Sample records for fermionic lithium gas

  1. Site-Resolved Imaging with the Fermi Gas Microscope

    NASA Astrophysics Data System (ADS)

    Huber, Florian Gerhard

    The recent development of quantum gas microscopy for bosonic rubidium atoms trapped in optical lattices has made it possible to study local structure and correlations in quantum many-body systems. Quantum gas microscopes are a perfect platform to perform quantum simulation of condensed matter systems, offering unprecedented control over both internal and external degrees of freedom at a single-site level. In this thesis, this technique is extended to fermionic particles, paving the way to fermionic quantum simulation, which emulate electrons in real solids. Our implementation uses lithium, the lightest atom amenable to laser cooling. The absolute timescales of dynamics in optical lattices are inversely proportional to the mass. Therefore, experiments are more than six times faster than for the only other fermionic alkali atom, potassium, and more then fourteen times faster than an equivalent rubidium experiment. Scattering and collecting a sufficient number of photons with our high-resolution imaging system requires continuous cooling of the atoms during the fluorescence imaging. The lack of a resolved excited hyperfine structure on the D2 line of lithium prevents efficient conventional sub-Doppler cooling. To address this challenge we have applied a Raman sideband cooling scheme and achieved the first site-resolved imaging of ultracold fermions in an optical lattice.

  2. Experiments with Ultracold Quantum-degenerate Fermionic Lithium Atoms

    NASA Technical Reports Server (NTRS)

    Ketterle, Wolfgang

    2003-01-01

    Experimental methods of laser and evaporative cooling, used in the production of atomic Bose-Einstein condensates have recently been extended to realize quantum degeneracy in trapped Fermi gases. Fermi gases are a new rich system to explore the implications of Pauli exclusion on scattering properties of the system, and ultimately fermionic superfluidity. We have produced a new macroscopic quantum system, in which a degenerate Li-6 Fermi gas coexists with a large and stable Na-23 BEC. This was accomplished using inter-species sympathetic cooling of fermionic 6Li in a thermal bath of bosonic Na-23. We have achieved high numbers of both fermions (less than 10(exp 5) and bosons (less than 10(exp 6), and Li-6 quantum degeneracy corresponding to one half of the Fermi temperature. This is the first time that a Fermi sea was produced with a condensate as a "refrigerator".

  3. Fermi Gas Microscope

    NASA Astrophysics Data System (ADS)

    Setiawan, Widagdo

    Recent advances in using microscopes in ultracold atom experiment have allowed experimenters for the first time to directly observe and manipulate individual atoms in individual lattice sites. This technique enhances our capability to simulate strongly correlated systems such as Mott insulator and high temperature superconductivity. Currently, all ultracold atom experiments with high resolution imaging capability use bosonic atoms. In this thesis, I present our progress towards creating the fermionic version of the microscope experiment which is more suitable for simulating real condensed matter systems. Lithium is ideal due to the existence of both fermionic and bosonic isotopes, its light mass, which means faster experiment time scales that suppresses many sources of technical noise, and also due to the existence of a broad Feshbach resonance, which can be used to tune the inter-particle interaction strength over a wide range from attractive, non-interacting, and repulsive interactions. A high numerical aperture objective will be used to image and manipulate the atoms with single lattice site resolution. This setup should allow us to implement the Hubbard hamiltonian which could describe interesting quantum phases such as antiferromagnetism, d-wave superfluidity, and high temperature superconductivity. I will also discuss the feasibility of the Raman sideband cooling method for cooling the atoms during the imaging process. We have also developed a new electronic control system to control the sequence of the experiment. This electronic system is very scalable in order to keep up with the increasing complexity of atomic physics experiments. Furthermore, the system is also designed to be more precise in order to keep up with the faster time scale of lithium experiment.

  4. Fluctuations of a q-deformed fermion gas

    NASA Astrophysics Data System (ADS)

    Zeng, Qijun; Ge, Jing; Luo, Yongsong

    2018-05-01

    The theory of q-deformed fermions is one of the theories of q-deformed oscillators. Within the framework of this theory and the traditional fluctuation theory, we investigate fluctuations of q-deformed fermion gas and obtain the expressions of fluctuations of the internal energy U, the particle number N and the correlation of fluctuations of the two physical quantities above. Further numerical calculation reveals that fluctuations of such a system have some interesting and particular features. We consider that this work may provide much insight into the theory of q fermions, and may also be helpful for the theory of q-deformed oscillators.

  5. Quantum Gas Microscope for Fermionic Atoms

    NASA Astrophysics Data System (ADS)

    Okan, Melih; Cheuk, Lawrence; Nichols, Matthew; Lawrence, Katherine; Zhang, Hao; Zwierlein, Martin

    2016-05-01

    Strongly interacting fermions define the properties of complex matter throughout nature, from atomic nuclei and modern solid state materials to neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. In this poster we demonstrate the realization of a quantum gas microscope for fermionic 40 K atoms trapped in an optical lattice and the recent experiments which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high- resolution optics to simultaneously cool and image individual atoms with single lattice site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site resolved imaging of fermions enables the direct observation of magnetic order, time resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement. NSF, AFOSR-PECASE, AFOSR-MURI on Exotic Phases of Matter, ARO-MURI on Atomtronics, ONR, a Grant from the Army Research Office with funding from the DARPA OLE program, and the David and Lucile Packard Foundation.

  6. Relaxation of Fermionic Excitations in a Strongly Attractive Fermi Gas in an Optical Lattice

    DTIC Science & Technology

    2011-09-27

    decreases both with temperature and deviation of the fermion density from half filling. We show that quasiparticle and phase degrees of freedom are...the interaction strength to the bandwidth of the system. Thus, at strong coupling, the fermionic quasiparticles and the motion of the bosonic molecules

  7. Liquid-gas phase transitions and C K symmetry in quantum field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for the analytic determination of both the critical line and the disorder lines. Depending on the values of the parameters, either zero, one, or two disorder lines are found. Our numerical results for relativistic fermions give a very similar picture.« less

  8. Liquid-gas phase transitions and C K symmetry in quantum field theories

    DOE PAGES

    Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal

    2017-04-04

    A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for the analytic determination of both the critical line and the disorder lines. Depending on the values of the parameters, either zero, one, or two disorder lines are found. Our numerical results for relativistic fermions give a very similar picture.« less

  9. Generalized Stefan-Boltzmann Law

    NASA Astrophysics Data System (ADS)

    Montambaux, Gilles

    2018-03-01

    We reconsider the thermodynamic derivation by L. Boltzmann of the Stefan law and we generalize it for various different physical systems whose chemical potential vanishes. Being only based on classical arguments, therefore independent of the quantum statistics, this derivation applies as well to the saturated Bose gas in various geometries as to "compensated" Fermi gas near a neutrality point, such as a gas of Weyl Fermions. It unifies in the same framework the thermodynamics of many different bosonic or fermionic non-interacting gases which were until now described in completely different contexts.

  10. Fermion superfluid with hybridized s- and p-wave pairings

    NASA Astrophysics Data System (ADS)

    Zhou, LiHong; Yi, Wei; Cui, XiaoLing

    2017-12-01

    Ever since the pioneering work of Bardeen, Cooper and Schrieffer in the 1950s, exploring novel pairing mechanisms for fermion superfluids has become one of the central tasks in modern physics. Here, we investigate a new type of fermion superfluid with hybridized s- and p-wave pairings in an ultracold spin-1/2 Fermi gas. Its occurrence is facilitated by the co-existence of comparable s- and p-wave interactions, which is realizable in a two-component 40K Fermi gas with close-by s- and p-wave Feshbach resonances. The hybridized superfluid state is stable over a considerable parameter region on the phase diagram, and can lead to intriguing patterns of spin densities and pairing fields in momentum space. In particular, it can induce a phase-locked p-wave pairing in the fermion species that has no p-wave interactions. The hybridized nature of this novel superfluid can also be confirmed by measuring the s- and p-wave contacts, which can be extracted from the high-momentum tail of the momentum distribution of each spin component. These results enrich our knowledge of pairing superfluidity in Fermi systems, and open the avenue for achieving novel fermion superfluids with multiple partial-wave scatterings in cold atomic gases.

  11. Stability of the two-dimensional Fermi polaron

    NASA Astrophysics Data System (ADS)

    Griesemer, Marcel; Linden, Ulrich

    2018-02-01

    A system composed of an ideal gas of N fermions interacting with an impurity particle in two space dimensions is considered. The interaction between impurity and fermions is given in terms of two-body point interactions whose strength is determined by the two-body binding energy, which is a free parameter of the model. If the mass of the impurity is 1.225 times larger than the mass of a fermion, it is shown that the energy is bounded below uniformly in the number N of fermions. This result improves previous, N-dependent lower bounds, and it complements a recent, similar bound for the Fermi polaron in three space dimensions.

  12. Transition and Damping of Collective Modes in a Trapped Fermi Gas between BCS and Unitary Limits near the Phase Transition

    PubMed Central

    Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli

    2015-01-01

    We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion’s scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit. PMID:26522094

  13. Localization and oscillations of Majorana fermions in a two-dimensional electron gas coupled with d -wave superconductors

    NASA Astrophysics Data System (ADS)

    Ortiz, L.; Varona, S.; Viyuela, O.; Martin-Delgado, M. A.

    2018-02-01

    We study the localization and oscillation properties of the Majorana fermions that arise in a two-dimensional electron gas (2DEG) with spin-orbit coupling (SOC) and a Zeeman field coupled with a d -wave superconductor. Despite the angular dependence of the d -wave pairing, localization and oscillation properties are found to be similar to the ones seen in conventional s -wave superconductors. In addition, we study a microscopic lattice version of the previous system that can be characterized by a topological invariant. We derive its real space representation that involves nearest and next-to-nearest-neighbors pairing. Finally, we show that the emerging chiral Majorana fermions are indeed robust against static disorder. This analysis has potential applications to quantum simulations and experiments in high-Tc superconductors.

  14. Shear viscosity to entropy density ratios and implications for (im)perfect fluidity in Fermionic and Bosonic superfluids

    NASA Astrophysics Data System (ADS)

    Boyack, Rufus; Guo, Hao; Levin, K.

    2015-03-01

    Recent experiments on both unitary Fermi gases and high temperature superconductors (arxiv:1410.4835 [cond-mat.quant-gas], arxiv:1409.5820 [cond-mat.str-el].) have led to renewed interest in near perfect fluidity in condensed matter systems. This is quantified by studying the ratio of shear viscosity to entropy density. In this talk we present calculations of this ratio in homogeneous bosonic and fermionic superfluids, with the latter ranging from BCS to BEC. While the shear viscosity exhibits a power law (for bosons) or exponential suppression (for fermions), a similar dependence is found for the respective entropy densities. As a result, strict BCS and (true) bosonic superfluids have an analogous viscosity to entropy density ratio, behaving linearly with temperature times the (T-dependent) dissipation rate; this is characteristic of imperfect fluidity in weakly coupled fluids. This is contrasted with the behavior of fermions at unitarity which we argue is a consequence of additional terms in the entropy density thereby leading to more perfect fluidity. (arXiv:1407.7572v1 [cond-mat.quant-gas])

  15. Solitonic Excitations in Fermionic Superfluids and Progress towards Fermi Gas in Uniform Potential

    NASA Astrophysics Data System (ADS)

    Ku, Mark; Mukherjee, Biswaroop; Guardado-Sanchez, Elmer; Yan, Zhenjie; Patel, Parth; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin

    2015-05-01

    We follow the evolution of a superfluid Fermi gas of 6Li atoms following a one-sided π phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, and its subsequent snaking and decay into a vortex ring. The latter eventually breaks at the boundary of the superfluid, finally leaving behind a single, remnant solitonic vortex. The nodal surface is directly imaged and reveals its decay into a vortex ring via a puncture of the initial soliton plane. At intermediate stages we find evidence for more exotic structures resembling Φ-solitons. The observed evolution of the nodal surface represents dynamics that occurs at the length scale of the interparticle spacing, thus providing new experimental input for microscopic theories of strongly correlated fermions. We also report on the trapping of fermionic atoms of 6Li in a quasi-homogenous all-optical potential, and discuss progress towards directly observing the momentum distribution of the fermions in a box. This new tool offers the possibility to quantitatively study Fermi gases at finite temperature and in the presence of spin-imbalance, with unprecedented accuracy.

  16. Gas production apparatus

    DOEpatents

    Winsche, Warren E.; Miles, Francis T.; Powell, James R.

    1976-01-01

    This invention relates generally to the production of gases, and more particularly to the production of tritium gas in a reliable long operating lifetime systems that employs solid lithium to overcome the heretofore known problems of material compatibility and corrosion, etc., with liquid metals. The solid lithium is irradiated by neutrons inside low activity means containing a positive (+) pressure gas stream for removing and separating the tritium from the solid lithium, and these means are contained in a low activity shell containing a thermal insulator and a neutron moderator.

  17. Trial wave functions for a composite Fermi liquid on a torus

    NASA Astrophysics Data System (ADS)

    Fremling, M.; Moran, N.; Slingerland, J. K.; Simon, S. H.

    2018-01-01

    We study the two-dimensional electron gas in a magnetic field at filling fraction ν =1/2 . At this filling the system is in a gapless state which can be interpreted as a Fermi liquid of composite fermions. We construct trial wave functions for the system on a torus, based on this idea, and numerically compare these to exact wave functions for small systems found by exact diagonalization. We find that the trial wave functions give an excellent description of the ground state of the system, as well as its charged excitations, in all momentum sectors. We analyze the dispersion of the composite fermions and the Berry phase associated with dragging a single fermion around the Fermi surface and comment on the implications of our results for the current debate on whether composite fermions are Dirac fermions.

  18. Perpetual motion of a mobile impurity in a one-dimensional quantum gas

    NASA Astrophysics Data System (ADS)

    Lychkovskiy, O.

    2014-03-01

    Consider an impurity particle injected in a degenerate one-dimensional gas of noninteracting fermions (or, equivalently, Tonks-Girardeau bosons) with some initial momentum p0. We examine the infinite-time value of the momentum of the impurity, p∞, as a function of p0. A lower bound on |p∞(p0)| is derived under fairly general conditions. The derivation, based on the existence of the lower edge of the spectrum of the host gas, does not resort to any approximations. The existence of such bound implies the perpetual motion of the impurity in a one-dimensional gas of noninteracting fermions or Tonks-Girardeau bosons at zero temperature. The bound admits an especially simple and useful form when the interaction between the impurity and host particles is everywhere repulsive.

  19. Dark solitons with Majorana fermions in spin-orbit-coupled Fermi gases.

    PubMed

    Xu, Yong; Mao, Li; Wu, Biao; Zhang, Chuanwei

    2014-09-26

    We show that a single dark soliton can exist in a spin-orbit-coupled Fermi gas with a high spin imbalance, where spin-orbit coupling favors uniform superfluids over nonuniform Fulde-Ferrell-Larkin-Ovchinnikov states, leading to dark soliton excitations in highly imbalanced gases. Above a critical spin imbalance, two topological Majorana fermions without interactions can coexist inside a dark soliton, paving a way for manipulating Majorana fermions through controlling solitons. At the topological transition point, the atom density contrast across the soliton suddenly vanishes, suggesting a signature for identifying topological solitons.

  20. Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries

    DOEpatents

    Kong, Peter C [Idaho Falls, ID; Pink, Robert J [Pocatello, ID; Nelson, Lee O [Idaho Falls, ID

    2005-01-04

    The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.

  1. Spin imbalance effect on the Larkin-Ovchinnikov-Fulde-Ferrel state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshii, Ryosuke; Tsuchiya, Shunji; Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521

    2011-07-01

    We study spin imbalance effects on the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state relevant for superconductors under a strong magnetic field and spin polarized ultracold Fermi gas. We obtain the exact solution for the condensates with arbitrary spin imbalance and the fermion spectrum perturbatively in the presence of small spin imbalance. We also obtain fermion zero mode exactly without perturbation theory.

  2. Strong Photoassociation in Ultracold Fermions

    NASA Astrophysics Data System (ADS)

    Jing, Li; Jamison, Alan; Rvachov, Timur; Ebadi, Sepher; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    Despite many studies there are still open questions about strong photoassociation in ultracold gases. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system and to engineer Hamiltonians using dissipation. We propose the possibility to slow down decoherence by photoassociation through the quantum Zeno effect. This can realized by shining strong photoassociation light on the superposition of the lowest two hyperfine states of Lithium 6. NSF, ARO-MURI, Samsung, NSERC.

  3. High-temperature behavior of a deformed Fermi gas obeying interpolating statistics.

    PubMed

    Algin, Abdullah; Senay, Mustafa

    2012-04-01

    An outstanding idea originally introduced by Greenberg is to investigate whether there is equivalence between intermediate statistics, which may be different from anyonic statistics, and q-deformed particle algebra. Also, a model to be studied for addressing such an idea could possibly provide us some new consequences about the interactions of particles as well as their internal structures. Motivated mainly by this idea, in this work, we consider a q-deformed Fermi gas model whose statistical properties enable us to effectively study interpolating statistics. Starting with a generalized Fermi-Dirac distribution function, we derive several thermostatistical functions of a gas of these deformed fermions in the thermodynamical limit. We study the high-temperature behavior of the system by analyzing the effects of q deformation on the most important thermostatistical characteristics of the system such as the entropy, specific heat, and equation of state. It is shown that such a deformed fermion model in two and three spatial dimensions exhibits the interpolating statistics in a specific interval of the model deformation parameter 0 < q < 1. In particular, for two and three spatial dimensions, it is found from the behavior of the third virial coefficient of the model that the deformation parameter q interpolates completely between attractive and repulsive systems, including the free boson and fermion cases. From the results obtained in this work, we conclude that such a model could provide much physical insight into some interacting theories of fermions, and could be useful to further study the particle systems with intermediate statistics.

  4. The Role of Dissolved Gas in Ionic Liquid Electrolytes for Secondary Lithium Metal Batteries

    DTIC Science & Technology

    2013-01-07

    devices use lithium-ion batteries comprised of a graphite anode and metal oxide cathode . Lithium, being the third-lightest element, is already synonymous...support shuttling lithium ions (battery cycling) such as the separator, electrolyte, and cathode and anode superstructures contribute most of the...ability of electro-deposit lithium non-dendritically. When lithium is electrodeposited , as during battery charging, it tends to form needle-like

  5. Toxic fluoride gas emissions from lithium-ion battery fires.

    PubMed

    Larsson, Fredrik; Andersson, Petra; Blomqvist, Per; Mellander, Bengt-Erik

    2017-08-30

    Lithium-ion battery fires generate intense heat and considerable amounts of gas and smoke. Although the emission of toxic gases can be a larger threat than the heat, the knowledge of such emissions is limited. This paper presents quantitative measurements of heat release and fluoride gas emissions during battery fires for seven different types of commercial lithium-ion batteries. The results have been validated using two independent measurement techniques and show that large amounts of hydrogen fluoride (HF) may be generated, ranging between 20 and 200 mg/Wh of nominal battery energy capacity. In addition, 15-22 mg/Wh of another potentially toxic gas, phosphoryl fluoride (POF 3 ), was measured in some of the fire tests. Gas emissions when using water mist as extinguishing agent were also investigated. Fluoride gas emission can pose a serious toxic threat and the results are crucial findings for risk assessment and management, especially for large Li-ion battery packs.

  6. A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jinhui; Yang, Jun; Zhou, Jingjing; Zhang, Tao; Li, Lei; Wang, Jiulin; Nuli, Yanna

    2017-10-01

    A stable organic-inorganic hybrid layer (OIHL) is direct fabricated on lithium metal surface by the interfacial reaction of lithium metal foil with 1-chlorodecane and oxygen/carbon dioxide mixed gas. This favorable OIHL is approximately 30 μm thick and consists of lithium alkyl carbonate and lithium chloride. The lithium-oxygen batteries with OIHL protected lithium metal anode exhibit longer cycle life (340 cycles) than those with bare lithium metal anode (50 cycles). This desirable performance can be ascribed to the robust OIHL which prevents the growth of lithium dendrites and the corrosion of lithium metal.

  7. Coupled kinetic equations for fermions and bosons in the relaxation-time approximation

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw

    2018-02-01

    Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.

  8. Particle control and plasma performance in the Lithium Tokamak eXperimenta)

    NASA Astrophysics Data System (ADS)

    Majeski, R.; Abrams, T.; Boyle, D.; Granstedt, E.; Hare, J.; Jacobson, C. M.; Kaita, R.; Kozub, T.; LeBlanc, B.; Lundberg, D. P.; Lucia, M.; Merino, E.; Schmitt, J.; Stotler, D.; Biewer, T. M.; Canik, J. M.; Gray, T. K.; Maingi, R.; McLean, A. G.; Kubota, S.; Peebles, W. A.; Beiersdorfer, P.; Clementson, J. H. T.; Tritz, K.

    2013-05-01

    The Lithium Tokamak eXperiment is a small, low aspect ratio tokamak [Majeski et al., Nucl. Fusion 49, 055014 (2009)], which is fitted with a stainless steel-clad copper liner, conformal to the last closed flux surface. The liner can be heated to 350 °C. Several gas fueling systems, including supersonic gas injection and molecular cluster injection, have been studied and produce fueling efficiencies up to 35%. Discharges are strongly affected by wall conditioning. Discharges without lithium wall coatings are limited to plasma currents of order 10 kA, and discharge durations of order 5 ms. With solid lithium coatings discharge currents exceed 70 kA, and discharge durations exceed 30 ms. Heating the lithium wall coating, however, results in a prompt degradation of the discharge, at the melting point of lithium. These results suggest that the simplest approach to implementing liquid lithium walls in a tokamak—thin, evaporated, liquefied coatings of lithium—does not produce an adequately clean surface.

  9. Particle statistics and lossy dynamics of ultracold atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Yago Malo, J.; van Nieuwenburg, E. P. L.; Fischer, M. H.; Daley, A. J.

    2018-05-01

    Experimental control over ultracold quantum gases has made it possible to investigate low-dimensional systems of both bosonic and fermionic atoms. In closed one-dimensional systems there are many similarities in the dynamics of local quantities for spinless fermions and strongly interacting "hard-core" bosons, which on a lattice can be formalized via a Jordan-Wigner transformation. In this study, we analyze the similarities and differences for spinless fermions and hard-core bosons on a lattice in the presence of particle loss. The removal of a single fermion causes differences in local quantities compared with the bosonic case because of the different particle exchange symmetry in the two cases. We identify deterministic and probabilistic signatures of these dynamics in terms of local particle density, which could be measured in ongoing experiments with quantum gas microscopes.

  10. Metallic borophene polytypes as lightweight anode materials for non-lithium-ion batteries.

    PubMed

    Xiang, Pan; Chen, Xianfei; Zhang, Wentao; Li, Junfeng; Xiao, Beibei; Li, Longshan; Deng, Kuisen

    2017-09-20

    Applications of rechargeable non-lithium-ion batteries (Na + , K + , Ca 2+ , Mg 2+ , and Al 3+ NLIBs) are significantly hampered by the deficiency of suitable electrode materials. Searching for anode materials with desirable electrochemical performance is urgent for the large-scale energy storage demands of next generation renewable energy technologies. In this study, three types of recently synthesized borophenes are predicted to serve as high-performing anodes for NLIBs based on density functional theory. All the borophenes considered here are metallic with favorable in-plane stiffness. Dirac fermions were identified in two types of borophenes, guaranteeing their high electron mobility. Moreover, borophene configuration-dependent metal-ion migration, theoretical capacities, and open-circuit voltages were demonstrated with respect to the different adsorption behaviors and atom mass densities of anode materials. Our results provide insights into the configuration-dependent electrode performance of borophene and the corresponding metal-ion storage mechanism.

  11. Localized Magnetic Moments with Tunable Spin Exchange in a Gas of Ultracold Fermions

    NASA Astrophysics Data System (ADS)

    Riegger, L.; Darkwah Oppong, N.; Höfer, M.; Fernandes, D. R.; Bloch, I.; Fölling, S.

    2018-04-01

    We report on the experimental realization of a state-dependent lattice for a two-orbital fermionic quantum gas with strong interorbital spin exchange. In our state-dependent lattice, the ground and metastable excited electronic states of 173Yb take the roles of itinerant and localized magnetic moments, respectively. Repulsive on-site interactions in conjunction with the tunnel mobility lead to spin exchange between mobile and localized particles, modeling the coupling term in the well-known Kondo Hamiltonian. In addition, we find that this exchange process can be tuned resonantly by varying the on-site confinement. We attribute this to a resonant coupling to center-of-mass excited bound states of one interorbital scattering channel.

  12. Self-pinched lithium beam transport experiments on SABRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, D.L.; Olson, C.L.; Poukey, J.W.

    Self-pinched transport of ion beams has many advantages for ion-driven ICF applications involving high yield and energy production. The authors are currently preparing for a self-pinched lithium beam transport experiment on the SABRE accelerator. There are three transport elements that must eventually be demonstrated: (1) efficient lithium beam generation and ballistic transport to a focus at the self-pinched transport channel entrance; (2) self-pinched transport in the channel, requiring optimized injection conditions and gas breakdown; and (3) self-pinched transport of the equilibrated beam from the channel into free space, with associated aiming and stability considerations. In the present experiment, a hollowmore » annular lithium beam from an applied-B extraction ion diode will be focused to small radius (r {le} 2 cm) in a 60 cm long ballistic focus section containing argon gas at a pressure of a few Torr. The self-pinched transport channel will contain a low pressure background gas of 10--40 mTorr argon to allow sufficient net current to confine the beam for long distance transport. IPROP simulations are in progress to optimize the design of the ballistic and self-pinched transport sections. Progress on preparation of this lithium self-pinched transport experiment, including a discussion of transport system design, important gas breakdown issues, and diagnostics, will be presented.« less

  13. Higher first Chern numbers in one-dimensional Bose-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Knakkergaard Nielsen, Kristian; Wu, Zhigang; Bruun, G. M.

    2018-02-01

    We propose to use a one-dimensional system consisting of identical fermions in a periodically driven lattice immersed in a Bose gas, to realise topological superfluid phases with Chern numbers larger than 1. The bosons mediate an attractive induced interaction between the fermions, and we derive a simple formula to analyse the topological properties of the resulting pairing. When the coherence length of the bosons is large compared to the lattice spacing and there is a significant next-nearest neighbour hopping for the fermions, the system can realise a superfluid with Chern number ±2. We show that this phase is stable in a large region of the phase diagram as a function of the filling fraction of the fermions and the coherence length of the bosons. Cold atomic gases offer the possibility to realise the proposed system using well-known experimental techniques.

  14. Method of preparing a sintered lithium aluminate structure for containing electrolyte

    DOEpatents

    Sim, James W.; Kinoshita, Kimio

    1981-01-01

    A porous sintered tile is formed of lithium aluminate for retaining molten lectrolyte within a fuel cell. The tile is prepared by reacting lithium hydroxide in aqueous solution with alumina particles to form beta lithium aluminate particles. The slurry is evaporated to dryness and the solids dehydrated to form a beta lithium aluminate powder. The powder is compacted into the desired shape and sintered at a temperature in excess of 1200 K. but less than 1900 K. to form a porous integral structure that is subsequently filled with molten electrolyte. A tile of this type is intended for use in containing molten alkali metal carbonates as electolyte for use in a fuel cell having porous metal or metal oxide electrodes for burning a fuel gas such as hydrogen and/or carbon monoxide with an oxidant gas containing oxygen.

  15. Universal Fermi Gas with Two- and Three-Body Resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Yusuke; Son, Dam Thanh; Tan, Shina

    2008-03-07

    We consider a Fermi gas with two components of different masses, with the s-wave two-body interaction tuned to unitarity. In the range of mass ratio 8.62

  16. Anode material for lithium batteries

    DOEpatents

    Belharouak, Ilias [Westmont, IL; Amine, Khalil [Downers Grove, IL

    2012-01-31

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  17. Anode material for lithium batteries

    DOEpatents

    Belharouak, Ilias [Bolingbrook, IL; Amine, Khalil [Downers Grove, IL

    2008-06-24

    Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  18. Anode material for lithium batteries

    DOEpatents

    Belharouak, Ilias [Bolingbrook, IL; Amine, Khalil [Oak Brook, IL

    2011-04-05

    Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

  19. Gamma ray degradation of electrolytes containing alkylcarbonate solvents and a lithium salt

    NASA Astrophysics Data System (ADS)

    Caillon-Caravanier, Magaly; Jones, Jennifer; Anouti, Mérièm; Montigny, Frédéric; Willmann, Patrick; David, Jean-Pierre; Soonckindt, Sabine; Lemordant, Daniel

    Lithium-ion batteries for space applications, such as satellites, are subjected to cosmic radiations, in particular, γ-irradiation. In this study, the effects of this radiation on electrolytes and their components used in the lithium-ion batteries are investigated. The conductivity and viscosity of the samples have been measured before and after the irradiation. The modifications are evaluated by spectral analyses such as Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (1H and 13C NMR), solid phase microextraction-gas chromatography (SPME-GC) and gas chromatography-mass spectroscopy (GC-MS). The experimental results show that only the samples containing vinylene carbonate and/or the lithium salt LiPF 6 are degraded by γ-radiation.

  20. Effect of lithium hydride on the cooling of primordial gas

    NASA Astrophysics Data System (ADS)

    Liu, Boyuan; Bromm, Volker

    2018-05-01

    We complete the formulation of the standard model of first star formation by exploring the possible impact of LiH cooling, which has been neglected in previous simulations of non-linear collapse. Specifically, we find that at redshift z ≳ 5, the cooling by LiH has no effect on the thermal evolution of shocked primordial gas, and of collapsing primordial gas into minihaloes or relic H II regions, even if the primordial lithium abundance were enhanced by one order of magnitude. Adding the most important lithium species to a minimum network of primordial chemistry, we demonstrate that insufficient LiH is produced in all cases considered, about [LiH/Li] ˜ 10-9 for T ≲ 100 K. Indeed, LiH cooling would only be marginally significant in shocked primordial gas for the highly unlikely case that the LiH abundance were increased by nine orders of magnitude, implying that all lithium would have to be converted into LiH. In this study, photodestruction processes are not considered, and the collisional disassociation rate of LiH is possibly underestimated, rendering our results an extreme upper limit. Therefore, the cooling by LiH can safely be neglected for the thermal evolution of Population III star-forming gas.

  1. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  2. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, W.E.; Trapp, T.J.

    1984-10-09

    A composition is described useful in the production of tritium in a nuclear reactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  3. Lithium aluminate/zirconium material useful in the production of tritium

    DOEpatents

    Cawley, William E.; Trapp, Turner J.

    1984-10-09

    A composition is described useful in the production of tritium in a nuclear eactor. Lithium aluminate particles are dispersed in a matrix of zirconium. Tritium produced by the reactor of neutrons with the lithium are absorbed by the zirconium, thereby decreasing gas pressure within capsules carrying the material.

  4. Momentum sharing in imbalanced Fermi systems

    NASA Astrophysics Data System (ADS)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  5. Methods for using atomic layer deposition to produce a film for solid state electrolytes and protective electrode coatings for lithium batteries

    DOEpatents

    Elam, Jeffrey W.; Meng, Xiangbo

    2018-03-13

    A method for using atomic layer deposition to produce a film configured for use in an anode, cathode, or solid state electrolyte of a lithium-ion battery or a lithium-sulfur battery. The method includes repeating a cycle for a predetermined number of times in an inert atmosphere. The cycle includes exposing a substrate to a first precursor, purging the substrate with inert gas, exposing the substrate to a second precursor, and purging the substrate with inert gas. The film is a metal sulfide.

  6. Dwarf spheroidal galaxies as degenerate gas of free fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domcke, Valerie; Urbano, Alfredo, E-mail: valerie.domcke@sissa.it, E-mail: alfredo.urbano@sissa.it

    2015-01-01

    In this paper we analyze a simple scenario in which Dark Matter (DM) consists of free fermions with mass m{sub f}. We assume that on galactic scales these fermions are capable of forming a degenerate Fermi gas, in which stability against gravitational collapse is ensured by the Pauli exclusion principle. The mass density of the resulting con figuration is governed by a non-relativistic Lane-Emden equation, thus leading to a universal cored profile that depends only on one free parameter in addition to m{sub f}. After reviewing the basic formalism, we test this scenario against experimental data describing the velocity dispersionmore » of the eight classical dwarf spheroidal galaxies of the Milky Way. We find that, despite its extreme simplicity, the model exhibits a good fit to the data and realistic predictions for the size of DM halos providing that m{sub f}≅ 200 eV. Furthermore, we show that in this setup larger galaxies correspond to the non-degenerate limit of the gas. We propose a concrete realization of this model in which DM is produced non-thermally via inflaton decay. We show that imposing the correct relic abundance and the bound on the free-streaming length constrains the inflation model in terms of inflaton mass, its branching ratio into DM and the reheating temperature.« less

  7. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Majeski, R.; Bell, R. E.; Boyle, D. P.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Merino, E.; Raitses, Y.; Schmitt, J. C.; Allain, J. P.; Bedoya, F.; Bialek, J.; Biewer, T. M.; Canik, J. M.; Buzi, L.; Koel, B. E.; Patino, M. I.; Capece, A. M.; Hansen, C.; Jarboe, T.; Kubota, S.; Peebles, W. A.; Tritz, K.

    2017-05-01

    High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 × 1017 m-3, consistent with a low recycling metallic lithium boundary. Despite the high edge temperature, the core impurity content is low. Zeff is estimated to be ˜1.2, with a very modest contribution (<0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-β, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-β is briefly described.

  8. Constructive methods for the ground-state energy of fully interacting fermion gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilera Navarro, V.C.; Baker G.A. Jr.; Benofy, L.P.

    1987-11-01

    A perturbation scheme based not on the ideal gas but on a system of purely repulsive cores is applied to a typical fully interacting fermion gas. This is ''neutron matter'' interacting via (a) the repulsive ''Bethe homework-problem'' potential, (b) a hard-core--plus--square-well potential, and (c) the Baker-Hind-Kahane modification of the latter, suitable for describing a more accurate two-nucleon potential. Pade extrapolation techniques and generalizations thereof are employed to represent both the density dependence as well as the attractive coupling dependence of the perturbation expansion. Equations of state are constructed and compared with Jastrow--Monte Carlo calculations as well as expectations based onmore » semiempirical mass formulas. Excellent agreement is found with the latter.« less

  9. How Incorrect Is the Classical Partition Function for the Ideal Gas?

    ERIC Educational Resources Information Center

    Kroemer, Herbert

    1980-01-01

    Discussed is the classical partition function for the ideal gas and how it differs from the exact value for bosons or fermions in the classical regime. The differences in the two values are negligible hence the classical treatment leads in the end to correct answers for all observables. (Author/DS)

  10. Momentum sharing in imbalanced Fermi systems

    DOE PAGES

    Hen, O.; Sargsian, M.; Weinstein, L. B.; ...

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less

  11. Nuclear physics. Momentum sharing in imbalanced Fermi systems.

    PubMed

    Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I

    2014-10-31

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.

  12. The half-filled Landau level: The case for Dirac composite fermions

    NASA Astrophysics Data System (ADS)

    Geraedts, Scott D.; Zaletel, Michael P.; Mong, Roger S. K.; Metlitski, Max A.; Vishwanath, Ashvin; Motrunich, Olexei I.

    2016-04-01

    In a two-dimensional electron gas under a strong magnetic field, correlations generate emergent excitations distinct from electrons. It has been predicted that “composite fermions”—bound states of an electron with two magnetic flux quanta—can experience zero net magnetic field and form a Fermi sea. Using infinite-cylinder density matrix renormalization group numerical simulations, we verify the existence of this exotic Fermi sea, but find that the phase exhibits particle-hole symmetry. This is self-consistent only if composite fermions are massless Dirac particles, similar to the surface of a topological insulator. Exploiting this analogy, we observe the suppression of 2kF backscattering, a characteristic of Dirac particles. Thus, the phenomenology of Dirac fermions is also relevant to two-dimensional electron gases in the quantum Hall regime.

  13. Quantum corrections in thermal states of fermions on anti-de Sitter space-time

    NASA Astrophysics Data System (ADS)

    Ambruş, Victor E.; Winstanley, Elizabeth

    2017-12-01

    We study the energy density and pressure of a relativistic thermal gas of massless fermions on four-dimensional Minkowski and anti-de Sitter space-times using relativistic kinetic theory. The corresponding quantum field theory quantities are given by components of the renormalized expectation value of the stress-energy tensor operator acting on a thermal state. On Minkowski space-time, the renormalized vacuum expectation value of the stress-energy tensor is by definition zero, while on anti-de Sitter space-time the vacuum contribution to this expectation value is in general nonzero. We compare the properties of the vacuum and thermal expectation values of the energy density and pressure for massless fermions and discuss the circumstances in which the thermal contribution dominates over the vacuum one.

  14. Spin-orbit-coupled Fermi gases of two-electron ytterbium atoms

    NASA Astrophysics Data System (ADS)

    He, Chengdong; Song, Bo; Haciyev, Elnur; Ren, Zejian; Seo, Bojeong; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2017-04-01

    Spin-orbit coupling (SOC) has been realized in bosonic and fermionic atomic gases opening an avenue to novel physics associated with spin-momentum locking. In this talk, we will demonstrate all-optical method coupling two hyperfine ground states of 173Yb fermions through a narrow optical transition 1S0 -> 3P1. An optical AC Stark shift is applied to split the ground hyperfine levels and separate out an effective spin-1/2 subspace from other spin states for the realization of SOC. The spin dephasing dynamics and the asymmetric momentum distribution of the spin-orbit coupled Fermi gas are observed as a hallmark of SOC. The implementation of all-optical SOC for ytterbium fermions should offer a new route to a long-lived spin-orbit coupled Fermi gas and greatly expand our capability in studying novel spin-orbit physics with alkaline-earth-like atoms. Other ongoing experimental works related to SOC will be also discussed. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants); MOST (Grant No. 2016YFA0301604) and NSFC (No. 11574008).

  15. Orientifolding of the ABJ Fermi gas

    NASA Astrophysics Data System (ADS)

    Okuyama, Kazumi

    2016-03-01

    The grand partition functions of ABJ theory can be factorized into even and odd parts under the reflection of fermion coordinate in the Fermi gas approach. In some cases, the even/odd part of ABJ grand partition function is equal to that of {N}=5O(n)× USp({n}^') theory, hence it is natural to think of the even/odd projection of grand partition function as an orientifolding of ABJ Fermi gas system. By a systematic WKB analysis, we determine the coefficients in the perturbative part of grand potential of such orientifold ABJ theory. We also find the exact form of the first few "half-instanton" corrections coming from the twisted sector of the reflection of fermion coordinate. For the Chern-Simons level k = 2 ,4 ,8 we find closed form expressions of the grand partition functions of orientifold ABJ theory, and for k = 2 , 4 we prove the functional relations among the grand partition functions conjectured in arXiv:1410.7658.

  16. Grassmann phase space methods for fermions. II. Field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, B.J., E-mail: bdalton@swin.edu.au; Jeffers, J.; Barnett, S.M.

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, thoughmore » fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.« less

  17. Effective Mass Calculations for Two-dimensional Gas of Dipolar Fermions

    NASA Astrophysics Data System (ADS)

    Seydi, I.; Abedinpour, S. H.; Tanatar, B.

    2017-06-01

    We consider a two-dimensional system of ultracold dipolar fermions with dipole moments aligned in the perpendicular direction. We use the static structure factor information from Fermi-Hypernetted-Chain calculations to obtain the effective many-body dipole-dipole interaction and calculate the many-body effective mass of the system within the G0W approximation to the self-energy. A large cancellation between different contributions to the self-energy results in a weak dependence of the effective mass on the interaction strength over a large range of coupling constants.

  18. designer phase transitions in lithium-based spinels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wouter Montfrooij

    When electrons in a metal become correlated with each other, new cooperative behavior can arise. This correlation is magnified when the metal has magnetic ions embedded in it. These atomic magnets try to line up with each other, but in doing so actually create a correlation between the motions of conduction electrons. In turn, these correlated electron motions prevent the magnetic ions from aligning, even at zero Kelvin. When this competition is strongest (at the so-called quantum critical point-QCP) the response of the system can no longer be described using the text book theory for metals. In addition, a rangemore » of new phenomena has been seen to emerge in the vicinity of a QCP, such as heavy-fermion superconductivity, coexistence of magnetism and superconductivity and hyper-scaling. The main goal of our research is to try to unravel the details of the feedback mechanism between electron motion and magnetism that lies at the heart of this new physics. We have chosen lithium-based spinel structures as the most promising family of systems to achieve our goal. Known lithium-based spinels Li{sub x}M{sub 2}O{sub 4} [M=V, Ti and Mn] show a variety of ground states: heavy-fermion, superconducting, or geometrically frustrated local moment systems. Li{sub x}M{sub 2}O{sub 4} should be ideal systems for studying QCPs since their properties can easily be fine-tuned, simply by extracting some Li [which can be done without introducing disorder in the immediate surroundings of the magnetic ions]. The premise of the proposal was that since this Li-extraction can be done both in the metallic as well as in insulating compounds, that we can expand the types of quantum phase transitions that can be studied to beyond transitions in magnetic metals. The project called for developing a better understanding of quantum phase transitions by measuring all aspects of the electronic response of Li{sub x}M{sub 2}O{sub 4} by means of neutron scattering, giving microscopic information about the behavior of the individual magnetic moments and their interactions, as well as by macroscopic measurements. In addition, the aim was to synthesize new lithium-based spinel compounds by using other transition metals that exhibit both 3{sup +} and 4{sup +} valencies. Here we report on the progress we have made during the course of this grant both towards the stated goals and on new avenues that developed as a direct result of the data we collected during this grant.« less

  19. Thermodynamic functions of Fermi gas with quadruple BCS-type binding potential

    NASA Astrophysics Data System (ADS)

    Tarasewicz, P.; Maćkowiak, J.

    2000-01-01

    A gas of spin 1/2 fermions with an interaction V+ W=-2 γ∑ kχ( k) bk* bk+-| Λ| -1g∑ k, k‧ χ( k) χ( k‧) bk* bk* bk‧ b- k‧ , where bk= ak+ ak- and akσ , ak‧ σ‧ satisfy Fermi anticommutation relations, is investigated by the method of Mühlschlegel. W+ V is nonzero only within a thin layer of single-fermion energies around the chemical potential μ and χ( k) denotes the characteristic function of the corresponding range of momenta. Two cases are studied: 1 0γ=0, 2 0γ=0.10025 eV. In the first case, the system exhibits a first-order transition, in the second the transition is second order. The temperature dependence of the system's thermodynamic functions is examined and compared with that of the BCS model.

  20. Safety Concept for a Modern Get Away Special Power Supply

    NASA Astrophysics Data System (ADS)

    Rieger, T.

    2002-01-01

    orbiter, providing their own power supply, experiment controls etc. In order to offer a low-cost flight opportunity, the GAS safety review process has been developed, which is not so stringent as the shuttle safety certification process. As a consequence, mainly approved standard components are used in a GAS experiment to ensure safety. This is particularly true for the battery systems of GAS payloads. Many of the modern high power batteries have exhibited hazards. Especially, NASA recommends against the use of Lithium cells in GAS Payloads, which shortens the prospects of extensive experiments due to their power consumption. Considering an experiment with a power consumption of about 100 W, an e.g. standard silver-zinc battery system provides an operating time of typically below 20 h during the complete shuttle mission. Therefore, to take better advantage of the shuttle capabilities, the need for a certified standard Lithium based battery system in the GAS program is given. During the development of the GAS payload G-146, a safe Lithium based battery system has been constructed. This system could be a potential candidate to become such a safe standard component for GAS payloads. Its modular assembly could support various payload designs. The paper states the boundary conditions of the G-146 payload, that led to the design and the safety concept of the Lithium battery system for GAS payloads. The construction is described, considering the influences of safety aspects on the design of the system. The resulting variation possibilities for different GAS- Payloads are described against the background of the retention of the achieved safety level. A further emphasis of the paper is the chosen safety concept during qualification, integration and test of the battery system. Finally, a suggestion for a simple quality assurance concept and an outline of the future applications of the battery system is given.

  1. Remanufacturing, repurposing, and recycling of post-vehicle-application lithium-ion batteries.

    DOT National Transportation Integrated Search

    2014-06-01

    As lithium-ion batteries are an efficient energy storage mechanism, their use in vehicles is increasing to support electrification : to meet increasing average mileage and decreasing greenhouse gas emission standards. Principles of environmentalism :...

  2. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries.

    PubMed

    Kim, Yongseon

    2012-05-01

    Li(Ni(0.8)Co(0.1)Mn(0.1))O(2) (NCM811) was synthesized using alkali chlorides as a flux and the performance as a cathode material for lithium ion batteries was examined. Primary particles of the powder were segregated and grown separately in the presence of liquid state fluxes, which induced each particle to be composed of one primary particle with well-developed facet planes, not the shape of agglomerates as appears with commercial NCMs. The new NCM showed far less gas emission during high temperature storage at charged states, and higher volumetric capacity thanks to its high bulk density. The material is expected to provide optimal performances for pouch type lithium ion batteries, which require high volumetric capacity and are vulnerable to deformation caused by gas generation from the electrode materials.

  3. First measurements of the index of refraction of gases for lithium atomic waves.

    PubMed

    Jacquey, M; Büchner, M; Trénec, G; Vigué, J

    2007-06-15

    We report the first measurements of the index of refraction of gases for lithium waves. Using an atom interferometer, we have measured the real and imaginary parts of the index of refraction n for argon, krypton, and xenon as a function of the gas density for several velocities of the lithium beam. The linear dependence of (n-1) with the gas density is well verified. The total collision cross section deduced from the imaginary part of (n-1) is in very good agreement with traditional measurements of this quantity. Finally, the real and imaginary parts of (n-1) and their ratio rho exhibit glory oscillations, in good agreement with calculations.

  4. Long-time behavior of the momentum distribution during the sudden expansion of a spin-imbalanced Fermi gas in one dimension.

    PubMed

    Bolech, C J; Heidrich-Meisner, F; Langer, S; McCulloch, I P; Orso, G; Rigol, M

    2012-09-14

    We study the sudden expansion of spin-imbalanced ultracold lattice fermions with attractive interactions in one dimension after turning off the longitudinal confining potential. We show that the momentum distribution functions of majority and minority fermions quickly approach stationary values due to a quantum distillation mechanism that results in a spatial separation of pairs and majority fermions. As a consequence, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations are lost during the expansion. Furthermore, we argue that the shape of the stationary momentum distribution functions can be understood by relating them to the integrals of motion in this integrable quantum system. We discuss our results in the context of proposals to observe FFLO correlations, related to recent experiments by Liao et al., Nature (London) 467, 567 (2010).

  5. Topology (and axion's properties) from lattice QCD with a dynamical charm

    NASA Astrophysics Data System (ADS)

    Burger, Florian; Ilgenfritz, Ernst-Michael; Lombardo, Maria Paola; Müller-Preussker, Michael; Trunin, Anton

    2017-11-01

    We present results on QCD with four dynamical flavors in the temperature range 0.9 ≲ T /Tc ≲ 2. We have performed lattice simulations with Wilson fermions at maximal twist and measured the topological charge with gluonic and fermionic methods. The topological charge distribution is studied by means of its cumulants, which encode relevant properties of the QCD axion, a plausible Dark Matter candidate. The topological susceptibility measured with the fermionic method exhibits a power-law decay for T /Tc ≳ 2, with an exponent close to the one predicted by the Dilute Instanton Gas Approximation (DIGA). Close to Tc the temperature dependent effective exponent approaches the DIGA result from above, in agreement with recent analytic calculations. These results constrain the axion window, once an assumption on the fraction of axions contributing to Dark Matter is made.

  6. Electrode structure and method for making the same

    DOEpatents

    Affinito, John D.; Lowe, Gregory K.

    2015-05-26

    Electrode structures, and more specifically, electrode structures for use in electrochemical cells, are provided. The electrode structures described herein may include one or more protective layers. In one set of embodiments, a protective layer may be formed by exposing a lithium metal surface to a plasma comprising ions of a gas to form a ceramic layer on top of the lithium metal. The ceramic layer may be highly conductive to lithium ions and may protect the underlying lithium metal surface from reaction with components in the electrolyte. In some cases, the ions may be nitrogen ions and a lithium nitride layer may be formed on the lithium metal surface. In other embodiments, the protective layer may be formed by converting lithium to lithium nitride at high pressures. Other methods for forming protective layers are also provided.

