Chiral fermions in asymptotically safe quantum gravity
NASA Astrophysics Data System (ADS)
Meibohm, J.; Pawlowski, J. M.
2016-05-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Chiral fermions in asymptotically safe quantum gravity.
Meibohm, J; Pawlowski, J M
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
The remnants in Reissner-Nordström-de Sitter quintessence black hole
NASA Astrophysics Data System (ADS)
Feng, Zhongwen; Zhang, Li; Zu, Xiaotao
2014-08-01
According to the effects of quantum gravity, we investigated the fermion tunneling from the Reissner-Nordström-de Sitter quintessence (RN-dSQ) black hole. The corrected temperature is not only determined by the mass and charge of the black hole, but also depended on the quantum number of the emitted fermion and β, which is a small value representing the effects of quantum gravity. The effects of quantum gravity slowed down the increase of the temperature and led to the remnants of the black hole. We think it is a method to avoid the information loss paradox of black holes.
The Principle of the Fermionic Projector: An Approach for Quantum Gravity?
NASA Astrophysics Data System (ADS)
Finster, Felix
In this short article we introduce the mathematical framework of the principle of the fermionic projector and set up a variational principle in discrete space-time. The underlying physical principles are discussed. We outline the connection to the continuum theory and state recent results. In the last two sections, we speculate on how it might be possible to describe quantum gravity within this framework.
NASA Astrophysics Data System (ADS)
1995-04-01
The following topics were dealt with: string theory, gauge theory, quantum gravity, quantum geometry, black hole physics and information loss, second quantisation of the Wilson loop, 2D Yang-Mills theory, topological field theories, equivariant cohomology, superstring theory and fermion masses, supergravity, topological gravity, waves in string cosmology, superstring theories, 4D space-time.
Scattering of fermions in the Yukawa theory coupled to unimodular gravity
NASA Astrophysics Data System (ADS)
Gonzalez-Martin, S.; Martin, C. P.
2018-03-01
We compute the lowest order gravitational UV divergent radiative corrections to the S matrix element of the fermion + fermion→ fermion + fermion scattering process in the massive Yukawa theory, coupled either to Unimodular Gravity or to General Relativity. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contribution in Dimensional Regularization. This is a nontrivial result, since in the classical action of Unimodular Gravity coupled to the Yukawa theory, the graviton field does not couple neither to the mass operator nor to the Yukawa operator. This is unlike the General Relativity case. The agreement found points in the direction that Unimodular Gravity and General Relativity give rise to the same quantum theory when coupled to matter, as long as the Cosmological Constant vanishes. Along the way we have come across another unexpected cancellation of UV divergences for both Unimodular Gravity and General Relativity, resulting in the UV finiteness of the one-loop and κ y^2 order of the vertex involving two fermions and one graviton only.
Digital Quantum Simulation of Minimal AdS/CFT.
García-Álvarez, L; Egusquiza, I L; Lamata, L; Del Campo, A; Sonner, J; Solano, E
2017-07-28
We propose the digital quantum simulation of a minimal AdS/CFT model in controllable quantum platforms. We consider the Sachdev-Ye-Kitaev model describing interacting Majorana fermions with randomly distributed all-to-all couplings, encoding nonlocal fermionic operators onto qubits to efficiently implement their dynamics via digital techniques. Moreover, we also give a method for probing nonequilibrium dynamics and the scrambling of information. Finally, our approach serves as a protocol for reproducing a simplified low-dimensional model of quantum gravity in advanced quantum platforms as trapped ions and superconducting circuits.
Digital Quantum Simulation of Minimal AdS /CFT
NASA Astrophysics Data System (ADS)
García-Álvarez, L.; Egusquiza, I. L.; Lamata, L.; del Campo, A.; Sonner, J.; Solano, E.
2017-07-01
We propose the digital quantum simulation of a minimal AdS /CFT model in controllable quantum platforms. We consider the Sachdev-Ye-Kitaev model describing interacting Majorana fermions with randomly distributed all-to-all couplings, encoding nonlocal fermionic operators onto qubits to efficiently implement their dynamics via digital techniques. Moreover, we also give a method for probing nonequilibrium dynamics and the scrambling of information. Finally, our approach serves as a protocol for reproducing a simplified low-dimensional model of quantum gravity in advanced quantum platforms as trapped ions and superconducting circuits.
The Emergence of Fermions and the E11 Content
NASA Astrophysics Data System (ADS)
Englert, François; Houart, Laurent
Claudio's warm and endearing personality adds to our admiration for his achievements in physics a sense of friendliness. His constant interest in fundamental questions motivated the following presentation of our attempt to understand the nature of fermions. This problem is an essential element of the quantum world and might be related to the quest for quantum gravity. We shall review how space-time fermions can emerge out of bosons in string theory and how this fact affects the extended Kac-Moody approach to the M-theory project.
On the Hamiltonian formalism of the tetrad-gravity with fermions
NASA Astrophysics Data System (ADS)
Lagraa, M. H.; Lagraa, M.
2018-06-01
We extend the analysis of the Hamiltonian formalism of the d-dimensional tetrad-connection gravity to the fermionic field by fixing the non-dynamic part of the spatial connection to zero (Lagraa et al. in Class Quantum Gravity 34:115010, 2017). Although the reduced phase space is equipped with complicated Dirac brackets, the first-class constraints which generate the diffeomorphisms and the Lorentz transformations satisfy a closed algebra with structural constants analogous to that of the pure gravity. We also show the existence of a canonical transformation leading to a new reduced phase space equipped with Dirac brackets having a canonical form leading to the same algebra of the first-class constraints.
Pseudotopological quasilocal energy of torsion gravity
NASA Astrophysics Data System (ADS)
Ko, Sheng-Lan; Lin, Feng-Li; Ning, Bo
2017-08-01
Torsion gravity is a natural extension to Einstein gravity in the presence of fermion matter sources. In this paper we adopt Wald's covariant method of calculating the Noether charge to construct the quasilocal energy of the Einstein-Cartan-fermion system, and find that its explicit expression is formally independent of the coupling constant between the torsion and axial current. This seemingly topological nature is unexpected and is reminiscent of the quantum Hall effect and topological insulators. However, a coupling dependence does arise when evaluating it on shell, and thus the situation is pseudotopological. Based on the expression for the quasilocal energy, we evaluate it for a particular solution on the entanglement wedge and find agreement with the holographic relative entropy obtained before. This shows the equivalence of these two quantities in the Einstein-Cartan-fermion system. Moreover, the quasilocal energy in this case is not always positive definite, and thus it provides an example of a swampland in torsion gravity. Based on the covariant Noether charge, we also derive the nonzero fermion effect on the Komar angular momentum. The implications of our results for future tests of torsion gravity in gravitational-wave astronomy are also discussed.
Black holes in loop quantum gravity.
Perez, Alejandro
2017-12-01
This is a review of results on black hole physics in the context of loop quantum gravity. The key feature underlying these results is the discreteness of geometric quantities at the Planck scale predicted by this approach to quantum gravity. Quantum discreteness follows directly from the canonical quantization prescription when applied to the action of general relativity that is suitable for the coupling of gravity with gauge fields, and especially with fermions. Planckian discreteness and causal considerations provide the basic structure for the understanding of the thermal properties of black holes close to equilibrium. Discreteness also provides a fresh new look at more (at the moment) speculative issues, such as those concerning the fate of information in black hole evaporation. The hypothesis of discreteness leads, also, to interesting phenomenology with possible observational consequences. The theory of loop quantum gravity is a developing program; this review reports its achievements and open questions in a pedagogical manner, with an emphasis on quantum aspects of black hole physics.
Quantum Reflection of Massless Neutrinos from a Torsion-Induced Potential
NASA Astrophysics Data System (ADS)
Alimohammadi, M.; Shariati, A.
In the context of the Einstein-Cartan-Dirac model, where the torsion of the space-time couples to the axial currents of the fermions, we study the effects of this quantum-gravitational interaction on a massless neutrino beam crossing through a medium with a high number density of fermions at rest. We calculate the reflection amplitude and show that a specific fraction of the incident neutrinos reflects from this potential if the polarization of the medium is different from zero. We also discuss the order of magnitude of the fermionic number density in which this phenomenon is observable, in other theoretical contexts, for example, the strong gravity regime and the effective field theory approach.
Space-time topology and quantum gravity.
NASA Astrophysics Data System (ADS)
Friedman, J. L.
Characteristic features are discussed of a theory of quantum gravity that allows space-time with a non-Euclidean topology. The review begins with a summary of the manifolds that can occur as classical vacuum space-times and as space-times with positive energy. Local structures with non-Euclidean topology - topological geons - collapse, and one may conjecture that in asymptotically flat space-times non-Euclidean topology is hiden from view. In the quantum theory, large diffeos can act nontrivially on the space of states, leading to state vectors that transform as representations of the corresponding symmetry group π0(Diff). In particular, in a quantum theory that, at energies E < EPlanck, is a theory of the metric alone, there appear to be ground states with half-integral spin, and in higher-dimensional gravity, with the kinematical quantum numbers of fundamental fermions.
Curvature bound from gravitational catalysis
NASA Astrophysics Data System (ADS)
Gies, Holger; Martini, Riccardo
2018-04-01
We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.
Alternative theories of gravity and Lorentz violation
NASA Astrophysics Data System (ADS)
Xu, Rui; Foster, Joshua; Kostelecky, V. Alan
2017-01-01
General relativity has achieved many successes, including the prediction of experimental results. However, its incompatibility with quantum theory remains an obstacle. By extending the foundational properties of general relativity, alternative theories of gravity can be constructed. In this talk, we focus on fermion couplings in the weak-gravity limit of certain alternative theories of gravity. Under suitable experimental circumstances, some of these couplings match terms appearing in the gravitational SME, which is a general framework describing violations of local Lorentz invariance. Existing limits on Lorentz violation can therefore be used to constrain certain Lorentz-invariant alternative theories of gravity.
Emergent gravity from vanishing energy-momentum tensor
Carone, Christopher D.; Erlich, Joshua; Vaman, Diana
2017-03-27
A constraint of vanishing energy-momentum tensor is motivated by a variety of perspectives on quantum gravity. We demonstrate in a concrete example how this constraint leads to a metric-independent theory in which quantum gravity emerges as a nonperturbative artifact of regularization-scale physics. We analyze a scalar theory similar to the Dirac-Born-Infeld (DBI) theory with vanishing gauge fields, with the DBI Lagrangian modulated by a scalar potential. In the limit of a large number of scalars, we explicitly demonstrate the existence of a composite massless spin-2 graviton in the spectrum that couples to matter as in Einstein gravity. As a result,more » we comment on the cosmological constant problem and the generalization to theories with fermions and gauge fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carone, Christopher D.; Erlich, Joshua; Vaman, Diana
A constraint of vanishing energy-momentum tensor is motivated by a variety of perspectives on quantum gravity. We demonstrate in a concrete example how this constraint leads to a metric-independent theory in which quantum gravity emerges as a nonperturbative artifact of regularization-scale physics. We analyze a scalar theory similar to the Dirac-Born-Infeld (DBI) theory with vanishing gauge fields, with the DBI Lagrangian modulated by a scalar potential. In the limit of a large number of scalars, we explicitly demonstrate the existence of a composite massless spin-2 graviton in the spectrum that couples to matter as in Einstein gravity. As a result,more » we comment on the cosmological constant problem and the generalization to theories with fermions and gauge fields.« less
NASA Astrophysics Data System (ADS)
Nissinen, J.; Volovik, G. E.
2018-01-01
Topologically protected superfluid phases of
Living without supersymmetry—the conformal alternative and a dynamical Higgs boson
NASA Astrophysics Data System (ADS)
Mannheim, Philip D.
2017-11-01
We show that the key results of supersymmetry can be achieved via conformal symmetry instead. We propose that the Higgs boson be a dynamical fermion-antifermion bound state rather than an elementary scalar field, so that there is then no quadratically divergent self-energy problem for it and thus no need to invoke supersymmetry to resolve the problem. To obtain such a dynamical Higgs boson we study a conformal invariant gauge theory of interacting fermions and gauge bosons. The conformal invariance of the theory is realized via scaling with anomalous dimensions in the ultraviolet, and by a dynamical symmetry breaking via fermion bilinear condensates in the infrared, a breaking in which the dynamical dimension of the composite operator \\bar{\\psi }\\psi is reduced from three to two. With this reduction in dimension we can augment the gauge theory with a four-fermion interaction made renormalizable by this reduction, and can reinterpret the theory as a renormalizable version of the Nambu-Jona-Lasinio (NJL) model, with the gauge theory sector with its now massive fermion being a mean-field theory and the four-fermion interaction being the residual interaction. It is this residual interaction and not the mean field that then generates dynamical Goldstone and Higgs states, states that, as noted by Baker and Johnson, the gauge theory sector itself does not possess. The Higgs boson is found to be a narrow resonance just above threshold, with its width potentially being a diagnostic that could distinguish a dynamical Higgs boson from an elementary one. We couple the theory to a gravity theory, conformal gravity, that is equally conformal invariant, with the interplay between conformal gravity and the four-fermion interaction taking care of the vacuum energy problem. With conformal gravity being a unitary and renormalizable quantum theory of gravity there is no need for string theory with its supersymmetric underpinnings. With the vacuum energy problem being resolved and with conformal gravity fits to phenomena such as galactic rotation curves and the accelerating universe not needing dark matter, there is no need to introduce supersymmetry for either the vacuum energy problem or to provide a potential dark matter candidate. We propose that it is conformal symmetry rather than supersymmetry that is fundamental, with the theory of nature being a locally conformal, locally gauge invariant, non-Abelian NJL theory.
Extended Quantum Field Theory, Index Theory, and the Parity Anomaly
NASA Astrophysics Data System (ADS)
Müller, Lukas; Szabo, Richard J.
2018-06-01
We use techniques from functorial quantum field theory to provide a geometric description of the parity anomaly in fermionic systems coupled to background gauge and gravitational fields on odd-dimensional spacetimes. We give an explicit construction of a geometric cobordism bicategory which incorporates general background fields in a stack, and together with the theory of symmetric monoidal bicategories we use it to provide the concrete forms of invertible extended quantum field theories which capture anomalies in both the path integral and Hamiltonian frameworks. Specialising this situation by using the extension of the Atiyah-Patodi-Singer index theorem to manifolds with corners due to Loya and Melrose, we obtain a new Hamiltonian perspective on the parity anomaly. We compute explicitly the 2-cocycle of the projective representation of the gauge symmetry on the quantum state space, which is defined in a parity-symmetric way by suitably augmenting the standard chiral fermionic Fock spaces with Lagrangian subspaces of zero modes of the Dirac Hamiltonian that naturally appear in the index theorem. We describe the significance of our constructions for the bulk-boundary correspondence in a large class of time-reversal invariant gauge-gravity symmetry-protected topological phases of quantum matter with gapless charged boundary fermions, including the standard topological insulator in 3 + 1 dimensions.
Amplitudes in the N=4 supersymmetric Yang-Mills theory from quantum geometry of momentum space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorsky, A.
We discuss multiloop maximally helicity violating amplitudes in the N=4 supersymmetric Yang-Mills theory in terms of effective gravity in the momentum space with IR regulator branes as degrees of freedom. Kinematical invariants of external particles yield the moduli spaces of complex or Kahler structures which are the playgrounds for the Kodaira-Spencer or Kahler type gravity. We suggest fermionic representation of the loop maximally helicity violating amplitudes in the N=4 supersymmetric Yang-Mills theory assuming the identification of the IR regulator branes with Kodaira-Spencer fermions in the B model and Lagrangian branes in the A model. The two-easy mass box diagram ismore » related to the correlator of fermionic currents on the spectral curve in the B model or hyperbolic volume in the A model and it plays the role of a building block in the whole picture. The Bern-Dixon-Smirnov-like ansatz has the interpretation as the semiclassical limit of a fermionic correlator. It is argued that fermionic representation implies a kind of integrability on the moduli spaces. We conjecture the interpretation of the reggeon degrees of freedom in terms of the open strings stretched between the IR regulator branes.« less
Quantum Gravity Effects on Hawking Radiation of Schwarzschild-de Sitter Black Holes
NASA Astrophysics Data System (ADS)
Singh, T. Ibungochouba; Meitei, I. Ablu; Singh, K. Yugindro
2017-08-01
The correction of Hawking temperature of Schwarzschild-de Sitter (SdS) black hole is investigated using the generalized Klein-Gordon equation and the generalized Dirac equation by taking the quantum gravity effects into account. We derive the corrected Hawking temperatures for scalar particles and fermions crossing the event horizon. The quantum gravity effects prevent the rise of temperature in the SdS black hole. Besides correction of Hawking temperature, the Hawking radiation of SdS black hole is also investigated using massive particles tunneling method. By considering self gravitation effect of the emitted particles and the space time background to be dynamical, it is also shown that the tunneling rate is related to the change of Bekenstein-Hawking entropy and small correction term (1 + 2 β m 2). If the energy and the angular momentum are taken to be conserved, the derived emission spectrum deviates from the pure thermal spectrum. This result gives a correction to the Hawking radiation and is also in agreement with the result of Parikh and Wilczek.
Correction of Cardy–Verlinde formula for Fermions and Bosons with modified dispersion relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadatian, S. Davood, E-mail: sd-sadatian@um.ac.ir; Dareyni, H.
