BCS model Hamiltonian with nearest-neighbor pairing interaction on a 2D square lattice, we analyze the spatial dependence of superconducting order parameter for varying strength of spin-exchange interaction. The quasiparticle properties are studied by calculating local density of states and its spatial dependence. This work was supported by U.S. DOE NNSA through the LANL LDRD Program, and by Center for Integrated Nanotechnologies, a U.S. DOE BES user facility.

  8. Topological nodal-line fermions in spin-orbit metal PbTaSe2

    PubMed Central

    Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M. Zahid

    2016-01-01

    Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems. PMID:26829889

  9. Augury of darkness: the low-mass dark Z' portal

    DOE PAGES

    Alves, Alexandre; Arcadi, Giorgio; Mambrini, Yann; ...

    2017-04-28

    Dirac fermion dark matter models with heavy Z' mediators are subject to stringent constraints from spin-independent direct searches and from LHC bounds, cornering them to live near the Z' resonance. Such constraints can be relaxed, however, by turning off the vector coupling to Standard Model fermions, thus weakening direct detection bounds, or by resorting to light Z' masses, below the Z pole, to escape heavy resonance searches at the LHC. In this work we investigate both cases, as well as the applicability of our findings to Majorana dark matter. We derive collider bounds for light Z' gauge bosons using themore » CL S method, spin-dependent scattering limits, as well as the spin-independent scattering rate arising from the evolution of couplings between the energy scale of the mediator mass and the nuclear energy scale, and indirect detection limits. In conclusion, we show that such scenarios are still rather constrained by data, and that near resonance they could accommodate the gamma-ray GeV excess in the Galactic center.« less

  10. Routes to heavy-fermion superconductivity

    NASA Astrophysics Data System (ADS)

    Steglich, F.; Stockert, O.; Wirth, S.; Geibel, C.; Yuan, H. Q.; Kirchner, S.; Si, Q.

    2013-07-01

    Superconductivity in lanthanide- and actinide-based heavy-fermion (HF) metals can have different microscopic origins. Among others, Cooper pair formation based on fluctuations of the valence, of the quadrupole moment or of the spin of the localized 4f/5f shell have been proposed. Spin-fluctuation mediated superconductivity in CeCu2Si2 was demonstrated by inelastic neutron scattering to exist in the vicinity of a spin-density-wave (SDW) quantum critical point (QCP). The isostructural HF compound YbRh2Si2 which is prototypical for a Kondo-breakdown QCP has so far not shown any sign of superconductivity down to T ≈ 10 mK. In contrast, results of de-Haas-van-Alphen experiments by Shishido et al. (J. Phys. Soc. Jpn. 74, 1103 (2005)) suggest superconductivity in CeRhIn5 close to an antiferromagnetic QCP beyond the SDW type, at which the Kondo effect breaks down. For the related compound CeCoIn5 however, a field-induced QCP of SDW type is extrapolated to exist inside the superconducting phase.

  11. Neutron scattering in the proximate quantum spin liquid α-RuCl3

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A.; Stone, Matthew B.; Lumsden, Mark D.; Mandrus, David G.; Tennant, David A.; Moessner, Roderich; Nagler, Stephen E.

    2017-06-01

    The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials.

  12. Spin connection as Lorentz gauge field in Fairchild’s action

    NASA Astrophysics Data System (ADS)

    Cianfrani, Francesco; Montani, Giovanni; Scopelliti, Vincenzo

    2016-06-01

    We propose a modified gravitational action containing besides the Einstein-Cartan term some quadratic contributions resembling the Yang-Mills Lagrangian for the Lorentz spin connections. We outline how a propagating torsion arises and we solve explicitly the linearized equations of motion on a Minkowski background. We identify among torsion components six degrees of freedom: one is carried by a pseudo-scalar particle, five by a tachyon field. By adding spinor fields and neglecting backreaction on the geometry, we point out how only the pseudo-scalar particle couples directly with fermions, but the resulting coupling constant is suppressed by the ratio between fermion and Planck masses. Including backreaction, we demonstrate how the tachyon field provides causality violation in the matter sector, via an interaction mediated by gravitational waves.

  13. Protocol for fermionic positive-operator-valued measures

    NASA Astrophysics Data System (ADS)

    Arvidsson-Shukur, D. R. M.; Lepage, H. V.; Owen, E. T.; Ferrus, T.; Barnes, C. H. W.

    2017-11-01

    In this paper we present a protocol for the implementation of a positive-operator-valued measure (POVM) on massive fermionic qubits. We present methods for implementing nondispersive qubit transport, spin rotations, and spin polarizing beam-splitter operations. Our scheme attains linear opticslike control of the spatial extent of the qubits by considering ground-state electrons trapped in the minima of surface acoustic waves in semiconductor heterostructures. Furthermore, we numerically simulate a high-fidelity POVM that carries out Procrustean entanglement distillation in the framework of our scheme, using experimentally realistic potentials. Our protocol can be applied not only to pure ensembles with particle pairs of known identical entanglement, but also to realistic ensembles of particle pairs with a distribution of entanglement entropies. This paper provides an experimentally realizable design for future quantum technologies.

  14. Yang-Mills matrix mechanics and quantum phases

    NASA Astrophysics Data System (ADS)

    Pandey, Mahul; Vaidya, Sachindeo

    The SU(2) Yang-Mills matrix model coupled to fundamental fermions is studied in the adiabatic limit, and quantum critical behavior is seen at special corners of the gauge field configuration space. The quantum scalar potential for the gauge field induced by the fermions diverges at the corners, and is intimately related to points of enhanced degeneracy of the fermionic Hamiltonian. This in turn leads to superselection sectors in the Hilbert space of the gauge field, the ground states in different sectors being orthogonal to each other. The SU(2) Yang-Mills matrix model coupled to two Weyl fermions has three quantum phases. When coupled to a massless Dirac fermion, the number of quantum phases is four. One of these phases is the color-spin locked phase. This paper is an extended version of the lectures given by the second author (SV) at the International Workshop on Quantum Physics: Foundations and Applications, Bangalore, in February 2016, and is based on [1].

  15. Strings, boundary fermions and coincident D-branes

    NASA Astrophysics Data System (ADS)

    Wulff, Linus

    2007-01-01

    This thesis describes an attempt to write down covariant actions for coincident D-branes using so-called boundary fermions instead of matrices to describe the non-abelian fields. These fermions can be thought of as Chan-Paton degrees of freedom for the open string. It is shown that by gauge-fixing and by suitably quantizing these boundary fermions the non-abelian action that is known, the Myers action, can be reproduced. Furthermore it is shown that under natural assumptions, unlike the Myers action, the action formulated using boundary fermions also posseses kappa-symmetry when formulated on superspace. Another aspect of string theory discussed in this thesis is that of tensionless strings. These are of great interest for example because of their possible relation to higher spin gauge theories via the AdS/CFT-correspondence. The tensionless superstring in a plane wave background, a Penrose limit of the near-horizon geometry of a stack of D3-branes, is considered and compared to the tensile case.

  16. Multipartite entanglement in fermionic systems via a geometric measure

    NASA Astrophysics Data System (ADS)

    Lari, Behzad; Durganandini, P.; Joag, Pramod S.

    2010-12-01

    We study multipartite entanglement in a system consisting of indistinguishable fermions. Specifically, we have proposed a geometric entanglement measure for N spin-(1)/(2) fermions distributed over 2L modes (single-particle states). The measure is defined on the 2L qubit space isomorphic to the Fock space for 2L single-particle states. This entanglement measure is defined for a given partition of 2L modes containing m⩾2 subsets. Thus this measure applies to m⩽2L partite fermionic systems where L is any finite number, giving the number of sites. The Hilbert spaces associated with these subsets may have different dimensions. Further, we have defined the local quantum operations with respect to a given partition of modes. This definition is generic and unifies different ways of dividing a fermionic system into subsystems. We have shown, using a representative case, that the geometric measure is invariant under local unitary operators corresponding to a given partition. We explicitly demonstrate the use of the measure to calculate multipartite entanglement in some correlated electron systems.

  17. Topological superconductors: a review.

    PubMed

    Sato, Masatoshi; Ando, Yoichi

    2017-07-01

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  18. Topological superconductors: a review

    NASA Astrophysics Data System (ADS)

    Sato, Masatoshi; Ando, Yoichi

    2017-07-01

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  19. Antiferromagnetism, confinement and spin response in the QED(3) effective theory of high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Seradjeh, Babak Hosseyni

    In this thesis, we study the effective theory of a phase-fluctuating d-wave superconductor at zero temperature, formulated by quantum electrodynamics in three space-time dimensions (QED3). This theory describes the quantum critical behaviour in underdoped high-temperature superconductors in terms of an emergent gauge field. The gauge field couples minimally to nodal spin degrees of freedom (spinons) at low energies. It is massive in the superconductor but exhibits Maxwell dynamics when superconductivity is destroyed by strong phase fluctuations of the Cooper pairs. We show that, when dynamical chiral symmetry breaking in QED3 is supplemented by residual interactions, namely, the velocity anisotropy around the nodes, short-range repulsion between electrons, and nonlinear effects of dispersion (all irrelevant for the critical behaviour itself), the loss of superconductivity gives rise to an antiferromagnetic state, in accord with observation. Then, we turn to the problem of confinement of spinons outside the superconducting phase. We assume that the gauge group is a compact U(1) and, thus, allows for monopole configurations. In the absence of fermions, the interaction between monopoles is Coulombic, monopoles form a free plasma, and static fermionic charge is confined for all values of the gauge coupling by a linear potential mediated by free monopoles. We show that this permanent confinement survives in the presence of dynamical fermionic matter. This work comprises three separate studies. We first support our claim, for relativistic fermions, by an electrostatic study of the monopole gas. This is backed up by a controlled renormalization group analysis on the equivalent sine-Gordon theory. In the second study, we extend these findings to the non-relativistic case, with a spinon Fermi surface. In the last study, we provide a variational approach to the problem, in agreement with our other works. Finally, we focus our attention on the more practical application of the QED3 theory to spin response in the superconductor, relevant for neutron scattering measurements. We show that the theory explains the observed spin gap numerically and the evolution of the response in energy and momenta qualitatively. We study the issue of resonance in these measurements by developing a formalism for exciton bound states. Keywords. High-temperature superconductivity; Antiferromagnetism; Spinons; Spin response; Three-dimensional quantum electrodynamics; Chiral symmetry breaking; Confinement; Duality transformation; renormalization group; Variational methods;

  20. Electron spin resonance shifts in S=1 antiferromagnetic chains

    NASA Astrophysics Data System (ADS)

    Furuya, Shunsuke C.; Maeda, Yoshitaka; Oshikawa, Masaki

    2013-03-01

    We discuss electron spin resonance (ESR) shifts in spin-1 Heisenberg antiferromagnetic chains with a weak single-ion anisotropy, based on several effective field theories: the O(3) nonlinear sigma model (NLSM) in the Haldane phase, free-fermion theories around the lower and the upper critical fields. In the O(3) NLSM, the single-ion anisotropy corresponds to a composite operator which creates two magnons at the same time and position. Therefore, even inside a parameter range where free magnon approximation is valid for thermodynamics, we have to take interactions among magnons into account in order to include the single-ion anisotropy as a perturbation. Although the O(3) NLSM is only valid in the Haldane phase, an appropriate translation of Faddeev-Zamolodchikov operators of the O(3) NLSM to fermion operators enables one to treat ESR shifts near the lower critical field in a similar manner to discussions in the Haldane phase. Our theory gives quantitative agreements with a numerical evaluation using quantum Monte Carlo simulation, and also with recent ESR experimental results on a spin-1 chain compound Ni(C5H14N2)2N3(PF6).

  1. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling.

    PubMed

    Mawrie, Alestin; Verma, Sonu; Ghosh, Tarun Kanti

    2017-09-01

    We investigate effect of <i>k</i>-cubic spin-orbit interaction on electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions θ = (2n+1)π/3 with n=1,2,3. We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of <i>k</i>-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant. © 2017 IOP Publishing Ltd.

  2. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Mawrie, Alestin; Verma, Sonu; Kanti Ghosh, Tarun

    2017-11-01

    We investigate the effect of k-cubic spin-orbit interaction on the electrical and thermoelectric transport properties of two-dimensional fermionic systems. We obtain exact analytical expressions of the inverse relaxation time (IRT) and the Drude conductivity for long-range Coulomb and short-range delta scattering potentials. The IRT reveals that the scattering is completely suppressed along the three directions θ^\\prime = (2n+1)π/3 with n=1, 2, 3 . We also obtain analytical results of the thermopower and thermal conductivity at low temperature. The thermoelectric transport coefficients obey the Wiedemann-Franz law, even in the presence of k-cubic Rashba spin-orbit interaction (RSOI) at low temperature. In the presence of a quantizing magnetic field, the signature of the RSOI is revealed through the appearance of the beating pattern in the Shubnikov-de Haas (SdH) oscillations of thermopower and thermal conductivity in the low magnetic field regime. The empirical formulae for the SdH oscillation frequencies accurately describe the locations of the beating nodes. The beating pattern in magnetothermoelectric measurement can be used to extract the spin-orbit coupling constant.

  3. Engineering frequency-dependent superfluidity in Bose-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Arzamasovs, Maksims; Liu, Bo

    2018-04-01

    Unconventional superconductivity and superfluidity are among the most exciting and fascinating quantum phenomena in condensed-matter physics. Usually such states are characterized by nontrivial spin or spatial symmetry of the pairing order parameter, such as "spin triplet" or "p wave." However, besides spin and spatial dependence the order parameter may have unconventional frequency dependence which is also permitted by Fermi-Dirac statistics. Odd-frequency fermionic pairing is an exciting paradigm when discussing exotic superfluidity or superconductivity and is yet to be realized in experiments. In this paper we propose a symmetry-based method of controlling frequency dependence of the pairing order parameter via manipulating the inversion symmetry of the system. First, a toy model is introduced to illustrate that frequency dependence of the order parameter can be achieved through our proposed approach. Second, by taking advantage of recent rapid developments in producing spin-orbit-coupled dispersions in ultracold gases, we propose a Bose-Fermi mixture to realize such frequency-dependent superfluid. The key idea is introducing the frequency-dependent attraction between fermions mediated by Bogoliubov phonons with asymmetric dispersion. Our proposal should pave an alternative way for exploring frequency-dependent superfluids with cold atoms.

  4. The classical and quantum dynamics of molecular spins on graphene.

    PubMed

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  5. The classical and quantum dynamics of molecular spins on graphene

    NASA Astrophysics Data System (ADS)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  6. Exact solutions for a type of electron pairing model with spin-orbit interactions and Zeeman coupling.

    PubMed

    Liu, Jia; Han, Qiang; Shao, L B; Wang, Z D

    2011-07-08

    A type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson ansatz. Based on the exact solutions for the case with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p + ip wave and the ground state possesses time-reversal symmetry, regardless of the strength of the pairing interaction. Intriguingly, how Majorana fermions can emerge in the system is also elaborated. Exact results are illustrated for two systems, respectively, with spin-orbit interactions and Zeeman coupling.

  7. Anisotropy of Spin Fluctuations in a Tetragonal Heavy Fermion Antiferromagnet CeRhAl 4 Si 2

    DOE PAGES

    Sakai, H.; Hattori, T.; Tokunaga, Y.; ...

    2017-06-01

    An antiferromagnetic (AFM) Kondo lattice compound CeRhAl 4Si 2, which exhibits successive AFM transitions at T N1=14 K and T N2=9 K in zero external field, has been microscopically investigated by means of 27Al nuclear magnetic resonance (NMR) technique. In the high temperature range, magnetic excitations of 4f electrons can be well explained by isotropic localized spin fluctuations. Below ~50 K, it begins to show a characteristic anisotropy of spin fluctuations, which suggests a competition between spin fluctuations and nesting instability in this system.

  8. Nonequilibrium Phase Transition in a Periodically Driven XY Spin Chain

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž; Ilievski, Enej

    2011-08-01

    We present a general formulation of Floquet states of periodically time-dependent open Markovian quasifree fermionic many-body systems in terms of a discrete Lyapunov equation. Illustrating the technique, we analyze periodically kicked XY spin-(1)/(2) chain which is coupled to a pair of Lindblad reservoirs at its ends. A complex phase diagram is reported with reentrant phases of long range and exponentially decaying spin-spin correlations as some of the system’s parameters are varied. The structure of phase diagram is reproduced in terms of counting nontrivial stationary points of Floquet quasiparticle dispersion relation.

  9. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions.

    PubMed

    Masuda, Hidetoshi; Sakai, Hideaki; Tokunaga, Masashi; Yamasaki, Yuichi; Miyake, Atsushi; Shiogai, Junichi; Nakamura, Shintaro; Awaji, Satoshi; Tsukazaki, Atsushi; Nakao, Hironori; Murakami, Youichi; Arima, Taka-hisa; Tokura, Yoshinori; Ishiwata, Shintaro

    2016-01-01

    For the innovation of spintronic technologies, Dirac materials, in which low-energy excitation is described as relativistic Dirac fermions, are one of the most promising systems because of the fascinating magnetotransport associated with extremely high mobility. To incorporate Dirac fermions into spintronic applications, their quantum transport phenomena are desired to be manipulated to a large extent by magnetic order in a solid. We report a bulk half-integer quantum Hall effect in a layered antiferromagnet EuMnBi2, in which field-controllable Eu magnetic order significantly suppresses the interlayer coupling between the Bi layers with Dirac fermions. In addition to the high mobility of more than 10,000 cm(2)/V s, Landau level splittings presumably due to the lifting of spin and valley degeneracy are noticeable even in a bulk magnet. These results will pave a route to the engineering of magnetically functionalized Dirac materials.

  10. Cosmological singularities and bounce in Cartan-Einstein theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucat, Stefano; Prokopec, Tomislav, E-mail: s.lucat@students.uu.nl, E-mail: t.prokopec@uu.nl

    We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh ( in-in ) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins inmore » a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce . We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).« less

  11. Cosmological singularities and bounce in Cartan-Einstein theory

    NASA Astrophysics Data System (ADS)

    Lucat, Stefano; Prokopec, Tomislav

    2017-10-01

    We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh (in-in) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins in a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce. We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).

  12. Magnetic Dirac Fermions and Chern Insulator Supported on Pristine Silicon Surface

    NASA Astrophysics Data System (ADS)

    Fu, Huixia; Liu, Zheng; Sun, Jia-Tao; Meng, Sheng

    Emergence of ferromagnetism in non-magnetic semiconductors is strongly desirable, especially in topological materials thanks to the possibility to achieve quantum anomalous Hall effect. Based on first principles calculations, we propose that for Si thin film grown on metal substrate, the pristine Si(111)-r3xr3 surface with a spontaneous weak reconstruction has a strong tendency of ferromagnetism and nontrivial topological properties, characterized by spin polarized Dirac-fermion surface states. In contrast to conventional routes relying on introduction of alien charge carriers or specially patterned substrates, the spontaneous magnetic order and spin-orbit coupling on the pristine silicon surface together gives rise to quantized anomalous Hall effect with a finite Chern number C = -1. This work suggests exciting opportunities in silicon-based spintronics and quantum computing free from alien dopants or proximity effects.

  13. Quantum entanglement and quantum information in biological systems (DNA)

    NASA Astrophysics Data System (ADS)

    Hubač, Ivan; Švec, Miloslav; Wilson, Stephen

    2017-12-01

    Recent studies of DNA show that the hydrogen bonds between given base pairs can be treated as diabatic systems with spin-orbit coupling. For solid state systems strong diabaticity and spin-orbit coupling the possibility of forming Majorana fermions has been discussed. We analyze the hydrogen bonds in the base pairs in DNA from this perspective. Our analysis is based on a quasiparticle supersymmetric transformation which couples electronic and vibrational motion and includes normal coordinates and the corresponding momenta. We define qubits formed by Majorana fermions in the hydrogen bonds and also discuss the entangled states in base pairs. Quantum information and quantum entropy are introduced. In addition to the well-known classical information connected with the DNA base pairs, we also consider quantum information and show that the classical and quantum information are closely connected.

  14. Out-of-time-ordered correlators in a quantum Ising chain

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Ju; Motrunich, Olexei I.

    2018-04-01

    Out-of-time-ordered correlators (OTOC) have been proposed to characterize quantum chaos in generic systems. However, they can also show interesting behavior in integrable models, resembling the OTOC in chaotic systems in some aspects. Here we study the OTOC for different operators in the exactly-solvable one-dimensional quantum Ising spin chain. The OTOC for spin operators that are local in terms of the Jordan-Wigner fermions has a "shell-like" structure: After the wavefront passes, the OTOC approaches its original value in the long-time limit, showing no signature of scrambling; the approach is described by a t-1 power law at long time t . On the other hand, the OTOC for spin operators that are nonlocal in the Jordan-Wigner fermions has a "ball-like" structure, with its value reaching zero in the long-time limit, looking like a signature of scrambling; the approach to zero, however, is described by a slow power law t-1 /4 for the Ising model at the critical coupling. These long-time power-law behaviors in the lattice model are not captured by conformal field theory calculations. The mixed OTOC with both local and nonlocal operators in the Jordan-Wigner fermions also has a "ball-like" structure, but the limiting values and the decay behavior appear to be nonuniversal. In all cases, we are not able to define a parametrically large window around the wavefront to extract the Lyapunov exponent.

  15. General Lagrangian formulation for higher spin fields with arbitrary index symmetry. 2. Fermionic fields

    NASA Astrophysics Data System (ADS)

    Reshetnyak, A.

    2013-04-01

    We continue the construction of a Lagrangian description of irreducible half-integer higher-spin representations of the Poincare group with an arbitrary Young tableaux having k rows, on a basis of the BRST-BFV approach suggested for bosonic fields in our first article [I.L. Buchbinder, A. Reshetnyak, Nucl. Phys. B 862 (2012) 270, arXiv:1110.5044 [hep-th

  16. Nanoscale Measurements of Magnetism & Spin Coherence in Semiconductors

    DTIC Science & Technology

    2015-12-17

    superconductor created by magnetic defects. These energy-resolved studies are distinct from typical spin-selective measurements performed previously using...MacDonald, B. A. Bernevig, A. Yazdani. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor , Science, (10 2014): 602... superconductor , Physical Review B, (07 2013): 0. doi: 10.1103/PhysRevB.88.020407 TOTAL: 4 Number of Papers published in peer-reviewed journals

  17. Extended nuclear quadrupole resonance study of the heavy-fermion superconductor PuCoGa5

    NASA Astrophysics Data System (ADS)

    Koutroulakis, G.; Yasuoka, H.; Tobash, P. H.; Mitchell, J. N.; Bauer, E. D.; Thompson, J. D.

    2016-10-01

    PuCoGa5 has emerged as a prototypical heavy-fermion superconductor, with its transition temperature (Tc≃18.5 K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutonium's 5 f valence electrons. Here, we present a detailed Ga,7169 nuclear quadrupole resonance (NQR) study of PuCoGa5, concentrating on the system's normal state properties near to Tc and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographically inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6-300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn5. These findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.

  18. Extended nuclear quadrupole resonance study of the heavy-fermion superconductor PuCoGa 5

    DOE PAGES

    Koutroulakis, Georgios; Yasuoka, Hiroshi; Tobash, Paul H.; ...

    2016-10-10

    PuCoGa 5 has emerged as a prototypical heavy-fermion superconductor, with its transition temperature (T c ≃ 18.5 K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutonium's 5f valence electrons. Here, we present a detailed 69,71Ga nuclear quadrupole resonance (NQR) study of PuCoGa 5, concentrating on the system's normal state properties near to T c and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographicallymore » inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6–300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn 5. Lastly, these findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.« less

  19. Complementary views on electron spectra: From fluctuation diagnostics to real-space correlations

    NASA Astrophysics Data System (ADS)

    Gunnarsson, O.; Merino, J.; Schäfer, T.; Sangiovanni, G.; Rohringer, G.; Toschi, A.

    2018-03-01

    We study the relation between the microscopic properties of a many-body system and the electron spectra, experimentally accessible by photoemission. In a recent paper [O. Gunnarsson et al., Phys. Rev. Lett. 114, 236402 (2015), 10.1103/PhysRevLett.114.236402], we introduced the "fluctuation diagnostics" approach to extract the dominant wave-vector-dependent bosonic fluctuations from the electronic self-energy. Here, we first reformulate the theory in terms of fermionic modes to render its connection with resonance valence bond (RVB) fluctuations more transparent. Second, by using a large-U expansion, where U is the Coulomb interaction, we relate the fluctuations to real-space correlations. Therefore, it becomes possible to study how electron spectra are related to charge, spin, superconductivity, and RVB-like real-space correlations, broadening the analysis of an earlier work [J. Merino and O. Gunnarsson, Phys. Rev. B 89, 245130 (2014), 10.1103/PhysRevB.89.245130]. This formalism is applied to the pseudogap physics of the two-dimensional Hubbard model, studied in the dynamical cluster approximation. We perform calculations for embedded clusters with up to 32 sites, having three inequivalent K points at the Fermi surface. We find that as U is increased, correlation functions gradually attain values consistent with an RVB state. This first happens for correlation functions involving the antinodal point and gradually spreads to the nodal point along the Fermi surface. Simultaneously, a pseudogap opens up along the Fermi surface. We relate this to a crossover from a Kondo-type state to an RVB-like localized cluster state and to the presence of RVB and spin fluctuations. These changes are caused by a strong momentum dependence in the cluster bath couplings along the Fermi surface. We also show, from a more algorithmic perspective, how the time-consuming calculations in fluctuation diagnostics can be drastically simplified.

  20. Out-of-equilibrium spin transport in mesoscopic superconductors.

    PubMed

    Quay, C H L; Aprili, M

    2018-08-06

    The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).

  1. Supersymmetric spin chains with nonmonotonic dispersion relation: Criticality and entanglement entropy.

    PubMed

    Carrasco, José A; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A

    2017-01-01

    We study the critical behavior and the ground-state entanglement of a large class of su(1|1) supersymmetric spin chains with a general (not necessarily monotonic) dispersion relation. We show that this class includes several relevant models, with both short- and long-range interactions of a simple form. We determine the low temperature behavior of the free energy per spin, and deduce that the models considered have a critical phase in the same universality class as a (1+1)-dimensional conformal field theory (CFT) with central charge equal to the number of connected components of the Fermi sea. We also study the Rényi entanglement entropy of the ground state, deriving its asymptotic behavior as the block size tends to infinity. In particular, we show that this entropy exhibits the logarithmic growth characteristic of (1+1)-dimensional CFTs and one-dimensional (fermionic) critical lattice models, with a central charge consistent with the low-temperature behavior of the free energy. Our results confirm the widely believed conjecture that the critical behavior of fermionic lattice models is completely determined by the topology of their Fermi surface.

  2. Threshold singularities in a Fermi gas with attractive potential in one dimension

    DOE PAGES

    Schlottmann, P.; Zvyagin, A. A.

    2015-01-15

    We consider the one-dimensional gas of fermions with spin S interacting via an attractive δ-function potential using the Bethe Ansatz solution. In zero magnetic field the atoms form bound states of N=2S + 1 fermions, i.e. generalized Cooper states with each atom having a different spin component. For low energy excitations the system is a Luttinger liquid and is properly described by a conformal field theory with conformal charge c=1. The linear dispersion of a Luttinger liquid is asymptotically exact in the low-energy limit where the band curvature terms in the dispersion are irrelevant. For higher energy excitations, however, themore » spectral function displays deviations in the neighborhood of the single-particle (hole) energy, which can be described by an effective X-ray edge type model. Using the Bethe Ansatz solution we obtain expressions for the critical exponents for the single-particle (hole) Green’s function. This model can be relevant in the context of ultracold atoms with effective total spin S confined to an elongated optical trap.« less

  3. Glue Spin and Helicity in the Proton from Lattice QCD.

    PubMed

    Yang, Yi-Bo; Sufian, Raza Sabbir; Alexandru, Andrei; Draper, Terrence; Glatzmaier, Michael J; Liu, Keh-Fei; Zhao, Yong

    2017-03-10

    We report the first lattice QCD calculation of the glue spin in the nucleon. The lattice calculation is carried out with valence overlap fermions on 2+1 flavor domain-wall fermion gauge configurations on four lattice spacings and four volumes including an ensemble with physical values for the quark masses. The glue spin S_{G} in the Coulomb gauge in the modified minimal subtraction (MS[over ¯]) scheme is obtained with one-loop perturbative matching. We find the results fairly insensitive to lattice spacing and quark masses. We also find that the proton momentum dependence of S_{G} in the range 0≤|p[over →]|<1.5  GeV is very mild, and we determine it in the large-momentum limit to be S_{G}=0.251(47)(16) at the physical pion mass in the MS[over ¯] scheme at μ^{2}=10  GeV^{2}. If the matching procedure in large-momentum effective theory is neglected, S_{G} is equal to the glue helicity measured in high-energy scattering experiments.

  4. Topological nodal-line fermions in spin-orbit metal PbTaSe2

    DOE PAGES

    Bian, Guang; Chang, Tay-Rong; Sankar, Raman; ...

    2016-02-02

    Here we discuss how topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe 2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe 2 are not only protected by the reflection symmetry butmore » also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.« less

  5. Supersymmetric spin chains with nonmonotonic dispersion relation: Criticality and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Carrasco, José A.; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A.

    2017-01-01

    We study the critical behavior and the ground-state entanglement of a large class of su (1 |1 ) supersymmetric spin chains with a general (not necessarily monotonic) dispersion relation. We show that this class includes several relevant models, with both short- and long-range interactions of a simple form. We determine the low temperature behavior of the free energy per spin, and deduce that the models considered have a critical phase in the same universality class as a (1 +1 ) -dimensional conformal field theory (CFT) with central charge equal to the number of connected components of the Fermi sea. We also study the Rényi entanglement entropy of the ground state, deriving its asymptotic behavior as the block size tends to infinity. In particular, we show that this entropy exhibits the logarithmic growth characteristic of (1 +1 ) -dimensional CFTs and one-dimensional (fermionic) critical lattice models, with a central charge consistent with the low-temperature behavior of the free energy. Our results confirm the widely believed conjecture that the critical behavior of fermionic lattice models is completely determined by the topology of their Fermi surface.

  6. Momentum sharing in imbalanced Fermi systems

    NASA Astrophysics Data System (ADS)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  7. Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Systems, the Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.

    In this final report, we present preliminary results of ground state phases of interacting spinless Dirac fermions. The name "Dirac fermion" originates from the fact that low-energy excitations of electrons hopping on the honeycomb lattice are described by a relativistic Dirac equation. Dirac fermions have received much attention particularly after the seminal work of Haldale1 which shows that the quantum Hall physics can be realized on the honeycomb lattice without magnetic fields. Haldane's work later becomes the foundation of topological insulators (TIs). While the physics of TIs is based largely on spin-orbit coupled non-interacting electrons, it was conjectured that topologicalmore » insulators can be induced by strong correlations alone.« less

  8. Cooling schemes for two-component fermions in layered optical lattices

    NASA Astrophysics Data System (ADS)

    Goto, Shimpei; Danshita, Ippei

    2017-12-01

    Recently, a cooling scheme for ultracold atoms in a bilayer optical lattice has been proposed (A. Kantian et al., arXiv:1609.03579). In their scheme, the energy offset between the two layers is increased dynamically such that the entropy of one layer is transferred to the other layer. Using the full-Hilbert-space approach, we compute cooling dynamics subjected to the scheme in order to show that their scheme fails to cool down two-component fermions. We develop an alternative cooling scheme for two-component fermions, in which the spin-exchange interaction of one layer is significantly reduced. Using both full-Hilbert-space and matrix-product-state approaches, we find that our scheme can decrease the temperature of the other layer by roughly half.

  9. Fate of Majorana fermions and Chern numbers after a quantum quench.

    PubMed

    Sacramento, P D

    2014-09-01

    In the sequence of quenches to either nontopological phases or other topological phases, we study the stability of Majorana fermions at the edges of a two-dimensional topological superconductor with spin-orbit coupling and in the presence of a Zeeman term. Both instantaneous and slow quenches are considered. In the case of instantaneous quenches, the Majorana modes generally decay, but for a finite system there is a revival time that scales to infinity as the system size grows. Exceptions to this decaying behavior are found in some cases due to the presence of edge states with the same momentum in the final state. Quenches to a topological Z(2) phase reveal some robustness of the Majorana fermions in the sense that even though the survival probability of the Majorana state is small, it does not vanish. If the pairing is not aligned with the spin-orbit Rashba coupling, it is found that the Majorana fermions are fairly robust with a finite survival probability. It is also shown that the Chern number remains invariant after the quench, until the propagation of the mode along the transverse direction reaches the middle point, beyond which the Chern number fluctuates between increasing values. The effect of varying the rate of change in slow quenches is also analyzed. It is found that the defect production is nonuniversal and does not follow the Kibble-Zurek scaling with the quench rate, as obtained before for other systems with topological edge states.

  10. Pauli structures arising from confined particles interacting via a statistical potential

    NASA Astrophysics Data System (ADS)

    Batle, Josep; Ciftja, Orion; Farouk, Ahmed; Alkhambashi, Majid; Abdalla, Soliman

    2017-09-01

    There have been suggestions that the Pauli exclusion principle alone can lead a non-interacting (free) system of identical fermions to form crystalline structures dubbed Pauli crystals. Single-shot imaging experiments for the case of ultra-cold systems of free spin-polarized fermionic atoms in a two-dimensional harmonic trap appear to show geometric arrangements that cannot be characterized as Wigner crystals. This work explores this idea and considers a well-known approach that enables one to treat a quantum system of free fermions as a system of classical particles interacting with a statistical interaction potential. The model under consideration, though classical in nature, incorporates the quantum statistics by endowing the classical particles with an effective interaction potential. The reasonable expectation is that possible Pauli crystal features seen in experiments may manifest in this model that captures the correct quantum statistics as a first order correction. We use the Monte Carlo simulated annealing method to obtain the most stable configurations of finite two-dimensional systems of confined particles that interact with an appropriate statistical repulsion potential. We consider both an isotropic harmonic and a hard-wall confinement potential. Despite minor differences, the most stable configurations observed in our model correspond to the reported Pauli crystals in single-shot imaging experiments of free spin-polarized fermions in a harmonic trap. The crystalline configurations observed appear to be different from the expected classical Wigner crystal structures that would emerge should the confined classical particles had interacted with a pair-wise Coulomb repulsion.

  11. Avoided ferromagnetic quantum critical point: unusual short-range ordered state in CeFePO.

    PubMed

    Lausberg, S; Spehling, J; Steppke, A; Jesche, A; Luetkens, H; Amato, A; Baines, C; Krellner, C; Brando, M; Geibel, C; Klauss, H-H; Steglich, F

    2012-11-21

    Cerium 4f electronic spin dynamics in single crystals of the heavy-fermion system CeFePO is studied by means of ac susceptibility, specific heat, and muon-spin relaxation (μSR). Short-range static magnetism occurs below the freezing temperature T(g) ≈ 0.7 K, which prevents the system from accessing a putative ferromagnetic quantum critical point. In the μSR, the sample-averaged muon asymmetry function is dominated by strongly inhomogeneous spin fluctuations below 10 K and exhibits a characteristic time-field scaling relation expected from glassy spin dynamics, strongly evidencing cooperative and critical spin fluctuations. The overall behavior can be ascribed neither to canonical spin glasses nor other disorder-driven mechanisms.

  12. Entanglement in 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Matern, S.; Hermanns, M.

    2018-06-01

    Quantum spin liquids are highly fascinating quantum liquids in which the spin degrees of freedom fractionalize. An interesting class of spin liquids are the exactly solvable, three-dimensional Kitaev spin liquids. Their fractionalized excitations are Majonara fermions, which may exhibit a variety of topological band structures—ranging from topologically protected Weyl semi-metals over nodal semi-metals to systems with Majorana Fermi surfaces. We study the entanglement spectrum of such Kitaev spin liquids and verify that it is closely related to the topologically protected edge spectrum. Moreover, we find that in some cases the entanglement spectrum contains even more information about the topological features than the surface spectrum, and thus provides a simple and reliable tool to probe the topology of a system.

  13. Non-Abelian S =1 chiral spin liquid on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Xin; Tu, Hong-Hao; Wu, Ying-Hai; He, Rong-Qiang; Liu, Xiong-Jun; Zhou, Yi; Ng, Tai-Kai

    2018-05-01

    We study S =1 spin liquid states on the kagome lattice constructed by Gutzwiller-projected px+i py superconductors. We show that the obtained spin liquids are either non-Abelian or Abelian topological phases, depending on the topology of the fermionic mean-field state. By calculating the modular matrices S and T , we confirm that projected topological superconductors are non-Abelian chiral spin liquid (NACSL). The chiral central charge and the spin Hall conductance we obtained agree very well with the S O (3) 1 (or, equivalently, S U (2) 2 ) field-theory predictions. We propose a local Hamiltonian which may stabilize the NACSL. From a variational study, we observe a topological phase transition from the NACSL to the Z2 Abelian spin liquid.