  7. In Situ Analysis of Gas Generation in Lithium-Ion Batteries with Different Carbonate-Based Electrolytes.

    PubMed

    Teng, Xin; Zhan, Chun; Bai, Ying; Ma, Lu; Liu, Qi; Wu, Chuan; Wu, Feng; Yang, Yusheng; Lu, Jun; Amine, Khalil

    2015-10-21

    Gas generation in lithium-ion batteries is one of the critical issues limiting their safety performance and lifetime. In this work, a set of 900 mAh pouch cells were applied to systematically compare the composition of gases generated from a serial of carbonate-based composite electrolytes, using a self-designed gas analyzing system. Among electrolytes used in this work, the composite γ-butyrolactone/ethyl methyl carbonate (GBL/EMC) exhibited remarkably less gassing because of the electrochemical stability of the GBL, which makes it a promising electrolyte for battery with advanced safety and lifetime.

  8. Thermochemistry of tantalum-wall cooling system with lithium and sodium working fluids

    NASA Technical Reports Server (NTRS)

    Tower, L. K.

    1972-01-01

    Plots are presented which show the distribution of oxygen between liquid lithium and tantalum or niobium, and between liquid sodium and tantalum at elevated temperatures. Additional plots showing the composition of the gas phase above the solutions of oxygen and alkali metal are presented. The use of the plots is illustrated by an example tantalum heat pipe filled with lithium.

  9. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 1: Objectives, summary results and introduction

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    The objective was to determine which reactor, conversion, and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. Specifically, the requirement was 10 megawatts for 5 years of full power operation and 10 years systems life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study. The concepts are: a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heat pipe and pumped tube-fin heat rejection; a lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator; a lithium cooled reactor with potassium Rankine turbine-alternator and heat pipe radiator; and a lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the lithium cooled incore thermionic reactor with heat pipe radiator.

  10. Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud.

    PubMed

    Howk, J Christopher; Lehner, Nicolas; Fields, Brian D; Mathews, Grant J

    2012-09-06

    The primordial abundances of light elements produced in the standard theory of Big Bang nucleosynthesis (BBN) depend only on the cosmic ratio of baryons to photons, a quantity inferred from observations of the microwave background. The predicted primordial (7)Li abundance is four times that measured in the atmospheres of Galactic halo stars. This discrepancy could be caused by modification of surface lithium abundances during the stars' lifetimes or by physics beyond the Standard Model that affects early nucleosynthesis. The lithium abundance of low-metallicity gas provides an alternative constraint on the primordial abundance and cosmic evolution of lithium that is not susceptible to the in situ modifications that may affect stellar atmospheres. Here we report observations of interstellar (7)Li in the low-metallicity gas of the Small Magellanic Cloud, a nearby galaxy with a quarter the Sun's metallicity. The present-day (7)Li abundance of the Small Magellanic Cloud is nearly equal to the BBN predictions, severely constraining the amount of possible subsequent enrichment of the gas by stellar and cosmic-ray nucleosynthesis. Our measurements can be reconciled with standard BBN with an extremely fine-tuned depletion of stellar Li with metallicity. They are also consistent with non-standard BBN.

  11. Boson localization and universality in YBa2Cu(3-x)M(x)O(7-delta)

    NASA Technical Reports Server (NTRS)

    Kallio, A.; Apaja, V.; Poykko, S.

    1995-01-01

    We consider a two component mixture of charged fermions on neutralizing background with all sign combinations and arbitrarily small mass ratios. In the two impurity limit for the heavier component we show that the pair forms a bound state for all charge combinations. In the lowest order approximation we derive a closed form expression Veff(r) for the binding potential which has short-range repulsion followed by attraction. In the classical limit, when the mass of embedded particles is large m2 much greater than m, we can calculate from Veff(r) also the cohesive energy E and the bond length R of a metallic crystal such as lithium. The lowest order result is R = 3.1 A, E = -0.9 eV, not entirely different from the experimental result for lithium metal. The same interaction for two holes on a parabolic band with m2 greater than m gives the quantum mechanical bound state which one may interpret as a boson or local pair in the case of high-Te and heavy fermion superconductors. We also show that for compounds of the type YBa2Cu(3 - x)M(x)O(7 - delta) one can understand most of the experimental results for the superconducting and normal states with a single temperature dependent boson breaking function f(T) for each impurity content x governing the decay of bosons into pairing fermions. In the normal state f(T) turns out to be a linear, universal function, independent of the impurity content I and the oxygen content delta. We predict with universality a depression in Tc(x) with slight down bending in agreement with experiment. As a natural consequence of the model the bosons become localized slightly above Tc due to the Wigner crystallization, enhanced with lattice local field minima. The holes remain delocalized with a linearly increasing concentration in the normal state, thus explaining the rising Hall density. The boson localization temperature T(sub BL) shows up as a minimum in the Hall density R(sub ab)(exp -1). We also give explanation for very recently observed scaling of temperature dependent Hall effect in La(2 - x)Sr(x)CuO4.

  12. Boson localization and universality in YBa2Cu(3-x)M(x)O(7-delta)

    NASA Astrophysics Data System (ADS)

    Kallio, A.; Apaja, V.; Poykko, S.

    1995-04-01

    We consider a two component mixture of charged fermions on neutralizing background with all sign combinations and arbitrarily small mass ratios. In the two impurity limit for the heavier component we show that the pair forms a bound state for all charge combinations. In the lowest order approximation we derive a closed form expression Veff(r) for the binding potential which has short-range repulsion followed by attraction. In the classical limit, when the mass of embedded particles is large m2 much greater than m, we can calculate from Veff(r) also the cohesive energy E and the bond length R of a metallic crystal such as lithium. The lowest order result is R = 3.1 A, E = -0.9 eV, not entirely different from the experimental result for lithium metal. The same interaction for two holes on a parabolic band with m2 greater than m gives the quantum mechanical bound state which one may interpret as a boson or local pair in the case of high-Te and heavy fermion superconductors. We also show that for compounds of the type YBa2Cu(3 - x)M(x)O(7 - delta) one can understand most of the experimental results for the superconducting and normal states with a single temperature dependent boson breaking function f(T) for each impurity content x governing the decay of bosons into pairing fermions. In the normal state f(T) turns out to be a linear, universal function, independent of the impurity content I and the oxygen content delta. We predict with universality a depression in Tc(x) with slight down bending in agreement with experiment. As a natural consequence of the model the bosons become localized slightly above Tc due to the Wigner crystallization, enhanced with lattice local field minima. The holes remain delocalized with a linearly increasing concentration in the normal state, thus explaining the rising Hall density. The boson localization temperature T(sub BL) shows up as a minimum in the Hall density R(sub ab)(exp -1). We also give explanation for very recently observed scaling of temperature dependent Hall effect in La(2 - x)Sr(x)CuO4.

  13. Spin correlations and entanglement in partially magnetised ensembles of fermions

    NASA Astrophysics Data System (ADS)

    Thekkadath, G. S.; Jiang, Liang; Thywissen, J. H.

    2016-11-01

    We show that the singlet fraction p s and total magnetisation (or polarisation) m can bound the minimum concurrence in an ensemble of spins. We identify {p}{{s}}\\gt (1-{m}2)/2 as a sufficient and tight condition for bipartite entanglement. Our proof makes no assumptions about the state of the system or symmetry of the particles, and can therefore be used as a witness for spin entanglement between fermions. We discuss the implications for recent experiments in which spin correlations were observed, and the prospect to study entanglement dynamics in the demagnetisation of a cold Fermi gas.

  14. Degenerate stars and gravitational collapse in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Arsiwalla, Xerxes; de Boer, Jan; Papadodimas, Kyriakos; Verlinde, Erik

    2011-01-01

    We construct composite CFT operators from a large number of fermionic primary fields corresponding to states that are holographically dual to a zero temperature Fermi gas in AdS space. We identify a large N regime in which the fermions behave as free particles. In the hydrodynamic limit the Fermi gas forms a degenerate star with a radius determined by the Fermi level, and a mass and angular momentum that exactly matches the boundary calculations. Next we consider an interacting regime, and calculate the effect of the gravitational back-reaction on the radius and the mass of the star using the Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine the "Chandrasekhar limit" beyond which the degenerate star (presumably) undergoes gravitational collapse towards a black hole. This is interpreted on the boundary as a high density phase transition from a cold baryonic phase to a hot deconfined phase.

  15. Lithium Combustion: A Review

    DTIC Science & Technology

    1990-12-01

    42) that is brighter than any of the other alkali metal fires (Reference 36). Combustion of lithium is accompanied by emission of dense, white, opaque...extinguishing alkali metal fires (Reference 64). Application of an inert gas such as argon to a well-established lithium fire was found to be...extinguishers be used against alkali metal fires (References 1, 64); water reacts with explosive violence with alkali metals (References 35, 36). In an

  16. Band and Correlated Insulators of Cold Fermions in a Mesoscopic Lattice

    NASA Astrophysics Data System (ADS)

    Lebrat, Martin; Grišins, Pjotrs; Husmann, Dominik; Häusler, Samuel; Corman, Laura; Giamarchi, Thierry; Brantut, Jean-Philippe; Esslinger, Tilman

    2018-01-01

    We investigate the transport properties of neutral, fermionic atoms passing through a one-dimensional quantum wire containing a mesoscopic lattice. The lattice is realized by projecting individually controlled, thin optical barriers on top of a ballistic conductor. Building an increasingly longer lattice, one site after another, we observe and characterize the emergence of a band insulating phase, demonstrating control over quantum-coherent transport. We explore the influence of atom-atom interactions and show that the insulating state persists as contact interactions are tuned from moderately to strongly attractive. Using bosonization and classical Monte Carlo simulations, we analyze such a model of interacting fermions and find good qualitative agreement with the data. The robustness of the insulating state supports the existence of a Luther-Emery liquid in the one-dimensional wire. Our work realizes a tunable, site-controlled lattice Fermi gas strongly coupled to reservoirs, which is an ideal test bed for nonequilibrium many-body physics.

  17. Method of preparing electrolyte for use in fuel cells

    DOEpatents

    Kinoshita, Kimio; Ackerman, John P.

    1978-01-01

    An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.

  18. Color superfluidity of neutral ultracold fermions in the presence of color-flip and color-orbit fields

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Doga Murat; Sá de Melo, C. A. R.

    2018-02-01

    We describe how color superfluidity is modified in the presence of color-flip and color-orbit fields in the context of ultracold atoms and discuss connections between this problem and that of color superconductivity in quantum chromodynamics. We study the case of s -wave contact interactions between different colors and we identify several superfluid phases, with five being nodal and one being fully gapped. When our system is described in a mixed-color basis, the superfluid order parameter tensor is characterized by six independent components with explicit momentum dependence induced by color-orbit coupling. The nodal superfluid phases are topological in nature and the low-temperature phase diagram of the color-flip field versus the interaction parameter exhibits a pentacritical point, where all five nodal color superfluid phases converge. These results are in sharp contrast to the case of zero color-flip and color-orbit fields, where the system has perfect U(3) symmetry and possesses a superfluid phase that is characterized by fully gapped quasiparticle excitations with a single complex order parameter with no momentum dependence and by inert unpaired fermions representing a nonsuperfluid component. In the latter case, just a crossover between a Bardeen-Cooper-Schrieffer and a Bose-Einstein-condensation superfluid occurs. Furthermore, we analyze the order parameter tensor in a total pseudospin basis, investigate its momentum dependence in the singlet, triplet, and quintet sectors, and compare the results with the simpler case of spin-1/2 fermions in the presence of spin-flip and spin-orbit fields, where only singlet and triplet channels arise. Finally, we analyze in detail spectroscopic properties of color superfluids in the presence of color-flip and color-orbit fields, such as the quasiparticle excitation spectrum, momentum distribution, and density of states to help characterize all the encountered topological quantum phases, which can be realized in fermionic isotopes of lithium, potassium, and ytterbium atoms with three internal states trapped.

  19. Safety of lithium nickel cobalt aluminum oxide battery packs in transit bus applications : final report.

    DOT National Transportation Integrated Search

    2016-10-01

    The future of mass transportation is clearly moving toward the increased efficiency and greenhouse gas reduction of hybrid and electric vehicles. With the introduction of high-power/high-energy storage devices such as lithium ion battery systems serv...

  20. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 4: Concepts selection, conceptual designs, recommendations

    NASA Technical Reports Server (NTRS)

    Wetch, J. R.

    1988-01-01

    A study was conducted by NASA Lewis Research Center for the Triagency SP-100 program office. The objective was to determine which reactor, conversion and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. The requirement was 10 megawatts for 5 years of full power operation and 10 years system life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study: (1) a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heatpipe and pumped tube fin rejection, (2) a Lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator,(3) a Lithium cooled reactor with a Potassium Rankine turbine-alternator and heat pipe radiator, and (4) a Lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the Lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the Lithium cooled incore thermionic reactor with heat pipe radiator.

  1. Weiss oscillations and particle-hole symmetry at the half-filled Landau level

    NASA Astrophysics Data System (ADS)

    Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael

    2017-06-01

    Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ±e2/2 h at half filling. We study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. We find an approximate "sum rule" obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.

  2. Work distributions of one-dimensional fermions and bosons with dual contact interactions

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zhang, Jingning; Quan, H. T.

    2018-05-01

    We extend the well-known static duality [M. Girardeau, J. Math. Phys. 1, 516 (1960), 10.1063/1.1703687; T. Cheon and T. Shigehara, Phys. Rev. Lett. 82, 2536 (1999), 10.1103/PhysRevLett.82.2536] between one-dimensional (1D) bosons and 1D fermions to the dynamical version. By utilizing this dynamical duality, we find the duality of nonequilibrium work distributions between interacting 1D bosonic (Lieb-Liniger model) and 1D fermionic (Cheon-Shigehara model) systems with dual contact interactions. As a special case, the work distribution of the Tonks-Girardeau gas is identical to that of 1D noninteracting fermionic system even though their momentum distributions are significantly different. In the classical limit, the work distributions of Lieb-Liniger models (Cheon-Shigehara models) with arbitrary coupling strength converge to that of the 1D noninteracting distinguishable particles, although their elementary excitations (quasiparticles) obey different statistics, e.g., the Bose-Einstein, the Fermi-Dirac, and the fractional statistics. We also present numerical results of the work distributions of Lieb-Liniger model with various coupling strengths, which demonstrate the convergence of work distributions in the classical limit.

  3. Weiss oscillations and particle-hole symmetry at the half-filled Landau level

    DOE PAGES

    Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael

    2017-06-15

    Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ± e 2/2h at half filling. Here, we study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015)]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. Wemore » find an approximate “sum rule” obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.« less

  4. Weiss oscillations and particle-hole symmetry at the half-filled Landau level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael

    Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ± e 2/2h at half filling. Here, we study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015)]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. Wemore » find an approximate “sum rule” obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.« less

  5. Schiff Base as Additive for Preventing Gas Evolution in Li4Ti5O12-Based Lithium-Ion Battery.

    PubMed

    Daigle, Jean-Christophe; Asakawa, Yuichiro; Hovington, Pierre; Zaghib, Karim

    2017-11-29

    Lithium titanium oxide (Li 4 Ti 5 O 12 )-based electrodes are very promising for long-life cycle batteries. However, the surface reactivity of Li 4 Ti 5 O 12 in organic electrolytes leading to gas evolution is still a problem that may cause expansion of pouch cells. In this study, we report the use of Schiff base (1,8-diazabicyclo[5.4.0]undec-7-ene) as an additive that prevents gas evolution during cell aging by a new mechanism involving the solid electrolyte interface on the anode surface. The in situ ring opening polymerization of cyclic carbonates occurs during the first cycles to decrease gas evolution by 9.7 vol % without increasing the internal resistance of the battery.

  6. New Forms of Matter in Optical Lattices

    DTIC Science & Technology

    2016-05-19

    Daley, A. M. Läuchli, and P. Zoller Thermal vs. Entanglement Entropy: A Measurement Protocol for Fermionic Atoms with a Quantum Gas Microscope...J. A. Edge, E. Taylor, S. Zhang, S. Trotzky, J. H. Thywissen Transverse Demagnetization Dynamics of a Unitary Fermi Gas Science 344, 722 (2014...Jiang, J Ignacio Cirac, Peter Zoller, Mikhail D Lukin, "Topologically Protected Quantum State Transfer in a Chiral Spin Liquid , "Nature Communications

  7. Development of gas chromatographic methods for the analyses of organic carbonate-based electrolytes

    NASA Astrophysics Data System (ADS)

    Terborg, Lydia; Weber, Sascha; Passerini, Stefano; Winter, Martin; Karst, Uwe; Nowak, Sascha

    2014-01-01

    In this work, novel methods based on gas chromatography (GC) for the investigation of common organic carbonate-based electrolyte systems are presented, which are used in lithium ion batteries. The methods were developed for flame ionization detection (FID), mass spectrometric detection (MS). Further, headspace (HS) sampling for the investigation of solid samples like electrodes is reported. Limits of detection are reported for FID. Finally, the developed methods were applied to the electrolyte system of commercially available lithium ion batteries as well as on in-house assembled cells.

  8. Recent improvements of the JET lithium beam diagnostica)

    NASA Astrophysics Data System (ADS)

    Brix, M.; Dodt, D.; Dunai, D.; Lupelli, I.; Marsen, S.; Melson, T. F.; Meszaros, B.; Morgan, P.; Petravich, G.; Refy, D. I.; Silva, C.; Stamp, M.; Szabolics, T.; Zastrow, K.-D.; Zoletnik, S.; JET-EFDA Contributors

    2012-10-01

    A 60 kV neutral lithium diagnostic beam probes the edge plasma of JET for the measurement of electron density profiles. This paper describes recent enhancements of the diagnostic setup, new procedures for calibration and protection measures for the lithium ion gun during massive gas puffs for disruption mitigation. New light splitting optics allow in parallel beam emission measurements with a new double entrance slit CCD spectrometer (spectrally resolved) and a new interference filter avalanche photodiode camera (fast density and fluctuation studies).

  9. Conductivity predictions for the 5/2 fractional quantum Hall state using the composite fermion superconductor model

    NASA Astrophysics Data System (ADS)

    Foster, Kerwin Crayton

    The fractional quantum Hall effect (FQHE) occurs when a two-dimensional electron gas is placed in a strong magnetic field at low temperatures. When this effect occurs the Hall resistance, RH, defined to be the Hall voltage divided by the current, is quantized, with RH = (1/nu)h/ e2 where nu = p/q is the Landau level filling fraction; and p and q are relatively prime integers. For almost all observed FQHE states, q is odd with one notable exception: the nu = 5/2 FQHE state. Understanding the nature of this incompressible even-denominator state is one of the central questions in the theory of the FQHE and is the subject of this Dissertation. We use a powerful theoretical tool for studying the FQHE: composite fermion theory. Composite fermions can be viewed as electrons bound to an even number of magnetic flux quanta. Jain has shown that the FQHE for electrons can be viewed as an integer quantum Hall effect (p = 1) for composite fermions. More recently, Halperin, Lee and Read developed a successful theory of the compressible nu = 1/2 state using composite fermions. There is now compelling theoretical evidence that the 5/2 state is a so-called Moore-Read state---a state which can be viewed as a spin-polarized p-wave superconductor of composite fermions. We have developed a semi-phenomenological description of this state by modifying the Halperin-Lee-Read theory, adding a p-wave pairing interaction between composite fermions by hand. The electromagnetic response functions for the resulting superconducting state of composite fermions are then calculated. We show that these response functions exhibit the expected BCS 'coherence factor' effects, such as the Hebel-Slichter peak. Using the composite fermion response functions, we then calculate the corresponding electronic response functions using Chern-Simons theory. We find that in the electronic response, the most striking coherence factor effects (e.g., the Hebel-Slichter peak) are strongly suppressed. However, the low-temperature o = 2Delta threshold behavior does show clear coherence factor effects. Finally, we use our model to predict the wave-vector and frequency dependence of the longitudinal conductivity, sigmaxx( q, o), which can be measured in surface-acoustic-wave propagation experiments.

  10. Entanglement entropy of one-dimensional gases.

    PubMed

    Calabrese, Pasquale; Mintchev, Mihail; Vicari, Ettore

    2011-07-08

    We introduce a systematic framework to calculate the bipartite entanglement entropy of a spatial subsystem in a one-dimensional quantum gas which can be mapped into a noninteracting fermion system. To show the wide range of applicability of the proposed formalism, we use it for the calculation of the entanglement in the eigenstates of periodic systems, in a gas confined by boundaries or external potentials, in junctions of quantum wires, and in a time-dependent parabolic potential.

  11. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment (LTX)

    NASA Astrophysics Data System (ADS)

    Majeski, Dick

    2016-10-01

    High edge electron temperatures (200 eV or greater) have been measured at the wall-limited plasma boundary in the Lithium Tokamak eXperiment (LTX). High edge temperatures, with flat electron temperature profiles, are a long-predicted consequence of low recycling boundary conditions. The temperature profile in LTX, measured by Thomson scattering, varies by as little as 10% from the plasma axis to the boundary, determined by the lithium-coated high field-side wall. The hydrogen plasma density in the outer scrape-off layer is very low, 2-3 x 1017 m-3 , consistent with a low recycling metallic lithium boundary. The plasma surface interaction in LTX is characterized by a low flux of high energy protons to the lithium PFC, with an estimated Debye sheath potential approaching 1 kV. Plasma-material interactions in LTX are consequently in a novel regime, where the impacting proton energy exceeds the peak in the sputtering yield for the lithium wall. In this regime, further increases in the edge temperature will decrease, rather than increase, the sputtering yield. Despite the high edge temperature, the core impurity content is low. Zeff is 1.2 - 1.5, with a very modest contribution (<0.1) from lithium. So far experiments are transient. Gas puffing is used to increase the plasma density. After gas injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX which includes a 35A, 20 kV neutral beam injector to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. Two beam systems have been loaned to LTX by Tri Alpha Energy. Additional results from LTX, as well as progress on the upgrade - LTX- β - will be discussed. Work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  12. Energetics of a strongly correlated Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shina

    2008-12-15

    The energy of the two-component Fermi gas with the s-wave contact interaction is a simple linear functional of its momentum distribution: E{sub internal}=h{sup 2}{omega}C/4{pi}am+{sigma}{sub k{sigma}}(h{sup 2}k{sup 2}/2m)(n{sub k{sigma}}= -C/k{sup 4}) where the external potential energy is not included, a is the scattering length, {omega} is the volume, n{sub k{sigma}} is the average number of fermions with wave vector k and spin {sigma}, and C{identical_to}lim{sub k{yields}}{sub {infinity}}k{sup 4}n{sub k{up_arrow}}=lim{sub k{yields}}{sub {infinity}}k{sup 4}n{sub k{down_arrow}}. This result is a universal identity. Its proof is facilitated by a novel mathematical idea, which might be of utility in dealing with ultraviolet divergences in quantum fieldmore » theories. Other properties of this Fermi system, including pair correlations and the dimer-fermion scattering length, are also studied.« less

  13. Dense Chern-Simons matter with fermions at large N

    NASA Astrophysics Data System (ADS)

    Geracie, Michael; Goykhman, Mikhail; Son, Dam T.

    2016-04-01

    In this paper we investigate properties of Chern-Simons theory coupled to massive fermions in the large N limit. We demonstrate that at low temperatures the system is in a Fermi liquid state whose features can be systematically compared to the standard phenomenological theory of Landau Fermi liquids. This includes matching microscopically derived Landau parameters with thermodynamic predictions of Landau Fermi liquid theory. We also calculate the exact conductivity and viscosity tensors at zero temperature and finite chemical potential. In particular we point out that the Hall conductivity of an interacting system is not entirely accounted for by the Berry flux through the Fermi sphere. Furthermore, investigation of the thermodynamics in the non-relativistic limit reveals novel phenomena at strong coupling. As the 't Hooft coupling λ approaches 1, the system exhibits an extended intermediate temperature regime in which the thermodynamics is described by neither the quantum Fermi liquid theory nor the classical ideal gas law. Instead, it can be interpreted as a weakly coupled quantum Bose gas.

  14. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    NASA Astrophysics Data System (ADS)

    Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.

    2014-10-01

    Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.

  15. METHOD FOR PRODUCING ISOTOPIC METHANES FROM LITHIUM CARBONATE AND LITHIUM HYDRIDE

    DOEpatents

    Frazer, J.W.

    1959-10-27

    A process is descrlbed for the production of methane and for the production of methane containing isotopes of hydrogen and/or carbon. Finely divided lithium hydrlde and litldum carbonate reactants are mixed in intimate contact and subsequently compacted under pressures of from 5000 to 60,000 psl. The compacted lithium hydride and lithium carbenate reactunts are dispised in a gas collecting apparatus. Subsequently, the compact is heated to a temperature in the range 350 to 400 deg C whereupon a solid-solid reaction takes place and gaseous methane is evolved. The evolved methane is contaminated with gaseous hydrogen and a very small amount of CO/sub 2/; however, the desired methane product is separated from sald impurities by well known chemical processes, e.g., condensation in a cold trap. The product methane contalns isotopes of carbon and hydrogen, the Isotopic composition being determined by the carbon isotopes originally present In the lithium carbonate and the hydrogen isotopes originally present in the lithium hydride.

  16. Lithium Circuit Test Section Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Godfroy, Thomas; Garber, Anne

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper will discuss the overall system design and build and the component testing findings.

  17. Lithium Circuit Test Section Design and Fabrication

    NASA Astrophysics Data System (ADS)

    Godfroy, Thomas; Garber, Anne; Martin, James

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  18. Exfoliated, Nitrogen-Doped Graphene Nanosheet Cathode for Lithium-Oxygen Batteries

    DTIC Science & Technology

    2014-06-01

    scanning electron microscopy; oxygen reduction reaction; cyclic voltammetry ; lithium-oxygen battery. Introduction The continuous...77 K (Micromeritics ASAP 2020). The porosity of cathode material was characterized by a gas pycnometer (Micromeritis, Accu Pyc II 1340). Cyclic ... voltammetry (CV) and galvanostatic charge-discharge measurements of the specimens were conducted using a computer controlled VersaSTAT 4 (Princeton

  19. Fractional Quantization of the Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-02-27

    The Fractional Quantum Hall Effect is caused by the condensation of a two-dimensional electron gas in a strong magnetic field into a new type of macroscopic ground state, the elementary excitations of which are fermions of charge 1/m, where m is an odd integer. A mathematical description is presented.

  20. Thermal oxidation synthesis hollow MoO{sub 3} microspheres and their applications in lithium storage and gas-sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xinyu; School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003; Cao, Minhua, E-mail: caomh@bit.edu.cn

    2013-06-01

    Graphical abstract: MoO{sub 3} hollow microspheres were synthesized via a facile and template-free solvothermal route and subsequent heat treatment in air. The MoO{sub 3} hollow microspheres exhibit an improved lithium storage and gas-sensing performance. Highlights: ► Hollow MoO{sub 3} microspheres were synthesized by thermal oxidation of hollow MoO{sub 2}. ► The MoO{sub 3} hollow microspheres have a relatively high specific surface area. ► The MoO{sub 3} hollow microspheres exhibit improved lithium storage performance. ► The MoO{sub 3} hollow microspheres show good responses to ammonia gas. - Abstract: In this paper, MoO{sub 3} hollow microspheres were synthesized via a facile andmore » template-free solvothermal route and subsequent heat treatment in air. The MoO{sub 3} hollow microspheres have a relatively high specific surface area, and with such a feature, the as-synthesized MoO{sub 3} hollow microspheres have potential applications in Li-ion battery and gas-sensor. When tested as a Li-storage anode material, the MoO{sub 3} hollow microspheres show a higher discharge capacity of 1377.1 mA h g{sup −1} in the first discharge and a high reversible capacity of 780 mA h g{sup −1} after 100 cycles at a rate of 1 C. Furthermore, as a gas sensing material, the MoO{sub 3} hollow microspheres exhibit an improved sensitivity and short response/recovery time to trace levels of ammonia gas.« less

  1. Vented target elements for use in an isotope-production reactor. [LMFBR

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium gas in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins equipped with vents, and tritium gas is recovered from the coolant.

  2. Carbon Dioxide Absorbers: An Engaging Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Ticich, Thomas M.

    2011-01-01

    A simple and direct method for measuring the absorption of carbon dioxide by two different substances is described. Lithium hydroxide has been used for decades to remove the gas from enclosed living spaces, such as spacecraft and submarines. The ratio of the mass of carbon dioxide absorbed to the mass of lithium hydroxide used obtained from this…

  3. The Chemical Compositions of the SRD Variable Stars. III. KK Aquilae, AG Aurigae, Z Aurigae, W Leo Minoris, and WW Tauri

    NASA Astrophysics Data System (ADS)

    Giridhar, Sunetra; Lambert, David L.; Gonzalez, Guillermo

    2000-12-01

    Chemical compositions are derived from high-resolution spectra for five field SRd variables. These supergiants not previously analyzed are shown to be metal poor: KK Aql with [Fe/H]=-1.2, AG Aur with [Fe/H]=-1.8, Z Aur with [Fe/H]=-1.4, W LMi with [Fe/H]=-1.1, and WW Tau with [Fe/H]=-1.1. Their compositions are, except for two anomalies, identical to within the measurement errors to the compositions of subdwarfs, subgiants, and less evolved giants of the same [Fe/H]. One anomaly is an s-process enrichment for KK Aql, the first such enrichment reported for an SRd variable. The second and more remarkable anomaly is a strong lithium enrichment for W LMi, also a first for field SRd variables. The Li I λ6707 profile is not simply that of a photospheric line but includes strong absorption from redshifted gas, suggesting, perhaps, that lithium enrichment results from accretion of Li-rich gas. This potential clue to lithium enrichment is discussed in light of various proposals for lithium synthesis in evolved stars.

  4. Improved Thermal Stability of Lithium-Rich Layered Oxide by Fluorine Doping.

    PubMed

    Kapylou, Andrei; Song, Jay Hyok; Missiul, Aleksandr; Ham, Dong Jin; Kim, Dong Han; Moon, San; Park, Jin Hwan

    2018-01-05

    The thermal stability of lithium-rich layered oxide with the composition Li(Li 1/6 Ni 1/6 Co 1/6 Mn 1/2 )O 2-x F x (x=0.00 and 0.05) is evaluated for use as a cathode material in lithium-ion batteries. Thermogravimetric analysis, evolved gas analysis, and differential scanning calorimetry show that, upon fluorine doping, degradation of the lithium-rich layered oxides commences at higher temperatures and the exothermic reaction is suppressed. Hot box tests also reveal that the prismatic cell with the fluorine-doped powder does not explode, whereas that with the undoped one explodes at about 135 °C with a sudden temperature increase. XRD analysis indicates that fluorine doping imparts the lithium-rich layered oxide with better thermal stability by mitigating oxygen release at elevated temperatures that cause an exothermic reaction with the electrolyte. The origin of the reduced oxygen release from the fluorinated lithium-rich layered oxide is also discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Lithium ion battery with improved safety

    DOEpatents

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  6. Quantum transport of two-species Dirac fermions in dual-gated three-dimensional topological insulators

    DOE PAGES

    Xu, Yang; Miotkowski, Ireneusz; Chen, Yong P.

    2016-05-04

    Topological insulators are a novel class of quantum matter with a gapped insulating bulk, yet gapless spin-helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe 2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conductance quantum at themore » double Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction, respectively. As a result, such a system paves the way to explore rich physics, ranging from topological magnetoelectric effects to exciton condensation.« less

  7. Cores in Dwarf Galaxies from Fermi Repulsion

    NASA Astrophysics Data System (ADS)

    Randall, Lisa; Scholtz, Jakub; Unwin, James

    2017-05-01

    We show that Fermi repulsion can lead to cored density profiles in dwarf galaxies for sub-keV fermionic dark matter. We treat the dark matter as a quasi-degenerate self-gravitating Fermi gas and calculate its density profile assuming hydrostatic equilibrium. We find that suitable dwarf galaxy cores of size ≳130 pc can be achieved for fermion dark matter with mass in the range of 70-400 eV. While in conventional dark matter scenarios such sub-keV thermal dark matter would be excluded by free streaming bounds, the constraints are ameliorated in models with dark matter at a lower temperature than conventional thermal scenarios, such as the Flooded Dark Matter model that we have previously considered. Modifying the arguments of Tremaine and Gunn, we derive a conservative lower bound on the mass of fermionic dark matter of 70 eV and a stronger lower bound from Lymanα clouds of about 470 eV, leading to slightly smaller cores than have been observed. We comment on this result and how the tension is relaxed in dark matter scenarios with non-thermal momentum distributions.

  8. Threshold singularities in a Fermi gas with attractive potential in one dimension

    DOE PAGES

    Schlottmann, P.; Zvyagin, A. A.

    2015-01-15

    We consider the one-dimensional gas of fermions with spin S interacting via an attractive δ-function potential using the Bethe Ansatz solution. In zero magnetic field the atoms form bound states of N=2S + 1 fermions, i.e. generalized Cooper states with each atom having a different spin component. For low energy excitations the system is a Luttinger liquid and is properly described by a conformal field theory with conformal charge c=1. The linear dispersion of a Luttinger liquid is asymptotically exact in the low-energy limit where the band curvature terms in the dispersion are irrelevant. For higher energy excitations, however, themore » spectral function displays deviations in the neighborhood of the single-particle (hole) energy, which can be described by an effective X-ray edge type model. Using the Bethe Ansatz solution we obtain expressions for the critical exponents for the single-particle (hole) Green’s function. This model can be relevant in the context of ultracold atoms with effective total spin S confined to an elongated optical trap.« less

  9. Numerical analysis of spin-orbit-coupled one-dimensional Fermi gas in a magnetic field

    NASA Astrophysics Data System (ADS)

    Chan, Y. H.

    2015-06-01

    Based on the density-matrix renormalization group and the infinite time-evolving block decimation methods we study the interacting spin-orbit-coupled 1D Fermi gas in a transverse magnetic field. We find that the system with an attractive interaction can have a polarized insulator phase, a superconducting (SC) phase, a Luther-Emery (LE) phase, and a band insulator phase as we vary the chemical potential and the strength of the magnetic field. Spin-orbit coupling (SOC) enhances the triplet pairing order at zero momentum in both the SC and the LE phase, which leads to an algebraically decaying correlation with the same exponent as that of the singlet pairing one. In contrast to the Fulde-Ferrell-Larkin-Ovchinnikov phase found in the spin imbalanced system without SOC, pairings at finite momentum in these two phases have larger exponents hence do not dictate the long-range behavior. We also test for the presence of Majorana fermions in this system. Unlike results from the mean-field study, we do not find positive evidence of Majorana fermions.

  10. Dense Chern-Simons matter with fermions at large N

    DOE PAGES

    Geracie, Michael; Goykhman, Mikhail; Son, Dam T.

    2016-04-18

    In this paper we investigate properties of Chern-Simons theory coupled to massive fermions in the large N limit. We demonstrate that at low temperatures the system is in a Fermi liquid state whose features can be systematically compared to the standard phenomenological theory of Landau Fermi liquids. This includes matching microscopically derived Landau parameters with thermodynamic predictions of Landau Fermi liquid theory. We also calculate the exact conductivity and viscosity tensors at zero temperature and finite chemical potential. In particular we point out that the Hall conductivity of an interacting system is not entirely accounted for by the Berry fluxmore » through the Fermi sphere. Furthermore, investigation of the thermodynamics in the non-relativistic limit reveals novel phenomena at strong coupling. Furthermore, as the ’t Hooft coupling λ approaches 1, the system exhibits an extended intermediate temperature regime in which the thermodynamics is described by neither the quantum Fermi liquid theory nor the classical ideal gas law. Instead, it can be interpreted as a weakly coupled quantum Bose gas.« less

  11. Flammability limits of lithium-ion battery thermal runaway vent gas in air and the inerting effects of halon 1301

    NASA Astrophysics Data System (ADS)

    Karp, Matthew Eugene

    Lithium-ion (rechargeable) and lithium-metal (non-rechargeable) battery cells put aircraft at risk of igniting and fueling fires. Lithium batteries can be packed in bulk and shipped in the cargo holds of freighter aircraft; currently lithium batteries are banned from bulk shipment on passenger aircraft [1]. The federally regulated Class C cargo compartment extinguishing system's utilization of a 5 %vol Halon 1301 knockdown concentration and a sustained 3 %vol Halon 1301 may not be sufficient at inerting lithium-ion battery vent gas and air mixtures [2]. At 5 %vol Halon 1301 the flammability limits of lithium-ion premixed battery vent gas (Li-Ion pBVG) in air range from 13.80 %vol to 26.07 %vol Li-Ion pBVG. Testing suggests that 8.59 %vol Halon 1301 is required to render all ratios of the Li-Ion pBVG in air inert. The lower flammability limit (LFL) and upper flammability limit (UFL) of hydrogen and air mixtures are 4.95 %vol and 76.52 %vol hydrogen, respectively. With the addition of 10 %vol and 20 %vol Halon 1301 the LFL is 9.02 %vol and 11.55 %vol hydrogen, respectively, and the UFL is 45.70 %vol and 28.39 %vol hydrogen, respectively. The minimum inerting concentration (MIC) of Halon 1301 in hydrogen and air mixtures is 26.72 %vol Halon 1301 at 16.2 %vol hydrogen. The LFL and UFL of Li-Ion pBVG and air mixtures are 7.88 %vol and 37.14 %vol Li-Ion pBVG, respectively. With the addition of 5 %vol, 7 %vol, and 8 %vol Halon 1301 the LFL is 13.80 %vol, 16.15 %vol, and 17.62 % vol Li-Ion pBVG, respectively, and the UFL is 26.07 %vol, 23.31 %vol, and 21.84 %vol Li- Ion pBVG, respectively. The MIC of Halon 1301 in Li-Ion pBVG and air mixtures is 8.59 %vol Halon 1301 at 19.52 %vol Li-Ion pBVG. Le Chatelier's mixing rule has been shown to be an effective measure for estimating the flammability limits of Li-Ion pBVGes. The LFL has a 1.79 % difference while the UFL has a 4.53 % difference. The state of charge (SOC) affects the flammability limits in an apparent parabolic manner, where the widest flammability limits are at or near 100 % SOC. [1] IATA. Lithium Battery Guidance Document. 7 Jan. 2016. Guidance for complying with provisions applicable to the transport by air of lithium batteries as set out in the 57th Edition of the IATA Dangerous Goods Regulations (DGR). [2] Webster, Harry. Flammability assessment of bulk-packed, rechargeable lithium-ion cells in transport category aircraft. Office of Aviation Research, Federal Aviation Administration, 2006.

  12. Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries

    DOE PAGES

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit; ...

    2017-07-01

    Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less

  13. Engineering Redox Potential of Lithium Clusters for Electrode Material in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nanda, Jagjit

    Low negative electrode potential and high reactivity makes lithium (Li) ideal candidate for obtaining highest possible energy density among other materials. Here, we show a novel route with which the overall electrode potential could significantly be enhanced through selection of cluster size. In using first principles density functional theory and continuum dielectric model, we studied free energy and redox potential as well as investigated relative stability of Li n (n ≤ 8) clusters in both gas phase and solution. We found that Li 3 has the lowest negative redox potential (thereby highest overall electrode potential) suggesting that cluster based approachmore » could provide a novel way of engineering the next generation battery technology. The microscopic origin of Li 3 cluster’s superior performance is related to two major factors: gas phase ionization and difference between solvation free energy for neutral and positive ion. Taken together, our study provides insight into the engineering of redox potential in battery and could stimulate further work in this direction.« less

  14. Enabling the high capacity of lithium-rich anti-fluorite lithium iron oxide by simultaneous anionic and cationic redox

    NASA Astrophysics Data System (ADS)

    Zhan, Chun; Yao, Zhenpeng; Lu, Jun; Ma, Lu; Maroni, Victor A.; Li, Liang; Lee, Eungje; Alp, Esen E.; Wu, Tianpin; Wen, Jianguo; Ren, Yang; Johnson, Christopher; Thackeray, Michael M.; Chan, Maria K. Y.; Wolverton, Chris; Amine, Khalil

    2017-12-01

    Anionic redox reactions in cathodes of lithium-ion batteries are allowing opportunities to double or even triple the energy density. However, it is still challenging to develop a cathode, especially with Earth-abundant elements, that enables anionic redox activity for real-world applications, primarily due to limited strategies to intercept the oxygenates from further irreversible oxidation to O2 gas. Here we report simultaneous iron and oxygen redox activity in a Li-rich anti-fluorite Li5FeO4 electrode. During the removal of the first two Li ions, the oxidation potential of O2- is lowered to approximately 3.5 V versus Li+/Li0, at which potential the cationic oxidation occurs concurrently. These anionic and cationic redox reactions show high reversibility without any obvious O2 gas release. Moreover, this study provides an insightful guide to designing high-capacity cathodes with reversible oxygen redox activity by simply introducing oxygen ions that are exclusively coordinated by Li+.

  15. Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jie; Liao, Lei; Shi, Feifei

    Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. Formore » lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm 2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O 2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li xSi can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li xSi to be stable in humid air (~40% relative humidity). Furthermore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.« less

  16. Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability

    DOE PAGES

    Zhao, Jie; Liao, Lei; Shi, Feifei; ...

    2017-07-26

    Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine gas, by using a fluoropolymer, CYTOP, as the precursor. The process is effectively a “reaction in the beaker”, avoiding direct handling of highly toxic fluorine gas. Formore » lithium metal, this LiF coating serves as a chemically stable and mechanically strong interphase, which minimizes the corrosion reaction with carbonate electrolytes and suppresses dendrite formation, enabling dendrite-free and stable cycling over 300 cycles with current densities up to 5 mA/cm 2. Lithiated silicon can serve as either a pre-lithiation additive for existing lithium-ion batteries or a replacement for lithium metal in Li–O 2 and Li–S batteries. However, lithiated silicon reacts vigorously with the standard slurry solvent N-methyl-2-pyrrolidinone (NMP), indicating it is not compatible with the real battery fabrication process. With the protection of crystalline and dense LiF coating, Li xSi can be processed in anhydrous NMP with a high capacity of 2504 mAh/g. With low solubility of LiF in water, this protection layer also allows Li xSi to be stable in humid air (~40% relative humidity). Furthermore, this facile surface fluorination process brings huge benefit to both the existing lithium-ion batteries and next-generation lithium metal batteries.« less

  17. In-operando high-speed tomography of lithium-ion batteries during thermal runaway

    PubMed Central

    Finegan, Donal P.; Scheel, Mario; Robinson, James B.; Tjaden, Bernhard; Hunt, Ian; Mason, Thomas J.; Millichamp, Jason; Di Michiel, Marco; Offer, Gregory J.; Hinds, Gareth; Brett, Dan J.L.; Shearing, Paul R.

    2015-01-01

    Prevention and mitigation of thermal runaway presents one of the greatest challenges for the safe operation of lithium-ion batteries. Here, we demonstrate for the first time the application of high-speed synchrotron X-ray computed tomography and radiography, in conjunction with thermal imaging, to track the evolution of internal structural damage and thermal behaviour during initiation and propagation of thermal runaway in lithium-ion batteries. This diagnostic approach is applied to commercial lithium-ion batteries (LG 18650 NMC cells), yielding insights into key degradation modes including gas-induced delamination, electrode layer collapse and propagation of structural degradation. It is envisaged that the use of these techniques will lead to major improvements in the design of Li-ion batteries and their safety features. PMID:25919582

  18. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  19. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    DOE PAGES

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; ...

    2018-01-31

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  20. Experimental level densities of atomic nuclei

    DOE PAGES

    Guttormsen, M.; Aiche, M.; Bello Garrote, F. L.; ...

    2015-12-23

    It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. Furthermore, trom the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least upmore » to the neutron threshold.« less

  1. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    NASA Astrophysics Data System (ADS)

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold

    2018-02-01

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7 p electronic shell becomes so large (˜10 eV ) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. This effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  2. Lithium-functionalized germanene: A promising media for CO2 capture

    NASA Astrophysics Data System (ADS)

    Mehdi Aghaei, S.; Monshi, M. M.; Torres, I.; Banakermani, M.; Calizo, I.

    2018-02-01

    Density functional theory (DFT) is employed to investigate the interactions of CO2 gas molecules with pristine and lithium-functionalized germanene. It is discovered that although a single CO2 molecule is weakly physisorbed on pristine germanene, a significant improvement on its adsorption energy is found by utilizing Li-functionalized germanene as the adsorbent. Excitingly, the moderate adsorption energy at high CO2 coverage secures an easy release step. Moreover, the structure of Li-functionalized germanene can be fully recovered after removal of CO2 gas molecules. Our results suggest that Li-functionalized germanene show promise for CO2 sensing and capture with a storage capacity of 12.57 mol/kg.

  3. Propagation of a Chemical Reaction through Heterogeneous Lithium- Polytetrafluoroethylene Mixtures

    DTIC Science & Technology

    1975-12-11

    Condensed Phases ........... ............... 9 1.2.1 Lithium-Gas Surface Reactions. .......... 10 1.2.2 Composite Solid Propellant Combustion. . .. 13...f:- the o:cu:=ence _A a surface reaction was developed, but no analyti7al reaction zate model was presented- 1.2.2 Composite S’-lid Propellant...Combustion Composite solid propellants are plastic-like materials consisting of small oxidizer particles embedded in a fuel matrix. Ammonium perchlorate is

  4. KSC-2009-2872

    NASA Image and Video Library

    2009-04-28

    CAPE CANAVERAL, Fla. –– On display at NASA's Kennedy Space Center in Florida is one of the variety of alternative fuel vehicles driven around the center in an effort to reduce gasoline consumption and conserve energy. This car is a LiV Dash, a lithium vehicle Smart Car that uses lithium batteries. The other vehicles include compressed natural gas, bi-fuel, diesel fuel and flex fuel vehicles. Photo credit: NASA/Jim Grossmann

  5. Lithium vapor/aerosol studies. Interim summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlow, G.A.; Bauerle, J.E.; Down, M.G.

    1979-04-01

    The temperature/cover gas pressure regime, in which detectable lithium aerosol is formed in a static system has been mapped for argon and helium cover gases using a portable He--Ne laser device. At 538/sup 0/C (1000/sup 0/F), lithium aerosol particles were observed over the range 0.5 to 20 torr and 2 to 10 torr for argon and helium respectively. The experimental conditions in this study were more conducive to aerosol formation than in a fusion reactor. In the real reactor system, very high intensity mechanical and thermal disturbances will be made to the liquid lithium. These disturbances, particularly transient increases inmore » lithium vapor pressure appear to be capable of producing high concentrations of optically-dense aerosol. A more detailed study is, therefore, proposed using the basic information generated in these preliminary experiments, as a starting point. Areas recommended include the kinetics of aerosol formation and the occurrence of supersaturated vapor during rapid vapor pressure transients, and also the effect of lithium agitation (falls, jets, splashing, etc.) on aerosol formation.« less

  6. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander Pigarov

    2012-06-05

    This is the final report for the Research Grant DE-FG02-08ER54989 'Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts'. The UCSD group including: A.Yu. Pigarov (PI), S.I. Krasheninnikov and R.D. Smirnov, was working on modeling of the impact of lithium coatings on edge plasma parameters in NSTX with the multi-species multi-fluid code UEDGE. The work was conducted in the following main areas: (i) improvements of UEDGE model for plasma-lithium interactions, (ii) understanding the physics of low-recycling divertor regime in NSTX caused by lithium pumping, (iii) study of synergistic effects with lithium coatings andmore » non-diffusive ballooning-like cross-field transport, (iv) simulation of experimental multi-diagnostic data on edge plasma with lithium pumping in NSTX via self-consistent modeling of D-Li-C plasma with UEDGE, and (v) working-gas balance analysis. The accomplishments in these areas are given in the corresponding subsections in Section 2. Publications and presentations made under the Grant are listed in Section 3.« less

  7. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majeski, R.; Bell, R. E.; Boyle, D. P.

    We measured high edge electron temperatures (200 eV or greater) at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 x 10(17) m(-3), consistent with a low recycling metallic lithium boundary. In spite of the high edge temperature, the core impurity content is low. Z(eff) is estimated to be similar to 1.2, with a very modest contribution (< 0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gasmore » injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-beta, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-beta is briefly described.« less

  8. Compatibility of lithium plasma-facing surfaces with high edge temperatures in the Lithium Tokamak Experiment

    DOE PAGES

    Majeski, R.; Bell, R. E.; Boyle, D. P.; ...

    2017-03-20

    We measured high edge electron temperatures (200 eV or greater) at the wall-limited plasma boundary in the Lithium Tokamak Experiment (LTX). Flat electron temperature profiles are a long-predicted consequence of low recycling boundary conditions. Plasma density in the outer scrape-off layer is very low, 2-3 x 10(17) m(-3), consistent with a low recycling metallic lithium boundary. In spite of the high edge temperature, the core impurity content is low. Z(eff) is estimated to be similar to 1.2, with a very modest contribution (< 0.1) from lithium. Experiments are transient. Gas puffing is used to increase the plasma density. After gasmore » injection stops, the discharge density is allowed to drop, and the edge is pumped by the low recycling lithium wall. An upgrade to LTX-LTX-beta, which includes a 35A, 20 kV neutral beam injector (on loan to LTX from Tri-Alpha Energy) to provide core fueling to maintain constant density, as well as auxiliary heating, is underway. LTX-beta is briefly described.« less

  9. Dynamical Disentangling and Cooling of Atoms in Bilayer Optical Lattices

    NASA Astrophysics Data System (ADS)

    Kantian, A.; Langer, S.; Daley, A. J.