Cardy–Verlinde formula links the entropy of conformal symmetry field to the total energy and its Casimir energy in a D-dimensional space. To correct black hole thermodynamics, modified dispersion relation can be used which is proposed as a general feature of quantum gravity approaches. In this paper, the thermodynamics of Schwarzschild four-dimensional black hole is corrected using the modified dispersion relation for Fermions and Bosons. Finally, using modified thermodynamics of Schwarzschild four-dimensional black hole, generalization for Cardy–Verlinde formula is obtained. - Highlights: • The modified Cardy–Verlinde formula obtained using MDR for Fermions and Bosons. • The modified entropy of the blackmore » hole used to correct the Cardy–Verlinde formula. • The modified entropy of the CFT has been obtained.« less
Quantum Structure of Space and Time
NASA Astrophysics Data System (ADS)
Duff, M. J.; Isham, C. J.
2012-07-01
Foreword Abdus Salam; Preface; List of participants; Part I. Quantum Gravity, Fields and Topology: 1. Some remarks on gravity and quantum mechanics Roger Penrose; 2. An experimental test of quantum gravity Don N. Page and C. D. Geilker; 3. Quantum mechanical origin of the sandwich theorem in classical gravitation theory Claudio Teitelboim; 4. θ-States induced by the diffeomorphism group in canonically quantized gravity C. J. Isham; 5. Strong coupling quantum gravity: an introduction Martin Pilati; 6. Quantizing fourth order gravity theories S. M. Christensen; 7. Green's functions, states and renormalisation M. R. Brown and A. C. Ottewill; 8. Introduction to quantum regge calculus Martin Roček and Ruth Williams; 9. Spontaneous symmetry breaking in curved space-time D. J. Toms; 10. Spontaneous symmetry breaking near a black hole M. S. Fawcett and B. F. Whiting; 11. Yang-Mills vacua in a general three-space G. Kunstatter; 12. Fermion fractionization in physics R. Jackiw; Part II. Supergravity: 13. The new minimal formulation of N=1 supergravity and its tensor calculus M. F. Sohnius and P. C. West; 14. A new deteriorated energy-momentum tensor M. J. Duff and P. K. Townsend; 15. Off-shell N=2 and N=4 supergravity in five dimensions P. Howe; 16. Supergravity in high dimensions P. van Niewenhuizen; 17. Building linearised extended supergravities J. G. Taylor; 18. (Super)gravity in the complex angular momentum plane M. T. Grisaru; 19. The multiplet structure of solitons in the O(2) supergravity theory G. W. Gibbons; 20. Ultra-violet properties of supersymmetric gauge theory S. Ferrara; 21. Extended supercurrents and the ultra-violet finiteness of N=4 supersymmetric Yang-Mills theories K. S. Stelle; 22. Duality rotations B. Zumino; Part III. Cosmology and the Early Universe: 23. Energy, stability and cosmological constant S. Deser; 24. Phase transitions in the early universe T. W. B. Kibble; 25. Complete cosmological theories L. P. Grishchuk and Ya. B. Zeldovich; 26. The cosmological constant and the weak anthropic principle S. W. Hawking.
Quarks, Symmetries and Strings - a Symposium in Honor of Bunji Sakita's 60th Birthday
NASA Astrophysics Data System (ADS)
Kaku, M.; Jevicki, A.; Kikkawa, K.
1991-04-01
The Table of Contents for the full book PDF is as follows: * Preface * Evening Banquet Speech * I. Quarks and Phenomenology * From the SU(6) Model to Uniqueness in the Standard Model * A Model for Higgs Mechanism in the Standard Model * Quark Mass Generation in QCD * Neutrino Masses in the Standard Model * Solar Neutrino Puzzle, Horizontal Symmetry of Electroweak Interactions and Fermion Mass Hierarchies * State of Chiral Symmetry Breaking at High Temperatures * Approximate |ΔI| = 1/2 Rule from a Perspective of Light-Cone Frame Physics * Positronium (and Some Other Systems) in a Strong Magnetic Field * Bosonic Technicolor and the Flavor Problem * II. Strings * Supersymmetry in String Theory * Collective Field Theory and Schwinger-Dyson Equations in Matrix Models * Non-Perturbative String Theory * The Structure of Non-Perturbative Quantum Gravity in One and Two Dimensions * Noncritical Virasoro Algebra of d < 1 Matrix Model and Quantized String Field * Chaos in Matrix Models ? * On the Non-Commutative Symmetry of Quantum Gravity in Two Dimensions * Matrix Model Formulation of String Field Theory in One Dimension * Geometry of the N = 2 String Theory * Modular Invariance form Gauge Invariance in the Non-Polynomial String Field Theory * Stringy Symmetry and Off-Shell Ward Identities * q-Virasoro Algebra and q-Strings * Self-Tuning Fields and Resonant Correlations in 2d-Gravity * III. Field Theory Methods * Linear Momentum and Angular Momentum in Quaternionic Quantum Mechanics * Some Comments on Real Clifford Algebras * On the Quantum Group p-adics Connection * Gravitational Instantons Revisited * A Generalized BBGKY Hierarchy from the Classical Path-Integral * A Quantum Generated Symmetry: Group-Level Duality in Conformal and Topological Field Theory * Gauge Symmetries in Extended Objects * Hidden BRST Symmetry and Collective Coordinates * Towards Stochastically Quantizing Topological Actions * IV. Statistical Methods * A Brief Summary of the s-Channel Theory of Superconductivity * Neural Networks and Models for the Brain * Relativistic One-Body Equations for Planar Particles with Arbitrary Spin * Chiral Property of Quarks and Hadron Spectrum in Lattice QCD * Scalar Lattice QCD * Semi-Superconductivity of a Charged Anyon Gas * Two-Fermion Theory of Strongly Correlated Electrons and Charge-Spin Separation * Statistical Mechanics and Error-Correcting Codes * Quantum Statistics
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Shoorvazi, Somayyeh
In this paper, we will consider the birth and evolution of fields during formation of N-dimensional manifolds from joining point-like ones. We will show that at the beginning, only there are point-like manifolds which some strings are attached to them. By joining these manifolds, 1-dimensional manifolds are appeared and gravity, fermion, and gauge fields are emerged. By coupling these manifolds, higher dimensional manifolds are produced and higher orders of fermion, gauge fields and gravity are emerged. By decaying N-dimensional manifold, two child manifolds and a Chern-Simons one are born and anomaly is emerged. The Chern-Simons manifold connects two child manifolds and leads to the energy transmission from the bulk to manifolds and their expansion. We show that F-gravity can be emerged during the formation of N-dimensional manifold from point-like manifolds. This type of F-gravity includes both type of fermionic and bosonic gravity. G-fields and also C-fields which are produced by fermionic strings produce extra energy and change the gravity.
Majorana-Based Fermionic Quantum Computation.
O'Brien, T E; Rożek, P; Akhmerov, A R
2018-06-01
Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O(1) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.
Majorana-Based Fermionic Quantum Computation
NASA Astrophysics Data System (ADS)
O'Brien, T. E.; RoŻek, P.; Akhmerov, A. R.
2018-06-01
Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O (1 ) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.
Bosonization of fermions coupled to topologically massive gravity
NASA Astrophysics Data System (ADS)
Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.
2014-03-01
We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.
Scrambling of quantum information in quantum many-body systems
NASA Astrophysics Data System (ADS)
Iyoda, Eiki; Sagawa, Takahiro
2018-04-01
We systematically investigate scrambling (or delocalizing) processes of quantum information encoded in quantum many-body systems by using numerical exact diagonalization. As a measure of scrambling, we adopt the tripartite mutual information (TMI) that becomes negative when quantum information is delocalized. We clarify that scrambling is an independent property of the integrability of Hamiltonians; TMI can be negative or positive for both integrable and nonintegrable systems. This implies that scrambling is a separate concept from conventional quantum chaos characterized by nonintegrability. Specifically, we argue that there are a few exceptional initial states that do not exhibit scrambling, and show that such exceptional initial states have small effective dimensions. Furthermore, we calculate TMI in the Sachdev-Ye-Kitaev (SYK) model, a fermionic toy model of quantum gravity. We find that disorder does not make scrambling slower but makes it smoother in the SYK model, in contrast to many-body localization in spin chains.
String theory, quantum phase transitions, and the emergent Fermi liquid.
Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad
2009-07-24
A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid.
Observable traces of non-metricity: New constraints on metric-affine gravity
NASA Astrophysics Data System (ADS)
Delhom-Latorre, Adrià; Olmo, Gonzalo J.; Ronco, Michele
2018-05-01
Relaxing the Riemannian condition to incorporate geometric quantities such as torsion and non-metricity may allow to explore new physics associated with defects in a hypothetical space-time microstructure. Here we show that non-metricity produces observable effects in quantum fields in the form of 4-fermion contact interactions, thereby allowing us to constrain the scale of non-metricity to be greater than 1 TeV by using results on Bahbah scattering. Our analysis is carried out in the framework of a wide class of theories of gravity in the metric-affine approach. The bound obtained represents an improvement of several orders of magnitude to previous experimental constraints.
Fermion-induced quantum critical points.
Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong
2017-08-22
A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.
Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unver, O.; Gurtug, O.
2010-10-15
Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence,more » the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.« less
Perturbative quantum field theory in the framework of the fermionic projector
NASA Astrophysics Data System (ADS)
Finster, Felix
2014-04-01
We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.
Fermionic topological quantum states as tensor networks
NASA Astrophysics Data System (ADS)
Wille, C.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.
Torsion limits from t t macr production at the LHC
NASA Astrophysics Data System (ADS)
de Almeida, F. M. L.; de Andrade, F. R.; do Vale, M. A. B.; Nepomuceno, A. A.
2018-04-01
Torsion models constitute a well-known class of extended quantum gravity models. In this work, one investigates the phenomenological consequences of a torsion field interacting with top quarks at the LHC. A torsion field could appear as a new heavy state characterized by its mass and couplings to fermions. This new state would form a resonance decaying into a top antitop pair. The latest ATLAS t t ¯ production results from LHC 13 TeV data are used to set limits on torsion parameters. The integrated luminosity needed to observe torsion resonance at the next LHC upgrades are also evaluated, considering different values for the torsion mass and its couplings to Standard Model fermions. Finally, prospects for torsion exclusion at the future LHC phases II and III are obtained using fast detector simulations.
Lorentz symmetry violation with higher-order operators and renormalization
NASA Astrophysics Data System (ADS)
Nascimento, J. R.; Petrov, A. Yu; Reyes, C. M.
2018-01-01
Effective field theory has shown to be a powerful method in searching for quantum gravity effects and in particular for CPT and Lorentz symmetry violation. In this work we study an effective field theory with higher-order Lorentz violation, specifically we consider a modified model with scalars and modified fermions interacting via the Yukawa coupling. We study its renormalization properties, that is, its radiative corrections and renormalization conditions in the light of the requirements of having a finite and unitary S-matrix.
Chen, Hua-Jun; Zhu, Ka-Di
2015-01-01
In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions. PMID:26310929
A quantum kinematics for asymptotically flat gravity
NASA Astrophysics Data System (ADS)
Campiglia, Miguel; Varadarajan, Madhavan
2015-07-01
We construct a quantum kinematics for asymptotically flat gravity based on the Koslowski-Sahlmann (KS) representation. The KS representation is a generalization of the representation underlying loop quantum gravity (LQG) which supports, in addition to the usual LQG operators, the action of ‘background exponential operators’, which are connection dependent operators labelled by ‘background’ su(2) electric fields. KS states have, in addition to the LQG state label corresponding to one dimensional excitations of the triad, a label corresponding to a ‘background’ electric field that describes three dimensional excitations of the triad. Asymptotic behaviour in quantum theory is controlled through asymptotic conditions on the background electric fields that label the states and the background electric fields that label the operators. Asymptotic conditions on the triad are imposed as conditions on the background electric field state label while confining the LQG spin net graph labels to compact sets. We show that KS states can be realised as wave functions on a quantum configuration space of generalized connections and that the asymptotic behaviour of each such generalized connection is determined by that of the background electric fields which label the background exponential operators. Similar to the spatially compact case, the Gauss law and diffeomorphism constraints are then imposed through group averaging techniques to obtain a large sector of gauge invariant states. It is shown that this sector supports a unitary action of the group of asymptotic rotations and translations and that, as anticipated by Friedman and Sorkin, for appropriate spatial topology, this sector contains states that display fermionic behaviour under 2π rotations.
Connection dynamics of a gauge theory of gravity coupled with matter
NASA Astrophysics Data System (ADS)
Yang, Jian; Banerjee, Kinjal; Ma, Yongge
2013-10-01
We study the coupling of the gravitational action, which is a linear combination of the Hilbert-Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero-Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert-Palatini term and the quadratic torsion term in this gauge theory of gravity.
Yang-Mills matrix mechanics and quantum phases
NASA Astrophysics Data System (ADS)
Pandey, Mahul; Vaidya, Sachindeo
The SU(2) Yang-Mills matrix model coupled to fundamental fermions is studied in the adiabatic limit, and quantum critical behavior is seen at special corners of the gauge field configuration space. The quantum scalar potential for the gauge field induced by the fermions diverges at the corners, and is intimately related to points of enhanced degeneracy of the fermionic Hamiltonian. This in turn leads to superselection sectors in the Hilbert space of the gauge field, the ground states in different sectors being orthogonal to each other. The SU(2) Yang-Mills matrix model coupled to two Weyl fermions has three quantum phases. When coupled to a massless Dirac fermion, the number of quantum phases is four. One of these phases is the color-spin locked phase. This paper is an extended version of the lectures given by the second author (SV) at the International Workshop on Quantum Physics: Foundations and Applications, Bangalore, in February 2016, and is based on [1].
NASA Astrophysics Data System (ADS)
Duret, Q.; Machet, B.
2010-10-01
Starting from Wigner's symmetry representation theorem, we give a general account of discrete symmetries (parity P, charge conjugation C, time-reversal T), focusing on fermions in Quantum Field Theory. We provide the rules of transformation of Weyl spinors, both at the classical level (grassmanian wave functions) and quantum level (operators). Making use of Wightman's definition of invariance, we outline ambiguities linked to the notion of classical fermionic Lagrangian. We then present the general constraints cast by these transformations and their products on the propagator of the simplest among coupled fermionic system, the one made with one fermion and its antifermion. Last, we put in correspondence the propagation of C eigenstates (Majorana fermions) and the criteria cast on their propagator by C and CP invariance.
Banerjee, D; Dalmonte, M; Müller, M; Rico, E; Stebler, P; Wiese, U-J; Zoller, P
2012-10-26
Using a Fermi-Bose mixture of ultracold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.
Fermion-to-qubit mappings with varying resource requirements for quantum simulation
NASA Astrophysics Data System (ADS)
Steudtner, Mark; Wehner, Stephanie
2018-06-01
The mapping of fermionic states onto qubit states, as well as the mapping of fermionic Hamiltonian into quantum gates enables us to simulate electronic systems with a quantum computer. Benefiting the understanding of many-body systems in chemistry and physics, quantum simulation is one of the great promises of the coming age of quantum computers. Interestingly, the minimal requirement of qubits for simulating Fermions seems to be agnostic of the actual number of particles as well as other symmetries. This leads to qubit requirements that are well above the minimal requirements as suggested by combinatorial considerations. In this work, we develop methods that allow us to trade-off qubit requirements against the complexity of the resulting quantum circuit. We first show that any classical code used to map the state of a fermionic Fock space to qubits gives rise to a mapping of fermionic models to quantum gates. As an illustrative example, we present a mapping based on a nonlinear classical error correcting code, which leads to significant qubit savings albeit at the expense of additional quantum gates. We proceed to use this framework to present a number of simpler mappings that lead to qubit savings with a more modest increase in gate difficulty. We discuss the role of symmetries such as particle conservation, and savings that could be obtained if an experimental platform could easily realize multi-controlled gates.
Universal Behavior of Quantum Spin Liquid and Optical Conductivity in the Insulator Herbertsmithite
NASA Astrophysics Data System (ADS)
Shaginyan, V. R.; Msezane, A. Z.; Stephanovich, V. A.; Popov, K. G.; Japaridze, G. S.
2018-04-01
We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to expose the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field. We consider an experimental manifestation (optical conductivity) of a new state of matter (so-called fermion condensate) realized in quantum spin liquids, for, in many ways, they exhibit typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite produce important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of a strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to reveal the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field.
Itinerant quantum multicriticality of two-dimensional Dirac fermions
NASA Astrophysics Data System (ADS)
Roy, Bitan; Goswami, Pallab; Juričić, Vladimir
2018-05-01
We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d =2 ) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S1) and O(S2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the ɛ =(3 -d ) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S1+S2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either O(S1) or O(S2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.
Heavy Fermion Materials and Quantum Phase Transitions Workshop on Frontiers of the Kondo Effect
2016-02-12
Stefan Kirchner (Max Planck) discussed the role of quantum criticality on the superconducting condensation in heavy-fermion superconductors , and...Collin Broholm (Johns Hopkins) discussed magnetic excitations of heavy fermion superconductors . The workshop concluded with a wide-ranging talk by
Chirality and gravitational parity violation.
Bargueño, Pedro
2015-06-01
In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.
Beyond Discrete Vacuum Spacetimes
NASA Astrophysics Data System (ADS)
McDonald, Jonathan; Miller, Warner
2008-04-01
In applications to pre-geometric models of quantum gravity, one expects matter to play an important role in the geometry of the spacetime. Such models often posit that the matter fields play a crucial role in the determination of the spacetime geometry. However, it is not well understood at a fundamental level how one couples matter into the Regge geometry. In order to better understand the nature of such theories that rely on Regge Calculus, we must first gain a better understanding of the role of matter in a lattice spacetime. We investigate consistent methods of incorporating matter into spacetime, and particularly focus on the role of spinors in Regge Calculus. Since spinors are fundamental to fermionic fields, this investigation is crucial in understanding fermionic coupling to discrete spacetime. Our focus is primarily on the geometric interpretation of the fields on the lattice geometry with a goal on understanding the dynamic coupling between the fields and the geometry.