  14. Tunneling topological vacua via extended operators: (Spin-)TQFT spectra and boundary deconfinement in various dimensions

    NASA Astrophysics Data System (ADS)

    Wang, Juven; Ohmori, Kantaro; Putrov, Pavel; Zheng, Yunqin; Wan, Zheyan; Guo, Meng; Lin, Hai; Gao, Peng; Yau, Shing-Tung

    2018-05-01

    Distinct quantum vacua of topologically ordered states can be tunneled into each other via extended operators. The possible applications include condensed matter and quantum cosmology. We present a straightforward approach to calculate the partition function on various manifolds and ground state degeneracy (GSD), mainly based on continuum/cochain topological quantum field theories (TQFTs), in any dimension. This information can be related to the counting of extended operators of bosonic/fermionic TQFTs. On the lattice scale, anyonic particles/strings live at the ends of line/surface operators. Certain systems in different dimensions are related to each other through dimensional reduction schemes, analogous to (de)categorification. Examples include spin TQFTs derived from gauging the interacting fermionic symmetry-protected topological states (with fermion parity {Z}_2^f) of symmetry groups {Z}_4× {Z}_2 and ({Z}_4)^2 in 3+1D, also {Z}_2 and ({Z}_2)^2 in 2+1D. Gauging the last three cases begets non-Abelian spin TQFTs (fermionic topological order). We consider situations where a TQFT lives on (1) a closed spacetime or (2) a spacetime with a boundary, such that the bulk and boundary are fully gapped and short- or long-range entangled (SRE/LRE). Anyonic excitations can be deconfined on the boundary. We introduce new exotic topological interfaces on which neither particle nor string excitations alone condense, but only fuzzy-composite objects of extended operators can end (e.g., a string-like composite object formed by a set of particles can end on a special 2+1D boundary of 3+1D bulk). We explore the relations between group extension constructions and partially breaking constructions (e.g., 0-form/higher-form/"composite" breaking) of topological boundaries, after gauging. We comment on the implications of entanglement entropy for some such LRE systems.

  15. Color superfluidity of neutral ultracold fermions in the presence of color-flip and color-orbit fields

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Doga Murat; Sá de Melo, C. A. R.

    2018-02-01

    We describe how color superfluidity is modified in the presence of color-flip and color-orbit fields in the context of ultracold atoms and discuss connections between this problem and that of color superconductivity in quantum chromodynamics. We study the case of s -wave contact interactions between different colors and we identify several superfluid phases, with five being nodal and one being fully gapped. When our system is described in a mixed-color basis, the superfluid order parameter tensor is characterized by six independent components with explicit momentum dependence induced by color-orbit coupling. The nodal superfluid phases are topological in nature and the low-temperature phase diagram of the color-flip field versus the interaction parameter exhibits a pentacritical point, where all five nodal color superfluid phases converge. These results are in sharp contrast to the case of zero color-flip and color-orbit fields, where the system has perfect U(3) symmetry and possesses a superfluid phase that is characterized by fully gapped quasiparticle excitations with a single complex order parameter with no momentum dependence and by inert unpaired fermions representing a nonsuperfluid component. In the latter case, just a crossover between a Bardeen-Cooper-Schrieffer and a Bose-Einstein-condensation superfluid occurs. Furthermore, we analyze the order parameter tensor in a total pseudospin basis, investigate its momentum dependence in the singlet, triplet, and quintet sectors, and compare the results with the simpler case of spin-1/2 fermions in the presence of spin-flip and spin-orbit fields, where only singlet and triplet channels arise. Finally, we analyze in detail spectroscopic properties of color superfluids in the presence of color-flip and color-orbit fields, such as the quasiparticle excitation spectrum, momentum distribution, and density of states to help characterize all the encountered topological quantum phases, which can be realized in fermionic isotopes of lithium, potassium, and ytterbium atoms with three internal states trapped.

  16. Positive parity states and some electromagnetic transition properties of even-odd europium isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazar, Harun Resit, E-mail: yazar@nevsehir.edu.tr

    2013-06-15

    The positive-parity low-spin states of even-odd Europium isotopes ({sup 151-155}Eu) were studied within the framework of the interacting boson-fermion model. The calculated positive low-spin state energy spectra of the odd Eu isotope were found to agree quite well with the experimental data. The B(E2) values were also calculated and it was found that the calculated positive-parity low-spin state energy spectra of the odd-A Eu isotopes agree quite well with the experimental data.

  17. Harmony of spinning conformal blocks

    NASA Astrophysics Data System (ADS)

    Schomerus, Volker; Sobko, Evgeny; Isachenkov, Mikhail

    2017-03-01

    Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.

  18. Ultracold collisions between spin-orbit-coupled dipoles: General formalism and universality

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Hougaard, Christiaan R.; Mulkerin, Brendan C.; Liu, Xia-Ji

    2018-04-01

    A theoretical study of the low-energy scattering properties of two aligned identical bosonic and fermionic dipoles in the presence of isotropic spin-orbit coupling is presented. A general treatment of particles with arbitrary (pseudo)spin is given in the framework of multichannel scattering. At ultracold temperatures and away from shape resonances or closed-channel dominated resonances, the cross section can be well described within the Born approximation to within corrections due to the s -wave scattering. We compare our findings with numerical calculations and find excellent agreement.

  19. Phase Diagram of Fractional Quantum Hall Effect of Composite Fermions in Multi-Component Systems

    NASA Astrophysics Data System (ADS)

    Coimbatore Balram, Ajit; Töke, Csaba; Wójs, Arkadiusz; Jain, Jainendra

    2015-03-01

    The fractional quantum Hall effect (FQHE) of composite fermions (CFs) produces delicate states arising from a weak residual interaction between CFs. We study the spin phase diagram of these states, motivated by the recent experimental observation by Liu et al. of several spin-polarization transitions at 4/5, 5/7, 6/5, 9/7, 7/9, 8/11 and 10/13 in GaAs systems. We show that the FQHE of CFs is much more prevalent in multicomponent systems, and consider the feasibility of such states for systems with N components for an SU(N) symmetric interaction. Our results apply to GaAs quantum wells, wherein electrons have two components, to AlAs quantum wells and graphene, wherein electrons have four components (two spins and two valleys), and to an H-terminated Si(111) surface, which can have six components. We provide a fairly comprehensive list of possible incompressible FQH states of CFs, their SU(N) spin content, their energies, and their phase diagram as a function of the generalized ``Zeeman'' energy. The results are in good agreement with available experiments. DOE Grant No. DE-SC0005042, Hungarian Scientific Research Funds No. K105149 (CT), the Polish NCN grant 2011/01/B/ST3/04504 and the EU Marie Curie Grant PCIG09-GA-2011-294186.

  20. Dual nature of 3 d electrons in YbT 2 Zn 20 (T = Co; Fe) evidenced by electron spin resonance

    DOE PAGES

    Ivanshin, V. A.; Litvinova, T. O.; Gimranova, K.; ...

    2015-03-18

    The electron spin resonance experiments were carried out in the single crystals YbFe 2Zn 20. The observed spin dynamics is compared with that in YbCo 2Zn 20 and Yb 2Co 12P 7 as well as with the data of inelastic neutron scattering and electronic band structure calculations. Our results provide direct evidence that 3d electrons are itinerant in YbFe 2Zn 20 and localized in YbCo 2Zn 20. Possible connection between spin paramagnetism of dense heavy fermion systems, quantum criticality effects, and ESR spectra is discussed.

  1. Electrical Detection of Charge-Current-Induced Spin Polarization Due to Spin-Momentum Locking in Bi2Se3

    DTIC Science & Technology

    2014-01-01

    Robinson2, Y. Liu3, L. Li3 and B. T. Jonker1* Topological insulators exhibit metallic surface states populated by massless Dirac fermions with spin...classic dichotomy of metals and semi- conductors1–4. Whereas the bulk states form a bandgap, the surface states form a Dirac cone similar to graphene (Fig...magnetoelectric coupling12. Examples of TI materials include Bi1–xSbx (ref. 4), Bi2Se3, Bi2Te3 and Sb2Te3 (refs 13–15). One of the most striking properties is spin

  2. Neutron scattering in the proximate quantum spin liquid α-RuCl3.

    PubMed

    Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A; Stone, Matthew B; Lumsden, Mark D; Mandrus, David G; Tennant, David A; Moessner, Roderich; Nagler, Stephen E

    2017-06-09

    The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl 3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl 3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials. Copyright © 2017, American Association for the Advancement of Science.

  3. Particle–hole ring diagrams for fermions in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, N., E-mail: nkaiser@ph.tum.de

    2014-11-15

    The set of particle–hole ring diagrams for a many-fermion system in two dimensions is studied. The complex-valued polarization function is derived in detail and shown to be expressible in terms of square-root functions. For a contact-interaction the perturbative contributions to the energy per particle Ē(k{sub f}) are calculated in a closed analytical form from third up to twelfth order. The resummation of the particle–hole ring diagrams to all orders is studied and a pronounced dependence on the dimensionless coupling parameter α is found. There is a substantial difference between the complete ring-sum with all exchange-type diagrams included and the standardmore » resummation of the leading n-ring diagrams only. The spin factor S{sub n}(g) associated to the nth order ring diagrams is derived for arbitrary spin-degeneracy g.« less

  4. Entanglement, replicas, and Thetas

    NASA Astrophysics Data System (ADS)

    Mukhi, Sunil; Murthy, Sameer; Wu, Jie-Qiang

    2018-01-01

    We compute the single-interval Rényi entropy (replica partition function) for free fermions in 1+1d at finite temperature and finite spatial size by two methods: (i) using the higher-genus partition function on the replica Riemann surface, and (ii) using twist operators on the torus. We compare the two answers for a restricted set of spin structures, leading to a non-trivial proposed equivalence between higher-genus Siegel Θ-functions and Jacobi θ-functions. We exhibit this proposal and provide substantial evidence for it. The resulting expressions can be elegantly written in terms of Jacobi forms. Thereafter we argue that the correct Rényi entropy for modular-invariant free-fermion theories, such as the Ising model and the Dirac CFT, is given by the higher-genus computation summed over all spin structures. The result satisfies the physical checks of modular covariance, the thermal entropy relation, and Bose-Fermi equivalence.

  5. Classification and properties of quantum spin liquids on the hyperhoneycomb lattice

    NASA Astrophysics Data System (ADS)

    Huang, Biao; Choi, Wonjune; Kim, Yong Baek; Lu, Yuan-Ming

    2018-05-01

    The family of "Kitaev materials" provides an ideal platform to study quantum spin liquids and their neighboring magnetic orders. Motivated by the possibility of a quantum spin liquid ground state in pressurized hyperhoneycomb iridate β -Li2IrO3 , we systematically classify and study symmetric quantum spin liquids on the hyperhoneycomb lattice, using the Abrikosov-fermion representation. Among the 176 symmetric U (1 ) spin liquids (and 160 Z2 spin liquids), we identify eight "root" U (1 ) spin liquids in proximity to the ground state of the solvable Kitave model on the hyperhonecyomb lattice. These eight states are promising candidates for possible U (1 ) spin liquid ground states in pressurized β -Li2IrO3 . We further discuss physical properties of these eight U (1 ) spin liquid candidates, and show that they all support nodal-line-shaped spinon Fermi surfaces.

  6. Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene

    NASA Astrophysics Data System (ADS)

    Ferreira, Aires; Milletari, Mirco

    Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).

  7. Quantum Tunneling from Apparent Horizon of Rainbow-FRW Universe

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Yang, Shuzheng

    2009-07-01

    The quantum tunneling from the apparent horizon of rainbow-FRW universe is studied in this paper. We apply the semi-classical approximation, which is put forward by Parikh and Wilczek et al., to research on the scalar field particles tunneling from the apparent horizon of the rainbow-FRW universe, and then use the spin 1/2 Fermions tunneling theory, which brought forward by Kerner and Mann firstly, to research on the Fermions Hawking radiation via semi-classical approximation. Finally, we discuss the meanings of the quantum effect via Finsler geometry.

  8. Generalized eigenstate typicality in translation-invariant quasifree fermionic models

    NASA Astrophysics Data System (ADS)

    Riddell, Jonathon; Müller, Markus P.

    2018-01-01

    We demonstrate a generalized notion of eigenstate thermalization for translation-invariant quasifree fermionic models: the vast majority of eigenstates satisfying a finite number of suitable constraints (e.g., fixed energy and particle number) have the property that their reduced density matrix on small subsystems approximates the corresponding generalized Gibbs ensemble. To this end, we generalize analytic results by H. Lai and K. Yang [Phys. Rev. B 91, 081110(R) (2015), 10.1103/PhysRevB.91.081110] and illustrate the claim numerically by example of the Jordan-Wigner transform of the XX spin chain.

  9. Towards Quantum Simulation of the 2D Fermi Hubbard Model - Development of a Local Probe of Density and Spin Ordering

    DTIC Science & Technology

    2013-10-24

    cooled both fermionic and bosonic isotopes of potassium. In related work, a group at Rice University showed that the analogous transition could be used in...changed from their in situ distributions. The top row shows bosonic 39K, and the bottom row shows fermionic 40K. The most exciting application of this...using a sub-micron period to allow for tunneling transport. Both of these pio- neering experiments used bosonic 87Rb. Our experiment is built to be a

  10. The classical and quantum dynamics of molecular spins on graphene

    PubMed Central

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2015-01-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic1 and quantum computing2 devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics3,4, and electrical spin-manipulation4-11. However, the influence of the graphene environment on the spin systems has yet to be unraveled12. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets13 on graphene. While the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly-developed model. Coupling to Dirac electrons introduces a dominant quantum-relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully-coherent, resonant spin tunneling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin-manipulation in graphene nanodevices. PMID:26641019

  11. Theory of the spin-1 bosonic liquid metal - Equilibrium properties of liquid metallic deuterium

    NASA Technical Reports Server (NTRS)

    Oliva, J.; Ashcroft, N. W.

    1984-01-01

    The theory of a two-component quantum fluid comprised of spin-1/2 fermions and nonzero spin bosons is examined. This system is of interest because it embodies a possible quantum liquid metallic phase of highly compressed deuterium. Bose condensation is assumed present and the two cases of nuclear-spin-polarized and -unpolarized systems are considered. A significant feature in the unpolarized case is the presence of a nonmagnetic mode with quadratic dispersion owing its existence to nonzero boson spin. The physical character of this mode is examined in detail within a Bogoliubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid and corresponding normal solid metallic phase are predicted.

  12. Momentum sharing in imbalanced Fermi systems

    DOE PAGES

    Hen, O.; Sargsian, M.; Weinstein, L. B.; ...

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less

  13. Nuclear physics. Momentum sharing in imbalanced Fermi systems.

    PubMed

    Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I

    2014-10-31

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.

  14. Spin-1 Dirac-Weyl fermions protected by bipartite symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zeren; School of Physics, Peking University, Beijing 100871; Liu, Zhirong, E-mail: LiuZhiRong@pku.edu.cn

    2015-12-07

    We propose that bipartite symmetry allows spin-1 Dirac-Weyl points, a generalization of the spin-1/2 Dirac points in graphene, to appear as topologically protected at the Fermi level. In this spirit, we provide methodology to construct spin-1 Dirac-Weyl points of this kind in a given 2D space group and get the classification of the known spin-1 systems in the literature. We also apply the workflow to predict two new systems, P3m1-9 and P31m-15, to possess spin-1 at K/K′ in the Brillouin zone of hexagonal lattice. Their stability under various strains is investigated and compared with that of T{sub 3}, an extensivelymore » studied model of ultracold atoms trapped in optical lattice with spin-1 also at K/K′.« less

  15. Covariant Conservation Laws and the Spin Hall Effect in Dirac-Rashba Systems

    NASA Astrophysics Data System (ADS)

    Milletarı, Mirco; Offidani, Manuel; Ferreira, Aires; Raimondi, Roberto

    2017-12-01

    We present a theoretical analysis of two-dimensional Dirac-Rashba systems in the presence of disorder and external perturbations. We unveil a set of exact symmetry relations (Ward identities) that impose strong constraints on the spin dynamics of Dirac fermions subject to proximity-induced interactions. This allows us to demonstrate that an arbitrary dilute concentration of scalar impurities results in the total suppression of nonequilibrium spin Hall currents when only Rashba spin-orbit coupling is present. Remarkably, a finite spin Hall conductivity is restored when the minimal Dirac-Rashba model is supplemented with a spin-valley interaction. The Ward identities provide a systematic way to predict the emergence of the spin Hall effect in a wider class of Dirac-Rashba systems of experimental relevance and represent an important benchmark for testing the validity of numerical methodologies.

  16. Strongly-correlated crystal-field approach to heavy-fermion compounds and to 3d oxides

    NASA Astrophysics Data System (ADS)

    Radwanski, Ryszard; Ropka, Zofia

    2005-03-01

    The description of electronic and magnetic properties of real compounds like LaMnO3, LaCoO3, Na2V3O7, FeO, NdAl2 and ErNi5 as well as heavy-fermion superconductor UPd2Al3 and heavy-fermion metal YbRh2Si2, both zero-temperature ground state properties and thermodynamics, will be presented pointing out the existence of a discrete atomic-like low-energy, in the meV scale, electronic structure. This low-energy many-electron discrete atomic-like electronic structure is governed by very strong electron correlations, predominantly on-site, by the intra-atomic spin-orbit coupling and by details of the local surrounding (crystal-field interactions), but later is modified by inter-site interactions. Our studies indicate that there is the highest time to ``unquench'' the orbital moment in solid state physics in description of 3d-/4f-/5f-atom containing compounds and that heavy-fermion phenomena are of the relativistic origin.

  17. Magnetoinfrared spectroscopy of Landau levels and Zeeman splitting of three-dimensional massless Dirac Fermions in ZrTe 5

    DOE PAGES

    R. Y. Chen; Gu, G. D.; Chen, Z. G.; ...

    2015-10-22

    We present a magnetoinfrared spectroscopy study on a newly identified three-dimensional (3D) Dirac semimetal ZrTe 5. We observe clear transitions between Landau levels and their further splitting under a magnetic field. Both the sequence of transitions and their field dependence follow quantitatively the relation expected for 3D massless Dirac fermions. The measurement also reveals an exceptionally low magnetic field needed to drive the compound into its quantum limit, demonstrating that ZrTe 5 is an extremely clean system and ideal platform for studying 3D Dirac fermions. The splitting of the Landau levels provides direct, bulk spectroscopic evidence that a relatively weakmore » magnetic field can produce a sizable Zeeman effect on the 3D Dirac fermions, which lifts the spin degeneracy of Landau levels. As a result, our analysis indicates that the compound evolves from a Dirac semimetal into a topological line-node semimetal under the current magnetic field configuration.« less

  18. Tunnel transport and interlayer excitons in bilayer fractional quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhe; Jain, J. K.; Eisenstein, J. P.

    2017-05-01

    In a bilayer system consisting of a composite-fermion (CF) Fermi sea in each layer, the tunnel current is exponentially suppressed at zero bias, followed by a strong peak at a finite-bias voltage Vmax. This behavior, which is qualitatively different from that observed for the electron Fermi sea, provides fundamental insight into the strongly correlated non-Fermi-liquid nature of the CF Fermi sea and, in particular, offers a window into the short-distance high-energy physics of this highly nontrivial state. We identify the exciton responsible for the peak current and provide a quantitative account of the value of Vmax. The excitonic attraction is shown to be quantitatively significant, and its variation accounts for the increase of Vmax with the application of an in-plane magnetic field. We also estimate the critical Zeeman energy where transition occurs from a fully spin-polarized composite-fermion Fermi sea to a partially spin-polarized one, carefully incorporating corrections due to finite width and Landau level mixing, and find it to be in satisfactory agreement with the Zeeman energy where a qualitative change has been observed for the onset bias voltage [J. P. Eisenstein et al., Phys. Rev. B 94, 125409 (2016), 10.1103/PhysRevB.94.125409]. For fractional quantum Hall states, we predict a substantial discontinuous jump in Vmax when the system undergoes a transition from a fully spin-polarized state to a spin singlet or a partially spin-polarized state.

  19. Hidden Order and Symmetry Protected Topological States in Quantum Link Ladders

    NASA Astrophysics Data System (ADS)

    Cardarelli, L.; Greschner, S.; Santos, L.

    2017-11-01

    We show that, whereas spin-1 /2 one-dimensional U(1) quantum-link models (QLMs) are topologically trivial, when implemented in ladderlike lattices these models may present an intriguing ground-state phase diagram, which includes a symmetry protected topological (SPT) phase that may be readily revealed by analyzing long-range string spin correlations along the ladder legs. We propose a simple scheme for the realization of spin-1 /2 U(1) QLMs based on single-component fermions loaded in an optical lattice with s and p bands, showing that the SPT phase may be experimentally realized by adiabatic preparation.

  20. Fractional Wigner Crystal in the Helical Luttinger Liquid.

    PubMed

    Traverso Ziani, N; Crépin, F; Trauzettel, B

    2015-11-13

    The properties of the strongly interacting edge states of two dimensional topological insulators in the presence of two-particle backscattering are investigated. We find an anomalous behavior of the density-density correlation functions, which show oscillations that are neither of Friedel nor of Wigner type: they, instead, represent a Wigner crystal of fermions of fractional charge e/2, with e the electron charge. By studying the Fermi operator, we demonstrate that the state characterized by such fractional oscillations still bears the signatures of spin-momentum locking. Finally, we compare the spin-spin correlation functions and the density-density correlation functions to argue that the fractional Wigner crystal is characterized by a nontrivial spin texture.

  1. Double line groups: structure, irreducible representations and spin splitting of the bands

    NASA Astrophysics Data System (ADS)

    Lazić, N.; Milivojević, M.; Vuković, T.; Damnjanović, M.

    2018-06-01

    Double line groups are derived, structurally examined and classified within 13 infinite families. Their irreducible representations, found and tabulated, single out the complete set of conserved quantum numbers in fermionic quasi-one-dimensional systems possessing either translational periodicity or incommensurate helical symmetry. Spin–orbit interaction is analyzed: the induced orbital band splitting and the consequent removal of the spin degeneracy are completely explained. Being incompatible with vertical mirror symmetry, as well as with simultaneous invariance under time-reversal and horizontal (roto)reflections, spin splitting and spin polarized currents may occur only in the systems with the first and the fifth family double line group symmetry. The effects are illustrated on carbon nanotubes.

  2. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet

    DOE PAGES

    Banerjee, A.; Bridges, C. A.; Yan, J. -Q.; ...

    2016-04-04

    Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. While their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting due to the emergence of fundamentally new excitations such as Majorana Fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. We report these here for a ruthenium-based material α-RuCl 3, continuing a major search (so far concentrated on iridium materials inimical to neutron probes) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm themore » requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly 2D nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl 3 as prime candidate for realization of fractionalized Kitaev physics.« less

  3. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet.

    PubMed

    Banerjee, A; Bridges, C A; Yan, J-Q; Aczel, A A; Li, L; Stone, M B; Granroth, G E; Lumsden, M D; Yiu, Y; Knolle, J; Bhattacharjee, S; Kovrizhin, D L; Moessner, R; Tennant, D A; Mandrus, D G; Nagler, S E

    2016-07-01

    Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. Whereas their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting owing to the emergence of fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. These we report here for a ruthenium-based material, α-RuCl3, continuing a major search (so far concentrated on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl3 as a prime candidate for fractionalized Kitaev physics.

  4. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, A.; Bridges, C. A.; Yan, J. -Q.

    Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. While their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting due to the emergence of fundamentally new excitations such as Majorana Fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. We report these here for a ruthenium-based material α-RuCl 3, continuing a major search (so far concentrated on iridium materials inimical to neutron probes) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm themore » requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly 2D nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl 3 as prime candidate for realization of fractionalized Kitaev physics.« less

  5. Observation of Majorana fermions in the vortex on topological insulator-superconductor heterostructure Bi2Te3/NbSe2

    NASA Astrophysics Data System (ADS)

    Jia, Jinfeng

    Majorana fermion (MF) zero modes have been predicted in a wide variety of condensed matter systems and proposed as a potential building block for fault-tolerant quantum computer. Signatures of the MFs have been reported in the form of zero-energy conductance peak in various systems. As predicted, MFs appear as zero-energy vortex core modes with distinctive spatial profile in proximity-induced superconducting surface states of topological insulators. Furthermore, MFs can induce spin selective Andreev reflection (SSAR), a unique signature of MFs. We report the observation of all the three features for the MFs inside vortices in Bi2Te3/NbSe2 hetero-structure, in which proximity-induced superconducting gap on topological surface states was previously established. Especially, by using spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS), we observed the spin dependent tunneling effect, and fully supported by theoretical analyses, which is a direct evidence for the SSAR from MFs. More importantly, all evidences are self-consistent. Our work provides definitive evidences of MFs and will stimulate the MFs research on their novel physical properties, hence a step towards their non-Abelian statistics and application in quantum computing.

  6. Hybridization with a twist: Hidden (hastatic) order in URu2Si2

    NASA Astrophysics Data System (ADS)

    Flint, Rebecca

    The hidden order developing below 17.5K in the heavy fermion material URu2Si2 has eluded identification for over thirty years. A number of recent experiments have shed new light on the nature of this phase. In particular, de Haas-van Alphen measurements indicate nearly perfectly Ising quasiparticles deep in the hidden order phase, and recent nonlinear susceptibility measurements show that this strong Ising anisotropy persists up to and above the hidden order transition itself. Along with other features, this Ising anisotropy implies that the conduction electrons hybridize with a local Ising moment - a 5f2 state of the uranium atom with integer spin. As the hybridization mixes states of integer and half-integer spin, it is itself a spinor and this ``hastatic'' (hasta: [Latin] spear) order parameter therefore breaks both time-reversal and double time-reversal symmetries. A microscopic theory of hastatic order naturally unites a number of disparate experimental results from the large entropy of condensation to the spin rotational symmetry breaking seen in torque magnetometry, and provides a number of experimental predictions. Moreover, this new spinorial order parameter provides a window into a number of new heavy fermion phases.

  7. Noise in tunneling spin current across coupled quantum spin chains

    NASA Astrophysics Data System (ADS)

    Aftergood, Joshua; Takei, So

    2018-01-01

    We theoretically study the spin current and its dc noise generated between two spin-1 /2 spin chains weakly coupled at a single site in the presence of an over-population of spin excitations and a temperature elevation in one subsystem relative to the other, and we compare the corresponding transport quantities across two weakly coupled magnetic insulators hosting magnons. In the spin chain scenario, we find that applying a temperature bias exclusively leads to a vanishing spin current and a concomitant divergence in the spin Fano factor, defined as the spin current noise-to-signal ratio. This divergence is shown to have an exact analogy to the physics of electron scattering between fractional quantum Hall edge states and not to arise in the magnon scenario. We also reveal a suppression in the spin current noise that exclusively arises in the spin chain scenario due to the fermion nature of the spin-1/2 operators. We discuss how the spin Fano factor may be extracted experimentally via the inverse spin Hall effect used extensively in spintronics.

  8. Heavy fermion behavior explained by bosons

    NASA Technical Reports Server (NTRS)

    Kallio, A.; Poykko, S.; Apaja, V.

    1995-01-01

    Conventional heavy fermion (HF) theories require existence of massive fermions. We show that heavy fermion phenomena can also be simply explained by existence of bosons with moderate mass but temperature dependent concentration below the formation temperature T(sub B), which in turn is close to room temperature. The bosons B(++) are proposed to be in chemical equilibrium with a system of holes h(+): B(++) = h(+) + h(+). This equilibrium is governed by a boson breaking function f(T), which determines the decreasing boson density and the increasing fermion density with increasing temperature. Since HF-compounds are hybridized from minimum two elements, we assume in addition existence of another fermion component h(sub s)(+) with temperature independent density. This spectator component is thought to be the main agent in binding the bosons in analogy with electronic or muonic molecules. Using a linear boson breaking function we can explain temperature dependence of the giant linear specific heat coefficient gamma(T) coming essentially from bosons. The maxima in resistivity, Hall coefficient, and susceptibility are explained by boson localization effects due to the Wigner crystallization. The antiferromagnetic transitions in turn are explained by similar localization of the pairing fermion system when their density n(sub h)(T(sub FL)) becomes lower than n(sub WC), the critical density of Wigner crystallization. The model applies irrespective whether a compound is superconducting or not. The same model explains the occurrence of low temperature antiferromagnetism also in high-T(sub c) superconductors. The double transition in UPt3 is proposed to be due to the transition of the pairing fermion liquid from spin polarized to unpolarized state.

  9. Domain Wall Fermion Inverter on Pentium 4

    NASA Astrophysics Data System (ADS)

    Pochinsky, Andrew

    2005-03-01

    A highly optimized domain wall fermion inverter has been developed as part of the SciDAC lattice initiative. By designing the code to minimize memory bus traffic, it achieves high cache reuse and performance in excess of 2 GFlops for out of L2 cache problem sizes on a GigE cluster with 2.66 GHz Xeon processors. The code uses the SciDAC QMP communication library.

  10. A rederivation of the conformal anomaly for spin-{\\frac{1}{2}}

    NASA Astrophysics Data System (ADS)

    Godazgar, Hadi; Nicolai, Hermann

    2018-05-01

    We rederive the conformal anomaly for spin- fermions by a genuine Feynman graph calculation, which has not been available so far. Although our calculation merely confirms a result that has been known for a long time, the derivation is new, and thus furnishes a method to investigate more complicated cases (in particular concerning the significance of the quantum trace of the stress tensor in non-conformal theories) where there remain several outstanding and unresolved issues.

  11. Manipulating Topological Edge Spins in One-Dimensional Optical Lattice

    NASA Astrophysics Data System (ADS)

    Liu, Xiong-Jun; Liu, Zheng-Xin; Cheng, Meng

    2013-03-01

    We propose to observe and manipulate topological edge spins in 1D optical lattice based on currently available experimental platforms. Coupling the atomic spin states to a laser-induced periodic Zeeman field, the lattice system can be driven into a symmetry protected topological (SPT) phase, which belongs to the chiral unitary (AIII) class protected by particle number conservation and chiral symmetries. In free-fermion case the SPT phase is classified by a Z invariant which reduces to Z4 with interactions. The zero edge modes of the SPT phase are spin-polarized, with left and right edge spins polarized to opposite directions and forming a topological spin-qubit (TSQ). We demonstrate a novel scheme to manipulate the zero modes and realize single spin control in optical lattice. The manipulation of TSQs has potential applications to quantum computation. We acknowledge the support from JQI-NSF-PFC, Microsoft-Q, and DARPA- QuEST.

  12. Spin texture of the surface state of three-dimensional Dirac material Ca3PbO

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze

    2015-04-01

    The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca3PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca3PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types.

  13. Quasiparticle-mediated spin Hall effect in a superconductor.

    PubMed

    Wakamura, T; Akaike, H; Omori, Y; Niimi, Y; Takahashi, S; Fujimaki, A; Maekawa, S; Otani, Y

    2015-07-01

    In some materials the competition between superconductivity and magnetism brings about a variety of unique phenomena such as the coexistence of superconductivity and magnetism in heavy-fermion superconductors or spin-triplet supercurrent in ferromagnetic Josephson junctions. Recent observations of spin-charge separation in a lateral spin valve with a superconductor evidence that these remarkable properties are applicable to spintronics, although there are still few works exploring this possibility. Here, we report the experimental observation of the quasiparticle-mediated spin Hall effect in a superconductor, NbN. This compound exhibits the inverse spin Hall (ISH) effect even below the superconducting transition temperature. Surprisingly, the ISH signal increases by more than 2,000 times compared with that in the normal state with a decrease of the injected spin current. The effect disappears when the distance between the voltage probes becomes larger than the charge imbalance length, corroborating that the huge ISH signals measured are mediated by quasiparticles.

  14. A note on a boundary sine-Gordon model at the free-Fermion point

    NASA Astrophysics Data System (ADS)

    Murgan, Rajan

    2018-02-01

    We investigate the free-Fermion point of a boundary sine-Gordon model with nondiagonal boundary interactions for the ground state using auxiliary functions obtained from T  -  Q equations of a corresponding inhomogeneous open spin-\\frac{1}{2} XXZ chain with nondiagonal boundary terms. In particular, we obtain the Casimir energy. Our result for the Casimir energy is shown to agree with the result from the TBA approach. The analytical result for the effective central charge in the ultraviolet (UV) limit is also verified from the plots of effective central charge for intermediate values of volume.

  15. Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model

    DOE PAGES

    Chen, Cheng-Chien; Muechler, Lukas; Car, Roberto; ...

    2016-08-25

    We study the two-dimensional (2D) Hubbard model using exact diagonalization for spin-1/2 fermions on the triangular and honeycomb lattices decorated with a single hexagon per site. In certain parameter ranges, the Hubbard model maps to a quantum compass model on those lattices. On the triangular lattice, the compass model exhibits collinear stripe antiferromagnetism, implying d-density wave charge order in the original Hubbard model. On the honeycomb lattice, the compass model has a unique, quantum disordered ground state that transforms nontrivially under lattice reflection. The ground state of the Hubbard model on the decorated honeycomb lattice is thus a 2D fermionicmore » symmetry-protected topological phase. This state—protected by time-reversal and reflection symmetries—cannot be connected adiabatically to a free-fermion topological phase.« less

  16. Localization and oscillations of Majorana fermions in a two-dimensional electron gas coupled with d -wave superconductors

    NASA Astrophysics Data System (ADS)

    Ortiz, L.; Varona, S.; Viyuela, O.; Martin-Delgado, M. A.

    2018-02-01

    We study the localization and oscillation properties of the Majorana fermions that arise in a two-dimensional electron gas (2DEG) with spin-orbit coupling (SOC) and a Zeeman field coupled with a d -wave superconductor. Despite the angular dependence of the d -wave pairing, localization and oscillation properties are found to be similar to the ones seen in conventional s -wave superconductors. In addition, we study a microscopic lattice version of the previous system that can be characterized by a topological invariant. We derive its real space representation that involves nearest and next-to-nearest-neighbors pairing. Finally, we show that the emerging chiral Majorana fermions are indeed robust against static disorder. This analysis has potential applications to quantum simulations and experiments in high-Tc superconductors.

  17. Impurity-induced moments in underdoped cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaliullin, G.; Kilian, R.; Krivenko, S.

    1997-11-01

    We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potentialmore » approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. {copyright} {ital 1997} {ital The American Physical Society}« less

  18. Development of New Open-Shell Perturbation and Coupled-Cluster Theories Based on Symmetric Spin Orbitals

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new spin orbital basis is employed in the development of efficient open-shell coupled-cluster and perturbation theories that are based on a restricted Hartree-Fock (RHF) reference function. The spin orbital basis differs from the standard one in the spin functions that are associated with the singly occupied spatial orbital. The occupied orbital (in the spin orbital basis) is assigned the delta(+) = 1/square root of 2(alpha+Beta) spin function while the unoccupied orbital is assigned the delta(-) = 1/square root of 2(alpha-Beta) spin function. The doubly occupied and unoccupied orbitals (in the reference function) are assigned the standard alpha and Beta spin functions. The coupled-cluster and perturbation theory wave functions based on this set of "symmetric spin orbitals" exhibit much more symmetry than those based on the standard spin orbital basis. This, together with interacting space arguments, leads to a dramatic reduction in the computational cost for both coupled-cluster and perturbation theory. Additionally, perturbation theory based on "symmetric spin orbitals" obeys Brillouin's theorem provided that spin and spatial excitations are both considered. Other properties of the coupled-cluster and perturbation theory wave functions and models will be discussed.

  19. Dirac materials

    NASA Astrophysics Data System (ADS)

    Wehling, T. O.; Black-Schaffer, A. M.; Balatsky, A. V.

    2014-01-01

    A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrodinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call "Dirac materials''. In order to establish this class of materials, we illustrate how Dirac fermions emerge in multiple entirely different condensed matter systems and we discuss how Dirac fermions have been identified experimentally using electron spectroscopy techniques (angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy). As a consequence of their common low-energy excitations, this diverse set of materials shares a significant number of universal properties in the low-energy (infrared) limit. We review these common properties including nodal points in the excitation spectrum, density of states, specific heat, transport, thermodynamic properties, impurity resonances, and magnetic field responses, as well as discuss many-body interaction effects. We further review how the emergence of Dirac excitations is controlled by specific symmetries of the material, such as time-reversal, gauge, and spin-orbit symmetries, and how by breaking these symmetries a finite Dirac mass is generated. We give examples of how the interaction of Dirac fermions with their distinct real material background leads to rich novel physics with common fingerprints such as the suppression of back scattering and impurity-induced resonant states.