    2018-02-01

    We show how experimentally available bilayer lattice systems can be used to prepare quantum many-body states with exceptionally low entropy in one layer, by dynamically disentangling the two layers. This disentangling operation moves one layer—subsystem A —into a regime where excitations in A develop a single-particle gap. As a result, this operation maps directly to cooling for subsystem A , with entropy being shuttled to the other layer. For both bosonic and fermionic atoms, we study the corresponding dynamics showing that disentangling can be realized cleanly in ongoing experiments. The corresponding entanglement entropies are directly measurable with quantum gas microscopes, and, as a tool for producing lower-entropy states, this technique opens a range of applications beginning with simplifying production of magnetically ordered states of bosons and fermions.

  10. Crossover between few and many fermions in a harmonic trap

    NASA Astrophysics Data System (ADS)

    Grining, Tomasz; Tomza, Michał; Lesiuk, Michał; Przybytek, Michał; Musiał, Monika; Moszynski, Robert; Lewenstein, Maciej; Massignan, Pietro

    2015-12-01

    The properties of a balanced two-component Fermi gas in a one-dimensional harmonic trap are studied by means of the coupled-cluster method. For few fermions we recover the results of exact diagonalization, yet with this method we are able to study much larger systems. We compute the energy, the chemical potential, the pairing gap, and the density profile of the trapped clouds, smoothly mapping the crossover between the few-body and many-body limits. The energy is found to converge surprisingly rapidly to the many-body result for every value of the interaction strength. Many more particles are instead needed to give rise to the nonanalytic behavior of the pairing gap, and to smoothen the pronounced even-odd oscillations of the chemical potential induced by the shell structure of the trap.

  11. Lithium in M67

    NASA Technical Reports Server (NTRS)

    Hobbs, L. M.; Pilachowski, Catherine

    1986-01-01

    Echelle spectra recorded at the Li I 6707-A line are reported for seven main-sequence members and one cool subgiant in M67. The spectral types of the seven dwarfs studied range from about F8 at the turnoff point to about G5. The principal result is that the average lithium abundance in the three hottest main-sequence stars is 0.45 x 10 to the -9th. Any enrichment of lithium in the gas of the Galactic disk in the last 5 Gyr therefore has not exceeded a factor of about two and probably is entirely negligible, when the corresponding results for NGC 752 and the Hyades are taken into account.

  12. Pharmacometabolomic Signature of Ataxia SCA1 Mouse Model and Lithium Effects

    PubMed Central

    Wikoff, William R.; Gatchel, Jennifer R.; Wang, Lu; Barupal, Dinesh K.; Crespo-Barreto, Juan; Fiehn, Oliver

    2013-01-01

    We have shown that lithium treatment improves motor coordination in a spinocerebellar ataxia type 1 (SCA1) disease mouse model (Sca1154Q/+). To learn more about disease pathogenesis and molecular contributions to the neuroprotective effects of lithium, we investigated metabolomic profiles of cerebellar tissue and plasma from SCA1-model treated and untreated mice. Metabolomic analyses of wild-type and Sca1154Q/+ mice, with and without lithium treatment, were performed using gas chromatography time-of-flight mass spectrometry and BinBase mass spectral annotations. We detected 416 metabolites, of which 130 were identified. We observed specific metabolic perturbations in Sca1154Q/+ mice and major effects of lithium on metabolism, centrally and peripherally. Compared to wild-type, Sca1154Q/+ cerebella metabolic profile revealed changes in glucose, lipids, and metabolites of the tricarboxylic acid cycle and purines. Fewer metabolic differences were noted in Sca1154Q/+ mouse plasma versus wild-type. In both genotypes, the major lithium responses in cerebellum involved energy metabolism, purines, unsaturated free fatty acids, and aromatic and sulphur-containing amino acids. The largest metabolic difference with lithium was a 10-fold increase in ascorbate levels in wild-type cerebella (p<0.002), with lower threonate levels, a major ascorbate catabolite. In contrast, Sca1154Q/+ mice that received lithium showed no elevated cerebellar ascorbate levels. Our data emphasize that lithium regulates a variety of metabolic pathways, including purine, oxidative stress and energy production pathways. The purine metabolite level, reduced in the Sca1154Q/+ mice and restored upon lithium treatment, might relate to lithium neuroprotective properties. PMID:23936457

  13. Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    DeSalvo, B. J.; Patel, Krutik; Johansen, Jacob; Chin, Cheng

    2017-12-01

    We report on the formation of a stable quantum degenerate mixture of fermionic 6Li and bosonic 133Cs in an optical trap by sympathetic cooling near an interspecies Feshbach resonance. New regimes of quantum degenerate Bose-Fermi mixtures are identified. With moderate attractive interspecies interactions, we show that a degenerate Fermi gas of Li can be fully confined in a Cs Bose-Einstein condensate without external potentials. For stronger attraction where mean-field collapse is expected, no such instability is observed. Potential mechanisms to explain this phenomenon are discussed.

  14. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    NASA Astrophysics Data System (ADS)

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g-1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  15. Influence of the concentration of CO2 and SO2 on the absorption of CO2 by a lithium orthosilicate-based absorbent.

    PubMed

    Pacciani, R; Torres, J; Solsona, P; Coe, C; Quinn, R; Hufton, J; Golden, T; Vega, L F

    2011-08-15

    A novel, high temperature solid absorbent based on lithium orthosilicate (Li(4)SiO(4)) has shown promise for postcombustion CO(2) capture. Previous studies utilizing a clean, synthetic flue gas have shown that the absorbent has a high CO(2) capacity, >25 wt %, along with high absorption rates, lower heat of absorption and lower regeneration temperature than other solids such as calcium oxide. The current effort was aimed at evaluating the Li(4)SiO(4) based absorbent in the presence of contaminants found in typical flue gas, specifically SO(2), by cyclic exposure to gas mixtures containing CO(2), H(2)O (up to 25 vol. %), and SO(2) (up to 0.95 vol. %). In the absence of SO(2), a stable CO(2) capacity of ∼ 25 wt % over 25 cycles at 550 °C was achieved. The presence of SO(2), even at concentrations as low as 0.002 vol. %, resulted in an irreversible reaction with the absorbent and a decrease in CO(2) capacity. Analysis of SO(2)-exposed samples revealed that the absorbent reacted chemically and irreversibly with SO(2) at 550 °C forming Li(2)SO(4). Thus, industrial application would require desulfurization of flue gas prior to contacting the absorbent. Reactivity with SO(2) is not unique to the lithium orthosilicate material, so similar steps would be required for other absorbents that chemically react with SO(2).

  16. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance.

    PubMed

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-07-04

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe(3+)/Fe(2+) and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m(2 )g(-1)). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage.

  17. Ultradispersed Cobalt Ferrite Nanoparticles Assembled in Graphene Aerogel for Continuous Photo-Fenton Reaction and Enhanced Lithium Storage Performance

    PubMed Central

    Qiu, Bocheng; Deng, Yuanxin; Du, Mengmeng; Xing, Mingyang; Zhang, Jinlong

    2016-01-01

    The Photo-Fenton reaction is an advanced technology to eliminate organic pollutants in environmental chemistry. Moreover, the conversion rate of Fe3+/Fe2+ and utilization rate of H2O2 are significant factors in Photo-Fenton reaction. In this work, we reported three dimensional (3D) hierarchical cobalt ferrite/graphene aerogels (CoFe2O4/GAs) composites by the in situ growing CoFe2O4 crystal seeds on the graphene oxide (GO) followed by the hydrothermal process. The resulting CoFe2O4/GAs composites demonstrated 3D hierarchical pore structure with mesopores (14~18 nm), macropores (50~125 nm), and a remarkable surface area (177.8 m2 g−1). These properties endowed this hybrid with the high and recyclable Photo-Fenton activity for methyl orange pollutant degradation. More importantly, the CoFe2O4/GAs composites can keep high Photo-Fenton activity in a wide pH. Besides, the CoFe2O4/GAs composites also exhibited excellent cyclic performance and good rate capability. The 3D framework can not only effectively prevent the volume expansion and aggregation of CoFe2O4 nanoparticles during the charge/discharge processes for Lithium-ion batteries (LIBs), but also shorten lithium ions and electron diffusion length in 3D pathways. These results indicated a broaden application prospect of 3D-graphene based hybrids in wastewater treatment and energy storage. PMID:27373343

  18. Exceptionally High Proton and Lithium Cation Gas-Phase Basicity of the Anti-Diabetic Drug Metformin.

    PubMed

    Raczyńska, Ewa D; Gal, Jean-François; Maria, Pierre-Charles; Michalec, Piotr; Zalewski, Marcin

    2017-11-16

    Substituted biguanides are known for their biological effect, and a few of them are used as drugs, the most prominent example being metformin (1,1-dimethylbiguanide, IUPAC name: N,N-dimethylimidodicarbonimidic diamide). Because of the presence of hydrogen atoms at the amino groups, biguanides exhibit a multiple tautomerism. This aspect of their structures was examined in detail for unsubstituted biguanide and metformin in the gas phase. At the density functional theory (DFT) level {essentially B3LYP/6-311+G(d,p)}, the most stable structures correspond to the conjugated, push-pull, system (NR 2 )(NH 2 )C═N-C(═NH)NH 2 (R = H, CH 3 ), further stabilized by an internal hydrogen bond. The structural and energetic aspects of protonation and lithium cation adduct formation of biguanide and metformin was examined at the same level of theory. The gas-phase protonation energetics reveal that the more stable tautomer is protonated at the terminal imino C═NH site, still with an internal hydrogen bond maintaining the structure of the neutral system. The calculated proton affinity and gas-phase basicity of the two molecules reach the domain of superbasicity. By contrast, the lithium cation prefers to bind the less stable, not fully conjugated, tautomer (NR 2 )C(═NH)-NH-C(═NH)NH 2 of biguanides, in which the two C═NH groups are separated by NH. This less stable form of biguanides binds Li + as a bidentate ligand, in agreement with what was reported in the literature for other metal cations in the solid phase. The quantitative assessment of resonance in biguanide, in metformin and in their protonated forms, using the HOMED and HOMA indices, reveals an increase in electron delocalization upon protonation. On the contrary, the most stable lithium cation adducts are less conjugated than the stable neutral biguanides, because the metal cation is better coordinated by the not-fully conjugated bidentate tautomer.

  19. High-efficiency and high-power rechargeable lithium–sulfur dioxide batteries exploiting conventional carbonate-based electrolytes

    PubMed Central

    Park, Hyeokjun; Lim, Hee-Dae; Lim, Hyung-Kyu; Seong, Won Mo; Moon, Sehwan; Ko, Youngmin; Lee, Byungju; Bae, Youngjoon; Kim, Hyungjun; Kang, Kisuk

    2017-01-01

    Shedding new light on conventional batteries sometimes inspires a chemistry adoptable for rechargeable batteries. Recently, the primary lithium-sulfur dioxide battery, which offers a high energy density and long shelf-life, is successfully renewed as a promising rechargeable system exhibiting small polarization and good reversibility. Here, we demonstrate for the first time that reversible operation of the lithium-sulfur dioxide battery is also possible by exploiting conventional carbonate-based electrolytes. Theoretical and experimental studies reveal that the sulfur dioxide electrochemistry is highly stable in carbonate-based electrolytes, enabling the reversible formation of lithium dithionite. The use of the carbonate-based electrolyte leads to a remarkable enhancement of power and reversibility; furthermore, the optimized lithium-sulfur dioxide battery with catalysts achieves outstanding cycle stability for over 450 cycles with 0.2 V polarization. This study highlights the potential promise of lithium-sulfur dioxide chemistry along with the viability of conventional carbonate-based electrolytes in metal-gas rechargeable systems. PMID:28492225

  20. Distributed Storage Inverter and Legacy Generator Integration Plus Renewables Solution for Microgrids

    DTIC Science & Technology

    2015-07-01

    Reactive kVAR Kilo Watts kW Lithium Ion Li Ion Lithium-Titanate Oxide nLTO Natural gas NG Performance Objectives PO Photovoltaic PV Power ...cloud covered) periods. The demonstration features a large (relative to the overall system power requirements) photovoltaic solar array, whose inverter...microgrid with less expensive power storage instead of large scale energy storage and that the renewable energy with small-scale power storage can

  1. Modified carbon black materials for lithium-ion batteries

    DOEpatents

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  2. Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2-inert gas mixtures

    NASA Astrophysics Data System (ADS)

    Chen, Yani; Zhao, Hongbin; Sheng, Leimei; Yu, Liming; An, Kang; Xu, Jiaqiang; Ando, Yoshinori; Zhao, Xinluo

    2012-06-01

    Large-scale production of graphene sheets has been achieved by direct current arc discharge evaporation of pure graphite electrodes in various H2-inert gas mixtures. The as-prepared few-layer graphene sheets have high purity, high crystallinity and high oxidation resistance temperature. Their electrochemical characteristics have been evaluated in coin-type cells versus metallic lithium. The first cell discharge capacity reached 1332 mA h g-1 at a current density of 50 mA g-1. After 350 cycles, the discharge capacity still remained at 323 mA h g-1. Graphene sheets produced by this method should be a promising candidate for the electrode material of lithium-ion batteries.

  3. Preparation of Lithium Titanate/Reduced Graphene Oxide Composites with Three-Dimensional "Fishnet-Like" Conductive Structure via a Gas-Foaming Method for High-Rate Lithium-Ion Batteries.

    PubMed

    Meng, Tao; Yi, Fenyun; Cheng, Honghong; Hao, Junnan; Shu, Dong; Zhao, Shixu; He, Chun; Song, Xiaona; Zhang, Fan

    2017-12-13

    With use of ammonium chloride (NH 4 Cl) as the pore-forming agent, three-dimensional (3D) "fishnet-like" lithium titanate/reduced graphene oxide (LTO/G) composites with hierarchical porous structure are prepared via a gas-foaming method. Scanning electron microscopy and transmission electron microscopy images show that, in the composite prepared with the NH 4 Cl concentration of 1 mg mL -1 (1-LTO/G), LTO particles with sizes of 50-100 nm disperse homogeneously on the 3D "fishnet-like" graphene. The nitrogen-sorption analyses reveal the existence of micro-/mesopores, which is attributed to the introduction of NH 4 Cl into the gap between the graphene sheets that further decomposes into gases and produces hierarchical pores during the thermal treatment process. The loose and porous structure of 1-LTO/G composites enables the better penetration of electrolytes, providing more rapid diffusion channels for lithium ion. As a result, the 1-LTO/G electrode delivers an ultrahigh specific capacity of 176.6 mA h g -1 at a rate of 1 C. Even at 3 and 10 C, the specific capacity can reach 167.5 and 142.9 mA h g -1 , respectively. Moreover, the 1-LTO/G electrode shows excellent cycle performance with 95.4% capacity retention at 10 C after 100 cycles. The results demonstrate that the LTO/G composite with these properties is one of the most promising anode materials for lithium-ion batteries.

  4. Synthesis of Fe3O4 cluster microspheres/graphene aerogels composite as anode for high-performance lithium ion battery

    NASA Astrophysics Data System (ADS)

    Zhou, Shuai; Zhou, Yu; Jiang, Wei; Guo, Huajun; Wang, Zhixing; Li, Xinhai

    2018-05-01

    Iron oxides are considered as attractive electrode materials because of their capability of lithium storage, but their poor conductivity and large volume expansion lead to unsatisfactory cycling stability. We designed and synthesized a novel Fe3O4 cluster microspheres/Graphene aerogels composite (Fe3O4/GAs), where Fe3O4 nanoparticles were assembled into cluster microspheres and then embedded in 3D graphene aerogels framework. In the spheres, the sufficient free space between Fe3O4 nanoparticles could accommodate the volume change during cycling process. Graphene aerogel works as flexible and conductive matrix, which can not only significantly increase the mechanical stress, but also further improve the storage properties. The Fe3O4/GAs composite as an anode material exhibits high reversible capability and excellent cyclic capacity for lithium ion batteries (LIBs). A reversible capability of 650 mAh g-1 after 500 cycles at a current density of 1 A g-1 can be maintained. The superior storage capabilities of the composites make them potential anode materials for LIBs.

  5. Cryogenic plasma-processed silicon microspikes as a high-performance anode material for lithium ion-batteries

    NASA Astrophysics Data System (ADS)

    Sakai, Joe; Luais, Erwann; Wolfman, Jérôme; Tillocher, Thomas; Dussart, Rémi; Tran-Van, Francois; Ghamouss, Fouad

    2017-10-01

    Micro- or nano-structuring is essential in order to use Si as an anode material for lithium ion batteries. In the present study, we attempted to use Si wafers with a spiky microstructure (SMS), the so-called black-Si, prepared by a cryogenic reactive ion etching process with an SF6/O2 gas mixture, for Li half-cells. The SMS with various sizes of spikes from 2.0 μm (height) × 0.2 μm (width) to 21 μm × 1.0 μm was etched by varying the SF6/O2 gas flow ratio. An anode of SMS of 11 μm-height in average showed stable charge/discharge capacity and Coulombic efficiency higher than 99% for more than 300 cycles, causing no destruction to any part of the Si wafer. The spiky structure turned columnar after cycles, suggesting graded lithiation levels along the length. The present results suggest a strategy to utilize a wafer-based Si material for an anode of a lithium ion battery durable against repetitive lithiation/delithiation cycles.

  6. Ion and gas chromatography mass spectrometry investigations of organophosphates in lithium ion battery electrolytes by electrochemical aging at elevated cathode potentials

    NASA Astrophysics Data System (ADS)

    Weber, Waldemar; Wagner, Ralf; Streipert, Benjamin; Kraft, Vadim; Winter, Martin; Nowak, Sascha

    2016-02-01

    The electrochemical aging of commercial non-aqueous lithium hexafluorophosphate (LiPF6)/organic carbonate solvent based lithium ion battery electrolyte has been investigated in view of the formation of ionic and non-ionic alkylated phosphates. Subject was a solvent mixture of ethylene carbonate/ethyl methyl carbonate EC:EMC (1:1, by wt.) with 1 M LiPF6 (LP50 Selectilyte™, BASF). The analysis was carried out by ion chromatography coupled with electrospray ionization mass spectrometry (ESI-MS) for ionic compounds and (headspace) gas chromatography mass spectrometry ((HS)-GC-MS) for non-ionic compounds. The electrochemical aging was performed by galvanostatic charge/discharge cycling and potentiostatic experiments with LiNi0.5Mn1.5O4 (LMNO) as cathode material at increased cut-off potentials (>4.5 V vs. Li/Li+). A strong dependence of the formation of organophosphates on the applied electrode potential was observed and investigated by quantitative analysis of the formed phosphates. In addition, new possible ;fingerprint; compounds for describing the electrolyte status were investigated and compared to existing compounds.

  7. Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes

    PubMed Central

    2016-01-01

    The cost and practicality of greenhouse gas removal processes, which are critical for environmental sustainability, pivot on high-value secondary applications derived from carbon capture and conversion techniques. Using the solar thermal electrochemical process (STEP), ambient CO2 captured in molten lithiated carbonates leads to the production of carbon nanofibers (CNFs) and carbon nanotubes (CNTs) at high yield through electrolysis using inexpensive steel electrodes. These low-cost CO2-derived CNTs and CNFs are demonstrated as high performance energy storage materials in both lithium-ion and sodium-ion batteries. Owing to synthetic control of sp3 content in the synthesized nanostructures, optimized storage capacities are measured over 370 mAh g–1 (lithium) and 130 mAh g–1 (sodium) with no capacity fade under durability tests up to 200 and 600 cycles, respectively. This work demonstrates that ambient CO2, considered as an environmental pollutant, can be attributed economic value in grid-scale and portable energy storage systems with STEP scale-up practicality in the context of combined cycle natural gas electric power generation. PMID:27163042

  8. Diagnosis of power fade mechanisms in high-power lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Abraham, D. P.; Liu, J.; Chen, C. H.; Hyung, Y. E.; Stoll, M.; Elsen, N.; MacLaren, S.; Twesten, R.; Haasch, R.; Sammann, E.; Petrov, I.; Amine, K.; Henriksen, G.

    Hybrid electric vehicles (HEV) need long-lived high-power batteries as energy storage devices. Batteries based on lithium-ion technology can meet the high-power goals but have been unable to meet HEV calendar-life requirements. As part of the US Department of Energy's Advanced Technology Development (ATD) Program, diagnostic studies are being conducted on 18650-type lithium-ion cells that were subjected to accelerated aging tests at temperatures ranging from 40 to 70 °C. This article summarizes data obtained by gas chromatography, liquid chromatography, electron microscopy, X-ray spectroscopy and electrochemical techniques, and identifies cell components that are responsible for the observed impedance rise and power fade.

  9. Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber

    NASA Astrophysics Data System (ADS)

    Spinner, Neil S.; Field, Christopher R.; Hammond, Mark H.; Williams, Bradley A.; Myers, Kristina M.; Lubrano, Adam L.; Rose-Pehrsson, Susan L.; Tuttle, Steven G.

    2015-04-01

    A 5-cubic meter decompression chamber was re-purposed as a fire test chamber to conduct failure and abuse experiments on lithium-ion batteries. Various modifications were performed to enable remote control and monitoring of chamber functions, along with collection of data from instrumentation during tests including high speed and infrared cameras, a Fourier transform infrared spectrometer, real-time gas analyzers, and compact reconfigurable input and output devices. Single- and multi-cell packages of LiCoO2 chemistry 18650 lithium-ion batteries were constructed and data was obtained and analyzed for abuse and failure tests. Surrogate 18650 cells were designed and fabricated for multi-cell packages that mimicked the thermal behavior of real cells without using any active components, enabling internal temperature monitoring of cells adjacent to the active cell undergoing failure. Heat propagation and video recordings before, during, and after energetic failure events revealed a high degree of heterogeneity; some batteries exhibited short burst of sparks while others experienced a longer, sustained flame during failure. Carbon monoxide, carbon dioxide, methane, dimethyl carbonate, and ethylene carbonate were detected via gas analysis, and the presence of these species was consistent throughout all failure events. These results highlight the inherent danger in large format lithium-ion battery packs with regards to cell-to-cell failure, and illustrate the need for effective safety features.

  10. Structural Transformation of LiFePO4 during Ultrafast Delithiation.

    PubMed

    Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan; Saulnier, Mathieu; Dufresne, Eric M; Liang, Guoxian; Schougaard, Steen B

    2017-12-21

    The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4 ) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. We investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahigh rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.

  11. Structural Transformation of LiFePO 4 during Ultrafast Delithiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan

    The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. Here we investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahighmore » rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.« less

  12. Structural Transformation of LiFePO 4 during Ultrafast Delithiation

    DOE PAGES

    Kuss, Christian; Trinh, Ngoc Duc; Andjelic, Stefan; ...

    2017-12-05

    The prolific lithium battery electrode material lithium iron phosphate (LiFePO 4) stores and releases lithium ions by undergoing a crystallographic phase change. Nevertheless, it performs unexpectedly well at high rate and exhibits good cycling stability. Here we investigate here the ultrafast charging reaction to resolve the underlying mechanism while avoiding the limitations of prevailing electrochemical methods by using a gaseous oxidant to deintercalate lithium from the LiFePO 4 structure. Oxidizing LiFePO 4 with nitrogen dioxide gas reveals structural changes through in situ synchrotron X-ray diffraction and electronic changes through in situ UV/vis reflectance spectroscopy. This study clearly shows that ultrahighmore » rates reaching 100% state of charge in 10 s does not lead to a particle-wide union of the olivine and heterosite structures. An extensive solid solution phase is therefore not a prerequisite for ultrafast charge/discharge.« less

  13. Nonchamber, Root-Side, Inert-Gas Purging During Welding

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved apparatus distributes inert gas to protect against oxidation on root side of weld during welding and after welding while joint remains hot. Simple and lightweight; readily moved along weld path in synchronism with torch. Because it concentrates inert gas where needed, consumes gas at relatively low rate, and not necessary to monitor oxygen content of protective atmosphere. Apparatus does not obscure view of root side of weld. Used for full-penetration plasma-arc welding of such reactive metals as aluminum/lithium alloys and titanium.

  14. Optical Lattice Simulations of Correlated Fermions

    DTIC Science & Technology

    2013-10-04

    Zhang, Xiaopeng Li, W. Vincent Liu. Stripe , checkerboard, and liquid-crystal ordering from anisotropic p-orbital Fermi surfaces in optical lattices...Meeting "The Role of Interactions in Disorder Induced Damping of Dipole Oscillations of a Bose-Einstein Condensate", S. Pollack, APS March Meeting...Rev. A 85, 043603 (2012)], and also worked out the diffusive transport behavior of the polarized Fermi gas, including heat transport, spin Seebeck

  15. Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9,10-anthraquinone (AQ) high-rate lithium-ion battery.

    PubMed

    Qiu, Lei; Shao, Ziqiang; Liu, Minglong; Wang, Jianquan; Li, Pengfa; Zhao, Ming

    2014-02-15

    New cellulose derivative CMC-Li was synthesized, and nanometer CMC-Li fiber was applied to lithium-ion battery and coated with AQ by electrospinning. Under the protection of inert gas, modified AQ/carbon nanofibers (CNF)/Li nanometer composite material was obtained by carbonization in 280 °C as lithium battery anode materials for the first time. The morphologies and structures performance of materials were characterized by using IR, (1)H NMR, SEM, CV and EIS, respectively. Specific capacity was increased from 197 to 226.4 mAhg(-1) after modification for the first discharge at the rate of 2C. Irreversible reduction reaction peaks of modified material appeared between 1.5 and 1.7 V and the lowest oxidation reduction peak of the difference were 0.42 V, the polarization was weaker. Performance of cell with CMC-Li with the high degree of substitution (DS) was superior to that with low DS. Cellulose materials were applied to lithium battery to improve battery performance by electrospinning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Reaction mechanisms for the limited reversibility of Li-O 2 chemistry in organic carbonate electrolytes

    NASA Astrophysics Data System (ADS)

    Xu, Wu; Xu, Kang; Viswanathan, Vilayanur V.; Towne, Silas A.; Hardy, John S.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Wang, Deyu; Zhang, Ji-Guang

    The Li-O 2 chemistry in nonaqueous liquid carbonate electrolytes and the underlying reason for its limited reversibility was systematically investigated. X-ray diffraction data showed that regardless of discharge depth lithium alkylcarbonates (lithium propylenedicarbonate (LPDC), or lithium ethylenedicarbonate (LEDC), with other related derivatives) and lithium carbonate (Li 2CO 3) are constantly the main discharge products, while lithium peroxide (Li 2O 2) or lithium oxide (Li 2O) is hardly detected. These lithium alkylcarbonates are generated from the reductive decomposition of the corresponding carbonate solvents initiated by the attack of superoxide radical anions. More significantly, in situ gas chromatography/mass spectroscopy analysis revealed that Li 2CO 3 and Li 2O cannot be oxidized even when charged to 4.6 V vs. Li/Li +, while LPDC, LEDC and Li 2O 2 are readily oxidized, with CO 2 and CO released from LPDC and LEDC and O 2 evolved from Li 2O 2. Therefore, the apparent reversibility of Li-O 2 chemistry in an organic carbonate-based electrolyte is actually an unsustainable process that consists of (1) the formation of lithium alkylcarbonates through the reductive decomposition of carbonate solvents during discharging and (2) the subsequent oxidation of these same alkylcarbonates during charging. Therefore, a stable electrolyte that does not lead to an irreversible by-product formation during discharging and charging is necessary for truly rechargeable Li-O 2 batteries.

  17. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    DOEpatents

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  18. Lithium-promoted hydrogenation of carbon dioxide to formates by heterobimetallic hydridozinc alkoxide clusters.

    PubMed

    Merz, Klaus; Moreno, Mariluna; Löffler, Elke; Khodeir, Lamy; Rittermeier, Andre; Fink, Karin; Kotsis, Konstantinos; Muhler, Martin; Driess, Matthias

    2008-01-07

    The remarkably distinct reactivity of hydridozinc heterobimetallic cubanes [(HZnOtBu)4-n(thf LiOtBu)n] 1a-1d towards CO2 is reported--the hydride transfer from Zn-H to CO2 is drastically accelerated in the presence of Li ions in 1b-1d which led to the respective metal formate hydrates; the systems are inspiring models for the selective conversion of water gas into formates on lithium-promoted ZnO supports.

  19. Galactic fly-bys: New source of lithium production

    NASA Astrophysics Data System (ADS)

    Prodanović, Tijana; Bogdanović, Tamara; Urošević, Dejan

    2013-05-01

    Observations of low-metallicity halo stars have revealed a puzzling result: the abundance of Li7 in these stars is at least three times lower than their predicted primordial abundance. It is unclear whether the cause of this disagreement is a lack of understanding of lithium destruction mechanisms in stars or the non-standard physics behind the big bang nucleosynthesis (BBN). Uncertainties related to the destruction of lithium in stars can be circumvented if lithium abundance is measured in the “pristine” gas of the low metallicity systems. The first measurement in one such system, the small magellanic cloud (SMC), was found to be at the level of the pure expected primordial value, but is on the other hand, just barely consistent with the expected galactic abundance for the system at the SMC metallicity, where important lithium quantity was also produced in interactions of galactic cosmic rays and presents an addition to the already present primordial abundance. Because of the importance of the SMC lithium measurement for the resolution of the lithium problem, we here draw attention to the possibility of another post-BBN production channel of lithium, which could present an important addition to the observed SMC lithium abundance. Besides standard galactic cosmic rays, additional post-BBN production of lithium might come from cosmic rays accelerated in galaxy-galaxy interactions. This might be important for a system such is the SMC, which has experienced galaxy harassment in its history. Within a simplified but illustrative framework we demonstrate that large-scale tidal shocks from a few galactic fly-bys can possibly produce lithium in amounts comparable to those expected from the interactions of galactic cosmic-rays produced in supernovae over the entire history of a system. In case of the SMC, we find that only two such fly-bys could possibly account for as much lithium as the standard, galactic cosmic ray production channel. However, adding any a new mechanism for post-BBN production of lithium, like the one proposed here, would contribute to the observed SMC lithium abundance, causing this measurement to be more in tension with the primordial abundance predicted by the standard BBN.

  20. Tailoring Dirac Fermions in Molecular Graphene

    NASA Astrophysics Data System (ADS)

    Gomes, Kenjiro K.; Mar, Warren; Ko, Wonhee; Camp, Charlie D.; Rastawicki, Dominik K.; Guinea, Francisco; Manoharan, Hari C.

    2012-02-01

    The dynamics of electrons in solids is tied to the band structure created by a periodic atomic potential. The design of artificial lattices, assembled through atomic manipulation, opens the door to engineer electronic band structure and to create novel quantum states. We present scanning tunneling spectroscopic measurements of a nanoassembled honeycomb lattice displaying a Dirac fermion band structure. The artificial lattice is created by atomic manipulation of single CO molecules with the scanning tunneling microscope on the surface of Cu(111). The periodic potential generated by the assembled CO molecules reshapes the band structure of the two-dimensional electron gas, present as a surface state of Cu(111), into a ``molecular graphene'' system. We create local defects in the lattice to observe the quasiparticle interference patterns that unveil the underlying band structure. We present direct comparison between the tunneling data, first-principles calculations of the band structure, and tight-binding models.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe[sub 2] and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report contains viewgraphs on the following topics. The advanced light source U8 undulator beamline, 20--300 eV; gas-phase actinide studies with synchrotron radiation; atomic structure calculations for heavy atoms; flux growth of single crystal uranium intermetallics: Extension to transuranics; x-ray absorption near-edge structure studies of actinide compounds; surface as a new stage for studying actinides: Theoretical study of the surface electronic structure of uranium; magnetic x-ray scattering experiments at resonant energies; beamline instruments for radioactive materials; the search for x-ray absorption magnetic circular dichroism in actinide materials: preliminary experiments using UFe{sub 2} and U-S; the laser plasma laboratory light source:more » a source of preliminary transuranic data; electron spectroscopy of heavy fermion actinide materials; study of thin layers of actinides. Present status and future use of synchrotron radiation; electronic structure and correlated-electron theory for actinide materials; and heavy fermion and kondo phenomena in actinide materials.« less

  3. The many facets of the (non-relativistic) Nuclear Equation of State

    NASA Astrophysics Data System (ADS)

    Giuliani, G.; Zheng, H.; Bonasera, A.

    2014-05-01

    A nucleus is a quantum many body system made of strongly interacting Fermions, protons and neutrons (nucleons). This produces a rich Nuclear Equation of State whose knowledge is crucial to our understanding of the composition and evolution of celestial objects. The nuclear equation of state displays many different features; first neutrons and protons might be treated as identical particles or nucleons, but when the differences between protons and neutrons are spelled out, we can have completely different scenarios, just by changing slightly their interactions. At zero temperature and for neutron rich matter, a quantum liquid-gas phase transition at low densities or a quark-gluon plasma at high densities might occur. Furthermore, the large binding energy of the α particle, a Boson, might also open the possibility of studying a system made of a mixture of Bosons and Fermions, which adds to the open problems of the nuclear equation of state.

  4. Spectral probes of the holographic Fermi ground state: Dialing between the electron star and AdS Dirac hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad

    2011-10-15

    We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces.more » As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.« less

  5. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures.

    PubMed

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P

    2015-06-11

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.

  6. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures

    PubMed Central

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.

    2015-01-01

    Search for Majorana fermions renewed interest in semiconductor–superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor–superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452

  7. Gas Evolution in Operating Lithium-Ion Batteries Studied In Situ by Neutron Imaging

    PubMed Central

    Michalak, Barbara; Sommer, Heino; Mannes, David; Kaestner, Anders; Brezesinski, Torsten; Janek, Jürgen

    2015-01-01

    Gas generation as a result of electrolyte decomposition is one of the major issues of high-performance rechargeable batteries. Here, we report the direct observation of gassing in operating lithium-ion batteries using neutron imaging. This technique can be used to obtain qualitative as well as quantitative information by applying a new analysis approach. Special emphasis is placed on high voltage LiNi0.5Mn1.5O4/graphite pouch cells. Continuous gassing due to oxidation and reduction of electrolyte solvents is observed. To separate gas evolution reactions occurring on the anode from those associated with the cathode interface and to gain more insight into the gassing behavior of LiNi0.5Mn1.5O4/graphite cells, neutron experiments were also conducted systematically on other cathode/anode combinations, including LiFePO4/graphite, LiNi0.5Mn1.5O4/Li4Ti5O12 and LiFePO4/Li4Ti5O12. In addition, the data were supported by gas pressure measurements. The results suggest that metal dissolution in the electrolyte and decomposition products resulting from the high potentials adversely affect the gas generation, particularly in the first charge cycle (i.e., during graphite solid-electrolyte interface layer formation). PMID:26496823

  8. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing

    NASA Astrophysics Data System (ADS)

    Larsson, Fredrik; Bertilsson, Simon; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik

    2018-01-01

    Commercial 6.8 Ah lithium-ion cells with different ageing/status have been abused by external heating in an oven. Prior to the abuse test, selected cells were aged either by C/2 cycling up to 300 cycles or stored at 60 °C. Gas emissions were measured by FTIR and three separate vents were identified, two well before the thermal runaway while the third occurred simultaneously with the thermal runaway releasing heavy smoke and gas. Emissions of toxic carbon monoxide (CO), hydrogen fluoride (HF) and phosphorous oxyfluoride (POF3) were detected in the third vent, regardless if there was a fire or not. All abused cells went into thermal runaway and emitted smoke and gas, the working cells also released flames as well as sparks. The dead cells were however less reactive but still underwent thermal runaway. For about half of the working cells, for all levels of cycle ageing, ignition of the accumulated battery released gases occurred about 15 s after the thermal runaway resulting in a gas explosion. The thermal runaway temperature, about 190 °C, varied somewhat for the different cell ageing/status where a weak local minimum was found for cells cycled between 100 and 200 times.

  9. Bold Diagrammatic Monte Carlo for Fermionic and Fermionized Systems

    NASA Astrophysics Data System (ADS)

    Svistunov, Boris

    2013-03-01

    In three different fermionic cases--repulsive Hubbard model, resonant fermions, and fermionized spins-1/2 (on triangular lattice)--we observe the phenomenon of sign blessing: Feynman diagrammatic series features finite convergence radius despite factorial growth of the number of diagrams with diagram order. Bold diagrammatic Monte Carlo technique allows us to sample millions of skeleton Feynman diagrams. With the universal fermionization trick we can fermionize essentially any (bosonic, spin, mixed, etc.) lattice system. The combination of fermionization and Bold diagrammatic Monte Carlo yields a universal first-principle approach to strongly correlated lattice systems, provided the sign blessing is a generic fermionic phenomenon. Supported by NSF and DARPA

  10. Fermion masses through four-fermion condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyar, Venkitesh; Chandrasekharan, Shailesh

    Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the twomore » phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.« less

  11. Two-dimensional triangular lattice and its application to lithium-intercalated layered compounds

    NASA Astrophysics Data System (ADS)

    Decerqueira, R. O.

    1982-08-01

    Good rechargeable batteries are being searched for use in electric vehicles and in energy storage during off-peak consumption periods and from solar sources. The interest in lithium intercalation compounds has been recently enhanced by the search for such batteries. The process of intercalation of lithium in several transition metal dichalcogenides can provide an emf of several volts. The progress achieved in the last decade in the investigation of these intercalates has been facilitated by the availability of the dichalcogenides as single crystals and by their chemical stability. The transition-metal dichalcogenides and their Li-intercalates are studied, with emphasis on the Li/su xTa/sub yTi/sub l-y/S2 series. The interactions between the Li atoms and the applicability of a lattice gas model to the problem of ordering of these atoms is discussed. A formulation is presented of the cluster-variation aproximation to the lattice gas problem. The single-site and the nearest-neighbor triangle basic clusters are considered as models for Li/sub x TiS2. Also a theory is presented for the effects of a random distribution of different species of host atoms, as in Ta/sub y/Ti/sub l-y/S2.

  12. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery

    PubMed Central

    Liu, Jingjing; Wang, Zhirong; Gong, Junhui; Liu, Kai; Wang, Hao; Guo, Linsheng

    2017-01-01

    This study addresses the effects of the SOC (State of Charge) and the charging–discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6 W is the critical heating power for 40% SOC. With a 20 W constant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging. PMID:28772588

  13. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery.

    PubMed

    Liu, Jingjing; Wang, Zhirong; Gong, Junhui; Liu, Kai; Wang, Hao; Guo, Linsheng

    2017-02-25

    This study addresses the effects of the SOC (State of Charge) and the charging-discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6 W is the critical heating power for 40% SOC. With a 20 W constant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging.

  14. Study on the decomposition mechanism of alkyl carbonate on lithium metal by pyrolysis-gas chromatography-mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Mogi, Ryo; Inaba, Minoru; Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi

    The surface films formed on deposited lithium in electrolyte solutions based on ethylene carbonate (EC), diethyl carbonate (DEC), and dimethyl carbonate (DMC) were analyzed by pyrolysis-gas chromatography-mass spectroscopy (Py-GC-MS). In 1 M LiClO 4/EC, the main component of the surface film was easily hydrolyzed to give ethylene glycol after exposure to air, and hence was considered to have a chemical structure of ROCH 2CH 2OR', of which OR and OR' are OLi or OCO 2Li. Ethylene oxide, acetaldehyde, and 1,4-dioxane were detected in decomposition products, and they were considered to have been formed by pyrolysis of ROCH 2CH 2OR' in the pyrolyzer. The presence of ethanol in decomposition products confirmed that ring cleavage at the CH 2O bonds of EC occurs by one electron reduction. In addition, the presence of methanol implied the cleavage of the CC bond of EC upon reduction. From the surface films formed in 1 M LiClO 4/DEC and /DMC, ethanol and methanol, respectively, were detected, which suggested that corresponding lithium alkoxides and/or lithium alkyl carbonates were the main components. In 1 M LiClO 4/EC+DEC (1:1), EC dominantly decomposed to form the surface film. The surface film formed in 1 M LiPF 6/EC+DEC (1:1) contained a much smaller amount of organic compounds.

  15. Thermal Nonequilibrium in Hypersonic Separated Flow

    DTIC Science & Technology

    2014-12-22

    flow duration and steadiness. 15. SUBJECT TERMS Hypersonic Flowfield Measurements, Laser Diagnostics of Gas Flow, Laser Induced...extent than the NS computation. While it would be convenient to believe that the more physically realistic flow modeling of the DSMC gas - surface...index and absorption coefficient. Each of the curves was produced assuming a 0.5 % concentration of lithium at the Condition A nozzle exit conditions

  16. Simulation and Analysis of Isotope Separation System for Fusion Fuel Recovery System

    NASA Astrophysics Data System (ADS)

    Senevirathna, Bathiya; Gentile, Charles

    2011-10-01

    This paper presents results of a simulation of the Fuel Recovery System (FRS) for the Laser Inertial Fusion Engine (LIFE) reactor. The LIFE reaction will produce exhaust gases that will need to be recycled in the FRS along with xenon, the chamber's intervention gas. Solids and liquids will first be removed and then vapor traps are used to remove large gas molecules such as lead. The gas will be reacted with lithium at high temperatures to extract the hydrogen isotopes, protium, deuterium, and tritium in hydride form. The hydrogen isotopes will be recovered using a lithium blanket processing system already in place and this product will be sent to the Isotope Separation System (ISS). The ISS will be modeled in software to analyze its effectiveness. Aspen HYSYS was chosen for this purpose for its widespread use industrial gas processing systems. Reactants and corresponding chemical reactions had to be initialized in the software. The ISS primarily consists of four cryogenic distillation columns and these were modeled in HYSYS based on design requirements. Fractional compositions of the distillate and liquid products were analyzed and used to optimize the overall system.

  17. Unexpected manifestation of quark condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinovjev, G. M., E-mail: Gennady.Zinovjev@cern.ch; Molodtsov, S. V.

    A comparative analysis of some quark ensembles governed by a four-fermion interaction is performed. Arguments in support of the statement that the presence of a gas-liquid phase transition is a feature peculiar to them are adduced. The instability of small quark droplets is discussed and is attributed to the formation of a chiral soliton. The stability of baryon matter is due to a mixed phase of the vacuum and baryon matter.

  18. Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletti, Luigi, E-mail: luigi.barletti@unifi.it

    2014-08-15

    The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

  19. Density functional of a two-dimensional gas of dipolar atoms: Thomas-Fermi-Dirac treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Bess; Englert, Berthold-Georg

    We derive the density functional for the ground-state energy of a two-dimensional, spin-polarized gas of neutral fermionic atoms with magnetic-dipole interaction, in the Thomas-Fermi-Dirac approximation. For many atoms in a harmonic trap, we give analytical solutions for the single-particle spatial density and the ground-state energy, in dependence on the interaction strength, and we discuss the weak-interaction limit that is relevant for experiments. We then lift the restriction of full spin polarization and account for a time-independent inhomogeneous external magnetic field. The field strength necessary to ensure full spin polarization is derived.

  20. Viscosity of a multichannel one-dimensional Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGottardi, Wade; Matveev, K. A.

    Many one-dimensional systems of experimental interest possess multiple bands arising from shallow confining potentials. In this paper, we study a gas of weakly interacting fermions and show that the bulk viscosity is dramatically altered by the occupation of more than one band. The reasons for this are twofold: a multichannel system is more easily displaced from equilibrium and the associated relaxation processes lead to more rapid equilibration than in the single channel case. We estimate the bulk viscosity in terms of the underlying microscopic interactions. The experimental relevance of this physics is discussed in the context of quantum wires andmore » trapped cold atomic gases.« less

  1. A Protocol for Safe Lithiation Reactions Using Organolithium Reagents

    PubMed Central

    Gau, Michael R.; Zdilla, Michael J.

    2016-01-01

    Organolithium reagents are powerful tools in the synthetic chemist's toolbox. However, the extreme pyrophoric nature of the most reactive reagents warrants proper technique, thorough training, and proper personal protective equipment. To aid in the training of researchers using organolithium reagents, a thorough, step-by-step protocol for the safe and effective use of tert-butyllithium on an inert gas line or within a glovebox is described. As a model reaction, preparation of lithium tert-butyl amide by the reaction of tert-butyl amine with one equivalent of tert-butyl lithium is presented. PMID:27911386

  2. 49 CFR 175.8 - Exceptions for operator equipment and items of replacement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... gas lighters, perfumes, and portable electronic devices containing lithium cells or batteries that... level of protection to those that would be required by this subchapter. (ii) Aircraft batteries are not...

  3. New electrolyte may increase life of polarographic oxygen sensors

    NASA Technical Reports Server (NTRS)

    Albright, C. F.

    1967-01-01

    Electrolyte increases life on oxygen sensors in a polarograph used for measuring the partial pressure of oxygen in a gas mixture. It consists of a solution of lithium chloride, dimethyl acetamide and water.

  4. A Study on New Composite Thermoplastic Propellant

    NASA Astrophysics Data System (ADS)

    Kahara, Takehiro; Nakayama, Masanobu; Hasegawa, Hiroshi; Katoh, Kazushige; Miyazaki, Shigehumi; Maruizumi, Haruki; Hori, Keiichi; Morita, Yasuhiro; Akiba, Ryojiro

    Efforts have been paid to realize a new composite propellant using thermoplastics as a fuel binder and lithium as a metallic fuel. Thermoplastics binder makes it possible the storage of solid propellant in small blocks and to provide propellants blocks into rocket motor case at a quantity needed just before use, which enables the production facility of solid propellant at a minimum level, thus, production cost significantly lower. Lithium has been a candidate for a metallic fuel for the ammonium perchlorate based composite propellants owing to its capability to reduce the hydrogen chloride in the exhaust gas, however, never been used because lithium is not stable at room conditions and complex reaction products between oxygen, nitrogen, and water are formed at the surface of particles and even in the core. However, lithium particles whose surface shell structure is well controlled are rather stable and can be stored in thermoplastics for a long period. Evaluation of several organic thermoplastics whose melting temperatures are easily tractable was made from the standpoint of combustion characteristics, and it is shown that thermoplastics propellants can cover wide range of burning rate spectrum. Formation of well-defined surface shell of lithium particles and its kinetics are also discussed.

  5. Mixtures of Bosonic and Fermionic atoms

    NASA Astrophysics Data System (ADS)

    Albus, Alexander

    2003-12-01

    The theory of atomic Boson-Fermion mixtures in the dilute limit beyond mean-field is considered in this thesis. Extending the formalism of quantum field theory we derived expressions for the quasi-particle excitation spectra, the ground state energy, and related quantities for a homogenous system to first order in the dilute gas parameter. In the framework of density functional theory we could carry over the previous results to inhomogeneous systems. We then determined to density distributions for various parameter values and identified three different phase regions: (i) a stable mixed regime, (ii) a phase separated regime, and (iii) a collapsed regime. We found a significant contribution of exchange-correlation effects in the latter case. Next, we determined the shift of the Bose-Einstein condensation temperature caused by Boson-Fermion interactions in a harmonic trap due to redistribution of the density profiles. We then considered Boson-Fermion mixtures in optical lattices. We calculated the criterion for stability against phase separation, identified the Mott-insulating and superfluid regimes both, analytically within a mean-field calculation, and numerically by virtue of a Gutzwiller Ansatz. We also found new frustrated ground states in the limit of very strong lattices. ----Anmerkung: Der Autor ist Träger des durch die Physikalische Gesellschaft zu Berlin vergebenen Carl-Ramsauer-Preises 2004 für die jeweils beste Dissertation der vier Universitäten Freie Universität Berlin, Humboldt-Universität zu Berlin, Technische Universität Berlin und Universität Potsdam. Ziel der Arbeit war die systematische theoretische Behandlung von Gemischen aus bosonischen und fermionischen Atomen in einem Parameterbereich, der sich zur Beschreibung von aktuellen Experimenten mit ultra-kalten atomaren Gasen eignet. Zuerst wurde der Formalismus der Quantenfeldtheorie auf homogene, atomare Boson-Fermion Gemische erweitert, um grundlegende Größen wie Quasiteilchenspektren, die Grundzustandsenergie und daraus abgeleitete Größen über die Molekularfeldtheorie hinaus zu berechnen. Unter Zuhilfenahme der dieser Resultate System wurde ein Boson-Fermion Gemisch in einem Fallenpotential im Rahmen der Dichtefunktionaltheorie beschrieben. Daraus konnten die Dichteprofile ermittelt werden und es ließen sich drei Bereiche im Phasendiagramm identifizieren: (i) ein Bereich eines stabilen Gemisches, (ii) ein Bereich, in dem die Spezies entmischt sind und (iii) ein Bereich, in dem das System kollabiert. Im letzten dieser drei Fällen waren Austausch--Korrelationseffekte signifikant. Weiterhin wurde die Änderung der kritischen Temperatur der Bose-Einstein-Kondensation aufgrund der Boson-Fermion-Wechselwirkung berechnet. Verursacht wird dieser Effekt von Dichtumverteilungen aufgrund der Wechselwirkung. Dann wurden Boson-Fermion Gemische in optischen Gittern betrachtet. Ein Stabilitätskriterium gegen Phasenentmischung wurde gefunden und es ließen sich Bedingungen für einen supraflüssig zu Mott-isolations Phasenübergang angeben. Diese wurden sowohl mittels einer Molekularfeldrechnung als auch numerisch im Rahmen eines Gutzwilleransatzes gefunden. Es wurden weiterhin neuartige frustrierte Grundzustände im Fall von sehr großen Gitterstärken gefunden.