Phase diagram and re-entrant fermionic entanglement in a hybrid Ising-Hubbard ladder
NASA Astrophysics Data System (ADS)
Sousa, H. S.; Pereira, M. S. S.; de Oliveira, I. N.; Strečka, J.; Lyra, M. L.
2018-05-01
The degree of fermionic entanglement is examined in an exactly solvable Ising-Hubbard ladder, which involves interacting electrons on the ladder's rungs described by Hubbard dimers at half-filling on each rung, accounting for intrarung hopping and Coulomb terms. The coupling between neighboring Hubbard dimers is assumed to have an Ising-like nature. The ground-state phase diagram consists of four distinct regions corresponding to the saturated paramagnetic, the classical antiferromagnetic, the quantum antiferromagnetic, and the mixed classical-quantum phase. We have exactly computed the fermionic concurrence, which measures the degree of quantum entanglement between the pair of electrons on the ladder rungs. The effects of the hopping amplitude, the Coulomb term, temperature, and magnetic fields on the fermionic entanglement are explored in detail. It is shown that the fermionic concurrence displays a re-entrant behavior when quantum entanglement is being generated at moderate temperatures above the classical saturated paramagnetic ground state.
Dark matter and global symmetries
Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.
2016-08-03
General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Sawmore » models. Here, assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O(1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime« less
Quantum foam, gravitational thermodynamics, and the dark sector
NASA Astrophysics Data System (ADS)
Ng, Y. Jack
2017-05-01
Is it possible that the dark sector (dark energy in the form of an effective dynamical cosmological constant, and dark matter) has its origin in quantum gravity? This talk sketches a positive response. Here specifically quantum gravity refers to the combined effect of quantum foam (or spacetime foam due to quantum fluctuations of spacetime) and gravitational thermodynamics. We use two simple independent gedankan experiments to show that the holographic principle can be understood intuitively as having its origin in the quantum fluctuations of spacetime. Applied to cosmology, this consideration leads to a dynamical cosmological constant of the observed magnitude, a result that can also be obtained for the present and recent cosmic eras by using unimodular gravity and causal set theory. Next we generalize the concept of gravitational thermodynamics to a spacetime with positive cosmological constant (like ours) to reveal the natural emergence, in galactic dynamics, of a critical acceleration parameter related to the cosmological constant. We are then led to construct a phenomenological model of dark matter which we call “modified dark matter” (MDM) in which the dark matter density profile depends on both the cosmological constant and ordinary matter. We provide observational tests of MDM by fitting the rotation curves to a sample of 30 local spiral galaxies with a single free parameter and by showing that the dynamical and observed masses agree in a sample of 93 galactic clusters. We also give a brief discussion of the possibility that quanta of both dark energy and dark matter are non-local, obeying quantum Boltzmann statistics (also called infinite statistics) as described by a curious average of the bosonic and fermionic algebras. If such a scenario is correct, we can expect some novel particle phenomenology involving dark matter interactions. This may explain why so far no dark matter detection experiments have been able to claim convincingly to have detected dark matter.
Modern Quantum Field Theory II - Proceeeings of the International Colloquium
NASA Astrophysics Data System (ADS)
Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.
1995-08-01
The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory * Finite Quantum Physics and Noncommutative Geometry * Higgs as Gauge Field and the Standard Model * Canonical Quantisation of an Off-Conformal Theory * Deterministic Quantum Mechanics in One Dimension * Spin-Statistics Relations for Topological Geons in 2+1 Quantum Gravity * Generalized Fock Spaces * Geometrical Expression for Short Distance Singularities in Field Theory * 5. Mathematics and Quantum Field Theory * Knot Invariants from Quantum Field Theories * Infinite Grassmannians and Moduli Spaces of G-Bundles * A Review of an Algebraic Geometry Approach to a Model Quantum Field Theory on a Curve (Abstract) * 6. Integrable Models * Spectral Representation of Correlation Functions in Two-Dimensional Quantum Field Theories * On Various Avatars of the Pasquier Algebra * Supersymmetric Integrable Field Theories and Eight Vertex Free Fermion Models (Abstract) * 7. Lattice Field Theory * From Kondo Model and Strong Coupling Lattice QCD to the Isgur-Wise Function * Effective Confinement from a Logarithmically Running Coupling (Abstract)
Li, Ying
2016-09-16
Fault-tolerant quantum computing in systems composed of both Majorana fermions and topologically unprotected quantum systems, e.g., superconducting circuits or quantum dots, is studied in this Letter. Errors caused by topologically unprotected quantum systems need to be corrected with error-correction schemes, for instance, the surface code. We find that the error-correction performance of such a hybrid topological quantum computer is not superior to a normal quantum computer unless the topological charge of Majorana fermions is insusceptible to noise. If errors changing the topological charge are rare, the fault-tolerance threshold is much higher than the threshold of a normal quantum computer and a surface-code logical qubit could be encoded in only tens of topological qubits instead of about 1,000 normal qubits.
A noncompact Weyl-Einstein-Yang-Mills model: A semiclassical quantum gravity
NASA Astrophysics Data System (ADS)
Dengiz, Suat
2017-08-01
We construct and study perturbative unitarity (i.e., ghost and tachyon analysis) of a 3 + 1-dimensional noncompact Weyl-Einstein-Yang-Mills model. The model describes a local noncompact Weyl's scale plus SU(N) phase invariant Higgs-like field,conformally coupled to a generic Weyl-invariant dynamical background. Here, the Higgs-like sector generates the Weyl's conformal invariance of system. The action does not admit any dimensionful parameter and genuine presence of de Sitter vacuum spontaneously breaks the noncompact gauge symmetry in an analogous manner to the Standard Model Higgs mechanism. As to flat spacetime, the dimensionful parameter is generated within the dimensional transmutation in quantum field theories, and thus the symmetry is radiatively broken through the one-loop Effective Coleman-Weinberg potential. We show that the mere expectation of reducing to Einstein's gravity in the broken phases forbids anti-de Sitter space to be its stable vacua. The model is unitary in de Sitter and flat vacua around which a massless graviton, N2 - 1 massless scalar bosons, N massless Dirac fermions, N2 - 1 Proca-type massive Abelian and non-Abelian vector bosons are generically propagated.
Observing fermionic statistics with photons in arbitrary processes
Matthews, Jonathan C. F.; Poulios, Konstantinos; Meinecke, Jasmin D. A.; Politi, Alberto; Peruzzo, Alberto; Ismail, Nur; Wörhoff, Kerstin; Thompson, Mark G.; O'Brien, Jeremy L.
2013-01-01
Quantum mechanics defines two classes of particles-bosons and fermions-whose exchange statistics fundamentally dictate quantum dynamics. Here we develop a scheme that uses entanglement to directly observe the correlated detection statistics of any number of fermions in any physical process. This approach relies on sending each of the entangled particles through identical copies of the process and by controlling a single phase parameter in the entangled state, the correlated detection statistics can be continuously tuned between bosonic and fermionic statistics. We implement this scheme via two entangled photons shared across the polarisation modes of a single photonic chip to directly mimic the fermion, boson and intermediate behaviour of two-particles undergoing a continuous time quantum walk. The ability to simulate fermions with photons is likely to have applications for verifying boson scattering and for observing particle correlations in analogue simulation using any physical platform that can prepare the entangled state prescribed here. PMID:23531788
Unconventional States of Matter with Cold Atoms and Dipolar Molecules
2014-08-20
ferromagnetic state. For alkaline-earth fermions, the large SU(2N) symmetry greatly enhances quantum spin fluctuations, which give rises to novel...both bosons and fermions, novel quantum magnetism with large spin SU(2N) al- kaline fermions, novel topological states with synthetic gauge fields...presented in Sect. 1.1. The study of novel quantum magnetism with large spin alkaline earth atoms is presented in Sect. 1.2. In Sect. 1.3, we present our
Multiple quantum phase transitions and superconductivity in Ce-based heavy fermions.
Weng, Z F; Smidman, M; Jiao, L; Lu, Xin; Yuan, H Q
2016-09-01
Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology.
Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure.
He, Qing Lin; Pan, Lei; Stern, Alexander L; Burks, Edward C; Che, Xiaoyu; Yin, Gen; Wang, Jing; Lian, Biao; Zhou, Quan; Choi, Eun Sang; Murata, Koichi; Kou, Xufeng; Chen, Zhijie; Nie, Tianxiao; Shao, Qiming; Fan, Yabin; Zhang, Shou-Cheng; Liu, Kai; Xia, Jing; Wang, Kang L
2017-07-21
Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantum computing. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Solution to the sign problem in a frustrated quantum impurity model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hann, Connor T., E-mail: connor.hann@yale.edu; Huffman, Emilie; Chandrasekharan, Shailesh
2017-01-15
In this work we solve the sign problem of a frustrated quantum impurity model consisting of three quantum spin-half chains interacting through an anti-ferromagnetic Heisenberg interaction at one end. We first map the model into a repulsive Hubbard model of spin-half fermions hopping on three independent one dimensional chains that interact through a triangular hopping at one end. We then convert the fermion model into an inhomogeneous one dimensional model and express the partition function as a weighted sum over fermion worldline configurations. By imposing a pairing of fermion worldlines in half the space we show that all negative weightmore » configurations can be eliminated. This pairing naturally leads to the original frustrated quantum spin model at half filling and thus solves its sign problem.« less
Quantum Algorithms to Simulate Many-Body Physics of Correlated Fermions
NASA Astrophysics Data System (ADS)
Jiang, Zhang; Sung, Kevin J.; Kechedzhi, Kostyantyn; Smelyanskiy, Vadim N.; Boixo, Sergio
2018-04-01
Simulating strongly correlated fermionic systems is notoriously hard on classical computers. An alternative approach, as proposed by Feynman, is to use a quantum computer. We discuss simulating strongly correlated fermionic systems using near-term quantum devices. We focus specifically on two-dimensional (2D) or linear geometry with nearest-neighbor qubit-qubit couplings, typical for superconducting transmon qubit arrays. We improve an existing algorithm to prepare an arbitrary Slater determinant by exploiting a unitary symmetry. We also present a quantum algorithm to prepare an arbitrary fermionic Gaussian state with O (N2) gates and O (N ) circuit depth. Both algorithms are optimal in the sense that the numbers of parameters in the quantum circuits are equal to those describing the quantum states. Furthermore, we propose an algorithm to implement the 2D fermionic Fourier transformation on a 2D qubit array with only O (N1.5) gates and O (√{N }) circuit depth, which is the minimum depth required for quantum information to travel across the qubit array. We also present methods to simulate each time step in the evolution of the 2D Fermi-Hubbard model—again on a 2D qubit array—with O (N ) gates and O (√{N }) circuit depth. Finally, we discuss how these algorithms can be used to determine the ground-state properties and phase diagrams of strongly correlated quantum systems using the Hubbard model as an example.
Fermionic entanglement via quantum walks in quantum dots
NASA Astrophysics Data System (ADS)
Melnikov, Alexey A.; Fedichkin, Leonid E.
2018-02-01
Quantum walks are fundamentally different from random walks due to the quantum superposition property of quantum objects. Quantum walk process was found to be very useful for quantum information and quantum computation applications. In this paper we demonstrate how to use quantum walks as a tool to generate high-dimensional two-particle fermionic entanglement. The generated entanglement can survive longer in the presence of depolorazing noise due to the periodicity of quantum walk dynamics. The possibility to create two distinguishable qudits in a system of tunnel-coupled semiconductor quantum dots is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MCCLEAN, JARROD; HANER, THOMAS; STEIGER, DAMIAN
FermiLib is an open source software package designed to facilitate the development and testing of algorithms for simulations of fermionic systems on quantum computers. Fermionic simulations represent an important application of early quantum devices with a lot of potential high value targets, such as quantum chemistry for the development of new catalysts. This software strives to provide a link between the required domain expertise in specific fermionic applications and quantum computing to enable more users to directly interface with, and develop for, these applications. It is an extensible Python library designed to interface with the high performance quantum simulator, ProjectQ,more » as well as application specific software such as PSI4 from the domain of quantum chemistry. Such software is key to enabling effective user facilities in quantum computation research.« less
BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension
NASA Astrophysics Data System (ADS)
Dai, De-Chang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Rizvi, Eram; Tseng, Jeff
2008-04-01
We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.
Entanglement and the fermion sign problem in auxiliary field quantum Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Broecker, Peter; Trebst, Simon
2016-08-01
Quantum Monte Carlo simulations of fermions are hampered by the notorious sign problem whose most striking manifestation is an exponential growth of sampling errors with the number of particles. With the sign problem known to be an NP-hard problem and any generic solution thus highly elusive, the Monte Carlo sampling of interacting many-fermion systems is commonly thought to be restricted to a small class of model systems for which a sign-free basis has been identified. Here we demonstrate that entanglement measures, in particular the so-called Rényi entropies, can intrinsically exhibit a certain robustness against the sign problem in auxiliary-field quantum Monte Carlo approaches and possibly allow for the identification of global ground-state properties via their scaling behavior even in the presence of a strong sign problem. We corroborate these findings via numerical simulations of fermionic quantum phase transitions of spinless fermions on the honeycomb lattice at and below half filling.
Fermion-induced quantum criticality with two length scales in Dirac systems
NASA Astrophysics Data System (ADS)
Torres, Emilio; Classen, Laura; Herbut, Igor F.; Scherer, Michael M.
2018-03-01
The quantum phase transition to a Z3-ordered Kekulé valence bond solid in two-dimensional Dirac semimetals is governed by a fermion-induced quantum critical point, which renders the putatively discontinuous transition continuous. We study the resulting universal critical behavior in terms of a functional RG approach, which gives access to the scaling behavior on the symmetry-broken side of the phase transition, for general dimensions and number of Dirac fermions. In particular, we investigate the emergence of the fermion-induced quantum critical point for spacetime dimensions 2
Quantum walks of interacting fermions on a cycle graph
Melnikov, Alexey A.; Fedichkin, Leonid E.
2016-01-01
Quantum walks have been employed widely to develop new tools for quantum information processing recently. A natural quantum walk dynamics of interacting particles can be used to implement efficiently the universal quantum computation. In this work quantum walks of electrons on a graph are studied. The graph is composed of semiconductor quantum dots arranged in a circle. Electrons can tunnel between adjacent dots and interact via Coulomb repulsion, which leads to entanglement. Fermionic entanglement dynamics is obtained and evaluated. PMID:27681057
The Bravyi-Kitaev transformation for quantum computation of electronic structure
NASA Astrophysics Data System (ADS)
Seeley, Jacob T.; Richard, Martin J.; Love, Peter J.
2012-12-01
Quantum simulation is an important application of future quantum computers with applications in quantum chemistry, condensed matter, and beyond. Quantum simulation of fermionic systems presents a specific challenge. The Jordan-Wigner transformation allows for representation of a fermionic operator by O(n) qubit operations. Here, we develop an alternative method of simulating fermions with qubits, first proposed by Bravyi and Kitaev [Ann. Phys. 298, 210 (2002), 10.1006/aphy.2002.6254; e-print arXiv:quant-ph/0003137v2], that reduces the simulation cost to O(log n) qubit operations for one fermionic operation. We apply this new Bravyi-Kitaev transformation to the task of simulating quantum chemical Hamiltonians, and give a detailed example for the simplest possible case of molecular hydrogen in a minimal basis. We show that the quantum circuit for simulating a single Trotter time step of the Bravyi-Kitaev derived Hamiltonian for H2 requires fewer gate applications than the equivalent circuit derived from the Jordan-Wigner transformation. Since the scaling of the Bravyi-Kitaev method is asymptotically better than the Jordan-Wigner method, this result for molecular hydrogen in a minimal basis demonstrates the superior efficiency of the Bravyi-Kitaev method for all quantum computations of electronic structure.
Realizing universal Majorana fermionic quantum computation
NASA Astrophysics Data System (ADS)
Wu, Ya-Jie; He, Jing; Kou, Su-Peng
2014-08-01
Majorana fermionic quantum computation (MFQC) was proposed by S. B. Bravyi and A. Yu. Kitaev [Ann. Phys. (NY) 298, 210 (2002), 10.1006/aphy.2002.6254], who indicated that a (nontopological) fault-tolerant quantum computer built from Majorana fermions may be more efficient than that built from distinguishable two-state systems. However, until now scientists have not known how to realize a MFQC in a physical system. In this paper we propose a possible realization of MFQC. We find that the end of a line defect of a p-wave superconductor or superfluid in a honeycomb lattice traps a Majorana zero mode, which becomes the starting point of MFQC. Then we show how to manipulate Majorana fermions to perform universal MFQC, which possesses possibilities for high-level local controllability through individually addressing the quantum states of individual constituent elements by using timely cold-atom technology.
Quantum quenches in a holographic Kondo model
NASA Astrophysics Data System (ADS)
Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.
2017-04-01
We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.