  20. Quantum supersymmetric Bianchi IX cosmology

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Spindel, Philippe

    2014-11-01

    We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle effect" between small-volume universes and large-volume ones, and to a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like excited versions of the Planckian-size universes described by the discrete states at fermionic levels NF=0 and 1.

  1. The Coupling of Gravity to Spin and Electromagnetism

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    The coupled Einstein-Dirac-Maxwell equations are considered for a static, spherically symmetric system of two fermions in a singlet spinor state. Stable soliton-like solutions are shown to exist, and we discuss the regularizing effect of gravity from a Feynman diagram point of view.

  2. Symmetry-Resolved Entanglement in Many-Body Systems.

    PubMed

    Goldstein, Moshe; Sela, Eran

    2018-05-18

    Similarly to the system Hamiltonian, a subsystem's reduced density matrix is composed of blocks characterized by symmetry quantum numbers (charge sectors). We present a geometric approach for extracting the contribution of individual charge sectors to the subsystem's entanglement measures within the replica trick method, via threading appropriate conjugate Aharonov-Bohm fluxes through a multisheet Riemann surface. Specializing to the case of 1+1D conformal field theory, we obtain general exact results for the entanglement entropies and spectrum, and apply them to a variety of systems, ranging from free and interacting fermions to spin and parafermion chains, and verify them numerically. We find that the total entanglement entropy, which scales as lnL, is composed of sqrt[lnL] contributions of individual subsystem charge sectors for interacting fermion chains, or even O(L^{0}) contributions when total spin conservation is also accounted for. We also explain how measurements of the contribution to the entanglement from separate charge sectors can be performed experimentally with existing techniques.

  3. Gauge field entanglement in Kitaev's honeycomb model

    NASA Astrophysics Data System (ADS)

    Dóra, Balázs; Moessner, Roderich

    2018-01-01

    A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.

  4. Chiral sp-orbital paired superfluid of fermionic atoms in a 2D spin-dependent optical lattice

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Xiaopeng; Wu, Biao; Liu, W. Vincent

    2014-03-01

    Recent progress in realizing synthetic quantum orbital materials in chequerboard and hexagonal optical lattices opens an avenue towards exploiting unconventional quantum states, advancing our understanding of correlated quantum matter. Here, we unveil a chiral sp -orbital paired superfluid state for an interacting two-component Fermi gas in a 2D spin-dependent optical lattice. Surprisingly, this novel state is found to exist in a wide regime of experimentally tunable interaction strengths. The coexistence of this chiral superfluid and the ferro-orbital order is reminiscent of that of magnetism and superconductivity which is a long-standing issue in condensed matter physics. The topological properties are demonstrated by the existence of gapless chiral fermions in the presence of domain wall defects, reminiscent of quantum Hall edge states. Such properties can be measured by radio frequency spectroscopy in cold atomic experiments. Work supported in part by U.S. ARO, AFOSR, and DARPA-OLE-ARO, Kaufman Foundation, and NSF of China.

  5. Symmetry-Resolved Entanglement in Many-Body Systems

    NASA Astrophysics Data System (ADS)

    Goldstein, Moshe; Sela, Eran

    2018-05-01

    Similarly to the system Hamiltonian, a subsystem's reduced density matrix is composed of blocks characterized by symmetry quantum numbers (charge sectors). We present a geometric approach for extracting the contribution of individual charge sectors to the subsystem's entanglement measures within the replica trick method, via threading appropriate conjugate Aharonov-Bohm fluxes through a multisheet Riemann surface. Specializing to the case of 1 +1 D conformal field theory, we obtain general exact results for the entanglement entropies and spectrum, and apply them to a variety of systems, ranging from free and interacting fermions to spin and parafermion chains, and verify them numerically. We find that the total entanglement entropy, which scales as ln L , is composed of √{ln L } contributions of individual subsystem charge sectors for interacting fermion chains, or even O (L0) contributions when total spin conservation is also accounted for. We also explain how measurements of the contribution to the entanglement from separate charge sectors can be performed experimentally with existing techniques.

  6. Spin incommensurability and two phase competition in cobaltites.

    PubMed

    Phelan, D; Louca, Despina; Kamazawa, K; Lee, S-H; Ancona, S N; Rosenkranz, S; Motome, Y; Hundley, M F; Mitchell, J F; Moritomo, Y

    2006-12-08

    The perovskite LaCoO3 evolves from a nonmagnetic Mott insulator to a spin cluster ferromagnet (FM) with the substitution of Sr2+ for La3+ in La1-xSrxCoO3. The clusters increase in size and number with x and the charge percolation through the clusters leads to a metallic state. Using elastic neutron scattering on La1-xSrxCoO3 single crystals, we show that an incommensurate spin superstructure coexists with the FM spin clusters. The incommensurability increases continuously with x, with the intensity rising in the insulating phase and dropping in the metallic phase as it directly competes with the commensurate FM, itinerant clusters. The spin incommensurability arises from local order of Co3+-Co4+ clusters but no long-range static or dynamic spin stripes develop. The coexistence and competition of the two magnetic phases explain the residual resistivity at low temperatures in samples with metalliclike transport.

  7. Berry phase for spin-1/2 particles moving in a space-time with torsion

    NASA Astrophysics Data System (ADS)

    Alimohammadi, M.; Shariati, A.

    Berry phase for a spin-1/2 particle moving in a flat space-time with torsion is investigated in the context of the Einstein-Cartan-Dirac model. It is shown that if the torsion is due to a dense polarized background, then there is a Berry phase only if the fermion is massless and its momentum is perpendicular to the direction of the background polarization. The order of magnitude of this Berry phase is discussed in other theoretical frameworks.

  8. Strong photoassociation in a degenerate fermi gas

    NASA Astrophysics Data System (ADS)

    Rvachov, Timur; Jamison, Alan; Jing, Li; Son, Hyungmok; Ebadi, Sepehr; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    Despite many studies there remain open questions about strong photoassociation in ultracold gases. We study the effects of strong photoassociation in ultracold fermions. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system. We study the effects of strong photoassociation in 6 Li, the onset of saturation, and its effects on spin polarized and interacting spin-mixtures. This work was funded by the NSF, ARO-MURI, SAMSUNG, and NSERC.

  9. Coleman-Weinberg symmetry breaking in SU(8) induced by a third rank antisymmetric tensor scalar field II: the fermion spectrum

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2017-07-01

    We continue our study of Coleman-Weinberg symmetry breaking induced by a third rank antisymmetric tensor scalar, in the context of the SU(8) model (Adler 2014 Int. J. Mod. Phys. A 29 1450130) we proposed earlier. We focus in this paper on qualitative features that will determine whether the model can make contact with the observed particle spectrum. We discuss the mechanism for giving the spin \\frac{3}{2} field a mass by the BEH mechanism, and analyze the remaining massless spin \\frac{1}{2} fermions, the global chiral symmetries, and the running couplings after symmetry breaking. We note that the smallest gluon mass matrix eigenvalue has an eigenvector suggestive of U(1) B-L , and conjecture that the theory runs to an infrared fixed point at which there is a massless gluon with 3 to  -1 ratios in generator components. Assuming this, we discuss a mechanism for making contact with the standard model, based on a conjectured asymmetric breaking of Sp(4) to SU(2) subgroups, one of which is the electroweak SU(2), and the other of which is a ‘technicolor’ group that binds the original SU(8) model fermions, which play the role of ‘preons’, into composites. Quarks can emerge as 5 preon composites and leptons as 3 preon composites, with consequent stability of the proton against decay to a single lepton plus a meson. A composite Higgs boson can emerge as a two preon composite. Since anomaly matching for the relevant conserved global symmetry current is not obeyed by three fermion families, emergence of three composite families requires formation of a Goldstone boson with quantum numbers matching this current, which can be a light dark matter candidate.

  10. Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures.

    PubMed

    Myoung, Nojoon; Seo, Kyungchul; Lee, Seung Joo; Ihm, G

    2013-08-27

    Vertical graphene heterostructures have been introduced as an alternative architecture for electronic devices by using quantum tunneling. Here, we present that the current on/off ratio of vertical graphene field-effect transistors is enhanced by using an armchair graphene nanoribbon as an electrode. Moreover, we report spin-dependent tunneling current of the graphene/MoS2 heterostructures. When an atomically thin MoS2 layer sandwiched between graphene electrodes becomes magnetic, Dirac fermions with different spins feel different heights of the tunnel barrier, leading to spin-dependent tunneling. Our finding will develop the present graphene heterostructures for electronic devices by improving the device performance and by adding the possibility of spintronics based on graphene.

  11. Transverse spin structure of the nucleon from lattice-QCD simulations.

    PubMed

    Göckeler, M; Hägler, Ph; Horsley, R; Nakamura, Y; Pleiter, D; Rakow, P E L; Schäfer, A; Schierholz, G; Stüben, H; Zanotti, J M

    2007-06-01

    We present the first calculation in lattice QCD of the lowest two moments of transverse spin densities of quarks in the nucleon. They encode correlations between quark spin and orbital angular momentum. Our dynamical simulations are based on two flavors of clover-improved Wilson fermions and Wilson gluons. We find significant contributions from certain quark helicity flip generalized parton distributions, leading to strongly distorted densities of transversely polarized quarks in the nucleon. In particular, based on our results and recent arguments by Burkardt [Phys. Rev. D 72, 094020 (2005)], we predict that the Boer-Mulders function h(1/1), describing correlations of transverse quark spin and intrinsic transverse momentum of quarks, is large and negative for both up and down quarks.

  12. Multiparticle instability in a spin-imbalanced Fermi gas

    NASA Astrophysics Data System (ADS)

    Whitehead, T. M.; Conduit, G. J.

    2018-01-01

    Weak attractive interactions in a spin-imbalanced Fermi gas induce a multiparticle instability, binding multiple fermions together. The maximum binding energy per particle is achieved when the ratio of the number of up- and down-spin particles in the instability is equal to the ratio of the up- and down-spin densities of states in momentum at the Fermi surfaces, to utilize the variational freedom of all available momentum states. We derive this result using an analytical approach, and verify it using exact diagonalization. The multiparticle instability extends the Cooper pairing instability of balanced Fermi gases to the imbalanced case, and could form the basis of a many-body state, analogously to the construction of the Bardeen-Cooper-Schrieffer theory of superconductivity out of Cooper pairs.

  13. Density functional of a two-dimensional gas of dipolar atoms: Thomas-Fermi-Dirac treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Bess; Englert, Berthold-Georg

    We derive the density functional for the ground-state energy of a two-dimensional, spin-polarized gas of neutral fermionic atoms with magnetic-dipole interaction, in the Thomas-Fermi-Dirac approximation. For many atoms in a harmonic trap, we give analytical solutions for the single-particle spatial density and the ground-state energy, in dependence on the interaction strength, and we discuss the weak-interaction limit that is relevant for experiments. We then lift the restriction of full spin polarization and account for a time-independent inhomogeneous external magnetic field. The field strength necessary to ensure full spin polarization is derived.

  14. Two-component quantum Hall effects in topological flat bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Tian-Sheng; Zhu, Wei; Sheng, D. N.

    2017-03-27

    Here in this paper, we study quantum Hall states for two-component particles (hardcore bosons and fermions) loading in topological lattice models. By tuning the interplay of interspecies and intraspecies interactions, we demonstrate that two-component fractional quantum Hall states emerge at certain fractional filling factors ν = 1/2 for fermions (ν = 2/3 for bosons) in the lowest Chern band, classified by features from ground states including the unique Chern number matrix (inverse of the K matrix), the fractional charge and spin pumpings, and two parallel propagating edge modes. Moreover, we also apply our strategy to two-component fermions at integer fillingmore » factor ν = 2 , where a possible topological Neel antiferromagnetic phase is under intense debate very recently. For the typical π -flux checkerboard lattice, by tuning the onsite Hubbard repulsion, we establish a first-order phase transition directly from a two-component fermionic ν = 2 quantum Hall state at weak interaction to a topologically trivial antiferromagnetic insulator at strong interaction, and therefore exclude the possibility of an intermediate topological phase for our system.« less

  15. Kinetic theory of fermions in curved spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidler, Christian; Pitrou, Cyril, E-mail: christian.fidler@uclouvain.be, E-mail: pitrou@iap.fr

    We build a statistical description of fermions, taking into account the spin degree of freedom in addition to the momentum of particles, and we detail its use in the context of the kinetic theory of gases of fermions particles. We show that the one-particle distribution function needed to write a Liouville equation is a spinor valued operator. The degrees of freedom of this function are covariantly described by an intensity function and by a polarisation vector which are parallel transported by free streaming. Collisions are described on the microscopic level and lead to a Boltzmann equation for this operator. Wemore » apply our formalism to the case of weak interactions, which at low energies can be considered as a contact interaction between fermions, allowing us to discuss the structure of the collision term for a few typical weak-interaction mediated reactions. In particular we find for massive particles that a dipolar distribution of velocities in the interacting species is necessary to generate linear polarisation, as opposed to the case of photons for which linear polarisation is generated from the quadrupolar distribution of velocities.« less

  16. Electrodynamic properties of the semimetallic Dirac material SrMnB i2 : Two-carrier-model analysis

    NASA Astrophysics Data System (ADS)

    Park, H. J.; Park, Byung Cheol; Lee, Min-Cheol; Jeong, D. W.; Park, Joonbum; Kim, Jun Sung; Ji, Hyo Seok; Shim, J. H.; Kim, K. W.; Moon, S. J.; Kim, Hyeong-Do; Cho, Deok-Yong; Noh, T. W.

    2017-10-01

    The electrodynamics of free carriers in the semimetallic Dirac material SrMnB i2 was investigated using optical spectroscopy and first-principles calculations. Using a two-carrier-model analysis, the total free-carrier response was successfully decomposed into individual contributions from Dirac fermions and non-Dirac free carriers. Possible roles of chiral pseudospin, spin-orbit interaction (SOI), antiferromagnetism, and electron-phonon (e -p h ) coupling in the Dirac fermion transport were also addressed. The Dirac fermions possess a low scattering rate of ˜10 meV at low temperature and thereby experience coherent transport. However, at high temperatures, we observed that the Dirac fermion transport becomes significantly incoherent, possibly due to strong e -p h interactions. The SOI-induced gap and antiferromagnetism play minor roles in the electrodynamics of the free carriers in SrMnB i2 . We also observed a seemingly optical-gap-like feature near 120 meV, which emerges at low temperatures but becomes filled in with increasing temperature. This gap-filling phenomenon is ascribed to phonon-assisted indirect transitions promoted at high temperatures.

  17. Solitonic Excitations in Fermionic Superfluids and Progress towards Fermi Gas in Uniform Potential

    NASA Astrophysics Data System (ADS)

    Ku, Mark; Mukherjee, Biswaroop; Guardado-Sanchez, Elmer; Yan, Zhenjie; Patel, Parth; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin

    2015-05-01

    We follow the evolution of a superfluid Fermi gas of 6Li atoms following a one-sided π phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, and its subsequent snaking and decay into a vortex ring. The latter eventually breaks at the boundary of the superfluid, finally leaving behind a single, remnant solitonic vortex. The nodal surface is directly imaged and reveals its decay into a vortex ring via a puncture of the initial soliton plane. At intermediate stages we find evidence for more exotic structures resembling Φ-solitons. The observed evolution of the nodal surface represents dynamics that occurs at the length scale of the interparticle spacing, thus providing new experimental input for microscopic theories of strongly correlated fermions. We also report on the trapping of fermionic atoms of 6Li in a quasi-homogenous all-optical potential, and discuss progress towards directly observing the momentum distribution of the fermions in a box. This new tool offers the possibility to quantitatively study Fermi gases at finite temperature and in the presence of spin-imbalance, with unprecedented accuracy.

  18. Anisotropic exchange interaction induced by a single photon in semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Chiappe, G.; Fernández-Rossier, J.; Louis, E.; Anda, E. V.

    2005-12-01

    We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K : spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.

  19. Worldline construction of a covariant chiral kinetic theory

    DOE PAGES

    Mueller, Niklas; Venugopalan, Raju

    2017-07-27

    Here, we discuss a novel worldline framework for computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Starting from the fermion determinant in the QCD effective action, we show explicitly how its real part can be expressed as a supersymmetric worldline action of spinning, colored, Grassmannian particles in background fields. Restricting ourselves for simplicity to spinning particles, we demonstrate how their constrained Hamiltonian dynamics arises for both massless and massive particles. In a semiclassical limit, this gives rise to the covariant generalization of the Bargmann-Michel-Telegdi equation; the derivation of the corresponding Wong equations for colored particles is straightforward.more » In a previous paper [N. Mueller and R. Venugopalan, arXiv:1701.03331.], we outlined how Berry’s phase arises in a nonrelativistic adiabatic limit for massive particles. We extend the discussion here to systems with a finite chemical potential. We discuss a path integral formulation of the relative phase in the fermion determinant that places it on the same footing as the real part. We construct the corresponding anomalous worldline axial-vector current and show in detail how the chiral anomaly appears. Our work provides a systematic framework for a relativistic kinetic theory of chiral fermions in the fluctuating topological backgrounds that generate the CME in a deconfined quark-gluon plasma. Finally, we outline some further applications of this framework in many-body systems.« less

  20. Worldline construction of a covariant chiral kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Niklas; Venugopalan, Raju

    Here, we discuss a novel worldline framework for computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Starting from the fermion determinant in the QCD effective action, we show explicitly how its real part can be expressed as a supersymmetric worldline action of spinning, colored, Grassmannian particles in background fields. Restricting ourselves for simplicity to spinning particles, we demonstrate how their constrained Hamiltonian dynamics arises for both massless and massive particles. In a semiclassical limit, this gives rise to the covariant generalization of the Bargmann-Michel-Telegdi equation; the derivation of the corresponding Wong equations for colored particles is straightforward.more » In a previous paper [N. Mueller and R. Venugopalan, arXiv:1701.03331.], we outlined how Berry’s phase arises in a nonrelativistic adiabatic limit for massive particles. We extend the discussion here to systems with a finite chemical potential. We discuss a path integral formulation of the relative phase in the fermion determinant that places it on the same footing as the real part. We construct the corresponding anomalous worldline axial-vector current and show in detail how the chiral anomaly appears. Our work provides a systematic framework for a relativistic kinetic theory of chiral fermions in the fluctuating topological backgrounds that generate the CME in a deconfined quark-gluon plasma. Finally, we outline some further applications of this framework in many-body systems.« less

  1. Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB6

    PubMed Central

    Song, Qi; Mi, Jian; Zhao, Dan; Su, Tang; Yuan, Wei; Xing, Wenyu; Chen, Yangyang; Wang, Tianyu; Wu, Tao; Chen, Xian Hui; Xie, X. C.; Zhang, Chi; Shi, Jing; Han, Wei

    2016-01-01

    There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observe the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Furthermore, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6. PMID:27834378

  2. Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB 6

    DOE PAGES

    Song, Qi; Mi, Jian; Zhao, Dan; ...

    2016-11-11

    There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin–momentum locking property gives rise to very interesting spin-dependent physical phenomena such as the Edelstein and inverse Edelstein effects. However, the spin injection in pure surface states of TI is very challenging because of the coexistence of the highly conducting bulk states. Here, we experimentally demonstrate the spin injection and observemore » the inverse Edelstein effect in the surface states of a topological Kondo insulator, SmB 6. At low temperatures when only surface carriers are present, a clear spin signal is observed. Moreover, the magnetic field angle dependence of the spin signal is consistent with spin–momentum locking property of surface states of SmB6.« less

  3. Fermion tunneling from a non-static black hole with the internal global monopole

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ling; Cai, Min; Lin, Rong

    2009-10-01

    Kerner and Mann’s recent research shows that the Hawking temperature and tunneling rate can be obtained by the fermion tunneling method from the Rindler space-time and a general non-rotating black hole. In this paper, considering the tunneling particles with spin 1/2 and taking into account the particle’s self-gravitation in the dynamical background space-time, we further improve Kerner and Man’s fermion tunneling method to investigate Hawking radiation via tunneling from a non-static black hole with the internal global monopole. The result shows that the tunneling rate of the non-static black hole is related to the integral of the changing horizon besides the change of Bekenstein-Hawking entropy, which is different from the stationary cases. It also essentially implies that the unitary is violated for the reason that the black hole is non-stationary and cannot be treated as an isolated system.

  4. Emergent magnetic anisotropy in the cubic heavy-fermion metal CeIn3

    DOE PAGES

    Moll, Philip J. W.; Helm, Toni; Zhang, Shang-Shun; ...

    2017-08-21

    Metals containing cerium exhibit a diverse range of fascinating phenomena including heavy fermion behavior, quantum criticality, and novel states of matter such as unconventional superconductivity. The cubic system CeIn3 has attracted significant attention as a structurally isotropic Kondo lattice material possessing the minimum required complexity to still reveal this rich physics. By using magnetic fields with strengths comparable to the crystal field energy scale, we illustrate a strong field-induced anisotropy as a consequence of non-spherically symmetric spin interactions in the prototypical heavy fermion material CeIn3. We demonstrate the importance of magnetic anisotropy in modeling f-electron materials when the orbital charactermore » of the 4f wavefunction changes (e.g., with pressure or composition). Additionally, magnetic fields are shown to tune the effective hybridization and exchange interactions potentially leading to new exotic field tuned effects in f-based materials.« less

  5. Casimir forces between defects in one-dimensional quantum liquids

    NASA Astrophysics Data System (ADS)

    Recati, A.; Fuchs, J. N.; Peça, C. S.; Zwerger, W.

    2005-08-01

    We discuss the effective interactions between two localized perturbations in one-dimensional quantum liquids. For noninteracting fermions, the interactions exhibit Friedel oscillations, giving rise to a Ruderman-Kittel-Kasuya-Yosida-type interaction familiar from impurity spins in metals. In the interacting case, at low energies, a Luttinger-liquid description applies. In the case of repulsive fermions, the Friedel oscillations of the interacting system are replaced, at long distances, by a universal Casimir-type interaction which depends only on the sound velocity and decays inversely with the separation. The Casimir-type interaction between localized perturbations embedded in a fermionic environment gives rise to a long-range coupling between quantum dots in ultracold Fermi gases, opening an alternative to couple qubits with neutral atoms. We also briefly discuss the case of bosonic quantum liquids in which the interaction between weak impurities turns out to be short ranged, decaying exponentially on the scale of the healing length.

  6. Emergent magnetic anisotropy in the cubic heavy-fermion metal CeIn3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moll, Philip J. W.; Helm, Toni; Zhang, Shang-Shun

    Metals containing cerium exhibit a diverse range of fascinating phenomena including heavy fermion behavior, quantum criticality, and novel states of matter such as unconventional superconductivity. The cubic system CeIn3 has attracted significant attention as a structurally isotropic Kondo lattice material possessing the minimum required complexity to still reveal this rich physics. By using magnetic fields with strengths comparable to the crystal field energy scale, we illustrate a strong field-induced anisotropy as a consequence of non-spherically symmetric spin interactions in the prototypical heavy fermion material CeIn3. We demonstrate the importance of magnetic anisotropy in modeling f-electron materials when the orbital charactermore » of the 4f wavefunction changes (e.g., with pressure or composition). Additionally, magnetic fields are shown to tune the effective hybridization and exchange interactions potentially leading to new exotic field tuned effects in f-based materials.« less

  7. Suppression of the overlap between Majorana fermions by orbital magnetic effects in semiconducting-superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Dmytruk, Olesia; Klinovaja, Jelena

    2018-04-01

    We study both analytically and numerically the role of orbital effects caused by a magnetic field applied along the axis of a semiconducting Rashba nanowire in the topological regime hosting Majorana fermions. We demonstrate that the orbital effects can be effectively taken into account in a one-dimensional model by shifting the chemical potential and thus modifying the topological criterion. We focus on the energy splitting between two Majorana fermions in a finite nanowire and find a striking interplay between orbital and Zeeman effects on this splitting. In the limit of strong spin-orbit interaction, we find regimes where the amplitude of the oscillating splitting stays constant or even decays with increasing the magnetic field, in stark contrast to the commonly studied case where orbital effects of the magnetic field are neglected. The period of these oscillations is found to be almost constant in many parameter regimes.

  8. Counting of fermions and spins in strongly correlated systems in and out of thermal equilibrium

    NASA Astrophysics Data System (ADS)

    Braungardt, Sibylle; Rodríguez, Mirta; Sen(de), Aditi; Sen, Ujjwal; Glauber, Roy J.; Lewenstein, Maciej

    2011-01-01

    Atom counting theory can be used to study the role of thermal noise in quantum phase transitions and to monitor the dynamics of a quantum system. We illustrate this for a strongly correlated fermionic system, which is equivalent to an anisotropic quantum XY chain in a transverse field and can be realized with cold fermionic atoms in an optical lattice. We analyze the counting statistics across the phase diagram in the presence of thermal fluctuations and during its thermalization when the system is coupled to a heat bath. At zero temperature, the quantum phase transition is reflected in the cumulants of the counting distribution. We find that the signatures of the crossover remain visible at low temperature and are obscured with increasing thermal fluctuations. We find that the same quantities may be used to scan the dynamics during the thermalization of the system.

  9. An extension of the Bardeen-Cooper-Schrieffer model of superconductivity

    NASA Astrophysics Data System (ADS)

    Maćkowiak, J.; Tarasewicz, P.

    An extension of the BCS Hamiltonian of HBCS, the form H= HBCS+ W+ V, where W=∑ kγknk+ nk-, V=-| Λ| -1∑ k, k‧ gk, k‧ bk* b- k* b- k‧ bk‧ , nkσ = akσ * akσ , bk= ak+ ak- and akσ *, akσ are fermion creation and annihilation operators, is investigated. It is shown that H represents a solvable mean-field model in the thermodynamic limit. H exhibits a 2nd-order phase transition if W is sufficiently strongly attractive and the low-temperature phase, characterized by two order parameters, contains two condensates: a condensate of BCS-type fermion pairs and a condensate of fermion quadruples with momenta and spins ( p, σ) equal {( p, σ),(- p, σ), ( p,- σ), (- p,- σ)}. If γk<0, a pseudogap is present in the excitation spectrum in the normal phase.

  10. Statistical analyses of Higgs- and Z -portal dark matter models

    NASA Astrophysics Data System (ADS)

    Ellis, John; Fowlie, Andrew; Marzola, Luca; Raidal, Martti

    2018-06-01

    We perform frequentist and Bayesian statistical analyses of Higgs- and Z -portal models of dark matter particles with spin 0, 1 /2 , and 1. Our analyses incorporate data from direct detection and indirect detection experiments, as well as LHC searches for monojet and monophoton events, and we also analyze the potential impacts of future direct detection experiments. We find acceptable regions of the parameter spaces for Higgs-portal models with real scalar, neutral vector, Majorana, or Dirac fermion dark matter particles, and Z -portal models with Majorana or Dirac fermion dark matter particles. In many of these cases, there are interesting prospects for discovering dark matter particles in Higgs or Z decays, as well as dark matter particles weighing ≳100 GeV . Negative results from planned direct detection experiments would still allow acceptable regions for Higgs- and Z -portal models with Majorana or Dirac fermion dark matter particles.

  11. Interlaced coarse-graining for the dynamical cluster approximation

    NASA Astrophysics Data System (ADS)

    Haehner, Urs; Staar, Peter; Jiang, Mi; Maier, Thomas; Schulthess, Thomas

    The negative sign problem remains a challenging limiting factor in quantum Monte Carlo simulations of strongly correlated fermionic many-body systems. The dynamical cluster approximation (DCA) makes this problem less severe by coarse-graining the momentum space to map the bulk lattice to a cluster embedded in a dynamical mean-field host. Here, we introduce a new form of an interlaced coarse-graining and compare it with the traditional coarse-graining. We show that it leads to more controlled results with weaker cluster shape and smoother cluster size dependence, which with increasing cluster size converge to the results obtained using the standard coarse-graining. In addition, the new coarse-graining reduces the severity of the fermionic sign problem. Therefore, it enables calculations on much larger clusters and can allow the evaluation of the exact infinite cluster size result via finite size scaling. To demonstrate this, we study the hole-doped two-dimensional Hubbard model and show that the interlaced coarse-graining in combination with the DCA+ algorithm permits the determination of the superconducting Tc on cluster sizes, for which the results can be fitted with the Kosterlitz-Thouless scaling law. This research used resources of the Oak Ridge Leadership Computing Facility (OLCF) awarded by the INCITE program, and of the Swiss National Supercomputing Center. OLCF is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  12. Metal-insulator-superconductor transition of spin-3/2 atoms on optical lattices

    NASA Astrophysics Data System (ADS)

    De Silva, Theja N.

    2018-01-01

    We use a slave-rotor approach within a mean-field theory to study the competition of metallic, Mott-insulating, and superconducting phases of spin-3/2 fermions subjected to a periodic optical lattice potential. In addition to the metallic, the Mott-insulating, and the superconducting phases that are associated with the gauge symmetry breaking of the spinon field, we identify an emerging superconducting phase that breaks both roton and spinon field gauge symmetries. This superconducting phase emerges as a result of the competition between spin-0 singlet and spin-2 quintet interaction channels naturally available for spin-3/2 systems. The two superconducting phases can be distinguished from each other by quasiparticle weight. We further discuss the properties of these phases for both two-dimensional square and three-dimensional cubic lattices at zero and finite temperatures.

  13. Bose-Fermi mapping and a multibranch spin-chain model for strongly interacting quantum gases in one dimension: Dynamics and collective excitations

    NASA Astrophysics Data System (ADS)

    Yang, Li; Pu, Han

    2016-09-01

    We show that the wave function in one spatial sector x1

  14. Collective Yu-Shiba-Rusinov states in magnetic clusters at superconducting surfaces

    NASA Astrophysics Data System (ADS)

    Körber, Simon; Trauzettel, Björn; Kashuba, Oleksiy

    2018-05-01

    We study the properties of collective Yu-Shiba-Rusinov (YSR) states generated by multiple magnetic adatoms (clusters) placed on the surface of a superconductor. For magnetic clusters with equal distances between their constituents, we demonstrate the formation of effectively spin-unpolarized YSR states with subgap energies independent of the spin configuration of the magnetic impurities. We solve the problem analytically for arbitrary spin structure and analyze both spin-polarized (dispersive energy levels) and spin-unpolarized (pinned energy levels) solutions. While the energies of the spin-polarized solutions can be characterized solely by the net magnetic moment of the cluster, the wave functions of the spin-unpolarized solutions effectively decouple from it. This decoupling makes them stable against thermal fluctuation and detectable in scanning tunneling microscopy experiments.

  15. Strong disorder real-space renormalization for the many-body-localized phase of random Majorana models

    NASA Astrophysics Data System (ADS)

    Monthus, Cécile

    2018-03-01

    For the many-body-localized phase of random Majorana models, a general strong disorder real-space renormalization procedure known as RSRG-X (Pekker et al 2014 Phys. Rev. X 4 011052) is described to produce the whole set of excited states, via the iterative construction of the local integrals of motion (LIOMs). The RG rules are then explicitly derived for arbitrary quadratic Hamiltonians (free-fermions models) and for the Kitaev chain with local interactions involving even numbers of consecutive Majorana fermions. The emphasis is put on the advantages of the Majorana language over the usual quantum spin language to formulate unified RSRG-X rules.

  16. Multigrid for Staggered Lattice Fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, Richard C.; Clark, M. A.; Strelchenko, Alexei

    Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K\\"ahler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD.

  17. Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry

    NASA Technical Reports Server (NTRS)

    Hsu, J. P.

    1981-01-01

    A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.

  18. Magnetic order induces symmetry breaking in the single-crystalline orthorhombic CuMnAs semimetal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmanouilidou, Eve; Cao, Huibo; Tang, Peizhe

    2017-12-04

    Recently, orthorhombic CuMnAs has been proposed to be a magnetic material where topological fermions exist around the Fermi level. Here we report the magnetic structure of the orthorhombic Cu 0.95MnAs and Cu 0.98Mn 0.96As single crystals. While Cu 0.95MnAs is a commensurate antiferromagnet below 360 K with a propagation vector of k = 0,Cu 0.98Mn 0.96As undergoes a second-order paramagnetic to incommensurate antiferromagnetic phase transition at 320 K with k = (0.1,0,0), followed by a second-order incommensurate to commensurate antiferromagnetic phase transition at 230 K. In the commensurate antiferromagnetic state, the Mn spins order parallel to the crystallographic b axismore » but antiparallel to their nearest neighbors, with the spin orientation along the b axis. This magnetic order breaks S 2z, the two-fold rotational symmetry around the c axis, resulting in finite band gaps at the crossing point and the disappearance of the massless topological fermions. Furthermore, our first-principles calculations suggest that orthorhombic CuMnAs can still host spin-polarized surface states and signature induced by nontrivial topology, which makes it a promising candidate for antiferromagnetic spintronics.« less

  19. Pairing States of Spin-3/2 Fermions: Symmetry-Enforced Topological Gap Functions

    NASA Astrophysics Data System (ADS)

    Venderbos, Jörn W. F.; Savary, Lucile; Ruhman, Jonathan; Lee, Patrick A.; Fu, Liang

    2018-01-01

    We study the topological properties of superconductors with paired j =3/2 quasiparticles. Higher spin Fermi surfaces can arise, for instance, in strongly spin-orbit coupled band-inverted semimetals. Examples include the Bi-based half-Heusler materials, which have recently been established as low-temperature and low-carrier density superconductors. Motivated by this experimental observation, we obtain a comprehensive symmetry-based classification of topological pairing states in systems with higher angular momentum Cooper pairing. Our study consists of two main parts. First, we develop the phenomenological theory of multicomponent (i.e., higher angular momentum) pairing by classifying the stationary points of the free energy within a Ginzburg-Landau framework. Based on the symmetry classification of stationary pairing states, we then derive the symmetry-imposed constraints on their gap structures. We find that, depending on the symmetry quantum numbers of the Cooper pairs, different types of topological pairing states can occur: fully gapped topological superconductors in class DIII, Dirac superconductors, and superconductors hosting Majorana fermions. Notably, we find a series of nematic fully gapped topological superconductors, as well as double- and triple-Dirac superconductors, with quadratic and cubic dispersion, respectively. Our approach, applied here to the case of j =3/2 Cooper pairing, is rooted in the symmetry properties of pairing states, and can therefore also be applied to other systems with higher angular momentum and high-spin pairing. We conclude by relating our results to experimentally accessible signatures in thermodynamic and dynamic probes.

  20. Thermal properties of spin-S Kitaev-Heisenberg model on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Suzuki, Takafumi; Yamaji, Youhei

    2018-05-01

    Temperature (T) dependence of heat capacity C (T) in the S = 1 / 2 Kitaev honeycomb model shows a double-peak structure resulting from fractionalization of spins into two kinds of Majorana fermions. Recently it has been discussed that the double-peak structure in C (T) is also observed in magnetic ordered phases of the S = 1 / 2 Kitaev-Heisenberg (KH) model on a honeycomb lattice when the system is located in the vicinity of the Kitaev's spin liquid phase. In addition to the S = 1 / 2 spin case, similar double-peak structure has been confirmed in the KH honeycomb model for classical Heisenberg spins, where spin S is regarded as S → ∞ . We investigate spin-S dependence of C (T) for the KH honeycomb models by using thermal pure quantum state. We also perform classical Monte Carlo calculations to obtain C (T) for the classical KH model. From obtained results, we find that the origin of the high-temperature peak is different between the quantum spin case with small Ss and the classical Heisenberg spin case. Furthermore, the high-temperature peak in the quantum spin case, which is one of the clues for fractionalization of spins, disappears for S > 1 .