  6. Quasi-One-Dimensional Ultracold Fermi Gases

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.

    Ultracold atoms have become an essential tool in studying condensed matter phenomena. The advantage of atomic physics experiments is that they provide an easily tunable system. This experiment uses the lowest two ground state hyperfine levels of fermionic lithium. Having two different states creates a pseudo-spin- 1/2 system and allows us to emulate electronic systems, such as superconductors and crystal lattices. In our experiment, we can control the ratio between these two states resulting in either a spin-balanced or a spin-imbalanced gas. Imposing an imbalance is analogous to applying a magnetic field to a superconductor which causes the electrons in the material to align to the field (thus breaking the electron pairs which cause superconductivity). This motivates us to understand the phases created when a spin-imbalance is created and the effect of changing the atomic interactions. In a 3D system, we find where superfluidity is suppressed throughout the BEC to BCS crossover. Using phase separation as a guide, we probe the dimensional crossover between 1D and 3D. The phase separation in 1D is inverted from that in 3D, which provides a unique characteristic to distinguish between the dimensions. By varying the tunneling between tubes and the atomic interactions in a 2D optical lattice, we control whether the system is 1D, 3D, or in between. Using the properties of a 3D gas as a guide, we directly observe when the gas has crossed over from being dominated by 1D-like behavior to 3D. In this way, we have found a universal value for the dimensional crossover. The 1D-3D crossover paves the way to search for the exotic FFLO (Fulde-Ferrell-Larkin-Ovchinnikov) superconductor. While most superconductors do not coexist with magnetism, the FFLO phase requires large magnetic fields to support its pairing mechanism. Additionally, this phase is more likely to be found in lower dimensional systems. However, at low dimensions, the effect of temperature fluctuations on the phase is destabilizing, but these temperature effects are reduced with higher dimensionality. Thus, the quasi-1D regime is the optimal region of parameter space to find this phase. The search for direct evidence of FFLO continues in this regime.

  7. Baryon number, strangeness, and electric charge fluctuations in QCD at high temperature

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Hegde, P.; Jung, C.; Karsch, F.; Kaczmarek, O.; Laermann, E.; Mawhinney, R. D.; Miao, C.; Petreczky, P.; Schmidt, C.; Soeldner, W.

    2009-04-01

    We analyze baryon number, strangeness, and electric charge fluctuations as well as their correlations in QCD at high temperature. We present results obtained from lattice calculations performed with an improved staggered fermion action (p4 action) at two values of the lattice cutoff with almost physical up and down quark masses and a physical value for the strange quark mass. We compare these results, with an ideal quark gas at high temperature and a hadron resonance gas model at low temperature. We find that fluctuations and correlations are well described by the former already for temperatures about 1.5 times the transition temperature. At low temperature qualitative features of the lattice results are quite well described by a hadron resonance gas model. Higher order cumulants, which become increasingly sensitive to the light pions, however, show deviations from a resonance gas in the vicinity of the transition temperature.

  8. Rocket-borne Lithium ejection system for neutral wind measurement

    NASA Astrophysics Data System (ADS)

    Habu, H.; Yamamoto, M.; Watanabe, S.; Larsen, M. F.

    2013-11-01

    Chemical tracer releases represent the most widely used technique for in situ neutral wind measurements in the thermosphere/ionosphere region. Different chemicals have been used for this purpose, but lithium releases in particular provide some unique capabilities due to the strong resonant emissions that are produced when lithium is illuminated by sunlight. The majority of the lithium releases from sounding rockets were carried out in the 1960's and 1970's, but there has been recent renewed interest in the use of lithium vapor releases to extend neutral wind measurements into the F region and for daytime wind profile measurements in the E region. The rocketborne Lithium Ejection System (LES) is a chemical release device that has been developed for the Japanese space research program. Since lithium vapor acts as a neutral tracer, the winds are obtained by tracking the motion of the clouds or trails optically from the ground using the bright red emission that is characteristic of the chemical. Lithium is a solid at room temperature, so that a gas release requires rapid vaporization of the metal to make the cloud at the intended altitude. The release canister is designed to produce a high-heat chemical reaction without gaseous products. Appropriate mixtures of thermite are employed as the heat source. In early experiments, lithium pellets were mixed directly into the thermite. However, since lithium is an active chemical, the use of lithium-thermite mixtures creates potential hazards when used in a rocket-borne device. Moreover, the pyrotechnic devices used to ignite the thermite also have to be considered in the payload canister design to assure that the safety standards for sounding rockets are satisfied. The design of the LES, described in this paper, was based on the safety requirements and the reliability in storing and handling of the materials. The LES design is also flexible in that the lithium tracer material can be replaced with other chemicals without difficulties. This paper introduces the design of the LES and the method for controlling the thermite burn.

  9. Observation of three-component fermions in the topological semimetal molybdenum phosphide.

    PubMed

    Lv, B Q; Feng, Z-L; Xu, Q-N; Gao, X; Ma, J-Z; Kong, L-Y; Richard, P; Huang, Y-B; Strocov, V N; Fang, C; Weng, H-M; Shi, Y-G; Qian, T; Ding, H

    2017-06-29

    In quantum field theory, Lorentz invariance leads to three types of fermion-Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.

  10. BCS and generalized BCS superconductivity in relativistic quantum field theory. II. Numerical calculations

    NASA Astrophysics Data System (ADS)

    Ohsaku, Tadafumi

    2002-08-01

    We solve numerically various types of the gap equations developed in the relativistic BCS and generalized BCS framework, presented in part I of this paper. We apply the method for not only the usual solid metal but also other physical systems by using homogeneous fermion gas approximation. We examine the relativistic effects on the thermal properties and the Meissner effect of the BCS and generalized BCS superconductivity of various cases.

  11. Enhanced H-mode pedestals with lithium injection in DIII-D

    DOE PAGES

    Osborne, Thomas H.; Jackson, Gary L.; Yan, Zheng; ...

    2015-05-08

    Periods of edge localized mode (ELM)-free H-mode with increased pedestal pressure and width were observed in the DIII-D tokamak when density fluctuations localized to the region near the separatrix were present. Injection of a powder of 45 μm diameter lithium particles increased the duration of the enhanced pedestal phases to up to 350 ms, and also increased the likelihood of a transition to the enhanced phase. Lithium injection at a level sufficient for triggering the extended enhanced phases resulted in significant lithium in the plasma core, but carbon and other higher Z impurities as well as radiated power levels weremore » reduced. Recycling of the working deuterium gas appeared unaffected by this level of lithium injection. The ion scale, k θ ρ s ~ 0.1–0.2, density fluctuations propagated in the electron drift direction with f ~ 80 kHz and occurred in bursts every ~1 ms. The fluctuation bursts correlated with plasma loss resulting in a flattening of the pressure profile in a region near the separatrix. This localized flattening 2 allowed higher overall pedestal pressure at the peeling-ballooning stability limit and higher pressure than expected under the EPED model due to reduction of the pressure gradient below the “ballooning critical profile”. Furthermore, reduction of the ion pressure by lithium dilution may contribute to the long ELM-free periods.« less

  12. Forming gas treatment of lithium ion battery anode graphite powders

    DOEpatents

    Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

    2014-09-16

    The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

  13. An investigation of voids formation mechanisms and their effects on freeze and thaw processes of lithium and lithium fluoride

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Yang, Jae-Young

    1991-01-01

    The mechanisms of void formation during the cooldown and freezing of lithium coolant within the primary loop of SP-100 type systems are investigated. These mechanisms are: (1) homogeneous nucleation; (2) heterogeneous nucleation; (3) normal segregation of helium gas dissolved in liquid lithium; and (4) shrinkage of lithium during freezing. To evaluate the void formation potential due to segregation, a numerical scheme that couples the freezing and mass diffusion processes in both the solid and liquid regions is developed. The results indicated that the formation of He bubbles is unlikely by either homogeneous or heterogeneous nucleation during the cooldown process. However, homogeneous nucleation of He bubbles following the segregation of dissolved He in liquid lithium ahead of the solid-liquid interface is likely to occur. Results also show that total volume of He void is insignificant when compared to that of shrinkage voids. In viewing this, the subsequent research focuses on the effects of shrinkage void forming during freezing of lithium on subsequent thaw processes are investigated using a numerical scheme that is based on a single (solid/liquid) cell approach. The cases of lithium-fluoride are also investigated to show the effect of larger volume shrinkage upon freezing on the freeze and thaw processes. Results show that a void forming at the wall appreciably reduces the solid-liquid interface velocity, during both freeze and thaw, and causes a substantial rise in the wall temperature during thaw. However, in the case of Li, the maximum wall temperature was much lower than the melting temperature of PWC-11, which is used as the structure material in the SP-100 system. Hence, it is included that a formation of hot spots is unlikely during the startup or restart of the SP-100 system.

  14. Fermion number of twisted kinks in the NJL2 model revisited

    NASA Astrophysics Data System (ADS)

    Thies, Michael

    2018-03-01

    As a consequence of axial current conservation, fermions cannot be bound in localized lumps in the massless Nambu-Jona-Lasinio model. In the case of twisted kinks, this manifests itself in a cancellation between the valence fermion density and the fermion density induced in the Dirac sea. To attribute the correct fermion number to these bound states requires an infrared regularization. Recently, this has been achieved by introducing a bare fermion mass, at least in the nonrelativistic regime of small twist angles and fermion numbers. Here, we propose a simpler regularization using a finite box which preserves integrability and can be applied at any twist angle. A consistent and physically plausible assignment of fermion number to all twisted kinks emerges.

  15. Infinite variance in fermion quantum Monte Carlo calculations.

    PubMed

    Shi, Hao; Zhang, Shiwei

    2016-03-01

    For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.

  16. Interstellar Lithium and Rubidium in the Diffuse Gas Near IC 443

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam M.; Taylor, C. J.; Federman, S. R.; Lambert, D. L.

    2011-01-01

    We present an analysis of interstellar lithium and rubidium from observations made with the Hobby-Eberly Telescope at McDonald Observatory of the Li I λ6707 and Rb I λ7800 absorption lines along four lines of sight through the supernova remnant IC 443. The observations probe interstellar material polluted by the ejecta of a core-collapse (Type II) supernova and can thus be used to constrain the contribution from massive stars to the synthesis of lithium and rubidium. Production of 7Li is expected to occur through neutrino spallation in the helium and carbon shells of the progenitor star during the terminal supernova explosion, while both 6Li and 7Li are synthesized via spallation and fusion reactions involving cosmic rays accelerated by the remnant. Gamma-ray emission from IC 443 provides strong evidence for the interaction of accelerated cosmic rays with the ambient atomic and molecular gas. Rubidium is also produced by massive stars through the weak s-process in the He- and C-burning shells and the r-process during core collapse. We examine interstellar 7Li/6Li isotope ratios as well as Li/K and Rb/K ratios along each line of sight, and discuss the implications of our results in the context of nucleosynthesis associated with Type II supernovae.

  17. Observation of three-component fermions in the topological semimetal molybdenum phosphide

    NASA Astrophysics Data System (ADS)

    Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Gao, X.; Ma, J.-Z.; Kong, L.-Y.; Richard, P.; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, T.; Ding, H.

    2017-06-01

    In quantum field theory, Lorentz invariance leads to three types of fermion—Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.

  18. Non-Abelian statistics of vortices with non-Abelian Dirac fermions.

    PubMed

    Yasui, Shigehiro; Hirono, Yuji; Itakura, Kazunori; Nitta, Muneto

    2013-05-01

    We extend our previous analysis on the exchange statistics of vortices having a single Dirac fermion trapped in each core to the case where vortices trap two Dirac fermions with U(2) symmetry. Such a system of vortices with non-Abelian Dirac fermions appears in color superconductors at extremely high densities and in supersymmetric QCD. We show that the exchange of two vortices having doublet Dirac fermions in each core is expressed by non-Abelian representations of a braid group, which is explicitly verified in the matrix representation of the exchange operators when the number of vortices is up to four. We find that the result contains the matrices previously obtained for the vortices with a single Dirac fermion in each core as a special case. The whole braid group does not immediately imply non-Abelian statistics of identical particles because it also contains exchanges between vortices with different numbers of Dirac fermions. However, we find that it does contain, as its subgroup, genuine non-Abelian statistics for the exchange of the identical particles, that is, vortices with the same number of Dirac fermions. This result is surprising compared with conventional understanding because all Dirac fermions are defined locally at each vortex, unlike the case of Majorana fermions for which Dirac fermions are defined nonlocally by Majorana fermions located at two spatially separated vortices.

  19. Fermion number anomaly with the fluffy mirror fermion

    NASA Astrophysics Data System (ADS)

    Okumura, Ken-ichi; Suzuki, Hiroshi

    2016-12-01

    Quite recently, Grabowska and Kaplan presented a 4-dimensional lattice formulation of chiral gauge theories based on the chiral overlap operator. We study this formulation from the perspective of the fermion number anomaly and possible associated phenomenology. A simple argument shows that the consistency of the formulation implies that the fermion with the opposite chirality to the physical one, the "fluffy mirror fermion" or "fluff", suffers from the fermion number anomaly in the same magnitude (with the opposite sign) as the physical fermion. This immediately shows that if at least one of the fluff quarks is massless, the formulation provides a simple viable solution to the strong CP problem. Also, if the fluff interacts with gravity essentially in the same way as the physical fermion, the formulation can realize the asymmetric dark matter scenario.

  20. State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter

    DOE PAGES

    Bhardwaj, Lakshya; Gaiotto, Davide; Kapustin, Anton

    2017-04-18

    It is possible to describe fermionic phases of matter and spin-topological field theories in 2+1d in terms of bosonic “shadow” theories, which are obtained from the original theory by “gauging fermionic parity”. Furthemore, the fermionic/spin theories are recovered from their shadow by a process of fermionic anyon condensation: gauging a one-form symmetry generated by quasi-particles with fermionic statistics. We apply the formalism to theories which admit gapped boundary conditions. We obtain Turaev-Viro-like and Levin-Wen-like constructions of fermionic phases of matter. Here, we describe the group structure of fermionic SPT phases protected by Z 2f × G. The quaternion group makesmore » a surprise appearance.« less

  1. High-temperature atomic superfluidity in lattice Bose-Fermi mixtures.

    PubMed

    Illuminati, Fabrizio; Albus, Alexander

    2004-08-27

    We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions.

  2. MSW-resonant fermion mixing during reheating

    NASA Astrophysics Data System (ADS)

    Kanai, Tsuneto; Tsujikawa, Shinji

    2003-10-01

    We study the dynamics of reheating in which an inflaton field couples two flavor fermions through Yukawa-couplings. When two fermions have a mixing term with a constant coupling, we show that the Mikheyev-Smirnov-Wolfenstein (MSW)-type resonance emerges due to a time-dependent background in addition to the standard fermion creation via parametric resonance. This MSW resonance not only alters the number densities of fermions generated by a preheating process but also can lead to the larger energy transfer from the inflaton to fermions. Our mechanism can provide additional source terms for the creation of superheavy fermions which may be relevant for the leptogenesis scenario.

  3. Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassanein, Ahmed; Konkashbaev, Isak

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.

  4. Statistical mechanics and thermodynamic limit of self-gravitating fermions in D dimensions.

    PubMed

    Chavanis, Pierre-Henri

    2004-06-01

    We discuss the statistical mechanics of a system of self-gravitating fermions in a space of dimension D. We plot the caloric curves of the self-gravitating Fermi gas giving the temperature as a function of energy and investigate the nature of phase transitions as a function of the dimension of space. We consider stable states (global entropy maxima) as well as metastable states (local entropy maxima). We show that for D> or =4, there exists a critical temperature (for sufficiently large systems) and a critical energy below which the system cannot be found in statistical equilibrium. Therefore, for D> or =4, quantum mechanics cannot stabilize matter against gravitational collapse. This is similar to a result found by Ehrenfest (1917) at the atomic level for Coulomb forces. This makes the dimension D=3 of our Universe very particular with possible implications regarding the anthropic principle. Our study joins a long tradition of scientific and philosophical papers that examined how the dimension of space affects the laws of physics.

  5. Peculiarities of the momentum distribution functions of strongly correlated charged fermions

    NASA Astrophysics Data System (ADS)

    Larkin, A. S.; Filinov, V. S.; Fortov, V. E.

    2018-01-01

    New numerical version of the Wigner approach to quantum thermodynamics of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations based on different kinds of perturbation theories cannot be applied. An explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. A new quantum Monte-Carlo method for calculations of average values of arbitrary quantum operators has been developed. Calculations of the momentum distribution functions and the pair correlation functions of degenerate ideal Fermi gas have been carried out for testing the developed approach. Comparison of the obtained momentum distribution functions of strongly correlated Coulomb systems with the Maxwell-Boltzmann and the Fermi distributions shows the significant influence of interparticle interaction both at small momenta and in high energy quantum ‘tails’.

  6. Probing density and spin correlations in two-dimensional Hubbard model with ultracold fermions

    NASA Astrophysics Data System (ADS)

    Chan, Chun Fai; Drewes, Jan Henning; Gall, Marcell; Wurz, Nicola; Cocchi, Eugenio; Miller, Luke; Pertot, Daniel; Brennecke, Ferdinand; Koehl, Michael

    2017-04-01

    Quantum gases of interacting fermionic atoms in optical lattices is a promising candidate to study strongly correlated quantum phases of the Hubbard model such as the Mott-insulator, spin-ordered phases, or in particular d-wave superconductivity. We experimentally realise the two-dimensional Hubbard model by loading a quantum degenerate Fermi gas of 40 K atoms into a three-dimensional optical lattice geometry. High-resolution absorption imaging in combination with radiofrequency spectroscopy is applied to spatially resolve the atomic distribution in a single 2D layer. We investigate in local measurements of spatial correlations in both the density and spin sector as a function of filling, temperature and interaction strength. In the density sector, we compare the local density fluctuations and the global thermodynamic quantities, and in the spin sector, we observe the onset of non-local spin correlation, signalling the emergence of the anti-ferromagnetic phase. We would report our recent experimental endeavours to investigate further down in temperature in the spin sector.

  7. Chiral sp-orbital paired superfluid of fermionic atoms in a 2D spin-dependent optical lattice

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Xiaopeng; Wu, Biao; Liu, W. Vincent

    2014-03-01

    Recent progress in realizing synthetic quantum orbital materials in chequerboard and hexagonal optical lattices opens an avenue towards exploiting unconventional quantum states, advancing our understanding of correlated quantum matter. Here, we unveil a chiral sp -orbital paired superfluid state for an interacting two-component Fermi gas in a 2D spin-dependent optical lattice. Surprisingly, this novel state is found to exist in a wide regime of experimentally tunable interaction strengths. The coexistence of this chiral superfluid and the ferro-orbital order is reminiscent of that of magnetism and superconductivity which is a long-standing issue in condensed matter physics. The topological properties are demonstrated by the existence of gapless chiral fermions in the presence of domain wall defects, reminiscent of quantum Hall edge states. Such properties can be measured by radio frequency spectroscopy in cold atomic experiments. Work supported in part by U.S. ARO, AFOSR, and DARPA-OLE-ARO, Kaufman Foundation, and NSF of China.

  8. Optical probing of quantum Hall effect of composite fermions and of the liquid-insulator transition

    NASA Astrophysics Data System (ADS)

    Rossella, F.; Bellani, V.; Dionigi, F.; Amado, M.; Diez, E.; Kowalik, K.; Biasiol, G.; Sorba, L.

    2011-12-01

    In the photoluminescence spectra of a two-dimensional electron gas in the fractional quantum Hall regime we observe the states at filling factors ν = 4/5, 5/7, 4/11 and 3/8 as clear minima in the intensity or area emission peak. The first three states are described as interacting composite fermions in fractional quantum Hall regime. The minimum in the intensity at ν = 3/8, which is not explained within this picture, can be an evidence of a suppression of the screening of the Coulomb interaction among the effective quasi-particles involved in this intriguing state. The magnetic field energy dispersion at very low temperatures is also discussed. At low field the emission follows a Landau dispersion with a screened magneto-Coulomb contribution. At intermediate fields the hidden symmetry manifests. At high field above ν = 1/3 the electrons correlate into an insulating phase, and the optical emission behaviour at the liquid-insulator transition is coherent with a charge ordering driven by Coulomb correlations.

  9. Characterization of microporous separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Venugopal, Ganesh; Moore, John; Howard, Jason; Pendalwar, Shekhar

    Several properties including porosity, pore-size distribution, thickness value, electrochemical stability and mechanical properties have to be optimized before a membrane can qualify as a separator for a lithium-ion battery. In this paper we present results of characterization studies carried out on some commercially available lithium-ion battery separators. The relevance of these results to battery performance and safety are also discussed. Porosity values were measured using a simple liquid absorption test and gas permeabilities were measured using a novel pressure drop technique that is similar in principle to the Gurley test. For separators from one particular manufacturer, the trend observed in the pressure drop times was found to be in agreement with the Gurley numbers reported by the separator manufacturer. Shutdown characteristics of the separators were studied by measuring the impedance of batteries containing the separators as a function of temperature. Overcharge tests were also performed to confirm that separator shutdown is indeed a useful mechanism for preventing thermal runaway situations. Polyethylene containing separators, in particular trilayer laminates of polypropylene, polyethylene and polypropylene, appear to have the most attractive properties for preventing thermal runaway in lithium ion cells.

  10. In situ analytical techniques for battery interface analysis.

    PubMed

    Tripathi, Alok M; Su, Wei-Nien; Hwang, Bing Joe

    2018-02-05

    Lithium-ion batteries, simply known as lithium batteries, are distinct among high energy density charge-storage devices. The power delivery of batteries depends upon the electrochemical performances and the stability of the electrode, electrolytes and their interface. Interfacial phenomena of the electrode/electrolyte involve lithium dendrite formation, electrolyte degradation and gas evolution, and a semi-solid protective layer formation at the electrode-electrolyte interface, also known as the solid-electrolyte interface (SEI). The SEI protects electrodes from further exfoliation or corrosion and suppresses lithium dendrite formation, which are crucial needs for enhancing the cell performance. This review covers the compositional, structural and morphological aspects of SEI, both artificially and naturally formed, and metallic dendrites using in situ/in operando cells and various in situ analytical tools. Critical challenges and the historical legacy in the development of in situ/in operando electrochemical cells with some reports on state-of-the-art progress are particularly highlighted. The present compilation pinpoints the emerging research opportunities in advancing this field and concludes on the future directions and strategies for in situ/in operando analysis.

  11. Anisotropic Weyl fermions from the quasiparticle excitation spectrum of a 3D Fulde-Ferrell superfluid.

    PubMed

    Xu, Yong; Chu, Rui-Lin; Zhang, Chuanwei

    2014-04-04

    Weyl fermions, first proposed for describing massless chiral Dirac fermions in particle physics, have not been observed yet in experiments. Recently, much effort has been devoted to explore Weyl fermions around band touching points of single-particle energy dispersions in certain solid state materials (named Weyl semimetals), similar as graphene for Dirac fermions. Here we show that such Weyl semimetals also exist in the quasiparticle excitation spectrum of a three-dimensional spin-orbit-coupled Fulde-Ferrell superfluid. By varying Zeeman fields, the properties of Weyl fermions, such as their creation and annihilation, number and position, as well as anisotropic linear dispersions around band touching points, can be tuned. We study the manifestation of anisotropic Weyl fermions in sound speeds of Fulde-Ferrell fermionic superfluids, which are detectable in experiments.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhardwaj, Lakshya; Gaiotto, Davide; Kapustin, Anton

    It is possible to describe fermionic phases of matter and spin-topological field theories in 2+1d in terms of bosonic “shadow” theories, which are obtained from the original theory by “gauging fermionic parity”. Furthemore, the fermionic/spin theories are recovered from their shadow by a process of fermionic anyon condensation: gauging a one-form symmetry generated by quasi-particles with fermionic statistics. We apply the formalism to theories which admit gapped boundary conditions. We obtain Turaev-Viro-like and Levin-Wen-like constructions of fermionic phases of matter. Here, we describe the group structure of fermionic SPT phases protected by Z 2f × G. The quaternion group makesmore » a surprise appearance.« less

  13. Superfluid Boson-Fermion Mixture: Structure Formation and Collective Periodic Motion

    NASA Astrophysics Data System (ADS)

    Mitra, A.

    2018-01-01

    Multiple periodic domain formation due to a modulation instability in a boson-fermion mixture superfluid in the unitary regime has been studied. The periodicity of the structure evolves with time. At the early stage of evolution, bosonic domains show the periodic nature, whereas the periodicity in the fermionic (Cooper pair) domains appears at the late stage of evolution. The nature of interatomic interspecies interactions affects the domain formation. In a harmonic trap, the mixture executes an undamped oscillation. The frequency of the oscillation depends on the relative coupling strength between boson-fermion and fermion-fermion. The repulsive boson-fermion interaction reduces the oscillation frequency, whereas the attractive interaction enhances the frequency significantly.

  14. Fermion emission from a Julia-Zee dyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaer, A.S.; Christ, N.H.; Tang, J.

    1982-04-15

    A relationship is obtained between the S matrix for the charge-exchange scattering of a fermion by a Julia-Zee dyon and the flux of fermions emitted by the dyon when the mass of the fermions is sufficiently small. In the limit of a pointlike dyon, the required S-matrix elements are obtained in closed form and the corresponding fermion flux is computed explicitly.

  15. The lithium vapor box divertor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Our recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m -2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et almore » as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. Furthermore, at the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required in order to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.« less

  16. The lithium vapor box divertor

    NASA Astrophysics Data System (ADS)

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-02-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.

  17. The lithium vapor box divertor

    DOE PAGES

    Goldston, R. J.; Myers, R.; Schwartz, J.

    2016-01-13

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Our recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m -2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et almore » as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. Furthermore, at the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required in order to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.« less

  18. From ultracold Fermi Gases to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Salomon, Christophe

    2012-02-01

    Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)

  19. Three-Dimensional Array of TiN@Pt3Cu Nanowires as an Efficient Porous Electrode for the Lithium-Oxygen Battery.

    PubMed

    Luo, Wen-Bin; Pham, Thien Viet; Guo, Hai-Peng; Liu, Hua-Kun; Dou, Shi-Xue

    2017-02-28

    The nonaqueous lithium-oxygen battery is a promising candidate as a next-generation energy storage system because of its potentially high energy density (up to 2-3 kW kg -1 ), exceeding that of any other existing energy storage system for storing sustainable and clean energy to reduce greenhouse gas emissions and the consumption of nonrenewable fossil fuels. To achieve high round-trip efficiency and satisfactory cycling stability, the air electrode structure and the electrocatalysts play important roles. Here, a 3D array composed of one-dimensional TiN@Pt 3 Cu nanowires was synthesized and employed as a whole porous air electrode in a lithium-oxygen battery. The TiN nanowire was primarily used as an air electrode frame and catalyst support to provide a high electronic conductivity network because of the high-orientation one-dimensional crystalline structure. Meanwhile, deposited icosahedral Pt 3 Cu nanocrystals exhibit highly efficient catalytic activity owing to the abundant {111} active lattice facets and multiple twin boundaries. This porous air electrode comprises a one-dimensional TiN@Pt 3 Cu nanowire array that demonstrates excellent energy conversion efficiency and rate performance in full discharge and charge modes. The discharge capacity is up to 4600 mAh g -1 along with an 84% conversion efficiency at a current density of 0.2 mA cm -2 , and when the current density increased to 0.8 mA cm -2 , the discharge capacity is still greater than 3500 mAh g -1 together with a nearly 70% efficiency. This designed array is a promising bifunctional porous air electrode for lithium-oxygen batteries, forming a continuous conductive and high catalytic activity network to facilitate rapid gas and electrolyte diffusion and catalytic reaction throughout the whole energy conversion process.

  20. Corrosion Testing of Zirconia, Beryllia and Magnesia Ceramics in Molten Alkali Metal Carbonates at 900°C

    NASA Astrophysics Data System (ADS)

    Kaplan, Valery; Lubomirsky, Igor

    An electrochemical cell containing molten Li2CO3-Li2O has been proposed for the conversion of the greenhouse gas CO2 to CO, which can then either be used to power gas turbines or converted to methanol. Since efficient electrolysis takes place at 900°C, the materials which can be used in such a cell must satisfy stringent requirements. In the current work, we have examined the static corrosion resistance of zirconia, beryllia and magnesia ceramics at 900°C in the Li2CO3-Li2O mixture and in a Li-Na-K carbonate eutectic mixture with the ultimate objective of identifying suitable electrically insulating materials. Conclusions regarding material stability were based on elemental analysis of the melt, primarily via X-ray photoelectron spectroscopy, a particularly sensitive technique. It was found that magnesia is completely stable for at least 33 hrs in a Li2CO3-Li2O melt, while a combined lithium titanate/lithium zirconate layer forms on the zirconia ceramic as detected by XRD. Under the same melt conditions, beryllia shows considerable leaching into solution. In a Li-Na-K carbonate eutectic mixture containing 10.2 mol% oxide at 900°C under standard atmospheric conditions, magnesia showed no signs of degradation. Stabilization of the zirconia content of the eutectic mixture at 0.01-0.02 at% after 2 hrs is again explained by the formation of a lithium titanate/ lithium zirconate coating. On the basis of these results, we conclude that only magnesia can be satisfactorily used as an insulating material in electrolysis cells containing Li2CO3-Li2O melts.

  1. 75 FR 57549 - Fisker Automotive; Grant of Application for Temporary Exemption From Advanced Air Bag...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... electric motors that get their power from a rechargeable Lithium-ion battery, or, when that is depleted, by... Americans drive each day. The battery can be charged at home overnight. Using gas and electric power, Fisker...

  2. Improved ultraviolet resonance lamp

    NASA Technical Reports Server (NTRS)

    Bass, A. M.

    1970-01-01

    Removal of the seal area from the path of the lamp discharge eliminates the gradual deterioration of lithium fluoride window surfaces from condensation of products formed by interaction of a resonant rare-gas discharge with window sealing materials. The discharge is confined to the inner tube.

  3. Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium

    PubMed Central

    2017-01-01

    Lithium metal is the ultimate anode choice for high energy density rechargeable lithium batteries. However, it suffers from inferior electrochemical performance and safety issues due to its high reactivity and the growth of lithium dendrites. It has long been desired to develop a materials coating on Li metal, which is pinhole-free, mechanically robust without fracture during Li metal deposition and stripping, and chemically stable against Li metal and liquid electrolytes, all while maintaining adequate ionic conductivity. However, such an ideal material coating has yet to be found. Here we report a novel synthesis method by reacting clean molten lithium foil directly with pure nitrogen gas to generate instantaneously a pinhole-free and ionically conductive α-Li3N film directly bonded onto Li metal foil. The film consists of highly textured large Li3N grains (tens of μm) with (001) crystalline planes parallel to the Li metal surface. The bonding between textured grains is strong, resulting in a mechanically robust film which does not crack even when bent to a 0.8 cm curvature radius and is found to maintain pinhole-free coverage during Li metal deposition and stripping. The measured ionic conductivity is up to 5.2 × 10–4 S cm–1, sufficient for maintaining regular current densities for controllable film thicknesses ranging from 2 to 30 μm. This Li3N coating is chemically stable, isolating the reactive metallic lithium from liquid electrolyte, prevents continuous electrolyte consumption during battery cycling, and promotes dendrite-free uniform lithium plating/stripping underneath. We demonstrated Li|Li4Ti5O12 cells with stable and flat potential profiles for 500 cycles without capacity decay or an increase in potential hysteresis. PMID:29392181

  4. Quantum Algorithms for Computational Physics: Volume 3 of Lattice Gas Dynamics

    DTIC Science & Technology

    2007-01-03

    time- dependent state |q(t)〉 of a two- energy level quantum mechanical system, which is a fermionic qubit and is governed by the Schroedinger wave...on-site ket of size 2B |Ψ〉 total system ket of size 2Q 2.2 The quantum state in the number representation From the previous section, a time- dependent ...duration depend on the particular experimental realization, so that the natural coupling along with the program of externally applied pulses together

  5. Strong photoassociation in a degenerate fermi gas

    NASA Astrophysics Data System (ADS)

    Rvachov, Timur; Jamison, Alan; Jing, Li; Son, Hyungmok; Ebadi, Sepehr; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    Despite many studies there remain open questions about strong photoassociation in ultracold gases. We study the effects of strong photoassociation in ultracold fermions. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system. We study the effects of strong photoassociation in 6 Li, the onset of saturation, and its effects on spin polarized and interacting spin-mixtures. This work was funded by the NSF, ARO-MURI, SAMSUNG, and NSERC.

  6. Charged fermions below 100 GeV

    NASA Astrophysics Data System (ADS)

    Egana-Ugrinovic, Daniel; Low, Matthew; Ruderman, Joshua T.

    2018-05-01

    How light can a fermion be if it has unit electric charge? We revisit the lore that LEP robustly excludes charged fermions lighter than about 100 GeV. We review LEP chargino searches, and find them to exclude charged fermions lighter than 90 GeV, assuming a higgsino-like cross section. However, if the charged fermion couples to a new scalar, destructive interference among production channels can lower the LEP cross section by a factor of 3. In this case, we find that charged fermions as light as 75 GeV can evade LEP bounds, while remaining consistent with constraints from the LHC. As the LHC collects more data, charged fermions in the 75-100 GeV mass range serve as a target for future monojet and disappearing track searches.

  7. Preanalytical variables in measurement of free (ionized) calcium in lithium heparin-containing blood collection tubes.

    PubMed

    Haverstick, Doris M; Brill, Louis B; Scott, Mitchell G; Bruns, David E

    2009-05-01

    Measurements of free (ionized) calcium (iCa) are increasingly requested in patient care locations where immediate analysis is unavailable. Evacuated blood collection tubes containing lithium heparin and gel separator material are widely used in clinical laboratories, but little information is available on the effects of these tubes or of delay prior to analysis on the concentration or stability of iCa. We collected blood from volunteers into lithium-heparin tubes (PST, Vacutainer PST, BD Pre-Analytic Systems) of multiple lots and into electrolyte-balanced heparin syringes (Portex Dry Heparin, Smiths Medical). iCa was measured (Siemens 1265 blood gas analyzers) immediately and, in PST, at 0-7 h with or without transportation of the tubes from remote sites. The mean difference of free calcium results in the PST tubes and electrolyte-balanced syringes was -0.08 (95% confidence interval -0.17 to 0.012) mmol/l, and the SD of the residuals (Sy, x) of the regression was 0.03 mmol/l. There was no detectable lot-to-lot variation in results. Free calcium was stable in tubes at room temperature and at 4 degrees C for at least 7 h with or without transportation. iCa measured in the examined blood collection tubes is stable and unaffected by lot-to-lot variation of tubes, but results are slightly lower than with special blood gas syringes.

  8. Computational Simulation of High Energy Density Plasmas

    DTIC Science & Technology

    2009-10-30

    the imploding liner. The PFS depends on a lithium barrier foil slowing the advance of deuterium up the coaxial gun to the corner. There the plasma ...the coaxial gun section, and Figure 4 shows the physical state of the plasma just prior to pinch. Figure 5 shows neutron yield reaching 1014 in this...details the channel geometry between the center cylinder and coaxial gas gun . The deuterium injection starts when the pressure of the deuterium gas in

  9. Specific heat and effects of strong pairing fluctuations in a superfluid Fermi atom gas in the BCS-BEC crossover region

    NASA Astrophysics Data System (ADS)

    van Wyk, Pieter; Inotani, Daisuke; Ohashi, Yoji

    2018-03-01

    We theoretically investigate the specific heat at constant volume C V in the BCS(Bardeen-Cooper-Schrieffer)-BEC(Bose-Einstein-condensation)-crossover regime of an ultracold Fermi gas, below the superfluid phase transition temperature T c. Within the strong-coupling framework developed by Nozières and Schmitt-Rink, we show that the temperature dependence of C V drastically changes as one passes through the crossover region, and is sensitive to strong fluctuations in the Cooper channel near the unitarity limit. We also compare our results to a recent experiment on a 6Li unitary Fermi gas. Since fluctuation effects are a crucial key in the BCS-BEC-crossover phenomenon, our results would be helpful in considering how the fermionic BCS superfluid changes into BEC with increasing the interaction strength, from the viewpoint of specific heat.

  10. Double helix boron-10 powder thermal neutron detector

    DOEpatents

    Wang, Zhehui; Morris, Christopher L.; Bacon, Jeffrey D.

    2015-06-02

    A double-helix Boron-10 powder detector having intrinsic thermal neutron detection efficiency comparable to 36'' long, 2-in diameter, 2-bar Helium-3 detectors, and which can be used to replace such detectors for use in portal monitoring, is described. An embodiment of the detector includes a metallic plate coated with Boron-10 powder for generating alpha and Lithium-7 particles responsive to neutrons impinging thereon supported by insulators affixed to at least two opposing edges; a grounded first wire wound in a helical manner around two opposing insulators; and a second wire having a smaller diameter than that of the first wire, wound in a helical manner around the same insulators and spaced apart from the first wire, the second wire being positively biased. A gas, disposed within a gas-tight container enclosing the plate, insulators and wires, and capable of stopping alpha and Lithium-7 particles and generating electrons produces a signal on the second wire which is detected and subsequently related to the number of neutrons impinging on the plate.

  11. Multiparticle instability in a spin-imbalanced Fermi gas

    NASA Astrophysics Data System (ADS)

    Whitehead, T. M.; Conduit, G. J.

    2018-01-01

    Weak attractive interactions in a spin-imbalanced Fermi gas induce a multiparticle instability, binding multiple fermions together. The maximum binding energy per particle is achieved when the ratio of the number of up- and down-spin particles in the instability is equal to the ratio of the up- and down-spin densities of states in momentum at the Fermi surfaces, to utilize the variational freedom of all available momentum states. We derive this result using an analytical approach, and verify it using exact diagonalization. The multiparticle instability extends the Cooper pairing instability of balanced Fermi gases to the imbalanced case, and could form the basis of a many-body state, analogously to the construction of the Bardeen-Cooper-Schrieffer theory of superconductivity out of Cooper pairs.

  12. Ghost free systems with coexisting bosons and fermions

    NASA Astrophysics Data System (ADS)

    Kimura, Rampei; Sakakihara, Yuki; Yamaguchi, Masahide

    2017-08-01

    We study the coexistence system of both bosonic and fermionic degrees of freedom. Even if a Lagrangian does not include higher derivatives, fermionic ghosts exist. For a Lagrangian with up to first derivatives, we find the fermionic ghost free condition in Hamiltonian analysis, which is found to be the same as requiring that the equations of motion of fermions be first order in Lagrangian formulation. When fermionic degrees of freedom are present, the uniqueness of time evolution is not guaranteed a priori because of the Grassmann property. We confirm that the additional condition, which is introduced to close Hamiltonian analysis, also ensures the uniqueness of the time evolution of the system.

  13. Superfluid-ferromagnet-superfluid junction and the {pi} phase in a superfluid Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashimura, Takashi; Tsuchiya, Shunji; CREST

    2010-09-15

    We investigate the possibility of a superfluid-ferromagnet-superfluid (SFS) junction in a superfluid Fermi gas. To examine this possibility in a simple manner, we consider an attractive Hubbard model at T=0 within the mean-field theory. When a potential barrier is embedded in a superfluid Fermi gas with population imbalance (N{sub {up_arrow}}>N{sub {down_arrow}}, where N{sub {sigma}} is the number of atoms with pseudospin {sigma}= {up_arrow}, {down_arrow}), this barrier is shown to be magnetized in the sense that excess {up_arrow}-spin atoms are localized around it. The resulting superfluid Fermi gas is spatially divided into two by this ferromagnet, so that one obtains amore » junction similar to the superconductor-ferromagnet-superconductor junction discussed in superconductivity. Indeed, we show that the so-called {pi} phase, which is a typical phenomenon in the SFS junction, is realized, where the superfluid order parameter changes its sign across the junction. Our results would be useful for the study of magnetic effects on fermion superfluidity using an ultracold Fermi gas.« less

  14. Discrete symmetries and the propagator approach to coupled fermions in Quantum Field Theory. Generalities: The case of a single fermion-antifermion pair

    NASA Astrophysics Data System (ADS)

    Duret, Q.; Machet, B.

    2010-10-01

    Starting from Wigner's symmetry representation theorem, we give a general account of discrete symmetries (parity P, charge conjugation C, time-reversal T), focusing on fermions in Quantum Field Theory. We provide the rules of transformation of Weyl spinors, both at the classical level (grassmanian wave functions) and quantum level (operators). Making use of Wightman's definition of invariance, we outline ambiguities linked to the notion of classical fermionic Lagrangian. We then present the general constraints cast by these transformations and their products on the propagator of the simplest among coupled fermionic system, the one made with one fermion and its antifermion. Last, we put in correspondence the propagation of C eigenstates (Majorana fermions) and the criteria cast on their propagator by C and CP invariance.

  15. Lithium As Plasma Facing Component for Magnetic Fusion Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masayuki Ono

    The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor ofmore » two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.« less

  16. Scales of mass generation for quarks, leptons, and majorana neutrinos.

    PubMed

    Dicus, Duane A; He, Hong-Jian

    2005-06-10

    We study 2-->n inelastic fermion-(anti)fermion scattering into multiple longitudinal weak gauge bosons and derive universal upper bounds on the scales of fermion mass generation by imposing unitarity of the S matrix. We place new upper limits on the scales of fermion mass generation, independent of the electroweak symmetry breaking scale. Strikingly, we find that the strongest 2-->n limits fall in a narrow range, 3-170 TeV (with n=2-24), depending on the observed fermion masses.

  17. Luminescence from edge fracture in shocked lithium fluoride crystals

    DOE PAGES

    Turley, W. D.; Stevens, G. D.; Capelle, G. A.; ...

    2013-04-03

    Light emitted from a [100] lithium fluoride crystal was characterized under shock wave compression to 28 GPa followed by complete stress release at the edges. We examined the light using time-gated optical spectrometry and imaging, time-resolved optical emission measurements, and hydrodynamic modeling. The shock arrival at the circumference of the crystal was delayed relative to the center so that the two regions could be studied at different times. The majority of the light emission originated when the shock waves released at the circumference of the crystal. Unlike previously reported results for shocked lithium fluoride, we found that the light spectrummore » is not strictly broad band, but has spectral lines associated with atomic lithium in addition to a broad band background. Also, the emission spectrum depends strongly on the gas surrounding the sample. Based on our observations, the line emission appears to be related to fracture of the lithium fluoride crystal from the shock wave releasing at the edges. Moreover, experimenters frequently utilize lithium fluoride crystals as transparent windows for observing shock compressed samples. Because of the experimental geometries used, the shock wave in such cases often reaches the circumference of the window at nearly the same moment as when it reaches the center of the sample-window interface. Light generated at the circumference could contaminate the measurement at the interface when this light scatters into the observed region. Finally, this background light may be reduced or avoided using experimental geometries which delay the arrival of the shock wave at the edges of the crystal.« less

  18. Failure Analysis of Short-Circuited Lithium-Ion Battery with Nickel-Manganese-Cobalt/Graphite Electrode.

    PubMed

    Lee, Seung-Mi; Kim, Jea-Yeon; Byeon, Jai-Won

    2018-09-01

    Accidental failures and explosions of lithium-ion batteries have been reported in recent years. To determine the root causes and mechanisms of these failures from the perspective of material degradation, failure analysis was conducted for an intentionally shorted lithium-ion battery. The battery was subjected to electrical overcharging and mechanical pressing to simulate internal short-circuiting. After in situ measurement of the temperature increase during the short-circuiting of the electrodes, the disassembled battery components (i.e., the anode, cathode, and separator) were analyzed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Regardless of the simulated short-circuit method (mechanical or electrical), damage was observed in the shorted batteries. Numerous small cracks and chemical reaction products were observed on the electrode surface, along with pore shielding on the separator. The event of short-circuiting increased the surface temperature of the battery to approximately 90 °C, which prompted the deterioration and decomposition of the electrolyte, thus affecting the overall battery performance; this was attributed to the decomposition of the lithium salt at 60 °C. The gas generation due to the breakdown of the electrolyte causes pressure accumulation inside the cell; therefore, the electrolyte leaks.

  19. Stochastic quantization and holographic Wilsonian renormalization group of free massive fermion

    NASA Astrophysics Data System (ADS)

    Moon, Sung Pil

    2018-06-01

    We examine a suggested relation between stochastic quantization and the holographic Wilsonian renormalization group in the massive fermion case on Euclidean AdS space. The original suggestion about the general relation between the two theories is posted in arXiv:1209.2242. In the previous researches, it is already verified that scalar fields, U(1) gauge fields, and massless fermions are consistent with the relation. In this paper, we examine the relation in the massive fermion case. Contrary to the other case, in the massive fermion case, the action needs particular boundary terms to satisfy boundary conditions. We finally confirm that the proposed suggestion is also valid in the massive fermion case.

  20. Rooting issue for a lattice fermion formulation similar to staggered fermions but without taste mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, David H.

    2008-05-15

    To investigate the viability of the 4th root trick for the staggered fermion determinant in a simpler setting, we consider a 2-taste (flavor) lattice fermion formulation with no taste mixing but with exact taste-nonsinglet chiral symmetries analogous to the taste-nonsinglet U(1){sub A} symmetry of staggered fermions. Creutz's objections to the rooting trick apply just as much in this setting. To counter them we show that the formulation has robust would-be zero modes in topologically nontrivial gauge backgrounds, and that these manifest themselves in a viable way in the rooted fermion determinant and also in the disconnected piece of the pseudoscalarmore » meson propagator as required to solve the U(1) problem. Also, our rooted theory is heuristically seen to be in the right universality class for QCD if the same is true for an unrooted mixed fermion action theory.« less

  1. A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies

    NASA Astrophysics Data System (ADS)

    Lu, Wei

    2017-09-01

    We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.

  2. Parametrically coupled fermionic oscillators: Correlation functions and phase-space description

    NASA Astrophysics Data System (ADS)

    Ghosh, Arnab

    2015-01-01

    A fermionic analog of a parametric amplifier is used to describe the joint quantum state of the two interacting fermionic modes. Based on a two-mode generalization of the time-dependent density operator, time evolution of the fermionic density operator is determined in terms of its two-mode Wigner and P function. It is shown that the equation of motion of the Wigner function corresponds to a fermionic analog of Liouville's equation. The equilibrium density operator for fermionic fields developed by Cahill and Glauber is thus extended to a dynamical context to show that the mathematical structures of both the correlation functions and the weight factors closely resemble their bosonic counterpart. It has been shown that the fermionic correlation functions are marked by a characteristic upper bound due to Fermi statistics, which can be verified in the matter wave counterpart of photon down-conversion experiments.

  3. Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap

    NASA Astrophysics Data System (ADS)

    Ünal, F. Nur; Hetényi, B.; Oktel, M. Ã.-.

    2015-05-01

    The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.

  4. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.

    PubMed

    Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun

    2017-08-15

    Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.

  5. Proper battery system design for GAS experiments

    NASA Astrophysics Data System (ADS)

    Calogero, Stephen A.

    1992-10-01

    The purpose of this paper is to help the GAS experimenter to design a battery system that meets mission success requirements while at the same time reducing the hazards associated with the battery system. Lead-acid, silver-zinc and alkaline chemistry batteries will be discussed. Lithium batteries will be briefly discussed with emphasis on back-up power supply capabilities. The hazards associated with different battery configurations will be discussed along with the controls necessary to make the battery system two-fault tolerant.

  6. Novel diode laser-based sensors for gas sensing applications

    NASA Technical Reports Server (NTRS)

    Tittel, F. K.; Lancaster, D. G.; Richter, D.

    2000-01-01

    The development of compact spectroscopic gas sensors and their applications to environmental sensing will be described. These sensors employ mid-infrared difference-frequency generation (DFG) in periodically poled lithium niobate (PPLN) crystals pumped by two single-frequency solid state lasers such as diode lasers, diode-pumped solid state, and fiber lasers. Ultrasensitive, highly selective, and real-time measurements of several important atmospheric trace gases, including carbon monoxide, nitrous oxide, carbon dioxide, formaldehyde [correction of formaldehye], and methane, have been demonstrated.