A Formulation of Quantum Field Theory Realizing a Sea of Interacting Dirac Particles
NASA Astrophysics Data System (ADS)
Finster, Felix
2011-08-01
In this survey article, we explain a few ideas behind the fermionic projector approach and summarize recent results which clarify the connection to quantum field theory. The fermionic projector is introduced, which describes the physical system by a collection of Dirac states, including the states of the Dirac sea. Formulating the interaction by an action principle for the fermionic projector, we obtain a consistent description of interacting quantum fields which reproduces the results of perturbative quantum field theory. We find a new mechanism for the generation of boson masses and obtain small corrections to the field equations which violate causality.
Theory of a peristaltic pump for fermionic quantum fluids
NASA Astrophysics Data System (ADS)
Romeo, F.; Citro, R.
2018-05-01
Motivated by the recent developments in fermionic cold atoms and in nanostructured systems, we propose the model of a peristaltic quantum pump. Differently from the Thouless paradigm, a peristaltic pump is a quantum device that generates a particle flux as the effect of a sliding finite-size microlattice. A one-dimensional tight-binding Hamiltonian model of this quantum machine is formulated and analyzed within a lattice Green's function formalism on the Keldysh contour. The pump observables, as, e.g., the pumped particles per cycle, are studied as a function of the pumping frequency, the width of the pumping potential, the particles mean free path, and system temperature. The proposed analysis applies to arbitrary peristaltic potentials acting on fermionic quantum fluids confined to one dimension. These confinement conditions can be realized in nanostructured systems or, in a more controllable way, in cold atoms experiments. In view of the validation of the theoretical results, we describe the outcomes of the model considering a fermionic cold atoms system as a paradigmatic example.
Wang, Lei; Troyer, Matthias
2014-09-12
We present a new algorithm for calculating the Renyi entanglement entropy of interacting fermions using the continuous-time quantum Monte Carlo method. The algorithm only samples the interaction correction of the entanglement entropy, which by design ensures the efficient calculation of weakly interacting systems. Combined with Monte Carlo reweighting, the algorithm also performs well for systems with strong interactions. We demonstrate the potential of this method by studying the quantum entanglement signatures of the charge-density-wave transition of interacting fermions on a square lattice.
Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi 2
Li, Lijun; Wang, Kefeng; Graf, D.; ...
2016-03-28
Here, we report two-dimensional quantum transport and Dirac fermions in BaMnBi 2 single crystals. BaMnBi 2 is a layered bad metal with highly anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, small cyclotron mass, and the first-principles band structure calculations indicate the presence of Dirac fermions in Bi square nets. Quantum oscillations in the Hall channel suggest the presence of both electron and hole pockets, whereas Dirac and parabolic states coexist at the Fermi level.
Experiments with Ultracold Quantum-degenerate Fermionic Lithium Atoms
NASA Technical Reports Server (NTRS)
Ketterle, Wolfgang
2003-01-01
Experimental methods of laser and evaporative cooling, used in the production of atomic Bose-Einstein condensates have recently been extended to realize quantum degeneracy in trapped Fermi gases. Fermi gases are a new rich system to explore the implications of Pauli exclusion on scattering properties of the system, and ultimately fermionic superfluidity. We have produced a new macroscopic quantum system, in which a degenerate Li-6 Fermi gas coexists with a large and stable Na-23 BEC. This was accomplished using inter-species sympathetic cooling of fermionic 6Li in a thermal bath of bosonic Na-23. We have achieved high numbers of both fermions (less than 10(exp 5) and bosons (less than 10(exp 6), and Li-6 quantum degeneracy corresponding to one half of the Fermi temperature. This is the first time that a Fermi sea was produced with a condensate as a "refrigerator".
NASA Astrophysics Data System (ADS)
Yang, Kun
2017-12-01
We consider an interface separating the Moore-Read state and Halperin 331 state in a half-filled Landau level, which can be realized in a double quantum well system with varying interwell tunneling and/or interaction strengths. In the presence of electron tunneling and strong Coulomb interactions across the interface, we find that all charge modes localize and the only propagating mode left is a chiral Majorana fermion mode. Methods to probe this neutral mode are proposed. A quantum phase transition between the Moore-Read and Halperin 331 states is described by a network of such Majorana fermion modes. In addition to a direct transition, they may also be separated by a phase in which the Majorana fermions are delocalized, realizing an incompressible state which exhibits quantum Hall charge transport and bulk heat conduction.
Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer.
Setia, Kanav; Whitfield, James D
2018-04-28
Present quantum computers often work with distinguishable qubits as their computational units. In order to simulate indistinguishable fermionic particles, it is first required to map the fermionic state to the state of the qubits. The Bravyi-Kitaev Superfast (BKSF) algorithm can be used to accomplish this mapping. The BKSF mapping has connections to quantum error correction and opens the door to new ways of understanding fermionic simulation in a topological context. Here, we present the first detailed exposition of the BKSF algorithm for molecular simulation. We provide the BKSF transformed qubit operators and report on our implementation of the BKSF fermion-to-qubits transform in OpenFermion. In this initial study of a hydrogen molecule we have compared BKSF, Jordan-Wigner, and Bravyi-Kitaev transforms under the Trotter approximation. The gate count to implement BKSF is lower than Jordan-Wigner but higher than Bravyi-Kitaev. We considered different orderings of the exponentiated terms and found lower Trotter errors than the previously reported for Jordan-Wigner and Bravyi-Kitaev algorithms. These results open the door to the further study of the BKSF algorithm for quantum simulation.
Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6
NASA Astrophysics Data System (ADS)
Custers, J.; Lorenzer, K.-A.; Müller, M.; Prokofiev, A.; Sidorenko, A.; Winkler, H.; Strydom, A. M.; Shimura, Y.; Sakakibara, T.; Yu, R.; Si, Q.; Paschen, S.
2012-03-01
How ground states of quantum matter transform between one another reveals deep insights into the mechanisms stabilizing them. Correspondingly, quantum phase transitions are explored in numerous materials classes, with heavy-fermion compounds being among the most prominent ones. Recent studies in an anisotropic heavy-fermion compound have shown that different types of transitions are induced by variations of chemical or external pressure, raising the question of the extent to which heavy-fermion quantum criticality is universal. To make progress, it is essential to broaden both the materials basis and the microscopic parameter variety. Here, we identify a cubic heavy-fermion material as exhibiting a field-induced quantum phase transition, and show how the material can be used to explore one extreme of the dimensionality axis. The transition between two different ordered phases is accompanied by an abrupt change of Fermi surface, reminiscent of what happens across the field-induced antiferromagnetic to paramagnetic transition in the anisotropic YbRh2Si2. This finding leads to a materials-based global phase diagram—a precondition for a unified theoretical description.
Fermion-induced quantum critical points in two-dimensional Dirac semimetals
NASA Astrophysics Data System (ADS)
Jian, Shao-Kai; Yao, Hong
2017-11-01
In this paper we investigate the nature of quantum phase transitions between two-dimensional Dirac semimetals and Z3-ordered phases (e.g., Kekule valence-bond solid), where cubic terms of the order parameter are allowed in the quantum Landau-Ginzberg theory and the transitions are putatively first order. From large-N renormalization-group (RG) analysis, we find that fermion-induced quantum critical points (FIQCPs) [Z.-X. Li et al., Nat. Commun. 8, 314 (2017), 10.1038/s41467-017-00167-6] occur when N (the number of flavors of four-component Dirac fermions) is larger than a critical value Nc. Remarkably, from the knowledge of space-time supersymmetry, we obtain an exact lower bound for Nc, i.e., Nc>1 /2 . (Here the "1/2" flavor of four-component Dirac fermions is equivalent to one flavor of four-component Majorana fermions). Moreover, we show that the emergence of two length scales is a typical phenomenon of FIQCPs and obtain two different critical exponents, i.e., ν ≠ν' , by large-N RG calculations. We further give a brief discussion of possible experimental realizations of FIQCPs.
NASA Astrophysics Data System (ADS)
Croon, Djuna; Sanz, Verónica; Setford, Jack
2015-10-01
Identifying the inflaton with a pseudo-Goldstone boson explains the flatness of its potential. Successful Goldstone Inflation should also be robust against UV corrections, such as from quantum gravity: in the language of the effective field theory this implies that all scales are sub-Planckian. In this paper we present scenarios which realise both requirements by examining the structure of Goldstone potentials arising from Coleman-Weinberg contributions. We focus on single-field models, for which we notice that both bosonic and fermionic contributions are required and that spinorial fermion representations can generate the right potential shape. We then evaluate the constraints on non-Gaussianity from higher-derivative interactions, finding that axiomatic constraints on Goldstone boson scattering prevail over the current CMB measurements. The fit to CMB data can be connected to the UV completions for Goldstone Inflation, finding relations in the spectrum of new resonances. Finally, we show how hybrid inflation can be realised in the same context, where both the inflaton and the waterfall fields share a common origin as Goldstones.
BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai Dechang; Starkman, Glenn; Stojkovic, Dejan
2008-04-01
We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can bemore » interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/{approx}issever/BlackMax/blackmax.html.« less
Strange metal transport realized by gauge/gravity duality.
Faulkner, Thomas; Iqbal, Nabil; Liu, Hong; McGreevy, John; Vegh, David
2010-08-27
Fermi liquid theory explains the thermodynamic and transport properties of most metals. The so-called non-Fermi liquids deviate from these expectations and include exotic systems such as the strange metal phase of cuprate superconductors and heavy fermion materials near a quantum phase transition. We used the anti-de-Sitter/conformal field theory correspondence to identify a class of non-Fermi liquids; their low-energy behavior is found to be governed by a nontrivial infrared fixed point, which exhibits nonanalytic scaling behavior only in the time direction. For some representatives of this class, the resistivity has a linear temperature dependence, as is the case for strange metals.
Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure
He, Qing Lin; Pan, Lei; Stern, Alexander L.; ...
2017-07-21
Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantummore » computing.« less
Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models
NASA Astrophysics Data System (ADS)
Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun
2018-03-01
The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.
Production of black holes and their angular momentum distribution in models with split fermions
NASA Astrophysics Data System (ADS)
Dai, De-Chang; Starkman, Glenn D.; Stojkovic, Dejan
2006-05-01
In models with TeV-scale gravity it is expected that mini black holes will be produced in near-future accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large n-n¯ oscillations, flavor changing neutral currents, large mixing between leptons, etc. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross section for the production of black holes and their angular momentum distribution in these models with “split” fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.
Causal fermion systems as a candidate for a unified physical theory
NASA Astrophysics Data System (ADS)
Finster, Felix; Kleiner, Johannes
2015-07-01
The theory of causal fermion systems is an approach to describe fundamental physics. Giving quantum mechanics, general relativity and quantum field theory as limiting cases, it is a candidate for a unified physical theory. We here give a non-technical introduction.
Cosmological singularities and bounce in Cartan-Einstein theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucat, Stefano; Prokopec, Tomislav, E-mail: s.lucat@students.uu.nl, E-mail: t.prokopec@uu.nl
We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh ( in-in ) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins inmore » a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce . We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).« less
Cosmological singularities and bounce in Cartan-Einstein theory
NASA Astrophysics Data System (ADS)
Lucat, Stefano; Prokopec, Tomislav
2017-10-01
We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh (in-in) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins in a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce. We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).
Asymptotic safety of gravity with matter
NASA Astrophysics Data System (ADS)
Christiansen, Nicolai; Litim, Daniel F.; Pawlowski, Jan M.; Reichert, Manuel
2018-05-01
We study the asymptotic safety conjecture for quantum gravity in the presence of matter fields. A general line of reasoning is put forward explaining why gravitons dominate the high-energy behavior, largely independently of the matter fields as long as these remain sufficiently weakly coupled. Our considerations are put to work for gravity coupled to Yang-Mills theories with the help of the functional renormalization group. In an expansion about flat backgrounds, explicit results for beta functions, fixed points, universal exponents, and scaling solutions are given in systematic approximations exploiting running propagators, vertices, and background couplings. Invariably, we find that the gauge coupling becomes asymptotically free while the gravitational sector becomes asymptotically safe. The dependence on matter field multiplicities is weak. We also explain how the scheme dependence, which is more pronounced, can be handled without changing the physics. Our findings offer a new interpretation of many earlier results, which is explained in detail. The results generalize to theories with minimally coupled scalar and fermionic matter. Some implications for the ultraviolet closure of the Standard Model or its extensions are given.
Phase transition with trivial quantum criticality in an anisotropic Weyl semimetal
NASA Astrophysics Data System (ADS)
Li, Xin; Wang, Jing-Rong; Liu, Guo-Zhu
2018-05-01
When a metal undergoes continuous quantum phase transition, the correlation length diverges at the critical point and the quantum fluctuation of order parameter behaves as a gapless bosonic mode. Generically, the coupling of this boson to fermions induces a variety of unusual quantum critical phenomena, such as non-Fermi liquid behavior and various emergent symmetries. Here, we perform a renormalization group analysis of the semimetal-superconductor quantum criticality in a three-dimensional anisotropic Weyl semimetal. Surprisingly, distinct from previously studied quantum critical systems, the anomalous dimension of anisotropic Weyl fermions flows to zero very quickly with decreasing energy, and the quasiparticle residue takes a nonzero value. These results indicate that the quantum fluctuation of superconducting order parameter is irrelevant at low energies, and a simple mean-field calculation suffices to capture the essential physics of the superconducting transition. We thus obtain a phase transition that exhibits trivial quantum criticality, which is unique comparing to other invariably nontrivial quantum critical systems. Our theoretical prediction can be experimentally verified by measuring the fermion spectral function and specific heat.
Amplified fermion production from overpopulated Bose fields
NASA Astrophysics Data System (ADS)
Berges, J.; Gelfand, D.; Sexty, D.
2014-01-01
We study the real-time dynamics of fermions coupled to scalar fields in a linear sigma model, which is often employed in the context of preheating after inflation or as a low-energy effective model for quantum chromodynamics. We find a dramatic amplification of fermion production in the presence of highly occupied bosonic quanta for weak as well as strong effective couplings. For this we consider the range of validity of different methods: lattice simulations with male/female fermions, the mode functions approach and the quantum 2PI effective action with its associated kinetic theory. For strongly coupled fermions we find a rapid approach to a Fermi-Dirac distribution with time-dependent temperature and chemical potential parameters, while the bosons are still far from equilibrium.
Proposal to probe quantum nonlocality of Majorana fermions in tunneling experiments
NASA Astrophysics Data System (ADS)
Sau, Jay D.; Swingle, Brian; Tewari, Sumanta
2015-07-01
Topological Majorana fermion (MF) quasiparticles have been recently suggested to exist in semiconductor quantum wires with proximity induced superconductivity and a Zeeman field. Although the experimentally observed zero bias tunneling peak and a fractional ac-Josephson effect can be taken as necessary signatures of MFs, neither of them constitutes a sufficient "smoking gun" experiment. Since one pair of Majorana fermions share a single conventional fermionic degree of freedom, MFs are in a sense fractionalized excitations. Based on this fractionalization we propose a tunneling experiment that furnishes a nearly unique signature of end state MFs in semiconductor quantum wires. In particular, we show that a "teleportation"-like experiment is not enough to distinguish MFs from pairs of MFs, which are equivalent to conventional zero energy states, but our proposed tunneling experiment, in principle, can make this distinction.
Majorana fermion surface code for universal quantum computation
Vijay, Sagar; Hsieh, Timothy H.; Fu, Liang
2015-12-10
In this study, we introduce an exactly solvable model of interacting Majorana fermions realizing Z 2 topological order with a Z 2 fermion parity grading and lattice symmetries permuting the three fundamental anyon types. We propose a concrete physical realization by utilizing quantum phase slips in an array of Josephson-coupled mesoscopic topological superconductors, which can be implemented in a wide range of solid-state systems, including topological insulators, nanowires, or two-dimensional electron gases, proximitized by s-wave superconductors. Our model finds a natural application as a Majorana fermion surface code for universal quantum computation, with a single-step stabilizer measurement requiring no physicalmore » ancilla qubits, increased error tolerance, and simpler logical gates than a surface code with bosonic physical qubits. We thoroughly discuss protocols for stabilizer measurements, encoding and manipulating logical qubits, and gate implementations.« less
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A principle of quantum theory, devised in 1925 by Wolfgang Pauli (1900-58), which states that no two fermions may exist in the same quantum state. The quantum state of a particle is defined by a set of numbers that describe quantities such as energy, angular momentum and spin. Fermions are particles such as quarks, protons, neutrons and electrons, that have spin = ½ (in units of h/2π, where h is ...
Kreula, J. M.; Clark, S. R.; Jaksch, D.
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673
New excitations in the Thirring model
NASA Astrophysics Data System (ADS)
Cortés, J. L.; Gamboa, J.; Schmidt, I.; Zanelli, J.
1998-12-01
The quantization of the massless Thirring model in the light-cone using functional methods is considered. The need to compactify the coordinate x- in the light-cone spacetime implies that the quantum effective action for left-handed fermions contains excitations similar to abelian instantons produced by composite of left-handed fermions. Right-handed fermions don't have a similar effective action. Thus, quantum mechanically, chiral symmetry must be broken as a result of the topological excitations. The conserved charge associated to the topological states is quantized. Different cases with only fermionic excitations or bosonic excitations or both can occur depending on the boundary conditions and the value of the coupling.
Sarkar, Sujit
2017-05-12
An attempt is made to understand the topological quantum phase transition, emergence of relativistic modes and local topological order of light in a strongly interacting light-matter system. We study this system, in a one dimensional array of nonlinear cavities. Topological quantum phase transition occurs with massless excitation only for the finite detuning process. We present a few results based on the exact analytical calculations along with the physical explanations. We observe the emergence of massive Majorana fermion mode at the topological state, massless Majorana-Weyl fermion mode during the topological quantum phase transition and Dirac fermion mode for the non-topological state. Finally, we study the quantized Berry phase (topological order) and its connection to the topological number (winding number).