  1. Spin-dependent μ → e conversion

    DOE PAGES

    Cirigliano, Vincenzo; Davidson, Sacha; Kuno, Yoshitaka

    2017-05-22

    The experimental sensitivity to μ→e conversion on nuclei is expected to improve by four orders of magnitude in coming years. Here, we consider the impact of μ→e flavour-changing tensor and axial-vector four-fermion operators which couple to the spin of nucleons. Such operators, which have not previously been considered, contribute to μ→e conversion in three ways: in nuclei with spin they mediate a spin-dependent transition; in all nuclei they contribute to the coherent (A 2-enhanced) spin-independent conversion via finite recoil effects and via loop mixing with dipole, scalar, and vector operators. Furthermore, we estimate the spin-dependent rate in Aluminium (the targetmore » of the upcoming COMET and Mu2e experiments), show that the loop effects give the greatest sensitivity to tensor and axial-vector operators involving first-generation quarks, and discuss the complementarity of the spin-dependent and independent contributions to μ→e conversion.« less

  2. Spin-dependent μ → e conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirigliano, Vincenzo; Davidson, Sacha; Kuno, Yoshitaka

    The experimental sensitivity to μ→e conversion on nuclei is expected to improve by four orders of magnitude in coming years. Here, we consider the impact of μ→e flavour-changing tensor and axial-vector four-fermion operators which couple to the spin of nucleons. Such operators, which have not previously been considered, contribute to μ→e conversion in three ways: in nuclei with spin they mediate a spin-dependent transition; in all nuclei they contribute to the coherent (A 2-enhanced) spin-independent conversion via finite recoil effects and via loop mixing with dipole, scalar, and vector operators. Furthermore, we estimate the spin-dependent rate in Aluminium (the targetmore » of the upcoming COMET and Mu2e experiments), show that the loop effects give the greatest sensitivity to tensor and axial-vector operators involving first-generation quarks, and discuss the complementarity of the spin-dependent and independent contributions to μ→e conversion.« less

  3. Polaron Thermodynamics of Spin-Imbalanced Quasi-Two-Dimensional Fermi Gases

    NASA Astrophysics Data System (ADS)

    Ong, Willie; Cheng, Chingyun; Arakelyan, Ilya; Thomas, John

    2015-05-01

    We present the first spatial profile measurements for spin-imbalanced mixtures of atomic 6Li fermions in a quasi-2D geometry with tunable strong interactions. The observed minority and majority profiles are not correctly predicted by BCS theory for a true 2D system, but are reasonably well fit by a 2D-polaron model of the free energy. Density difference profiles reveal a flat center with two peaks at the edges, consistent with a fully paired core of the corresponding 2D density profiles. These features are more prominent for higher interaction strengths. Not predicted by the polaron model is an observed transition from a spin-imbalanced normal fluid phase to a spin-balanced central core above a critical imbalance. Supported by ARO, DOE, AFOSR, NSF.

  4. Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera.

    PubMed

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-03-23

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting-henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less

  6. Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera

    NASA Astrophysics Data System (ADS)

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-03-01

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting—henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.

  7. Ultracold Atoms in a Square Lattice with Spin-Orbit Coupling: Charge Order, Superfluidity, and Topological Signatures

    NASA Astrophysics Data System (ADS)

    Rosenberg, Peter; Shi, Hao; Zhang, Shiwei

    2017-12-01

    We present an ab initio, numerically exact study of attractive fermions in square lattices with Rashba spin-orbit coupling. The ground state of this system is a supersolid, with coexisting charge and superfluid order. The superfluid is composed of both singlet and triplet pairs induced by spin-orbit coupling. We perform large-scale calculations using the auxiliary-field quantum Monte Carlo method to provide the first full, quantitative description of the charge, spin, and pairing properties of the system. In addition to characterizing the exotic physics, our results will serve as essential high-accuracy benchmarks for the intense theoretical and especially experimental efforts in ultracold atoms to realize and understand an expanding variety of quantum Hall and topological superconductor systems.

  8. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.

    2018-04-01

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  9. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers.

    PubMed

    Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A

    2018-04-13

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  10. Continuum limit and symmetries of the periodic gℓ(1|1) spin chain

    NASA Astrophysics Data System (ADS)

    Gainutdinov, A. M.; Read, N.; Saleur, H.

    2013-06-01

    This paper is the first in a series devoted to the study of logarithmic conformal field theories (LCFT) in the bulk. Building on earlier work in the boundary case, our general strategy consists in analyzing the algebraic properties of lattice regularizations (quantum spin chains) of these theories. In the boundary case, a crucial step was the identification of the space of states as a bimodule over the Temperley-Lieb (TL) algebra and the quantum group Uqsℓ(2). The extension of this analysis in the bulk case involves considerable difficulties, since the Uqsℓ(2) symmetry is partly lost, while the TL algebra is replaced by a much richer version (the Jones-Temperley-Lieb — JTL — algebra). Even the simplest case of the gℓ(1|1) spin chain — corresponding to the c=-2 symplectic fermions theory in the continuum limit — presents very rich aspects, which we will discuss in several papers. In this first work, we focus on the symmetries of the spin chain, that is, the centralizer of the JTL algebra in the alternating tensor product of the gℓ(1|1) fundamental representation and its dual. We prove that this centralizer is only a subalgebra of Uqsℓ(2) at q=i that we dub Uqoddsℓ(2). We then begin the analysis of the continuum limit of the JTL algebra: using general arguments about the regularization of the stress-energy tensor, we identify families of JTL elements going over to the Virasoro generators Ln,L in the continuum limit. We then discuss the sℓ(2) symmetry of the (continuum limit) symplectic fermions theory from the lattice and JTL point of view. The analysis of the spin chain as a bimodule over Uqoddsℓ(2) and JTLN is discussed in the second paper of this series.

  11. Itinerant fermions on a triangular lattice: Unconventional magnetism and other ordered states

    NASA Astrophysics Data System (ADS)

    Ye, Mengxing; Chubukov, Andrey V.

    2018-06-01

    We consider a system of 2D fermions on a triangular lattice with well separated electron and hole pockets of similar sizes, centered at certain high-symmetry points in the Brillouin zone. We first analyze Stoner-type spin-density-wave (SDW) magnetism. We show that SDW order is degenerate at the mean-field level. Beyond mean-field, the degeneracy is lifted and is either 120∘ "triangular" order (same as for localized spins), or a collinear order with antiferromagnetic spin arrangement on two-thirds of sites, and nonmagnetic on the rest of sites. We also study a time-reversal symmetric directional spin bond order, which emerges when some interactions are repulsive and some are attractive. We show that this order is also degenerate at a mean-field level, but beyond mean-field the degeneracy is again lifted. We next consider the evolution of a magnetic order in a magnetic field starting from an SDW state in zero field. We show that a field gives rise to a canting of an SDW spin configuration. In addition, it necessarily triggers the directional bond order, which, we argue, is linearly coupled to the SDW order in a finite field. We derive the corresponding term in the free energy. Finally, we consider the interplay between an SDW order and superconductivity and charge order. For this, we analyze the flow of the couplings within parquet renormalization group (pRG) scheme. We show that magnetism wins if all interactions are repulsive and there is little energy space for pRG to develop. However, if system parameters are such that pRG runs over a wide range of energies, the system may develop either superconductivity or an unconventional charge order, which breaks time-reversal symmetry.

  12. Photoelectron Spectroscopy and Density Functional Theory Studies of Iron Sulfur (FeS)m- (m = 2-8) Cluster Anions: Coexisting Multiple Spin States.

    PubMed

    Yin, Shi; Bernstein, Elliot R

    2017-10-05

    Iron sulfur cluster anions (FeS) m - (m = 2-8) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by density functional theory (DFT) calculations. The most probable structures and ground state spin multiplicities for (FeS) m - (m = 2-8) clusters are tentatively assigned through a comparison of their theoretical and experiment first vertical detachment energy (VDE) values. Many spin states lie within 0.5 eV of the ground spin state for the larger (FeS) m - (m ≥ 4) clusters. Theoretical VDEs of these low lying spin states are in good agreement with the experimental VDE values. Therefore, multiple spin states of each of these iron sulfur cluster anions probably coexist under the current experimental conditions. Such available multiple spin states must be considered when evaluating the properties and behavior of these iron sulfur clusters in real chemical and biological systems. The experimental first VDEs of (FeS) m - (m = 1-8) clusters are observed to change with the cluster size (number m). The first VDE trends noted can be related to the different properties of the highest singly occupied molecular orbitals (NBO, HSOMOs) of each cluster anion. The changing nature of the NBO/HSOMO of these (FeS) m - (m = 1-8) clusters from a p orbital on S, to a d orbital on Fe, and to an Fe-Fe bonding orbital is probably responsible for the observed increasing trend for their first VDEs with respect to m.

  13. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics.

    PubMed

    Steglich, Frank; Wirth, Steffen

    2016-08-01

    This article overviews the development of heavy-fermion superconductivity, notably in such rare-earth-based intermetallic compounds which behave as Kondo-lattice systems. Heavy-fermion superconductivity is of unconventional nature in the sense that it is not mediated by electron-phonon coupling. Rather, in most cases the attractive interaction between charge carriers is apparently magnetic in origin. Fluctuations associated with an antiferromagnetic (AF) quantum critical point (QCP) play a major role. The first heavy-fermion superconductor CeCu2Si2 turned out to be the prototype of a larger group of materials for which the underlying, often pressure-induced, AF QCP is likely to be of a three-dimensional (3D) spin-density-wave (SDW) variety. For UBe13, the second heavy-fermion superconductor, a magnetic-field-induced 3D SDW QCP inside the superconducting phase can be conjectured. Such a 'conventional', itinerant QCP can be well understood within Landau's paradigm of order-parameter fluctuations. In contrast, the low-temperature normal-state properties of a few heavy-fermion superconductors are at odds with the Landau framework. They are characterized by an 'unconventional', local QCP which may be considered a zero-temperature 4 f-orbital selective Mott transition. Here, as concluded for YbRh2Si2, the breakdown of the Kondo effect concurring with the AF instability gives rise to an abrupt change of the Fermi surface. Very recently, superconductivity was discovered for this compound at ultra-low temperatures. Therefore, YbRh2Si2 along with CeRhIn5 under pressure provide a natural link between the large group of about fifty low-temperature heavy-fermion superconductors and other families of unconventional superconductors with substantially higher T c, e.g. the doped Mott insulators of the perovskite-type cuprates and the organic charge-transfer salts.

  14. EM Transition Sum Rules Within the Framework of sdg Proton-Neutron Interacting Boson Model, Nuclear Pair Shell Model and Fermion Dynamical Symmetry Model

    NASA Astrophysics Data System (ADS)

    Zhao, Yumin

    1997-07-01

    By the techniques of the Wick theorem for coupled clusters, the no-energy-weighted electromagnetic sum-rule calculations are presented in the sdg neutron-proton interacting boson model, the nuclear pair shell model and the fermion-dynamical symmetry model. The project supported by Development Project Foundation of China, National Natural Science Foundation of China, Doctoral Education Fund of National Education Committee, Fundamental Research Fund of Southeast University

  15. Investigation of a driven fermionic system and detecting chiral edge modes in an optical lattice

    NASA Astrophysics Data System (ADS)

    Görg, Frederik; Messer, Michael; Jotzu, Gregor; Sandholzer, Kilian; Desbuquois, Rémi; Goldman, Nathan; Esslinger, Tilman

    2017-04-01

    Periodically driven systems of ultracold fermions in optical lattices allow to implement a large variety of effective Hamiltonians through Floquet engineering. An important question is whether this method can be extended to interacting systems. We investigate driven two-body systems in an array of double wells and measure the double occupancy and the spin-spin correlator in the large frequency limit and when driving resonantly to an energy scale of the underlying static Hamiltonian. We analyze whether the emerging states of the driven system can be adiabatically connected to states in the unshaken lattice. In addition, we measure the amplitude of the micromotion which describes the short time dynamics of the system and compare it directly to theory. In another context we propose a method to create topological interfaces and detect chiral edge modes in a two dimensional optical lattice. We illustrate this through an optical lattice realization of the Haldane model for cold atoms, where an additional spatially-varying lattice potential induces distinct topological phases in separated regions of space.

  16. Quantum critical fluctuations in the heavy fermion compound Ce(Ni 0.935Pd 0.065) 2Ge 2

    DOE PAGES

    Wang, C. H.; Poudel, L.; Taylor, Alice E.; ...

    2014-12-03

    Electric resistivity, specific heat, magnetic susceptibility, and inelastic neutron scattering experiments were performed on a single crystal of the heavy fermion compound Ce(Ni 0.935Pd 0.065) 2Ge 2 in order to research the spin fluctuations near an antiferromagnetic (AF) quantum critical point (QCP). The resistivity and the specific heat coefficient for T ≤ 1 K exhibit the power law behavior expected for a 3D itinerant AF QCP (ρ(T) ~ T 3/2 and γ(T) ~ γ 0 - bT 1/2). However, for 2 ≤ T ≤ 10 K, the susceptibility and specific heat vary as log T and the resistivity varies linearlymore » with temperature. In addition, despite the fact that the resistivity and specific heat exhibit the non-Fermi liquid behavior expected at a QCP, the correlation length, correlation time, and staggered susceptibility of the spin fluctuations remain finite at low temperature. In conclusion, we suggest that these deviations from the divergent behavior expected for a QCP may result from alloy disorder.« less

  17. Matter-antimatter asymmetry and dark matter from torsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poplawski, Nikodem J.

    2011-04-15

    We propose a simple scenario which explains the observed matter-antimatter imbalance and the origin of dark matter in the Universe. We use the Einstein-Cartan-Sciama-Kibble theory of gravity which naturally extends general relativity to include the intrinsic spin of matter. Spacetime torsion produced by spin generates, in the classical Dirac equation, the Hehl-Datta term which is cubic in spinor fields. We show that under a charge-conjugation transformation this term changes sign relative to the mass term. A classical Dirac spinor and its charge conjugate therefore satisfy different field equations. Fermions in the presence of torsion have higher energy levels than antifermions,more » which leads to their decay asymmetry. Such a difference is significant only at extremely high densities that existed in the very early Universe. We propose that this difference caused a mechanism, according to which heavy fermions existing in such a Universe and carrying the baryon number decayed mostly to normal matter, whereas their antiparticles decayed mostly to hidden antimatter which forms dark matter. The conserved total baryon number of the Universe remained zero.« less

  18. Weyl Magnon

    NASA Astrophysics Data System (ADS)

    Li, Fei-Ye; Li, Yao-Dong; Yu, Yue; Kim, Yong Baek; Balents, Leon; Chen, Gang

    Conventional magnetic orders in Mott insulators are often believed to be trivial as they are simple product states. In this talk, we argue that this belief is not always right. We study a realistic spin model on the breathing pyrochlore lattice. We find that, although the system has a magnetic ordered ground state, the magnetic excitation is rather nontrivial and supports linear band touchings in its spectrum. This linear band touching is a topological property of the magnon band structure and is thus robust against small perturbation. We thus name this magnon band touching as ``Weyl magnon''. Just like the Weyl fermion, the existence of Weyl magnon suggests the presence of chiral magnon surface states. Unlike the surface Fermi arcs for the Weyl fermions, the chiral surface state for Weyl magnon appears at a finite energy due to the bosonic nature of the magnons. Moreover, the external magnetic field only couples to the spins with a Zeeman term and thus can readily shift the Weyl node position. This provides a way to control the Weyl magnon. Our work will inspire a re-examination of the excitation spectrum of many magnetic ordered systems. Chggst@gmail.com.

  19. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd₃As₂.

    PubMed

    Jeon, Sangjun; Zhou, Brian B; Gyenis, Andras; Feldman, Benjamin E; Kimchi, Itamar; Potter, Andrew C; Gibson, Quinn D; Cava, Robert J; Vishwanath, Ashvin; Yazdani, Ali

    2014-09-01

    Condensed-matter systems provide a rich setting to realize Dirac and Majorana fermionic excitations as well as the possibility to manipulate them for potential applications. It has recently been proposed that chiral, massless particles known as Weyl fermions can emerge in certain bulk materials or in topological insulator multilayers and give rise to unusual transport properties, such as charge pumping driven by a chiral anomaly. A pair of Weyl fermions protected by crystalline symmetry effectively forming a massless Dirac fermion has been predicted to appear as low-energy excitations in a number of materials termed three-dimensional Dirac semimetals. Here we report scanning tunnelling microscopy measurements at sub-kelvin temperatures and high magnetic fields on the II-V semiconductor Cd3As2. We probe this system down to atomic length scales, and show that defects mostly influence the valence band, consistent with the observation of ultrahigh-mobility carriers in the conduction band. By combining Landau level spectroscopy and quasiparticle interference, we distinguish a large spin-splitting of the conduction band in a magnetic field and its extended Dirac-like dispersion above the expected regime. A model band structure consistent with our experimental findings suggests that for a magnetic field applied along the axis of the Dirac points, Weyl fermions are the low-energy excitations in Cd3As2.

  20. Complex-network description of thermal quantum states in the Ising spin chain

    NASA Astrophysics Data System (ADS)

    Sundar, Bhuvanesh; Valdez, Marc Andrew; Carr, Lincoln D.; Hazzard, Kaden R. A.

    2018-05-01

    We use network analysis to describe and characterize an archetypal quantum system—an Ising spin chain in a transverse magnetic field. We analyze weighted networks for this quantum system, with link weights given by various measures of spin-spin correlations such as the von Neumann and Rényi mutual information, concurrence, and negativity. We analytically calculate the spin-spin correlations in the system at an arbitrary temperature by mapping the Ising spin chain to fermions, as well as numerically calculate the correlations in the ground state using matrix product state methods, and then analyze the resulting networks using a variety of network measures. We demonstrate that the network measures show some traits of complex networks already in this spin chain, arguably the simplest quantum many-body system. The network measures give insight into the phase diagram not easily captured by more typical quantities, such as the order parameter or correlation length. For example, the network structure varies with transverse field and temperature, and the structure in the quantum critical fan is different from the ordered and disordered phases.

  1. Spin Josephson effect in topological superconductor-ferromagnet junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, C. D.; Wang, J., E-mail: jwang@seu.edu.cn

    2014-03-21

    The composite topological superconductor (TS), made of one-dimensional spin-orbit coupled nanowire with proximity-induced s-wave superconductivity, is not a pure p-wave superconductor but still has a suppressed s-wave pairing. We propose to probe the spin texture of the p-wave pairing in this composite TS by examining possible spin supercurrents in an unbiased TS/ferromagnet junction. It is found that both the exchange-coupling induced and spin-flip reflection induced spin currents exist in the setup and survive even in the topological phase. We showed that besides the nontrivial p-wave pairing state accounting for Majorana Fermions, there shall be a trivial p-wave pairing state thatmore » contributes to spin supercurrent. The trivial p-wave pairing state is diagnosed from the mixing effect between the suppressed s-wave pairing and the topologically nontrivial p-wave pairing. The d vector of the TS is proved not to be rigorously perpendicular to the spin projection of p-wave pairings. Our findings are also confirmed by the Kitaev's p-wave model with a nonzero s-wave pairing.« less

  2. Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators

    PubMed Central

    Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno

    2016-01-01

    Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516

  3. Magnetic behavior of Si-Ge bond in SixGe4-x nano-clusters

    NASA Astrophysics Data System (ADS)

    Nahali, Masoud; Mehri, Ali

    2018-06-01

    The structure of SixGe4-x nano-clusters were optimized by MPW1B95 level of theory using MG3S and SDB-aug-cc-PVTZ basis set. The agreement of the calculated ionization and dissociation energies with experimental values validates the reported structures of nano-clusters and justifies the use of hybrid meta density functional method. Since the Si-Si bond is stronger than Si-Ge and Ge-Ge bonds, the Si-Si, Si-Ge, and Ge-Ge diagonal bonds determine the precedence of the stability in these nano-clusters. The hybrid meta density functional calculations were carried out to investigate the adsorption of CO on all possible SixGe4-x nano-clusters. It was found that the silicon atom generally makes a stronger bond with CO than germanium and thereby preferentially affects the shape of structures having higher multiplicity. In Si-Ge structures with higher spin more than 95% of spins accumulate on positions with less bonds to other atoms of the cluster. Through CO adsorption on these clusters bridge structures are made that behave as spin bridge which conduct the spin from the nano-cluster surface to the adsorbate atoms. A better understanding of bridged structures was achieved upon introducing the 'spin bridge' concept. Based on exhaustive spin density analysis, it was found that the reason for the extra negative charge on oxygen in the bridged structures is the relocation of spin from the surface through the bridge.

  4. Interfacial Dirac cones from alternating topological invariant superlattice structures of Bi2Se3.

    PubMed

    Song, Jung-Hwan; Jin, Hosub; Freeman, Arthur J

    2010-08-27

    When the three-dimensional topological insulators Bi2Se3 and Bi2Te3 have an interface with vacuum, i.e., a surface, they show remarkable features such as topologically protected and spin-momentum locked surface states. However, for practical applications, one often requires multiple interfaces or channels rather than a single surface. Here, for the first time, we show that an interfacial and ideal Dirac cone is realized by alternating band and topological insulators. The multichannel Dirac fermions from the superlattice structures open a new way for applications such as thermoelectric and spintronics devices. Indeed, utilizing the interfacial Dirac fermions, we also demonstrate the possible power factor improvement for thermoelectric applications.

  5. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6

    PubMed Central

    Liang, Tian; Koohpayeh, S. M.; Krizan, J. W.; McQueen, T. M.; Cava, R. J.; Ong, N. P.

    2015-01-01

    The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition. PMID:26146018

  6. Physical realization of a quantum spin liquid based on a complex frustration mechanism

    NASA Astrophysics Data System (ADS)

    Reuther, Johannes; Balz, Christian; Lake, Bella

    Unlike conventional magnets where the spins undergo magnetic long-range order in the ground state, in a quantum spin liquid they remain disordered down to the lowest temperatures without breaking local symmetries. Here, we investigate the novel, unexplored bilayer-kagome magnet Ca10Cr7O28, which has a complex Hamiltonian consisting of isotropic antiferromagnetic and ferromagnetic interactions where the ferromagnetic couplings are the dominant ones. We show both experimentally and theoretically that this compound displays all the features expected of a quantum spin liquid. In particular, experiments rule out static magnetic order down to 19mK and reveal a diffuse spinon-like excitation spectrum. Numerically simulating this material using the pseudo fermion functional renormalization group (PFFRG) method, we theoretically confirm the non-magnetic ground state of the system and qualitatively reproduce the measured spin correlation profile. By tuning the model parameters away from those realized in Ca10Cr7O28 we further show that the spin-liquid phase is of remarkable stability.

  7. Determination of Fermi contour and spin polarization of ν = 3 2 composite fermions via ballistic commensurability measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamburov, D.; Mueed, M. A.; Jo, I.

    2014-12-01

    We report ballistic transport commensurability minima in the magnetoresistance of nu = 3/2 composite fermions (CFs). The CFs are formed in high-quality two-dimensional electron systems confined to wide GaAs quantum wells and subjected to an in-plane, unidirectional periodic potential modulation. We observe a slight asymmetry of the CF commensurability positions with respect to nu = 3/2, which we explain quantitatively by comparing three CF density models and concluding that the nu = 3/2 CFs are likely formed by the minority carriers in the upper energy spin state of the lowest Landau level. Our data also allow us to probe themore » shape and size of the CF Fermi contour. At a fixed electron density of similar or equal to 1.8x10(11) cm(-2), as the quantum well width increases from 30 to 60 nm, the CFs show increasing spin polarization. We attribute this to the enhancement of the Zeeman energy relative to the Coulomb energy in wider wells where the latter is softened because of the larger electron layer thickness. The application of an additional parallel magnetic field (B-parallel to) leads to a significant distortion of the CF Fermi contour as B-parallel to couples to the CFs' out-of-plane orbital motion. The distortion is much more severe compared to the nu = 1/2 CF case at comparable B-parallel to. Moreover, the applied B-parallel to further spin-polarizes the nu = 3/2 CFs as deduced from the positions of the commensurability minima.« less

  8. Detection of Antiferromagnetic Correlations in the Fermi-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Hulet, Randall

    2014-05-01

    The Hubbard model, consisting of a cubic lattice with on-site interactions and kinetic energy arising from tunneling to nearest neighbors is a ``standard model'' of strongly correlated many-body physics, and it may also contain the essential ingredients of high-temperature superconductivity. While the Hamiltonian has only two terms it cannot be numerically solved for arbitrary density of spin-1/2 fermions due to exponential growth in the basis size. At a density of one spin-1/2 particle per site, however, the Hubbard model is known to exhibit antiferromagnetism at temperatures below the Néel temperature TN, a property shared by most of the undoped parent compounds of high-Tc superconductors. The realization of antiferromagnetism in a 3D optical lattice with atomic fermions has been impeded by the inability to attain sufficiently low temperatures. We have developed a method to perform evaporative cooling in a 3D cubic lattice by compensating the confinement envelope of the infrared optical lattice beams with blue-detuned laser beams. Evaporation can be controlled by the intensity of these non-retroreflected compensating beams. We observe significantly lower temperatures of a two-spin component gas of 6Li atoms in the lattice using this method. The cooling enables us to detect the development of short-range antiferromagnetic correlations using spin-sensitive Bragg scattering of light. Comparison with quantum Monte Carlo constrains the temperature in the lattice to 2-3 TN. We will discuss the prospects of attaining even lower temperatures with this method. Supported by DARPA/ARO, ONR, and NSF.

  9. Bicollinear antiferromagnetic order, monoclinic distortion, and reversed resistivity anisotropy in FeTe as a result of spin-lattice coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, Christopher B.; Moreo, Adriana; Dagotto, Elbio

    2016-09-08

    The bicollinear antiferromagnetic order experimentally observed in FeTe is shown to be stabilized by the coupling g ~ 12 between monoclinic lattice distortions and the spin-nematic order parameter with B 2g symmetry, within a three-orbital spin-fermion model studied with Monte Carlo techniques. A finite but small value of g ~ 12 is required, with a concomitant lattice distortion compatible with experiments, and a tetragonal-monoclinic transition strongly first order. Remarkably, the bicollinear state found here displays a planar resistivity with the reversed puzzling anisotropy discovered in transport experiments. Orthorhombic distortions are also incorporated, and phase diagrams interpolating between pnictides and chalcogenidesmore » are presented. Here, we conclude that the spin-lattice coupling we introduce is sufficient to explain the challenging properties of FeTe.« less

  10. Quantum critical point revisited by dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.

    2017-03-01

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.

  11. Quantum critical point revisited by dynamical mean-field theory

    DOE PAGES

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.

    2017-03-31

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less

  12. Unusual Thermal Hall Effect in a Kitaev Spin Liquid Candidate α -RuCl3

    NASA Astrophysics Data System (ADS)

    Kasahara, Y.; Sugii, K.; Ohnishi, T.; Shimozawa, M.; Yamashita, M.; Kurita, N.; Tanaka, H.; Nasu, J.; Motome, Y.; Shibauchi, T.; Matsuda, Y.

    2018-05-01

    The Kitaev quantum spin liquid displays the fractionalization of quantum spins into Majorana fermions. The emergent Majorana edge current is predicted to manifest itself in the form of a finite thermal Hall effect, a feature commonly discussed in topological superconductors. Here we report on thermal Hall conductivity κx y measurements in α -RuCl3 , a candidate Kitaev magnet with the two-dimensional honeycomb lattice. In a spin-liquid (Kitaev paramagnetic) state below the temperature characterized by the Kitaev interaction JK/kB˜80 K , positive κx y develops gradually upon cooling, demonstrating the presence of highly unusual itinerant excitations. Although the zero-temperature property is masked by the magnetic ordering at TN=7 K , the sign, magnitude, and T dependence of κx y/T at intermediate temperatures follows the predicted trend of the itinerant Majorana excitations.

  13. Interplay between superconductivity and magnetism in iron-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubukov, Andrey V

    2015-06-10

    This proposal is for theoretical work on strongly correlated electron systems, which are at the center of experimental and theoretical activities in condensed-matter physics. The interest to this field is driven fascinating variety of observed effects, universality of underlying theoretical ideas, and practical applications. I propose to do research on Iron-based superconductors (FeSCs), which currently attract high attention in the physics community. My goal is to understand superconductivity and magnetism in these materials at various dopings, the interplay between the two, and the physics in the phase in which magnetism and superconductivity co-exist. A related goal is to understand themore » origin of the observed pseudogap-like behavior in the normal state. My research explores the idea that superconductivity is of electronic origin and is caused by the exchange of spin-fluctuations, enhanced due to close proximity to antiferromagnetism. The multi-orbital/multi-band nature of FeSCs opens routes for qualitatively new superconducting states, particularly the ones which break time-reversal symmetry. By all accounts, the coupling in pnictdes is below the threshold for Mott physics and I intend to analyze these systems within the itinerant approach. My plan is to do research in two stages. I first plan to address several problems within weak-coupling approach. Among them: (i) what sets stripe magnetic order at small doping, (ii) is there a preemptive instability into a spin-nematic state, and how stripe order affects fermions; (iii) is there a co-existence between magnetism and superconductivity and what are the system properties in the co-existence state; (iv) how superconductivity emerges despite strong Coulomb repulsion and can the gap be s-wave but with nodes along electron FSs, (v) are there complex superconducting states, like s+id, which break time reversal symmetry. My second goal is to go beyond weak coupling and derive spin-mediated, dynamic interaction between fermions, understand what sets the upper scale for attractive interaction, compute T_c, and then obtain and solve matrix non-linear gap equation for spin-mediated pairing and study various feedbacks from the pairing on fermions on ARPES spectra, optical and thermal conductivity, and other observables, The problems I have chosen are quite generic, and the understanding of magnetically-mediated superconductivity in the strong-coupling regime will not only advance the theory of superconductivity in FeSCs, but will contribute to a generic understanding of the pairing of fermions near quantum-critical points -- the problems ranging from s-wave pairing by soft optical phonons to to color superconductivity of quarks mediated by a gluon exchange.« less

  14. Local Criticality and non-Fermi Liquid Behavior in Heavy Fermions

    NASA Astrophysics Data System (ADS)

    Si, Qimiao

    2002-03-01

    Quantum criticality provides a means to understand the apparent non-Fermi liquid phenomena in strongly correlated metals. Heavy fermion metals have emerged as a prototype system; many of them explicitly display a magnetic QCP. Experiments have shown that the quantum critical behavior is much richer than expected. One surprise came from neutron scattering, which found that the spin dynamics is anomalous not only near the antiferromagnetic wavevectors but also essentially everywhere in the Brillouin zone. In this talk, I will review the experiments and describe our theoretical work on the subject [1,2,3]. The notion of "local criticality" will be introduced and will be argued to apply to the heavy fermions. Some broader implications of the results will also be discussed. [1] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature 413, 804 (2001). [2] Q. Si, J. L. Smith and K. Ingersent, Int. Journ. Mod. Phys. B13, 2331 (1999). [3] J. L. Smith and Q. Si, Phys. Rev. B61, 5184 (2000).

  15. Triply degenerate nodal points and topological phase transitions in NaCu3Te2

    NASA Astrophysics Data System (ADS)

    Xia, Yunyouyou; Li, Gang

    2017-12-01

    Quasiparticle excitations of free electrons in condensed-matter physics, characterized by the dimensionality of the band crossing, can find their elementary-particle analogs in high-energy physics, such as Majorana, Weyl, and Dirac fermions, while crystalline symmetry allows more quasiparticle excitations and exotic fermions to emerge. Using symmetry analysis and ab initio calculations, we propose that the three-dimensional honeycomb crystal NaCu3Te2 hosts triply degenerate nodal points (TDNPs) residing at the Fermi level. Furthermore, in this system we find a tunable phase transition between a trivial insulator, a TDNP phase, and a weak topological insulator (TI), triggered by a symmetry-allowed perturbation and the spin-orbital coupling (SOC). Such a topological nontrivial ternary compound not only serves as a perfect candidate for studying three-component fermions, but also provides an excellent playground for understanding the topological phase transitions between TDNPs, TIs, and trivial insulators, which distinguishes this system from other TDNP candidates.

  16. Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals

    NASA Astrophysics Data System (ADS)

    Feldmeier, Johannes; Huber, Sebastian; Punk, Matthias

    2018-05-01

    We present an exact ground state solution of a quantum dimer model introduced by Punk, Allais, and Sachdev [Quantum dimer model for the pseudogap metal, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015)., 10.1073/pnas.1512206112], which features ordinary bosonic spin-singlet dimers as well as fermionic dimers that can be viewed as bound states of spinons and holons in a hole-doped resonating valence bond liquid. Interestingly, this model captures several essential properties of the metallic pseudogap phase in high-Tc cuprate superconductors. We identify a line in parameter space where the exact ground state wave functions can be constructed at an arbitrary density of fermionic dimers. At this exactly solvable line the ground state has a huge degeneracy, which can be interpreted as a flat band of fermionic excitations. Perturbing around the exactly solvable line, this degeneracy is lifted and the ground state is a fractionalized Fermi liquid with a small pocket Fermi surface in the low doping limit.

  17. High-spin level structure and Ground-state phase transition in the odd-mass 103-109Rh isotopes in the framework of exactly solvable sdg interacting boson-fermion model

    NASA Astrophysics Data System (ADS)

    Ghapanvari, M.; Ghorashi, A. H.; Ranjbar, Z.; Jafarizadeh, M. A.

    2018-03-01

    In this article, the negative-parity states in the odd-mass 103 - 109Rh isotopes in terms of the sd and sdg interacting-boson fermion models were studied. The transitional interacting boson-fermion model Hamiltonians in sd and sdg-IBFM versions based on affine SU (1 , 1) Lie Algebra were employed to describe the evolution from the spherical to deformed gamma unstable shapes along with the chain of Rh isotopes. In this method, sdg-IBFM Hamiltonian, which is a three level pairing Hamiltonian was determined easily via the exactly solvable method. Some observables of the shape phase transitions such as energy levels, the two neutron separation energies, signature splitting of the γ-vibrational band, the α-decay and double β--decay energies were calculated and examined for these isotopes. The present calculation correctly reproduces the spherical to gamma-soft phase transition in the Rh isotopes. Some comparisons were made with sd-IBFM.

  18. Sea of Majorana fermions from pseudo-scalar superconducting order in three dimensional Dirac materials.

    PubMed

    Salehi, Morteza; Jafari, S A

    2017-08-15

    We suggest that spin-singlet pseudo-scalar s-wave superconducting pairing creates a two dimensional sea of Majorana fermions on the surface of three dimensional Dirac superconductors (3DDS). This pseudo-scalar superconducting order parameter Δ 5 , in competition with scalar Dirac mass m, leads to a topological phase transition due to band inversion. We find that a perfect Andreev-Klein reflection is guaranteed by presence of anomalous Andreev reflection along with the conventional one. This effect manifests itself in a resonant peak of the differential conductance. Furthermore, Josephson current of the Δ 5 |m|Δ 5 junction in the presence of anomalous Andreev reflection is fractional with 4π period. Our finding suggests another search area for condensed matter realization of Majorana fermions which are beyond the vortex-core of p-wave superconductors. The required Δ 5 pairing can be extrinsically induced by a conventional s-wave superconductor into a three dimensional Dirac material (3DDM).

  19. Weyl-Kondo semimetal in heavy-fermion systems

    NASA Astrophysics Data System (ADS)

    Lai, Hsin-Hua; Grefe, Sarah E.; Paschen, Silke; Si, Qimiao

    2018-01-01

    Insulating states can be topologically nontrivial, a well-established notion that is exemplified by the quantum Hall effect and topological insulators. By contrast, topological metals have not been experimentally evidenced until recently. In systems with strong correlations, they have yet to be identified. Heavy-fermion semimetals are a prototype of strongly correlated systems and, given their strong spin-orbit coupling, present a natural setting to make progress. Here, we advance a Weyl-Kondo semimetal phase in a periodic Anderson model on a noncentrosymmetric lattice. The quasiparticles near the Weyl nodes develop out of the Kondo effect, as do the surface states that feature Fermi arcs. We determine the key signatures of this phase, which are realized in the heavy-fermion semimetal Ce3Bi4Pd3. Our findings provide the much-needed theoretical foundation for the experimental search of topological metals with strong correlations and open up an avenue for systematic studies of such quantum phases that naturally entangle multiple degrees of freedom.

  20. Spin-orbit coupling effect on structural and magnetic properties of ConRh13-n (n = 0-13) clusters

    NASA Astrophysics Data System (ADS)

    Bai, Xi; Lv, Jin; Zhang, Fu-Qiang; Jia, Jian-Feng; Wu, Hai-Shun

    2018-04-01

    The effect of spin-orbit interaction on the structures and magnetism of ConRh13-n (n = 0-13) clusters have been systematically investigated by using the spin-orbit coupling (SOC) implementation of the density functional theory (DFT). The results calculated without SOC (NSOC) show that Rh13 prefers the double simple-cubic configuration, and icosahedron is the favorable structure for n = 1-9, while n ≥ 10, clusters favor the hexagonal bilayer structure. The inclusion of SOC in calculation does not change the geometries of clusters. Compared with that in NSOC calculation, although the binding energy per atom in clusters with same composition decreases in SOC calculation, the relative stability of clusters with different compositions does not change. An interesting result is that the spin moments of clusters for n = 1-9 are almost constant (21 μB). Spin-orbit interaction recovers orbital moment and its anisotropy by removing crystal-field effect in calculation. The destruction of bonding symmetry and relaxation of bonding account for high anisotropies of orbital moments in Co11Rh2 and CoRh12 clusters. With atomic composition (Co/Rh) around 4/9-5/8 and 9/4, the Co-Rh clusters exhibit high magnetic anisotropy energies.