  7. Proper battery system design for GAS experiments

    NASA Technical Reports Server (NTRS)

    Calogero, Stephen A.

    1992-01-01

    The purpose of this paper is to help the GAS experimenter to design a battery system that meets mission success requirements while at the same time reducing the hazards associated with the battery system. Lead-acid, silver-zinc and alkaline chemistry batteries will be discussed. Lithium batteries will be briefly discussed with emphasis on back-up power supply capabilities. The hazards associated with different battery configurations will be discussed along with the controls necessary to make the battery system two-fault tolerant.

  8. Modeling and Validation of Lithium-ion Automotive Battery Packs (SAE 2013-01-1539)

    EPA Science Inventory

    The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created by EPA to evaluate the Greenhouse Gas (GHG) emissions of Light-Duty (LD) vehicles. It is a physics-based, forward-looking, full vehicle computer simulator capable of analyzing various vehicle types c...

  9. Big Data, Models and Tools | Transportation Research | NREL

    Science.gov Websites

    displacement, and greenhouse gas reduction scenarios. New Tool Accelerates Design of Electric Vehicle Batteries design better, safer, and longer-lasting lithium-ion batteries for electric-drive vehicles through the Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) project. This month, ANSYS

  10. Modeling and Validation of 48V Mild Hybrid Lithium-ion Battery Pack

    EPA Science Inventory

    As part of the Midterm Evaluation of the 2017-2025 Light-duty Vehicle Greenhouse Gas (GHG) Standards, the U.S. Environmental Protection Agency (EPA) developed simulation models for studying the effectiveness of 48V mild hybrid technology for reducing CO2 emissions from light-duty...

  11. Lithium-Inorganic Electrolyte Batteries

    DTIC Science & Technology

    1975-01-01

    soluble and therefore would not cause large pressure increases. Analysis by gas chromatography and cyclic voltametry is in progress. The fact that no...the large peak at 2.2 V again appears. Following a cathodic sweep , the Ni electrode is covered with a film which, after washing with SOC12 and drying

  12. Spontaneous Vortices in Imbalance Populated Fermion Gas, Finite Size System

    NASA Astrophysics Data System (ADS)

    Su, Jung-Jung; Shim, Yun-Pil; Duine, Rembert; MacDonald, Allan H.

    2006-05-01

    Atomic Fermion gases with mismatched densities have attracted much interest recently both experimentally and theoretically. These gases are related to superconductors in a magnetic field, to color superconductivity in high density QCD and to other systems. The main focus of recent research is on the possibility of unusual pairing states, the Larkin-Ovchinnikov-Fulde-Ferrel(LOFF)[1] phase, the Deformed Fermi surface(DFS)[2] and other states have been suggested in the past few years. We work specifically on two-dimensional systems with circular hard walls which contain atoms with two different hyperfine states and different populations. In addition to phase separation, a phenomenon that has already been observed[3], we consider the possibility of the spontaneous formation of vortices and giant vortices in some regions of parameter space. [1] Qinghong Cui, C.-R. Hu, J.Y.T. Wei, and Kun Yang, cond-mat/0510717 [2] Armen Sedrakian, Jordi Mur-Petit, Artur Polls, Herbert M"uther , cond-mat/0404577 [3] Guthrie B. Partridge, Wenhui Li, Ramsey I. Kamar, Yean-an Liao, Randall G. Hulet, cond-mat/0511752

  13. Chiral current generation in QED by longitudinal photons

    NASA Astrophysics Data System (ADS)

    Acosta Avalo, J. L.; Pérez Rojas, H.

    2016-08-01

    We report the generation of a pseudovector electric current having imbalanced chirality in an electron-positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler-Bell-Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone). In the static limit, an electric pseudovector current is obtained in the lowest Landau level.

  14. Anomaly-free dark matter models are not so simple

    NASA Astrophysics Data System (ADS)

    Ellis, John; Fairbairn, Malcolm; Tunney, Patrick

    2017-08-01

    We explore the anomaly-cancellation constraints on simplified dark matter (DM) models with an extra U(1)' gauge boson Z '. We show that, if the Standard Model (SM) fermions are supplemented by a single DM fermion χ that is a singlet of the SM gauge group, and the SM quarks have non-zero U(1)' charges, the SM leptons must also have non-zero U(1)' charges, in which case LHC searches impose strong constraints on the Z ' mass. Moreover, the DM fermion χ must have a vector-like U(1)' coupling. If one requires the DM particle to have a purely axial U(1)' coupling, which would be the case if χ were a Majorana fermion and would reduce the impact of direct DM searches, the simplest possibility is that it is accompanied by one other new singlet fermion, but in this case the U(1)' charges of the SM leptons still do not vanish. This is also true in a range of models with multiple new singlet fermions with identical charges. Searching for a leptophobic model, we then introduce extra fermions that transform non-trivially under the SM gauge group. We find several such models if the DM fermion is accompanied by two or more other new fermions with non-identical charges, which may have interesting experimental signatures. We present benchmark representatives of the various model classes we discuss.

  15. Stability of Full Penetration, Flat Position Weld Pools

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.; Coan, Al. B.

    1999-01-01

    The dynamics of the dropthrough distance of a full penetration, flat position weld pool is described. Close to incipient root side penetration the dropthrough is metastable, so that a small drop in power can cause a loss of penetration if not followed soon enough by a compensating rise in power. The SPA (Soft Plasma Arc) process with higher pressure on top of the weld pool loses penetration more quickly than the GTA (Gas Tungsten Arc) process. 2195 aluminum-lithium alloy with a lower surface tension loses penetration more quickly than 2219 aluminum alloy. An instance of loss of penetration of a SPA weld in 2195 aluminum-lithium alloy is discussed in the light of the model.

  16. Phase space methods for Majorana fermions

    NASA Astrophysics Data System (ADS)

    Rushin Joseph, Ria; Rosales-Zárate, Laura E. C.; Drummond, Peter D.

    2018-06-01

    Fermionic phase space representations are a promising method for studying correlated fermion systems. The fermionic Q-function and P-function have been defined using Gaussian operators of fermion annihilation and creation operators. The resulting phase-space of covariance matrices belongs to the symmetry class D, one of the non-standard symmetry classes. This was originally proposed to study mesoscopic normal-metal-superconducting hybrid structures, which is the type of structure that has led to recent experimental observations of Majorana fermions. Under a unitary transformation, it is possible to express these Gaussian operators using real anti-symmetric matrices and Majorana operators, which are much simpler mathematical objects. We derive differential identities involving Majorana fermion operators and an antisymmetric matrix which are relevant to the derivation of the corresponding Fokker–Planck equations on symmetric space. These enable stochastic simulations either in real or imaginary time. This formalism has direct relevance to the study of fermionic systems in which there are Majorana type excitations, and is an alternative to using expansions involving conventional Fermi operators. The approach is illustrated by showing how a linear coupled Hamiltonian as used to study topological excitations can be transformed to Fokker–Planck and stochastic equation form, including dissipation through particle losses.

  17. Implication of Tsallis entropy in the Thomas–Fermi model for self-gravitating fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ourabah, Kamel; Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr

    The Thomas–Fermi approach for self-gravitating fermions is revisited within the theoretical framework of the q-statistics. Starting from the q-deformation of the Fermi–Dirac distribution function, a generalized Thomas–Fermi equation is derived. It is shown that the Tsallis entropy preserves a scaling property of this equation. The q-statistical approach to Jeans’ instability in a system of self-gravitating fermions is also addressed. The dependence of the Jeans’ wavenumber (or the Jeans length) on the parameter q is traced. It is found that the q-statistics makes the Fermionic system unstable at scales shorter than the standard Jeans length. -- Highlights: •Thomas–Fermi approach for self-gravitatingmore » fermions. •A generalized Thomas–Fermi equation is derived. •Nonextensivity preserves a scaling property of this equation. •Nonextensive approach to Jeans’ instability of self-gravitating fermions. •It is found that nonextensivity makes the Fermionic system unstable at shorter scales.« less

  18. Fermionic topological quantum states as tensor networks

    NASA Astrophysics Data System (ADS)

    Wille, C.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  19. Dynamic origins of fermionic D -terms

    NASA Astrophysics Data System (ADS)

    Hudson, Jonathan; Schweitzer, Peter

    2018-03-01

    The D -term is defined through matrix elements of the energy-momentum tensor, similarly to mass and spin, yet this important particle property is experimentally not known any fermion. In this work we show that the D -term of a spin 1/2 fermion is of dynamical origin: it vanishes for a free fermion. This is in pronounced contrast to the bosonic case where already a free spin-0 boson has a non-zero intrinsic D -term. We illustrate in two simple models how interactions generate the D -term of a fermion with an internal structure, the nucleon. All known matter is composed of elementary fermions. This indicates the importance to study this interesting particle property in more detail, which will provide novel insights especially on the structure of the nucleon.

  20. Superfluid and Insulating Phases of Fermion Mixtures in Optical Lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iskin, M.; Sa de Melo, C. A. R.

    2007-08-24

    The ground state phase diagram of fermion mixtures in optical lattices is analyzed as a function of interaction strength, fermion filling factor, and tunneling parameters. In addition to standard superfluid, phase-separated or coexisting superfluid-excess-fermion phases found in homogeneous or harmonically trapped systems, fermions in optical lattices have several insulating phases, including a molecular Bose-Mott insulator (BMI), a Fermi-Pauli (band) insulator (FPI), a phase-separated BMI-FPI mixture or a Bose-Fermi checkerboard (BFC). The molecular BMI phase is the fermion mixture counterpart of the atomic BMI found in atomic Bose systems, the BFC or BMI-FPI phases exist in Bose-Fermi mixtures, and lastly themore » FPI phase is particular to the Fermi nature of the constituent atoms of the mixture.« less

  1. Phenomenology of fermion production during axion inflation

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Pearce, Lauren; Peloso, Marco; Roberts, Michael A.; Sorbo, Lorenzo

    2018-06-01

    We study the production of fermions through a derivative coupling with a pseudoscalar inflaton and the effects of the produced fermions on the scalar primordial perturbations. We present analytic results for the modification of the scalar power spectrum due to the produced fermions, and we estimate the amplitude of the non-Gaussianities in the equilateral regime. Remarkably, we find a regime where the effect of the fermions gives the dominant contribution to the scalar spectrum while the amplitude of the bispectrum is small and in agreement with observation. We also note the existence of a regime in which the backreaction of the fermions on the evolution of the zero-mode of the inflaton can lead to inflation even if the potential of the inflaton is steep and does not satisfy the slow-roll conditions.

  2. Non-Equilibrium Dynamics of Fermi Gases Near A Scattering Resonance

    NASA Astrophysics Data System (ADS)

    Trotzky, S.; Luciuk, C.; Smale, S.; Beattie, S.; Taylor, E.; Enss, T.; Zhang, Shizhong; Thywissen, J. H.

    2015-05-01

    We present recent dynamic measurements of fermionic potassium (40K) near Fano-Feshbach scattering resonances. In our experiments, we start with a weakly or non-interacting Fermi gas and initiate strong interactions on a timescale that is fast compared to the equilibration mechanisms in the system quasi-instantaneous quench. Equally fast measurements allow us to follow the non-equilibrium many-body dynamics. First, we discuss time-resolved radio-frequency (rf) spectroscopy, and its use to probe the evolution of the short-range part of the many-body wave function - i.e., the contact. Second, we discuss spin-echo measurements that reveal the nature of transverse spin transport. Most recently, we have studied a Fermi gas with repulsive interactions in the metastable upper branch of the energy spectrum near a s-wave scattering resonance.

  3. Two-Dimensional Homogeneous Fermi Gases

    NASA Astrophysics Data System (ADS)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  4. Cascade of Solitonic Excitations in a Superfluid Fermi Gas: From Solitons and Vortex Rings to Solitonic Vortices

    NASA Astrophysics Data System (ADS)

    Ku, Mark; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin

    2015-05-01

    We follow the evolution of a superfluid Fermi gas of 6Li atoms following a one-sided π phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, and its subsequent snaking and decay into a vortex ring. The latter eventually breaks at the boundary of the superfluid, finally leaving behind a single, remnant solitonic vortex. The nodal surface is directly imaged and reveals its decay into a vortex ring via a puncture of the initial soliton plane. At intermediate stages we find evidence for more exotic structures resembling Φ-solitons. The observed evolution of the nodal surface represents dynamics that occurs at the length scale of the interparticle spacing, thus providing new experimental input for microscopic theories of strongly correlated fermions.

  5. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries.

    PubMed

    Li, Jia; Wang, Guangxu; Xu, Zhenming

    2016-06-01

    The recycling of spent lithium-ion batteries brings benefits to both economic and environmental terms, but it can also lead to contaminants in a workshop environment. This study focused on metals, non-metals and volatile organic compounds generated by the discharging and dismantling pretreatment processes which are prerequisite for recycling spent lithium-ion batteries. After discharging in NaCl solution, metal contents in supernate and concentrated liquor were detected. Among results of condition #2, #3, #4 and #5, supernate and concentrated liquor contain high levels of Na, Al, Fe; middle levels of Co, Li, Cu, Ca, Zn; and low levels of Mn, Sn, Cr, Zn, Ba, K, Mg, V. The Hg, Ag, Cr and V are not detected in any of the analyzed supernate. 10wt% NaCl solution was a better discharging condition for high discharge efficiency, less possible harm to environment. To collect the gas released from dismantled LIB belts, a set of gas collecting system devices was designed independently. Two predominant organic vapour compounds were dimethyl carbonate (4.298mgh(-1)) and tert-amylbenzene (0.749mgh(-1)) from one dismantled battery cell. To make sure the concentrations of dimethyl carbonate under recommended industrial exposure limit (REL) of 100mgL(-1), for a workshop on dismantling capacity of 1000kg spent LIBs, the minimum flow rate of ventilating pump should be 235.16m(3)h(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Lunar Surface Reactor Shielding Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Shawn; McAlpine, William; Lipinski, Ronald

    A nuclear reactor system could provide power to support long term human exploration of the moon. Such a system would require shielding to protect astronauts from its emitted radiations. Shielding studies have been performed for a Gas Cooled Reactor system because it is considered to be the most suitable nuclear reactor system available for lunar exploration, based on its tolerance of oxidizing lunar regolith and its good conversion efficiency. The goals of the shielding studies were to determine a material shielding configuration that reduces the dose (rem) to the required level in order to protect astronauts, and to estimate themore » mass of regolith that would provide an equivalent protective effect if it were used as the shielding material. All calculations were performed using MCNPX, a Monte Carlo transport code. Lithium hydride must be kept between 600 K and 700 K to prevent excessive swelling from large amounts of gamma or neutron irradiation. The issue is that radiation damage causes separation of the lithium and the hydrogen, resulting in lithium metal and hydrogen gas. The proposed design uses a layer of B4C to reduce the combined neutron and gamma dose to below 0.5Grads before the LiH is introduced. Below 0.5Grads the swelling in LiH is small (less than about 1%) for all temperatures. This approach causes the shield to be heavier than if the B4C were replaced by LiH, but it makes the shield much more robust and reliable.« less

  7. Vortex line in the unitary Fermi gas

    DOE PAGES

    Madeira, Lucas; Vitiello, Silvio A.; Gandolfi, Stefano; ...

    2016-04-06

    Here, we report diffusion Monte Carlo results for the ground state of unpolarized spin-1/2 fermions in a cylindrical container and properties of the system with a vortex-line excitation. The density profile of the system with a vortex line presents a nonzero density at the core. We also calculate the ground-state energy per particle, the superfluid pairing gap, and the excitation energy per particle. Finally, these simulations can be extended to calculate the properties of vortex excitations in other strongly interacting systems such as superfluid neutron matter using realistic nuclear Hamiltonians.

  8. The BCS-BEC Crossover

    NASA Astrophysics Data System (ADS)

    Parish, Meera M.

    2015-09-01

    This chapter presents the crossover from the Bardeen-Cooper-Schrieffer (BCS) state of weakly correlated pairs of fermions to the Bose-Einstein condensation (BEC) of diatomic molecules in the atomic Fermi gas. Our aim is to provide a pedagogical review of the BCS-BEC crossover, with an emphasis on the basic concepts, particularly those that are not generally known or are difficult to find in the literature. We shall not attempt to give an exhaustive survey of current research in the limited space here; where possible, we will direct the reader to more extensive reviews.

  9. Statistical correlations in an ideal gas of particles obeying fractional exclusion statistics.

    PubMed

    Pellegrino, F M D; Angilella, G G N; March, N H; Pucci, R

    2007-12-01

    After a brief discussion of the concepts of fractional exchange and fractional exclusion statistics, we report partly analytical and partly numerical results on thermodynamic properties of assemblies of particles obeying fractional exclusion statistics. The effect of dimensionality is one focal point, the ratio mu/k_(B)T of chemical potential to thermal energy being obtained numerically as a function of a scaled particle density. Pair correlation functions are also presented as a function of the statistical parameter, with Friedel oscillations developing close to the fermion limit, for sufficiently large density.

  10. On the regularized fermionic projector of the vacuum

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2008-03-01

    We construct families of fermionic projectors with spherically symmetric regularization, which satisfy the condition of a distributional MP-product. The method is to analyze regularization tails with a power law or logarithmic scaling in composite expressions in the fermionic projector. The resulting regularizations break the Lorentz symmetry and give rise to a multilayer structure of the fermionic projector near the light cone. Furthermore, we construct regularizations which go beyond the distributional MP-product in that they yield additional distributional contributions supported at the origin. The remaining freedom for the regularization parameters and the consequences for the normalization of the fermionic states are discussed.

  11. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations.

    PubMed

    Warner, N R; Darrah, T H; Jackson, R B; Millot, R; Kloppmann, W; Vengosh, A

    2014-11-04

    Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25-31‰) and δ7Li (6-10‰) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (∼0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF.

  12. Semiclassical fermion pair creation in de Sitter spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahl, Clément, E-mail: clement.stahl@icranet.org; Eckhard, Strobel, E-mail: eckhard.strobel@irap-phd.eu; Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome

    2015-12-17

    We present a method to semiclassically compute the pair creation rate of bosons and fermions in de Sitter spacetime. The results in the bosonic case agree with the ones in the literature. We find that for the constant electric field the fermionic and bosonic pair creation rate are the same. This analogy of bosons and fermions in the semiclassical limit is known from several flat spacetime examples.

  13. Perturbative quantum field theory in the framework of the fermionic projector

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2014-04-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  14. Index theorem for non-supersymmetric fermions coupled to a non-Abelian string and electric charge quantization

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Yung, A.

    2018-03-01

    Non-Abelian strings are considered in non-supersymmetric theories with fermions in various appropriate representations of the gauge group U(N). We derive the electric charge quantization conditions and the index theorems counting fermion zero modes in the string background both for the left-handed and right-handed fermions. In both cases we observe a non-trivial N dependence.

  15. Topology and strong four fermion interactions in four dimensions

    NASA Astrophysics Data System (ADS)

    Catterall, Simon; Butt, Nouman

    2018-05-01

    We study massless fermions interacting through a particular four-fermion term in four dimensions. Exact symmetries prevent the generation of bilinear fermion mass terms. We determine the structure of the low-energy effective action for the auxiliary field needed to generate the four-fermion term and find it has an novel structure that admits topologically nontrivial defects with nonzero Hopf invariant. We show that fermions propagating in such a background pick up a mass without breaking symmetries. Furthermore, pairs of such defects experience a logarithmic interaction. We argue that a phase transition separates a phase where these defects proliferate from a broken phase where they are bound tightly. We conjecture that, by tuning one additional operator, the broken phase can be eliminated with a single BKT-like phase transition separating the massless from massive phases.

  16. Surface Plasmon Enhanced Sensitive Detection for Possible Signature of Majorana Fermions via a Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System

    PubMed Central

    Chen, Hua-Jun; Zhu, Ka-Di

    2015-01-01

    In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions. PMID:26310929

  17. Cosmological singularities and bounce in Cartan-Einstein theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucat, Stefano; Prokopec, Tomislav, E-mail: s.lucat@students.uu.nl, E-mail: t.prokopec@uu.nl

    We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh ( in-in ) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins inmore » a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce . We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).« less

  18. Cosmological singularities and bounce in Cartan-Einstein theory

    NASA Astrophysics Data System (ADS)

    Lucat, Stefano; Prokopec, Tomislav

    2017-10-01

    We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh (in-in) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins in a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce. We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).

  19. High Temperature Analysis of Aluminum-Lithium 2195 Alloy to Aid in the Design of Improved Welding Techniques

    NASA Technical Reports Server (NTRS)

    Talia, George E.; Widener, Christian

    1996-01-01

    Aluminum-lithium alloys have extraordinary properties. The addition of lithium to an aluminum alloy decreases its density, while making large increases in its strength and hardness. The down side is that they are unstable at higher temperatures, and are subsequently difficult to weld or even manufacture. Martin Marietta, though, developed an aluminum-lithium alloy 2195 that was reported to have exceptional properties and good weldability. Thus, it was chosen as the alloy for the space shuttles super light external tank. Unfortunately, welding 2195 has turned out to be much more of a challenge than anticipated. Thus, research has been undergone in order to understand the mechanisms that are causing the welding problems. Gas reactions have been observed to be detrimental to weld strength. Water vapor has often been identified as having a significant role in these reactions. Nitrogen, however, has also been shown to have a direct correlation to porosity. These reactions were suspected as being complex and responsible for the two main problems of welding 2195. One, the initial welds of 2195 are much weaker than the parent metal. Second, each subsequent welding pass increases the size and number of cracks and porosity, yielding significant reductions in strength. Consequently, the objective of this research was to characterize the high-temperature reactions of 2195 in order to understand the mechanisms for crack growth and the formation of porosity in welds. In order to accomplish that goal, an optical hot-stage microscope, HSM, was used to observe those reactions as they occurred. Surface reactions of 2195 were observed in a variety of environments, such as air, vacuum, nitrogen and helium. For comparison, some samples of Al-2219 were also observed. Some of the reacted surfaces were then analyzed on a scanning electron microscope, SEM. Additionally, a gas chromatograph was used to analyze the gaseous products of the high temperature reactions.

  20. Unitary Fermi gas in a harmonic trap

    NASA Astrophysics Data System (ADS)

    Chang, S. Y.; Bertsch, G. F.

    2007-08-01

    We present an ab initio calculation of small numbers of trapped, strongly interacting fermions using the Green’s function Monte Carlo method. The ground-state energy, density profile, and pairing gap are calculated for particle numbers N=2 22 using the parameter-free “unitary” interaction. Trial wave functions are taken in the form of correlated pairs in a harmonic oscillator basis. We find that the lowest energies are obtained with a minimum explicit pair correlation beyond that needed to exploit the degeneracy of oscillator states. We find that the energies can be well fitted by the expression aTFETF+Δmod(N,2) where ETF is the Thomas-Fermi energy of a noninteracting gas in the trap and Δ is the pairing gap. There is no evidence of a shell correction energy in the systematics, but the density distributions show pronounced shell effects. We find the value Δ=0.7±0.2ω for the pairing gap. This is smaller than the value found for the uniform gas at a density corresponding to the central density of the trapped gas.

  1. PBFA II, a 100 TW Pulsed Power Driver for the Inertial Confinement Fusion Program

    DTIC Science & Technology

    1985-06-01

    providing a 30 MV, 15 ns output pulse,which accelerates lithium ions. The ions will focus onto a pellet containing deuterium-tritium, producing fusion ... energy . Several research areas will be reviewed: low jitter, highly reliable 370 kJ Marx generators; highly synchronized gas switching at 5 MV; efficient

  2. Fermion systems in discrete space-time

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  3. New chiral fermions, a new gauge interaction, Dirac neutrinos, and dark matter

    DOE PAGES

    de Gouvea, Andre; Hernandez, Daniel

    2015-10-07

    Here, we propose that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard-model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. Hypercharge, for example, plays this role for the SM fermions. We introduce a new symmetry, U(1) ν , for all new light fermionic states. Anomaly cancellations mandate the existence of several new fermion fields with nontrivial U(1) ν charges. We develop a concrete model of this type, for which we show that (i) some fermions remain massless after U(1) ν breaking — similar to SM neutrinos —more » and (ii) accidental global symmetries translate into stable massive particles — similar to SM protons. These ingredients provide a solution to the dark matter and neutrino mass puzzles assuming one also postulates the existence of heavy degrees of freedom that act as “mediators” between the two sectors. The neutrino mass mechanism described here leads to parametrically small Dirac neutrino masses, and the model also requires the existence of at least four Dirac sterile neutrinos. Finally, we describe a general technique to write down chiral-fermions-only models that are at least anomaly-free under a U(1) gauge symmetry.« less

  4. New chiral fermions, a new gauge interaction, Dirac neutrinos, and dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Gouvea, Andre; Hernandez, Daniel

    Here, we propose that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard-model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. Hypercharge, for example, plays this role for the SM fermions. We introduce a new symmetry, U(1) ν , for all new light fermionic states. Anomaly cancellations mandate the existence of several new fermion fields with nontrivial U(1) ν charges. We develop a concrete model of this type, for which we show that (i) some fermions remain massless after U(1) ν breaking — similar to SM neutrinos —more » and (ii) accidental global symmetries translate into stable massive particles — similar to SM protons. These ingredients provide a solution to the dark matter and neutrino mass puzzles assuming one also postulates the existence of heavy degrees of freedom that act as “mediators” between the two sectors. The neutrino mass mechanism described here leads to parametrically small Dirac neutrino masses, and the model also requires the existence of at least four Dirac sterile neutrinos. Finally, we describe a general technique to write down chiral-fermions-only models that are at least anomaly-free under a U(1) gauge symmetry.« less

  5. Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways.

    PubMed

    Xu, Shaomao; Yao, Yonggang; Guo, Yuanyuan; Zeng, Xiaoqiao; Lacey, Steven D; Song, Huiyu; Chen, Chaoji; Li, Yiju; Dai, Jiaqi; Wang, Yanbin; Chen, Yanan; Liu, Boyang; Fu, Kun; Amine, Khalil; Lu, Jun; Hu, Liangbing

    2018-01-01

    The lithium-air (Li-O 2 ) battery has been deemed one of the most promising next-generation energy-storage devices due to its ultrahigh energy density. However, in conventional porous carbon-air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile-based air cathode is developed with a triple-phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile-based Li-O 2 cathode exhibits a high discharge capacity of 8.6 mAh cm -2 , a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile-based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li-O 2 batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp; Yamaguchi, Akihiro; Sakuda, Atsushi

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueousmore » solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.« less

  7. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    NASA Astrophysics Data System (ADS)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  8. String theory, quantum phase transitions, and the emergent Fermi liquid.

    PubMed

    Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad

    2009-07-24

    A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid.

  9. Bosonization of fermions coupled to topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-03-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.

  10. A four-dimensional model with the fermionic determinant exactly evaluated

    NASA Astrophysics Data System (ADS)

    Mignaco, J. A.; Rego Monteiro, M. A.

    1986-07-01

    A method is presented to compute the fermion determinant of some class of field theories. By this method the following results of the fermion determinant in two dimensions are easily recovered: (i) Schwinger model without reference to a particular gauge. (ii) QCD in the light-cone gauge. (iii) Gauge invariant result of QCD. The method is finally applied to give an analytical solution of the fermion determinant of a four-dimensional, non-abelian, Dirac-like theory with massless fermions interacting with an external vector field through a pseudo-vectorial coupling. Fellow of the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil.

  11. Exact solutions to the fermion propagator Schwinger-Dyson equation in Minkowski space with on-shell renormalization for quenched QED

    DOE PAGES

    Jia, Shaoyang; Pennington, M. R.

    2017-08-01

    With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé approximation for the spectral functions is also investigated.

  12. Exact solutions to the fermion propagator Schwinger-Dyson equation in Minkowski space with on-shell renormalization for quenched QED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Shaoyang; Pennington, M. R.

    With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé approximation for the spectral functions is also investigated.

  13. Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair

    NASA Astrophysics Data System (ADS)

    Čubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad

    2011-10-01

    We provide evidence that the holographic dual to a strongly coupled charged Fermi liquid has a non-zero fermion density in the bulk. We show that the pole-strength of the stable quasiparticle characterizing the Fermi surface is encoded in the AdS probability density of a single normalizable fermion wavefunction in AdS. Recalling Migdal's theorem which relates the pole strength to the Fermi-Dirac characteristic discontinuity in the number density at ω F , we conclude that the AdS dual of a Fermi liquid is described by occupied on-shell fermionic modes in AdS. Encoding the occupied levels in the total spatially averaged probability density of the fermion field directly, we show that an AdS Reissner-Nordström black holein a theory with charged fermions has a critical temperature, at which the system undergoes a first-order transition to a black hole with a non-vanishing profile for the bulk fermion field. Thermodynamics and spectral analysis support that the solution with non-zero AdS fermion-profile is the preferred ground state at low temperatures.

  14. Effective interaction of electroweak-interacting dark matter with Higgs boson and its phenomenology

    NASA Astrophysics Data System (ADS)

    Hisano, Junji; Kobayashi, Daiki; Mori, Naoya; Senaha, Eibun

    2015-03-01

    We study phenomenology of electroweak-interacting fermionic dark matter (DM) with a mass of O (100) GeV. Constructing the effective Lagrangian that describes the interactions between the Higgs boson and the SU (2)L isospin multiplet fermion, we evaluate the electric dipole moment (EDM) of electron, the signal strength of Higgs boson decay to two photons and the spin-independent elastic-scattering cross section with proton. As representative cases, we consider the SU (2)L triplet fermions with zero/nonzero hypercharges and SU (2)L doublet fermion. It is found that the electron EDM gives stringent constraints on those model parameter spaces. In the cases of the triplet fermion with zero hypercharge and the doublet fermion, the Higgs signal strength does not deviate from the standard model prediction by more than a few % once the current DM direct detection constraint is taken into account, even if the CP violation is suppressed. On the contrary, O (10- 20)% deviation may occur in the case of the triplet fermion with nonzero hypercharge. Our representative scenarios may be tested by the future experiments.

  15. Unit with Fluidized Bed for Gas-Vapor Activation of Different Carbonaceous Materials for Various Purposes: Design, Computation, Implementation

    NASA Astrophysics Data System (ADS)

    Strativnov, Eugene

    2017-02-01

    We propose the technology of obtaining the promising material with wide specter of application-activated nanostructured carbon. In terms of technical indicators, it will stand next to the materials produced by complex regulations with the use of costly chemical operations. It can be used for the following needs: as a sorbent for hemosorption and enterosorption, for creation of the newest source of electric current (lithium and zinc air batteries, supercapacitors), and for processes of short-cycle adsorption gas separation.

  16. Majorana-Based Fermionic Quantum Computation.

    PubMed

    O'Brien, T E; Rożek, P; Akhmerov, A R

    2018-06-01

    Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O(1) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.

  17. Observing fermionic statistics with photons in arbitrary processes

    PubMed Central

    Matthews, Jonathan C. F.; Poulios, Konstantinos; Meinecke, Jasmin D. A.; Politi, Alberto; Peruzzo, Alberto; Ismail, Nur; Wörhoff, Kerstin; Thompson, Mark G.; O'Brien, Jeremy L.

    2013-01-01

    Quantum mechanics defines two classes of particles-bosons and fermions-whose exchange statistics fundamentally dictate quantum dynamics. Here we develop a scheme that uses entanglement to directly observe the correlated detection statistics of any number of fermions in any physical process. This approach relies on sending each of the entangled particles through identical copies of the process and by controlling a single phase parameter in the entangled state, the correlated detection statistics can be continuously tuned between bosonic and fermionic statistics. We implement this scheme via two entangled photons shared across the polarisation modes of a single photonic chip to directly mimic the fermion, boson and intermediate behaviour of two-particles undergoing a continuous time quantum walk. The ability to simulate fermions with photons is likely to have applications for verifying boson scattering and for observing particle correlations in analogue simulation using any physical platform that can prepare the entangled state prescribed here. PMID:23531788

  18. Majorana-Based Fermionic Quantum Computation

    NASA Astrophysics Data System (ADS)

    O'Brien, T. E.; RoŻek, P.; Akhmerov, A. R.

    2018-06-01

    Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O (1 ) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.

  19. Application of Lithium Attachment Mass Spectrometry for Knudsen Evaporation and Chemical Ionisation Mass Spectrometry (KEMS, CIMS)

    NASA Astrophysics Data System (ADS)

    Bannan, T.; Booth, M.; Benyezzar, M.; Bacak, A.; Alfarra, M. R. R.; Topping, D. O.; Percival, C.

    2015-12-01

    Lithium ion attachment mass spectrometry provides a non-specific, non-fragmenting and sensitive method for detection of volatile species in the gas phase. The design, manufacture, and results from lithium ion attachment ionisation sources for two mass spectrometry systems are presented. Trace gas analysis is investigated using a modified Chemical Ionization Mass Spectrometer (CIMS) and vapour pressure (VP) measurements using a modified Knudsen Effusion Mass Spectrometer (KEMS) are presented. The Li+ modified CIMS provided limits of detection of 4 ppt for acetone, 0.2 ppt for formic acid, 15 ppt for nitric acid and 120 ppt from ammonia. Despite improvements, the problem of burnout remained persistent. The Li+ CIMS would unlikely be suitable for field or aircraft work, but could be appropriate for certain lab applications. The KEMS currently utilizes an electron impact (EI) ionisation source which provides a highly sensitive source, with the drawback of fragmentation of ionized molecules (Booth et al., 2009). Using Li+ KEMS the VP of samples can be measured without fragmentation and can therefore be used to identify VPs of individual components in mixtures. The validity of using Li+ for determining the VP of mixtures was tested by making single component VP measurements, which showed good agreement with EI measurements of Poly ethylene glycol (PEG) 3 and PEG 4, both when individually measured and when mixed. The Li+ KEMS was then used to investigate a system of atmospheric relevance, α-pinene secondary organic aerosol, generated in a reaction chamber (Alfarra et al., 2012). The VPs of the individual components from this generated sample are within the range we expect for compounds capable of partitioning between the particle and gas phase of an aerosol (0.1-10-5 Pa). Li+ source has a calculated sensitivity approximately 75 times less than that of EI, but the lack of fragmentation using the Li+ source is a significant advantage.

  20. Application of Lithium Attachment Mass Spectrometry for Knudsen Evaporation and Chemical Ionisation Mass Spectrometry (KEMS, CIMS)

    NASA Astrophysics Data System (ADS)

    Bannan, Thomas; Booth, A. Murray; Alfarra, Rami; Bacak, Asan; Pericval, Carl

    2016-04-01

    Lithium ion attachment mass spectrometry provides a non-specific, non-fragmenting and sensitive method for detection of volatile species in the gas phase. The design, manufacture, and results from lithium ion attachment ionisation sources for two mass spectrometry systems are presented. Trace gas analysis is investigated using a modified Chemical Ionization Mass Spectrometer (CIMS) and vapour pressure (VP) measurements using a modified Knudsen Effusion Mass Spectrometer (KEMS) are presented. The Li+ modified CIMS provided limits of detection of 4 ppt for acetone, 0.2 ppt for formic acid, 15 ppt for nitric acid and 120 ppt from ammonia. Despite improvements, the problem of burnout remained persistent. The Li+ CIMS would unlikely be suitable for field or aircraft work, but could be appropriate for certain lab applications. The KEMS currently utilizes an electron impact (EI) ionisation source which provides a highly sensitive source, with the drawback of fragmentation of ionized molecules (Booth et al., 2009). Using Li+ KEMS the VP of samples can be measured without fragmentation and can therefore be used to identify VPs of individual components in mixtures. The validity of using Li+ for determining the VP of mixtures was tested by making single component VP measurements, which showed good agreement with EI measurements of Poly ethylene glycol (PEG) 3 and PEG 4, both when individually measured and when mixed. The Li+ KEMS was then used to investigate a system of atmospheric relevance, α-pinene secondary organic aerosol, generated in a reaction chamber (Alfarra et al., 2012). The VPs of the individual components from this generated sample are within the range we expect for compounds capable of partitioning between the particle and gas phase of an aerosol (0.1-10-5 Pa). Li+ source has a calculated sensitivity approximately 75 times less than that of EI, but the lack of fragmentation using the Li+ source is a significant advantage.

  1. On the reactive occlusion of the (uranium trichloride + lithium chloride + potassium chloride) eutectic salt in zeolite 4A

    NASA Astrophysics Data System (ADS)

    Lexa, Dusan; Leibowitz, Leonard; Kropf, Jeremy

    2000-03-01

    The interaction between the (uranium trichloride + lithium chloride + potassium chloride) eutectic salt and zeolite 4A has been studied by temperature-resolved synchrotron powder X-ray diffraction, evolved gas analysis and differential scanning calorimetry, between 300 and 900 K. The onset of salt occlusion by the zeolite has been detected at 450 K. Evidence of a reaction between zeolitic water and uranium trichloride, leading to the formation of uranium dioxide, has appeared at 600 K. The uranium dioxide particle size increases from 2 nm at 600 K to 25 nm at 900 K - an indication of their extra-zeolitic location. No appreciable degradation of the zeolite structure has been observed.

  2. Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure

    DOE PAGES

    He, Qing Lin; Pan, Lei; Stern, Alexander L.; ...

    2017-07-21

    Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantummore » computing.« less

  3. Novel foamy origin for singlet fermion masses

    NASA Astrophysics Data System (ADS)

    Ellis, John; Mavromatos, Nick E.; Nanopoulos, Dimitri V.

    2017-10-01

    We show how masses for singlet fermions can be generated by interactions with a D-particle model of space-time foam inspired by brane theory. It has been shown previously by one of the authors (N. E. M.) that such interactions may generate dynamically small masses for charged fermions via the recoils of D-particle defects interacting with photons. In this work we consider the direct interactions of D-particle with uncharged singlet fermions such as right-handed neutrinos. Quantum fluctuations of the lattice of D-particles have massless vector (spin-one) excitations that are analogues of phonons. These mediate forces with the singlet fermions, generating large dynamical masses that may be communicated to light neutrinos via the seesaw mechanism.

  4. Cooling Atomic Gases With Disorder

    DOE PAGES

    Paiva, Thereza; Khatami, Ehsan; Yang, Shuxiang; ...

    2015-12-10

    Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. Here in this paper, we propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approachmore » the Néel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.« less

  5. Bose-Fermi mapping and a multibranch spin-chain model for strongly interacting quantum gases in one dimension: Dynamics and collective excitations

    NASA Astrophysics Data System (ADS)

    Yang, Li; Pu, Han

    2016-09-01

    We show that the wave function in one spatial sector x1

  6. Thermodynamics of ideal quantum gas with fractional statistics in D dimensions.

    PubMed

    Potter, Geoffrey G; Müller, Gerhard; Karbach, Michael

    2007-06-01

    We present exact and explicit results for the thermodynamic properties (isochores, isotherms, isobars, response functions, velocity of sound) of a quantum gas in dimensions D > or = 1 and with fractional exclusion statistics 0 < or = g < or =1 connecting bosons (g=0) and fermions (g=1) . In D=1 the results are equivalent to those of the Calogero-Sutherland model. Emphasis is given to the crossover between bosonlike and fermionlike features, caused by aspects of the statistical interaction that mimic long-range attraction and short-range repulsion. A phase transition along the isobar occurs at a nonzero temperature in all dimensions. The T dependence of the velocity of sound is in simple relation to isochores and isobars. The effects of soft container walls are accounted for rigorously for the case of a pure power-law potential.

  7. Weyl Superfluidity in a Three-dimensional Dipolar Fermi Gas

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Xiaopeng; Yin, Lan; Liu, W. Vincent

    2015-03-01

    Weyl superconductivity or superfluidity, a fascinating topological state of matter, features novel phenomena such as emergent Weyl fermionic excitations and anomalies. Here we report that an anisotropic Weyl superfluid state can arise as a low temperature stable phase in a 3D dipolar Fermi gas. A crucial ingredient of our model is a direction-dependent two-body effective attraction generated by a rotating external field. Experimental signatures are predicted for cold gases in radio-frequency spectroscopy. The finite temperature phase diagram of this system is studied and the transition temperature of the Weyl superfluidity is found to be within the experimental scope for atomic dipolar Fermi gases. Work supported in part by U.S. ARO, AFOSR, DARPA-OLE-ARO, Charles E. Kaufman Foundation and The Pittsburgh Foundation, JQI-NSF-PFC, ARO-Atomtronics-MURI, and NSF of China.

  8. Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Qing; Zhang, Dan-Wei; Yan, Hui; Xing, Ding-Yu; Zhu, Shi-Liang

    2017-09-01

    The discovery of relativistic spin-1/2 fermions such as Dirac and Weyl fermions in condensed-matter or artificial systems opens a new era in modern physics. An interesting but rarely explored question is whether other relativistic spinal excitations could be realized with artificial systems. Here, we construct two- and three-dimensional tight-binding models realizable with cold fermionic atoms in optical lattices, where the low energy excitations are effectively described by the spin-1 Maxwell equations in the Hamiltonian form. These relativistic (linear dispersion) excitations with unconventional integer pseudospin, beyond the Dirac-Weyl-Majorana fermions, are an exotic kind of fermions named as Maxwell fermions. We demonstrate that the systems have rich topological features. For instance, the threefold degenerate points called Maxwell points may have quantized Berry phases and anomalous quantum Hall effects with spin-momentum locking may appear in topological Maxwell insulators in the two-dimensional lattices. In three dimensions, Maxwell points may have nontrivial monopole charges of ±2 with two Fermi arcs connecting them, and the merging of the Maxwell points leads to topological phase transitions. Finally, we propose realistic schemes for realizing the model Hamiltonians and detecting the topological properties of the emergent Maxwell quasiparticles in optical lattices.

  9. Modeling electron fractionalization with unconventional Fock spaces.

    PubMed

    Cobanera, Emilio

    2017-08-02

    It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality [Formula: see text] of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.

  10. Non-thermal leptogenesis with distinct CP violation and minimal dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hang; Gu, Pei-Hong, E-mail: einsteinzh@sjtu.edu.cn, E-mail: peihong.gu@sjtu.edu.cn

    We demonstrate a unified scenario for neutrino mass, baryon asymmetry, dark matter and inflation. In addition to a fermion triplet for the so-called minimal dark matter, we extend the standard model by three heavy fields including a scalar singlet, a fermion triplet and a fermion singlet/Higgs triplet. The heavy scalar singlet, which is expected to drive an inflation, and the dark matter fermion triplet are odd under an unbroken Z {sub 2} discrete symmetry, while the other fields are all even. The heavy fermion triplet offers a tree-level type-III seesaw and then mediates a three-body decay of the inflaton intomore » the standard model lepton and Higgs doublets with the dark matter fermion triplet. The heavy fermion singlet/Higgs triplet not only results in a type-I/II seesaw at tree level but also contributes to the inflaton decay at one-loop level. In this scenario, the type-I/II seesaw contains all of the physical CP phases in the lepton sector and hence the CP violation for the non-thermal leptogenesis by the inflaton decay exactly comes from the imaginary part of the neutrino mass matrix.« less

  11. Fermion-induced quantum critical points.

    PubMed

    Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong

    2017-08-22

    A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.

  12. Enriched Boron-Doped Amorphous Selenium Based Position-Sensitive Solid-State Thermal Neutron Detector for MPACT Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Krishna

    High-efficiency thermal neutron detectors with compact size, low power-rating and high spatial, temporal and energy resolution are essential to execute non-proliferation and safeguard protocols. The demands of such detector are not fully covered by the current detection system such as gas proportional counters or scintillator-photomultiplier tube combinations, which are limited by their detection efficiency, stability of response, speed of operation, and physical size. Furthermore, world-wide shortage of 3He gas, required for widely used gas detection method, has further prompted to design an alternative system. Therefore, a solid-state neutron detection system without the requirement of 3He will be very desirable. Tomore » address the above technology gap, we had proposed to develop new room temperature solidstate thermal neutron detectors based on enriched boron ( 10B) and enriched lithium ( 6Li) doped amorphous Se (As- 0.52%, Cl 5 ppm) semiconductor for MPACT applications. The proposed alloy materials have been identified for its many favorable characteristics - a wide bandgap (~2.2 eV at 300 K) for room temperature operation, high glass transition temperature (t g ~ 85°C), a high thermal neutron cross-section (for boron ~ 3840 barns, for lithium ~ 940 barns, 1 barn = 10 -24 cm 2), low effective atomic number of Se for small gamma ray sensitivity, and high radiation tolerance due to its amorphous structure.« less

  13. Analysis of Bose system in spin-orbit coupled Bose-Fermi mixture to induce a spin current of fermions

    NASA Astrophysics Data System (ADS)

    Sakamoto, R.; Ono, Y.; Hatsuda, R.; Shiina, K.; Arahata, E.; Mori, H.

    2018-03-01

    We found that a spin current of fermions could be induced in spin-orbit coupled Bose-Fermi mixture at zero temperature. Since spatial change of the spin structure of the bosons is necessary to induce the spin current of the fermions, we analyzed the ground state of the bosons in the mixture system, using a variational method. The obtained phase diagram indicated the presence of a bosonic phase that allowed the fermions to have a spin current.

  14. Spin-Orbit Coupling and Novel Electronic States at the Interfaces of Heavy Fermion Materials

    DTIC Science & Technology

    2016-02-22

    idea, which is to study novel electronic phases at the interfaces of heavy fermion heterostructures. The key physics is that the strong and tunable...of Heavy Fermion Materials The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 2D heavy fermions, quantum criticality, spin-orbit

  15. Fermion mass without symmetry breaking

    DOE PAGES

    Catterall, Simon

    2016-01-20

    We examine a model of reduced staggered fermions in three dimensions interacting through an SO (4) invariant four fermion interaction. The model is similar to that considered in a recent paper by Ayyer and Chandrasekharan. We present theoretical arguments and numerical evidence which support the idea that the system develops a mass gap for sufficiently strong four fermi coupling without producing a symmetry breaking fermion bilinear condensate. As a result, massless and massive phases appear to be separated by a continuous phase transition.

  16. An assessment of the evaporation and condensation phenomena of lithium during the operation of a Li(d,xn) fusion relevant neutron source.

    PubMed

    Knaster, J; Kanemura, T; Kondo, K

    2016-12-01

    The flowing lithium target of a Li(d,xn) fusion relevant neutron source must evacuate the deuteron beam power and generate in a stable manner a flux of neutrons with a broad peak at 14 MeV capable to cause similar phenomena as would undergo the structural materials of plasma facing components of a DEMO like reactors. Whereas the physics of the beam-target interaction are understood and the stability of the lithium screen flowing at the nominal conditions of IFMIF (25 mm thick screen with +/-1 mm surface amplitudes flowing at 15 m/s and 523 K) has been demonstrated, a conclusive assessment of the evaporation and condensation of lithium during operation was missing. First attempts to determine evaporation rates started by Hertz in 1882 and have since been subject of continuous efforts driven by its practical importance; however intense surface evaporation is essentially a non-equilibrium process with its inherent theoretical difficulties. Hertz-Knudsen-Langmuir (HKL) equation with Schrage's 'accommodation factor' η = 1.66 provide excellent agreement with experiments for weak evaporation under certain conditions, which are present during a Li(d,xn) facility operation. An assessment of the impact under the known operational conditions for IFMIF (574 K and 10 -3 Pa on the free surface), with the sticking probability of 1 inherent to a hot lithium gas contained in room temperature steel walls, is carried out. An explanation of the main physical concepts to adequately place needed assumptions is included.

  17. Itinerant quantum multicriticality of two-dimensional Dirac fermions

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Goswami, Pallab; Juričić, Vladimir

    2018-05-01

    We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d =2 ) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S1) and O(S2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the ɛ =(3 -d ) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S1+S2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either O(S1) or O(S2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.

  18. Quantum-critical theory of the spin-fermion model and its application to cuprates: normal state analysis

    NASA Astrophysics Data System (ADS)

    Abanov, Ar.; Chubukov, Andrey V.; Schmalian, J.

    2003-03-01

    We present the full analysis of the normal state properties of the spin-fermion model near the antiferromagnetic instability in two dimensions. The model describes low-energy fermions interacting with their own collective spin fluctuations, which soften at the antiferromagnetic transition. We argue that in 2D, the system has two typical energies-an effective spin-fermion interaction bar g and an energy ysf below which the system behaves as a Fermi liquid. The ratio of the two determines the dimensionless coupling constant for spin-fermion interaction lambda (2) alpha /line g /omega _{sf} . We show that u scales with the spin correlation length and diverges at criticality. This divergence implies that the conventional perturbative expansion breaks down. We develop a novel approach to the problem-the expansion in either the inverse number of hot spots in the Brillouin zone, or the inverse number of fermionic flavours-which allows us to explicitly account for all terms which diverge as powers of u, and treat the remaining, O(logu) terms in the RG formalism. We apply this technique to study the properties of the spin-fermion model in various frequency and temperature regimes. We present the results for the fermionic spectral function, spin susceptibility, optical conductivity and other observables. We compare our results in detail with the normal state data for the cuprates, and argue that the spin-fermion model is capable of explaining the anomalous normal state properties of the high Tc materials. We also show that the conventional Ӓ theory of the quantum-critical behaviour is inapplicable in 2D due to the singularity of the Ӓ vertex.