Ground State Structure of a Coupled 2-Fermion System in Supersymmetric Quantum Mechanics
NASA Astrophysics Data System (ADS)
Finster, Felix
1997-05-01
We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to theN=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like
Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution
NASA Astrophysics Data System (ADS)
Staples, G. Stacey
2017-12-01
Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph's adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph's vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an "indeterminate" fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.
NASA Astrophysics Data System (ADS)
Giuliano, Domenico; Nava, Andrea
2015-09-01
Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within the bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.
Quantum centipedes: collective dynamics of interacting quantum walkers
NASA Astrophysics Data System (ADS)
Krapivsky, P. L.; Luck, J. M.; Mallick, K.
2016-08-01
We consider the quantum centipede made of N fermionic quantum walkers on the one-dimensional lattice interacting by means of the simplest of all hard-bound constraints: the distance between two consecutive fermions is either one or two lattice spacings. This composite quantum walker spreads ballistically, just as the simple quantum walk. However, because of the interactions between the internal degrees of freedom, the distribution of its center-of-mass velocity displays numerous ballistic fronts in the long-time limit, corresponding to singularities in the empirical velocity distribution. The spectrum of the centipede and the corresponding group velocities are analyzed by direct means for the first few values of N. Some analytical results are obtained for arbitrary N by exploiting an exact mapping of the problem onto a free-fermion system. We thus derive the maximal velocity describing the ballistic spreading of the two extremal fronts of the centipede wavefunction, including its non-trivial value in the large-N limit.
Quantum oscillations in the heavy-fermion compound YbPtBi
Mun, E.; Bud'ko, S. L.; Lee, Y.; ...
2015-08-01
We present quantum oscillations observed in the heavy-fermion compound YbPtBi in magnetic fields far beyond its field-tuned, quantum critical point. Quantum oscillations are observed in magnetic fields as low as 60 kOe at 60 mK and up to temperatures as high as 3 K, which confirms the very high quality of the samples as well as the small effective mass of the conduction carriers far from the quantum critical point. Although the electronic specific heat coefficient of YbPtBi reaches ~7.4 J/molK 2 in zero field, which is one of the highest effective mass values among heavy-fermion systems, we suppress itmore » quickly by an applied magnetic field. The quantum oscillations were used to extract the quasiparticle effective masses of the order of the bare electron mass, which is consistent with the behavior observed in specific heat measurements. Furthermore, such small effective masses at high fields can be understood by considering the suppression of Kondo screening.« less
Masuda, Hidetoshi; Sakai, Hideaki; Tokunaga, Masashi; Yamasaki, Yuichi; Miyake, Atsushi; Shiogai, Junichi; Nakamura, Shintaro; Awaji, Satoshi; Tsukazaki, Atsushi; Nakao, Hironori; Murakami, Youichi; Arima, Taka-hisa; Tokura, Yoshinori; Ishiwata, Shintaro
2016-01-01
For the innovation of spintronic technologies, Dirac materials, in which low-energy excitation is described as relativistic Dirac fermions, are one of the most promising systems because of the fascinating magnetotransport associated with extremely high mobility. To incorporate Dirac fermions into spintronic applications, their quantum transport phenomena are desired to be manipulated to a large extent by magnetic order in a solid. We report a bulk half-integer quantum Hall effect in a layered antiferromagnet EuMnBi2, in which field-controllable Eu magnetic order significantly suppresses the interlayer coupling between the Bi layers with Dirac fermions. In addition to the high mobility of more than 10,000 cm(2)/V s, Landau level splittings presumably due to the lifting of spin and valley degeneracy are noticeable even in a bulk magnet. These results will pave a route to the engineering of magnetically functionalized Dirac materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jun, E-mail: j.feng1@uq.edu.au; Zhang, Yao-Zhong; Gould, Mark D.
We study the quantum correlation and quantum communication channel of both free scalar and fermionic fields in de Sitter space, while the Planckian modification presented by the choice of a particular α-vacuum has been considered. We show the occurrence of degradation of quantum entanglement between field modes for an inertial observer in curved space, due to the radiation associated with its cosmological horizon. Comparing with standard Bunch–Davies choice, the possible Planckian physics causes some extra decrement on the quantum correlation, which may provide the means to detect quantum gravitational effects via quantum information methodology in future. Beyond single-mode approximation, wemore » construct proper Unruh modes admitting general α-vacua, and find a convergent feature of both bosonic and fermionic entanglements. In particular, we show that the convergent points of fermionic entanglement negativity are dependent on the choice of α. Moreover, an one-to-one correspondence between convergent points H{sub c} of negativity and zeros of quantum capacity of quantum channels in de Sitter space has been proved. - Highlights: • Quantum correlation and quantum channel in de Sitter space are studied. • Gibbons–Hawking effect causes entanglement degradation for static observer. • Planckian physics causes extra decrement on quantum correlation. • Convergent feature of negativity relies on the choice of alpha-vacua. • Link between negativity convergence and quantum channel capacity is given.« less
Anselm's Discovery of the Gross-Neveu Model in 1958
NASA Astrophysics Data System (ADS)
Shifman, M.
2013-06-01
The Gross-Neveu model comprises quantum field theory of N Dirac fermions interacting via four-fermion interaction in one spatial and one time dimension. It was introduced in 1974 (shortly after quantum chromodynamics was discovered) by David Gross and André Neveu [1] as a toy model which mimics two crucial features of quantum chromodynamics: asymptotic freedom and spontaneous breaking of a chiral symmetry. The model is based on N Dirac (i.e. complex two-component) fermions, ψ1, ψ2, ..., ψN. The Lagrangian of the Gross-Neveau model is [ {L} = bar{psi}ipartial_{mu}gamma^{mu}psi + frac{g^{2}}{2}(sumlimits_{k = 1}^{N}bar{psi}_{k}psi^{k})^{2}.
Fermionic Spinon Theory of Square Lattice Spin Liquids near the Néel State
NASA Astrophysics Data System (ADS)
Thomson, Alex; Sachdev, Subir
2018-01-01
Quantum fluctuations of the Néel state of the square lattice antiferromagnet are usually described by a CP1 theory of bosonic spinons coupled to a U(1) gauge field, and with a global SU(2) spin rotation symmetry. Such a theory also has a confining phase with valence bond solid (VBS) order, and upon including spin-singlet charge-2 Higgs fields, deconfined phases with Z2 topological order possibly intertwined with discrete broken global symmetries. We present dual theories of the same phases starting from a mean-field theory of fermionic spinons moving in π flux in each square lattice plaquette. Fluctuations about this π -flux state are described by (2 +1 )-dimensional quantum chromodynamics (QCD3 ) with a SU(2) gauge group and Nf=2 flavors of massless Dirac fermions. It has recently been argued by Wang et al. [Deconfined Quantum Critical Points: Symmetries and Dualities, Phys. Rev. X 7, 031051 (2017)., 10.1103/PhysRevX.7.031051] that this QCD3 theory describes the Néel-VBS quantum phase transition. We introduce adjoint Higgs fields in QCD3 and obtain fermionic dual descriptions of the phases with Z2 topological order obtained earlier using the bosonic CP1 theory. We also present a fermionic spinon derivation of the monopole Berry phases in the U(1) gauge theory of the VBS state. The global phase diagram of these phases contains multicritical points, and our results imply new boson-fermion dualities between critical gauge theories of these points.
Quasi-stationary states and fermion pair creation from a vacuum in supercritical Coulomb field
NASA Astrophysics Data System (ADS)
Khalilov, V. R.
2017-12-01
Creation of charged fermion pair from a vacuum in so-called supercritical Coulomb potential is examined for the case when fermions can move only in the same (one) plane. In which case, quantum dynamics of charged massive or massless fermions can be described by the two-dimensional Dirac Hamiltonians with an usual (-a/r) Coulomb potential. These Hamiltonians are singular and require the additional definition in order for them to be treated as self-adjoint quantum-mechanical operators. We construct the self-adjoint two-dimensional Dirac Hamiltonians with a Coulomb potential and determine the quantum-mechanical states for such Hamiltonians in the corresponding Hilbert spaces of square-integrable functions. We determine the scattering amplitude in which the self-adjoint extension parameter is incorporated and then obtain equations implicitly defining possible discrete energy spectra of the self-adjoint Dirac Hamiltonians with a Coulomb potential. It is shown that this quantum system becomes unstable in the presence of a supercritical Coulomb potential which manifests in the appearance of quasi-stationary states in the lower (negative) energy continuum. The energy spectrum of those states is quasi-discrete, consists of broadened levels with widths related to the inverse lifetimes of the quasi-stationary states as well as the probability of creation of charged fermion pair by a supercritical Coulomb field. Explicit analytical expressions for the creation probabilities of charged (massive or massless) fermion pair are obtained in a supercritical Coulomb field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Jainendra
2011-07-15
The fractional quantum Hall effect (FQHE) is one of the most amazing collective states discovered in modern times. A remarkably detailed and accurate understanding of its nonperturbative physics has been achieved in terms of a new class of exotic particles called composite fermions. I will begin with a brief review of the composite fermion theory and its outstanding successes. The rest of the talk will be concerned with fractional quantum Hall effect in graphene, observed recently. I will present results of theoretical studies that demonstrate that composite fermions are formed in graphene as well, but the spin and valley degeneraciesmore » and the linear dispersion of electrons produce interesting new physics relative to that in the usual two-dimensional GaAs systems. Composite fermion theory allows detailed predictions about FQHE in graphene in regimes when either or both of the spin and valley degeneracies are broken. I will discuss the relevance of our theory to recent experiments. This work on FQHE in graphene has been performed in collaboration with Csaba Toke.« less
Probing the non-locality of Majorana fermions via quantum correlations
Li, Jun; Yu, Ting; Lin, Hai-Qing; You, J. Q.
2014-01-01
Majorana fermions (MFs) are exotic particles that are their own anti-particles. Recently, the search for the MFs occurring as quasi-particle excitations in solid-state systems has attracted widespread interest, because of their fundamental importance in fundamental physics and potential applications in topological quantum computation based on solid-state devices. Here we study the quantum correlations between two spatially separate quantum dots induced by a pair of MFs emerging at the two ends of a semiconductor nanowire, in order to develop a new method for probing the MFs. We find that without the tunnel coupling between these paired MFs, quantum entanglement cannot be induced from an unentangled (i.e., product) state, but quantum discord is observed due to the intrinsic nonlocal correlations of the paired MFs. This finding reveals that quantum discord can indeed demonstrate the intrinsic non-locality of the MFs formed in the nanowire. Also, quantum discord can be employed to discriminate the MFs from the regular fermions. Furthermore, we propose an experimental setup to measure the onset of quantum discord due to the nonlocal correlations. Our approach provides a new, and experimentally accessible, method to study the Majorana bound states by probing their intrinsic non-locality signature. PMID:24816484
Topological Quantum Information Processing Mediated Via Hybrid Topological Insulator Structures
2013-11-13
manipulation, entanglement and detection ofMajorana fermions in diamond-topological insulator - superconductor heterojunctions. Furthennore, we propose to...the formation, manipulation, entanglement and detection of Majorana fermions in diamond-topological insulator - superconductor heterojunctions...Interactions between Superconductors and Topological Insulators Recent advances have revealed a new type of information processing, topological quantum
Fidelity Witnesses for Fermionic Quantum Simulations
NASA Astrophysics Data System (ADS)
Gluza, M.; Kliesch, M.; Eisert, J.; Aolita, L.
2018-05-01
The experimental interest and developments in quantum spin-1 /2 chains has increased uninterruptedly over the past decade. In many instances, the target quantum simulation belongs to the broader class of noninteracting fermionic models, constituting an important benchmark. In spite of this class being analytically efficiently tractable, no direct certification tool has yet been reported for it. In fact, in experiments, certification has almost exclusively relied on notions of quantum state tomography scaling very unfavorably with the system size. Here, we develop experimentally friendly fidelity witnesses for all pure fermionic Gaussian target states. Their expectation value yields a tight lower bound to the fidelity and can be measured efficiently. We derive witnesses in full generality in the Majorana-fermion representation and apply them to experimentally relevant spin-1 /2 chains. Among others, we show how to efficiently certify strongly out-of-equilibrium dynamics in critical Ising chains. At the heart of the measurement scheme is a variant of importance sampling specially tailored to overlaps between covariance matrices. The method is shown to be robust against finite experimental-state infidelities.
Two-component quantum Hall effects in topological flat bands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Tian-Sheng; Zhu, Wei; Sheng, D. N.
2017-03-27
Here in this paper, we study quantum Hall states for two-component particles (hardcore bosons and fermions) loading in topological lattice models. By tuning the interplay of interspecies and intraspecies interactions, we demonstrate that two-component fractional quantum Hall states emerge at certain fractional filling factors ν = 1/2 for fermions (ν = 2/3 for bosons) in the lowest Chern band, classified by features from ground states including the unique Chern number matrix (inverse of the K matrix), the fractional charge and spin pumpings, and two parallel propagating edge modes. Moreover, we also apply our strategy to two-component fermions at integer fillingmore » factor ν = 2 , where a possible topological Neel antiferromagnetic phase is under intense debate very recently. For the typical π -flux checkerboard lattice, by tuning the onsite Hubbard repulsion, we establish a first-order phase transition directly from a two-component fermionic ν = 2 quantum Hall state at weak interaction to a topologically trivial antiferromagnetic insulator at strong interaction, and therefore exclude the possibility of an intermediate topological phase for our system.« less
Fermion number anomaly with the fluffy mirror fermion
NASA Astrophysics Data System (ADS)
Okumura, Ken-ichi; Suzuki, Hiroshi
2016-12-01
Quite recently, Grabowska and Kaplan presented a 4-dimensional lattice formulation of chiral gauge theories based on the chiral overlap operator. We study this formulation from the perspective of the fermion number anomaly and possible associated phenomenology. A simple argument shows that the consistency of the formulation implies that the fermion with the opposite chirality to the physical one, the "fluffy mirror fermion" or "fluff", suffers from the fermion number anomaly in the same magnitude (with the opposite sign) as the physical fermion. This immediately shows that if at least one of the fluff quarks is massless, the formulation provides a simple viable solution to the strong CP problem. Also, if the fluff interacts with gravity essentially in the same way as the physical fermion, the formulation can realize the asymmetric dark matter scenario.
Fidelity of Majorana-based quantum operations
NASA Astrophysics Data System (ADS)
Tanhayi Ahari, Mostafa; Ortiz, Gerardo; Seradjeh, Babak
2015-03-01
It is well known that one-dimensional p-wave superconductor, the so-called Kitaev model, has topologically distinct phases that are distinguished by the presence of Majorana fermions. Owing to their topological protection, these Majorana fermions have emerged as candidates for fault-tolerant quantum computation. They furnish the operation of such a computation via processes that produce, braid, and annihilate them in pairs. In this work we study some of these processes from the dynamical perspective. In particular, we determine the fidelity of the Majorana fermions when they are produced or annihilated by tuning the system through the corresponding topological phase transition. For a simple linear protocol, we derive analytical expressions for fidelity and test various perturbative schemes. For more general protocols, we present exact numerics. Our results are relevant for the operation of Majorana-based quantum gates and quantum memories.
Weak antilocalization of composite fermions in graphene
NASA Astrophysics Data System (ADS)
Laitinen, Antti; Kumar, Manohar; Hakonen, Pertti J.
2018-02-01
We demonstrate experimentally that composite fermions in monolayer graphene display weak antilocalization. Our experiments deal with fractional quantum Hall (FQH) states in high-mobility, suspended graphene Corbino disks in the vicinity of ν =1 /2 . We find a strong temperature dependence of conductivity σ away from half filling, which is consistent with the expected electron-electron interaction-induced gaps in the FQH state. At half filling, however, the temperature dependence of conductivity σ (T ) becomes quite weak, as anticipated for a Fermi sea of composite fermions, and we find a logarithmic dependence of σ on T . The sign of this quantum correction coincides with the weak antilocalization of graphene composite fermions, indigenous to chiral Dirac particles.
UNIVERSE IN A BLACK HOLE IN EINSTEIN–CARTAN GRAVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popławski, Nikodem, E-mail: NPoplawski@newhaven.edu
The conservation law for the angular momentum in curved spacetime, consistent with relativistic quantum mechanics, requires that the antisymmetric part of the affine connection (torsion tensor) is a variable in the principle of least action. The coupling between the spin of elementary particles and torsion in the Einstein–Cartan theory of gravity generates gravitational repulsion at extremely high densities in fermionic matter, approximated as a spin fluid, and thus avoids the formation of singularities in black holes. The collapsing matter in a black hole should therefore bounce at a finite density and then expand into a new region of space onmore » the other side of the event horizon, which may be regarded as a nonsingular, closed universe. We show that quantum particle production caused by an extremely high curvature near a bounce can create enormous amounts of matter, produce entropy, and generate a finite period of exponential expansion (inflation) of this universe. This scenario can thus explain inflation without a scalar field and reheating. We show that, depending on the particle production rate, such a universe may undergo several nonsingular bounces until it has enough matter to reach a size at which the cosmological constant starts cosmic acceleration. The last bounce can be regarded as the big bang of this universe.« less
Universe in a Black Hole in Einstein-Cartan Gravity
NASA Astrophysics Data System (ADS)
Popławski, Nikodem
2016-12-01
The conservation law for the angular momentum in curved spacetime, consistent with relativistic quantum mechanics, requires that the antisymmetric part of the affine connection (torsion tensor) is a variable in the principle of least action. The coupling between the spin of elementary particles and torsion in the Einstein-Cartan theory of gravity generates gravitational repulsion at extremely high densities in fermionic matter, approximated as a spin fluid, and thus avoids the formation of singularities in black holes. The collapsing matter in a black hole should therefore bounce at a finite density and then expand into a new region of space on the other side of the event horizon, which may be regarded as a nonsingular, closed universe. We show that quantum particle production caused by an extremely high curvature near a bounce can create enormous amounts of matter, produce entropy, and generate a finite period of exponential expansion (inflation) of this universe. This scenario can thus explain inflation without a scalar field and reheating. We show that, depending on the particle production rate, such a universe may undergo several nonsingular bounces until it has enough matter to reach a size at which the cosmological constant starts cosmic acceleration. The last bounce can be regarded as the big bang of this universe.