  1. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Dipayan, E-mail: datta.dipayan@gmail.com; Gauss, Jürgen, E-mail: gauss@uni-mainz.de

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating themore » analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.« less

  2. Thermal contact through a two-temperature kinetic Ising chain

    NASA Astrophysics Data System (ADS)

    Bauer, M.; Cornu, F.

    2018-05-01

    We consider a model for thermal contact through a diathermal interface between two macroscopic bodies at different temperatures: an Ising spin chain with nearest neighbor interactions is endowed with a Glauber dynamics with different temperatures and kinetic parameters on alternating sites. The inhomogeneity of the kinetic parameter is a novelty with respect to the model of Racz and Zia (1994 Phys. Rev. E 49 139), and we exhibit its influence upon the stationary non equilibrium values of the two-spin correlations at any distance. By mapping to the dynamics of spin domain walls and using free fermion techniques, we determine the scaled generating function for the cumulants of the exchanged heat amounts per unit of time in the long time limit.

  3. Fractionalized Fermi liquids and exotic superconductivity in the Kitaev-Kondo lattice

    NASA Astrophysics Data System (ADS)

    Seifert, Urban F. P.; Meng, Tobias; Vojta, Matthias

    2018-02-01

    Fractionalized Fermi liquids (FL*) have been introduced as non-Fermi-liquid metallic phases, characterized by coexisting electron-like charge carriers and local moments which form a fractionalized spin liquid. Here we investigate a Kondo lattice model on the honeycomb lattice with Kitaev interactions among the local moments, a concrete model hosting FL* phases based on Kitaev's Z2 spin liquid. We characterize the FL* phases via perturbation theory, and we employ a Majorana-fermion mean-field theory to map out the full phase diagram. Most remarkably we find nematic triplet superconducting phases which mask the quantum phase transition between fractionalized and conventional Fermi liquid phases. Their pairing structure is inherited from the Kitaev spin liquid; i.e., superconductivity is driven by Majorana glue.

  4. Persistence of a surface state arc in the topologically trivial phase of MoTe2

    NASA Astrophysics Data System (ADS)

    Crepaldi, A.; Autès, G.; Sterzi, A.; Manzoni, G.; Zacchigna, M.; Cilento, F.; Vobornik, I.; Fujii, J.; Bugnon, Ph.; Magrez, A.; Berger, H.; Parmigiani, F.; Yazyev, O. V.; Grioni, M.

    2017-01-01

    The prediction of Weyl fermions in the low-temperature noncentrosymmetric 1 T' phase of MoTe2 still awaits clear experimental confirmation. Here, we report angle-resolved photoemission (ARPES) data and ab initio calculations that reveal a surface state arc dispersing between the valence and the conduction band, as expected for a Weyl semimetal. However, we find that the arc survives in the high-temperature centrosymmetric 1 T'' phase. Therefore, a surface Fermi arc is not an unambiguous fingerprint of a topologically nontrivial phase. We have also investigated the surface state spin texture of the 1 T' phase by spin-resolved ARPES, and identified additional topologically trivial spin-split states within the projected band gap at higher binding energies.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno

    Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less

  6. Switching effects and spin-valley Andreev resonant peak shifting in silicene superconductor

    NASA Astrophysics Data System (ADS)

    Soodchomshom, Bumned; Niyomsoot, Kittipong; Pattrawutthiwong, Eakkarat

    2018-03-01

    The magnetoresistance and spin-valley transport properties in a silicene-based NM/FB/SC junction are investigated, where NM, FB and SC are normal, ferromagnetic and s-wave superconducting silicene, respectively. In the FB region, perpendicular electric and staggered exchange fields are applied. The quasiparticles may be described by Dirac Bogoliubov-de Gennes equation due to Cooper pairs formed by spin-valley massive fermions. The spin-valley conductances are calculated based on the modified Blonder-Tinkham-Klapwijk formalism. We find the spin-valley dependent Andreev resonant peaks in the junction shifted by applying exchange field. Perfect conductance switch generated by interplay of intrinsic spin orbit interaction and superconducting gap has been predicted. Spin and valley polarizations are almost linearly dependent on biased voltage near zero bias and then turn into perfect switch at biased voltage approaching the superconducting gap. The perfect switching of large magnetoresistance has been also predicted at biased energy near the superconducting gap. These switching effects may be due to the presence of spin-valley Andreev resonant peak near the superconducting gap. Our work reveals potential of silicene as applications of electronic switching devices and linear control of spin and valley polarizations.

  7. Strongly Correlated Metal Built from Sachdev-Ye-Kitaev Models

    NASA Astrophysics Data System (ADS)

    Song, Xue-Yang; Jian, Chao-Ming; Balents, Leon

    2017-11-01

    Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond the quasiparticle description. The Sachdev-Ye-Kitaev (SYK) model describes a (0 +1 )D quantum cluster with random all-to-all four-fermion interactions among N fermion modes which becomes exactly solvable as N →∞ , exhibiting a zero-dimensional non-Fermi-liquid with emergent conformal symmetry and complete absence of quasiparticles. Here we study a lattice of complex-fermion SYK dots with random intersite quadratic hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in temperature resistivity in the incoherent regime, and a Lorentz ratio L ≡(κ ρ /T ) varies between two universal values as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated metal.

  8. Time-Dependent Thomas-Fermi Approach for Electron Dynamics in Metal Clusters

    NASA Astrophysics Data System (ADS)

    Domps, A.; Reinhard, P.-G.; Suraud, E.

    1998-06-01

    We propose a time-dependent Thomas-Fermi approach to the (nonlinear) dynamics of many-fermion systems. The approach relies on a hydrodynamical picture describing the system in terms of collective flow. We investigate in particular an application to electron dynamics in metal clusters. We make extensive comparisons with fully fledged quantal dynamical calculations and find overall good agreement. The approach thus provides a reliable and inexpensive scheme to study the electronic response of large metal clusters.

  9. Pauli-Zeldovich cancellation of the vacuum energy divergences, auxiliary fields and supersymmetry

    NASA Astrophysics Data System (ADS)

    Kamenshchik, Alexander Yu.; Starobinsky, Alexei A.; Tronconi, Alessandro; Vardanyan, Tereza; Venturi, Giovanni

    2018-03-01

    We have considered the Pauli-Zeldovich mechanism for the cancellation of the ultraviolet divergences in vacuum energy. This mechanism arises because bosons and fermions give contributions of the opposite signs. In contrast with the preceding papers devoted to this topic wherein mainly free fields were studied, here we have taken their interactions into account to the lowest order of perturbation theory. We have constructed some simple toy models having particles with spin 0 and spin 1 / 2, where masses of the particles are equal while the interactions can be quite non-trivial.

  10. Implementing a noise protected logical qubit in methyl groups via microwave irradiation

    NASA Astrophysics Data System (ADS)

    Annabestani, Razieh; Cory, David G.

    2018-02-01

    We propose a proof-of-principle experiment to encode one logical qubit in noise protected subspace of three identical spins in a methyl group. The symmetry analysis of the wavefunction shows that this fermionic system exhibits a symmetry correlation between the spatial degree of freedom and the spin degree of freedom. We show that one can use this correlation to populate the noiseless subsystem by relying on the interaction between the electric dipole moment of the methyl group with a circularly polarized microwave field. Logical gates are implemented by controlling both the intensity and phase of the applied field.

  11. Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments.

    PubMed

    Rvachov, Timur M; Son, Hyungmok; Sommer, Ariel T; Ebadi, Sepehr; Park, Juliana J; Zwierlein, Martin W; Ketterle, Wolfgang; Jamison, Alan O

    2017-10-06

    We create fermionic dipolar ^{23}Na^{6}Li molecules in their triplet ground state from an ultracold mixture of ^{23}Na and ^{6}Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3×10^{4} ground state molecules in a spin-polarized state. We observe a lifetime of 4.6 s in an isolated molecular sample, approaching the p-wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.

  12. Long-Lived Ultracold Molecules with Electric and Magnetic Dipole Moments

    NASA Astrophysics Data System (ADS)

    Rvachov, Timur M.; Son, Hyungmok; Sommer, Ariel T.; Ebadi, Sepehr; Park, Juliana J.; Zwierlein, Martin W.; Ketterle, Wolfgang; Jamison, Alan O.

    2017-10-01

    We create fermionic dipolar 23Na 6Li molecules in their triplet ground state from an ultracold mixture of 23Na and 6Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3 ×1 04 ground state molecules in a spin-polarized state. We observe a lifetime of 4.6 s in an isolated molecular sample, approaching the p -wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.

  13. Radiative improvement of the lattice nonrelativistic QCD action using the background field method and application to the hyperfine splitting of quarkonium states.

    PubMed

    Hammant, T C; Hart, A G; von Hippel, G M; Horgan, R R; Monahan, C J

    2011-09-09

    We present the first application of the background field method to nonrelativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner. The coefficients of the σ·B term in the NRQCD action and the four-fermion spin-spin interaction are computed at the one-loop level; the resulting shift of the hyperfine splitting of bottomonium is found to bring the lattice predictions in line with experiment.

  14. Variational model for one-dimensional quantum magnets

    NASA Astrophysics Data System (ADS)

    Kudasov, Yu. B.; Kozabaranov, R. V.

    2018-04-01

    A new variational technique for investigation of the ground state and correlation functions in 1D quantum magnets is proposed. A spin Hamiltonian is reduced to a fermionic representation by the Jordan-Wigner transformation. The ground state is described by a new non-local trial wave function, and the total energy is calculated in an analytic form as a function of two variational parameters. This approach is demonstrated with an example of the XXZ-chain of spin-1/2 under a staggered magnetic field. Generalizations and applications of the variational technique for low-dimensional magnetic systems are discussed.

  15. Efficient Organometallic Spin Filter between Single-Wall Carbon Nanotube or Graphene Electrodes

    NASA Astrophysics Data System (ADS)

    Koleini, Mohammad; Paulsson, Magnus; Brandbyge, Mads

    2007-05-01

    We present a theoretical study of spin transport in a class of molecular systems consisting of an organometallic benzene-vanadium cluster placed in between graphene or single-wall carbon-nanotube-model contacts. Ab initio modeling is performed by combining spin density functional theory and nonequilibrium Green’s function techniques. We consider weak and strong cluster-contact bonds. Depending on the bonding we find from 73% (strong bonds) up to 99% (weak bonds) spin polarization of the electron transmission, and enhanced polarization with increased cluster length.

  16. Relay entanglement and clusters of correlated spins

    NASA Astrophysics Data System (ADS)

    Doronin, S. I.; Zenchuk, A. I.

    2018-06-01

    Considering a spin-1/2 chain, we suppose that the entanglement passes from a given pair of particles to another one, thus establishing the relay transfer of entanglement along the chain. Therefore, we introduce the relay entanglement as a sum of all pairwise entanglements in a spin chain. For more detailed studying the effects of remote pairwise entanglements, we use the partial sums collecting entanglements between the spins separated by up to a certain number of nodes. The problem of entangled cluster formation is considered, and the geometric mean entanglement is introduced as a characteristic of quantum correlations in a cluster. Generally, the lifetime of a cluster decreases with an increase in its size.

  17. Floquet Topological Order in Interacting Systems of Bosons and Fermions

    NASA Astrophysics Data System (ADS)

    Harper, Fenner; Roy, Rahul

    2017-03-01

    Periodically driven noninteracting systems may exhibit anomalous chiral edge modes, despite hosting bands with trivial topology. We find that these drives have surprising many-body analogs, corresponding to class A, which exhibit anomalous charge and information transport at the boundary. Drives of this form are applicable to generic systems of bosons, fermions, and spins, and may be characterized by the anomalous unitary operator that acts at the edge of an open system. We find that these operators are robust to all local perturbations and may be classified by a pair of coprime integers. This defines a notion of dynamical topological order that may be applied to general time-dependent systems, including many-body localized phases or time crystals.

  18. Fermionic Schwinger effect and induced current in de Sitter space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashinaka, Takahiro; Department of Physics, Graduate School of Science, The University of Tokyo,Bunkyo-ku, Tokyo, 113-0033; Fujita, Tomohiro

    We explore Schwinger effect of spin 1/2 charged particles with static electric field in 1+3 dimensional de Sitter spacetime. We analytically calculate the vacuum expectation value of the spinor current which is induced by the produced particles in the electric field. The renormalization is performed with the adiabatic subtraction scheme. We find that the current becomes negative, namely it flows in the direction opposite to the electric field, if the electric field is weaker than a certain threshold value depending on the fermion mass, which is also known to happen in the case of scalar charged particles in 1+3 demore » Sitter spacetime. Contrary to the scalar case, however, the IR hyperconductivity is absent in the spinor case.« less

  19. Dual Vector Spaces and Physical Singularities

    NASA Astrophysics Data System (ADS)

    Rowlands, Peter

    Though we often refer to 3-D vector space as constructed from points, there is no mechanism from within its definition for doing this. In particular, space, on its own, cannot accommodate the singularities that we call fundamental particles. This requires a commutative combination of space as we know it with another 3-D vector space, which is dual to the first (in a physical sense). The combination of the two spaces generates a nilpotent quantum mechanics/quantum field theory, which incorporates exact supersymmetry and ultimately removes the anomalies due to self-interaction. Among the many natural consequences of the dual space formalism are half-integral spin for fermions, zitterbewegung, Berry phase and a zero norm Berwald-Moor metric for fermionic states.

  20. Boosted one dimensional fermionic superfluids on a lattice

    NASA Astrophysics Data System (ADS)

    Ray, Sayonee; Mukerjee, Subroto; Shenoy, Vijay B.

    2017-09-01

    We study the effect of a boost (Fermi sea displaced by a finite momentum) on one dimensional systems of lattice fermions with short-ranged interactions. In the absence of a boost such systems with attractive interactions possess algebraic superconducting order. Motivated by physics in higher dimensions, one might naively expect a boost to weaken and ultimately destroy superconductivity. However, we show that for one dimensional systems the effect of the boost can be to strengthen the algebraic superconducting order by making correlation functions fall off more slowly with distance. This phenomenon can manifest in interesting ways, for example, a boost can produce a Luther-Emery phase in a system with both charge and spin gaps by engendering the destruction of the former.

  1. Aspects of Scale Invariance in Physics and Biology

    NASA Astrophysics Data System (ADS)

    Alba, Vasyl

    We study three systems that have scale invariance. The first system is a conformal field theory in d > 3 dimensions. We prove that if there is a unique stress-energy tensor and at least one higher-spin conserved current in the theory, then the correlation functions of the stress-energy tensors and the conserved currents of higher-spin must coincide with one of the following possibilities: a) a theory of n free bosons, b) a theory of n free fermions or c) a theory of n (d-2)/2-forms. The second system is the primordial gravitational wave background in a theory with inflation. We show that the scale invariant spectrum of primordial gravitational waves is isotropic only in the zero-order approximation, and it gets a small correction due to the primordial scalar fluctuations. When anisotropy is measured experimentally, our result will allow us to distinguish between different inflationary models. The third system is a biological system. The question we are asking is whether there is some simplicity or universality underlying the complexities of natural animal behavior. We use the walking fruit fly (Drosophila melanogaster) as a model system. Based on the result that unsupervised flies' behaviors can be categorized into one hundred twenty-two discrete states (stereotyped movements), which all individuals from a single species visit repeatedly, we demonstrated that the sequences of states are strongly non-Markovian. In particular, correlations persist for an order of magnitude longer than expected from a model of random state-to-state transitions. The correlation function has a power-law decay, which is a hint of some kind of criticality in the system. We develop a generalization of the information bottleneck method that allows us to cluster these states into a small number of clusters. This more compact description preserves a lot of temporal correlation. We found that it is enough to use a two-cluster representation of the data to capture long-range correlations, which opens a way for a more quantitative description of the system. Usage of the maximal entropy method allowed us to find a description that closely resembles a famous inverse-square Ising model in 1d in a small magnetic field.

  2. Experimental and theoretical investigation of the magnetization dynamics of an artificial square spin ice cluster

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Stockem, Irina; Porrati, Fabrizio; Huth, Michael; Schröder, Christian; Müller, Jens

    2016-10-01

    We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.

  3. New type of Weyl semimetal with quadratic double Weyl fermions

    DOE PAGES

    Huang, Shin -Ming; Xu, Su -Yang; Belopolski, Ilya; ...

    2016-01-19

    Weyl semimetals have attracted worldwide attention due to their wide range of exotic properties predicted in theories. The experimental realization had remained elusive for a long time despite much effort. Very recently, the first Weyl semimetal has been discovered in an inversion-breaking, stoichiometric solid TaAs. So far, the TaAs class remains the only Weyl semimetal available in real materials. To facilitate the transition of Weyl semimetals from the realm of purely theoretical interest to the realm of experimental studies and device applications, it is of crucial importance to identify other robust candidates that are experimentally feasible to be realized. Inmore » this paper, we propose such a Weyl semimetal candidate in an inversion-breaking, stoichiometric compound strontium silicide, SrSi 2, with many new and novel properties that are distinct from TaAs. Here, we show that SrSi 2 is a Weyl semimetal even without spin-orbit coupling and that, after the inclusion of spin-orbit coupling, two Weyl fermions stick together forming an exotic double Weyl fermion with quadratic dispersions and a higher chiral charge of ±2. Moreover, we find that the Weyl nodes with opposite charges are located at different energies due to the absence of mirror symmetry in SrSi 2, paving the way for the realization of the chiral magnetic effect. Finally, our systematic results not only identify a much-needed robust Weyl semimetal candidate but also open the door to new topological Weyl physics that is not possible in TaAs« less

  4. Entanglement entropy of critical spin liquids.

    PubMed

    Zhang, Yi; Grover, Tarun; Vishwanath, Ashvin

    2011-08-05

    Quantum spin liquids are phases of matter whose internal structure is not captured by a local order parameter. Particularly intriguing are critical spin liquids, where strongly interacting excitations control low energy properties. Here we calculate their bipartite entanglement entropy that characterizes their quantum structure. In particular we calculate the Renyi entropy S(2) on model wave functions obtained by Gutzwiller projection of a Fermi sea. Although the wave functions are not sign positive, S(2) can be calculated on relatively large systems (>324 spins) using the variational Monte Carlo technique. On the triangular lattice we find that entanglement entropy of the projected Fermi sea state violates the boundary law, with S(2) enhanced by a logarithmic factor. This is an unusual result for a bosonic wave function reflecting the presence of emergent fermions. These techniques can be extended to study a wide class of other phases.

  5. Ground-state information geometry and quantum criticality in an inhomogeneous spin model

    NASA Astrophysics Data System (ADS)

    Ma, Yu-Quan

    2015-09-01

    We investigate the ground-state Riemannian metric and the cyclic quantum distance of an inhomogeneous quantum spin-1/2 chain in a transverse field. This model can be diagonalized by using a general canonical transformation to the fermionic Hamiltonian mapped from the spin system. The ground-state Riemannian metric is derived exactly on a parameter manifold ring S1, which is introduced by performing a gauge transformation to the spin Hamiltonian through a twist operator. The cyclic ground-state quantum distance and the second derivative of the ground-state energy are studied in different exchange coupling parameter regions. Particularly, we show that, in the case of exchange coupling parameter Ja = Jb, the quantum ferromagnetic phase can be characterized by an invariant quantum distance and this distance will decay to zero rapidly in the paramagnetic phase. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404023 and 11347131).

  6. Correlations and enlarged superconducting phase of t -J⊥ chains of ultracold molecules on optical lattices

    NASA Astrophysics Data System (ADS)

    Manmana, Salvatore R.; Möller, Marcel; Gezzi, Riccardo; Hazzard, Kaden R. A.

    2017-10-01

    We compute physical properties across the phase diagram of the t -J⊥ chain with long-range dipolar interactions, which describe ultracold polar molecules on optical lattices. Our results obtained by the density-matrix renormalization group indicate that superconductivity is enhanced when the Ising component Jz of the spin-spin interaction and the charge component V are tuned to zero and even further by the long-range dipolar interactions. At low densities, a substantially larger spin gap is obtained. We provide evidence that long-range interactions lead to algebraically decaying correlation functions despite the presence of a gap. Although this has recently been observed in other long-range interacting spin and fermion models, the correlations in our case have the peculiar property of having a small and continuously varying exponent. We construct simple analytic models and arguments to understand the most salient features.

  7. Quantum Critical Point revisited by the Dynamical Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei

    Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.

  8. Rotational spectroscopic study of carbonyl sulfide solvated with hydrogen molecules.

    PubMed

    Michaud, Julie M; Jäger, Wolfgang

    2008-10-14

    Rotational spectra of small-sized (H(2))(N)-OCS clusters with N = 2-7 were measured using a pulsed-jet Fourier transform microwave spectrometer. These include spectra of pure (para-H(2))(N)-OCS clusters, pure (ortho-H(2))(N)-OCS clusters, and mixed ortho-H(2) and para-H(2) containing clusters. The rotational lines of ortho-H(2) molecules containing clusters show proton spin-proton spin hyperfine structure, and the pattern evolves as the number of ortho-H(2) molecules in the cluster increases. Various isotopologues of the clusters were investigated, including those with O(13)CS, OC(33)S, OC(34)S, and O(13)C(34)S. Nuclear quadrupole hyperfine structures of rotational transitions were observed for (33)S (nuclear spin quantum number I = 3/2) containing isotopologues. The (33)S nuclear quadrupole coupling constants are compared to the corresponding constant of the OCS monomer and those of the He(N)-OCS clusters. The assignment of the number of solvating hydrogen molecules N is supported by the analyses of the proton spin-proton spin hyperfine structures of the mixed clusters, the dependence of line intensities on sample conditions (pressure and concentrations), and the agreement of the (para-H(2))(N)-OCS and (ortho-H(2))(N)-OCS rotational constants with those from a previous infrared study [J. Tang and A. R. W. McKellar, J. Chem. Phys. 121, 3087 (2004)].

  9. Spin-valley locking in the normal state of a transition-metal dichalcogenide superconductor.

    PubMed

    Bawden, L; Cooil, S P; Mazzola, F; Riley, J M; Collins-McIntyre, L J; Sunko, V; Hunvik, K W B; Leandersson, M; Polley, C M; Balasubramanian, T; Kim, T K; Hoesch, M; Wells, J W; Balakrishnan, G; Bahramy, M S; King, P D C

    2016-05-23

    Metallic transition-metal dichalcogenides (TMDCs) are benchmark systems for studying and controlling intertwined electronic orders in solids, with superconductivity developing from a charge-density wave state. The interplay between such phases is thought to play a critical role in the unconventional superconductivity of cuprates, Fe-based and heavy-fermion systems, yet even for the more moderately-correlated TMDCs, their nature and origins have proved controversial. Here, we study a prototypical example, 2H-NbSe2, by spin- and angle-resolved photoemission and first-principles theory. We find that the normal state, from which its hallmark collective phases emerge, is characterized by quasiparticles whose spin is locked to their valley pseudospin. This results from a combination of strong spin-orbit interactions and local inversion symmetry breaking, while interlayer coupling further drives a rich three-dimensional momentum dependence of the underlying Fermi-surface spin texture. These findings necessitate a re-investigation of the nature of charge order and superconducting pairing in NbSe2 and related TMDCs.

  10. Exotic superconductivity with enhanced energy scales in materials with three band crossings

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ping; Nandkishore, Rahul M.

    2018-04-01

    Three band crossings can arise in three-dimensional quantum materials with certain space group symmetries. The low energy Hamiltonian supports spin one fermions and a flat band. We study the pairing problem in this setting. We write down a minimal BCS Hamiltonian and decompose it into spin-orbit coupled irreducible pairing channels. We then solve the resulting gap equations in channels with zero total angular momentum. We find that in the s-wave spin singlet channel (and also in an unusual d-wave `spin quintet' channel), superconductivity is enormously enhanced, with a possibility for the critical temperature to be linear in interaction strength. Meanwhile, in the p-wave spin triplet channel, the superconductivity exhibits features of conventional BCS theory due to the absence of flat band pairing. Three band crossings thus represent an exciting new platform for realizing exotic superconducting states with enhanced energy scales. We also discuss the effects of doping, nonzero temperature, and of retaining additional terms in the k .p expansion of the Hamiltonian.

  11. Dynamics of the Spin Liquid Phase of Cs2CuCl4

    NASA Astrophysics Data System (ADS)

    Ma, Ookie; Vachon, Marc-Andre; Mitrovi{Ć}, Vesna F.; Marston, Brad

    2008-03-01

    The dynamics of a spin-liquid phase of an antiferromagnet on the anisotropic triangular lattice and in a magnetic field are studied with a combination of Gutzwiller-projected wavefunctions and mean-field theory. Candidate ground states that support fermionic gapless spinon excitations include four different U(1) spin liquidsootnotetextY. Zhou, X. G. Wen, cond-mat/0210662 (2003).. The lattice and the states interpolate between limiting cases of 1D decoupled chains (J/J^' = 0) and the isotropic 2D square lattice (J/J^'= ∞). Parameters of the mean field theory are chosen to minimize the ground state energy of the corresponding Gutzwiller-projected wavefunction. The spin-lattice relaxation rate 1/T1, calculated within the mean-field approximation, is compared to NMR measurementsootnotetextM. A. Vachon, O. Ma, J. B. Marston, V. F. Mitrovi'c, unpublished (2007). in the spin liquid phase of Cs2CuCl4ootnotetextY. Tokiwa, T. Radu, R. Coldea, H. Wilhelm, Z. Tylczynski, F. Steglich, PRB 73, 134414 (2006)..

  12. Mechanism of a strange metal state near a heavy-fermion quantum critical point

    NASA Astrophysics Data System (ADS)

    Chang, Yung-Yeh; Paschen, Silke; Chung, Chung-Hou

    2018-01-01

    Unconventional metallic or strange metal (SM) behavior with non-Fermi liquid (NFL) properties, generic features of heavy-fermion systems near quantum phase transitions, are yet to be understood microscopically. A paradigmatic example is the magnetic field-tuned quantum critical heavy-fermion metal YbRh2Si2 , revealing a possible SM state over a finite range of fields at low temperatures when substituted with Ge. Above a critical field, the SM state gives way to a heavy Fermi liquid with Kondo correlation. The NFL behavior, most notably a linear-in-temperature electrical resistivity and a logarithmic-in-temperature followed by a power-law singularity in the specific heat coefficient at low temperatures, still lacks a definite understanding. We propose the following mechanism as origin of the experimentally observed behavior: a quasi-2 d fluctuating short-ranged resonating-valence-bond spin liquid competing with the Kondo correlation. Applying a field-theoretical renormalization group analysis on an effective field theory beyond a large-N approach to an antiferromagnetic Kondo-Heisenberg model, we identify the critical point and explain remarkably well the SM behavior. Our theory goes beyond the well-established framework of quantum phase transitions and serves as a basis to address open issues in quantum critical heavy-fermion systems.

  13. Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators

    DOE PAGES

    Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno

    2016-08-24

    Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less

  14. Anisotropic optical absorption induced by Rashba spin-orbit coupling in monolayer phosphorene

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Li, Xin; Wan, Qi; Bai, R.; Wen, Z. C.

    2018-04-01

    We obtain the effective Hamiltonian of the phosphorene including the effect of Rashba spin-orbit coupling in the frame work of the low-energy theory. The spin-splitting energy bands show an anisotropy feature for the wave vectors along kx and ky directions, where kx orients to ΓX direction in the k space. We numerically study the optical absorption of the electrons for different wave vectors with Rashba spin-orbit coupling. We find that the spin-flip transition from the valence band to the conduction band induced by the circular polarized light closes to zero with increasing the x-component wave vector when ky equals to zero, while it can be significantly increased to a large value when ky gets a small value. When the wave vector varies along the ky direction, the spin-flip transition can also increase to a large value, however, which shows an anisotropy feature for the optical absorption. Especially, the spin-conserved transitions keep unchanged and have similar varying trends for different wave vectors. This phenomenon provides a novel route for the manipulation of the spin-dependent property of the fermions in the monolayer phosphorene.

  15. Spin vectors in the Koronis family: III. (832) Karin

    NASA Astrophysics Data System (ADS)

    Slivan, Stephen M.; Molnar, Lawrence A.

    2012-08-01

    Studies of asteroid families constrain models of asteroid collisions and evolution processes, and the Karin cluster within the Koronis family is among the youngest families known (Nesvorný, D., Bottke, Jr., W.F., Dones, L., Levison, H.F. [2002]. Nature 417, 720-722). (832) Karin itself is by far the largest member of the Karin cluster, thus knowledge of Karin's spin vector is important to constrain family formation and evolution models that include spin, and to test whether its spin properties are consistent with the Karin cluster being a very young family. We observed rotation lightcurves of Karin during its four consecutive apparitions in 2006-2009, and combined the new observations with previously published lightcurves to determine its spin vector orientation and preliminary model shape. Karin is a prograde rotator with a period of (18.352 ± 0.003) h, spin obliquity near (42 ± 5)°, and pole ecliptic longitude near either (52 ± 5)° or (230 ± 5)°. The spin vector and shape results for Karin will constrain models of family formation that include spin properties; in the meantime we briefly discuss Karin's own spin in the context of those of other members of the Karin cluster and the parent body's siblings in the Koronis family.

  16. Eating a planet and spinning up

    NASA Astrophysics Data System (ADS)

    Qureshi, Ahmed; Naoz, Smadar; Shkolnik, Evgenya L.

    2018-01-01

    One of the predictions of high eccentricity planetary migration is that many planets will end up plunging into their host stars. We investigate the consequence of planetary mergers on their stellar hosts’ spin-period. Energy and angular momentum conservation yield that a planet consumption by a star will spin-up of the star. We find that our calculations align with the observed bifurcation in the stellar spin-period in young clusters. After a Sun-like star has eaten a planet, it will then, spin down due to magnetic braking, consistent with the observed lack of fast rotators in old clusters. The agreement between the calculations presented here and the observed spin-period of stars in young clusters provides circumstantial evidence that planetary accretion onto their host stars is a generic feature in planetary-system evolution.

  17. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics

    NASA Astrophysics Data System (ADS)

    Steglich, Frank; Wirth, Steffen

    2016-08-01

    This article overviews the development of heavy-fermion superconductivity, notably in such rare-earth-based intermetallic compounds which behave as Kondo-lattice systems. Heavy-fermion superconductivity is of unconventional nature in the sense that it is not mediated by electron-phonon coupling. Rather, in most cases the attractive interaction between charge carriers is apparently magnetic in origin. Fluctuations associated with an antiferromagnetic (AF) quantum critical point (QCP) play a major role. The first heavy-fermion superconductor CeCu2Si2 turned out to be the prototype of a larger group of materials for which the underlying, often pressure-induced, AF QCP is likely to be of a three-dimensional (3D) spin-density-wave (SDW) variety. For UBe13, the second heavy-fermion superconductor, a magnetic-field-induced 3D SDW QCP inside the superconducting phase can be conjectured. Such a ‘conventional’, itinerant QCP can be well understood within Landau’s paradigm of order-parameter fluctuations. In contrast, the low-temperature normal-state properties of a few heavy-fermion superconductors are at odds with the Landau framework. They are characterized by an ‘unconventional’, local QCP which may be considered a zero-temperature 4 f-orbital selective Mott transition. Here, as concluded for YbRh2Si2, the breakdown of the Kondo effect concurring with the AF instability gives rise to an abrupt change of the Fermi surface. Very recently, superconductivity was discovered for this compound at ultra-low temperatures. Therefore, YbRh2Si2 along with CeRhIn5 under pressure provide a natural link between the large group of about fifty low-temperature heavy-fermion superconductors and other families of unconventional superconductors with substantially higher T c, e.g. the doped Mott insulators of the perovskite-type cuprates and the organic charge-transfer salts.

  18. Optical Lattice Gases of Interacting Fermions

    DTIC Science & Technology

    2015-12-02

    artificial gauge fields or spin-orbit coupling. This topological insulator phase turns into a topological superconductor featuring Majorana zero modes at... superconductors , are a prototypical topological superfluid. Despite its conceptually different origin, the state found by the research team for s-wave...release 2 external field [7]. A Weyl superconductor or superfluid is a gapless topological state of matter that features nontrivial (hedgehog

  19. Experimental and theoretical investigation of the magnetization dynamics of an artificial square spin ice cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael

    We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamicsmore » of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.« less

  20. One-loop effective actions and higher spins. Part II

    NASA Astrophysics Data System (ADS)

    Bonora, L.; Cvitan, M.; Prester, P. Dominis; Giaccari, S.; Štemberga, T.

    2018-01-01

    In this paper we continue and improve the analysis of the effective actions obtained by integrating out a scalar and a fermion field coupled to external symmetric sources, started in the previous paper. The first subject we study is the geometrization of the results obtained there, that is we express them in terms of covariant Jacobi tensors. The second subject concerns the treatment of tadpoles and seagull terms in order to implement off-shell covariance in the initial model. The last and by far largest part of the paper is a repository of results concerning all two point correlators (including mixed ones) of symmetric currents of any spin up to 5 and in any dimensions between 3 and 6. In the massless case we also provide formulas for any spin in any dimension.

  1. Quantum Dynamics of Solitons in Strongly Interacting Systems on Optical Lattices

    NASA Astrophysics Data System (ADS)

    Rubbo, Chester; Balakrishnan, Radha; Reinhardt, William; Satija, Indubala; Rey, Ana; Manmana, Salvatore

    2012-06-01

    We present results of the quantum dynamics of solitons in XXZ spin-1/2 systems which in general can be derived from a system of spinless fermions or hard-core bosons (HCB) with nearest neighbor interaction on a lattice. A mean-field treatment using spin-coherent states revealed analytic solutions of both bright and dark solitons [1]. We take these solutions and apply a full quantum evolution using the adaptive time-dependent density matrix renormalization group method (adaptive t-DMRG), which takes into account the effect of strong correlations. We use local spin observables, correlations functions, and entanglement entropies as measures for the stability of these soliton solutions over the simulation times. [4pt] [1] R. Balakrishnan, I.I. Satija, and C.W. Clark, Phys. Rev. Lett. 103, 230403 (2009).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum ismore » the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.« less

  3. An Exactly Solvable Spin Chain Related to Hahn Polynomials

    NASA Astrophysics Data System (ADS)

    Stoilova, Neli I.; van der Jeugt, Joris

    2011-03-01

    We study a linear spin chain which was originally introduced by Shi et al. [Phys. Rev. A 71 (2005), 032309, 5 pages], for which the coupling strength contains a parameter α and depends on the parity of the chain site. Extending the model by a second parameter β, it is shown that the single fermion eigenstates of the Hamiltonian can be computed in explicit form. The components of these eigenvectors turn out to be Hahn polynomials with parameters (α,β) and (α+1,β-1). The construction of the eigenvectors relies on two new difference equations for Hahn polynomials. The explicit knowledge of the eigenstates leads to a closed form expression for the correlation function of the spin chain. We also discuss some aspects of a q-extension of this model.

  4. Vector dark matter annihilation with internal bremsstrahlung

    DOE PAGES

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny; ...

    2017-01-10

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum ismore » the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.« less

  5. Charge and current orders in the spin-fermion model with overlapping hot spots

    NASA Astrophysics Data System (ADS)

    Volkov, Pavel A.; Efetov, Konstantin B.

    2018-04-01

    Experiments carried over the last years on the underdoped cuprates have revealed a variety of symmetry-breaking phenomena in the pseudogap state. Charge-density waves, breaking of C4 rotational symmetry as well as time-reversal symmetry breaking have all been observed in several cuprate families. In this regard, theoretical models where multiple nonsuperconducting orders emerge are of particular interest. We consider the recently introduced [Volkov and Efetov, Phys. Rev. B 93, 085131 (2016), 10.1103/PhysRevB.93.085131] spin-fermion model with overlapping `hot spots' on the Fermi surface. Focusing on the particle-hole instabilities we obtain a rich phase diagram with the chemical potential relative to the dispersion at (0 ,π );(π ,0 ) and the Fermi surface curvature in the antinodal regions being the control parameters. We find evidence for d-wave Pomeranchuk instability, d-form factor charge density waves, as well as commensurate and incommensurate staggered bond current phases similar to the d-density wave state. The current orders are found to be promoted by the curvature. Considering the appropriate parameter range for the hole-doped cuprates, we discuss the relation of our results to the pseudogap state and incommensurate magnetic phases of the cuprates.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koutroulakis, Georgios; Yasuoka, Hiroshi; Tobash, Paul H.