  19. Superfluid response in heavy fermion superconductors

    NASA Astrophysics Data System (ADS)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  20. Fermion bag approach to Hamiltonian lattice field theories in continuous time

    NASA Astrophysics Data System (ADS)

    Huffman, Emilie; Chandrasekharan, Shailesh

    2017-12-01

    We extend the idea of fermion bags to Hamiltonian lattice field theories in the continuous time formulation. Using a class of models we argue that the temperature is a parameter that splits the fermion dynamics into small spatial regions that can be used to identify fermion bags. Using this idea we construct a continuous time quantum Monte Carlo algorithm and compute critical exponents in the 3 d Ising Gross-Neveu universality class using a single flavor of massless Hamiltonian staggered fermions. We find η =0.54 (6 ) and ν =0.88 (2 ) using lattices up to N =2304 sites. We argue that even sizes up to N =10 ,000 sites should be accessible with supercomputers available today.

  1. Amplified fermion production from overpopulated Bose fields

    NASA Astrophysics Data System (ADS)

    Berges, J.; Gelfand, D.; Sexty, D.

    2014-01-01

    We study the real-time dynamics of fermions coupled to scalar fields in a linear sigma model, which is often employed in the context of preheating after inflation or as a low-energy effective model for quantum chromodynamics. We find a dramatic amplification of fermion production in the presence of highly occupied bosonic quanta for weak as well as strong effective couplings. For this we consider the range of validity of different methods: lattice simulations with male/female fermions, the mode functions approach and the quantum 2PI effective action with its associated kinetic theory. For strongly coupled fermions we find a rapid approach to a Fermi-Dirac distribution with time-dependent temperature and chemical potential parameters, while the bosons are still far from equilibrium.

  2. Heavy Fermion Materials and Quantum Phase Transitions Workshop on Frontiers of the Kondo Effect

    DTIC Science & Technology

    2016-02-12

    Stefan Kirchner (Max Planck) discussed the role of quantum criticality on the superconducting condensation in heavy-fermion superconductors , and...Collin Broholm (Johns Hopkins) discussed magnetic excitations of heavy fermion superconductors . The workshop concluded with a wide-ranging talk by

  3. Lithium granule ablation and penetration during ELM pacing experiments at DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.

    At DIII-D, lithium granules were radially injected into the plasma at the outer midplane to trigger and pace edge localized modes (ELMs). Granules ranging in size from 300 to 1000 microns were horizontally launched into H-mode discharges with velocities near 100 m/s, and granule to granule injection frequencies less than 500 Hz. While the smaller granules were only successful in triggering ELMs approximately 20% of the time, the larger granules regularly demonstrated ELM triggering efficiencies of greater than 80%. A fast visible camera looking along the axis of injection observed the ablation of the lithium granules. We used the durationmore » of ablation as a benchmark for a neutral gas shielding calculation, and approximated the ablation rate and mass deposition location for the various size granules, using measured edge plasma profiles as inputs. In conclusion, this calculation suggests that the low triggering efficiency of the smaller granules is due to the inability of these granules to traverse the steep edge pressure gradient region and reach the top of the pedestal prior to full ablation.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauth, D. C.; Taylor, C. J.; Federman, S. R.

    Measurements of the lithium isotopic ratio in the diffuse interstellar medium from high-resolution spectra of the Li i λ 6708 resonance doublet have now been reported for a number of lines of sight. The majority of the results for the {sup 7}Li/{sup 6}Li ratio are similar to the solar system ratio of 12.2, but the line of sight toward o Per, a star near the star-forming region IC 348, gave a ratio of about two, the expected value for gas exposed to spallation and fusion reactions driven by cosmic rays. To examine the association of IC 348 with cosmic raysmore » more closely, we measured the lithium isotopic ratio for lines of sight to three stars within a few parsecs of o Per. One star, HD 281159, has {sup 7}Li/{sup 6}Li ≃ 2 confirming production by cosmic rays. The lithium isotopic ratio toward o Per and HD 281159 together with published analyses of the chemistry of interstellar diatomic molecules suggest that the superbubble surrounding IC 348 is the source of the cosmic rays.« less

  5. Stationary and on-board storage systems to enhance energy and cost efficiency of tramways

    NASA Astrophysics Data System (ADS)

    Ceraolo, M.; Lutzemberger, G.

    2014-10-01

    Nowadays road transportation contributes in a large amount to the urban pollution and greenhouse gas emissions. One solution in urban environment, also in order to mitigate the effects of traffic jams, is the use of tramways. The most important bonus comes from the inherent reversibility of electric drives: energy can be sent back to the electricity source, while braking the vehicle. This can be done installing some storage device on-board trains, or in one or more points of the supply network. This paper analyses and compares the following variants: Stationary high-power lithium batteries. Stationary supercapacitors. High-power lithium batteries on-board trains. Supercapacitors on-board trains. When the storage system is constituted by a supercapacitor stack, it is mandatory to interpose between it and the line a DC/DC converter. On the contrary, the presence of the converter can be avoided, in case of lithium battery pack. This paper will make an evaluation of all these configurations, in a realistic case study, together with a cost/benefit analysis.

  6. Lithium granule ablation and penetration during ELM pacing experiments at DIII-D

    DOE PAGES

    Lunsford, R.; Bortolon, A.; Roquemore, A. L.; ...

    2016-05-25

    At DIII-D, lithium granules were radially injected into the plasma at the outer midplane to trigger and pace edge localized modes (ELMs). Granules ranging in size from 300 to 1000 microns were horizontally launched into H-mode discharges with velocities near 100 m/s, and granule to granule injection frequencies less than 500 Hz. While the smaller granules were only successful in triggering ELMs approximately 20% of the time, the larger granules regularly demonstrated ELM triggering efficiencies of greater than 80%. A fast visible camera looking along the axis of injection observed the ablation of the lithium granules. We used the durationmore » of ablation as a benchmark for a neutral gas shielding calculation, and approximated the ablation rate and mass deposition location for the various size granules, using measured edge plasma profiles as inputs. In conclusion, this calculation suggests that the low triggering efficiency of the smaller granules is due to the inability of these granules to traverse the steep edge pressure gradient region and reach the top of the pedestal prior to full ablation.« less

  7. Connecting dark matter annihilation to the vertex functions of Standard Model fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Jason; Light, Christopher, E-mail: jkumar@hawaii.edu, E-mail: lightc@hawaii.edu

    We consider scenarios in which dark matter is a Majorana fermion which couples to Standard Model fermions through the exchange of charged mediating particles. The matrix elements for various dark matter annihilation processes are then related to one-loop corrections to the fermion-photon vertex, where dark matter and the charged mediators run in the loop. In particular, in the limit where Standard Model fermion helicity mixing is suppressed, the cross section for dark matter annihilation to various final states is related to corrections to the Standard Model fermion charge form factor. These corrections can be extracted in a gauge-invariant manner frommore » collider cross sections. Although current measurements from colliders are not precise enough to provide useful constraints on dark matter annihilation, improved measurements at future experiments, such as the International Linear Collider, could improve these constraints by several orders of magnitude, allowing them to surpass the limits obtainable by direct observation.« less

  8. Discovery of Lorentz-violating type II Weyl fermions in LaAlGe

    PubMed Central

    Xu, Su-Yang; Alidoust, Nasser; Chang, Guoqing; Lu, Hong; Singh, Bahadur; Belopolski, Ilya; Sanchez, Daniel S.; Zhang, Xiao; Bian, Guang; Zheng, Hao; Husanu, Marious-Adrian; Bian, Yi; Huang, Shin-Ming; Hsu, Chuang-Han; Chang, Tay-Rong; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Strocov, Vladimir N.; Lin, Hsin; Jia, Shuang; Hasan, M. Zahid

    2017-01-01

    In quantum field theory, Weyl fermions are relativistic particles that travel at the speed of light and strictly obey the celebrated Lorentz symmetry. Their low-energy condensed matter analogs are Weyl semimetals, which are conductors whose electronic excitations mimic the Weyl fermion equation of motion. Although the traditional (type I) emergent Weyl fermions observed in TaAs still approximately respect Lorentz symmetry, recently, the so-called type II Weyl semimetal has been proposed, where the emergent Weyl quasiparticles break the Lorentz symmetry so strongly that they cannot be smoothly connected to Lorentz symmetric Weyl particles. Despite some evidence of nontrivial surface states, the direct observation of the type II bulk Weyl fermions remains elusive. We present the direct observation of the type II Weyl fermions in crystalline solid lanthanum aluminum germanide (LaAlGe) based on our photoemission data alone, without reliance on band structure calculations. Moreover, our systematic data agree with the theoretical calculations, providing further support on our experimental results. PMID:28630919

  9. Direct optical detection of Weyl fermion chirality in a topological semimetal

    NASA Astrophysics Data System (ADS)

    Ma, Qiong; Xu, Su-Yang; Chan, Ching-Kit; Zhang, Cheng-Long; Chang, Guoqing; Lin, Yuxuan; Xie, Weiwei; Palacios, Tomás; Lin, Hsin; Jia, Shuang; Lee, Patrick A.; Jarillo-Herrero, Pablo; Gedik, Nuh

    2017-09-01

    A Weyl semimetal is a novel topological phase of matter, in which Weyl fermions arise as pseudo-magnetic monopoles in its momentum space. The chirality of the Weyl fermions, given by the sign of the monopole charge, is central to the Weyl physics, since it directly serves as the sign of the topological number and gives rise to exotic properties such as Fermi arcs and the chiral anomaly. Here, we directly detect the chirality of the Weyl fermions by measuring the photocurrent in response to circularly polarized mid-infrared light. The resulting photocurrent is determined by both the chirality of Weyl fermions and that of the photons. Our results pave the way for realizing a wide range of theoretical proposals for studying and controlling the Weyl fermions and their associated quantum anomalies by optical and electrical means. More broadly, the two chiralities, analogous to the two valleys in two-dimensional materials, lead to a new degree of freedom in a three-dimensional crystal with potential novel pathways to store and carry information.

  10. New vector-like fermions and flavor physics

    DOE PAGES

    Ishiwata, Koji; Ligeti, Zoltan; Wise, Mark B.

    2015-10-06

    We study renormalizable extensions of the standard model that contain vector-like fermions in a (single) complex representation of the standard model gauge group. There are 11 models where the vector-like fermions Yukawa couple to the standard model fermions via the Higgs field. These models do not introduce additional fine-tunings. They can lead to, and are constrained by, a number of different flavor-changing processes involving leptons and quarks, as well as direct searches. An interesting feature of the models with strongly interacting vector-like fermions is that constraints from neutral meson mixings (apart from CP violation inmore » $$ {K}^0-{\\overline{K}}^0 $$ mixing) are not sensitive to higher scales than other flavor-changing neutral-current processes. We identify order 1/(4πM) 2 (where M is the vector-like fermion mass) one-loop contributions to the coefficients of the four-quark operators for meson mixing, that are not suppressed by standard model quark masses and/or mixing angles.« less

  11. Variations in Gas and Water Pulses at an Arctic Seep: Fluid Sources and Methane Transport

    NASA Astrophysics Data System (ADS)

    Hong, W.-L.; Torres, M. E.; Portnov, A.; Waage, M.; Haley, B.; Lepland, A.

    2018-05-01

    Methane fluxes into the oceans are largely dependent on the methane phase as it migrates upward through the sediments. Here we document decoupled methane transport by gaseous and aqueous phases in Storfjordrenna (offshore Svalbard) and propose a three-stage evolution model for active seepage in the region where gas hydrates are present in the shallow subsurface. In a preactive seepage stage, solute diffusion is the primary transport mechanism for methane in the dissolved phase. Fluids containing dissolved methane have high 87Sr/86Sr ratios due to silicate weathering in the microbial methanogenesis zone. During the active seepage stage, migration of gaseous methane results in near-seafloor gas hydrate formation and vigorous seafloor gas discharge with a thermogenic fingerprint. In the postactive seepage stage, the high concentration of dissolved lithium points to the contribution of a deeper-sourced aqueous fluid, which we postulate advects upward following cessation of gas discharge.

  12. Core structure of two-dimensional Fermi gas vortices in the BEC-BCS crossover region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madeira, Lucas; Gandolfi, Stefano; Schmidt, Kevin E.

    2017-05-02

    We report T = 0 diffusion Monte Carlo results for the ground-state and vortex excitation of unpolarized spin-1/2 fermions in a two-dimensional disk. We investigate how vortex core structure properties behave over the BEC-BCS crossover. We calculate the vortex excitation energy, density pro les, and vortex core properties related to the current. We nd a density suppression at the vortex core on the BCS side of the crossover and a depleted core on the BEC limit. Size-effect dependencies in the disk geometry were carefully studied.

  13. Entanglement entropies and fermion signs of critical metals

    NASA Astrophysics Data System (ADS)

    Kaplis, N.; Krüger, F.; Zaanen, J.

    2017-04-01

    The fermion sign problem is often viewed as a sheer inconvenience that plagues numerical studies of strongly interacting electron systems. Only recently has it been suggested that fermion signs are fundamental for the universal behavior of critical metallic systems and crucially enhance their degree of quantum entanglement. In this work we explore potential connections between emergent scale invariance of fermion sign structures and scaling properties of bipartite entanglement entropies. Our analysis is based on a wave-function Ansatz that incorporates collective, long-range backflow correlations into fermionic Slater determinants. Such wave functions mimic the collapse of a Fermi liquid at a quantum critical point. Their nodal surfaces, a representation of the fermion sign structure in many-particle configurations space, show fractal behavior up to a length scale ξ that diverges at a critical backflow strength. We show that the Hausdorff dimension of the fractal nodal surface depends on ξ , the number of fermions and the exponent of the backflow. For the same wave functions we numerically calculate the second Rényi entanglement entropy S2. Our results show a crossover from volume scaling, S2˜ℓθ (θ =2 in d =2 dimensions), to the characteristic Fermi-liquid behavior S2˜ℓ lnℓ on scales larger than ξ . We find that volume scaling of the entanglement entropy is a robust feature of critical backflow fermions, independent of the backflow exponent and hence the fractal dimension of the scale invariant sign structure.

  14. Oxidative decomposition of propylene carbonate in lithium ion batteries: a DFT study.

    PubMed

    Leggesse, Ermias Girma; Lin, Rao Tung; Teng, Tsung-Fan; Chen, Chi-Liang; Jiang, Jyh-Chiang

    2013-08-22

    This paper reports an in-depth mechanistic study on the oxidative decomposition of propylene carbonate in the presence of lithium salts (LiClO4, LiBF4, LiPF6, and LiAsF6) with the aid of density functional theory calculations at the B3LYP/6-311++G(d,p) level of theory. The solvent effect is accounted for by using the implicit solvation model with density method. Moreover, the rate constants for the decompositions of propylene carbonate have been investigated by using transition-state theory. The shortening of the original carbonyl C-O bond and a lengthening of the adjacent ethereal C-O bonds of propylene carbonate, which occurs as a result of oxidation, leads to the formation of acetone radical and CO2 as a primary oxidative decomposition product. The termination of the primary radical generates polycarbonate, acetone, diketone, 2-(ethan-1-ylium-1-yl)-4-methyl-1,3-dioxolan-4-ylium, and CO2. The thermodynamic and kinetic data show that the major oxidative decomposition products of propylene carbonate are independent of the type of lithium salt. However, the decomposition rate constants of propylene carbonate are highly affected by the lithium salt type. On the basis of the rate constant calculations using transition-state theory, the order of gas volume generation is: [PC-ClO4](-) > [PC-BF4](-) > [PC-AsF6](-) > [PC-PF6](-).

  15. Opendf - An Implementation of the Dual Fermion Method for Strongly Correlated Systems

    NASA Astrophysics Data System (ADS)

    Antipov, Andrey E.; LeBlanc, James P. F.; Gull, Emanuel

    The dual fermion method is a multiscale approach for solving lattice problems of interacting strongly correlated systems. In this paper, we present the opendfcode, an open-source implementation of the dual fermion method applicable to fermionic single- orbital lattice models in dimensions D = 1, 2, 3 and 4. The method is built on a dynamical mean field starting point, which neglects all local correlations, and perturbatively adds spatial correlations. Our code is distributed as an open-source package under the GNU public license version 2.

  16. Fermions tunnelling from the charged dilatonic black holes

    NASA Astrophysics Data System (ADS)

    Chen, De-You; Jiang, Qing-Quan; Zu, Xiao-Tao

    2008-10-01

    Kerner and Mann's recent work shows that for an uncharged and non-rotating black hole its Hawking temperature can be correctly derived by fermions tunnelling from its horizons. In this paper, our main work is to improve the analysis to deal with charged fermion tunnelling from the general dilatonic black holes, specifically including the charged, spherically symmetric dilatonic black hole, the rotating Einstein Maxwell dilaton axion (EMDA) black hole and the rotating Kaluza Klein (KK) black hole. As a result, the correct Hawking temperatures are well recovered by charged fermions tunnelling from these black holes.

  17. SDG Fermion-Pair Algebraic SO(12) and Sp(10) Models and Their Boson Realizations

    NASA Astrophysics Data System (ADS)

    Navratil, P.; Geyer, H. B.; Dobes, J.; Dobaczewski, J.

    1995-11-01

    It is shown how the boson mapping formalism may be applied as a useful many-body tool to solve a fermion problem. This is done in the context of generalized Ginocchio models for which we introduce S-, D-, and G-pairs of fermions and subsequently construct the sdg-boson realizations of the generalized Dyson type. The constructed SO(12) and Sp(10) fermion models are solved beyond the explicit symmetry limits. Phase transitions to rotational structures are obtained also in situations where there is no underlying SU(3) symmetry.

  18. Quantization of set theory and generalization of the fermion algebra

    NASA Astrophysics Data System (ADS)

    Arik, M.; Tekin, S. C.

    2002-05-01

    The quantum states of a d-dimensional fermion algebra are in one to one correspondence with the subsets of a d-element universal set. In this paper we use this set theoretical motivation to construct a one-parameter deformation of the fermion algebra and extend it to a d-dimensional generalization which is invariant under the group U(d). This discrete fermionic oscillator system is extended to the continuous case. We also show that the q-deformation of these systems is related to supercovariant q-oscillators.

  19. Baby Skyrme model and fermionic zero modes

    NASA Astrophysics Data System (ADS)

    Queiruga, J. M.

    2016-09-01

    In this work we investigate some features of the fermionic sector of the supersymmetric version of the baby Skyrme model. We find that, in the background of Bogomol'nyi-Prasad-Sommerfield compact baby Skyrmions, fermionic zero modes are confined to the defect core. Further, we show that, while three Supersymmetry (SUSY) generators are broken in the defect core, SUSY is completely restored outside. We study also the effect of a D-term deformation of the model. Such a deformation allows for the existence of fermionic zero modes and broken SUSY outside the compact defect.

  20. Two-dimensional conductors with interactions and disorder from particle-vortex duality

    NASA Astrophysics Data System (ADS)

    Goldman, H.; Mulligan, M.; Raghu, S.; Torroba, G.; Zimet, M.

    2017-12-01

    We study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U (1 ) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.

  1. Instantons and Massless Fermions in Two Dimensions

    DOE R&D Accomplishments Database

    Callan, C. G. Jr.; Dashen, R.; Gross, D. J.

    1977-05-01

    The role of instantons in the breakdown of chiral U(N) symmetry is studied in a two dimensional model. Chiral U(1) is always destroyed by the axial vector anomaly. For N = 2 chiral SU(N) is also spontaneously broken yielding massive fermions and three (decoupled) Goldstone bosons. For N greater than or equal to 3 the fermions remain massless. Realistic four dimensional theories are believed to behave in a similar way but the critical N above which the fermions cease to be massive is not known in four dimensions.

  2. How gauge covariance of the fermion and boson propagators in QED constrain the effective fermion-boson vertex

    DOE PAGES

    Jia, Shaoyang; Pennington, M. R.

    2016-12-12

    In this paper, we derive the gauge covariance requirement imposed on the QED fermion-photon three-point function within the framework of a spectral representation for fermion propagators. When satisfied, such requirement ensures solutions to the fermion propagator Schwinger-Dyson equation (SDE) in any covariant gauge with arbitrary numbers of spacetime dimensions to be consistent with the Landau-Khalatnikov-Fradkin transformation (LKFT). The general result has been verified by the special cases of three and four dimensions. Additionally, we present the condition that ensures the vacuum polarization is independent of the gauge parameter. Finally, as an illustration, we show how the gauge technique dimensionally regularizedmore » in four dimensions does not satisfy the covariance requirement.« less

  3. Diffusion in higher dimensional SYK model with complex fermions

    NASA Astrophysics Data System (ADS)

    Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong

    2018-01-01

    We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.

  4. Experimental Observation of Three-Component New Fermions in Topological Semimetal MoP

    NASA Astrophysics Data System (ADS)

    Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Ma, J.-Z.; Kong, L.-Y.; Richard, Pierre; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, Tian; Ding, Hong; Paul Scherrer Institute, Swiss Light Source, CH-5232 Villigen PSI, Switzerland Team; Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics Team; University of Chinese Academy of Sciences, Beijing 100190, China Team; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Team

    Condensed matter systems can host quasiparticle excitations that are analogues to elementary particles such as Majorana, Weyl, and Dirac fermions. Recent advances in band theory have expanded the classification of fermions in crystals, and revealed crystal symmetry-protected electron excitations that have no high-energy counterparts. Here, using angle-resolved photoemission spectroscopy, we demonstrate the existence of a triply degenerate point in the electronic structure of MoP crystal, where the quasiparticle excitations are beyond the Majorana-Weyl-Dirac classification. Furthermore, we observe pairs of Weyl points in the bulk electronic structure coexisting with the new fermions, thus introducing a platform for studying the interplay between different types of fermions. We thank Binbin Fu, Nan Xu, and Xin Gao for the assistance in the ARPES experiments.

  5. Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution

    NASA Astrophysics Data System (ADS)

    Staples, G. Stacey

    2017-12-01

    Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph's adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph's vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an "indeterminate" fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.

  6. Dual fermionic variables and renormalization group approach to junctions of strongly interacting quantum wires

    NASA Astrophysics Data System (ADS)

    Giuliano, Domenico; Nava, Andrea

    2015-09-01

    Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within the bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.

  7. Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure.

    PubMed

    He, Qing Lin; Pan, Lei; Stern, Alexander L; Burks, Edward C; Che, Xiaoyu; Yin, Gen; Wang, Jing; Lian, Biao; Zhou, Quan; Choi, Eun Sang; Murata, Koichi; Kou, Xufeng; Chen, Zhijie; Nie, Tianxiao; Shao, Qiming; Fan, Yabin; Zhang, Shou-Cheng; Liu, Kai; Xia, Jing; Wang, Kang L

    2017-07-21

    Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantum computing. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Hartree-Fock treatment of Fermi polarons using the Lee-Low-Pine transformation

    NASA Astrophysics Data System (ADS)

    Kain, Ben; Ling, Hong Y.

    2017-09-01

    We consider the Fermi polaron problem at zero temperature, where a single impurity interacts with noninteracting host fermions. We approach the problem starting with a Fröhlich-like Hamiltonian where the impurity is described with canonical position and momentum operators. We apply the Lee-Low-Pine (LLP) transformation to change the fermionic Fröhlich Hamiltonian into the fermionic LLP Hamiltonian, which describes a many-body system containing host fermions only. We adapt the self-consistent Hartree-Fock (HF) approach, first proposed by Edwards, to the fermionic LLP Hamiltonian in which a pair of host fermions with momenta k and k' interact with a potential proportional to k .k' . We apply the HF theory, which has the advantage of not restricting the number of particle-hole pairs, to repulsive Fermi polarons in one dimension. When the impurity and host fermion masses are equal our variational ansatz, where HF orbitals are expanded in terms of free-particle states, produces results in excellent agreement with McGuire's exact analytical results based on the Bethe ansatz. This work raises the prospect of using the HF ansatz and its time-dependent generalization as building blocks for developing all-coupling theories for both equilibrium and nonequilibrium Fermi polarons in higher dimensions.

  9. Type-III and IV interacting Weyl points

    NASA Astrophysics Data System (ADS)

    Nissinen, J.; Volovik, G. E.

    2017-04-01

    3+1-dimensional Weyl fermions in interacting systems are described by effective quasi-relativistic Green's functions parametrized by a 16-element matrix e α μ in an expansion around the Weyl point. The matrix e α μ can be naturally identified as an effective tetrad field for the fermions. The correspondence between the tetrad field and an effective quasi-relativistic metric gμν governing the Weyl fermions allows for the possibility to simulate different classes of metric fields emerging in general relativity in interacting Weyl semimetals. According to this correspondence, there can be four types of Weyl fermions, depending on the signs of the components g 00 and g 00 of the effective metric. In addition to the conventional type-I fermions with a tilted Weyl cone and type-II fermions with an overtilted Weyl cone for g 00 > 0 and, respectively, g 00 > 0 or g 00 < 0, we find additional "type-III" and "type-IV" Weyl fermions with instabilities (complex frequencies) for g 00 < 0 and g 00 > 0 or g 00 < 0, respectively. While the type-I and type-II Weyl points allow us to simulate the black hole event horizon at an interface where g 00 changes sign, the type-III Weyl point leads to effective spacetimes with closed timelike curves.

  10. Simple Z2 lattice gauge theories at finite fermion density

    NASA Astrophysics Data System (ADS)

    Prosko, Christian; Lee, Shu-Ping; Maciejko, Joseph

    2017-11-01

    Lattice gauge theories are a powerful language to theoretically describe a variety of strongly correlated systems, including frustrated magnets, high-Tc superconductors, and topological phases. However, in many cases gauge fields couple to gapless matter degrees of freedom, and such theories become notoriously difficult to analyze quantitatively. In this paper we study several examples of Z2 lattice gauge theories with gapless fermions at finite density, in one and two spatial dimensions, that are either exactly soluble or whose solution reduces to that of a known problem. We consider complex fermions (spinless and spinful) as well as Majorana fermions and study both theories where Gauss' law is strictly imposed and those where all background charge sectors are kept in the physical Hilbert space. We use a combination of duality mappings and the Z2 slave-spin representation to map our gauge theories to models of gauge-invariant fermions that are either free, or with on-site interactions of the Hubbard or Falicov-Kimball type that are amenable to further analysis. In 1D, the phase diagrams of these theories include free-fermion metals, insulators, and superconductors, Luttinger liquids, and correlated insulators. In 2D, we find a variety of gapped and gapless phases, the latter including uniform and spatially modulated flux phases featuring emergent Dirac fermions, some violating Luttinger's theorem.

  11. Hydrofluoroether electrolytes for lithium-ion batteries: Reduced gas decomposition and nonflammable

    NASA Astrophysics Data System (ADS)

    Nagasubramanian, Ganesan; Orendorff, Christopher J.

    2011-10-01

    The optimum combination of high energy density at the desired power sets lithium-ion battery technology apart from the other well known secondary battery chemistries. However, this is besieged by thermal instability of the electrolyte. This "Achilles heel" still remains a significant safety issue and unless this propensity is improved the promise of widespread adoption of Li-ion batteries for Transportation application may not be realized. With this in mind we launched a systematic study to evaluate fluoro solvents that are known to be nonflammable, for thermal and electrochemical performances. We investigated hydro-fluoro-ethers (HFE) (1) 2-trifluoromethyl-3-methoxyperfluoropentane {TMMP} and (2) 2-trifluoro-2-fluoro-3-difluoropropoxy-3-difluoro-4-fluoro-5-trifluoropentane {TPTP} in Sandia-built cells. Thermal properties under near abuse conditions that exist in thermal runaway environment and the electrochemical characteristics for these electrolytes were measured. In the thermal ramp (TR) measurement, EC:DEC:TPTP-1 M LiBETI (or TFSI or LiPF6) electrolytes exhibited no ignition/fire. Similar behavior was observed for the EC:DEC:TMMP-1 M LiBETI. Further, in ARC studies the HFE electrolytes generated less gas by 50% compared to the EC:EMC-1.2 M LiPF6 {CAR-1} electrolyte. Although in all cases the HFEs generated less gas, the onset of gas generation appears to depend on the salt. For the LiBETI and TFSI containing HFEs the onset is pushed out by ∼80 °C and for the LiPF6 the onset is comparable to that of the CAR-1. The solution ionic conductivity of these HFE electrolytes was lower (4-5 times) than that of the CAR-1 electrolyte however, the electrochemical performance was comparable. For example, full cells in 2032 type coin cells containing LiMN0.33Ni0.33Co0.33O2 cathode and carbon anode showed around 5 mA h capacity and the computed specific capacity was ∼154 mA h for all the electrolytes. In half-cells against lithium the cathode and anode gave specific capacity on the order of 170 mA h and 340 mA h respectively. These electrolytes when tested in 18,650 cells containing the above cathode and anode also showed comparable capacity. Further, the voltage stability window was not compromised by the HFEs. ARC measurements on 18,650 full cells showed less gas generation for the HFE electrolytes compared to CAR-1 electrolyte.

  12. Mesoporous activated carbon from corn stalk core for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce

    2018-04-01

    A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.

  13. Solid Electrolyte Materials for use in Lithium-water Primary Batteries And the Synthesis and Characterization of Lanthanide Orthoferrite Magnetic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Cook, Clifford Corlin

    This thesis was developed in two parts with the overall goals of this work being (1) synthesize and develop solid electrolyte materials for use in a lithium-water battery and (2) synthesize and characterize ternary magnetic nanomaterials. Lithium metal in combination with water is a highly attractive power source due to its high specific energy. Because of the vigorous nature of the reaction between lithium and water, many obstacles must be overcome in order to harness the energy that this system is capable of producing. Parasitic reactions must be controlled so as not to passivate the lithium or consume it totally. In addition, production of hydrogen gas that accompanies both the electrochemical and parasitic reactions can present a serious challenge. As a result it is difficult to maintain high voltage and control the current density in these systems. In order to overcome these obstacles we have developed composite membranes of various lithium-ion conducting solid electrolytes and polymers. Lithium-ion conducting solid electrolytes are known to achieve ionic conductance as high as 10-3 S/cm2. Utilizing these materials in conjunction with polymers, we have created hydrophobic membranes that allow us to limit the parasitic reactions and maintain low cell impedance. Lanthanide orthoferrite materials are technologically important classes of magnetic materials. They have found application in magneto-optical devices as well as in magnetic recording devices. We have explored the syntheses and magnetic properties of nanocrystalline materials. The synthesis of the nanomaterials was done by co-reduction of lanthanide, Ln3+, and iron, Fe 3+, cations with alkalide solution producing the Ln-Fe alloy of the desired stoichiometry. Removal of the byproducts and oxidization of the alloy was accomplished by washing the product with aerated water. Presented herein, several nanoscale lanthanide orthoferrite materials (LnFeO3, Ln = Gd, Tb, Er, Tm, Sm, Dy, Ho, and La) have been prepared. The products have been characterized by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and magnetic properties characterized by use of a Superconducting Quantum Interference Device (SQUID).

  14. Liquid electrolytes for lithium and lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Blomgren, George E.

    A number of advances in electrolytes have occurred in the past 4 years, which have contributed to increased safety, wider temperature range of operation, better cycling and other enhancements to lithium-ion batteries. The changes to basic electrolyte solutions that have occurred to accomplish these advances are discussed in detail. The solvent components that have led to better low-temperature operation are also considered. Also, additives that have resulted in better structure of the solid electrolyte interphase (SEI) are presented as well as proposed methods of operation of these additives. Other additives that have lessened the flammability of the electrolyte when exposed to air and also caused lowering of the heat of reaction with the oxidized positive electrode are discussed. Finally, additives that act to open current-interrupter devices by releasing a gas under overcharge conditions and those that act to cycle between electrodes to alleviate overcharging are presented. As a class, these new electrolytes are often called "functional electrolytes". Possibilities for further progress in this most important area are presented. Another area of active work in the recent past has been the reemergence of ambient-temperature molten salt electrolytes applied to alkali metal and lithium-ion batteries. This revival of an older field is due to the discovery of new salt types that have a higher voltage window (particularly to positive potentials) and also have greatly increased hydrolytic stability compared to previous ionic liquids. While practical batteries have not yet emerged from these studies, the increase in the number of active researchers and publications in the area demonstrates the interest and potentialities of the field. Progress in the field is briefly reviewed. Finally, recent results on the mechanisms for capacity loss on shelf and cycling in lithium-ion cells are reviewed. Progress towards further market penetration by lithium-ion cells hinges on improved understanding of the failure mechanisms of the cells, so that crucial problems can be addressed.

  15. NREL Research Garners Three Prestigious R&D 100 Awards | News | NREL

    Science.gov Websites

    , SkyFuel, to create a ground-breaking and low-cost system for utility-sized power generation. The SkyTrough installation costs into competition with gas-fired power plants. NREL shares this award with SkyFuel, Inc. NREL -film lithium microbattery. Its ideal applications are remote wireless sensors, smart homes, smart cars

  16. NASA Glenn Steady-State Heat Pipe Code Users Manual, DOS Input. Version 2

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.

    2000-01-01

    The heat pipe code LERCHP has been revised, corrected, and extended. New features include provisions for pipes with curvature and bends in "G" fields. Heat pipe limits are examined in detail and limit envelopes are shown for some sodium and lithium-filled heat pipes. Refluxing heat pipes and gas-loaded or variable conductance heat pipes were not considered.

  17. Heavy fermion behavior explained by bosons

    NASA Technical Reports Server (NTRS)

    Kallio, A.; Poykko, S.; Apaja, V.

    1995-01-01

    Conventional heavy fermion (HF) theories require existence of massive fermions. We show that heavy fermion phenomena can also be simply explained by existence of bosons with moderate mass but temperature dependent concentration below the formation temperature T(sub B), which in turn is close to room temperature. The bosons B(++) are proposed to be in chemical equilibrium with a system of holes h(+): B(++) = h(+) + h(+). This equilibrium is governed by a boson breaking function f(T), which determines the decreasing boson density and the increasing fermion density with increasing temperature. Since HF-compounds are hybridized from minimum two elements, we assume in addition existence of another fermion component h(sub s)(+) with temperature independent density. This spectator component is thought to be the main agent in binding the bosons in analogy with electronic or muonic molecules. Using a linear boson breaking function we can explain temperature dependence of the giant linear specific heat coefficient gamma(T) coming essentially from bosons. The maxima in resistivity, Hall coefficient, and susceptibility are explained by boson localization effects due to the Wigner crystallization. The antiferromagnetic transitions in turn are explained by similar localization of the pairing fermion system when their density n(sub h)(T(sub FL)) becomes lower than n(sub WC), the critical density of Wigner crystallization. The model applies irrespective whether a compound is superconducting or not. The same model explains the occurrence of low temperature antiferromagnetism also in high-T(sub c) superconductors. The double transition in UPt3 is proposed to be due to the transition of the pairing fermion liquid from spin polarized to unpolarized state.

  18. Infrared problem in non-Abelian gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Y.

    1976-03-22

    I extend the Bloch--Nordsieck idea to show that in the lowest nontrivial order of radiative correction the fermion--fermion and gauge-meson--fermion scattering rates are finite, provided that they are averaged over the initial and summed over the final internal spin states. Questions of the physical gauge coupling and infrared slavery are discussed. (AIP)

  19. Superalgebra and fermion-boson symmetry

    PubMed Central

    Miyazawa, Hironari

    2010-01-01

    Fermions and bosons are quite different kinds of particles, but it is possible to unify them in a supermultiplet, by introducing a new mathematical scheme called superalgebra. In this article we discuss the development of the concept of symmetry, starting from the rotational symmetry and finally arriving at this fermion-boson (FB) symmetry. PMID:20228617

  20. Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials.

    PubMed

    Wang, Jing

    2018-03-28

    We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.

  1. Bose-Fermi degeneracies in large N adjoint QCD

    DOE PAGES

    Basar, Gokce; Cherman, Aleksey; McGady, David

    2015-07-06

    Here, we analyze the large N limit of adjoint QCD, an SU( N) gauge theory with N f flavors of massless adjoint Majorana fermions, compactified on S 3 × S 1. We focus on the weakly-coupled confining small- S 3 regime. If the fermions are given periodic boundary conditions on S 1, we show that there are large cancellations between bosonic and fermionic contributions to the twisted partition function. These cancellations follow a pattern previously seen in the context of misaligned supersymmetry, and lead to the absence of Hagedorn instabilities for any S 1 size L, even though the bosonicmore » and fermionic densities of states both have Hagedorn growth. Adjoint QCD stays in the confining phase for any L ~ N 0, explaining how it is able to enjoy large N volume independence for any L. The large N boson-fermion cancellations take place in a setting where adjoint QCD is manifestly non-supersymmetric at any finite N, and are consistent with the recent conjecture that adjoint QCD has emergent fermionic symmetries in the large N limit.« less

  2. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    NASA Astrophysics Data System (ADS)

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; Dagotto, Elbio

    2015-06-01

    Lattice spin-fermion models are important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the "spins," are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The "traveling cluster approximation" (TCA) is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 103 sites. In this publication, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. This allows us to solve generic spin-fermion models easily on 104 lattice sites and with some effort on 105 lattice sites, representing the record lattice sizes studied for this family of models.

  3. Fermionic entanglement that survives a black hole

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, Eduardo; León, Juan

    2009-10-01

    We introduce an arbitrary number of accessible modes when analyzing bipartite entanglement degradation due to Unruh effect between two partners Alice and Rob. Under the single mode approximation (SMA) a fermion field only had a few accessible levels due to Pauli exclusion principle conversely to bosonic fields which had an infinite number of excitable levels. This was argued to justify entanglement survival in the fermionic case in the SMA infinite acceleration limit. Here we relax SMA. Hence, an infinite number of modes are excited as the observer Rob accelerates, even for a fermion field. We will prove that, despite this analogy with the bosonic case, entanglement loss is limited. We will show that this comes from fermionic statistics through the characteristic structure it imposes on the infinite dimensional density matrix for Rob. Surprisingly, the surviving entanglement is independent of the specific maximally entangled state chosen, the kind of fermionic field analyzed, and the number of accessible modes considered. We shall discuss whether this surviving entanglement goes beyond the purely statistical correlations, giving insight concerning the black hole information paradox.

  4. Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    2018-03-01

    We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.

  5. Direct evidence for a magnetic f-electron–mediated pairing mechanism of heavy-fermion superconductivity in CeCoIn5

    PubMed Central

    Van Dyke, John S.; Massee, Freek; Allan, Milan P.; Davis, J. C. Séamus; Petrovic, Cedomir; Morr, Dirk K.

    2014-01-01

    To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high-temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference imaging to reveal quantitatively the momentum space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ekα,β with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5 then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by f-electron magnetism. PMID:25062692

  6. Bose gases near resonance: Renormalized interactions in a condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Fei, E-mail: feizhou@phas.ubc.ca; Mashayekhi, Mohammad S.

    2013-01-15

    Bose gases at large scattering lengths or beyond the usual dilute limit for a long time have been one of the most challenging problems in many-body physics. In this article, we investigate the fundamental properties of a near-resonance Bose gas and illustrate that three-dimensional Bose gases become nearly fermionized near resonance when the chemical potential as a function of scattering lengths reaches a maximum and the atomic condensates lose metastability. The instability and accompanying maximum are shown to be a precursor of the sign change of g{sub 2}, the renormalized two-body interaction between condensed atoms. g{sub 2} changes from effectivelymore » repulsive to attractive when approaching resonance from the molecular side, even though the scattering length is still positive. This occurs when dimers, under the influence of condensates, emerge at zero energy in the atomic gases at a finite positive scattering length. We carry out our studies of Bose gases via applying a self-consistent renormalization group equation which is further subject to a boundary condition. We also comment on the relation between the approach here and the diagrammatic calculation in an early article [D. Borzov, M.S. Mashayekhi, S. Zhang, J.-L. Song, F. Zhou, Phys. Rev. A 85 (2012) 023620]. - Highlights: Black-Right-Pointing-Pointer A Bose gas becomes nearly fermionized when its chemical potential approaches a maximum near resonance. Black-Right-Pointing-Pointer At the maximum, an onset instability sets in at a positive scattering length. Black-Right-Pointing-Pointer Condensates strongly influence the renormalization flow of few-body running coupling constants. Black-Right-Pointing-Pointer The effective two-body interaction constant changes its sign at a positive scattering length.« less

  7. Precursor of superfluidity in a strongly interacting Fermi gas with negative effective range

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki

    2018-04-01

    We investigate theoretically the effects of pairing fluctuations in an ultracold Fermi gas near a Feshbach resonance with a negative effective range. By employing a many-body T -matrix theory with a coupled fermion-boson model, we show that the single-particle density of states exhibits the so-called pseudogap phenomenon, which is a precursor of superfluidity induced by strong pairing fluctuations. We clarify the region where strong pairing fluctuations play a crucial role in single-particle properties, from the broad-resonance region to the narrow-resonance limit at the divergent two-body scattering length. We also extrapolate the effects of pairing fluctuations to the positive-effective-range region from our results near the narrow Feshbach resonance. Results shown in this paper are relevant to the connection between ultracold Fermi gases and low-density neutron matter from the viewpoint of finite-effective-range corrections.

  8. Validating simple dynamical simulations of the unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Forbes, Michael McNeil; Sharma, Rishi

    2014-10-01

    We present a comparison between simulated dynamics of the unitary fermion gas using the superfluid local density approximation (SLDA) and a simplified bosonic model, the extended Thomas-Fermi (ETF) with a unitary equation of state. Small-amplitude fluctuations have similar dynamics in both theories for frequencies far below the pair-breaking threshold and wave vectors much smaller than the Fermi momentum. The low-frequency linear responses in both match well for surprisingly large wave vectors, even up to the Fermi momentum. For nonlinear dynamics such as vortex generation, the ETF provides a semiquantitative description of SLDA dynamics as long as the fluctuations do not have significant power near the pair-breaking threshold; otherwise the dynamics of the ETF cannot be trusted. Nonlinearities in the ETF tend to generate high-frequency fluctuations, and with no normal component to remove this energy from the superfluid, features such as vortex lattices cannot relax and crystallize as they do in the SLDA.

  9. Zitterbewegung in time-reversal Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Huang, Tongyun; Ma, Tianxing; Wang, Li-Gang

    2018-06-01

    We perform a systematic study of the Zitterbewegung effect of fermions, which are described by a Gaussian wave with broken spatial-inversion symmetry in a three-dimensional low-energy Weyl semimetal. Our results show that the motion of fermions near the Weyl points is characterized by rectilinear motion and Zitterbewegung oscillation. The ZB oscillation is affected by the width of the Gaussian wave packet, the position of the Weyl node, and the chirality and anisotropy of the fermions. By introducing a one-dimensional cosine potential, the new generated massless fermions have lower Fermi velocities, which results in a robust relativistic oscillation. Modulating the height and periodicity of periodic potential demonstrates that the ZB effect of fermions in the different Brillouin zones exhibits quasi-periodic behavior. These results may provide an appropriate system for probing the Zitterbewegung effect experimentally.

  10. Wigner functions for fermions in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun

    2018-02-01

    We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.

  11. Benchmark results in the 2D lattice Thirring model with a chemical potential

    NASA Astrophysics Data System (ADS)

    Ayyar, Venkitesh; Chandrasekharan, Shailesh; Rantaharju, Jarno

    2018-03-01

    We study the two-dimensional lattice Thirring model in the presence of a fermion chemical potential. Our model is asymptotically free and contains massive fermions that mimic a baryon and light bosons that mimic pions. Hence, it is a useful toy model for QCD, especially since it, too, suffers from a sign problem in the auxiliary field formulation in the presence of a fermion chemical potential. In this work, we formulate the model in both the world line and fermion-bag representations and show that the sign problem can be completely eliminated with open boundary conditions when the fermions are massless. Hence, we are able accurately compute a variety of interesting quantities in the model, and these results could provide benchmarks for other methods that are being developed to solve the sign problem in QCD.

  12. Projective flatness in the quantisation of bosons and fermions

    NASA Astrophysics Data System (ADS)

    Wu, Siye

    2015-07-01

    We compare the quantisation of linear systems of bosons and fermions. We recall the appearance of projectively flat connection and results on parallel transport in the quantisation of bosons. We then discuss pre-quantisation and quantisation of fermions using the calculus of fermionic variables. We define a natural connection on the bundle of Hilbert spaces and show that it is projectively flat. This identifies, up to a phase, equivalent spinor representations constructed by various polarisations. We introduce the concept of metaplectic correction for fermions and show that the bundle of corrected Hilbert spaces is naturally flat. We then show that the parallel transport in the bundle of Hilbert spaces along a geodesic is a rescaled projection provided that the geodesic lies within the complement of a cut locus. Finally, we study the bundle of Hilbert spaces when there is a symmetry.

  13. Renormalization of Coulomb interactions in a system of two-dimensional tilted Dirac fermions

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Wen; Lee, Yu-Li

    2018-01-01

    We investigate the effects of long-ranged Coulomb interactions in a tilted Dirac semimetal in two dimensions by using the perturbative renormalization-group (RG) method. Depending on the magnitude of the tilting parameter, the undoped system can have either Fermi points (type I) or Fermi lines (type II). Previous studies usually performed the renormalization-group transformations by integrating out the modes with large momenta. This is problematic when the Fermi surface is open, like type-II Dirac fermions. In this work we study the effects of Coulomb interactions, following the spirit of Shankar [Rev. Mod. Phys. 66, 129 (1994), 10.1103/RevModPhys.66.129], by introducing a cutoff in the energy scale around the Fermi surface and integrating out the high-energy modes. For type-I Dirac fermions, our result is consistent with that of the previous work. On the other hand, we find that for type-II Dirac fermions, the magnitude of the tilting parameter increases monotonically with lowering energies. This implies the stability of type-II Dirac fermions in the presence of Coulomb interactions, in contrast with previous results. Furthermore, for type-II Dirac fermions, the velocities in different directions acquire different renormalization even if they have the same bare values. By taking into account the renormalization of the tilting parameter and the velocities due to the Coulomb interactions, we show that while the presence of a charged impurity leads only to charge redistribution around the impurity for type-I Dirac fermions, for type-II Dirac fermions, the impurity charge is completely screened, albeit with a very long screening length. The latter indicates that the temperature dependence of physical observables are essentially determined by the RG equations we derived. We illustrate this by calculating the temperature dependence of the compressibility and specific heat of the interacting tilted Dirac fermions.

  14. Fermion localization on a split brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.

    2011-05-15

    In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Qing Lin; Pan, Lei; Stern, Alexander L.

    Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantummore » computing.« less

  16. Two-dimensional conductors with interactions and disorder from particle-vortex duality

    DOE PAGES

    Goldman, H.; Mulligan, M.; Raghu, S.; ...

    2017-12-27

    Here, we study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U(1) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.

  17. A search for excited fermions in electron-proton collisions at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Schlereth, J.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Romeo, G. Cara; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Frasconi, F.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Garcia, Y. Zamora; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckart, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schneider, J.-L.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarebska, E.; Suszycki, L.; Zajac, J.; Kedzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Böttcher, S.; Coldewey, C.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Göttlicher, P.; Gutjahr, B.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Kroger, W.; Krüger, J.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Schroeder, J.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, I.; Jamieson, V. A.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Fürtjes, A.; Hagge, L.; Lohrmann, E.; Mainusch, J.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Terron, J.; Zetsche, F.; Bacon, T. C.; Beuselinck, R.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Del Peso, J.; Puga, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Bentvelsen, S.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Jong, P.; de Kamps, M.; Kooijman, P.; Kruse, A.; O'Dell, V.; Tenner, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; Lindemann, L.; McFall, J.; Nath, C.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; de Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Iori, M.; Marini, G.; Mattioli, M.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nagira, T.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprazak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Tsurugai, T.; Bhadra, S.; Frisken, W. R.; Furutani, K. M.

    1995-12-01

    A search for excited states of the standard model fermions was performed using the ZEUS detector at the HERA electron-proton collider, operating at a centre of mass energy of 296 GeV. In a sample corresponding to an integrated luminosity of 0.55 pb-1, no evidence was found for any resonant state decaying into final states composed of a fermion and a gauge boson. Limits on the coupling strength times branching ratio of excited fermions are presented for masses between 50 GeV and 250 GeV, extending previous search regions significantly.