Entanglement dynamics in itinerant fermionic and bosonic systems
NASA Astrophysics Data System (ADS)
Pillarishetty, Durganandini
2017-04-01
The concept of quantum entanglement of identical particles is fundamental in a wide variety of quantum information contexts involving composite quantum systems. However, the role played by particle indistinguishabilty in entanglement determination is being still debated. In this work, we study, theoretically, the entanglement dynamics in some itinerant bosonic and fermionic systems. We show that the dynamical behaviour of particle entanglement and spatial or mode entanglement are in general different. We also discuss the effect of fermionic and bosonic statistics on the dynamical behaviour. We suggest that the different dynamical behaviour can be used to distinguish between particle and mode entanglement in identical particle systems and discuss possible experimental realizations for such studies. I acknowledge financial support from DST, India through research Grant.
NASA Astrophysics Data System (ADS)
Neri, Elettra; Scazza, Francesco; Roati, Giacomo
2018-04-01
Quantum systems out of equilibrium offer the possibility of understanding intriguing and challenging problems in modern physics. Studying transport properties is not only valuable to unveil fundamental properties of quantum matter but it is also an excellent tool for developing new quantum devices which inherently employ quantum-mechanical effects. In this contribution, we present our experimental studies on quantum transport using ultracold Fermi gases of 6Li atoms. We realize the analogous of a Josephson junction by bisecting fermionic superfluids by a thin optical barrier. We observe coherent dynamics in both the population and in the relative phase between the two reservoirs. For critical parameters, the superfluid dynamics exhibits both coherent and resistive flow due to phase-slippage events manifesting as vortices propagating into the bulk. We uncover also a regime of strong dissipation where the junction operation is irreversibly affected by vortex proliferation. Our studies open new directions for investigating dissipation and superfluid transport in strongly correlated fermionic systems.
Site-Resolved Imaging with the Fermi Gas Microscope
NASA Astrophysics Data System (ADS)
Huber, Florian Gerhard
The recent development of quantum gas microscopy for bosonic rubidium atoms trapped in optical lattices has made it possible to study local structure and correlations in quantum many-body systems. Quantum gas microscopes are a perfect platform to perform quantum simulation of condensed matter systems, offering unprecedented control over both internal and external degrees of freedom at a single-site level. In this thesis, this technique is extended to fermionic particles, paving the way to fermionic quantum simulation, which emulate electrons in real solids. Our implementation uses lithium, the lightest atom amenable to laser cooling. The absolute timescales of dynamics in optical lattices are inversely proportional to the mass. Therefore, experiments are more than six times faster than for the only other fermionic alkali atom, potassium, and more then fourteen times faster than an equivalent rubidium experiment. Scattering and collecting a sufficient number of photons with our high-resolution imaging system requires continuous cooling of the atoms during the fluorescence imaging. The lack of a resolved excited hyperfine structure on the D2 line of lithium prevents efficient conventional sub-Doppler cooling. To address this challenge we have applied a Raman sideband cooling scheme and achieved the first site-resolved imaging of ultracold fermions in an optical lattice.
Mechanism of a strange metal state near a heavy-fermion quantum critical point
NASA Astrophysics Data System (ADS)
Chang, Yung-Yeh; Paschen, Silke; Chung, Chung-Hou
2018-01-01
Unconventional metallic or strange metal (SM) behavior with non-Fermi liquid (NFL) properties, generic features of heavy-fermion systems near quantum phase transitions, are yet to be understood microscopically. A paradigmatic example is the magnetic field-tuned quantum critical heavy-fermion metal YbRh2Si2 , revealing a possible SM state over a finite range of fields at low temperatures when substituted with Ge. Above a critical field, the SM state gives way to a heavy Fermi liquid with Kondo correlation. The NFL behavior, most notably a linear-in-temperature electrical resistivity and a logarithmic-in-temperature followed by a power-law singularity in the specific heat coefficient at low temperatures, still lacks a definite understanding. We propose the following mechanism as origin of the experimentally observed behavior: a quasi-2 d fluctuating short-ranged resonating-valence-bond spin liquid competing with the Kondo correlation. Applying a field-theoretical renormalization group analysis on an effective field theory beyond a large-N approach to an antiferromagnetic Kondo-Heisenberg model, we identify the critical point and explain remarkably well the SM behavior. Our theory goes beyond the well-established framework of quantum phase transitions and serves as a basis to address open issues in quantum critical heavy-fermion systems.
Casimir forces between defects in one-dimensional quantum liquids
NASA Astrophysics Data System (ADS)
Recati, A.; Fuchs, J. N.; Peça, C. S.; Zwerger, W.
2005-08-01
We discuss the effective interactions between two localized perturbations in one-dimensional quantum liquids. For noninteracting fermions, the interactions exhibit Friedel oscillations, giving rise to a Ruderman-Kittel-Kasuya-Yosida-type interaction familiar from impurity spins in metals. In the interacting case, at low energies, a Luttinger-liquid description applies. In the case of repulsive fermions, the Friedel oscillations of the interacting system are replaced, at long distances, by a universal Casimir-type interaction which depends only on the sound velocity and decays inversely with the separation. The Casimir-type interaction between localized perturbations embedded in a fermionic environment gives rise to a long-range coupling between quantum dots in ultracold Fermi gases, opening an alternative to couple qubits with neutral atoms. We also briefly discuss the case of bosonic quantum liquids in which the interaction between weak impurities turns out to be short ranged, decaying exponentially on the scale of the healing length.
Dai, Li; Kuo, Watson; Chung, Ming-Chiang
2015-01-01
We propose a scheme for extracting entangled charge qubits from quantum-dot chains that support zero-energy edge modes. The edge mode is composed of Majorana fermions localized at the ends of each chain. The qubit, logically encoded in double quantum dots, can be manipulated through tunneling and pairing interactions between them. The detailed form of the entangled state depends on both the parity measurement (an even or odd number) of the boundary-site electrons in each chain and the teleportation between the chains. The parity measurement is realized through the dispersive coupling of coherent-state microwave photons to the boundary sites, while the teleportation is performed via Bell measurements. Our scheme illustrates localizable entanglement in a fermionic system, which serves feasibly as a quantum repeater under realistic experimental conditions, as it allows for finite temperature effect and is robust against disorders, decoherence and quasi-particle poisoning. PMID:26062033
Counting of fermions and spins in strongly correlated systems in and out of thermal equilibrium
NASA Astrophysics Data System (ADS)
Braungardt, Sibylle; Rodríguez, Mirta; Sen(de), Aditi; Sen, Ujjwal; Glauber, Roy J.; Lewenstein, Maciej
2011-01-01
Atom counting theory can be used to study the role of thermal noise in quantum phase transitions and to monitor the dynamics of a quantum system. We illustrate this for a strongly correlated fermionic system, which is equivalent to an anisotropic quantum XY chain in a transverse field and can be realized with cold fermionic atoms in an optical lattice. We analyze the counting statistics across the phase diagram in the presence of thermal fluctuations and during its thermalization when the system is coupled to a heat bath. At zero temperature, the quantum phase transition is reflected in the cumulants of the counting distribution. We find that the signatures of the crossover remain visible at low temperature and are obscured with increasing thermal fluctuations. We find that the same quantities may be used to scan the dynamics during the thermalization of the system.
Quantum Szilard engines with arbitrary spin.
Zhuang, Zekun; Liang, Shi-Dong
2014-11-01
The quantum Szilard engine (QSZE) is a conceptual quantum engine for understanding the fundamental physics of quantum thermodynamics and information physics. We generalize the QSZE to an arbitrary spin case, i.e., a spin QSZE (SQSZE), and we systematically study the basic physical properties of both fermion and boson SQSZEs in a low-temperature approximation. We give the analytic formulation of the total work. For the fermion SQSZE, the work might be absorbed from the environment, and the change rate of the work with temperature exhibits periodicity and even-odd oscillation, which is a generalization of a spinless QSZE. It is interesting that the average absorbed work oscillates regularly and periodically in a large-number limit, which implies that the average absorbed work in a fermion SQSZE is neither an intensive quantity nor an extensive quantity. The phase diagrams of both fermion and boson SQSZEs give the SQSZE doing positive or negative work in the parameter space of the temperature and the particle number of the system, but they have different behaviors because the spin degrees of the fermion and the boson play different roles in their configuration states and corresponding statistical properties. The critical temperature of phase transition depends sensitively on the particle number. By using Landauer's erasure principle, we give the erasure work in a thermodynamic cycle, and we define an efficiency (we refer to it as information-work efficiency) to measure the engine's ability of utilizing information to extract work. We also give the conditions under which the maximum extracted work and highest information-work efficiencies for fermion and boson SQSZEs can be achieved.
Split Orthogonal Group: A Guiding Principle for Sign-Problem-Free Fermionic Simulations
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Ye-Hua; Iazzi, Mauro; Troyer, Matthias; Harcos, Gergely
2015-12-01
We present a guiding principle for designing fermionic Hamiltonians and quantum Monte Carlo (QMC) methods that are free from the infamous sign problem by exploiting the Lie groups and Lie algebras that appear naturally in the Monte Carlo weight of fermionic QMC simulations. Specifically, rigorous mathematical constraints on the determinants involving matrices that lie in the split orthogonal group provide a guideline for sign-free simulations of fermionic models on bipartite lattices. This guiding principle not only unifies the recent solutions of the sign problem based on the continuous-time quantum Monte Carlo methods and the Majorana representation, but also suggests new efficient algorithms to simulate physical systems that were previously prohibitive because of the sign problem.
Conceptual Foundations of Soliton Versus Particle Dualities Toward a Topological Model for Matter
NASA Astrophysics Data System (ADS)
Kouneiher, Joseph
2016-06-01
The idea that fermions could be solitons was actually confirmed in theoretical models in 1975 in the case when the space-time is two-dimensional and with the sine-Gordon model. More precisely S. Coleman showed that two different classical models end up describing the same fermions particle, when the quantum theory is constructed. But in one model the fermion is a quantum excitation of the field and in the other model the particle is a soliton. Hence both points of view can be reconciliated.The principal aim in this paper is to exhibit a solutions of topological type for the fermions in the wave zone, where the equations of motion are non-linear field equations, i.e. using a model generalizing sine- Gordon model to four dimensions, and describe the solutions for linear and circular polarized waves. In other words, the paper treat fermions as topological excitations of a bosonic field.
Two- and four-dimensional representations of the PT - and CPT -symmetric fermionic algebras
NASA Astrophysics Data System (ADS)
Beygi, Alireza; Klevansky, S. P.; Bender, Carl M.
2018-03-01
Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry considerations being that T2=-1 for fermionic systems. In PT -symmetric quantum mechanics an operator has both PT and CPT adjoints. Fermionic operators η , which are quadratically nilpotent (η2=0 ), and algebras with PT and CPT adjoints can be constructed. These algebras obey different anticommutation relations: η ηPT+ηPTη =-1 , where ηPT is the PT adjoint of η , and η ηCPT+ηCPTη =1 , where ηCPT is the CPT adjoint of η . This paper presents matrix representations for the operator η and its PT and CPT adjoints in two and four dimensions. A PT -symmetric second-quantized Hamiltonian modeled on quantum electrodynamics that describes a system of interacting fermions and bosons is constructed within this framework and is solved exactly.
Current rectification in a double quantum dot through fermionic reservoir engineering
NASA Astrophysics Data System (ADS)
Malz, Daniel; Nunnenkamp, Andreas
2018-04-01
Reservoir engineering is a powerful tool for the robust generation of quantum states or transport properties. Using both a weak-coupling quantum master equation and the exact solution, we show that directional transport of electrons through a double quantum dot can be achieved through an appropriately designed electronic environment. Directionality is attained through the interference of coherent and dissipative coupling. The relative phase is tuned with an external magnetic field, such that directionality can be reversed, as well as turned on and off dynamically. Our work introduces fermionic-reservoir engineering, paving the way to a new class of nanoelectronic devices.
Composite fermion theory for bosonic quantum Hall states on lattices.
Möller, G; Cooper, N R
2009-09-04
We study the ground states of the Bose-Hubbard model in a uniform magnetic field, motivated by the physics of cold atomic gases on lattices at high vortex density. Mapping the bosons to composite fermions (CF) leads to the prediction of quantum Hall fluids that have no counterpart in the continuum. We construct trial states for these phases and test numerically the predictions of the CF model. We establish the existence of strongly correlated phases beyond those in the continuum limit and provide evidence for a wider scope of the composite fermion approach beyond its application to the lowest Landau level.
Asymptotic safety of gravity-matter systems
NASA Astrophysics Data System (ADS)
Meibohm, J.; Pawlowski, J. M.; Reichert, M.
2016-04-01
We study the ultraviolet stability of gravity-matter systems for general numbers of minimally coupled scalars and fermions. This is done within the functional renormalization group setup put forward in [N. Christiansen, B. Knorr, J. Meibohm, J. M. Pawlowski, and M. Reichert, Phys. Rev. D 92, 121501 (2015).] for pure gravity. It includes full dynamical propagators and a genuine dynamical Newton's coupling, which is extracted from the graviton three-point function. We find ultraviolet stability of general gravity-fermion systems. Gravity-scalar systems are also found to be ultraviolet stable within validity bounds for the chosen generic class of regulators, based on the size of the anomalous dimension. Remarkably, the ultraviolet fixed points for the dynamical couplings are found to be significantly different from those of their associated background counterparts, once matter fields are included. In summary, the asymptotic safety scenario does not put constraints on the matter content of the theory within the validity bounds for the chosen generic class of regulators.
Stochastic theory of non-Markovian open quantum system
NASA Astrophysics Data System (ADS)
Zhao, Xinyu
In this thesis, a stochastic approach to solving non-Markovian open quantum system called "non-Markovian quantum state diffusion" (NMQSD) approach is discussed in details. The NMQSD approach can serve as an analytical and numerical tool to study the dynamics of the open quantum systems. We explore three main topics of the NMQSD approach. First, we extend the NMQSD approach to many-body open systems such as two-qubit system and coupled N-cavity system. Based on the exact NMQSD equations and the corresponding master equations, we investigate several interesting non-Markovian features due to the memory effect of the environment such as the entanglement generation in two-qubit system and the coherence and entanglement transfer between cavities. Second, we extend the original NMQSD approach to the case that system is coupled to a fermionic bath or a spin bath. By introducing the anti-commutative Grassmann noise and the fermionic coherent state, we derive a fermionic NMQSD equation and the corresponding master equation. The fermionic NMQSD is illustrated by several examples. In a single qubit dissipative example, we have explicitly demonstrated that the NMQSD approach and the ordinary quantum mechanics give rise to the exactly same results. We also show the difference between fermionic bath and bosonic bath. Third, we combine the bosonic and fermionic NMQSD approach to develop a unified NMQSD approach to study the case that an open system is coupled to a bosonic bath and a fermionic bath simultaneously. For all practical purposes, we develop a set of useful computer programs (NMQSD Toolbox) to implement the NMQSD equation in realistic computations. In particular, we develop an algorithm to calculate the exact O operator involved in the NMQSD equation. The NMQSD toolbox is designed to be user friendly, so it will be especially valuable for a non-expert who has interest to employ the NMQSD equation to solve a practical problem. Apart from the central topics on the NMQSD approach, we also study the environment-assisted error correction (EAEC) scheme. We have proposed two new schemes beyond the original EAEC scheme. Our schemes can be used to recover an unknown entangled initial state for a dephasing channel and recover an arbitrary unknown initial state for a dissipative channel using a generalized quantum measurement.
Lorentz-violating modification of Dirac theory based on spin-nondegenerate operators
NASA Astrophysics Data System (ADS)
Reis, J. A. A. S.; Schreck, M.
2017-04-01
The Standard Model extension (SME) parametrizes all possible Lorentz-violating contributions to the Standard Model and general relativity. It can be considered as an effective framework to describe possible quantum-gravity effects for energies much below the Planck energy. In the current paper, the spin-nondegenerate operators of the SME fermion sector are the focus. The propagators, energies, and solutions to the modified Dirac equation are obtained for several families of coefficients including nonminimal ones. The particle energies and spinors are computed at first order in Lorentz violation and, with the optical theorem, they are shown to be consistent with the propagators. The optical theorem is then also used to derive the matrices formed from a spinor and its Dirac conjugate at all orders in Lorentz violation. The results are the first explicit ones derived for the spin-nondegenerate operators. They will prove helpful for future phenomenological calculations in the SME that rely on the footing of quantum field theory.