    PuCoGa 5 has emerged as a prototypical heavy-fermion superconductor, with its transition temperature (T c ≃ 18.5 K) being the highest amongst such materials. Nonetheless, a clear description as to what drives the superconducting pairing is still lacking, rendered complicated by the notoriously intricate nature of plutonium's 5f valence electrons. Here, we present a detailed 69,71Ga nuclear quadrupole resonance (NQR) study of PuCoGa 5, concentrating on the system's normal state properties near to T c and aiming to detect distinct signatures of possible pairing mechanisms. In particular, the quadrupole frequency and spin-lattice relaxation rate were measured for the two crystallographicallymore » inequivalent Ga sites and for both Ga isotopes, in the temperature range 1.6–300 K. No evidence of significant charge fluctuations is found from the NQR observables. On the contrary, the low-energy dynamics is dominated by anisotropic spin fluctuations with strong, nearly critical, in-plane character, which are effectively identical to the case of the sister compound PuCoIn 5. Lastly, these findings are discussed within the context of different theoretical proposals for the unconventional pairing mechanism in heavy-fermion superconductors.« less

  7. Quantum Field Theory Approach to Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Marino, Eduardo C.

    2017-09-01

    Preface; Part I. Condensed Matter Physics: 1. Independent electrons and static crystals; 2. Vibrating crystals; 3. Interacting electrons; 4. Interactions in action; Part II. Quantum Field Theory: 5. Functional formulation of quantum field theory; 6. Quantum fields in action; 7. Symmetries: explicit or secret; 8. Classical topological excitations; 9. Quantum topological excitations; 10. Duality, bosonization and generalized statistics; 11. Statistical transmutation; 12. Pseudo quantum electrodynamics; Part III. Quantum Field Theory Approach to Condensed Matter Systems: 13. Quantum field theory methods in condensed matter; 14. Metals, Fermi liquids, Mott and Anderson insulators; 15. The dynamics of polarons; 16. Polyacetylene; 17. The Kondo effect; 18. Quantum magnets in 1D: Fermionization, bosonization, Coulomb gases and 'all that'; 19. Quantum magnets in 2D: nonlinear sigma model, CP1 and 'all that'; 20. The spin-fermion system: a quantum field theory approach; 21. The spin glass; 22. Quantum field theory approach to superfluidity; 23. Quantum field theory approach to superconductivity; 24. The cuprate high-temperature superconductors; 25. The pnictides: iron based superconductors; 26. The quantum Hall effect; 27. Graphene; 28. Silicene and transition metal dichalcogenides; 29. Topological insulators; 30. Non-abelian statistics and quantum computation; References; Index.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado-Acosta, E. G.; Napsuciale, Mauro; Rodriguez, Simon

    We develop a second order formalism for massive spin 1/2 fermions based on the projection over Poincare invariant subspaces in the ((1/2),0)+(0,(1/2)) representation of the homogeneous Lorentz group. Using the U(1){sub em} gauge principle we obtain a second order description for the electromagnetic interactions of a spin 1/2 fermion with two free parameters, the gyromagnetic factor g and a parameter {xi} related to odd-parity Lorentz structures. We calculate Compton scattering in this formalism. In the particular case g=2, {xi}=0, and for states with well-defined parity, we recover Dirac results. In general, we find the correct classical limit and a finitemore » value r{sub c}{sup 2} for the forward differential cross section, independent of the photon energy and of the value of the parameters g and {xi}. The differential cross section vanishes at high energies for all g, {xi} except in the forward direction. The total cross section at high energies vanishes only for g=2, {xi}=0. We argue that this formalism is more convenient than Dirac theory in the description of low energy electromagnetic properties of baryons and illustrate the point with the proton case.« less

  9. Heavy-fermion superconductivity in CeAg2Si2 - Interplay of spin and valence fluctuations

    NASA Astrophysics Data System (ADS)

    Scheerer, Gernot W.; Ren, Zhi; Lapertot, Gérard; Garbarino, Gaston; Jaccard, Didier

    2018-05-01

    We present the pressure-temperature phase diagram of the antiferromagnet CeAg2Si2 established via resistivity and calorimetry measurements under quasi-hydrostatic conditions up to 22.5 GPa. With increasing pressure, the Néel temperature [TN (p = 0) = 8.6 K] slowly increases up to TN = 13.4 K at 9.4 GPa and then vanishes abruptly at the magnetic critical pressure pc ∼ 13 GPa. For the first time, heavy fermion superconductivity is observed in CeAg2Si2. Superconductivity emerges at ∼ 11 GPa and persists over roughly 10 GPa. Partial- and bulk-transition temperatures are highest at p = 16 GPa, with a maximal Tcbulk = 1.25 K. In the pressure region of superconductivity, Kondo and crystal-field splitting energies become comparable and resistivity exhibits clear signatures of a Ce-ion valence crossover. The crossover line is located at a rapid collapse in resistivity as function of pressure and extrapolates to a valence transition critical endpoint at critical pressure and temperature of pcr ∼ 17 GPa and Tcr ∼ - 13 K , respectively. Both critical spin and valence fluctuations may build up superconductivity in CeAg2Si2.

  10. Helical Majorana fermions in d+id'-wave topological superconductivity of doped correlated quantum spin Hall insulators

    NASA Astrophysics Data System (ADS)

    Chung, Chung-Hou; Sun, Shih-Jye; Chang, Yung-Yeh; Tsai, Wei-Feng; Zhang, Fuchun

    Large Hubbard U limit of the Kane-Mele model on a zigzag ribbon of honeycomb lattice near half-filling is studied via a renormalized mean-field theory. The ground state exhibits time-reversal symmetry (TRS) breaking dx2 -y2 + idxy -wave superconductivity. At large spin-orbit coupling, the Z2 topological phase with non-trivial spin Chern number in the pure Kane-Mele model is persistent into the TRS broken state (called ``spin-Chern phase''), and has two pairs of counter-propagating helical Majorana modes at the edges. As the spin-orbit coupling is reduced, the system undergoes a topological quantum phase transition from the spin-Chern to chiral superconducting states. Possible relevance of our results to adatom-doped graphene and irridate compounds is discussed.Ref.:Shih-Jye Sun, Chung-Hou Chung, Yung-Yeh Chang, Wei-Feng Tsai, and Fu-Chun Zhang, arXiv:1506.02584. CHC acknowledges support from NSC Grant No. 98-2918-I-009-06, No. 98-2112-M-009-010-MY3, the NCTU-CTS, the MOE-ATU program, the NCTS of Taiwan, R.O.C.

  11. The Kubo-Greenwood spin-dependent electrical conductivity of 2D transition-metal dichalcogenides and group-IV materials: A Green's function study

    NASA Astrophysics Data System (ADS)

    Hoi, Bui Dinh; Yarmohammadi, Mohsen

    2018-04-01

    The spin-dependent electrical conductivity of counterparts of graphene, transition-metal dichalcogenides (TMDs) and group-IV nanosheets, have investigated by a magnetic exchange field (MEF)-induction to gain the electronic transport properties of charge carriers. We have implemented a k.p Hamiltonian model through the Kubo-Greenwood formalism in order to address the dynamical behavior of correlated Dirac fermions. Tuning the MEF enables one to control the effective mass of carriers in group-IV and TMDs, differently. We have found the Dirac-like points in a new quantum anomalous Hall (QAH) state at strong MEFs for both structures. For both cases, a broad peak in electrical conductivity originated from the scattering rate and entropy is observed. Spin degeneracy at some critical MEFs is another remarkable point. We have found that in the limit of zero or uniform MEFs with respect to the spin-orbit interaction, the large resulting electrical conductivity depends on the spin sub-bands in group-IV and MLDs. Featuring spin-dependent electronic transport properties, one can provide a new scenario for future possible applications.

  12. Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector.

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Childers, J T; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flaschel, N; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kim, Y; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pirumov, H; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saimpert, M; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spanò, F; Spearman, W R; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L

    Studies of the spin, parity and tensor couplings of the Higgs boson in the [Formula: see text], [Formula: see text] and [Formula: see text] decay processes at the LHC are presented. The investigations are based on [Formula: see text] of pp collision data collected by the ATLAS experiment at [Formula: see text] TeV and [Formula: see text] TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers [Formula: see text], is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at more than 99.9 % confidence level. Using the [Formula: see text] and [Formula: see text] decays, the tensor structure of the interaction between the spin-0 boson and the SM vector bosons is also investigated. The observed distributions of variables sensitive to the non-SM tensor couplings are compatible with the SM predictions and constraints on the non-SM couplings are derived.

  13. Helical modes generate antimagnetic rotational spectra in nuclei

    NASA Astrophysics Data System (ADS)

    Malik, Sham S.

    2018-03-01

    A systematic analysis of the antimagnetic rotation band using r -helicity formalism is carried out for the first time. The observed octupole correlation in a nucleus is likely to play a role in establishing the antimagnetic spectrum. Such octupole correlations are explained within the helical orbits. In a rotating field, two identical fermions (generally protons) with paired spins generate these helical orbits in such a way that its positive (i.e., up) spin along the axis of quantization refers to one helicity (right-handedness) while negative (down) spin along the same quantization-axis decides another helicity (left-handedness). Since the helicity remains invariant under rotation, therefore, the quantum state of a fermion is represented by definite angular momentum and helicity. These helicity represented states support a pear-shaped structure of a rotating system having z axis as the symmetry axis. A combined operation of parity, time-reversal, and signature symmetries ensures an absence of one of the signature partner band from the observed antimagnetic spectrum. This formalism has also been tested for the recently observed negative parity Δ I =2 antimagnetic spectrum in odd-A 101Pd nucleus and explains nicely its energy spectrum as well as the B (E 2 ) values. Further, this formalism is found to be fully consistent with twin-shears mechanism popularly known for such type of rotational bands. It also provides significant clue for extending these experiments in various mass regions spread over the nuclear chart.

  14. Nonsingular, big-bounce cosmology from spinor-torsion coupling

    NASA Astrophysics Data System (ADS)

    Popławski, Nikodem

    2012-05-01

    The Einstein-Cartan-Sciama-Kibble theory of gravity removes the constraint of general relativity that the affine connection be symmetric by regarding its antisymmetric part, the torsion tensor, as a dynamical variable. The minimal coupling between the torsion tensor and Dirac spinors generates a spin-spin interaction which is significant in fermionic matter at extremely high densities. We show that such an interaction averts the unphysical big-bang singularity, replacing it with a cusp-like bounce at a finite minimum scale factor, before which the Universe was contracting. This scenario also explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic.

  15. Remarks towards the spectrum of the Heisenberg spin chain type models

    NASA Astrophysics Data System (ADS)

    Burdík, Č.; Fuksa, J.; Isaev, A. P.; Krivonos, S. O.; Navrátil, O.

    2015-05-01

    The integrable close and open chain models can be formulated in terms of generators of the Hecke algebras. In this review paper, we describe in detail the Bethe ansatz for the XXX and the XXZ integrable close chain models. We find the Bethe vectors for two-component and inhomogeneous models. We also find the Bethe vectors for the fermionic realization of the integrable XXX and XXZ close chain models by means of the algebraic and coordinate Bethe ansatz. Special modification of the XXZ closed spin chain model ("small polaron model") is considered. Finally, we discuss some questions relating to the general open Hecke chain models.

  16. Spontaneous symmetry breaking in quasi one dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satpathi, Urbashi, E-mail: urbashi@bose.res.in; Deo, P. Singha

    2015-06-24

    Electronic charge and spin separation leading to charge density wave and spin density wave is well established in one dimension in the presence and absence of Coulomb interaction. We start from quasi one dimension and show the possibility of such a transition in quasi one dimension as well as in two dimensions by going to a regime where it can be shown for electrons that just interact via Fermi statistics. Such density waves arise due to internal symmetry breaking in a many fermion quantum system. We can extend this result to very wide rings with infinitely many electrons including Coulombmore » interaction.« less

  17. Degeneracy of vector-channel spatial correlators in high temperature QCD

    NASA Astrophysics Data System (ADS)

    Rohrhofer, Christian; Aoki, Yasumichi; Cossu, Guido; Fukaya, Hidenori; Glozman, Leonid; Hashimoto, Shoji; Lang, Christian B.; Prelovsek, Sasa

    2018-03-01

    We study spatial isovector meson correlators in Nf = 2 QCD with dynamical domain-wall fermions on 323 × 8 lattices at temperatures up to 380 MeV with various quark masses. We measure the correlators of spin-one isovector operators including vector, axial-vector, tensor and axial-tensor. At temperatures above Tc we observe an approximate degeneracy of the correlators in these channels, which is unexpected because some of them are not related under SU(2)L×SU(2)R nor U(1)A symmetries. The observed approximate degeneracy suggests emergent SU(2)CS (chiral-spin) and SU(4) symmetries at high T.

  18. Conductance in inhomogeneous quantum wires: Luttinger liquid predictions and quantum Monte Carlo results

    NASA Astrophysics Data System (ADS)

    Morath, D.; Sedlmayr, N.; Sirker, J.; Eggert, S.

    2016-09-01

    We study electron and spin transport in interacting quantum wires contacted by noninteracting leads. We theoretically model the wire and junctions as an inhomogeneous chain where the parameters at the junction change on the scale of the lattice spacing. We study such systems analytically in the appropriate limits based on Luttinger liquid theory and compare the results to quantum Monte Carlo calculations of the conductances and local densities near the junction. We first consider an inhomogeneous spinless fermion model with a nearest-neighbor interaction and then generalize our results to a spinful model with an on-site Hubbard interaction.

  19. The stabilization mechanism of titanium cluster

    NASA Astrophysics Data System (ADS)

    Sun, Houqian; Ren, Yun; Hao, Yuhua; Wu, Zhaofeng; Xu, Ning

    2015-05-01

    A systematic and comparative theoretical study on the stabilization mechanism of titanium cluster has been performed by selecting the clusters Tin (n=3, 4, 5, 7, 13, 15 and 19) as representatives in the framework of density-functional theory. For small clusters Tin (n=3, 4 and 5), the binding energy gain due to spin polarization is substantially larger than that due to structural distortion. For medium clusters Ti13 and Ti15, both have about the same contribution. For Tin (n=4, 5, 13 and 15), when the undistorted high symmetric structure with spin-polarization is changed into the lowest energy structure, the energy level spelling due to distortion fails to reverse the level order of occupied and unoccupied molecular orbital (MO) of two type spin states, the spin configuration remains unchanged. In spin restricted and undistorted high symmetric structure, d orbitals participate in the hybridization in MOs, usually by way of a less distorted manner, and weak bonds are formed. In contrast, d orbitals take part in the formation of MOs in the ground state structure, usually in a distorted manner, and strong covalent metallic bonds are formed.

  20. Complete particle-pair annihilation as a dynamical signature of the spectral singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G.R.; Zhang, X.Z.; Song, Z., E-mail: nkquantum@gmail.com

    2014-10-15

    Motivated by the physical relevance of a spectral singularity of interacting many-particle system, we explore the dynamics of two bosons as well as fermions in one-dimensional system with imaginary delta interaction strength. Based on the exact solution, it shows that the two-particle collision leads to amplitude-reduction of the wave function. For fermion pair, the amplitude-reduction depends on the spin configuration of two particles. In both cases, the residual amplitude can vanish when the relative group velocity of two single-particle Gaussian wave packets with equal width reaches the magnitude of the interaction strength, exhibiting complete particle-pair annihilation at the spectral singularity.more » - Highlights: • We investigate the physical relevance of a spectral singularity. • The two-particle collision leads to amplitude-reduction of the wave function. • There is a singularity spectrum which leads to complete particle-pair annihilation. • Complete particle-pair annihilation can only occur for two distinguishable bosons and singlet fermions. • Pair annihilation provides a detection method of the spectral singularity in the experiment.« less

  1. Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators

    DOE PAGES

    Xu, Yang; Miotkowski, Ireneusz; Chen, Yong P.

    2016-05-04

    Topological insulators are a novel class of quantum matter with a gapped insulating bulk, yet gapless spin-helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe 2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conductance quantum at themore » double Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction, respectively. As a result, such a system paves the way to explore rich physics, ranging from topological magnetoelectric effects to exciton condensation.« less

  2. Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Niklas; Venugopalan, Raju

    Here, we outline a novel chiral kinetic theory framework for systematic computations of the Chiral Magnetic Effect (CME) in ultrarelativistic heavy-ion collisions. The real part of the fermion determinant in the QCD effective action is expressed as a supersymmetric world-line action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. Berry’s phase is obtained in a consistent non-relativistic adiabatic limit. The chiral anomaly, in contrast, arises from the phase of the fermion determinant; its topological properties are therefore distinct from those of the Berry phase.more » We show that the imaginary contribution to the fermion determinant too can be expressed as a point particle world-line path integral and derive the corresponding anomalous axial vector current. Our results can be used to derive a covariant relativistic chiral kinetic theory including the effects of topological fluctuations that has overlap with classical-statistical simulations of the CME at early times and anomalous hydrodynamics at late times.« less

  3. Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory

    DOE PAGES

    Mueller, Niklas; Venugopalan, Raju

    2018-03-21

    Here, we outline a novel chiral kinetic theory framework for systematic computations of the Chiral Magnetic Effect (CME) in ultrarelativistic heavy-ion collisions. The real part of the fermion determinant in the QCD effective action is expressed as a supersymmetric world-line action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. Berry’s phase is obtained in a consistent non-relativistic adiabatic limit. The chiral anomaly, in contrast, arises from the phase of the fermion determinant; its topological properties are therefore distinct from those of the Berry phase.more » We show that the imaginary contribution to the fermion determinant too can be expressed as a point particle world-line path integral and derive the corresponding anomalous axial vector current. Our results can be used to derive a covariant relativistic chiral kinetic theory including the effects of topological fluctuations that has overlap with classical-statistical simulations of the CME at early times and anomalous hydrodynamics at late times.« less

  4. Structure-related frustrated magnetism of nanosized polyoxometalates: aesthetics and properties in harmony.

    PubMed

    Kögerler, Paul; Tsukerblat, Boris; Müller, Achim

    2010-01-07

    The structural versatility characterizing polyoxometalate chemistry, in combination with the option to deliberately use well-defined building blocks, serves as the foundation for the generation of a large family of magnetic clusters, frequently comprising highly symmetric spin arrays. If the spin centers are coupled by antiferromagnetic exchange, some of these systems exhibit spin frustration, which can result in novel magnetic properties of purely molecular origins. We discuss here the magnetic properties of selected nanosized polyoxometalate clusters featuring spin triangles as their magnetic 'building blocks' or fragments. This includes unique porous Keplerate clusters of the type {(Mo)Mo(5)}(12)M(30) (M = Fe(III), Cr(III), V(IV)) with the spin centers defining a regular icosidodecahedron and the {V(15)As(6)}-type cluster sphere containing a single equilateral spin triangle; these species are widely discussed and studied in the literature for their role in materials science as molecular representations of Kagomé lattices and in relation to quantum computing, respectively. Exhibiting fascinating and unique structural features, these magnetic molecules allow the study of the implications of frustrated spin ordering. Furthermore, this perspective covers the impact of spin frustration on the degeneracy of the ground state and related problems, namely strong magnetic anisotropy and the interplay of antisymmetric exchange and structural Jahn-Teller effects.

  5. Associative Algebraic Approach to Logarithmic CFT in the Bulk: The Continuum Limit of the {gl(1|1)} Periodic Spin Chain, Howe Duality and the Interchiral Algebra

    NASA Astrophysics Data System (ADS)

    Gainutdinov, A. M.; Read, N.; Saleur, H.

    2016-01-01

    We develop in this paper the principles of an associative algebraic approach to bulk logarithmic conformal field theories (LCFTs). We concentrate on the closed {gl(1|1)} spin-chain and its continuum limit—the {c=-2} symplectic fermions theory—and rely on two technical companion papers, Gainutdinov et al. (Nucl Phys B 871:245-288, 2013) and Gainutdinov et al. (Nucl Phys B 871:289-329, 2013). Our main result is that the algebra of local Hamiltonians, the Jones-Temperley-Lieb algebra JTL N , goes over in the continuum limit to a bigger algebra than {V}, the product of the left and right Virasoro algebras. This algebra, {S}—which we call interchiral, mixes the left and right moving sectors, and is generated, in the symplectic fermions case, by the additional field {S(z,bar{z})≡ S_{αβ} ψ^α(z)bar{ψ}^β(bar{z})}, with a symmetric form {S_{αβ}} and conformal weights (1,1). We discuss in detail how the space of states of the LCFT (technically, a Krein space) decomposes onto representations of this algebra, and how this decomposition is related with properties of the finite spin-chain. We show that there is a complete correspondence between algebraic properties of finite periodic spin chains and the continuum limit. An important technical aspect of our analysis involves the fundamental new observation that the action of JTL N in the {gl(1|1)} spin chain is in fact isomorphic to an enveloping algebra of a certain Lie algebra, itself a non semi-simple version of {sp_{N-2}}. The semi-simple part of JTL N is represented by {U sp_{N-2}}, providing a beautiful example of a classical Howe duality, for which we have a non semi-simple version in the full JTL N image represented in the spin-chain. On the continuum side, simple modules over {S} are identified with "fundamental" representations of {sp_∞}.

  6. Momentum dependence of the topological susceptibility and its derivative at zero momentum with overlap fermions

    NASA Astrophysics Data System (ADS)

    Koma, Y.

    The derivative of the topological susceptibility at zero momentum is responsible for the validity of the Witten-Veneziano formula for the η mass, and also for the resolution of the EMC pro- ton spin problem. We investigate the momentum dependence of the topological susceptibility and its derivative at zero momentum using lattice QCD simulations with overlap fermions within quenched approximation. We expose the role of the low-lying Dirac eigenmodes for the topolog- ical charge density, and find the negative value for the derivative. While the sign of the derivative is consistent with the QCD sum rule in pure Yang-Mills theory, the absolute value becomes larger if only the contribution from the zero modes and the low-lying eigenmodes is taken into account.

  7. Emergent Fermi Sea in A System of Interacting Bosons

    NASA Astrophysics Data System (ADS)

    Wu, Yinghai; Jain, Jainendra

    2015-03-01

    An understanding of the possible ways in which interactions can produce fundamentally new emergent many-body states is a central problem of condensed matter physics. We ask if a Fermi sea can arise in a system of bosons subject to contact interaction. Based on exact diagonalization studies and variational wave functions, we predict that such a state is likely to occur when a system of two-component bosons in two dimensions, interacting via a species independent contact interaction, is exposed to a synthetic magnetic field of strength that corresponds to a filling factor of unity. The bosons each bind a single vortex as a result of the repulsive interaction, and these fermionic bound states, namely composite fermions, form a spin-singlet Fermi sea. Financial support from the DOE under Grant No. DE-SC0005042.

  8. Conductivity predictions for the 5/2 fractional quantum Hall state using the composite fermion superconductor model

    NASA Astrophysics Data System (ADS)

    Foster, Kerwin Crayton

    The fractional quantum Hall effect (FQHE) occurs when a two-dimensional electron gas is placed in a strong magnetic field at low temperatures. When this effect occurs the Hall resistance, RH, defined to be the Hall voltage divided by the current, is quantized, with RH = (1/nu)h/ e2 where nu = p/q is the Landau level filling fraction; and p and q are relatively prime integers. For almost all observed FQHE states, q is odd with one notable exception: the nu = 5/2 FQHE state. Understanding the nature of this incompressible even-denominator state is one of the central questions in the theory of the FQHE and is the subject of this Dissertation. We use a powerful theoretical tool for studying the FQHE: composite fermion theory. Composite fermions can be viewed as electrons bound to an even number of magnetic flux quanta. Jain has shown that the FQHE for electrons can be viewed as an integer quantum Hall effect (p = 1) for composite fermions. More recently, Halperin, Lee and Read developed a successful theory of the compressible nu = 1/2 state using composite fermions. There is now compelling theoretical evidence that the 5/2 state is a so-called Moore-Read state---a state which can be viewed as a spin-polarized p-wave superconductor of composite fermions. We have developed a semi-phenomenological description of this state by modifying the Halperin-Lee-Read theory, adding a p-wave pairing interaction between composite fermions by hand. The electromagnetic response functions for the resulting superconducting state of composite fermions are then calculated. We show that these response functions exhibit the expected BCS 'coherence factor' effects, such as the Hebel-Slichter peak. Using the composite fermion response functions, we then calculate the corresponding electronic response functions using Chern-Simons theory. We find that in the electronic response, the most striking coherence factor effects (e.g., the Hebel-Slichter peak) are strongly suppressed. However, the low-temperature o = 2Delta threshold behavior does show clear coherence factor effects. Finally, we use our model to predict the wave-vector and frequency dependence of the longitudinal conductivity, sigmaxx( q, o), which can be measured in surface-acoustic-wave propagation experiments.

  9. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    NASA Astrophysics Data System (ADS)

    Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.

    2015-11-01

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the anisotropic exchange models conventionally used for the analysis of this system and, with the results of the experimental XANES spectra, shows that our complex investigations provide a good description of the pattern of the spin levels and the spin structures of the nanomagnetic Ni7 qubit. The results are discussed in the view of the general problem of the solid-state spin qubits and the spin structure of the Ni cluster.

  10. Heavy fermion behavior in the quasi-one-dimensional Kondo lattice CeCo 2Ga 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Le; Fu, Zhaoming; Sun, Jianping

    Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo 2Ga 8. Resistivity measurements at ambient pressure reveal the onset of coherence at T * ≈ 20 K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 and 2 K and reaches 800 mJ/mol K 2 atmore » 1 K, suggesting that CeCo 2Ga 8 is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature–pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional spin chain from 300 K down to T *, and first-principles calculations predict flat Fermi surfaces for the itinerant f-electron bands. These suggest that CeCo 2Ga 8 is a rare example of the quasi-one-dimensional Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh 2Si 2 family. The study of the quasi-one-dimensional CeCo 2Ga 8 family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.« less

  11. Heavy fermion behavior in the quasi-one-dimensional Kondo lattice CeCo2Ga8

    NASA Astrophysics Data System (ADS)

    Wang, Le; Fu, Zhaoming; Sun, Jianping; Liu, Min; Yi, Wei; Yi, Changjiang; Luo, Yongkang; Dai, Yaomin; Liu, Guangtong; Matsushita, Yoshitaka; Yamaura, Kazunari; Lu, Li; Cheng, Jin-Guang; Yang, Yi-feng; Shi, Youguo; Luo, Jianlin

    2017-07-01

    Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo2Ga8. Resistivity measurements at ambient pressure reveal the onset of coherence at T * ≈ 20 K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 and 2 K and reaches 800 mJ/mol K2 at 1 K, suggesting that CeCo2Ga8 is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature-pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional spin chain from 300 K down to T *, and first-principles calculations predict flat Fermi surfaces for the itinerant f-electron bands. These suggest that CeCo2Ga8 is a rare example of the quasi-one-dimensional Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh2Si2 family. The study of the quasi-one-dimensional CeCo2Ga8 family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.

  12. Heavy fermion behavior in the quasi-one-dimensional Kondo lattice CeCo 2Ga 8

    DOE PAGES

    Wang, Le; Fu, Zhaoming; Sun, Jianping; ...

    2017-07-04

    Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo 2Ga 8. Resistivity measurements at ambient pressure reveal the onset of coherence at T * ≈ 20 K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 and 2 K and reaches 800 mJ/mol K 2 atmore » 1 K, suggesting that CeCo 2Ga 8 is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature–pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional spin chain from 300 K down to T *, and first-principles calculations predict flat Fermi surfaces for the itinerant f-electron bands. These suggest that CeCo 2Ga 8 is a rare example of the quasi-one-dimensional Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh 2Si 2 family. The study of the quasi-one-dimensional CeCo 2Ga 8 family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.« less

  13. Recent advances in spin-free state-specific and state-universal multi-reference coupled cluster formalisms: A unitary group adapted approach

    NASA Astrophysics Data System (ADS)

    Maitra, Rahul; Sinha, Debalina; Sen, Sangita; Shee, Avijit; Mukherjee, Debashis

    2012-06-01

    We present here the formulations and implementations of Mukherjee's State-Specific and State-Universal Multi-reference Coupled Cluster theories, which are explicitly spin free being obtained via the Unitary Group Adapted (UGA) approach, and thus, do not suffer from spin-contamination. We refer to them as UGA-SSMRCC and UGASUMRCC respectively. We propose a new multi-exponential cluster Ansatz analogous to but different from the one suggested by Jeziorski and Monkhorst (JM). Unlike the JM Ansatz, our choice involves spin-free unitary generators for the cluster operators and we replace the traditional exponential structure for the wave-operator by a suitable normal ordered exponential. We sketch the consequences of choosing our Ansatz, which leads to fully spin-free finite power series structure of the direct term of the MRCC equations. The UGA-SUMRCC follows from a suitable hierarchical generation of the cluster amplitudes of increasing rank, while the UGA-SSMRCC requires suitable sufficiency conditions to arrive at a well-defined set of equations for the cluster amplitudes. We discuss two distinct and inequivalent sufficiency conditions and their pros and cons. We also discuss a variant of the UGA-SSMRCC, where the number of cluster amplitudes can be drastically reduced by internal contraction of the two-body inactive cluster amplitudes. These are the most numerous, and thus a spin-free internally contracted description will lead to a high speed-up factor. We refer to this as ICID-UGA-SSMRCC. Essentially the same mathematical manipulations provide us with the UGA-SUMRCC theory as well. Pilot numerical results are presented to indicate the promise and the efficacy of all the three methods.

  14. Fermion-scalar conformal blocks

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-04-13

    In this study, we compute the conformal blocks associated with scalar-scalar-fermionfermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. In addition, conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.

  15. The analogy in the formation of hardness salts and gallstones according to the EPR study

    NASA Astrophysics Data System (ADS)

    Pichugina, Alina; Tsyro, Larisa; Unger, Felix

    2017-11-01

    The article shows that the hardness salts contain the same crystalline phases as the bile stone pigment. The identity of EPR spectra of hardness salts and pigment of gallstones containing calcium carbonate was established. An analogy between the processes of formation of hardness salts and gallstones is played, in which particles with open spin-orbitals (fermions) play a decisive role.

  16. Optical Lattice Simulations of Correlated Fermions

    DTIC Science & Technology

    2013-10-04

    Zhang, Xiaopeng Li, W. Vincent Liu. Stripe , checkerboard, and liquid-crystal ordering from anisotropic p-orbital Fermi surfaces in optical lattices...Meeting "The Role of Interactions in Disorder Induced Damping of Dipole Oscillations of a Bose-Einstein Condensate", S. Pollack, APS March Meeting...Rev. A 85, 043603 (2012)], and also worked out the diffusive transport behavior of the polarized Fermi gas, including heat transport, spin Seebeck

  17. Coexistence of long-range cycloidal order and spin-cluster glass state in the multiferroic BaYFeO4.

    PubMed

    Ghara, Somnath; Sundaresan, A

    2018-06-20

    We report the presence of spin glass state below the cycloidal spin ordering in the multiferroic BaYFeO 4 . This compound is known to crystallize in an orthorhombic structure with a centrosymmetric space group Pnma and exhibits two successive antiferromagnetic phase transitions. Upon cooling, it undergoes a spin density wave (SDW)-like antiferromagnetic ordering at T N1 ~ 48 K and a cycloidal ordering at T N2 ~ 35 K. Using dc magnetic memory effect and magnetization relaxation studies, we have shown that this oxide undergoes a reentrant spin glass transition below T * ~ 17 K. Our analysis suggests the presence of spin clusters in the glassy state. The coexistence of spin-cluster glass and long-range cycloidal ordered states results in an exchange bias effect at 2 K. The origin of the glassy state has been attributed to freezing of some Fe 3+ moments, which do not participate in the long-range ordering.

  18. Coexistence of long-range cycloidal order and spin-cluster glass state in the multiferroic BaYFeO4

    NASA Astrophysics Data System (ADS)

    Ghara, Somnath; Sundaresan, A.

    2018-06-01

    We report the presence of spin glass state below the cycloidal spin ordering in the multiferroic BaYFeO4. This compound is known to crystallize in an orthorhombic structure with a centrosymmetric space group Pnma and exhibits two successive antiferromagnetic phase transitions. Upon cooling, it undergoes a spin density wave (SDW)-like antiferromagnetic ordering at T N1 ~ 48 K and a cycloidal ordering at T N2 ~ 35 K. Using dc magnetic memory effect and magnetization relaxation studies, we have shown that this oxide undergoes a reentrant spin glass transition below T * ~ 17 K. Our analysis suggests the presence of spin clusters in the glassy state. The coexistence of spin-cluster glass and long-range cycloidal ordered states results in an exchange bias effect at 2 K. The origin of the glassy state has been attributed to freezing of some Fe3+ moments, which do not participate in the long-range ordering.

  19. Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality

    NASA Astrophysics Data System (ADS)

    Wölfle, Peter; Abrahams, Elihu

    2016-02-01

    We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.

  20. Phase-space methods for the spin dynamics in condensed matter systems

    PubMed Central

    Hurst, Jérôme; Manfredi, Giovanni

    2017-01-01

    Using the phase-space formulation of quantum mechanics, we derive a four-component Wigner equation for a system composed of spin- fermions (typically, electrons) including the Zeeman effect and the spin–orbit coupling. This Wigner equation is coupled to the appropriate Maxwell equations to form a self-consistent mean-field model. A set of semiclassical Vlasov equations with spin effects is obtained by expanding the full quantum model to first order in the Planck constant. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. A simple closure relation is proposed to obtain a closed set of hydrodynamic equations. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320903

  1. A modified Stern-Gerlach experiment using a quantum two-state magnetic field

    NASA Astrophysics Data System (ADS)

    Daghigh, Ramin G.; Green, Michael D.; West, Christopher J.

    2018-06-01

    The Stern-Gerlach experiment has played an important role in our understanding of quantum behavior. We propose and analyze a modified version of this experiment where the magnetic field of the detector is in a quantum superposition, which may be experimentally realized using a superconducting flux qubit. We show that if incident spin-1/2 particles couple with the two-state magnetic field, a discrete target distribution results that resembles the distribution in the classical Stern-Gerlach experiment. As an application of the general result, we compute the distribution for a Gaussian waveform of the incident fermion. This analysis allows us to demonstrate theoretically: (1) the quantization of the intrinsic angular momentum of a spin-1/2 particle, and (2) a correlation between EPR pairs leading to nonlocality, without necessarily collapsing the particle's spin wavefunction.

  2. Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Xie; Liu Zhengxin; Wen Xiaogang

    2011-12-15

    Topological insulators in free fermion systems have been well characterized and classified. However, it is not clear in strongly interacting boson or fermion systems what symmetry-protected topological orders exist. In this paper, we present a model in a two-dimensional (2D) interacting spin system with nontrivial onsite Z{sub 2} symmetry-protected topological order. The order is nontrivial because we can prove that the one-dimensional (1D) system on the boundary must be gapless if the symmetry is not broken, which generalizes the gaplessness of Wess-Zumino-Witten model for Lie symmetry groups to any discrete symmetry groups. The construction of this model is related tomore » a nontrivial 3-cocycle of the Z{sub 2} group and can be generalized to any symmetry group. It potentially leads to a complete classification of symmetry-protected topological orders in interacting boson and fermion systems of any dimension. Specifically, this exactly solvable model has a unique gapped ground state on any closed manifold and gapless excitations on the boundary if Z{sub 2} symmetry is not broken. We prove the latter by developing the tool of a matrix product unitary operator to study the nonlocal symmetry transformation on the boundary and reveal the nontrivial 3-cocycle structure of this transformation. Similar ideas are used to construct a 2D fermionic model with onsite Z{sub 2} symmetry-protected topological order.« less

  3. Surface Majorana fermions and bulk collective modes in superfluid 3He-B

    NASA Astrophysics Data System (ADS)

    Park, YeJe; Chung, Suk Bum; Maciejko, Joseph

    2015-02-01

    The theoretical study of topological superfluids and superconductors has so far been carried out largely as a translation of the theory of noninteracting topological insulators into the superfluid language, whereby one replaces electrons by Bogoliubov quasiparticles and single-particle band Hamiltonians by Bogoliubov-de Gennes Hamiltonians. Band insulators and superfluids are, however, fundamentally different: While the former exist in the absence of interparticle interactions, the latter are broken symmetry states that owe their very existence to such interactions. In particular, unlike the static energy gap of a band insulator, the gap in a superfluid is due to a dynamical order parameter that is subject to both thermal and quantum fluctuations. In this work, we explore the consequences of bulk quantum fluctuations of the order parameter in the B phase of superfluid 3He on the topologically protected Majorana surface states. Neglecting the high-energy amplitude modes, we find that one of the three spin-orbit Goldstone modes in 3He-B couples to the surface Majorana fermions. This coupling in turn induces an effective short-range two-body interaction between the Majorana fermions, with coupling constant inversely proportional to the strength of the nuclear dipole-dipole interaction in bulk 3He. A mean-field theory suggests that the surface Majorana fermions in 3He-B may be in the vicinity of a metastable gapped time-reversal-symmetry-breaking phase.

  4. The Spin Vector of (832) Karin

    NASA Astrophysics Data System (ADS)

    Slivan, Stephen M.; Molnar, L. A.