  18. The 't Hooft vertex for staggered fermions and flavor-singlet mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald, Gordon C.; Davies, Christine T.H.; Follana, Eduardo

    2011-01-01

    We derive the ’t Hooft vertex for staggered fermions and examine its symmetries for nonzero lattice spacing. We also derive a set of structural properties for the eigenvectors of the staggered Dirac operator, which should emerge in the continuum limit, if staggered fermions yield four species. This property also is needed for flavor-taste-singlet correlators to behave correctly. We then test numerically whether the needed structure arises: it does. This structure and symmetry of (unrooted) staggered fermions also imply that Creutz’s (latest) objections to the rooted determinant are without foundation.

  19. Cosmological BCS mechanism and the big bang singularity

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon; Biswas, Tirthabir

    2009-07-01

    We provide a novel mechanism that resolves the big bang singularity present in Friedman-Lemaitre-Robertson-Walker space-times without the need for ghost fields. Building on the fact that a four-fermion interaction arises in general relativity when fermions are covariantly coupled, we show that at early times the decrease in scale factor enhances the correlation between pairs of fermions. This enhancement leads to a BCS-like condensation of the fermions and opens a gap dynamically driving the Hubble parameter H to zero and results in a nonsingular bounce, at least in some special cases.

  20. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  1. Two-dimensional conductors with interactions and disorder from particle-vortex duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, H.; Mulligan, M.; Raghu, S.

    Here, we study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U(1) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.

  2. General structure of fermion two-point function and its spectral representation in a hot magnetized medium

    NASA Astrophysics Data System (ADS)

    Das, Aritra; Bandyopadhyay, Aritra; Roy, Pradip K.; Mustafa, Munshi G.

    2018-02-01

    We have systematically constructed the general structure of the fermion self-energy and the effective quark propagator in the presence of a nontrivial background such as a hot magnetized medium. This is applicable to both QED and QCD. The hard thermal loop approximation has been used for the heat bath. We have also examined transformation properties of the effective fermion propagator under some of the discrete symmetries of the system. Using the effective fermion propagator we have analyzed the fermion dispersion spectra in a hot magnetized medium along with the spinor for each fermion mode obtained by solving the modified Dirac equation. The fermion spectra is found to reflect the discrete symmetries of the two-point functions. We note that for a chirally symmetric theory the degenerate left- and right-handed chiral modes in vacuum or in a heat bath get separated and become asymmetric in the presence of a magnetic field without disturbing the chiral invariance. The obtained general structure of the two-point functions is verified by computing the three-point function, which agrees with the existing results in one-loop order. Finally, we have computed explicitly the spectral representation of the two-point functions which would be very important to study the spectral properties of the hot magnetized medium corresponding to QED and QCD with background magnetic field.

  3. I.I. Rabi in Atomic, Molecular & Optical Physics Prize Talk: Strongly Interacting Fermi Gases of Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Zwierlein, Martin

    2017-04-01

    Strongly interacting fermions govern physics at all length scales, from nuclear matter to modern electronic materials and neutron stars. The interplay of the Pauli principle with strong interactions can give rise to exotic properties that we do not understand even at a qualitative level. In recent years, ultracold Fermi gases of atoms have emerged as a new type of strongly interacting fermionic matter that can be created and studied in the laboratory with exquisite control. Feshbach resonances allow for unitarity limited interactions, leading to scale invariance, universal thermodynamics and a superfluid phase transition already at 17 Trapped in optical lattices, fermionic atoms realize the Fermi-Hubbard model, believed to capture the essence of cuprate high-temperature superconductors. Here, a microscope allows for single-atom, single-site resolved detection of density and spin correlations, revealing the Pauli hole as well as anti-ferromagnetic and doublon-hole correlations. Novel states of matter are predicted for fermions interacting via long-range dipolar interactions. As an intriguing candidate we created stable fermionic molecules of NaK at ultralow temperatures featuring large dipole moments and second-long spin coherence times. In some of the above examples the experiment outperformed the most advanced computer simulations of many-fermion systems, giving hope for a new level of understanding of strongly interacting fermions.

  4. Investigation on the charging process of Li 2O 2-based air electrodes in Li-O 2 batteries with organic carbonate electrolytes

    NASA Astrophysics Data System (ADS)

    Xu, Wu; Viswanathan, Vilayanur V.; Wang, Deyu; Towne, Silas A.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Zhang, Ji-Guang

    The charging process of Li 2O 2-based air electrodes in Li-O 2 batteries with organic carbonate electrolytes was investigated using in situ gas chromatography/mass spectroscopy (GC/MS) to analyze gas evolution. A mixture of Li 2O 2/Fe 3O 4/Super P carbon/polyvinylidene fluoride (PVDF) was used as the starting air electrode material, and 1-M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in carbonate-based solvents was used as the electrolyte. We found that Li 2O 2 was actively reactive to 1-methyl-2-pyrrolidinone and PVDF that were used to prepare the electrode. During the first charging (up to 4.6 V), O 2 was the main component in the gases released. The amount of O 2 measured by GC/MS was consistent with the amount of Li 2O 2 that decomposed during the electrochemical process as measured by the charge capacity, which is indicative of the good chargeability of Li 2O 2. However, after the cell was discharged to 2.0 V in an O 2 atmosphere and then recharged to ∼4.6 V, CO 2 was dominant in the released gases. Further analysis of the discharged air electrodes by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy indicated that lithium-containing carbonate species (lithium alkyl carbonates and/or Li 2CO 3) were the main discharge products. Therefore, compatible electrolytes and electrodes, as well as the electrode-preparation procedures, need to be developed for rechargeable Li-air batteries for long term operation.

  5. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ENTITLED - DOMAIN WALL FERMIONS AT TEN YEARS (VOLUME 84)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BLUM,T.; SONI,A.

    The workshop was held to mark the 10th anniversary of the first numerical simulations of QCD using domain wall fermions initiated at BNL. It is very gratifying that in the intervening decade widespread use of domain wall and overlap fermions is being made. It therefore seemed appropriate at this stage for some ''communal introspection'' of the progress that has been made, hurdles that need to be overcome, and physics that can and should be done with chiral fermions. The meeting was very well attended, drawing about 60 registered participants primarily from Europe, Japan and the US. It was quite remarkablemore » that pioneers David Kaplan, Herbert Neuberger, Rajamani Narayanan, Yigal Shamir, Sinya Aoki, and Pavlos Vranas all attended the workshop. Comparisons between domain wall and overlap formulations, with their respective advantages and limitations, were discussed at length, and a broad physics program including pion and kaon physics, the epsilon regime, nucleon structure, and topology, among others, emerged. New machines and improved algorithms have played a key role in realizing realistic dynamical fermion lattice simulations (small quark mass, large volume, and so on), so much in fact that measurements are now as costly. Consequently, ways to make the measurements more efficient were also discussed. We were very pleased to see the keen and ever growing interest in chiral fermions in our community and the significant strides our colleagues have made in bringing chiral fermions to the fore of lattice QCD calculations. Their contributions made the workshop a success, and we thank them deeply for sharing their time and ideas. Finally, we must especially acknowledge Norman Christ and Bob Mawhinney for their early and continued collaboration without which the success of domain wall fermions would not have been possible.« less

  6. Multiple Types of Topological Fermions in Transition Metal Silicides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Peizhe; Zhou, Quan; Zhang, Shou -Cheng

    Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, whichmore » is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.« less

  7. Chiral fermions in asymptotically safe quantum gravity

    NASA Astrophysics Data System (ADS)

    Meibohm, J.; Pawlowski, J. M.

    2016-05-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  8. Conceptual Foundations of Soliton Versus Particle Dualities Toward a Topological Model for Matter

    NASA Astrophysics Data System (ADS)

    Kouneiher, Joseph

    2016-06-01

    The idea that fermions could be solitons was actually confirmed in theoretical models in 1975 in the case when the space-time is two-dimensional and with the sine-Gordon model. More precisely S. Coleman showed that two different classical models end up describing the same fermions particle, when the quantum theory is constructed. But in one model the fermion is a quantum excitation of the field and in the other model the particle is a soliton. Hence both points of view can be reconciliated.The principal aim in this paper is to exhibit a solutions of topological type for the fermions in the wave zone, where the equations of motion are non-linear field equations, i.e. using a model generalizing sine- Gordon model to four dimensions, and describe the solutions for linear and circular polarized waves. In other words, the paper treat fermions as topological excitations of a bosonic field.

  9. Two- and four-dimensional representations of the PT - and CPT -symmetric fermionic algebras

    NASA Astrophysics Data System (ADS)

    Beygi, Alireza; Klevansky, S. P.; Bender, Carl M.

    2018-03-01

    Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry considerations being that T2=-1 for fermionic systems. In PT -symmetric quantum mechanics an operator has both PT and CPT adjoints. Fermionic operators η , which are quadratically nilpotent (η2=0 ), and algebras with PT and CPT adjoints can be constructed. These algebras obey different anticommutation relations: η ηPT+ηPTη =-1 , where ηPT is the PT adjoint of η , and η ηCPT+ηCPTη =1 , where ηCPT is the CPT adjoint of η . This paper presents matrix representations for the operator η and its PT and CPT adjoints in two and four dimensions. A PT -symmetric second-quantized Hamiltonian modeled on quantum electrodynamics that describes a system of interacting fermions and bosons is constructed within this framework and is solved exactly.

  10. Chiral fermions in asymptotically safe quantum gravity.

    PubMed

    Meibohm, J; Pawlowski, J M

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  11. Free-fermion descriptions of parafermion chains and string-net models

    NASA Astrophysics Data System (ADS)

    Meichanetzidis, Konstantinos; Turner, Christopher J.; Farjami, Ashk; Papić, Zlatko; Pachos, Jiannis K.

    2018-03-01

    Topological phases of matter remain a focus of interest due to their unique properties: fractionalization, ground-state degeneracy, and exotic excitations. While some of these properties can occur in systems of free fermions, their emergence is generally associated with interactions between particles. Here, we quantify the role of interactions in general classes of topological states of matter in one and two spatial dimensions, including parafermion chains and string-net models. Surprisingly, we find that certain topological states can be exactly described by free fermions, while others saturate the maximum possible distance from their optimal free-fermion description [C. J. Turner et al., Nat. Commun. 8, 14926 (2017), 10.1038/ncomms14926]. Our work opens the door to understanding the complexity of topological models by establishing new types of fermionization procedures to describe their low-energy physics, thus making them amenable to experimental realizations.

  12. Phase diagram and re-entrant fermionic entanglement in a hybrid Ising-Hubbard ladder

    NASA Astrophysics Data System (ADS)

    Sousa, H. S.; Pereira, M. S. S.; de Oliveira, I. N.; Strečka, J.; Lyra, M. L.

    2018-05-01

    The degree of fermionic entanglement is examined in an exactly solvable Ising-Hubbard ladder, which involves interacting electrons on the ladder's rungs described by Hubbard dimers at half-filling on each rung, accounting for intrarung hopping and Coulomb terms. The coupling between neighboring Hubbard dimers is assumed to have an Ising-like nature. The ground-state phase diagram consists of four distinct regions corresponding to the saturated paramagnetic, the classical antiferromagnetic, the quantum antiferromagnetic, and the mixed classical-quantum phase. We have exactly computed the fermionic concurrence, which measures the degree of quantum entanglement between the pair of electrons on the ladder rungs. The effects of the hopping amplitude, the Coulomb term, temperature, and magnetic fields on the fermionic entanglement are explored in detail. It is shown that the fermionic concurrence displays a re-entrant behavior when quantum entanglement is being generated at moderate temperatures above the classical saturated paramagnetic ground state.

  13. Multiple Types of Topological Fermions in Transition Metal Silicides

    DOE PAGES

    Tang, Peizhe; Zhou, Quan; Zhang, Shou -Cheng

    2017-11-17

    Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, whichmore » is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.« less

  14. A METHOD OF PREPARING URANIUM DIOXIDE

    DOEpatents

    Scott, F.A.; Mudge, L.K.

    1963-12-17

    A process of purifying raw, in particular plutonium- and fission- products-containing, uranium dioxide is described. The uranium dioxide is dissolved in a molten chloride mixture containing potassium chloride plus sodium, lithium, magnesium, or lead chloride under anhydrous conditions; an electric current and a chlorinating gas are passed through the mixture whereby pure uranium dioxide is deposited on and at the same time partially redissolved from the cathode. (AEC)

  15. Toward a Flying MEMS Robot

    DTIC Science & Technology

    2007-03-01

    63 Figure 45: Proposed energy harvesting and storage system which will be made of polymer solar cells and lithium polymer batteries [35...University of California, Berkeley used four piezoelectric actuators and fiber-reinforced composites in an attempt to achieve lift [9]. The device...Entomopter. The RCM powers the wing flapping motion while the exhaust gasses act as gas bearings between all movable surfaces. The exhaust gasses can

  16. The Fermionic Projector, entanglement and the collapse of the wave function

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2011-07-01

    After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.

  17. Drude Conductivity of Dirac Fermions in Graphene

    DTIC Science & Technology

    2010-01-01

    interband transitions, as required by the sum rule. Our surprising observation indicates that many-body effects and Dirac fermion-impurity interactions...reduction of free electron oscillator strength is corroborated by corresponding changes in graphene interband transitions, as required by the sum...dimensions. Researchers have demonstrated in graphene exotic Dirac fermion phenomena ranging from anomalous quantum Hall effects 1,2 to Klein tunneling 3 in

  18. New excitations in the Thirring model

    NASA Astrophysics Data System (ADS)

    Cortés, J. L.; Gamboa, J.; Schmidt, I.; Zanelli, J.

    1998-12-01

    The quantization of the massless Thirring model in the light-cone using functional methods is considered. The need to compactify the coordinate x- in the light-cone spacetime implies that the quantum effective action for left-handed fermions contains excitations similar to abelian instantons produced by composite of left-handed fermions. Right-handed fermions don't have a similar effective action. Thus, quantum mechanically, chiral symmetry must be broken as a result of the topological excitations. The conserved charge associated to the topological states is quantized. Different cases with only fermionic excitations or bosonic excitations or both can occur depending on the boundary conditions and the value of the coupling.

  19. Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors

    DOE PAGES

    Schemm, E. R.; Levenson-Falk, E. M.; Kapitulnik, A.

    2016-11-30

    The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. Moreover, with the notable exception of 3He-B, all of the known or suspected chiral – that is to say time-reversal symmetry-breaking (TRSB) – superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. We review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.

  20. Theoretical princi les of constructing the equations of motion for a spin color-charged particle in gauge and fermion fields

    NASA Astrophysics Data System (ADS)

    Markov, Yu. A.; Shishmarev, A. A.

    2010-11-01

    Based on the most general principles of materiality, gauge, and re-parameterized invariance, the problem of constructing an action describing the dynamics of a classical color-charged particle moving in external non-Abelian gauge and fermion fields is considered. The case of a linear Lagrangian dependence on the external fermion fields is discussed. Within the framework of the description of the color degree of freedom of the particle with half-integer spin by the Grassmann color charges, a new concept of the Grassmann color source of the particle being a fermion analog of the conventional color current is introduced.

  1. A beam splitter for Dirac-Weyl fermions through the Goos-Hänchen-like shift

    NASA Astrophysics Data System (ADS)

    Zheng, Ren-fei; Zhou, Lu; Zhang, Weiping

    2017-12-01

    We propose a method of realizing an effective beam splitter for Dirac-Weyl fermions through the Goos-Hänchen-like shift. It is implemented via the birefringence of a wave packet of pseudospin-3/2 Dirac-Weyl fermions impinging upon a potential barrier. It is shown that experimentally observable spatial separation between the transmitted fermions with helicity-1/2 and 3/2 can be generated by the Goos-Hänchen-like shift. The dependence of Goos-Hänchen-like shift and the corresponding transmission probability on the incident angle, the height and width of the potential barrier are carefully studied.

  2. The Rational Hybrid Monte Carlo algorithm

    NASA Astrophysics Data System (ADS)

    Clark, Michael

    2006-12-01

    The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.

  3. Ladder physics in the spin fermion model

    NASA Astrophysics Data System (ADS)

    Tsvelik, A. M.

    2017-05-01

    A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. It is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d -Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodama, Yuta; Kokubu, Kento; Sawado, Nobuyuki

    We construct brane solutions in 6-dimensional Einstein-Skyrme systems. A class of baby-Skyrmion solutions realizes warped compactification of the extra dimensions and gravity localization on the brane for the negative bulk cosmological constant. Coupling of the fermions with brane Skyrmions leads to brane localized fermions. In terms of the level crossing picture, emergence of the massive localized modes are observed. The nonlinear nature of Skyrmions brings richer information for the fermions' level structure. It comprises doubly degenerate lowest plus single excited modes. Three generations of fundamental fermions are associated with this distinctive structure. The mass hierarchy of quarks or leptons appearedmore » in terms of slightly deformed baby Skyrmions with topological charge three.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinotti, M.; Pal, A.; Ren, W. J.

    Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. These quasi-two-dimensional bismuth layers based materials were recently designed and provide an arena for studying the interplay between anisotropic Dirac fermions, magnetism, and structural changes, allowing the formation of Weyl fermions in condensed matter. We perform an optical investigation of YbMnBi 2 , a representative type-II Weyl semimetal, and contrast its excitation spectrum with the optical response of the more conventional semimetal EuMnBi 2 . This comparative study allows us to disentangle the optical fingerprints of type-II Weyl fermions, but also challengesmore » the present theoretical understanding of their electrodynamic response.« less

  6. Fermion localization and resonances on a de Sitter thick brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Yuxiao; Yang Jie; Zhao Zhenhua

    2009-09-15

    In C. A. S. Almeida, R. Casana, M. M. Ferreira, Jr., and A. R. Gomes, Phys. Rev. D 79, 125022 (2009), the simplest Yukawa coupling {eta}{psi}{phi}{chi}{psi} was considered for a two-scalar-generated Bloch brane model. Fermionic resonances for both chiralities were obtained, and their appearance is related to branes with internal structure. Inspired on this result, we investigate the localization and resonance spectrum of fermions on a one-scalar-generated de Sitter thick brane with a class of scalar-fermion couplings {eta}{psi}{phi}{sup k}{psi} with positive odd integer k. A set of massive fermionic resonances for both chiralities is obtained when provided large coupling constantmore » {eta}. We find that the masses and lifetimes of left and right chiral resonances are almost the same, which demonstrates that it is possible to compose massive Dirac fermions from the left and right chiral resonances. The resonance with lower mass has longer lifetime. For a same set of parameters, the number of resonances increases with k and the lifetime of the lower level resonance for larger k is much longer than the one for smaller k.« less

  7. Superfluidity of identical fermions in an optical lattice: Atoms and polar molecules

    NASA Astrophysics Data System (ADS)

    Fedorov, A. K.; Yudson, V. I.; Shlyapnikov, G. V.

    2018-02-01

    In this work we discuss the emergence of p-wave superfluids of identical fermions in 2D lattices. The optical lattice potential manifests itself in an interplay between an increase in the density of states on the Fermi surface and the modification of the fermion-fermion interaction (scattering) amplitude. The density of states is enhanced due to an increase of the effective mass of atoms. In deep lattices, for short-range interacting atoms the scattering amplitude is strongly reduced compared to free space due to a small overlap of wavefunctions of fermions sitting in the neighboring lattice sites, which suppresses the p-wave superfluidity. However, we show that for a moderate lattice depth there is still a possibility to create atomic p-wave superfluids with sizable transition temperatures. The situation is drastically different for fermionic polar molecules. Being dressed with a microwave field, they acquire a dipole-dipole attractive tail in the interaction potential. Then, due to a long-range character of the dipole-dipole interaction, the effect of the suppression of the scattering amplitude in 2D lattices is absent. This leads to the emergence of a stable topological px + ipy superfluid of identical microwave-dressed polar molecules.

  8. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    DOE PAGES

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; ...

    2015-06-08

    Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less

  9. Nontrivial Berry phase in magnetic BaMnSb2 semimetal

    PubMed Central

    Huang, Silu; Shelton, W. A.; Plummer, E. W.; Jin, Rongying

    2017-01-01

    The subject of topological materials has attracted immense attention in condensed-matter physics because they host new quantum states of matter containing Dirac, Majorana, or Weyl fermions. Although Majorana fermions can only exist on the surface of topological superconductors, Dirac and Weyl fermions can be realized in both 2D and 3D materials. The latter are semimetals with Dirac/Weyl cones either not tilted (type I) or tilted (type II). Although both Dirac and Weyl fermions have massless nature with the nontrivial Berry phase, the formation of Weyl fermions in 3D semimetals require either time-reversal or inversion symmetry breaking to lift degeneracy at Dirac points. Here we demonstrate experimentally that canted antiferromagnetic BaMnSb2 is a 3D Weyl semimetal with a 2D electronic structure. The Shubnikov–de Hass oscillations of the magnetoresistance give nearly zero effective mass with high mobility and the nontrivial Berry phase. The ordered magnetic arrangement (ferromagnetic ordering in the ab plane and antiferromagnetic ordering along the c axis below 286 K) breaks the time-reversal symmetry, thus offering us an ideal platform to study magnetic Weyl fermions in a centrosymmetric material. PMID:28539436

  10. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris

    Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, Fionn D., E-mail: f.malone13@imperial.ac.uk; Lee, D. K. K.; Foulkes, W. M. C.

    The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing ourmore » results to previous work where possible.« less

  12. Cavity-Mediated Coherent Coupling between Distant Quantum Dots

    NASA Astrophysics Data System (ADS)

    Nicolí, Giorgio; Ferguson, Michael Sven; Rössler, Clemens; Wolfertz, Alexander; Blatter, Gianni; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner; Zilberberg, Oded

    2018-06-01

    Scalable architectures for quantum information technologies require one to selectively couple long-distance qubits while suppressing environmental noise and cross talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot to a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated, long-distance coupling effectively minimizes undesirable direct cross talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.

  13. Neutron stars velocities and magnetic fields

    NASA Astrophysics Data System (ADS)

    Paret, Daryel Manreza; Martinez, A. Perez; Ayala, Alejandro.; Piccinelli, G.; Sanchez, A.

    2018-01-01

    We study a model that explain neutron stars velocities due to the anisotropic emission of neutrinos. Strong magnetic fields present in neutron stars are the source of the anisotropy in the system. To compute the velocity of the neutron star we model its core as composed by strange quark matter and analice the properties of a magnetized quark gas at finite temperature and density. Specifically we have obtained the electron polarization and the specific heat of magnetized fermions as a functions of the temperature, chemical potential and magnetic field which allow us to study the velocity of the neutron star as a function of these parameters.

  14. Reprocessing of LiH in Molten Chlorides

    NASA Astrophysics Data System (ADS)

    Masset, Patrick J.; Gabriel, Armand; Poignet, Jean-Claude

    2008-06-01

    LiH was used as inactive material to stimulate the reprocessing of lithium tritiate in molten chlorides. The electrochemical properties (diffusion coefficients, apparent standard potentials) were measured by means of transient electrochemical techniques (cyclic voltammetry and chronopotentiometry). At 425 ºC the diffusion coefficient and the apparent standard potential were 2.5 · 10-5 cm2 s-1 and -1.8 V vs. Ag/AgCl, respectively. For the process design the LiH solubility was measured by means of DTA to optimize the LiH concentration in the molten phase. In addition electrolysis tests were carried out at 460 ºC with current densities up to 1 A cm-2 over 24 h. These results show that LiH may be reprocessed in molten chlorides consisting in the production of hydrogen gas at the anode and molten metallic lithium at the cathode.

  15. NREL/NASA Internal Short-Circuit Instigator in Lithium Ion Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, Matthew; Long, Dirk; Pesaran, Ahmad

    Lithium-ion cells provide the highest specific energy (>280 Wh/kg) and energy density (>600 Wh/L) rechargeable battery building block to date with the longest life. Electrode/electrolyte thermal instability and flammability of the electrolyte of Li-ion cells make them prone to catastrophic thermal runaway under some rare internal short circuit conditions. Despite extensive QC/QA, standardized industry safety testing, and over 18 years of manufacturing experience, major recalls have taken place and incidents still occur. Many safety incidents that take place in the field originate due to an internal short that was not detectable or predictable at the point of manufacture. The Internalmore » Short-Circuit Instigator can be used to study types of separators, non-flammable electrolytes, electrolyte additives, fusible tabs, propagation studies, and gas generation within a cell.« less

  16. Improving the Safety of Lithium-Ion Battery via a Redox Shuttle Additive 2,5-Di- tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB).

    PubMed

    Leonet, Olatz; Colmenares, Luis C; Kvasha, Andriy; Oyarbide, Mikel; Mainar, Aroa R; Glossmann, Tobias; Blázquez, J Alberto; Zhang, Zhengcheng

    2018-03-21

    2,5-Di- tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) is studied as a redox shuttle additive for overcharge protection for a 1.5 Ah graphite/C-LFP lithium-ion pouch cell for the first time. The electrochemical performance demonstrated that the protecting additive remains inert during the extended standard cycling for 4000 cycles. When a 100% overcharge is introduced in the charging protocol, the baseline cell fails rapidly during the first abusive event, whereas the cell containing DBBB additive withstands 700 overcharge cycles with 87% capacity retention and no gas evolution or cell swelling was observed. It is the first time the effectiveness of the DBBB as overcharge protection additive in a large pouch cell format is demonstrated.

  17. Diagnostic examination of thermally abused high-power lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Abraham, D. P.; Roth, E. P.; Kostecki, R.; McCarthy, K.; MacLaren, S.; Doughty, D. H.

    The inherent thermal instability of lithium-ion cells is a significant impediment to their widespread commercialization for hybrid-electric vehicle applications. Cells containing conventional organic electrolyte-based chemistries are prone to thermal runaway at temperatures around 180 °C. We conducted accelerating rate calorimetry measurements on high-power 18650-type lithium-ion cells in an effort to decipher the sequence of events leading to thermal runaway. In addition, electrode and separator samples harvested from a cell that was heated to 150 °C then air-quenched to room temperature were examined by microscopy, spectroscopy, and diffraction techniques. Self-heating of the cell began at 84 °C. The gases generated in the cell included CO 2 and CO, and smaller quantities of H 2, C 2H 4, CH 4, and C 2H 6. The main changes on cell heating to 150 °C were observed on the anode surface, which was covered by a thick layer of surface deposits that included LiF and inorganic and organo-phosphate compounds. The sources of gas generation and the mechanisms leading to the formation of compounds observed on the electrode surfaces are discussed.

  18. Thermal aging of electrolytes used in lithium-ion batteries - An investigation of the impact of protic impurities and different housing materials

    NASA Astrophysics Data System (ADS)

    Handel, Patricia; Fauler, Gisela; Kapper, Katja; Schmuck, Martin; Stangl, Christoph; Fischer, Roland; Uhlig, Frank; Koller, Stefan

    2014-12-01

    Thermal degradation products in lithium-ion batteries result mainly from hydrolysis sensitivity of lithium hexafluorophosphate (LiPF6). As organic carbonate solvents contain traces of protic impurities, the thermal decomposition of electrolytes is enhanced. Therefore, resulting degradation products are studied with nuclear magnetic resonance spectroscopy (NMR) and gas chromatography mass spectrometry (GC-MS). The electrolyte contains 1 M LiPF6 in a binary mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) in a ratio of 1:2 (v/v) and is aged at ambient and elevated temperature. The impact of protic impurities, either added as deionized water or incorporated in positive electrode material, upon aging is investigated. Further, the influence of different housing materials on the electrolyte degradation is shown. Difluorophosphoric acid is identified as main decomposition product by NMR-spectroscopy. Traces of other decomposition products are determined by headspace GC-MS. Acid-base and coulometric titration are used to determine the total amount of acid and water content upon aging, respectively. The aim of this investigation is to achieve profound understanding about the thermal decomposition of one most common used electrolyte in a battery-like housing material.

  19. Carbon Dioxide Removal via Passive Thermal Approaches

    NASA Technical Reports Server (NTRS)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  20. Metal-organic frameworks for lithium ion batteries and supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang, E-mail: hdeng@whu.edu.cn

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefitmore » from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.« less

  1. Simulation of the ELMs triggering by lithium pellet on EAST tokamak using BOUT + +

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Xu, X. Q.; Wang, Z.; Sun, Z.; Hu, J. S.; Gao, X.

    2017-10-01

    A new lithium granule injector (LGI) was developed on EAST. Using the LGI, lithium granules can be efficiently injected into EAST tokamak with the granule radius 0.2-1 mm and the granules velocity 30-110 m/s. ELM pacing was realized during EAST shot #70123 at time window from 4.4-4.7s, the average velocity of the pellet was 75 m/s and the average injection rate is at 99Hz. The BOUT + + 6-field electromagnetic turbulence code has been used to simulate the ELM pacing process. A neutral gas shielding (NGS) model has been implemented during the pellet ablation process. The neutral transport code is used to evaluate the ionized electron and Li ion densities with the charge exchange as a dominant factor in the neutral cloud diffusion process. The snapshot plasma profiles during the pellet ablation and toroidal symmetrization process are used in the 6-field turbulence code to evaluate the impact of the pellets on ELMs. Destabilizing effects of the peeling-ballooning modes are found with lithium pellet injection, which is consistent with the experimental results. A scan of the pellet size, shape and the injection velocity will be conducted, which will benefit the pellet injection design in both the present and future devices. Prepared by LLNL under Contract DE-AC52-07NA27344 and this work is supported by the National Natural Science Fonudation of China (Grant No. 11505221) and China Scholarship Council (Grant No. 201504910132).

  2. On the simulation of indistinguishable fermions in the many-body Wigner formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellier, J.M., E-mail: jeanmichel.sellier@gmail.com; Dimov, I.

    2015-01-01

    The simulation of quantum systems consisting of interacting, indistinguishable fermions is an incredible mathematical problem which poses formidable numerical challenges. Many sophisticated methods addressing this problem are available which are based on the many-body Schrödinger formalism. Recently a Monte Carlo technique for the resolution of the many-body Wigner equation has been introduced and successfully applied to the simulation of distinguishable, spinless particles. This numerical approach presents several advantages over other methods. Indeed, it is based on an intuitive formalism in which quantum systems are described in terms of a quasi-distribution function, and highly scalable due to its Monte Carlo nature.more » In this work, we extend the many-body Wigner Monte Carlo method to the simulation of indistinguishable fermions. To this end, we first show how fermions are incorporated into the Wigner formalism. Then we demonstrate that the Pauli exclusion principle is intrinsic to the formalism. As a matter of fact, a numerical simulation of two strongly interacting fermions (electrons) is performed which clearly shows the appearance of a Fermi (or exchange–correlation) hole in the phase-space, a clear signature of the presence of the Pauli principle. To conclude, we simulate 4, 8 and 16 non-interacting fermions, isolated in a closed box, and show that, as the number of fermions increases, we gradually recover the Fermi–Dirac statistics, a clear proof of the reliability of our proposed method for the treatment of indistinguishable particles.« less

  3. Dynamical Mass Generation.

    NASA Astrophysics Data System (ADS)

    Mendel Horwitz, Roberto Ruben

    1982-03-01

    In the framework of the Glashow-Weinberg-Salem model without elementary scalar particles, we show that masses for fermions and intermediate vector bosons can be generated dynamically. The mechanism is the formation of fermion-antifermion pseudoscalar bound states of zero total four momentum, which form a condensate in the physical vacuum. The force responsible for the binding is the short distance part of the net Coulomb force due to photon and Z exchange. Fermions and bosons acquire masses through their interaction with this condensate. The neutrinos remain massless because their righthanded components have no interactions. Also the charge -1/3 quarks remain massless because the repulsive force from the Z exchange dominates over the Coulomb force. To correct this, we propose two possible modifications to the theory. One is to cut off the Z exchange at very small distances, so that all fermions except the neutrinos acquire masses, which are then, purely electromagnetic in origin. The other is to introduce an additional gauge boson that couples to all quarks with a pure vector coupling. To make this vector boson unobservable at usual energies, at least two new fermions must couple to it. The vector boson squared masses receive additive contributions from all the fermion squared masses. The photon remains massless and the masses of the Z and W('(+OR -)) bosons are shown to be related through the Weinberg angle in the conventional way. Assuming only three families of fermions, we obtain estimates for the top quark mass.

  4. Universal Behavior of Quantum Spin Liquid and Optical Conductivity in the Insulator Herbertsmithite

    NASA Astrophysics Data System (ADS)

    Shaginyan, V. R.; Msezane, A. Z.; Stephanovich, V. A.; Popov, K. G.; Japaridze, G. S.

    2018-04-01

    We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to expose the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field. We consider an experimental manifestation (optical conductivity) of a new state of matter (so-called fermion condensate) realized in quantum spin liquids, for, in many ways, they exhibit typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite produce important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of a strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to reveal the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field.

  5. Antiferromagnetism, confinement and spin response in the QED(3) effective theory of high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Seradjeh, Babak Hosseyni

    In this thesis, we study the effective theory of a phase-fluctuating d-wave superconductor at zero temperature, formulated by quantum electrodynamics in three space-time dimensions (QED3). This theory describes the quantum critical behaviour in underdoped high-temperature superconductors in terms of an emergent gauge field. The gauge field couples minimally to nodal spin degrees of freedom (spinons) at low energies. It is massive in the superconductor but exhibits Maxwell dynamics when superconductivity is destroyed by strong phase fluctuations of the Cooper pairs. We show that, when dynamical chiral symmetry breaking in QED3 is supplemented by residual interactions, namely, the velocity anisotropy around the nodes, short-range repulsion between electrons, and nonlinear effects of dispersion (all irrelevant for the critical behaviour itself), the loss of superconductivity gives rise to an antiferromagnetic state, in accord with observation. Then, we turn to the problem of confinement of spinons outside the superconducting phase. We assume that the gauge group is a compact U(1) and, thus, allows for monopole configurations. In the absence of fermions, the interaction between monopoles is Coulombic, monopoles form a free plasma, and static fermionic charge is confined for all values of the gauge coupling by a linear potential mediated by free monopoles. We show that this permanent confinement survives in the presence of dynamical fermionic matter. This work comprises three separate studies. We first support our claim, for relativistic fermions, by an electrostatic study of the monopole gas. This is backed up by a controlled renormalization group analysis on the equivalent sine-Gordon theory. In the second study, we extend these findings to the non-relativistic case, with a spinon Fermi surface. In the last study, we provide a variational approach to the problem, in agreement with our other works. Finally, we focus our attention on the more practical application of the QED3 theory to spin response in the superconductor, relevant for neutron scattering measurements. We show that the theory explains the observed spin gap numerically and the evolution of the response in energy and momenta qualitatively. We study the issue of resonance in these measurements by developing a formalism for exciton bound states. Keywords. High-temperature superconductivity; Antiferromagnetism; Spinons; Spin response; Three-dimensional quantum electrodynamics; Chiral symmetry breaking; Confinement; Duality transformation; renormalization group; Variational methods;

  6. Quantum Phase Transitions in the Bose Hubbard Model and in a Bose-Fermi Mixture

    NASA Astrophysics Data System (ADS)

    Duchon, Eric Nicholas

    Ultracold atomic gases may be the ultimate quantum simulator. These isolated systems have the lowest temperatures in the observable universe, and their properties and interactions can be precisely and accurately tuned across a full spectrum of behaviors, from few-body physics to highly-correlated many-body effects. The ability to impose potentials on and tune interactions within ultracold gases to mimic complex systems mean they could become a theorist's playground. One of their great strengths, however, is also one of the largest obstacles to this dream: isolation. This thesis touches on both of these themes. First, methods to characterize phases and quantum critical points, and to construct finite temperature phase diagrams using experimentally accessible observables in the Bose Hubbard model are discussed. Then, the transition from a weakly to a strongly interacting Bose-Fermi mixture in the continuum is analyzed using zero temperature numerical techniques. Real materials can be emulated by ultracold atomic gases loaded into optical lattice potentials. We discuss the characteristics of a single boson species trapped in an optical lattice (described by the Bose Hubbard model) and the hallmarks of the quantum critical region that separates the superfluid and the Mott insulator ground states. We propose a method to map the quantum critical region using the single, experimentally accessible, local quantity R, the ratio of compressibility to local number fluctuations. The procedure to map a phase diagram with R is easily generalized to inhomogeneous systems and generic many-body Hamiltonians. We illustrate it here using quantum Monte Carlo simulations of the 2D Bose Hubbard model. Secondly, we investigate the transition from a degenerate Fermi gas weakly coupled to a Bose Einstein condensate to the strong coupling limit of composite boson-fermion molecules. We propose a variational wave function to investigate the ground state properties of such a Bose-Fermi mixture with equal population, as a function of increasing attraction between bosons and fermions. The variational wave function captures the weak and the strong coupling limits and at intermediate coupling we make two predictions using zero temperature quantum Monte Carlo methods: (I) a complete destruction of the atomic Fermi surface and emergence of a molecular Fermi sea that coexists with a remnant of the Bose-Einstein condensate, and (II) evidence for enhanced short-ranged fermion-fermion correlations mediated by bosons.

  7. Quantum Hall effect in dual gated BiSbTeSe2 topological insulator

    NASA Astrophysics Data System (ADS)

    Chong, Su Kong; Han, Kyu Bum; Nagaoka, Akira; Harmer, Jared; Tsuchikawa, Ryuichi; Sparks, Taylor D.; Deshpande, Vikram V.

    The discovery of topological insulators (TIs) has expanded the family of Dirac materials and enables the probing of exotic matter such as Majorana fermions and magnetic monopoles. Different from conventional 2D electron gas, 3D TIs exhibit a gapped insulating bulk and gapless topological surface states as a result of the strong spin-orbit coupling. BiSbTeSe2 is also known to be a 3D TI with a large intrinsic bulk gap of about 0.3 eV and a single Dirac cone surface state. The highly bulk insulating BiSbTeSe2 permits surface dominated conduction, which is an ideal system for the study of quantum Hall effect (QHE). Due to the spin-momentum locking, the Dirac fermions at the topological surface states have a degeneracy of one. In the QH regime, the Hall conductance is quantized to (n + 1 / 2) e2 / h , where n is an integer and the factor of half is related to Berry curvature. In this work, we study the QHE 3D TI using a dual gated BiSbTeSe2 device. By tuning the chemical potentials on top and bottom surfaces, integer QHE with Landau filling factors, ν = 0, +/-1, and +/-2 are observed.

  8. Effective action and electromagnetic response of topological superconductors and Majorana-mass Weyl fermions

    NASA Astrophysics Data System (ADS)

    Stone, Michael; Lopes, Pedro L. e. S.

    2016-05-01

    Motivated by an apparent paradox in [X.-L. Qi, E. Witten, and S.-C. Zhang, Phys. Rev. B 87, 134519 (2013), 10.1103/PhysRevB.87.134519], we use the method of gauged Wess-Zumino-Witten functionals to construct an effective action for a Weyl fermion with a Majorana mass that arises from coupling to a charged condensate. We obtain expressions for the current induced by an external gauge field and observe that the topological part of the current is only one-third of that that might have been expected from the gauge anomaly. The anomaly is not changed by the induced mass gap, however. The topological current is supplemented by a conventional supercurrent that provides the remaining two-thirds of the anomaly once the equation of motion for the Goldstone mode is satisfied. We apply our formula for the current to resolve the apparent paradox and also to the chiral magnetic effect (CME), where it predicts a reduction of the CME current to one-third of its value for a free Weyl gas in thermal equilibrium. We attribute this reduction to a partial cancellation of the CME by a chiral vortical effect current arising from the persistent rotation of the fluid induced by the external magnetic field.

  9. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.

    PubMed

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  10. Competing forces in five-dimensional fermion condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jongmin; Peskin, Michael E.

    We study fermion condensation in the Randall-Sundrum background as a setting for composite Higgs models. We formalize the computation of the Coleman-Weinberg potential and present a simple, general formula. Using this tool, we study the competition of fermion multiplets with different boundary conditions, to find conditions for creating a little hierarchy with the Higgs field expectation value much smaller than the intrinsic Randall-Sundrum mass scale.

  11. Berry Phase in Lattice QCD.

    PubMed

    Yamamoto, Arata

    2016-07-29

    We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.

  12. Lattice fermions

    NASA Technical Reports Server (NTRS)

    Wilczek, Frank

    1987-01-01

    A simple heuristic proof of the Nielsen-Ninomaya theorem is given. A method is proposed whereby the multiplication of fermion species on a lattice is reduced to the minimal doubling, in any dimension, with retention of appropriate chiral symmetries. Also, it is suggested that use of spatially thinned fermion fields is likely to be a useful and appropriate approximation in QCD - in any case, it is a self-checking one.

  13. Competing forces in five-dimensional fermion condensation

    DOE PAGES

    Yoon, Jongmin; Peskin, Michael E.

    2017-12-27

    We study fermion condensation in the Randall-Sundrum background as a setting for composite Higgs models. We formalize the computation of the Coleman-Weinberg potential and present a simple, general formula. Using this tool, we study the competition of fermion multiplets with different boundary conditions, to find conditions for creating a little hierarchy with the Higgs field expectation value much smaller than the intrinsic Randall-Sundrum mass scale.

  14. Competing forces in five-dimensional fermion condensation

    NASA Astrophysics Data System (ADS)

    Yoon, Jongmin; Peskin, Michael E.

    2017-12-01

    We study fermion condensation in the Randall-Sundrum background as a setting for composite Higgs models. We formalize the computation of the Coleman-Weinberg potential and present a simple, general formula. Using this tool, we study the competition of fermion multiplets with different boundary conditions, to find conditions for creating a little hierarchy with the Higgs field expectation value much smaller than the intrinsic Randall-Sundrum mass scale.

  15. Ladder physics in the spin fermion model

    DOE PAGES

    Tsvelik, A. M.

    2017-05-01

    A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. Here, it is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d-Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface.more » Hence, the SF model provides an adequate description of the pseudogap.« less

  16. Weak antilocalization of composite fermions in graphene

    NASA Astrophysics Data System (ADS)

    Laitinen, Antti; Kumar, Manohar; Hakonen, Pertti J.

    2018-02-01

    We demonstrate experimentally that composite fermions in monolayer graphene display weak antilocalization. Our experiments deal with fractional quantum Hall (FQH) states in high-mobility, suspended graphene Corbino disks in the vicinity of ν =1 /2 . We find a strong temperature dependence of conductivity σ away from half filling, which is consistent with the expected electron-electron interaction-induced gaps in the FQH state. At half filling, however, the temperature dependence of conductivity σ (T ) becomes quite weak, as anticipated for a Fermi sea of composite fermions, and we find a logarithmic dependence of σ on T . The sign of this quantum correction coincides with the weak antilocalization of graphene composite fermions, indigenous to chiral Dirac particles.

  17. Numerical studies of a model fermion-boson system

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Gospodarczyk, E. R.; Su, Q.; Grobe, R.

    2010-02-01

    We study the spectral and dynamical properties of a simplified model system of interacting fermions and bosons. The spatial discretization and an effective truncation of the Hilbert space permit us to compute the distribution of the bare fermions and bosons in the energy eigenstates of the coupled system. These states represent the physical particles and are used to examine the validity of the analytical predictions by perturbation theory and by the Greenberg-Schweber approximation that assumes all fermions are at rest. As an example of our numerical framework, we examine how a bare electron can trigger the creation of a cloud of virtual bosons around. We relate this cloud to the properties of the associated energy eigenstates.

  18. Yang-Mills matrix mechanics and quantum phases

    NASA Astrophysics Data System (ADS)

    Pandey, Mahul; Vaidya, Sachindeo

    The SU(2) Yang-Mills matrix model coupled to fundamental fermions is studied in the adiabatic limit, and quantum critical behavior is seen at special corners of the gauge field configuration space. The quantum scalar potential for the gauge field induced by the fermions diverges at the corners, and is intimately related to points of enhanced degeneracy of the fermionic Hamiltonian. This in turn leads to superselection sectors in the Hilbert space of the gauge field, the ground states in different sectors being orthogonal to each other. The SU(2) Yang-Mills matrix model coupled to two Weyl fermions has three quantum phases. When coupled to a massless Dirac fermion, the number of quantum phases is four. One of these phases is the color-spin locked phase. This paper is an extended version of the lectures given by the second author (SV) at the International Workshop on Quantum Physics: Foundations and Applications, Bangalore, in February 2016, and is based on [1].

  19. Strings, boundary fermions and coincident D-branes

    NASA Astrophysics Data System (ADS)

    Wulff, Linus

    2007-01-01

    This thesis describes an attempt to write down covariant actions for coincident D-branes using so-called boundary fermions instead of matrices to describe the non-abelian fields. These fermions can be thought of as Chan-Paton degrees of freedom for the open string. It is shown that by gauge-fixing and by suitably quantizing these boundary fermions the non-abelian action that is known, the Myers action, can be reproduced. Furthermore it is shown that under natural assumptions, unlike the Myers action, the action formulated using boundary fermions also posseses kappa-symmetry when formulated on superspace. Another aspect of string theory discussed in this thesis is that of tensionless strings. These are of great interest for example because of their possible relation to higher spin gauge theories via the AdS/CFT-correspondence. The tensionless superstring in a plane wave background, a Penrose limit of the near-horizon geometry of a stack of D3-branes, is considered and compared to the tensile case.

  20. Effect of boson on-site repulsion on the superfluidity in the boson-fermion-Hubbard model

    NASA Astrophysics Data System (ADS)

    Sajna, A. S.; Micnas, R.

    2018-03-01

    We analyze the finite-temperature phase diagram of the boson-fermion-Hubbard model with Feshbach converting interaction, using the coherent-state path-integral method. We show that depending on the position of the bosonic band, this type of interaction, even if weak, can drive the system into the resonant superfluid phase in the strong bosonic interaction limit. It turns out that this phase can exist for an arbitrary number of fermions (i.e., fermionic concentration between 0 and 2), but with the bosonic particle number very close to an integer value. We point out that the standard time-of-flight method in optical lattice experiments can be an adequate technique to confirm the existence of this resonant phase. Moreover, in the nonresonant regime, the enhancement of the critical temperature of the superfluid phase due to Feshbach interaction is also observed. We account for this interesting phenomena for a hole- or particlelike pairing mechanism depending on the system density and mutual location of the fermionic and bosonic bands.

  1. Running coupling from gluon and ghost propagators in the Landau gauge: Yang-Mills theories with adjoint fermions

    NASA Astrophysics Data System (ADS)

    Bergner, Georg; Piemonte, Stefano

    2018-04-01

    Non-Abelian gauge theories with fermions transforming in the adjoint representation of the gauge group (AdjQCD) are a fundamental ingredient of many models that describe the physics beyond the Standard Model. Two relevant examples are N =1 supersymmetric Yang-Mills (SYM) theory and minimal walking technicolor, which are gauge theories coupled to one adjoint Majorana and two adjoint Dirac fermions, respectively. While confinement is a property of N =1 SYM, minimal walking technicolor is expected to be infrared conformal. We study the propagators of ghost and gluon fields in the Landau gauge to compute the running coupling in the MiniMom scheme. We analyze several different ensembles of lattice Monte Carlo simulations for the SU(2) adjoint QCD with Nf=1 /2 ,1 ,3 /2 , and 2 Dirac fermions. We show how the running of the coupling changes as the number of interacting fermions is increased towards the conformal window.

  2. Electronic structure of heavy fermion system CePt 2In 7 from angle-resolved photoemission spectroscopy

    DOE PAGES

    Shen, Bing; Yu, Li; Liu, Kai; ...

    2017-06-01

    We have carried out high-resolution angle-resolved photoemission measurements on the Cebased heavy fermion compound CePt 2In 7 that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn 5. Multiple Fermi surface sheets and a complex band structure are clearly resolved. We have also performed detailed band structure calculations on CePt 2In 7. The good agreement found between our measurements and the calculations suggests that the band renormalization effect is rather weak in CePt 2In 7. A comparison of the common features of the electronic structure of CePt 2In 7 and CeCoIn5 indicates that CeCoIn 5 shows a muchmore » stronger band renormalization effect than CePt 2In 7. These results provide new information for understanding the heavy fermion behaviors and unconventional superconductivity in Ce-based heavy fermion systems.« less

  3. Hybrid Monte Carlo approach to the entanglement entropy of interacting fermions

    NASA Astrophysics Data System (ADS)

    Drut, Joaquín E.; Porter, William J.

    2015-09-01

    The Monte Carlo calculation of Rényi entanglement entropies Sn of interacting fermions suffers from a well-known signal-to-noise problem, even for a large number of situations in which the infamous sign problem is absent. A few methods have been proposed to overcome this issue, such as ensemble switching and the use of auxiliary partition-function ratios. Here, we present an approach that builds on the recently proposed free-fermion decomposition method; it incorporates entanglement in the probability measure in a natural way; it takes advantage of the hybrid Monte Carlo algorithm (an essential tool in lattice quantum chromodynamics and other gauge theories with dynamical fermions); and it does not suffer from noise problems. This method displays no sign problem for the same cases as other approaches and is therefore useful for a wide variety of systems. As a proof of principle, we calculate S2 for the one-dimensional, half-filled Hubbard model and compare with results from exact diagonalization and the free-fermion decomposition method.