Application of fermionic marginal constraints to hybrid quantum algorithms
NASA Astrophysics Data System (ADS)
Rubin, Nicholas C.; Babbush, Ryan; McClean, Jarrod
2018-05-01
Many quantum algorithms, including recently proposed hybrid classical/quantum algorithms, make use of restricted tomography of the quantum state that measures the reduced density matrices, or marginals, of the full state. The most straightforward approach to this algorithmic step estimates each component of the marginal independently without making use of the algebraic and geometric structure of the marginals. Within the field of quantum chemistry, this structure is termed the fermionic n-representability conditions, and is supported by a vast amount of literature on both theoretical and practical results related to their approximations. In this work, we introduce these conditions in the language of quantum computation, and utilize them to develop several techniques to accelerate and improve practical applications for quantum chemistry on quantum computers. As a general result, we demonstrate how these marginals concentrate to diagonal quantities when measured on random quantum states. We also show that one can use fermionic n-representability conditions to reduce the total number of measurements required by more than an order of magnitude for medium sized systems in chemistry. As a practical demonstration, we simulate an efficient restoration of the physicality of energy curves for the dilation of a four qubit diatomic hydrogen system in the presence of three distinct one qubit error channels, providing evidence these techniques are useful for pre-fault tolerant quantum chemistry experiments.
Affine group formulation of the Standard Model coupled to gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw; Ita, Eyo, E-mail: ita@usna.edu; Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw
In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of themore » Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.« less
Superconductivity from a non-Fermi-liquid metal: Kondo fluctuation mechanism in slave-fermion theory
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok
2010-03-01
We propose Kondo fluctuation mechanism of superconductivity, differentiated from the spin-fluctuation theory as the standard model for unconventional superconductivity in the weak-coupling approach. Based on the U(1) slave-fermion representation of an effective Anderson lattice model, where localized spins are described by the Schwinger boson theory and hybridization or Kondo fluctuations weaken antiferromagnetic correlations of localized spins, we found an antiferromagnetic quantum critical point from an antiferromagnetic metal to a heavy-fermion metal in our recent study. The Kondo-induced antiferromagnetic quantum critical point was shown to be described by both conduction electrons and fermionic holons interacting with critical spin fluctuations given by deconfined bosonic spinons with a spin quantum number 1/2. Surprisingly, such critical modes turned out to be described by the dynamical exponent z=3 , giving rise to the well-known non-Fermi-liquid physics such as the divergent Grüneisen ratio with an exponent 2/3 and temperature-linear resistivity in three dimensions. We find that the z=3 antiferromagnetic quantum critical point becomes unstable against superconductivity, where critical spinon excitations give rise to pairing correlations between conduction electrons and between fermionic holons, respectively, via hybridization fluctuations. Such two kinds of pairing correlations result in multigap unconventional superconductivity around the antiferromagnetic quantum critical point of the slave-fermion theory, where s -wave pairing is not favored generically due to strong correlations. We show that the ratio between each superconducting gap for conduction electrons Δc and holons Δf and the transition temperature Tc is 2Δc/Tc˜9 and 2Δf/Tc˜O(10-1) , remarkably consistent with CeCoIn5 . A fingerprint of the Kondo mechanism is emergence of two kinds of resonance modes in not only spin but also charge fluctuations, where the charge resonance mode at an antiferromagnetic wave vector originates from d -wave pairing of spinless holons. We discuss how the Kondo fluctuation theory differs from the spin-fluctuation approach.
Quantum Gas Microscope for Fermionic Atoms
NASA Astrophysics Data System (ADS)
Okan, Melih; Cheuk, Lawrence; Nichols, Matthew; Lawrence, Katherine; Zhang, Hao; Zwierlein, Martin
2016-05-01
Strongly interacting fermions define the properties of complex matter throughout nature, from atomic nuclei and modern solid state materials to neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. In this poster we demonstrate the realization of a quantum gas microscope for fermionic 40 K atoms trapped in an optical lattice and the recent experiments which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high- resolution optics to simultaneously cool and image individual atoms with single lattice site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site resolved imaging of fermions enables the direct observation of magnetic order, time resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement. NSF, AFOSR-PECASE, AFOSR-MURI on Exotic Phases of Matter, ARO-MURI on Atomtronics, ONR, a Grant from the Army Research Office with funding from the DARPA OLE program, and the David and Lucile Packard Foundation.
Modeling electron fractionalization with unconventional Fock spaces.
Cobanera, Emilio
2017-08-02
It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality [Formula: see text] of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.
NASA Astrophysics Data System (ADS)
Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; Dagotto, Elbio
2015-06-01
Lattice spin-fermion models are important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the "spins," are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The "traveling cluster approximation" (TCA) is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 103 sites. In this publication, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. This allows us to solve generic spin-fermion models easily on 104 lattice sites and with some effort on 105 lattice sites, representing the record lattice sizes studied for this family of models.
NASA Astrophysics Data System (ADS)
Wang, Xiaoyu; Schattner, Yoni; Berg, Erez; Fernandes, Rafael
The maximum transition temperature Tc observed in the phase diagrams of several unconventional superconductors takes place in the vicinity of a putative antiferromagnetic quantum critical point. This observation motivated the theoretical proposal that superconductivity in these systems may be driven by quantum critical fluctuations, which in turn can also promote non-Fermi liquid behavior. In this talk, we present a combined analytical and sign-problem-free Quantum Monte Carlo investigation of the spin-fermion model - a widely studied low-energy model for the interplay between superconductivity and magnetic fluctuations. By engineering a series of band dispersions that interpolate between near-nested and open Fermi surfaces, and by also varying the strength of the spin-fermion interaction, we find that the hot spots of the Fermi surface provide the dominant contribution to the pairing instability in this model. We show that the analytical expressions for Tc and for the pairing susceptibility, obtained within a large-N Eliashberg approximation to the spin-fermion model, agree well with the Quantum Monte Carlo data, even in the regime of interactions comparable to the electronic bandwidth. DE-SC0012336.
Xu, Yang; Miotkowski, Ireneusz; Chen, Yong P.
2016-05-04
Topological insulators are a novel class of quantum matter with a gapped insulating bulk, yet gapless spin-helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe 2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conductance quantum at themore » double Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction, respectively. As a result, such a system paves the way to explore rich physics, ranging from topological magnetoelectric effects to exciton condensation.« less
A fermionic de Finetti theorem
NASA Astrophysics Data System (ADS)
Krumnow, Christian; Zimborás, Zoltán; Eisert, Jens
2017-12-01
Quantum versions of de Finetti's theorem are powerful tools, yielding conceptually important insights into the security of key distribution protocols or tomography schemes and allowing one to bound the error made by mean-field approaches. Such theorems link the symmetry of a quantum state under the exchange of subsystems to negligible quantum correlations and are well understood and established in the context of distinguishable particles. In this work, we derive a de Finetti theorem for finite sized Majorana fermionic systems. It is shown, much reflecting the spirit of other quantum de Finetti theorems, that a state which is invariant under certain permutations of modes loses most of its anti-symmetric character and is locally well described by a mode separable state. We discuss the structure of the resulting mode separable states and establish in specific instances a quantitative link to the quality of the Hartree-Fock approximation of quantum systems. We hint at a link to generalized Pauli principles for one-body reduced density operators. Finally, building upon the obtained de Finetti theorem, we generalize and extend the applicability of Hudson's fermionic central limit theorem.
Quantum Tunneling from Apparent Horizon of Rainbow-FRW Universe
NASA Astrophysics Data System (ADS)
Lin, Kai; Yang, Shuzheng
2009-07-01
The quantum tunneling from the apparent horizon of rainbow-FRW universe is studied in this paper. We apply the semi-classical approximation, which is put forward by Parikh and Wilczek et al., to research on the scalar field particles tunneling from the apparent horizon of the rainbow-FRW universe, and then use the spin 1/2 Fermions tunneling theory, which brought forward by Kerner and Mann firstly, to research on the Fermions Hawking radiation via semi-classical approximation. Finally, we discuss the meanings of the quantum effect via Finsler geometry.
Efficient quantum algorithm for computing n-time correlation functions.
Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E
2014-07-11
We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.
Extending matchgates into universal quantum computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brod, Daniel J.; Galvao, Ernesto F.
2011-08-15
Matchgates are a family of two-qubit gates associated with noninteracting fermions. They are classically simulatable if acting only on nearest neighbors but become universal for quantum computation if we relax this restriction or use swap gates [Jozsa and Miyake, Proc. R. Soc. A 464, 3089 (2008)]. We generalize this result by proving that any nonmatchgate parity-preserving unitary is capable of extending the computational power of matchgates into universal quantum computation. We identify the single local invariant of parity-preserving unitaries responsible for this, and discuss related results in the context of fermionic systems.
Repelling, binding, and oscillating of two-particle discrete-time quantum walks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qinghao; Li, Zhi-Jian, E-mail: zjli@sxu.edu.cn
In this paper, we investigate the effects of particle–particle interaction and static force on the propagation of probability distribution in two-particle discrete-time quantum walk, where the interaction and static force are expressed as a collision phase and a linear position-dependent phase, respectively. It is found that the interaction can lead to boson repelling and fermion binding. The static force also induces Bloch oscillation and results in a continuous transition from boson bunching to fermion anti-bunching. The interplays of particle–particle interaction, quantum interference, and Bloch oscillation provide a versatile framework to study and simulate many-particle physics via quantum walks.
Physics Meets Philosophy at the Planck Scale
NASA Astrophysics Data System (ADS)
Callender, Craig; Huggett, Nick
2001-04-01
Preface; 1. Introduction Craig Callendar and Nick Huggett; Part I. Theories of Quantum Gravity and their Philosophical Dimensions: 2. Spacetime and the philosophical challenge of quantum gravity Jeremy Butterfield and Christopher Isham; 3. Naive quantum gravity Steven Weinstein; 4. Quantum spacetime: what do we know? Carlo Rovelli; Part II. Strings: 5. Reflections on the fate of spacetime Edward Witten; 6. A philosopher looks at string theory Robert Weingard; 7. Black holes, dumb holes, and entropy William G. Unruh; Part III. Topological Quantum Field Theory: 8. Higher-dimensional algebra and Planck scale physics John C. Baez; Part IV. Quantum Gravity and the Interpretation of General Relativity: 9. On general covariance and best matching Julian B. Barbour; 10. Pre-Socratic quantum gravity Gordon Belot and John Earman; 11. The origin of the spacetime metric: Bell's 'Lorentzian Pedagogy' and its significance in general relativity Harvey R. Brown and Oliver Pooley; Part IV. Quantum Gravity and the Interpretation of Quantum Mechanics: 12. Quantum spacetime without observers: ontological clarity and the conceptual foundations of quantum gravity Sheldon Goldstein and Stefan Teufel; 13. On gravity's role in quantum state reduction Roger Penrose; 14. Why the quantum must yield to gravity Joy Christian.
Non-abelian anyons and topological quantum information processing in 1D wire networks
NASA Astrophysics Data System (ADS)
Alicea, Jason
2012-02-01
Topological quantum computation provides an elegant solution to decoherence, circumventing this infamous problem at the hardware level. The most basic requirement in this approach is the ability to stabilize and manipulate particles exhibiting non-Abelian exchange statistics -- Majorana fermions being the simplest example. Curiously, Majorana fermions have been predicted to arise both in 2D systems, where non-Abelian statistics is well established, and in 1D, where exchange statistics of any type is ill-defined. An important question then arises: do Majorana fermions in 1D hold the same technological promise as their 2D counterparts? In this talk I will answer this question in the affirmative, describing how one can indeed manipulate and harness the non-Abelian statistics of Majoranas in a remarkably simple fashion using networks formed by quantum wires or topological insulator edges.
Quantum return probability of a system of N non-interacting lattice fermions
NASA Astrophysics Data System (ADS)
Krapivsky, P. L.; Luck, J. M.; Mallick, K.
2018-02-01
We consider N non-interacting fermions performing continuous-time quantum walks on a one-dimensional lattice. The system is launched from a most compact configuration where the fermions occupy neighboring sites. We calculate exactly the quantum return probability (sometimes referred to as the Loschmidt echo) of observing the very same compact state at a later time t. Remarkably, this probability depends on the parity of the fermion number—it decays as a power of time for even N, while for odd N it exhibits periodic oscillations modulated by a decaying power law. The exponent also slightly depends on the parity of N, and is roughly twice smaller than what it would be in the continuum limit. We also consider the same problem, and obtain similar results, in the presence of an impenetrable wall at the origin constraining the particles to remain on the positive half-line. We derive closed-form expressions for the amplitudes of the power-law decay of the return probability in all cases. The key point in the derivation is the use of Mehta integrals, which are limiting cases of the Selberg integral.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, Gerardo, E-mail: ortizg@indiana.edu; Cobanera, Emilio
We investigate Majorana modes of number-conserving fermionic superfluids from both basic physics principles, and concrete models perspectives. After reviewing a criterion for establishing topological superfluidity in interacting systems, based on many-body fermionic parity switches, we reveal the emergence of zero-energy modes anticommuting with fermionic parity. Those many-body Majorana modes are constructed as coherent superpositions of states with different number of fermions. While realization of Majorana modes beyond mean field is plausible, we show that the challenge to quantum-control them is compounded by particle-conservation, and more realistic protocols will have to balance engineering needs with astringent constraints coming from superselection rules.more » Majorana modes in number-conserving systems are the result of a peculiar interplay between quantum statistics, fermionic parity, and an unusual form of spontaneous symmetry breaking. We test these ideas on the Richardson–Gaudin–Kitaev chain, a number-conserving model solvable by way of the algebraic Bethe ansatz, and equivalent in mean field to a long-range Kitaev chain.« less
Particle statistics and lossy dynamics of ultracold atoms in optical lattices
NASA Astrophysics Data System (ADS)
Yago Malo, J.; van Nieuwenburg, E. P. L.; Fischer, M. H.; Daley, A. J.
2018-05-01
Experimental control over ultracold quantum gases has made it possible to investigate low-dimensional systems of both bosonic and fermionic atoms. In closed one-dimensional systems there are many similarities in the dynamics of local quantities for spinless fermions and strongly interacting "hard-core" bosons, which on a lattice can be formalized via a Jordan-Wigner transformation. In this study, we analyze the similarities and differences for spinless fermions and hard-core bosons on a lattice in the presence of particle loss. The removal of a single fermion causes differences in local quantities compared with the bosonic case because of the different particle exchange symmetry in the two cases. We identify deterministic and probabilistic signatures of these dynamics in terms of local particle density, which could be measured in ongoing experiments with quantum gas microscopes.
Role of quantum statistics in multi-particle decay dynamics
NASA Astrophysics Data System (ADS)
Marchewka, Avi; Granot, Er'el
2015-04-01
The role of quantum statistics in the decay dynamics of a multi-particle state, which is suddenly released from a confining potential, is investigated. For an initially confined double particle state, the exact dynamics is presented for both bosons and fermions. The time-evolution of the probability to measure two-particle is evaluated and some counterintuitive features are discussed. For instance, it is shown that although there is a higher chance of finding the two bosons (as oppose to fermions, and even distinguishable particles) at the initial trap region, there is a higher chance (higher than fermions) of finding them on two opposite sides of the trap as if the repulsion between bosons is higher than the repulsion between fermions. The results are demonstrated by numerical simulations and are calculated analytically in the short-time approximation. Furthermore, experimental validation is suggested.
Fermions tunneling from the Horowitz-Strominger Dilaton black hole
NASA Astrophysics Data System (ADS)
Li, Qiang; Zeng, Xiaoxiong
2009-06-01
Based on the work of Kerner and Mann, fermions tunneling from the Horowitz-Strominger Dilaton black hole on the membrane is studied. Owing to the coupling among electromagnetic field, matter field and gravity field, the Dirac equation of charged particles is introduced, and according to that, the expected emission temperature is obtained. After the self-gravitational interaction is considered, it is found that the tunneling rate of fermions also satisfies the underlying Unitary theory as the case of scalar particles.
NASA Astrophysics Data System (ADS)
Hsieh, Chang-Yu; Cao, Jianshu
2018-01-01
We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levay, Peter; Nagy, Szilvia; Pipek, Janos
An elementary formula for the von Neumann and Renyi entropies describing quantum correlations in two-fermionic systems having four single-particle states is presented. An interesting geometric structure of fermionic entanglement is revealed. A connection with the generalized Pauli principle is established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodama, Yuta; Kokubu, Kento; Sawado, Nobuyuki
We construct brane solutions in 6-dimensional Einstein-Skyrme systems. A class of baby-Skyrmion solutions realizes warped compactification of the extra dimensions and gravity localization on the brane for the negative bulk cosmological constant. Coupling of the fermions with brane Skyrmions leads to brane localized fermions. In terms of the level crossing picture, emergence of the massive localized modes are observed. The nonlinear nature of Skyrmions brings richer information for the fermions' level structure. It comprises doubly degenerate lowest plus single excited modes. Three generations of fundamental fermions are associated with this distinctive structure. The mass hierarchy of quarks or leptons appearedmore » in terms of slightly deformed baby Skyrmions with topological charge three.« less
Non-Abelian fermionization and fractional quantum Hall transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah
There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall interplateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall inter-plateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length exponentmore » $$\
Non-Abelian fermionization and fractional quantum Hall transitions
Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah
2018-02-08
There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall interplateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall inter-plateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length exponentmore » $$\
Controlled parity switch of persistent currents in quantum ladders
NASA Astrophysics Data System (ADS)
Filippone, Michele; Bardyn, Charles-Edouard; Giamarchi, Thierry
2018-05-01
We investigate the behavior of persistent currents for a fixed number of noninteracting fermions in a periodic quantum ladder threaded by Aharonov-Bohm and transverse magnetic fluxes Φ and χ . We show that the coupling between ladder legs provides a way to effectively change the ground-state fermion-number parity, by varying χ . Specifically, we demonstrate that varying χ by 2 π (one flux quantum) leads to an apparent fermion-number parity switch. We find that persistent currents exhibit a robust 4 π periodicity as a function of χ , despite the fact that χ →χ +2 π leads to modifications of order 1 /N of the energy spectrum, where N is the number of sites in each ladder leg. We show that these parity-switch and 4 π periodicity effects are robust with respect to temperature and disorder, and outline potential physical realizations using cold atomic gases and photonic lattices, for bosonic analogs of the effects.