    2010-10-01

    We observed rotation lightcurves of Koronis family and Karin cluster member (832) Karin during its four consecutive apparitions in 2006-2009, and combined the new observations with previously published lightcurves to determine its spin vector orientation and preliminary model shape. Karin is a prograde rotator with a period of 18.352 h, spin obliquity near 41°, and pole ecliptic longitude near either 51° or 228°. Although the two ambiguous pole solutions are near the clustered pole solutions of four Koronis family members whose spins are thought to be trapped in a spin-orbit resonance (Vokrouhlický et al., 2003), Karin does not seem to be trapped in the resonance; this is consistent with the expectation that the 6 My age of Karin (Nesvorný et al., 2002) is too young for YORP torques to have modified its spin since its formation. The spin vector and shape results for Karin will constrain family formation models that include spin properties, and we discuss the Karin results in the context of the other members of the Karin cluster, the Karin parent body, and the parent body's siblings in the Koronis family.

  5. Spin-orbit splitted excited states using explicitly-correlated equation-of-motion coupled-cluster singles and doubles eigenvectors

    NASA Astrophysics Data System (ADS)

    Bokhan, Denis; Trubnikov, Dmitrii N.; Perera, Ajith; Bartlett, Rodney J.

    2018-04-01

    An explicitly-correlated method of calculation of excited states with spin-orbit couplings, has been formulated and implemented. Developed approach utilizes left and right eigenvectors of equation-of-motion coupled-cluster model, which is based on the linearly approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] method. The spin-orbit interactions are introduced by using the spin-orbit mean field (SOMF) approximation of the Breit-Pauli Hamiltonian. Numerical tests for several atoms and molecules show good agreement between explicitly-correlated results and the corresponding values, calculated in complete basis set limit (CBS); the highly-accurate excitation energies can be obtained already at triple- ζ level.

  6. Surface Magnetism on pristine silicon thin film for spin and valley transport

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Tao

    The spin and valley degree of freedom for an electron have received tremendous attention in condensed matters physics because of the potential application for spintronics and valleytronics. It has been widely accepted that d0 light elemental materials of single component are not taken as ferromagnetic candidates because of the absence of odd paired electrons. The ferromagnetism has to be introduced by ferromagnetic impurity, edge functionalization, or proximity with ferromagnetic neighbors etc. These special surface or interface structures require atomically precise control which significantly increases experimental uncertainty and theoretical understanding. By means of density functional theory (DFT) computations, we found that the spin- and valley- polarized state can be introduced in pristine silicon thin films without any alien components. The key point to this aim is the formation of graphene-like hexagonal structures making a spin-polarized Dirac fermion with half-filling. The resulting fundamental physics such as quantum valley Hall effect (QVHE), quantum anomalous Hall effect (QAHE) and magnetoelectric effect will be discussed.

  7. Searching for an exotic spin-dependent interaction with a single electron-spin quantum sensor.

    PubMed

    Rong, Xing; Wang, Mengqi; Geng, Jianpei; Qin, Xi; Guo, Maosen; Jiao, Man; Xie, Yijin; Wang, Pengfei; Huang, Pu; Shi, Fazhan; Cai, Yi-Fu; Zou, Chongwen; Du, Jiangfeng

    2018-02-21

    Searching for new particles beyond the standard model is crucial for understanding several fundamental conundrums in physics and astrophysics. Several hypothetical particles can mediate exotic spin-dependent interactions between ordinary fermions, which enable laboratory searches via the detection of the interactions. Most laboratory searches utilize a macroscopic source and detector, thus allowing the detection of interactions with submillimeter force range and above. It remains a challenge to detect the interactions at shorter force ranges. Here we propose and demonstrate that a near-surface nitrogen-vacancy center in diamond can be utilized as a quantum sensor to detect the monopole-dipole interaction between an electron spin and nucleons. Our result sets a constraint for the electron-nucleon coupling, [Formula: see text], with the force range 0.1-23 μm. The obtained upper bound of the coupling at 20 μm is [Formula: see text] < 6.24 × 10 -15 .

  8. Mesoscopic superconductivity and high spin polarization coexisting at metallic point contacts on Weyl semimetal TaAs

    PubMed Central

    Aggarwal, Leena; Gayen, Sirshendu; Das, Shekhar; Kumar, Ritesh; Süß, Vicky; Felser, Claudia; Shekhar, Chandra; Sheet, Goutam

    2017-01-01

    A Weyl semimetal is a topologically non-trivial phase of matter that hosts mass-less Weyl fermions, the particles that remained elusive for more than 80 years since their theoretical discovery. The Weyl semimetals exhibit unique transport properties and remarkably high surface spin polarization. Here we show that a mesoscopic superconducting phase with critical temperature Tc=7 K can be realized by forming metallic point contacts with silver (Ag) on single crystals of TaAs, while neither Ag nor TaAs are superconductors. Andreev reflection spectroscopy of such point contacts reveals a superconducting gap of 1.2 meV that coexists with a high transport spin polarization of 60% indicating a highly spin-polarized supercurrent flowing through the point contacts on TaAs. Therefore, apart from the discovery of a novel mesoscopic superconducting phase, our results also show that the point contacts on Weyl semimetals are potentially important for applications in spintronics. PMID:28071685

  9. Aspects of Higher Spin Symmetry and its Breaking

    NASA Astrophysics Data System (ADS)

    Zhiboedov, Alexander

    This thesis explores different aspects of higher spin symmetry and its breaking in the context of Quantum Field Theory, AdS/CFT and String Theory. In chapter 2, we study the constraints imposed by the existence of a single higher spin conserved current on a three-dimensional conformal field theory (CFT). A single higher spin conserved current implies the existence of an infinite number of higher spin conserved currents. The correlation functions of the stress tensor and the conserved currents are then shown to be equal to those of a free field theory. Namely a theory of N free bosons or free fermions. This is an extension of the Coleman-Mandula theorem to CFT's, which do not have a conventional S-matrix. In chapter 3, we consider three-dimensional conformal field theories that have a higher spin symmetry that is slightly broken. The theories have a large N limit, in the sense that the operators separate into single-trace and multi-trace and obey the usual large N factorization properties. We assume that the only single trace operators are the higher spin currents plus an additional scalar. Using the slightly broken higher spin symmetry we constrain the three-point functions of the theories to leading order in N. We show that there are two families of solutions. One family can be realized as a theory of N fermions with an O( N) Chern-Simons gauge field, the other as a N bosons plus the Chern-Simons gauge field. In chapter 4, we consider several aspects of unitary higher-dimensional conformal field theories. We investigate the dimensions of spinning operators via the crossing equations in the light-cone limit. We find that, in a sense, CFTs become free at large spin and 1/s is a weak coupling parameter. The spectrum of CFTs enjoys additivity: if two twists tau 1, tau2 appear in the spectrum, there are operators whose twists are arbitrarily close to tau1 + tau2. We characterize how tau1 + tau2 is approached at large spin by solving the crossing equations analytically. Applications include the 3d Ising model, theories with a gravity dual, SCFTs, and patterns of higher spin symmetry breaking. In chapter 5, we consider higher derivative corrections to the graviton three-point coupling within a weakly coupled theory of gravity. We devise a thought experiment involving a high energy scattering process which leads to causality violation if the graviton three-point vertex contains the additional structures. This violation cannot be fixed by adding conventional particles with spins J ≤ 2. But, it can be fixed by adding an infinite tower of extra massive particles with higher spins, J > 2. In AdS theories this implies a constraint on the conformal anomaly coefficients (a-c)/c lesssim 1/Delta gap2 in terms of Deltagap, the dimension of the lightest single particle operator with spin J > 2. For inflation, or de Sitter-like solutions, it indicates the existence of massive higher spin particles if the gravity wave non-gaussianity deviates significantly from the one computed in the Einstein theory.

  10. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3

    NASA Astrophysics Data System (ADS)

    Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu

    2016-11-01

    Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d5 halides and oxides in general.

  11. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3.

    PubMed

    Yadav, Ravi; Bogdanov, Nikolay A; Katukuri, Vamshi M; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu

    2016-11-30

    Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d 5 honeycomb halide α-RuCl 3 . From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d 5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d 5 halides and oxides in general.

  12. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3

    PubMed Central

    Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu

    2016-01-01

    Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d5 halides and oxides in general. PMID:27901091

  13. Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Childers, J. T.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kim, Y.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saimpert, M.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2015-10-01

    Studies of the spin, parity and tensor couplings of the Higgs boson in the H → ZZ^{*} → 4 ℓ, H → WW^{*} → e ν μ ν and H → γ γ decay processes at the LHC are presented. The investigations are based on 25fb^{-1} of pp collision data collected by the ATLAS experiment at √{s}=7 TeV and √{s}=8 TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers JP=0+, is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at more than 99.9 % confidence level. Using the H → ZZ^{*} → 4 ℓ and H → WW^{*} → e ν μ ν decays, the tensor structure of the interaction between the spin-0 boson and the SM vector bosons is also investigated. The observed distributions of variables sensitive to the non-SM tensor couplings are compatible with the SM predictions and constraints on the non-SM couplings are derived.

  14. 2d affine XY-spin model/4d gauge theory duality and deconfinement

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Poppitz, Erich; Ünsal, Mithat

    2012-04-01

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2)/ {{Z}_2} gauge theories, compactified on a small spatial circle {{R}^{{^{{{1},{2}}}}}} × {{S}^{{^{{1}}}}} , and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on {{R}^{{^{{2}}}}} × {{T}^{{^{{2}}}}} . Similarly, thermal gauge theories of higher rank are dual to new families of "affine" XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU( N c ) gauge theories with n f ≥1 adjoint Weyl fermions.

  15. Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.

    Studies of the spin, parity and tensor couplings of the Higgs boson in the H→ZZ*→4ℓ, H→WW*→eνμν and H→γγ decay processes at the LHC are presented. The investigations are based on 25fb –1 of pp collision data collected by the ATLAS experiment at √s=7 TeV and √s=8 TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers JP=0 +, is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at moremore » than 99.9 % confidence level. Using the H→ZZ*→4ℓ and H→WW*→eνμν decays, the tensor structure of the interaction between the spin-0 boson and the SM vector bosons is also investigated. Thus, the observed distributions of variables sensitive to the non SM tensor couplings are compatible with the SM predictions and constraints on the non SM couplings are derived.« less

  16. Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector

    DOE PAGES

    Aad, G.

    2015-10-06

    Studies of the spin, parity and tensor couplings of the Higgs boson in the H→ZZ*→4ℓ, H→WW*→eνμν and H→γγ decay processes at the LHC are presented. The investigations are based on 25fb –1 of pp collision data collected by the ATLAS experiment at √s=7 TeV and √s=8 TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers JP=0 +, is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at moremore » than 99.9 % confidence level. Using the H→ZZ*→4ℓ and H→WW*→eνμν decays, the tensor structure of the interaction between the spin-0 boson and the SM vector bosons is also investigated. Thus, the observed distributions of variables sensitive to the non SM tensor couplings are compatible with the SM predictions and constraints on the non SM couplings are derived.« less

  17. New Forms of Matter in Optical Lattices

    DTIC Science & Technology

    2016-05-19

    Daley, A. M. Läuchli, and P. Zoller Thermal vs. Entanglement Entropy: A Measurement Protocol for Fermionic Atoms with a Quantum Gas Microscope...J. A. Edge, E. Taylor, S. Zhang, S. Trotzky, J. H. Thywissen Transverse Demagnetization Dynamics of a Unitary Fermi Gas Science 344, 722 (2014...Jiang, J Ignacio Cirac, Peter Zoller, Mikhail D Lukin, "Topologically Protected Quantum State Transfer in a Chiral Spin Liquid , "Nature Communications

  18. Revisiting the direct detection of dark matter in simplified models

    NASA Astrophysics Data System (ADS)

    Li, Tong

    2018-07-01

    In this work we numerically re-examine the loop-induced WIMP-nucleon scattering cross section for the simplified dark matter models and the constraint set by the latest direct detection experiment. We consider a fermion, scalar or vector dark matter component from five simplified models with leptophobic spin-0 mediators coupled only to Standard Model quarks and dark matter particles. The tree-level WIMP-nucleon cross sections in these models are all momentum-suppressed. We calculate the non-suppressed spin-independent WIMP-nucleon cross sections from loop diagrams and investigate the constrained space of dark matter mass and mediator mass by Xenon1T. The constraints from indirect detection and collider search are also discussed.

  19. Muon Spin Relaxation/Rotation Studies of Novel Magnetic Systems

    NASA Astrophysics Data System (ADS)

    Luke, Graeme

    Muon spin relaxation/rotation is a powerful technique for probing magnetism in materials. As a real space probe, the muon complements neutron scattering's reciprocal space sensitivity. Muons probe magnetic fluctuations in a frequency window between inelastic neutron scattering and nuclear magnetic resonance. In this presentation I will describe our recent work on geometrically frustrated materials including the pyrochlore lattice compounds Yb2Ti

  20. Interplay between Magnetism, Superconductivity, and Orbital Order in 5-Pocket Model for Iron-Based Superconductors: Parquet Renormalization Group Study.

    PubMed

    Classen, Laura; Xing, Rui-Qi; Khodas, Maxim; Chubukov, Andrey V

    2017-01-20

    We report the results of the parquet renormalization group (RG) analysis of the phase diagram of the most general 5-pocket model for Fe-based superconductors. We use as an input the orbital structure of excitations near the five pockets made out of d_{xz}, d_{yz}, and d_{xy} orbitals and argue that there are 40 different interactions between low-energy fermions in the orbital basis. All interactions flow under the RG, as one progressively integrates out fermions with higher energies. We find that the low-energy behavior is amazingly simple, despite the large number of interactions. Namely, at low energies the full 5-pocket model effectively reduces either to a 3-pocket model made of one d_{xy} hole pocket and two electron pockets or a 4-pocket model made of two d_{xz}/d_{yz} hole pockets and two electron pockets. The leading instability in the effective 4-pocket model is a spontaneous orbital (nematic) order, followed by s^{+-} superconductivity. In the effective 3-pocket model, orbital fluctuations are weaker, and the system develops either s^{+-} superconductivity or a stripe spin-density wave. In the latter case, nematicity is induced by composite spin fluctuations.

  1. Quasiclassical theory of disordered multi-channel Majorana quantum wires

    NASA Astrophysics Data System (ADS)

    Neven, Patrick; Bagrets, Dmitry; Altland, Alexander

    2013-05-01

    Multi-channel spin-orbit quantum wires, when subjected to a magnetic field and proximity coupled to an s-wave superconductor, may support Majorana states. We study what happens to these systems in the presence of disorder. Inspired by the widely established theoretical methods of mesoscopic superconductivity, we develop á la Eilenberger a quasiclassical approach to topological nanowires valid in the limit of strong spin-orbit coupling. We find that the ‘Majorana number’ {\\cal M} , distinguishing between the state with Majorana fermions (symmetry class B) and no Majorana fermions (class D), is given by the product of two Pfaffians of gapped quasiclassical Green's functions fixed by the right and left terminals connected to the wire. A numerical solution of the Eilenberger equations reveals that the class D disordered quantum wires are prone to the formation of the zero-energy anomaly (class D impurity spectral peak) in the local density of states that shares the key features of the Majorana peak. In this way, we confirm the robustness of our previous conclusions (Bagrets and Altland 2012 Phys. Rev. Lett. 109 227005) on a more restrictive system setup. Generally speaking, we find that the quasiclassical approach provides a highly efficient means to address disordered class D superconductors both in the presence and in the absence of topological structures.

  2. Competition of density waves and quantum multicritical behavior in Dirac materials from functional renormalization

    NASA Astrophysics Data System (ADS)

    Classen, Laura; Herbut, Igor F.; Janssen, Lukas; Scherer, Michael M.

    2016-03-01

    We study the competition of spin- and charge-density waves and their quantum multicritical behavior for the semimetal-insulator transitions of low-dimensional Dirac fermions. Employing the effective Gross-Neveu-Yukawa theory with two order parameters as a model for graphene and a growing number of other two-dimensional Dirac materials allows us to describe the physics near the multicritical point at which the semimetallic and the spin- and charge-density-wave phases meet. With the help of a functional renormalization group approach, we are able to reveal a complex structure of fixed points, the stability properties of which decisively depend on the number of Dirac fermions Nf. We give estimates for the critical exponents and observe crucial quantitative corrections as compared to the previous first-order ɛ expansion. For small Nf, the universal behavior near the multicritical point is determined by the chiral Heisenberg universality class supplemented by a decoupled, purely bosonic, Ising sector. At large Nf, a novel fixed point with nontrivial couplings between all sectors becomes stable. At intermediate Nf, including the graphene case (Nf=2 ), no stable and physically admissible fixed point exists. Graphene's phase diagram in the vicinity of the intersection between the semimetal, antiferromagnetic, and staggered density phases should consequently be governed by a triple point exhibiting first-order transitions.

  3. Quantum Hall effect in dual gated BiSbTeSe2 topological insulator

    NASA Astrophysics Data System (ADS)

    Chong, Su Kong; Han, Kyu Bum; Nagaoka, Akira; Harmer, Jared; Tsuchikawa, Ryuichi; Sparks, Taylor D.; Deshpande, Vikram V.

    The discovery of topological insulators (TIs) has expanded the family of Dirac materials and enables the probing of exotic matter such as Majorana fermions and magnetic monopoles. Different from conventional 2D electron gas, 3D TIs exhibit a gapped insulating bulk and gapless topological surface states as a result of the strong spin-orbit coupling. BiSbTeSe2 is also known to be a 3D TI with a large intrinsic bulk gap of about 0.3 eV and a single Dirac cone surface state. The highly bulk insulating BiSbTeSe2 permits surface dominated conduction, which is an ideal system for the study of quantum Hall effect (QHE). Due to the spin-momentum locking, the Dirac fermions at the topological surface states have a degeneracy of one. In the QH regime, the Hall conductance is quantized to (n + 1 / 2) e2 / h , where n is an integer and the factor of half is related to Berry curvature. In this work, we study the QHE 3D TI using a dual gated BiSbTeSe2 device. By tuning the chemical potentials on top and bottom surfaces, integer QHE with Landau filling factors, ν = 0, +/-1, and +/-2 are observed.

  4. Majorana-Fermions, Their-Own Antiparticles, Following Non-Abelian Anyon/Semion Quantum-Statistics : Solid-State MEETS Particle Physics Neutrinos: Spin-Orbit-Coupled Superconductors and/or Superfluids to Neutrinos; Insulator-Heisenberg-Antiferromagnet MnF2 Majorana-Siegel-Birgenau-Keimer - Effect

    NASA Astrophysics Data System (ADS)

    Majorana-Fermi-Segre, E.-L.; Antonoff-Overhauser-Salam, Marvin-Albert-Abdus; Siegel, Edward Carl-Ludwig

    2013-03-01

    Majorana-fermions, being their own antiparticles, following non-Abelian anyon/semion quantum-statistics: in Zhang et.al.-...-Detwiler et.al.-...``Worlds-in-Collision'': solid-state/condensed-matter - physics spin-orbit - coupled topological-excitations in superconductors and/or superfluids -to- particle-physics neutrinos: ``When `Worlds' Collide'', analysis via Siegel[Schrodinger Centenary Symp., Imperial College, London (1987); in The Copenhagen-Interpretation Fifty-Years After the Como-Lecture, Symp. Fdns. Mod.-Phys., Joensu(1987); Symp. on Fractals, MRS Fall-Mtg., Boston(1989)-5-papers!!!] ``complex quantum-statistics in fractal-dimensions'', which explains hidden-dark-matter(HDM) IN Siegel ``Sephirot'' scenario for The Creation, uses Takagi[Prog.Theo.Phys. Suppl.88,1(86)]-Ooguri[PR D33,357(85)] - Picard-Lefschetz-Arnol'd-Vassil'ev[``Principia Read After 300 Years'', Not.AMS(1989); quantum-theory caveats comment-letters(1990); Applied Picard-Lefschetz Theory, AMS(2006)] - theorem quantum-statistics, which via Euler- formula becomes which via de Moivre- -formula further becomes which on unit-circle is only real for only, i.e, for, versus complex with imaginary-damping denominator for, i.e, for, such that Fermi-Dirac quantum-statistics for

  5. Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Kim, Jimin; Baik, Seung Su; Jung, Sung Won; Sohn, Yeongsup; Ryu, Sae Hee; Choi, Hyoung Joon; Yang, Bohm-Jung; Kim, Keun Su

    2017-12-01

    We report the realization of novel symmetry-protected Dirac fermions in a surface-doped two-dimensional (2D) semiconductor, black phosphorus. The widely tunable band gap of black phosphorus by the surface Stark effect is employed to achieve a surprisingly large band inversion up to ˜0.6 eV . High-resolution angle-resolved photoemission spectra directly reveal the pair creation of Dirac points and their movement along the axis of the glide-mirror symmetry. Unlike graphene, the Dirac point of black phosphorus is stable, as protected by space-time inversion symmetry, even in the presence of spin-orbit coupling. Our results establish black phosphorus in the inverted regime as a simple model system of 2D symmetry-protected (topological) Dirac semimetals, offering an unprecedented opportunity for the discovery of 2D Weyl semimetals.

  6. Thermodynamic functions of Fermi gas with quadruple BCS-type binding potential

    NASA Astrophysics Data System (ADS)

    Tarasewicz, P.; Maćkowiak, J.

    2000-01-01

    A gas of spin 1/2 fermions with an interaction V+ W=-2 γ∑ kχ( k) bk* bk+-| Λ| -1g∑ k, k‧ χ( k) χ( k‧) bk* bk* bk‧ b- k‧ , where bk= ak+ ak- and akσ , ak‧ σ‧ satisfy Fermi anticommutation relations, is investigated by the method of Mühlschlegel. W+ V is nonzero only within a thin layer of single-fermion energies around the chemical potential μ and χ( k) denotes the characteristic function of the corresponding range of momenta. Two cases are studied: 1 0γ=0, 2 0γ=0.10025 eV. In the first case, the system exhibits a first-order transition, in the second the transition is second order. The temperature dependence of the system's thermodynamic functions is examined and compared with that of the BCS model.

  7. Analytical pair correlations in ideal quantum gases: temperature-dependent bunching and antibunching.

    PubMed

    Bosse, J; Pathak, K N; Singh, G S

    2011-10-01

    The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T

  8. Strain manipulation of Majorana fermions in graphene armchair nanoribbons

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Hua; Castro, Eduardo V.; Lin, Hai-Qing

    2018-01-01

    Graphene nanoribbons with armchair edges are studied for externally enhanced but realistic parameter values: enhanced Rashba spin-orbit coupling due to proximity to a transition-metal dichalcogenide, such as WS2, and enhanced Zeeman field due to exchange coupling with a magnetic insulator, such as EuS under an applied magnetic field. The presence of s -wave superconductivity, induced either by proximity or by decoration with alkali-metal atoms, such as Ca or Li, leads to a topological superconducting phase with Majorana end modes. The topological phase is highly sensitive to the application of uniaxial strain with a transition to the trivial state above a critical strain well below 0.1%. This sensitivity allows for real-space manipulation of Majorana fermions by applying nonuniform strain profiles. Similar manipulation is also possible by applying an inhomogeneous Zeeman field or chemical potential.

  9. Topological Superfluid and Majorana Zero Modes in Synthetic Dimension

    PubMed Central

    Yan, Zhongbo; Wan, Shaolong; Wang, Zhong

    2015-01-01

    Recently it has been shown that multicomponent spin-orbit-coupled fermions in one-dimensional optical lattices can be viewed as spinless fermions moving in two-dimensional synthetic lattices with synthetic magnetic flux. The quantum Hall edge states in these systems have been observed in recent experiments. In this paper we study the effect of an attractive Hubbard interaction. Since the Hubbard interaction is long-range in the synthetic dimension, it is able to efficiently induce Cooper pairing between the counterpropagating chiral edge states. The topological class of the resultant one-dimensional superfluid is determined by the parity (even/odd) of the Chern number in the two-dimensional synthetic lattice. We also show the presence of a chiral symmetry in our model, which implies Z classification and the robustness of multiple zero modes when this symmetry is unbroken. PMID:26515084

  10. Quantum computational universality of the Cai-Miyake-Duer-Briegel two-dimensional quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Tzu-Chieh; C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840; Raussendorf, Robert

    2011-10-15

    Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Duer, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain canmore » be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Duer-Briegel state.« less

  11. Spin liquid state in the 3D frustrated antiferromagnet PbCuTe 2 O 6 : NMR and muon spin relaxation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khuntia, P.; Bert, F.; Mendels, P.

    In this study, PbCuTe 2O 6 is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu 2+ ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointingmore » to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T 1 NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.« less

  12. Spin liquid state in the 3D frustrated antiferromagnet PbCuTe 2 O 6 : NMR and muon spin relaxation studies

    DOE PAGES

    Khuntia, P.; Bert, F.; Mendels, P.; ...

    2016-03-11

    In this study, PbCuTe 2O 6 is a rare example of a spin liquid candidate featuring a three-dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction that generates a hyperkagome network of Cu 2+ ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigations by NMR and muon spin relaxation down to 20 mK, we provide robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointingmore » to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T 1 NMR relaxation rate at low T point to a nonsinglet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.« less

  13. Single-copy entanglement in critical quantum spin chains

    NASA Astrophysics Data System (ADS)

    Eisert, J.; Cramer, M.

    2005-10-01

    We consider the single-copy entanglement as a quantity to assess quantum correlations in the ground state in quantum many-body systems. We show for a large class of models that already on the level of single specimens of spin chains, criticality is accompanied with the possibility of distilling a maximally entangled state of arbitrary dimension from a sufficiently large block deterministically, with local operations and classical communication. These analytical results—which refine previous results on the divergence of block entropy as the rate at which maximally entangled pairs can be distilled from many identically prepared chains—are made quantitative for general isotropic translationally invariant spin chains that can be mapped onto a quasifree fermionic system, and for the anisotropic XY model. For the XX model, we provide the asymptotic scaling of ˜(1/6)log2(L) , and contrast it with the block entropy.

  14. Imaging the Formation of High-Energy Dispersion Anomalies in the Actinide UCoGa5

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Durakiewicz, Tomasz; Zhu, Jian-Xin; Joyce, John J.; Sarrao, John L.; Graf, Matthias J.

    2012-10-01

    We use angle-resolved photoemission spectroscopy to image the emergence of substantial dispersion and spectral-weight anomalies in the electronic renormalization of the actinide compound UCoGa5 that was presumed to belong to a conventional Fermi-liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low (approximately 130 meV) and high (approximately 1 eV) binding energies below the Fermi energy, ruling out any significant contribution of phonons. We perform numerical calculations to demonstrate that the anomalies are adequately described by coupling between itinerant fermions and spin fluctuations arising from the particle-hole continuum of the spin-orbit-split 5f states of uranium. These anomalies resemble the “waterfall” phenomenon of the high-temperature copper-oxide superconductors, suggesting that spin fluctuations are a generic route toward multiform electronic phases in correlated materials as different as high-temperature superconductors and actinides.

  15. Nodal Topological Phases in s-wave Superfluid of Ultracold Fermionic Gases

    NASA Astrophysics Data System (ADS)

    Huang, Bei-Bing; Yang, Xiao-Sen

    2018-02-01

    The gapless Weyl superfluid has been widely studied in the three-dimensional ultracold fermionic superfluid. In contrast to Weyl superfluid, there exists another kind of gapless superfluid with topologically protected nodal lines, which can be regarded as the superfluid counterpart of nodal line semimetal in the condensed matter physics, just as Weyl superfluid with Weyl semimetal. In this paper we study the ground states of the cold fermionic gases in cubic optical lattices with one-dimensional spin-orbit coupling and transverse Zeeman field and map out the topological phase diagram of the system. We demonstrate that in addition to a fully gapped topologically trivial phase, some different nodal line superfluid phases appear when the Zeeman field is adjusted. The presence of topologically stable nodal lines implies the dispersionless zero-energy flat band in a finite region of the surface Brillouin zone. Experimentally these nodal line superfluid states can be detected via the momentum-resolved radio-frequency spectroscopy. The nodal line topological superfluid provide fertile grounds for exploring exotic quantum matters in the context of ultracold atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11547047 and 11504143

  16. Lipid-Mediated Clusters of Guest Molecules in Model Membranes and Their Dissolving in the Presence of Lipid Rafts.

    PubMed

    Kardash, Maria E; Dzuba, Sergei A

    2017-05-25

    The clustering of molecules is an important feature of plasma membrane organization. It is challenging to develop methods for quantifying membrane heterogeneities because of their transient nature and small size. Here, we obtained evidence that transient membrane heterogeneities can be frozen at cryogenic temperatures which allows the application of solid-state experimental techniques sensitive to the nanoscale distance range. We employed the pulsed version of electron paramagnetic resonance (EPR) spectroscopy, the electron spin echo (ESE) technique, for spin-labeled molecules in multilamellar lipid bilayers. ESE decays were refined for pure contribution of spin-spin magnetic dipole-dipolar interaction between the labels; these interactions manifest themselves at a nanometer distance range. The bilayers were prepared from different types of saturated and unsaturated lipids and cholesterol (Chol); in all cases, a small amount of guest spin-labeled substances 5-doxyl-stearic-acid (5-DSA) or 3β-doxyl-5α-cholestane (DChl) was added. The local concentration found of 5-DSA and DChl molecules was remarkably higher than the mean concentration in the bilayer, evidencing the formation of lipid-mediated clusters of these molecules. To our knowledge, formation of nanoscale clusters of guest amphiphilic molecules in biological membranes is a new phenomenon suggested only recently. Two-dimensional 5-DSA molecular clusters were found, whereas flat DChl molecules were found to be clustered into stacked one-dimensional structures. These clusters disappear when the Chol content is varied between the boundaries known for lipid raft formation at room temperatures. The room temperature EPR evidenced entrapping of DChl molecules in the rafts.

  17. Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2

    PubMed Central

    Liu, Jinyu; Hu, Jin; Cao, Huibo; Zhu, Yanglin; Chuang, Alyssa; Graf, D.; Adams, D. J.; Radmanesh, S. M. A.; Spinu, L.; Chiorescu, I.; Mao, Zhiqiang

    2016-01-01

    Layered compounds AMnBi2 (A = Ca, Sr, Ba, or rare earth element) have been established as Dirac materials. Dirac electrons generated by the two-dimensional (2D) Bi square net in these materials are normally massive due to the presence of a spin-orbital coupling (SOC) induced gap at Dirac nodes. Here we report that the Sb square net in an isostructural compound BaMnSb2 can host nearly massless Dirac fermions. We observed strong Shubnikov-de Haas (SdH) oscillations in this material. From the analyses of the SdH oscillations, we find key signatures of Dirac fermions, including light effective mass (~0.052m0; m0, mass of free electron), high quantum mobility (1280 cm2V−1S−1) and a π Berry phase accumulated along cyclotron orbit. Compared with AMnBi2, BaMnSb2 also exhibits much more significant quasi two-dimensional (2D) electronic structure, with the out-of-plane transport showing nonmetallic conduction below 120 K and the ratio of the out-of-plane and in-plane resistivity reaching ~670. Additionally, BaMnSb2 also exhibits a G-type antiferromagnetic order below 283 K. The combination of nearly massless Dirac fermions on quasi-2D planes with a magnetic order makes BaMnSb2 an intriguing platform for seeking novel exotic phenomena of massless Dirac electrons. PMID:27466151

  18. Brst-Bfv Quantization and the Schwinger Action Principle

    NASA Astrophysics Data System (ADS)

    Garcia, J. Antonio; Vergara, J. David; Urrutia, Luis F.

    We introduce an operator version of the BRST-BFV effective action for arbitrary systems with first class constraints. Using the Schwinger action principle we calculate the propagators corresponding to: (i) the parametrized nonrelativistic free particle, (ii) the relativistic free particle and (iii) the spinning relativistic free particle. Our calculation correctly imposes the BRST invariance at the end points. The precise use of the additional boundary terms required in the description of fermionic variables is incorporated.

  19. Supersymmetric preons and the standard model

    NASA Astrophysics Data System (ADS)

    Raitio, Risto

    2018-06-01

    The experimental fact that standard model superpartners have not been observed compels one to consider an alternative implementation for supersymmetry. The basic supermultiplet proposed here consists of a photon and a charged spin 1/2 preon field, and their superpartners. These fields are shown to yield the standard model fermions, Higgs fields and gauge symmetries. Supersymmetry is defined for unbound preons only. Quantum group SLq (2) representations are introduced to classify topologically scalars, preons, quarks and leptons.

  20. Pseudopotential Method for Higher Partial Wave Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Zbigniew; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, 02-668 Warsaw; Calarco, Tommaso

    2006-01-13

    We present a zero-range pseudopotential applicable for all partial wave interactions between neutral atoms. For p and d waves, we derive effective pseudopotentials, which are useful for problems involving anisotropic external potentials. Finally, we consider two nontrivial applications of the p-wave pseudopotential: we solve analytically the problem of two interacting spin-polarized fermions confined in a harmonic trap, and we analyze the scattering of p-wave interacting particles in a quasi-two-dimensional system.

  1. Higher-order neural networks, Polyà polynomials, and Fermi cluster diagrams

    NASA Astrophysics Data System (ADS)

    Kürten, K. E.; Clark, J. W.

    2003-09-01

    The problem of controlling higher-order interactions in neural networks is addressed with techniques commonly applied in the cluster analysis of quantum many-particle systems. For multineuron synaptic weights chosen according to a straightforward extension of the standard Hebbian learning rule, we show that higher-order contributions to the stimulus felt by a given neuron can be readily evaluated via Polyà’s combinatoric group-theoretical approach or equivalently by exploiting a precise formal analogy with fermion diagrammatics.

  2. Dissipationless conductance in a topological coaxial cable

    NASA Astrophysics Data System (ADS)

    Schuster, Thomas; Iadecola, Thomas; Chamon, Claudio; Jackiw, Roman; Pi, So-Young

    2016-09-01

    We present a dynamical mechanism leading to dissipationless conductance, whose quantized value is controllable in a (3+1)-dimensional electronic system. The mechanism is exemplified by a theory of Weyl fermions coupled to a Higgs field, also known as an axion insulator. We show that the insertion of an axial gauge flux can induce vortex lines in the Higgs field, similar to the development of vortices in a superconductor upon the insertion of magnetic flux. We further show that the necessary axial gauge flux can be generated using Rashba spin-orbit coupling or a magnetic field. Vortex lines in the Higgs field are known to bind chiral fermionic modes, each of which serves as a one-way channel for electric charge with conductance e2/h . Combining these elements, we present a physical picture, the "topological coaxial cable," illustrating how the value of the quantized conductance could be controlled in such an axion insulator.

  3. Topological superfluids with finite-momentum pairing and Majorana fermions.

    PubMed

    Qu, Chunlei; Zheng, Zhen; Gong, Ming; Xu, Yong; Mao, Li; Zou, Xubo; Guo, Guangcan; Zhang, Chuanwei

    2013-01-01

    Majorana fermions (MFs), quantum particles that are their own antiparticles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently MFs have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing with zero total momentum. On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell (FF) Larkin-Ovchinnikov (LO) states, were widely studied in many branches of physics. However, whether FF and LO superconductors can support MFs has not been explored. Here we show that MFs can exist in certain types of gapped FF states, yielding a new quantum matter: topological FF superfluids/superconductors. We demonstrate the existence of such topological FF superfluids and the associated MFs using spin-orbit-coupled degenerate Fermi gases and derive their parameter regions. The implementation of topological FF superconductors in semiconductor/superconductor heterostructures is also discussed.

  4. Discovery of Weyl Fermion Semimetals and Topological Fermi Arc States

    NASA Astrophysics Data System (ADS)

    Hasan, M. Zahid; Xu, Su-Yang; Belopolski, Ilya; Huang, Shin-Ming

    2017-03-01

    Weyl semimetals are conductors whose low-energy bulk excitations are Weyl fermions, whereas their surfaces possess metallic Fermi arc surface states. These Fermi arc surface states are protected by a topological invariant associated with the bulk electronic wave functions of the material. Recently, it has been shown that the TaAs and NbAs classes of materials harbor such a state of topological matter. We review the basic phenomena and experimental history of the discovery of the first Weyl semimetals, starting with the observation of topological Fermi arcs and Weyl nodes in TaAs and NbAs by angle and spin-resolved surface and bulk sensitive photoemission spectroscopy and continuing through magnetotransport measurements reporting the Adler-Bell-Jackiw chiral anomaly. We hope that this article provides a useful introduction to the theory of Weyl semimetals, a summary of recent experimental discoveries, and a guideline to future directions.