  4. Multipartite entanglement in fermionic systems via a geometric measure

    NASA Astrophysics Data System (ADS)

    Lari, Behzad; Durganandini, P.; Joag, Pramod S.

    2010-12-01

    We study multipartite entanglement in a system consisting of indistinguishable fermions. Specifically, we have proposed a geometric entanglement measure for N spin-(1)/(2) fermions distributed over 2L modes (single-particle states). The measure is defined on the 2L qubit space isomorphic to the Fock space for 2L single-particle states. This entanglement measure is defined for a given partition of 2L modes containing m⩾2 subsets. Thus this measure applies to m⩽2L partite fermionic systems where L is any finite number, giving the number of sites. The Hilbert spaces associated with these subsets may have different dimensions. Further, we have defined the local quantum operations with respect to a given partition of modes. This definition is generic and unifies different ways of dividing a fermionic system into subsystems. We have shown, using a representative case, that the geometric measure is invariant under local unitary operators corresponding to a given partition. We explicitly demonstrate the use of the measure to calculate multipartite entanglement in some correlated electron systems.

  5. Production of black holes and their angular momentum distribution in models with split fermions

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang; Starkman, Glenn D.; Stojkovic, Dejan

    2006-05-01

    In models with TeV-scale gravity it is expected that mini black holes will be produced in near-future accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large n-n¯ oscillations, flavor changing neutral currents, large mixing between leptons, etc. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross section for the production of black holes and their angular momentum distribution in these models with “split” fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.

  6. Entanglement and the fermion sign problem in auxiliary field quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Broecker, Peter; Trebst, Simon

    2016-08-01

    Quantum Monte Carlo simulations of fermions are hampered by the notorious sign problem whose most striking manifestation is an exponential growth of sampling errors with the number of particles. With the sign problem known to be an NP-hard problem and any generic solution thus highly elusive, the Monte Carlo sampling of interacting many-fermion systems is commonly thought to be restricted to a small class of model systems for which a sign-free basis has been identified. Here we demonstrate that entanglement measures, in particular the so-called Rényi entropies, can intrinsically exhibit a certain robustness against the sign problem in auxiliary-field quantum Monte Carlo approaches and possibly allow for the identification of global ground-state properties via their scaling behavior even in the presence of a strong sign problem. We corroborate these findings via numerical simulations of fermionic quantum phase transitions of spinless fermions on the honeycomb lattice at and below half filling.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, Gerardo, E-mail: ortizg@indiana.edu; Cobanera, Emilio

    We investigate Majorana modes of number-conserving fermionic superfluids from both basic physics principles, and concrete models perspectives. After reviewing a criterion for establishing topological superfluidity in interacting systems, based on many-body fermionic parity switches, we reveal the emergence of zero-energy modes anticommuting with fermionic parity. Those many-body Majorana modes are constructed as coherent superpositions of states with different number of fermions. While realization of Majorana modes beyond mean field is plausible, we show that the challenge to quantum-control them is compounded by particle-conservation, and more realistic protocols will have to balance engineering needs with astringent constraints coming from superselection rules.more » Majorana modes in number-conserving systems are the result of a peculiar interplay between quantum statistics, fermionic parity, and an unusual form of spontaneous symmetry breaking. We test these ideas on the Richardson–Gaudin–Kitaev chain, a number-conserving model solvable by way of the algebraic Bethe ansatz, and equivalent in mean field to a long-range Kitaev chain.« less

  8. The linear -- non-linear frontier for the Goldstone Higgs

    DOE PAGES

    Gavela, M. B.; Kanshin, K.; Machado, P. A. N.; ...

    2016-12-01

    The minimalmore » $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $$\\sigma$$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators.« less

  9. Fermion-induced quantum criticality with two length scales in Dirac systems

    NASA Astrophysics Data System (ADS)

    Torres, Emilio; Classen, Laura; Herbut, Igor F.; Scherer, Michael M.

    2018-03-01

    The quantum phase transition to a Z3-ordered Kekulé valence bond solid in two-dimensional Dirac semimetals is governed by a fermion-induced quantum critical point, which renders the putatively discontinuous transition continuous. We study the resulting universal critical behavior in terms of a functional RG approach, which gives access to the scaling behavior on the symmetry-broken side of the phase transition, for general dimensions and number of Dirac fermions. In particular, we investigate the emergence of the fermion-induced quantum critical point for spacetime dimensions 2

  10. Spectral properties of four-time fermionic Green's functions

    DOE PAGES

    Shvaika, A. M.

    2016-09-01

    The spectral relations for the four-time fermionic Green's functions are derived in the most general case. The terms which correspond to the zero-frequency anomalies, known before only for the bosonic Green's functions, are separated and their connection with the second cumulants of the Boltzmann distribution function is elucidated. Furthermore, the high-frequency expansions of the four-time fermionic Green's functions are provided for different directions in the frequency space.

  11. Spectral properties of four-time fermionic Green's functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvaika, A. M.

    The spectral relations for the four-time fermionic Green's functions are derived in the most general case. The terms which correspond to the zero-frequency anomalies, known before only for the bosonic Green's functions, are separated and their connection with the second cumulants of the Boltzmann distribution function is elucidated. Furthermore, the high-frequency expansions of the four-time fermionic Green's functions are provided for different directions in the frequency space.

  12. Local moment relaxation in heavy-fermion compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simanek, E.; Sasahara, K.

    1987-02-01

    The Korringa relaxation rate for a local moment of an impurity in a heavy fermion compound is calculated using the model of Yoshimori and Kasai. Consistent with the recent ESR data for local moments in UBe/sub 13/, the relaxation rate is found to be unaffected by the heavy fermion renormalizations. This result can be traced to the single-site approximation and the weak k dependence of the conduction electron self-energy.

  13. Three-dimensional Majorana fermions in chiral superconductors

    DOE PAGES

    Kozii, Vladyslav; Venderbos, Jorn W. F.; Fu, Liang

    2016-12-07

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary naturemore » of chiral pairing in spin-orbit–coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs 4Sb 12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.« less

  14. How Kondo-holes create intense nanoscale heavy-fermion hybridization disorder

    PubMed Central

    Hamidian, Mohammad H.; Schmidt, Andrew R.; Firmo, Inês A.; Allan, Milan P.; Bradley, Phelim; Garrett, Jim D.; Williams, Travis J.; Luke, Graeme M.; Dubi, Yonatan; Balatsky, Alexander V.; Davis, J. C.

    2011-01-01

    Replacing a magnetic atom by a spinless atom in a heavy-fermion compound generates a quantum state often referred to as a “Kondo-hole”. No experimental imaging has been achieved of the atomic-scale electronic structure of a Kondo-hole, or of their destructive impact [Lawrence JM, et al. (1996) Phys Rev B 53:12559–12562] [Bauer ED, et al. (2011) Proc Natl Acad Sci. 108:6857–6861] on the hybridization process between conduction and localized electrons which generates the heavy-fermion state. Here we report visualization of the electronic structure at Kondo-holes created by substituting spinless thorium atoms for magnetic uranium atoms in the heavy-fermion system URu2Si2. At each thorium atom, an electronic bound state is observed. Moreover, surrounding each thorium atom we find the unusual modulations of hybridization strength recently predicted to occur at Kondo-holes [Figgins J, Morr DK (2011) Phys Rev Lett 107:066401]. Then, by introducing the “hybridization gapmap” technique to heavy-fermion studies, we discover intense nanoscale heterogeneity of hybridization due to a combination of the randomness of Kondo-hole sites and the long-range nature of the hybridization oscillations. These observations provide direct insight into both the microscopic processes of heavy-fermion forming hybridization and the macroscopic effects of Kondo-hole doping. PMID:22006302

  15. Three-dimensional Majorana fermions in chiral superconductors.

    PubMed

    Kozii, Vladyslav; Venderbos, Jörn W F; Fu, Liang

    2016-12-01

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs 4 Sb 12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.

  16. Three-dimensional Majorana fermions in chiral superconductors

    PubMed Central

    Kozii, Vladyslav; Venderbos, Jörn W. F.; Fu, Liang

    2016-01-01

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit–coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs4Sb12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions. PMID:27957543

  17. Massless Dirac fermions trapping in a quasi-one-dimensional n p n junction of a continuous graphene monolayer

    NASA Astrophysics Data System (ADS)

    Bai, Ke-Ke; Qiao, Jia-Bin; Jiang, Hua; Liu, Haiwen; He, Lin

    2017-05-01

    Massless Dirac fermions in graphene provide unprecedented opportunities to realize the Klein paradox, which is one of the most exotic and striking properties of relativistic particles. In the seminal theoretical work [M. I. Katsnelson et al., Nat. Phys. 2, 620 (2006), 10.1038/nphys384], it was predicted that the massless Dirac fermions can pass through one-dimensional (1D) potential barriers unimpededly at normal incidence. Such a result seems to preclude confinement of the massless Dirac fermions in graphene by using 1D potential barriers. Here, we demonstrate both experimentally and theoretically that massless Dirac fermions can be trapped in a quasi-1D n p n junction of a continuous graphene monolayer. Because of highly anisotropic transmission of the massless Dirac fermions at n-p junction boundaries (the so-called Klein tunneling in graphene), charge carriers incident at large oblique angles will be reflected from one edge of the junction with high probability and continue to bounce from the opposite edge. Consequently, these electrons are trapped for a finite time to form quasibound states in the quasi-1D n p n junction. The quasibound states seen as pronounced resonances are probed and the quantum interference patterns arising from these states are directly visualized in our scanning tunneling microscope measurements.

  18. Aerosol Attenuation in the 2-4 Micrometer Region

    DTIC Science & Technology

    1975-03-01

    Company Model 911ir dew point hydrometer. The lithium chloride sensors will be placed on the roof where the aerosol is sampled and at the entrance...Extinction Measurement il External View of 400 Meter White Cell 13 Primary Aerosol and Gas Handlinfe Systems 14 Calibration for Extinction...Massacusetts. Aerosol-laden air will be drawn into the experimental apparatus from a point 10 ft above the roof of the building. A continuoush

  19. Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O2 battery.

    PubMed

    Zhu, Yun Guang; Jia, Chuankun; Yang, Jing; Pan, Feng; Huang, Qizhao; Wang, Qing

    2015-06-11

    A redox flow lithium-oxygen battery (RFLOB) by using soluble redox catalysts with good performance was demonstrated for large-scale energy storage. The new device enables the reversible formation and decomposition of Li2O2 via redox targeting reactions in a gas diffusion tank, spatially separated from the electrode, which obviates the passivation and pore clogging of the cathode.

  20. Tissue distribution of molidone in a multidrug overdose.

    PubMed

    Flammia, Dwight D; Bateman, Henry R; Saady, Joseph J; Christensen, Erik D

    2004-09-01

    Molindone hydrochloride (Moban) is a dihydroindolone compound dissimilar in structure to other antipsychotic drugs (i.e., phenothiazines, butyrophenones, dibenzepines, and thioxanthenes). The antipsychotic (or neuroleptic) activity of molindone makes it particularly useful in the treatment of schizophrenia. There are a few published cases which report the tissue distribution of molindone in the human body. We report the analysis of molindone in postmortem samples using a solvent mixture (toluene/hexane/isoamyl alcohol) base extract followed by an acid (0.5M H(2)SO(4)) wash. Molindone was identified by gas chromatography-mass spectrometry (m/z 100, 176, 276) and quantitated using a gas chromatograph and nitrogen-phosphorus detector. The range of linearity was 0.1 mg/L to 5.0 mg/L. We report our findings of molindone concentrations in blood, liver, bile, gastric, and urine as follows: 6 mg/L in blood; 26 mg/kg in liver; 23.1 mg/L in bile; 1200 mg/L in gastric; and 37.3 mg/L in urine. Vitreous lithium (5.9 mmol/L) was determined by flame atomic absorption spectrometry. The medical examiner listed the cause of death as a combined drug overdose of molindone and lithium. The tissue results are compared with another case and the pharmacology of molindone is presented.

  1. Hierarchical fermions and detectable Z' from effective two-Higgs-triplet 3-3-1 model

    NASA Astrophysics Data System (ADS)

    Barreto, E. R.; Dias, A. G.; Leite, J.; Nishi, C. C.; Oliveira, R. L. N.; Vieira, W. C.

    2018-03-01

    We develop a SU (3 )C⊗SU (3 )L⊗U (1 )X model where the number of fermion generations is fixed by cancellation of gauge anomalies, being a type of 3-3-1 model with new charged leptons. Similarly to the economical 3-3-1 models, symmetry breaking is achieved effectively with two scalar triplets so that the spectrum of scalar particles at the TeV scale contains just two C P even scalars, one of which is the recently discovered Higgs boson, plus a charged scalar. Such a scalar sector is simpler than the one in the Two Higgs Doublet Model, hence more attractive for phenomenological studies, and has no flavor changing neutral currents (FCNC) mediated by scalars except for the ones induced by the mixing of Standard Model (SM) fermions with heavy fermions. We identify a global residual symmetry of the model which guarantees mass degeneracies and some massless fermions whose masses need to be generated by the introduction of effective operators. The fermion masses so generated require less fine-tuning for most of the SM fermions and FCNC are naturally suppressed by the small mixing between the third family of quarks and the rest. The effective setting is justified by an ultraviolet completion of the model from which the effective operators emerge naturally. A detailed particle mass spectrum is presented, and an analysis of the Z' production at the LHC run II is performed to show that it could be easily detected by considering the invariant mass and transverse momentum distributions in the dimuon channel.

  2. The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Reintjes, Moritz

    2017-05-01

    We give a non-perturbative construction of a distinguished state for the quantized Dirac field in Minkowski space in the presence of a time-dependent external field of the form of a plane electromagnetic wave. By explicit computation of the fermionic signature operator, it is shown that the Dirac operator has the strong mass oscillation property. We prove that the resulting fermionic projector state is a Hadamard state.

  3. Staggered fermions, zero modes, and flavor-singlet mesons

    DOE PAGES

    Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; ...

    2011-09-12

    We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold onmore » realistic lattice gauge fields. We find that the needed structure does indeed emerge.« less

  4. Counting local integrals of motion in disordered spinless-fermion and Hubbard chains

    NASA Astrophysics Data System (ADS)

    Mierzejewski, Marcin; Kozarzewski, Maciej; Prelovšek, Peter

    2018-02-01

    We develop a procedure which systematically generates all conserved operators in the disordered models of interacting fermions. Among these operators, we identify and count the independent and local integrals of motion (LIOM), which represent the hallmark of the many-body localization (MBL). The method is tested first on the prototype disordered chain of interacting spinless fermions. As expected for full MBL, we find for large enough disorder NM=2M-1 independent and quasilocal LIOM with support on M consecutive sites. On the other hand, the study of the disordered Hubbard chain reveals that 3M-1

  5. Split Orthogonal Group: A Guiding Principle for Sign-Problem-Free Fermionic Simulations

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Liu, Ye-Hua; Iazzi, Mauro; Troyer, Matthias; Harcos, Gergely

    2015-12-01

    We present a guiding principle for designing fermionic Hamiltonians and quantum Monte Carlo (QMC) methods that are free from the infamous sign problem by exploiting the Lie groups and Lie algebras that appear naturally in the Monte Carlo weight of fermionic QMC simulations. Specifically, rigorous mathematical constraints on the determinants involving matrices that lie in the split orthogonal group provide a guideline for sign-free simulations of fermionic models on bipartite lattices. This guiding principle not only unifies the recent solutions of the sign problem based on the continuous-time quantum Monte Carlo methods and the Majorana representation, but also suggests new efficient algorithms to simulate physical systems that were previously prohibitive because of the sign problem.

  6. Particlelike solutions of the Einstein-Dirac equations

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    1999-05-01

    The coupled Einstein-Dirac equations for a static, spherically symmetric system of two fermions in a singlet spinor state are derived. Using numerical methods, we construct an infinite number of solitonlike solutions of these equations. The stability of the solutions is analyzed. For weak coupling (i.e., small rest mass of the fermions), all the solutions are linearly stable (with respect to spherically symmetric perturbations), whereas for stronger coupling, both stable and unstable solutions exist. For the physical interpretation, we discuss how the energy of the fermions and the (ADM) mass behave as functions of the rest mass of the fermions. Although gravitation is not renormalizable, our solutions of the Einstein-Dirac equations are regular and well behaved even for strong coupling.

  7. Magnetotransport in Layered Dirac Fermion System Coupled with Magnetic Moments

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yoshiki; Morinari, Takao

    2018-03-01

    We theoretically investigate the magnetotransport of Dirac fermions coupled with localized moments to understand the physical properties of the Dirac material EuMnBi2. Using an interlayer hopping form, which simplifies the complicated interaction between the layers of Dirac fermions and the layers of magnetic moments in EuMnBi2, the theory reproduces most of the features observed in this system. The hysteresis observed in EuMnBi2 can be caused by the valley splitting that is induced by the spin-orbit coupling and the external magnetic field with the molecular field created by localized moments. Our theory suggests that the magnetotransport in EuMnBi2 is due to the interplay among Dirac fermions, localized moments, and spin-orbit coupling.

  8. Electrodynamic response of the type-II Weyl semimetal YbMnBi 2

    DOE PAGES

    Chinotti, M.; Pal, A.; Ren, W. J.; ...

    2016-12-01

    Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. These quasi-two-dimensional bismuth layers based materials were recently designed and provide an arena for studying the interplay between anisotropic Dirac fermions, magnetism, and structural changes, allowing the formation of Weyl fermions in condensed matter. We perform an optical investigation of YbMnBi 2 , a representative type-II Weyl semimetal, and contrast its excitation spectrum with the optical response of the more conventional semimetal EuMnBi 2 . This comparative study allows us to disentangle the optical fingerprints of type-II Weyl fermions, but also challengesmore » the present theoretical understanding of their electrodynamic response.« less

  9. Identification of alkylated phosphates by gas chromatography-mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte.

    PubMed

    Weber, Waldemar; Kraft, Vadim; Grützke, Martin; Wagner, Ralf; Winter, Martin; Nowak, Sascha

    2015-05-15

    The thermal aging process of a commercial LiPF6 based lithium ion battery electrolyte has been investigated in view of the formation of volatile phosphorus-containing degradation products. Aging products were analyzed by GC-MS. Structure determination of the products was performed by support of chemical ionization MS in positive and negative modes. A fraction of the discovered compounds belongs to the group of fluorophosphates (phosphorofluoridates) which are in suspect of potential toxicity. This is well known for relative derivatives, e.g. diisopropyl fluorophosphate. Another fraction of the identified compounds belongs to the group of trialkyl phosphates. These compounds may provide a positive impact on the thermal and electrochemical performance of Li-based batteries as repeatedly described in the literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Recovery of metals from simulant spent lithium-ion battery as organophosphonate coordination polymers in aqueous media.

    PubMed

    Perez, Emilie; Andre, Marie-Laure; Navarro Amador, Ricardo; Hyvrard, François; Borrini, Julien; Carboni, Michaël; Meyer, Daniel

    2016-11-05

    An innovative approach is proposed for the recycling of metals from a simulant lithium-ion battery (LIBs) waste aqueous solution. Phosphonate organic linkers are introduced as precipitating agents to selectively react with the metals to form coordination polymers from an aqueous solution containing Ni, Mn and Co in a hydrothermal process. The supernatant is analyzed by ICP-AES to quantify the efficiency and the selectivity of the precipitation and the materials are characterized by Scanning Electron Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Thermogravimetric Analyses (TGA) and nitrogen gas sorption (BET). Conditions have been achieved to selectively precipitate Manganese or Manganese/Cobalt from this solution with a high efficiency. This work describes a novel method to obtain potentially valuable coordination polymers from a waste metal solution that can be generalized on any waste solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fermion Superfluidity

    NASA Technical Reports Server (NTRS)

    Strecker, Kevin; Truscott, Andrew; Partridge, Guthrie; Chen, Ying-Cheng

    2003-01-01

    Dual evaporation gives 50 million fermions at T = 0.1 T(sub F). Demonstrated suppression of interactions by coherent superposition - applicable to atomic clocks. Looking for evidence of Cooper pairing and superfluidity.

  12. The Investigation of Laser Ignited Plasma with the Application of Current Probes

    NASA Astrophysics Data System (ADS)

    Olsson, Trevor; Amos, James; Ujj, Laszlo

    Among a variety of atomic emission spectroscopy methods Laser-induced breakdown spectroscopy (LIBS) is the one which can analyze any solid, liquid or gas sample. The elemental composition and the relative abundance of the constituent elements in the samples can be determined when the emission spectra of short laser pulses igniting plasma is then recorded and analyzed(e.g.). In our studies we have made a LIBS system which includes, but is not limited to investigating the physical phenomena and properties of the emitting plasma. Active research is going on concerning Lithium-ion batteries to increase the stored charge and energy per volume properties of the device. LIBS is proposed to test the manufacturing process and analyze the chemical constituents of the newly developed batteries. The composition of the battery itself consists of two pieces of foil, typically aluminum and copper acting as a cathode and anode respectively. Separating these two pieces of foil is a lithium based compound. The general chemical composition is Lix [Metal]y Oz where [Metal] is the specific element that is used to achieve the purpose of the battery (one metal may increase the out-put while another helps with capacity etc.). We have chosen the Li-Ion battery composed of LiCoO2 from a mobile phone in order to investigate the Stark-effect (Stark shift and Stark broadening) of the lithium present in the sample. Effects of line broadening and reabsorption of the signals are addressed by recording LIBS spectra from the powder electrolyte extracted from a Lithium-ion battery.

  13. Calculation of K →π π decay amplitudes with improved Wilson fermion action in lattice QCD

    NASA Astrophysics Data System (ADS)

    Ishizuka, N.; Ishikawa, K.-I.; Ukawa, A.; Yoshié, T.

    2015-10-01

    We present our result for the K →π π decay amplitudes for both the Δ I =1 /2 and 3 /2 processes with the improved Wilson fermion action. Expanding on the earlier works by Bernard et al. and by Donini et al., we show that mixings with four-fermion operators with wrong chirality are absent even for the Wilson fermion action for the parity odd process in both channels due to CPS symmetry. Therefore, after subtraction of an effect from the lower dimensional operator, a calculation of the decay amplitudes is possible without complications from operators with wrong chirality, as for the case with chirally symmetric lattice actions. As a first step to verify the possibility of calculations with the Wilson fermion action, we consider the decay amplitudes at an unphysical quark mass mK˜2 mπ . Our calculations are carried out with Nf=2 +1 gauge configurations generated with the Iwasaki gauge action and nonperturbatively O (a )-improved Wilson fermion action at a =0.091 fm , mπ=280 MeV , and mK=580 MeV on a 323×64 (L a =2.9 fm ) lattice. For the quark loops in the penguin and disconnected contributions in the I =0 channel, the combined hopping parameter expansion and truncated solver method work very well for variance reduction. We obtain, for the first time with a Wilson-type fermion action, that Re A0=60 (36 )×1 0-8 GeV and Im A0=-67 (56 )×1 0-12 GeV for a matching scale q*=1 /a . The dependence on the matching scale q* for these values is weak.

  14. Fermionic influence on inflationary fluctuations

    NASA Astrophysics Data System (ADS)

    Boyanovsky, Daniel

    2016-04-01

    Motivated by apparent persistent large scale anomalies in the cosmic microwave background we study the influence of fermionic degrees of freedom on the dynamics of inflaton fluctuations as a possible source of violations of (nearly) scale invariance on cosmological scales. We obtain the nonequilibrium effective action of an inflaton-like scalar field with Yukawa interactions (YD ,M) to light fermionic degrees of freedom both for Dirac and Majorana fields in de Sitter space-time. The effective action leads to Langevin equations of motion for the fluctuations of the inflaton-like field, with self-energy corrections and a stochastic Gaussian noise. We solve the Langevin equation in the super-Hubble limit implementing a dynamical renormalization group resummation. For a nearly massless inflaton its power spectrum of super-Hubble fluctuations is enhanced, P (k ;η )=(H/2 π )2eγt[-k η ] with γt[-k η ]=1/6 π2 [∑i =1 NDYi,D 2+2 ∑j =1 NMYj,M 2]{ln2[-k η ]-2 ln [-k η ]ln [-k η0]} for ND Dirac and NM Majorana fermions, and η0 is the renormalization scale at which the inflaton mass vanishes. The full power spectrum is shown to be renormalization group invariant. These corrections to the super-Hubble power spectrum entail a violation of scale invariance as a consequence of the coupling to the fermionic fields. The effective action is argued to be exact in the limit of a large number of fermionic fields. A cancellation between the enhancement from fermionic degrees of freedom and suppression from light scalar degrees of freedom conformally coupled to gravity suggests the possibility of a finely tuned supersymmetry among these fields.

  15. Classification of compactified su( N c ) gauge theories with fermions in all representations

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Vincent-Genod, Loïc

    2017-12-01

    We classify su( N c ) gauge theories on R^3× S^1 with massless fermions in higher representations obeying periodic boundary conditions along S^1 . In particular, we single out the class of theories that is asymptotically free and weakly coupled in the infrared, and therefore, is amenable to semi-classical treatment. Our study is conducted by carefully identifying the vacua inside the affine Weyl chamber using Verma bases and Frobenius formula techniques. Theories with fermions in pure representations are generally strongly coupled. The only exceptions are the four-index symmetric representation of su(2) and adjoint representation of su( N c ). However, we find a plethora of admissible theories with fermions in mixed representations. A sub-class of these theories have degenerate perturbative vacua separated by domain walls. In particular, su( N c ) theories with fermions in the mixed representations adjoint⊕fundamental and adjoint⊕two-index symmetric admit degenerate vacua that spontaneously break the parity P , charge conjugation C , and time reversal T symmetries. These are the first examples of strictly weakly coupled gauge theories on R^3× S^1 with spontaneously broken C , P , and T symmetries. We also compute the fermion zero modes in the background of monopole-instantons. The monopoles and their composites (topological molecules) proliferate in the vacuum leading to the confinement of electric charges. Interestingly enough, some theories have also accidental degenerate vacua, which are not related by any symmetry. These vacua admit different numbers of fermionic zero modes, and hence, different kinds of topological molecules. The lack of symmetry, however, indicates that such degeneracy might be lifted by higher order corrections. Finally, we study the general phase structure of adjoint⊕fundamental theories in the small circle and decompactification limits.

  16. Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics.

    PubMed

    Steglich, Frank; Wirth, Steffen

    2016-08-01

    This article overviews the development of heavy-fermion superconductivity, notably in such rare-earth-based intermetallic compounds which behave as Kondo-lattice systems. Heavy-fermion superconductivity is of unconventional nature in the sense that it is not mediated by electron-phonon coupling. Rather, in most cases the attractive interaction between charge carriers is apparently magnetic in origin. Fluctuations associated with an antiferromagnetic (AF) quantum critical point (QCP) play a major role. The first heavy-fermion superconductor CeCu2Si2 turned out to be the prototype of a larger group of materials for which the underlying, often pressure-induced, AF QCP is likely to be of a three-dimensional (3D) spin-density-wave (SDW) variety. For UBe13, the second heavy-fermion superconductor, a magnetic-field-induced 3D SDW QCP inside the superconducting phase can be conjectured. Such a 'conventional', itinerant QCP can be well understood within Landau's paradigm of order-parameter fluctuations. In contrast, the low-temperature normal-state properties of a few heavy-fermion superconductors are at odds with the Landau framework. They are characterized by an 'unconventional', local QCP which may be considered a zero-temperature 4 f-orbital selective Mott transition. Here, as concluded for YbRh2Si2, the breakdown of the Kondo effect concurring with the AF instability gives rise to an abrupt change of the Fermi surface. Very recently, superconductivity was discovered for this compound at ultra-low temperatures. Therefore, YbRh2Si2 along with CeRhIn5 under pressure provide a natural link between the large group of about fifty low-temperature heavy-fermion superconductors and other families of unconventional superconductors with substantially higher T c, e.g. the doped Mott insulators of the perovskite-type cuprates and the organic charge-transfer salts.

  17. Auxiliary-fermion approach to critical fluctuations in the two-dimensional quantum antiferromagnetic Heisenberg model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brinckmann, Jan; Woelfle, Peter

    2004-11-01

    The nearest-neighbor quantum antiferromagnetic (AF) Heisenberg model for spin-1/2 on a two-dimensional square lattice is studied in the auxiliary-fermion representation. Expressing spin operators by canonical fermionic particles requires a constraint on the fermion charge Q{sub i}=1 on each lattice site i, which is imposed approximately through the thermal average. The resulting interacting fermion system is first treated in mean-field theory (MFT), which yields an AF ordered ground state and spin waves in quantitative agreement with conventional spin-wave theory. At finite temperature a self-consistent approximation beyond mean field is required in order to fulfill the Mermin-Wagner theorem. We first discuss amore » fully self-consistent approximation, where fermions are renormalized due to fluctuations of their spin density, in close analogy to FLEX. While static properties like the correlation length, {xi}(T){proportional_to}exp(aJ/T), come out correctly, the dynamical response lacks the magnon-like peaks which would reflect the appearance of short-range order at low T. This drawback, which is caused by overdamping, is overcome in a 'minimal self-consistent approximation' (MSCA), which we derive from the equations of motion. The MSCA features dynamical scaling at small energy and temperature and is qualitatively correct both in the regime of order-parameter relaxation at long wavelengths {lambda}>{xi} and in the short-range-order regime at {lambda}<{xi}. We also discuss the impact of vertex corrections and the problem of pseudo-gap formation in the single-particle density of states due to long-range fluctuations. Finally we show that the (short-range) magnetic order in MFT and MSCA helps to fulfill the constraint on the local fermion occupancy.« less

  18. Unitarity violation in noninteger dimensional Gross-Neveu-Yukawa model

    NASA Astrophysics Data System (ADS)

    Ji, Yao; Kelly, Michael

    2018-05-01

    We construct an explicit example of unitarity violation in fermionic quantum field theories in noninteger dimensions. We study the two-point correlation function of four-fermion operators. We compute the one-loop anomalous dimensions of these operators in the Gross-Neveu-Yukawa model. We find that at one-loop order, the four-fermion operators split into three classes with one class having negative norms. This implies that the theory violates unitarity, following the definition in Ref. [1].

  19. Unconventional States of Matter with Cold Atoms and Dipolar Molecules

    DTIC Science & Technology

    2014-08-20

    ferromagnetic state. For alkaline-earth fermions, the large SU(2N) symmetry greatly enhances quantum spin fluctuations, which give rises to novel...both bosons and fermions, novel quantum magnetism with large spin SU(2N) al- kaline fermions, novel topological states with synthetic gauge fields...presented in Sect. 1.1. The study of novel quantum magnetism with large spin alkaline earth atoms is presented in Sect. 1.2. In Sect. 1.3, we present our

  20. Fermion-to-qubit mappings with varying resource requirements for quantum simulation

    NASA Astrophysics Data System (ADS)

    Steudtner, Mark; Wehner, Stephanie

    2018-06-01

    The mapping of fermionic states onto qubit states, as well as the mapping of fermionic Hamiltonian into quantum gates enables us to simulate electronic systems with a quantum computer. Benefiting the understanding of many-body systems in chemistry and physics, quantum simulation is one of the great promises of the coming age of quantum computers. Interestingly, the minimal requirement of qubits for simulating Fermions seems to be agnostic of the actual number of particles as well as other symmetries. This leads to qubit requirements that are well above the minimal requirements as suggested by combinatorial considerations. In this work, we develop methods that allow us to trade-off qubit requirements against the complexity of the resulting quantum circuit. We first show that any classical code used to map the state of a fermionic Fock space to qubits gives rise to a mapping of fermionic models to quantum gates. As an illustrative example, we present a mapping based on a nonlinear classical error correcting code, which leads to significant qubit savings albeit at the expense of additional quantum gates. We proceed to use this framework to present a number of simpler mappings that lead to qubit savings with a more modest increase in gate difficulty. We discuss the role of symmetries such as particle conservation, and savings that could be obtained if an experimental platform could easily realize multi-controlled gates.

  1. New directions in the pursuit of Majorana fermions in solid state systems.

    PubMed

    Alicea, Jason

    2012-07-01

    The 1937 theoretical discovery of Majorana fermions-whose defining property is that they are their own anti-particles-has since impacted diverse problems ranging from neutrino physics and dark matter searches to the fractional quantum Hall effect and superconductivity. Despite this long history the unambiguous observation of Majorana fermions nevertheless remains an outstanding goal. This review paper highlights recent advances in the condensed matter search for Majorana that have led many in the field to believe that this quest may soon bear fruit. We begin by introducing in some detail exotic 'topological' one- and two-dimensional superconductors that support Majorana fermions at their boundaries and at vortices. We then turn to one of the key insights that arose during the past few years; namely, that it is possible to 'engineer' such exotic superconductors in the laboratory by forming appropriate heterostructures with ordinary s-wave superconductors. Numerous proposals of this type are discussed, based on diverse materials such as topological insulators, conventional semiconductors, ferromagnetic metals and many others. The all-important question of how one experimentally detects Majorana fermions in these setups is then addressed. We focus on three classes of measurements that provide smoking-gun Majorana signatures: tunneling, Josephson effects and interferometry. Finally, we discuss the most remarkable properties of condensed matter Majorana fermions-the non-Abelian exchange statistics that they generate and their associated potential for quantum computation.

  2. Dirac materials

    NASA Astrophysics Data System (ADS)

    Wehling, T. O.; Black-Schaffer, A. M.; Balatsky, A. V.

    2014-01-01

    A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrodinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call "Dirac materials''. In order to establish this class of materials, we illustrate how Dirac fermions emerge in multiple entirely different condensed matter systems and we discuss how Dirac fermions have been identified experimentally using electron spectroscopy techniques (angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy). As a consequence of their common low-energy excitations, this diverse set of materials shares a significant number of universal properties in the low-energy (infrared) limit. We review these common properties including nodal points in the excitation spectrum, density of states, specific heat, transport, thermodynamic properties, impurity resonances, and magnetic field responses, as well as discuss many-body interaction effects. We further review how the emergence of Dirac excitations is controlled by specific symmetries of the material, such as time-reversal, gauge, and spin-orbit symmetries, and how by breaking these symmetries a finite Dirac mass is generated. We give examples of how the interaction of Dirac fermions with their distinct real material background leads to rich novel physics with common fingerprints such as the suppression of back scattering and impurity-induced resonant states.

  3. Thermoelectric Transport Signatures of Dirac Composite Fermions in the Half-Filled Landau Level

    NASA Astrophysics Data System (ADS)

    Potter, Andrew C.; Serbyn, Maksym; Vishwanath, Ashvin

    2016-07-01

    The half-filled Landau level is expected to be approximately particle-hole symmetric, which requires an extension of the Halperin-Lee-Read (HLR) theory of the compressible state observed at this filling. Recent work indicates that, when particle-hole symmetry is preserved, the composite fermions experience a quantized π -Berry phase upon winding around the composite Fermi surface, analogous to Dirac fermions at the surface of a 3D topological insulator. In contrast, the effective low-energy theory of the composite fermion liquid originally proposed by HLR lacks particle-hole symmetry and has vanishing Berry phase. In this paper, we explain how thermoelectric transport measurements can be used to test the Dirac nature of the composite fermions by quantitatively extracting this Berry phase. First, we point out that longitudinal thermopower (Seebeck effect) is nonvanishing because of the unusual nature of particle-hole symmetry in this context and is not sensitive to the Berry phase. In contrast, we find that off-diagonal thermopower (Nernst effect) is directly related to the topological structure of the composite Fermi surface, vanishing for zero Berry phase and taking its maximal value for π Berry phase. In contrast, in purely electrical transport signatures, the Berry phase contributions appear as small corrections to a large background signal, making the Nernst effect a promising diagnostic of the Dirac nature of composite fermions.

  4. Quench-induced breathing mode of one-dimensional Bose gases.

    PubMed

    Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle

    2014-07-18

    We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.

  5. Quench-Induced Breathing Mode of One-Dimensional Bose Gases

    NASA Astrophysics Data System (ADS)

    Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle

    2014-07-01

    We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.

  6. Taste symmetry breaking with hypercubic-smeared staggered fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Taegil; Adams, David H.; Kim, Hyung-Jin

    2008-05-01

    We study the impact of hypercubic (HYP) smearing on the size of taste-breaking for staggered fermions, comparing to unimproved and to asqtad-improved staggered fermions. As in previous studies, we find a substantial reduction in taste-breaking compared to unimproved staggered fermions (by a factor of 4-7 on lattices with spacing a{approx_equal}0.1 fm). In addition, we observe that discretization effects of next-to-leading order in the chiral expansion (O(a{sup 2}p{sup 2})) are markedly reduced by HYP smearing. Compared to asqtad valence fermions, we find that taste-breaking in the pion spectrum is reduced by a factor of 2.5-3, down to a level comparable tomore » the expected size of generic O(a{sup 2}) effects. Our results suggest that, once one reaches a lattice spacing of a{approx_equal}0.09 fm, taste-breaking will be small enough after HYP smearing that one can use a modified power counting in which O(a{sup 2})<

  7. Fermion-number violation in regularizations that preserve fermion-number symmetry

    NASA Astrophysics Data System (ADS)

    Golterman, Maarten; Shamir, Yigal

    2003-01-01

    There exist both continuum and lattice regularizations of gauge theories with fermions which preserve chiral U(1) invariance (“fermion number”). Such regularizations necessarily break gauge invariance but, in a covariant gauge, one recovers gauge invariance to all orders in perturbation theory by including suitable counterterms. At the nonperturbative level, an apparent conflict then arises between the chiral U(1) symmetry of the regularized theory and the existence of ’t Hooft vertices in the renormalized theory. The only possible resolution of the paradox is that the chiral U(1) symmetry is broken spontaneously in the enlarged Hilbert space of the covariantly gauge-fixed theory. The corresponding Goldstone pole is unphysical. The theory must therefore be defined by introducing a small fermion-mass term that breaks explicitly the chiral U(1) invariance and is sent to zero after the infinite-volume limit has been taken. Using this careful definition (and a lattice regularization) for the calculation of correlation functions in the one-instanton sector, we show that the ’t Hooft vertices are recovered as expected.

  8. Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer.

    PubMed

    Setia, Kanav; Whitfield, James D

    2018-04-28

    Present quantum computers often work with distinguishable qubits as their computational units. In order to simulate indistinguishable fermionic particles, it is first required to map the fermionic state to the state of the qubits. The Bravyi-Kitaev Superfast (BKSF) algorithm can be used to accomplish this mapping. The BKSF mapping has connections to quantum error correction and opens the door to new ways of understanding fermionic simulation in a topological context. Here, we present the first detailed exposition of the BKSF algorithm for molecular simulation. We provide the BKSF transformed qubit operators and report on our implementation of the BKSF fermion-to-qubits transform in OpenFermion. In this initial study of a hydrogen molecule we have compared BKSF, Jordan-Wigner, and Bravyi-Kitaev transforms under the Trotter approximation. The gate count to implement BKSF is lower than Jordan-Wigner but higher than Bravyi-Kitaev. We considered different orderings of the exponentiated terms and found lower Trotter errors than the previously reported for Jordan-Wigner and Bravyi-Kitaev algorithms. These results open the door to the further study of the BKSF algorithm for quantum simulation.

  9. Multiple quantum phase transitions and superconductivity in Ce-based heavy fermions.

    PubMed

    Weng, Z F; Smidman, M; Jiao, L; Lu, Xin; Yuan, H Q

    2016-09-01

    Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology.

  10. Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6

    NASA Astrophysics Data System (ADS)

    Custers, J.; Lorenzer, K.-A.; Müller, M.; Prokofiev, A.; Sidorenko, A.; Winkler, H.; Strydom, A. M.; Shimura, Y.; Sakakibara, T.; Yu, R.; Si, Q.; Paschen, S.

    2012-03-01

    How ground states of quantum matter transform between one another reveals deep insights into the mechanisms stabilizing them. Correspondingly, quantum phase transitions are explored in numerous materials classes, with heavy-fermion compounds being among the most prominent ones. Recent studies in an anisotropic heavy-fermion compound have shown that different types of transitions are induced by variations of chemical or external pressure, raising the question of the extent to which heavy-fermion quantum criticality is universal. To make progress, it is essential to broaden both the materials basis and the microscopic parameter variety. Here, we identify a cubic heavy-fermion material as exhibiting a field-induced quantum phase transition, and show how the material can be used to explore one extreme of the dimensionality axis. The transition between two different ordered phases is accompanied by an abrupt change of Fermi surface, reminiscent of what happens across the field-induced antiferromagnetic to paramagnetic transition in the anisotropic YbRh2Si2. This finding leads to a materials-based global phase diagram—a precondition for a unified theoretical description.

  11. Scattering of fermions in the Yukawa theory coupled to unimodular gravity

    NASA Astrophysics Data System (ADS)

    Gonzalez-Martin, S.; Martin, C. P.

    2018-03-01

    We compute the lowest order gravitational UV divergent radiative corrections to the S matrix element of the fermion + fermion→ fermion + fermion scattering process in the massive Yukawa theory, coupled either to Unimodular Gravity or to General Relativity. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contribution in Dimensional Regularization. This is a nontrivial result, since in the classical action of Unimodular Gravity coupled to the Yukawa theory, the graviton field does not couple neither to the mass operator nor to the Yukawa operator. This is unlike the General Relativity case. The agreement found points in the direction that Unimodular Gravity and General Relativity give rise to the same quantum theory when coupled to matter, as long as the Cosmological Constant vanishes. Along the way we have come across another unexpected cancellation of UV divergences for both Unimodular Gravity and General Relativity, resulting in the UV finiteness of the one-loop and κ y^2 order of the vertex involving two fermions and one graviton only.

  12. Interplay between magnetism and relativistic fermions in Eu doped (Sr/Ba)MnSb2

    NASA Astrophysics Data System (ADS)

    Liu, Jinyu; Hu, Jin; Zhu, Yanglin; Chuang, Alyssa; Graf, David; Jaime, Marcelo; Balakirev, Fedor; Weickert, Franziska; Zhang, Qiang; Ditusa, John; Wu, Yan; Cao, Huibo; Mao, Zhiqiang

    Layered compounds AMnBi2 (A =Ca, Sr, Ba, Eu, and Yb) have been established as Dirac materials with fascinating properties. In our previous work, we have demonstrated that Sr1-y Mn1-z Sb2 (y, z <0.1), isostructural to AMnBi2, not only host relativistic fermions, but also exhibit ferromagnetic properties, with its ferromagnetism being coupled to the relativistic fermions' transport. To gain further insight into the relativistic fermion-magnetism coupling, we have synthesized a series of Eu doped (Sr/Ba)MnSb2 single crystals and found Eu moments order antiferromagnetically. Through neutron scattering experiments, we determined the magnetic structures for Sr1-xEuxMnSb2 with x = 0.2, 0.5, and 0.8. From magnetotransport measurements, we find the Eu antiferromagnetism is also coupled to relativistic fermion transport. More importantly, we observed a novel quantum phase with saturated magnetoresistivity near the quantum limit for the 10% Eu doped BaMnSb2 sample. We will discuss possible mechanisms for this novel phase.

  13. Composite Fermions: Motivation, Successes, and Application to Fractional Quantum Hall Effect in Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Jainendra

    2011-07-15

    The fractional quantum Hall effect (FQHE) is one of the most amazing collective states discovered in modern times. A remarkably detailed and accurate understanding of its nonperturbative physics has been achieved in terms of a new class of exotic particles called composite fermions. I will begin with a brief review of the composite fermion theory and its outstanding successes. The rest of the talk will be concerned with fractional quantum Hall effect in graphene, observed recently. I will present results of theoretical studies that demonstrate that composite fermions are formed in graphene as well, but the spin and valley degeneraciesmore » and the linear dispersion of electrons produce interesting new physics relative to that in the usual two-dimensional GaAs systems. Composite fermion theory allows detailed predictions about FQHE in graphene in regimes when either or both of the spin and valley degeneracies are broken. I will discuss the relevance of our theory to recent experiments. This work on FQHE in graphene has been performed in collaboration with Csaba Toke.« less

  14. Fermion-induced quantum critical points in two-dimensional Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Jian, Shao-Kai; Yao, Hong

    2017-11-01

    In this paper we investigate the nature of quantum phase transitions between two-dimensional Dirac semimetals and Z3-ordered phases (e.g., Kekule valence-bond solid), where cubic terms of the order parameter are allowed in the quantum Landau-Ginzberg theory and the transitions are putatively first order. From large-N renormalization-group (RG) analysis, we find that fermion-induced quantum critical points (FIQCPs) [Z.-X. Li et al., Nat. Commun. 8, 314 (2017), 10.1038/s41467-017-00167-6] occur when N (the number of flavors of four-component Dirac fermions) is larger than a critical value Nc. Remarkably, from the knowledge of space-time supersymmetry, we obtain an exact lower bound for Nc, i.e., Nc>1 /2 . (Here the "1/2" flavor of four-component Dirac fermions is equivalent to one flavor of four-component Majorana fermions). Moreover, we show that the emergence of two length scales is a typical phenomenon of FIQCPs and obtain two different critical exponents, i.e., ν ≠ν' , by large-N RG calculations. We further give a brief discussion of possible experimental realizations of FIQCPs.

  15. Emergence of gravity, fermion, gauge and Chern-Simons fields during formation of N-dimensional manifolds from joining point-like ones

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Shoorvazi, Somayyeh

    In this paper, we will consider the birth and evolution of fields during formation of N-dimensional manifolds from joining point-like ones. We will show that at the beginning, only there are point-like manifolds which some strings are attached to them. By joining these manifolds, 1-dimensional manifolds are appeared and gravity, fermion, and gauge fields are emerged. By coupling these manifolds, higher dimensional manifolds are produced and higher orders of fermion, gauge fields and gravity are emerged. By decaying N-dimensional manifold, two child manifolds and a Chern-Simons one are born and anomaly is emerged. The Chern-Simons manifold connects two child manifolds and leads to the energy transmission from the bulk to manifolds and their expansion. We show that F-gravity can be emerged during the formation of N-dimensional manifold from point-like manifolds. This type of F-gravity includes both type of fermionic and bosonic gravity. G-fields and also C-fields which are produced by fermionic strings produce extra energy and change the gravity.

  16. Minimally doubled fermions and spontaneous chiral symmetry breaking

    NASA Astrophysics Data System (ADS)

    Osmanaj (Zeqirllari), Rudina; Hyka (Xhako), Dafina

    2018-03-01

    Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks - Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss - Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.

  17. Effective four-fermion operators in top physics: A roadmap

    NASA Astrophysics Data System (ADS)

    Aguilar-Saavedra, J. A.

    2011-02-01

    We write down a minimal basis for dimension-six gauge-invariant four-fermion operators, with some operator replacements with respect to previous ones which make it simpler for calculations. Using this basis we classify all four-fermion operator contributions involving one or two top quarks. Taking into account the different fermion chiralities, possible colour contractions and independent flavour combinations, a total number of 572 gauge-invariant operators are involved. We apply this to calculate all three-body top decay widths t→dud, t→dei+ν, t→uuu, t→uej+ei-, t→uνν (with i,j,k generation indices) mediated by dimension-six four-fermion operators, including the interference with the Standard Model amplitudes when present. All single top production cross sections in pp, pp¯ and ee collisions are calculated as well, namely ud→dt, dd→ut, ud→dt, uu→ut, uu→ut, ee→ut and the charge conjugate processes. We also compute all top pair production cross sections, uu→tt¯, dd→tt¯, uu→tt and ee→tt¯. Our results are completely general, without assuming any particular relation among effective operator coefficients.

  18. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  19. Design and fabrication of brayton cycle solar heat receiver

    NASA Technical Reports Server (NTRS)

    Mendelson, I.

    1971-01-01

    A detail design and fabrication of a solar heat receiver using lithium fluoride as the heat storage material was completed. A gas flow analysis was performed to achieve uniform flow distribution within overall pressure drop limitations. Structural analyses and allowable design criteria were developed for anticipated environments such as launch, pressure containment, and thermal cycling. A complete heat receiver assembly was fabricated almost entirely from the refractory alloy, niobium-1% zirconium.

  20. Surface acoustic wave hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Bhethanabotla, Venkat R. (Inventor); Bhansali, Shekhar (Inventor)

    2006-01-01

    The present invention provides a delay line SAW device fabricated on a lithium niobate substrate and coated with a bilayer of nanocrystalline or other nanomaterials such as nanoparticles or nanowires of palladiumn and metal free pthalocyanine which will respond to hydrogen gas in near real time, at low (room) temperature, without being affected by CO, O.sub.2, CH.sub.4 and other gases, in air ambient or controlled ambient, providing sensitivity to low ppm levels.

Top