  5. Level/rank duality and Chern-Simons-matter theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsin, Po-Shen; Seiberg, Nathan

    We discuss in detail level/rank duality in three-dimensional Chern-Simons theories and various related dualities in three-dimensional Chern-Simons-matter theories. We couple the dual Lagrangians to appropriate background fields (including gauge fields, spin c connections and the metric). The non-trivial maps between the currents and the line operators in the dual theories is accounted for by mixing of these fields. In order for the duality to be valid we must add finite counterterms depending on these background fields. This analysis allows us to resolve a number of puzzles with these dualities, to provide derivations of some of them, and to find newmore » consistency conditions and relations between them. In addition, we find new level/rank dualities of topological Chern-Simons theories and new dualities of Chern-Simons-matter theories, including new boson/boson and fermion/fermion dualities.« less

  6. Few layer epitaxial germanene: a novel two-dimensional Dirac material

    NASA Astrophysics Data System (ADS)

    Dávila, María Eugenia; Le Lay, Guy

    2016-02-01

    Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing.

  7. Few layer epitaxial germanene: a novel two-dimensional Dirac material.

    PubMed

    Dávila, María Eugenia; Le Lay, Guy

    2016-02-10

    Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing.

  8. Few layer epitaxial germanene: a novel two-dimensional Dirac material

    PubMed Central

    Dávila, María Eugenia; Le Lay, Guy

    2016-01-01

    Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy on a gold template, possesses Dirac cones thanks to a reduced interaction. This finding established on synchrotron-radiation-based photoemission, scanning tunneling microscopy imaging and surface electron diffraction places few layer germanene among the rare two-dimensional Dirac materials. Since germanium is currently used in the mainstream Si-based electronics, perspectives of using germanene for scaling down beyond the 5 nm node appear very promising. Other fascinating properties seem at hand, typically the robust quantum spin Hall effect for applications in spintronics and the engineering of Floquet Majorana fermions by light for quantum computing. PMID:26860590

  9. Top partner-resonance interplay in a composite Higgs framework

    NASA Astrophysics Data System (ADS)

    Yepes, Juan; Zerwekh, Alfonso

    2018-04-01

    Guided us by the scenario of weak scale naturalness and the possible existence of exotic resonances, we have explored in a SO(5) Composite Higgs setup the interplay among three matter sectors: elementary, top partners and vector resonances. We parametrize it through explicit interactions of spin-1 SO(4)-resonances, coupled to the SO(5)-invariant fermionic currents and tensors presented in this work. Such invariants are built upon the Standard Model fermion sector as well as top partners sourced by the unbroken SO(4). The mass scales entailed by the top partner and vector resonance sectors will control the low energy effects emerging from our interplaying model. Its phenomenological impact and parameter spaces have been considered via flavor-dijet processes and electric dipole moments bounds. Finally, the strength of the Nambu-Goldstone symmetry breaking and the extra couplings implied by the top partner mass scales are measured in accordance with expected estimations.

  10. Dynamical Electroweak Symmetry Breaking with a Heavy Fermion in Light of Recent LHC Results

    DOE PAGES

    Hung, Pham Q.

    2013-01-01

    The recent announcement of a discovery of a possible Higgs-like particle—its spin and parity are yet to be determined—at the LHC with a mass of 126 GeV necessitates a fresh look at the nature of the electroweak symmetry breaking, in particular if this newly-discovered particle will turn out to have the quantum numbers of a Standard Model Higgs boson. Even if it were a 0 + scalar with the properties expected for a SM Higgs boson, there is still the quintessential hierarchy problem that one has to deal with and which, by itself, suggests a new physics energy scale around 1 TeV.more » This paper presents a minireview of one possible scenario: the formation of a fermion-antifermion condensate coming from a very heavy fourth generation, carrying the quantum number of the SM Higgs field, and thus breaking the electroweak symmetry.« less

  11. Level/rank duality and Chern-Simons-matter theories

    DOE PAGES

    Hsin, Po-Shen; Seiberg, Nathan

    2016-09-16

    We discuss in detail level/rank duality in three-dimensional Chern-Simons theories and various related dualities in three-dimensional Chern-Simons-matter theories. We couple the dual Lagrangians to appropriate background fields (including gauge fields, spin c connections and the metric). The non-trivial maps between the currents and the line operators in the dual theories is accounted for by mixing of these fields. In order for the duality to be valid we must add finite counterterms depending on these background fields. This analysis allows us to resolve a number of puzzles with these dualities, to provide derivations of some of them, and to find newmore » consistency conditions and relations between them. In addition, we find new level/rank dualities of topological Chern-Simons theories and new dualities of Chern-Simons-matter theories, including new boson/boson and fermion/fermion dualities.« less

  12. Transverse spin correlations of the random transverse-field Ising model

    NASA Astrophysics Data System (ADS)

    Iglói, Ferenc; Kovács, István A.

    2018-03-01

    The critical behavior of the random transverse-field Ising model in finite-dimensional lattices is governed by infinite disorder fixed points, several properties of which have already been calculated by the use of the strong disorder renormalization-group (SDRG) method. Here we extend these studies and calculate the connected transverse-spin correlation function by a numerical implementation of the SDRG method in d =1 ,2 , and 3 dimensions. At the critical point an algebraic decay of the form ˜r-ηt is found, with a decay exponent being approximately ηt≈2 +2 d . In d =1 the results are related to dimer-dimer correlations in the random antiferromagnetic X X chain and have been tested by numerical calculations using free-fermionic techniques.

  13. Magneto-Optics of Massive Dirac Fermions in Bulk Bi2Se3

    NASA Astrophysics Data System (ADS)

    Orlita, M.; Piot, B. A.; Martinez, G.; Kumar, N. K. Sampath; Faugeras, C.; Potemski, M.; Michel, C.; Hankiewicz, E. M.; Brauner, T.; Drašar, Č.; Schreyeck, S.; Grauer, S.; Brunner, K.; Gould, C.; Brüne, C.; Molenkamp, L. W.

    2015-05-01

    We report on magneto-optical studies of Bi2Se3, a representative member of the 3D topological insulator family. Its electronic states in bulk are shown to be well described by a simple Dirac-type Hamiltonian for massive particles with only two parameters: the fundamental band gap and the band velocity. In a magnetic field, this model implies a unique property—spin splitting equal to twice the cyclotron energy: Es=2 Ec. This explains the extensive magnetotransport studies concluding a fortuitous degeneracy of the spin and orbital split Landau levels in this material. The Es=2 Ec match differentiates the massive Dirac electrons in bulk Bi2Se3 from those in quantum electrodynamics, for which Es=Ec always holds.

  14. Nuclear magnetic resonance studies of pseudospin fluctuations in URu 2 Si 2

    DOE PAGES

    Shirer, K. R.; Haraldsen, J. T.; Dioguardi, A. P.; ...

    2013-09-26

    Here, we report 29Si nuclear magnetic resonance measurements in single crystals and aligned powders of URu 2Si 2 in the hidden order and paramagnetic phases. The spin-lattice relaxation data reveal evidence of pseudospin fluctuations of U moments in the paramagnetic phase. We find evidence for partial suppression of the density of states below 30 K and analyze the data in terms of a two-component spin-fermion model. We propose that this behavior is a realization of a pseudogap between the hidden-order transition T HO and 30 K. This behavior is then compared to other materials that demonstrate precursor fluctuations in amore » pseudogap regime above a ground state with long-range order.« less

  15. Far-from-Equilibrium Field Theory of Many-Body Quantum Spin Systems: Prethermalization and Relaxation of Spin Spiral States in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Babadi, Mehrtash; Demler, Eugene; Knap, Michael

    2015-10-01

    We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean field for describing the real-time quantum dynamics of generic spin-1 /2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1 /N expansion of the resulting two-particle-irreducible effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014), 10.1103/PhysRevLett.113.147205].

  16. High-Nuclearity Magnetic Clusters: Generalized Spin Hamiltonian and Its Use for the Calculation of the Energy Levels, Bulk Magnetic Properties, and Inelastic Neutron Scattering Spectra.

    PubMed

    Borrás-Almenar, J. J.; Clemente-Juan, J. M.; Coronado, E.; Tsukerblat, B. S.

    1999-12-27

    A general solution of the exchange problem in the high-nuclearity spin clusters (HNSC) containing arbitrary number of exchange-coupled centers and topology is developed. All constituent magnetic centers are supposed to possess well-isolated orbitally non-degenerate ground states so that the isotropic Heisenberg-Dirac-Van Vleck (HDVV) term is the leading part of the exchange spin Hamiltonian. Along with the HDVV term, we consider higher-order isotropic exchange terms (biquadratic exchange), as well as the anisotropic terms (anisotropic and antisymmetric exchange interactions and local single-ion anisotropies). All these terms are expressed as irreducible tensor operators (ITO). This allows us to take full advantage of the spin symmetry of the system. At the same time, we have also benefitted by taking into account the point group symmetry of the cluster, which allows us to work with symmetrized spin functions. This results in an additional reduction of the matrices to diagonalize. The approach developed here is accompanied by an efficient computational procedure that allows us to calculate the bulk magnetic properties (magnetic susceptibility, magnetization, and magnetic specific heat) as well as the spectroscopic properties of HNSC. Special attention is paid to calculate the magnetic excitations observed by inelastic neutron scattering (INS), their intensities, and their Q and temperature dependencies. This spectroscopic technique provides direct access to the energies and wave functions of the different spin states of the cluster; thus, it can be applied to spin clusters in order to obtain deep and detailed information on the nature of the magnetic exchange phenomenon. The general expression for the INS cross-section of spin clusters interacting by all kinds of exchange interactions, including also the single-ion zero-field splitting term, is derived for the first time. A closed-form expression is also derived for the particular case in which only the isotropic exchange interactions are involved. Finally this approach has been used to model the magnetic properties as well as the INS spectra of the polyoxometalate anion [Ni(9)(OH)(3)(H(2)O)(6)(HPO(4))(2)(PW(9)O(34))(3)](16)(-), which contains a central magnetic cluster formed by nine exchange-coupled Ni(II) ions surrounded by diamagnetic phosphotungstate ligands (PW(9)O(34))(9)(-).

  17. Quantum computational universality of the Cai-Miyake-Dür-Briegel two-dimensional quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains

    NASA Astrophysics Data System (ADS)

    Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan

    2011-10-01

    Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Dür, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.052309 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Dür-Briegel state.

  18. Degenerate quantum gases with spin-orbit coupling: a review.

    PubMed

    Zhai, Hui

    2015-02-01

    This review focuses on recent developments in synthetic spin-orbit (SO) coupling in ultracold atomic gases. Two types of SO coupling are discussed. One is Raman process induced coupling between spin and motion along one of the spatial directions and the other is Rashba SO coupling. We emphasize their common features in both single-particle and two-body physics and the consequences of both in many-body physics. For instance, single particle ground state degeneracy leads to novel features of superfluidity and a richer phase diagram; increased low-energy density-of-state enhances interaction effects; the absence of Galilean invariance and spin-momentum locking gives rise to intriguing behaviours of superfluid critical velocity and novel quantum dynamics; and the mixing of two-body singlet and triplet states yields a novel fermion pairing structure and topological superfluids. With these examples, we show that investigating SO coupling in cold atom systems can, enrich our understanding of basic phenomena such as superfluidity, provide a good platform for simulating condensed matter states such as topological superfluids and more importantly, result in novel quantum systems such as SO coupled unitary Fermi gas and high spin quantum gases. Finally we also point out major challenges and some possible future directions.

  19. Magnetic control of valley pseudospin in monolayer WSe 2

    DOE PAGES

    Aivazian, G.; Gong, Zhirui; Jones, Aaron M.; ...

    2015-01-26

    Local energy extrema of the bands in momentum space, or valleys, can endow electrons in solids with pseudo-spin in addition to real spin 1-5. In transition metal dichalcogenides this valley pseudo-spin, like real spin, is associated with a magnetic moment1,6 which underlies the valley-dependent circular dichroism 6 that allows optical generation of valley polarization 7-9, intervalley quantum coherence 10, and the valley Hall effect 11. However, magnetic manipulation of valley pseudospin via this magnetic moment 12-13, analogous to what is possible with real spin, has not been shown before. Here we report observation of the valley Zeeman splitting and magneticmore » tuning of polarization and coherence of the excitonic valley pseudospin, by performing polarization-resolved magneto-photoluminescence on monolayer WSe 2. Our measurements reveal both the atomic orbital and lattice contributions to the valley orbital magnetic moment; demonstrate the deviation of the band edges in the valleys from an exact massive Dirac fermion model; and reveal a striking difference between the magnetic responses of neutral and charged valley excitons which is explained by renormalization of the excitonic spectrum due to strong exchange interactions.« less

  20. FAST TRACK COMMUNICATION Critical exponents of domain walls in the two-dimensional Potts model

    NASA Astrophysics Data System (ADS)

    Dubail, Jérôme; Lykke Jacobsen, Jesper; Saleur, Hubert

    2010-12-01

    We address the geometrical critical behavior of the two-dimensional Q-state Potts model in terms of the spin clusters (i.e. connected domains where the spin takes a constant value). These clusters are different from the usual Fortuin-Kasteleyn clusters, and are separated by domain walls that can cross and branch. We develop a transfer matrix technique enabling the formulation and numerical study of spin clusters even when Q is not an integer. We further identify geometrically the crossing events which give rise to conformal correlation functions. This leads to an infinite series of fundamental critical exponents h_{\\ell _1-\\ell _2,2\\ell _1}, valid for 0 <= Q <= 4, that describe the insertion of ell1 thin and ell2 thick domain walls.

  1. Comprehensive study of the dynamics of a classical Kitaev Spin Liquid

    NASA Astrophysics Data System (ADS)

    Samarakoon, Anjana; Banerjee, Arnab; Batista, Cristian; Kamiya, Yoshitomo; Tennant, Alan; Nagler, Stephen

    Quantum spin liquids (QSLs) have achieved great interest in both theoretical and experimental condensed matter physics due to their remarkable topological properties. Among many different candidates, the Kitaev model on the honeycomb lattice is a 2D prototypical QSL which can be experimentally studied in materials based on iridium or ruthenium.Here we study the spin-1/2 Kitaev model using classical Monte-Carlo and semiclassical spin dynamics of classical spins on a honeycomb lattice. Both real and reciprocal space pictures highlighting the differences and similarities of the results to the linear spin wave theory will be discussed in terms dispersion relations of the pure-Kitaev limit and beyond. Interestingly, this technique could capture some of the salient features of the exact quantum solution of the Kitaev model, such as features resembling the Majorana-like mode comparable to the Kitaev energy, which is spectrally narrowed compared to the quantum result, can be explained by magnon excitations on fluctuating onedimensional manifolds (loops). Hence the difference from the classical limit to the quantum limit can be understood by the fractionalization of a magnon to Majorana fermions. The calculations will be directly compared with our neutron scattering data on α-RuCl3 which is a prime candidate for experimental realization of Kitaev physics.

  2. WKB analysis of relativistic Stern–Gerlach measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, Matthew C., E-mail: m.palmer@physics.usyd.edu.au; Takahashi, Maki, E-mail: m.takahashi@physics.usyd.edu.au; Westman, Hans F., E-mail: hwestman74@gmail.com

    2013-09-15

    Spin is an important quantum degree of freedom in relativistic quantum information theory. This paper provides a first-principles derivation of the observable corresponding to a Stern–Gerlach measurement with relativistic particle velocity. The specific mathematical form of the Stern–Gerlach operator is established using the transformation properties of the electromagnetic field. To confirm that this is indeed the correct operator we provide a detailed analysis of the Stern–Gerlach measurement process. We do this by applying a WKB approximation to the minimally coupled Dirac equation describing an interaction between a massive fermion and an electromagnetic field. Making use of the superposition principle wemore » show that the +1 and −1 spin eigenstates of the proposed spin operator are split into separate packets due to the inhomogeneity of the Stern–Gerlach magnetic field. The operator we obtain is dependent on the momentum between particle and Stern–Gerlach apparatus, and is mathematically distinct from two other commonly used operators. The consequences for quantum tomography are considered. -- Highlights: •Derivation of the spin observable for a relativistic Stern–Gerlach measurement. •Relativistic model of spin measurement using WKB approximation of Dirac equation. •The derived spin operator is distinct from two other commonly used operators. •Consequences for quantum tomography are considered.« less

  3. Quasi-Particle Relaxation and Quantum Femtosecond Magnetism in Non-Equilibrium Phases of Insulating Manganites

    NASA Astrophysics Data System (ADS)

    Perakis, Ilias; Kapetanakis, Myron; Lingos, Panagiotis; Barmparis, George; Patz, A.; Li, T.; Wang, Jigang

    We study the role of spin quantum fluctuations driven by photoelectrons during 100fs photo-excitation of colossal magneto-resistive manganites in anti-ferromagnetic (AFM) charge-ordered insulating states with Jahn-Teller distortions. Our mean-field calculation of composite fermion excitations demonstrates that spin fluctuations reduce the energy gap by quasi-instantaneously deforming the AFM background, thus opening a conductive electronic pathway via FM correlation. We obtain two quasi-particle bands with distinct spin-charge dynamics and dependence on lattice distortions. To connect with fs-resolved spectroscopy experiments, we note the emergence of fs magnetization in the low-temperature magneto-optical signal, with threshold dependence on laser intensity characteristic of a photo-induced phase transition. Simultaneously, the differential reflectivity shows bi-exponential relaxation, with fs component, small at low intensity, exceeding ps component above threshold for fs AFM-to-FM switching. This suggests the emergence of a non-equilibrium metallic FM phase prior to establishment of a new lattice structure, linked with quantum magnetism via spin/charge/lattice couplings for weak magnetic fields.

  4. Probing the antiferromagnetic long-range order with Glauber spin states

    NASA Technical Reports Server (NTRS)

    Cabrera, Guillermo G.

    1994-01-01

    It is well known that the ground state of low-dimensional antiferromagnets deviates from Neel states due to strong quantum fluctuations. Even in the presence of long-range order, those fluctuations produce a substantial reduction of the magnetic moment from its saturation value. Numerical simulations in anisotropic antiferromagnetic chains suggest that quantum fluctuations over Neel order appear in the form of localized reversal of pairs of neighboring spins. In this paper, we propose a coherent state representation for the ground state to describe the above situation. In the one-dimensional case, our wave function corresponds to a two-mode Glauber state, when the Neel state is used as a reference, while the boson fields are associated to coherent flip of spin pairs. The coherence manifests itself through the antiferromagnetic long-range order that survives the action of quantum fluctuations. The present representation is different from the standard zero-point spin wave state, and is asymptotically exact in the limit of strong anisotropy. The fermionic version of the theory, obtained through the Jordan-Wigner transformation, is also investigated.

  5. Quenched dynamics and spin-charge separation in an interacting topological lattice

    NASA Astrophysics Data System (ADS)

    Barbiero, L.; Santos, L.; Goldman, N.

    2018-05-01

    We analyze the static and dynamical properties of a one-dimensional topological lattice, the fermionic Su-Schrieffer-Heeger model, in the presence of on-site interactions. Based on a study of charge and spin correlation functions, we elucidate the nature of the topological edge modes, which, depending on the sign of the interactions, either display particles of opposite spin on opposite edges, or a pair and a holon. This study of correlation functions also highlights the strong entanglement that exists between the opposite edges of the system. This last feature has remarkable consequences upon subjecting the system to a quench, where an instantaneous edge-to-edge signal appears in the correlation functions characterizing the edge modes. Besides, other correlation functions are shown to propagate in the bulk according to the light cone imposed by the Lieb-Robinson bound. Our study reveals how one-dimensional lattices exhibiting entangled topological edge modes allow for a nontrivial correlation spreading, while providing an accessible platform to detect spin-charge separation using state-of-the-art experimental techniques.

  6. In-flight calibration of the spin axis offset of a fluxgate magnetometer with an electron drift instrument

    NASA Astrophysics Data System (ADS)

    Leinweber, H. K.; Russell, C. T.; Torkar, K.

    2012-10-01

    We show that the spin axis offset of a fluxgate magnetometer can be calibrated with an electron drift instrument (EDI) and that the required input time interval is relatively short. For missions such as Cluster or the upcoming Magnetospheric Multiscale (MMS) mission the spin axis offset of a fluxgate magnetometer could be determined on an orbital basis. An improvement of existing methods for finding spin axis offsets via comparison of accurate measurements of the field magnitude is presented, that additionally matches the gains of the two instruments that are being compared. The technique has been applied to EDI data from the Cluster Active Archive and fluxgate magnetometer data processed with calibration files also from the Cluster Active Archive. The method could prove to be valuable for the MMS mission because the four MMS spacecraft will only be inside the interplanetary field (where spin axis offsets can be calculated from Alfvénic fluctuations) for short periods of time and during unusual solar wind conditions.

  7. Perturbative treatment of spin-orbit-coupling within spin-free exact two-component theory using equation-of-motion coupled-cluster methods

    NASA Astrophysics Data System (ADS)

    Cheng, Lan; Wang, Fan; Stanton, John F.; Gauss, Jürgen

    2018-01-01

    A scheme is reported for the perturbative calculation of spin-orbit coupling (SOC) within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e) in combination with the equation-of-motion coupled-cluster singles and doubles method. Benchmark calculations of the spin-orbit splittings in 2Π and 2P radicals show that the accurate inclusion of scalar-relativistic effects using the SFX2C-1e scheme extends the applicability of the perturbative treatment of SOC to molecules that contain heavy elements. The contributions from relaxation of the coupled-cluster amplitudes are shown to be relatively small; significant contributions from correlating the inner-core orbitals are observed in calculations involving third-row and heavier elements. The calculation of term energies for the low-lying electronic states of the PtH radical, which serves to exemplify heavy transition-metal containing systems, further demonstrates the quality that can be achieved with the pragmatic approach presented here.

  8. Quantum Computational Universality of the 2D Cai-Miyake-D"ur-Briegel Quantum State

    NASA Astrophysics Data System (ADS)

    Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan

    2012-02-01

    Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, D"ur, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by constructing single- and two-qubit universal gates. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. Furthermore, a two-dimensional cluster state can be distilled from the Cai-Miyake-D"ur-Briegel state.

  9. Strange metal from local quantum chaos

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Daniel; McGreevy, John

    2018-04-01

    How to make a model of a non-Fermi-liquid metal with efficient current dissipation is a long-standing problem. Results from holographic duality suggest a framework where local critical fermionic degrees of freedom provide both a source of decoherence for the Landau quasiparticle, and a sink for its momentum. This leads us to study a Kondo lattice type model with SYK models in place of the spin impurities. We find evidence for a stable phase at intermediate couplings.

  10. Emergent gauge fields and their nonperturbative effects in correlated electrons

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Seok; Tanaka, Akihiro

    2015-06-01

    The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner’s and Anderson’s physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner’s description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner’s paradigm. In this review paper, we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative dynamics of topological excitations is again seen to be crucial in classifying topologically nontrivial gapped systems. We point to some hidden links between several effective field theories with topological terms, starting with one-dimensional physics, and subsequently finding natural generalizations to higher dimensions.

  11. Emergent Gauge Fields and Their Nonperturbative Effects in Correlated Electrons

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Seok; Tanaka, Akihiro

    The history of modern condensed matter physics may be regarded as the competition and reconciliation between Stoner's and Anderson's physical pictures, where the former is based on momentum-space descriptions focusing on long wave-length fluctuations while the latter is based on real-space physics emphasizing emergent localized excitations. In particular, these two view points compete with each other in various nonperturbative phenomena, which range from the problem of high Tc superconductivity, quantum spin liquids in organic materials and frustrated spin systems, heavy-fermion quantum criticality, metal-insulator transitions in correlated electron systems such as doped silicons and two-dimensional electron systems, the fractional quantum Hall effect, to the recently discussed Fe-based superconductors. An approach to reconcile these competing frameworks is to introduce topologically nontrivial excitations into the Stoner's description, which appear to be localized in either space or time and sometimes both, where scattering between itinerant electrons and topological excitations such as skyrmions, vortices, various forms of instantons, emergent magnetic monopoles, and etc. may catch nonperturbative local physics beyond the Stoner's paradigm. In this review article we discuss nonperturbative effects of topological excitations on dynamics of correlated electrons. First, we focus on the problem of scattering between itinerant fermions and topological excitations in antiferromagnetic doped Mott insulators, expected to be relevant for the pseudogap phase of high Tc cuprates. We propose that nonperturbative effects of topological excitations can be incorporated within the perturbative framework, where an enhanced global symmetry with a topological term plays an essential role. In the second part, we go on to discuss the subject of symmetry protected topological states in a largely similar light. While we do not introduce itinerant fermions here, the nonperturbative dynamics of topological excitations is again seen to be crucial in classifying topologically nontrivial gapped systems. We point to some hidden links between several effective field theories with topological terms, starting with one dimensional physics, and subsequently finding natural generalizations to higher dimensions.

  12. Stochastic theory of non-Markovian open quantum system

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu

    In this thesis, a stochastic approach to solving non-Markovian open quantum system called "non-Markovian quantum state diffusion" (NMQSD) approach is discussed in details. The NMQSD approach can serve as an analytical and numerical tool to study the dynamics of the open quantum systems. We explore three main topics of the NMQSD approach. First, we extend the NMQSD approach to many-body open systems such as two-qubit system and coupled N-cavity system. Based on the exact NMQSD equations and the corresponding master equations, we investigate several interesting non-Markovian features due to the memory effect of the environment such as the entanglement generation in two-qubit system and the coherence and entanglement transfer between cavities. Second, we extend the original NMQSD approach to the case that system is coupled to a fermionic bath or a spin bath. By introducing the anti-commutative Grassmann noise and the fermionic coherent state, we derive a fermionic NMQSD equation and the corresponding master equation. The fermionic NMQSD is illustrated by several examples. In a single qubit dissipative example, we have explicitly demonstrated that the NMQSD approach and the ordinary quantum mechanics give rise to the exactly same results. We also show the difference between fermionic bath and bosonic bath. Third, we combine the bosonic and fermionic NMQSD approach to develop a unified NMQSD approach to study the case that an open system is coupled to a bosonic bath and a fermionic bath simultaneously. For all practical purposes, we develop a set of useful computer programs (NMQSD Toolbox) to implement the NMQSD equation in realistic computations. In particular, we develop an algorithm to calculate the exact O operator involved in the NMQSD equation. The NMQSD toolbox is designed to be user friendly, so it will be especially valuable for a non-expert who has interest to employ the NMQSD equation to solve a practical problem. Apart from the central topics on the NMQSD approach, we also study the environment-assisted error correction (EAEC) scheme. We have proposed two new schemes beyond the original EAEC scheme. Our schemes can be used to recover an unknown entangled initial state for a dephasing channel and recover an arbitrary unknown initial state for a dissipative channel using a generalized quantum measurement.

  13. Approche Kaluza-Klein et Supersymetrie de Jauge

    NASA Astrophysics Data System (ADS)

    Pare, Jean-Pierre

    This thesis presents a non-Abelian gauge-supersymmetric Kaluza-Klein approach for charged spinning particles and strings in a background of gravitational and Yang-Mills fields. In the classical Kaluza-Klein approach, the basic mathematical structure is a principal bundle of which the base manifold is space-time. This principal bundle is endowed with a pseudo-Riemannian metric, invariant under the action of the structural group of the bundle, and a connection. Geodesic equations on the bundle lead to the Maxwell-Lorentz equation for curved space-time and Yang -Mills fields, and to a conservation law of a non-Abelian (bosonic) charge. This conservation law originates from the invariance of the free-particle action on the bundle under the action of the structural group of the bundle (gauge group). Firstly, we generalize this approach for a spinning particle. The spin of the particle is described by Grassmannian variables added to the principal bundle. This supersymmetrization gives rise, in addition to the bosonic non-Abelian charge, a fermionic one. This leads to a search for a supergroup action on the superprincipal bundle which leaves invariant the action of the spinning particle. The invariance of this action would lead to the conservation of a non-Abelian super-charge, generalizing the conservation law obtained for particles without spin. We present Lagrangian and Hamiltonian formulations, both invariant under a super -group action. The equations of motion are derived and discussed. Different terms in these equations are well known in the literature. The invariance of these formulations under a supergroup action leads to a conservation law of a non-Abelian supercharge. The bosonic part of this supercharge corresponds to the non-Abelian (bosonic) charge obtained for a particle without spin. The fermionic part is a non -physical charge. It turns out in the supersymmetric case that this decouples from all other dynamical variables, and hence it does not influence trajectories of spinning particles. It is interesting to mention how this gauge -supersymmetry is introduced in the dynamics. It arises by choosing the unique metric connection on the principal bundle with torsion given by the Chern-Simons 3-form. We then proceed to extend these formulations for spinning strings. We present Lagrangian and Hamiltonian gauge-supersymmetric formulations in a superloop space setting. The same connection corresponding to the Chern -Simons 3-form is used here. Equations of motion are derived and discussed. In the appendix, we discuss the effect of using this connection in a non-Abelian Kaluza-Klein field theory. Using the same connection, we present a non-Abelian Kaluza-Klein approach leading to a zero cosmological constant.

  14. Cosmic space and Pauli exclusion principle in a system of M0-branes

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Saridakis, Emmanuel N.; Bamba, Kazuharu; Sepehri, Alireza; Rahaman, Farook; Ali, Ahmed Farag; Pincak, Richard; Pradhan, Anirudh

    An emergence of cosmic space has been suggested by Padmanabhan [Emergence and expansion of cosmic space as due to the quest for holographic equipartition, arXiv:hep-th/1206.4916] where he proposed that the expansion of the universe originates from a difference between the number of degrees of freedom on a holographic surface and the one in the emerged bulk. Now, a natural question that arises is how this proposal would explain the production of fermions and an emergence of the Pauli exclusion principle during the evolution of the universe? We try to address this issue in a system of M0-branes. In this model, there is a high symmetry and the system is composed of M0-branes to which only scalar fields are attached that represent scalar modes of the graviton. Then, when M0-branes join each other and hence form M1-branes, this symmetry is broken and gauge fields are formed. Therefore, these M1-branes interact with the anti-M1-branes and the force between them leads to a break of a symmetry such as the lower and upper parts of these branes are not the same. In these conditions, gauge fields which are localized on M1-branes and scalars which are attached to them symmetrically, decay to fermions with upper and lower spins which attach to the upper and lower parts of the M1-branes anti-symmetrically. The curvature produced by the coupling of identical spins has the opposite sign of the curvature produced by non-identical spins which lead to an attractive force between anti-parallel spins and a repelling force between parallel spins and hence an emergence of the Pauli exclusion principle. By approaching M1-branes to each other, the difference between curvatures of parallel spins and curvatures of anti-parallel spins increases, which leads to an inequality between the number of degrees of freedom on the surface and the one in the emerged bulk and hence lead to an occurrence of the cosmic expansion. By approaching M1-branes to each other, the square of the energy of the system becomes negative and hence tachyonic states arise. To remove these states, M1-branes compactify, the sign of gravity changes and anti-gravity emerges which leads to the branes moving away from each other. By joining M1-branes, M3-branes are produced which are similar to an initial system that oscillates between compacting and opening branches. Our universe is placed on one of these M3-branes and by changing the difference between the amount of couplings between identical and non-identical spins, it contracts or expands.

  15. Particle-hole symmetry in many-body theories of electron correlation

    NASA Astrophysics Data System (ADS)

    Kats, Daniel; Usvyat, Denis; Manby, Frederick R.

    2018-06-01

    Second-quantised creation and annihilation operators for fermionic particles anticommute, but the same is true for the creation and annihilation operators for holes. This introduces a symmetry into the quantum theory of fermions that is absent for bosons. In ab initio electronic structure theory, it is common to classify methods by the number of electrons for which the method returns exact results: for example Hartree-Fock theory is exact for one-electron systems, whereas coupled-cluster theory with single and double excitations is exact for two-electron systems. Here, we discuss the generalisation: methods based on approximate wavefunctions that are exact for n-particle systems are also exact for n-hole systems. Novel electron correlation methods that attempt to improve on the coupled-cluster framework sometimes retain this property, and sometimes lose it. Here, we argue for retaining particle-hole symmetry as a desirable design criterion of approximate electron correlation methods. Dispensing with it might lead to loss of n-representability of density matrices, and this in turn can lead to spurious long-range behaviour in the correlation energy.

  16. Critical behavior of a quantum chain with four-spin interactions in the presence of longitudinal and transverse magnetic fields.

    PubMed

    Boechat, B; Florencio, J; Saguia, A; de Alcantara Bonfim, O F

    2014-03-01

    We study the ground-state properties of a spin-1/2 model on a chain containing four-spin Ising-like interactions in the presence of both transverse and longitudinal magnetic fields. We use entanglement entropy and finite-size scaling methods to obtain the phase diagrams of the model. Our numerical calculations reveal a rich variety of phases and the existence of multicritical points in the system. We identify phases with both ferromagnetic and antiferromagnetic orderings. We also find periodically modulated orderings formed by a cluster of like spins followed by another cluster of opposite like spins. The quantum phases in the model are found to be separated by either first- or second-order transition lines.

  17. Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory

    NASA Astrophysics Data System (ADS)

    Mueller, Niklas; Venugopalan, Raju

    2018-03-01

    In previous work, we outlined a worldline framework that can be used for systematic computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Towards this end, we first expressed the real part of the fermion determinant in the QCD effective action as a supersymmetric worldline action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. The chiral anomaly, in contrast, arises from the phase of the fermion determinant. Remarkably, the latter too can be expressed as a point particle worldline path integral, which can be employed to derive the anomalous axial vector current. We will show here how Berry's phase can be obtained in a consistent nonrelativistic adiabatic limit of the real part of the fermion determinant. Our work provides a general first principles demonstration that the topology of Berry's phase is distinct from that of the chiral anomaly confirming prior arguments by Fujikawa in specific contexts. This suggests that chiral kinetic treatments of the CME in heavy-ion collisions that include Berry's phase alone are incomplete. We outline the elements of a worldline covariant relativistic chiral kinetic theory that captures the physics of how the chiral current is modified by many-body scattering and topological fluctuations.

  18. Two-point functions in a holographic Kondo model

    NASA Astrophysics Data System (ADS)

    Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M. S.

    2017-03-01

    We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional impurity spin of a gauged SU( N ) interacting with a (1 + 1)-dimensional, large- N , strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU( N )-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O^{\\dagger}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form - i< O >2, which is characteristic of a Kondo resonance.

  19. Optical study of Dirac fermions and related phonon anomalies in the antiferromagnetic compound CaFeAsF

    NASA Astrophysics Data System (ADS)

    Xu, B.; Xiao, H.; Gao, B.; Ma, Y. H.; Mu, G.; Marsik, P.; Sheveleva, E.; Lyzwa, F.; Dai, Y. M.; Lobo, R. P. S. M.; Bernhard, C.

    2018-05-01

    We performed optical studies on CaFeAsF single crystals, a parent compound of the 1111-type iron-based superconductors that undergoes a structural phase transition from tetragonal to orthorhombic at Ts=121 K and a magnetic one to a spin density wave (SDW) state at TN=110 K. In the low-temperature optical conductivity spectrum, after the subtraction of a narrow Drude peak, we observe a pronounced singularity around 300 cm-1 that separates two regions of quasilinear conductivity. We outline that these characteristic absorption features are signatures of Dirac fermions, similar to what was previously reported for the BaFe2As2 system [Z.-G. Chen et al., Phys. Rev. Lett. 119, 096401 (2017), 10.1103/PhysRevLett.119.096401]. In support of this interpretation, we show that for the latter system this singular feature disappears rapidly upon electron and hole doping, as expected if it arises from a van Hove singularity in between two Dirac cones. Finally, we show that one of the infrared-active phonon modes (the Fe-As mode at 250 cm-1) develops a strongly asymmetric line shape in the SDW state and note that this behavior can be explained in terms of a strong coupling with the Dirac fermions.

  20. Inhomogeneous field theory inside the arctic circle

    NASA Astrophysics Data System (ADS)

    Allegra, Nicolas; Dubail, Jérôme; Stéphan, Jean-Marie; Viti, Jacopo

    2016-05-01

    Motivated by quantum quenches in spin chains, a one-dimensional toy-model of fermionic particles evolving in imaginary-time from a domain-wall initial state is solved. The main interest of this toy-model is that it exhibits the arctic circle phenomenon, namely a spatial phase separation between a critically fluctuating region and a frozen region. Large-scale correlations inside the critical region are expressed in terms of correlators in a (euclidean) two-dimensional massless Dirac field theory. It is observed that this theory is inhomogenous: the metric is position-dependent, so it is in fact a Dirac theory in curved space. The technique used to solve the toy-model is then extended to deal with the transfer matrices of other models: dimers on the honeycomb and square lattice, and the six-vertex model at the free fermion point (Δ =0 ). In all cases, explicit expressions are given for the long-range correlations in the critical region, as well as for the underlying Dirac action. Although the setup developed here is heavily based on fermionic observables, the results can be translated into the language of height configurations and of the gaussian free field, via bosonization. Correlations close to the phase boundary and the generic appearance of Airy processes in all these models are also briefly revisited in the appendix.

Top