From bosonic topological transition to symmetric fermion mass generation
NASA Astrophysics Data System (ADS)
You, Yi-Zhuang; He, Yin-Chen; Vishwanath, Ashvin; Xu, Cenke
2018-03-01
A bosonic topological transition (BTT) is a quantum critical point between the bosonic symmetry-protected topological phase and the trivial phase. In this work, we investigate such a transition in a (2+1)-dimensional lattice model with the maximal microscopic symmetry: an internal SO (4 ) symmetry. We derive a description for this transition in terms of compact quantum electrodynamics (QED) with four fermion flavors (Nf=4 ). Within a systematic renormalization group analysis, we identify the critical point with the desired O (4 ) emergent symmetry and all expected deformations. By lowering the microscopic symmetry, we recover the previous Nf=2 noncompact QED description of the BTT. Finally, by merging two BTTs we recover a previously discussed theory of symmetric mass generation, as an SU (2 ) quantum chromodynamics-Higgs theory with Nf=4 flavors of SU (2 ) fundamental fermions and one SU (2 ) fundamental Higgs boson. This provides a consistency check on both theories.
Ferromagnetic quantum critical point in the heavy-fermion metal YbNi4(P(1-x)As(x))2.
Steppke, Alexander; Küchler, Robert; Lausberg, Stefan; Lengyel, Edit; Steinke, Lucia; Borth, Robert; Lühmann, Thomas; Krellner, Cornelius; Nicklas, Michael; Geibel, Christoph; Steglich, Frank; Brando, Manuel
2013-02-22
Unconventional superconductivity and other previously unknown phases of matter exist in the vicinity of a quantum critical point (QCP): a continuous phase change of matter at absolute zero. Intensive theoretical and experimental investigations on itinerant systems have shown that metallic ferromagnets tend to develop via either a first-order phase transition or through the formation of intermediate superconducting or inhomogeneous magnetic phases. Here, through precision low-temperature measurements, we show that the Grüneisen ratio of the heavy fermion metallic ferromagnet YbNi(4)(P(0.92)As(0.08))(2) diverges upon cooling to T = 0, indicating a ferromagnetic QCP. Our observation that this kind of instability, which is forbidden in d-electron metals, occurs in a heavy fermion system will have a large impact on the studies of quantum critical materials.
Exotic topological density waves in cold atomic Rydberg-dressed fermions
Li, Xiaopeng; Sarma, S Das
2015-01-01
Versatile controllability of interactions in ultracold atomic and molecular gases has now reached an era where quantum correlations and unconventional many-body phases can be studied with no corresponding analogues in solid-state systems. Recent experiments in Rydberg atomic gases have achieved exquisite control over non-local interactions, allowing novel quantum phases unreachable with the usual local interactions in atomic systems. Here we study Rydberg-dressed atomic fermions in a three-dimensional optical lattice predicting the existence of hitherto unheard-of exotic mixed topological density wave phases. By varying the spatial range of the non-local interaction, we find various chiral density waves with spontaneous time-reversal symmetry breaking, whose quasiparticles form three-dimensional quantum Hall and Weyl semimetal states. Remarkably, certain density waves even exhibit mixed topologies beyond the existing topological classification. Our results suggest gapless fermionic states could exhibit far richer topology than previously expected. PMID:25972134
Fractionally charged skyrmions in fractional quantum Hall effect
Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.
2015-01-01
The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906
NASA Astrophysics Data System (ADS)
Murugan, Jeff; Weltman, Amanda; Ellis, George F. R.
2012-07-01
1. The problem with quantum gravity Jeff Murugan, Amanda Weltman and George F. R. Eliis; 2. A dialogue on the nature of gravity Thanu Padmanabhan; 3. Effective theories and modifications of gravity Cliff Burgess; 4. The small scale structure of spacetime Steve Carlip; 5. Ultraviolet divergences in supersymmetric theories Kellog Stelle; 6. Cosmological quantum billiards Axel Kleinschmidt and Hermann Nicolai; 7. Progress in RNS string theory and pure spinors Dimitri Polyakov; 8. Recent trends in superstring phenomenology Massimo Bianchi; 9. Emergent spacetime Robert de Mello Koch and Jeff Murugan; 10. Loop quantum gravity Hanno Sahlmann; 11. Loop quantum gravity and cosmology Martin Bojowald; 12. The microscopic dynamics of quantum space as a group field theory Daniele Oriti; 13. Causal dynamical triangulations and the quest for quantum gravity Jan Ambjørn, J. Jurkiewicz and Renate Loll; 14. Proper time is stochastic time in 2D quantum gravity Jan Ambjorn, Renate Loll, Y. Watabiki, W. Westra and S. Zohren; 15. Logic is to the quantum as geometry is to gravity Rafael Sorkin; 16. Causal sets: discreteness without symmetry breaking Joe Henson; 17. The Big Bang, quantum gravity, and black-hole information loss Roger Penrose; Index.
Extending matchgates into universal quantum computation
NASA Astrophysics Data System (ADS)
Brod, Daniel J.; Galvão, Ernesto F.
2011-08-01
Matchgates are a family of two-qubit gates associated with noninteracting fermions. They are classically simulatable if acting only on nearest neighbors but become universal for quantum computation if we relax this restriction or use swap gates [Jozsa and Miyake, Proc. R. Soc. ANATUAS1364-502110.1098/rspa.2008.0189 464, 3089 (2008)]. We generalize this result by proving that any nonmatchgate parity-preserving unitary is capable of extending the computational power of matchgates into universal quantum computation. We identify the single local invariant of parity-preserving unitaries responsible for this, and discuss related results in the context of fermionic systems.
Quantum entanglement and quantum information in biological systems (DNA)
NASA Astrophysics Data System (ADS)
Hubač, Ivan; Švec, Miloslav; Wilson, Stephen
2017-12-01
Recent studies of DNA show that the hydrogen bonds between given base pairs can be treated as diabatic systems with spin-orbit coupling. For solid state systems strong diabaticity and spin-orbit coupling the possibility of forming Majorana fermions has been discussed. We analyze the hydrogen bonds in the base pairs in DNA from this perspective. Our analysis is based on a quasiparticle supersymmetric transformation which couples electronic and vibrational motion and includes normal coordinates and the corresponding momenta. We define qubits formed by Majorana fermions in the hydrogen bonds and also discuss the entangled states in base pairs. Quantum information and quantum entropy are introduced. In addition to the well-known classical information connected with the DNA base pairs, we also consider quantum information and show that the classical and quantum information are closely connected.
Bold Diagrammatic Monte Carlo Method Applied to Fermionized Frustrated Spins
NASA Astrophysics Data System (ADS)
Kulagin, S. A.; Prokof'ev, N.; Starykh, O. A.; Svistunov, B.; Varney, C. N.
2013-02-01
We demonstrate, by considering the triangular lattice spin-1/2 Heisenberg model, that Monte Carlo sampling of skeleton Feynman diagrams within the fermionization framework offers a universal first-principles tool for strongly correlated lattice quantum systems. We observe the fermionic sign blessing—cancellation of higher order diagrams leading to a finite convergence radius of the series. We calculate the magnetic susceptibility of the triangular-lattice quantum antiferromagnet in the correlated paramagnet regime and reveal a surprisingly accurate microscopic correspondence with its classical counterpart at all accessible temperatures. The extrapolation of the observed relation to zero temperature suggests the absence of the magnetic order in the ground state. We critically examine the implications of this unusual scenario.
Parametric control in coupled fermionic oscillators
NASA Astrophysics Data System (ADS)
Ghosh, Arnab
2014-10-01
A simple model of parametric coupling between two fermionic oscillators is considered. Statistical properties, in particular the mean and variance of quanta for a single mode, are described by means of a time-dependent reduced density operator for the system and the associated P function. The density operator for fermionic fields as introduced by Cahill and Glauber [K. E. Cahill and R. J. Glauber, Phys. Rev. A 59, 1538 (1999), 10.1103/PhysRevA.59.1538] thus can be shown to provide a quantum mechanical description of the fields closely resembling their bosonic counterpart. In doing so, special emphasis is given to population trapping, and quantum control over the states of the system.
The Coupling of Gravity to Spin and Electromagnetism
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel; Yau, Shing-Tung
The coupled Einstein-Dirac-Maxwell equations are considered for a static, spherically symmetric system of two fermions in a singlet spinor state. Stable soliton-like solutions are shown to exist, and we discuss the regularizing effect of gravity from a Feynman diagram point of view.
The Fermionic Projector, entanglement and the collapse of the wave function
NASA Astrophysics Data System (ADS)
Finster, Felix
2011-07-01
After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.
Drude Conductivity of Dirac Fermions in Graphene
2010-01-01
interband transitions, as required by the sum rule. Our surprising observation indicates that many-body effects and Dirac fermion-impurity interactions...reduction of free electron oscillator strength is corroborated by corresponding changes in graphene interband transitions, as required by the sum...dimensions. Researchers have demonstrated in graphene exotic Dirac fermion phenomena ranging from anomalous quantum Hall effects 1,2 to Klein tunneling 3 in
Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; ...
2015-06-08
Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris
Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less
He, James J.; Wu, Jiansheng; Choy, Ting-Pong; Liu, Xiong-Jun; Tanaka, Y.; Law, K. T.
2014-01-01
Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors. PMID:24492649
Entanglement negativity bounds for fermionic Gaussian states
NASA Astrophysics Data System (ADS)
Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán
2018-04-01
The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.
Spin-Orbit Coupling and Novel Electronic States at the Interfaces of Heavy Fermion Materials
2016-02-22
idea, which is to study novel electronic phases at the interfaces of heavy fermion heterostructures. The key physics is that the strong and tunable...of Heavy Fermion Materials The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 2D heavy fermions, quantum criticality, spin-orbit
Relativistic Fermions Generated by Square Lattices in Layered Compounds
NASA Astrophysics Data System (ADS)
Mao, Zhiqiang
Recent discoveries of topological semimetals have generated immense interests since they represent new topological states of quantum matters. In this talk, I will present our recent studies on topological semimetals, which are focused on Dirac/Weyl fermions generated by square lattices in layered compounds. I will first report on our discoveries of two new Dirac materials Sr1-yMn1-zSb2 and BaMnSb2 in which nearly massless Dirac fermions are generated by 2D Sb layers. In Sr1-yMn1-zSb2, Dirac fermions are found to coexist with ferromagnetism, offering a rare opportunity to investigate the interplay between relativistic fermions and spontaneous time reversal symmetry breaking and explore a possible magnetic Weyl state. Then I will show our quantum oscillation studies on two new Dirac nodal line semimetals - ZrSiSe and ZrSiTe. We have not only revealed their signatures of nodal-line fermions, but also demonstrated that their atomically thin crystals are accessible via mechanical exfoliation, raising the possibility of realizing the theoretically predicted 2D topological insulators. Finally I will discuss exotic quantum transport behavior arising from the zeroth Landau level in Weyl semimetal YbMnBi2. This work is supported by the U.S. DOE under Grant No. DE-SC0014208 (support for the work on ZrSiSe and ZrSiTe) and DOE-EPSCoR Grant No. DE-SC0012432 with additional support from the Louisiana BoR (support for the work on (Sr/Ba)MnSb2 and YbMnBi2).
Cosmic Strings Stabilized by Quantum Fluctuations
NASA Astrophysics Data System (ADS)
Weigel, H.
2017-03-01
Fermion quantum corrections to the energy of cosmic strings are computed. A number of rather technical tools are needed to formulate this correction, and isospin and gauge invariance are employed to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. It is found that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.
Fluctuation-induced continuous transition and quantum criticality in Dirac semimetals
Classen, Laura; Herbut, Igor F.; Scherer, Michael M.
2017-09-20
In this paper, we establish a scenario where fluctuations of new degrees of freedom at a quantum phase transition change the nature of a transition beyond the standard Landau-Ginzburg paradigm. To this end, we study the quantum phase transition of gapless Dirac fermions coupled to a Z 3 symmetric order parameter within a Gross-Neveu-Yukawa model in 2+1 dimensions, appropriate for the Kekulé transition in honeycomb lattice materials. For this model, the standard Landau-Ginzburg approach suggests a first-order transition due to the symmetry-allowed cubic terms in the action. At zero temperature, however, quantum fluctuations of the massless Dirac fermions have tomore » be included. We show that they reduce the putative first-order character of the transition and can even render it continuous, depending on the number of Dirac fermions N f. A nonperturbative functional renormalization group approach is employed to investigate the phase transition for a wide range of fermion numbers and we obtain the critical N f, where the nature of the transition changes. Furthermore, it is shown that for large N f the change from the first to second order of the transition as a function of dimension occurs exactly in the physical 2+1 dimensions. Finally, we compute the critical exponents and predict sizable corrections to scaling for N f = 2.« less
Impurity-generated non-Abelions
NASA Astrophysics Data System (ADS)
Simion, G.; Kazakov, A.; Rokhinson, L. P.; Wojtowicz, T.; Lyanda-Geller, Y. B.
2018-06-01
Two classes of topological superconductors and Majorana modes in condensed matter systems are known to date: one in which disorder induced by impurities strongly suppresses topological superconducting gap and is detrimental to Majorana modes, and another where Majorana fermions are protected by a disorder-robust topological superconductor gap. Observation and control of Majorana fermions and other non-Abelions often requires a symmetry of an underlying system leading to a gap in the single-particle or quasiparticle spectra. In semiconductor structures, impurities that provide charge carriers introduce states into the gap and enable conductance and proximity-induced superconductivity via the in-gap states. Thus a third class of topological superconductivity and Majorana modes emerges, in which topological superconductivity and Majorana fermions appear exclusively when impurities generate in-gap states. We show that impurity-enabled topological superconductivity is realized in a quantum Hall ferromagnet, when a helical domain wall is coupled to an s -wave superconductor. As an example of emergence of topological superconductivity in quantum Hall ferromagnets, we consider the integer quantum Hall effect in Mn-doped CdTe quantum wells. Recent experiments on transport through the quantum Hall ferromagnet domain wall in this system indicated a vital role of impurities in the conductance, but left unresolved the question whether impurities preclude generation of Majorana fermions and other non-Abelions in such systems in general. Here, solving a general quantum-mechanical problem of impurity bound states in a system of spin-orbit coupled Landau levels, we demonstrate that impurity-induced Majorana modes emerge at boundaries between topological and conventional superconducting states generated in a domain wall due to proximity to an s superconductor. We consider both short-range disorder and a smooth random potential. The phase diagram of the system is defined by characteristic disorder, gate voltage induced angular momentum splitting of impurity levels, and by a proximity superconducting gap. The phase diagram exhibits two ranges of gate voltage with conventional superconducting order separated by a gate voltage range with topological superconductivity. We show that electrostatic control of domain walls in an integer quantum Hall ferromagnet allows manipulation of Majorana fermions. Ferromagnetic transitions in the fractional quantum Hall regime may lead to the formation and electrostatic control of higher order non-Abelian excitations.
Unconventional superconductivity and quantum criticality in the heavy fermions CeIrSi3 and CeRhSi3
NASA Astrophysics Data System (ADS)
Landaeta, J. F.; Subero, D.; Catalá, D.; Taylor, S. V.; Kimura, N.; Settai, R.; Īnuki, Y.; Sigrist, M.; Bonalde, I.
2018-03-01
In most strongly correlated electron systems superconductivity appears nearby a magnetic quantum critical point (QCP) which is believed to cause unconventional behaviors. In order to explore this physics, we present here a study of the heavy-fermion superconductors CeIrSi3 and CeRhSi3 carried out using a newly developed system for high-resolution magnetic penetration-depth measurements under pressure. Superconductivity in CeIrSi3 shows a change from an excitation spectrum with a line-nodal gap to one which is entirely gapful when pressure is close but not yet at the QCP. In contrast, CeRhSi3 does not possess a T =0 quantum phase transition and the superconducting phase remains for all accessible pressures with a nodal gap. Combining both results suggests that in these compounds unconventional superconducting behaviors are rather connected with the coexisting antiferromagnetic order. This study provides another viewpoint on the interplay of superconductivity, magnetism, and quantum criticality in CeIrSi3 and CeRhSi3 and maybe in other heavy fermions.
Systematic dimensionality reduction for continuous-time quantum walks of interacting fermions
NASA Astrophysics Data System (ADS)
Izaac, J. A.; Wang, J. B.
2017-09-01
To extend the continuous-time quantum walk (CTQW) to simulate P distinguishable particles on a graph G composed of N vertices, the Hamiltonian of the system is expanded to act on an NP-dimensional Hilbert space, in effect, simulating the multiparticle CTQW on graph G via a single-particle CTQW propagating on the Cartesian graph product G□P. The properties of the Cartesian graph product have been well studied, and classical simulation of multiparticle CTQWs are common in the literature. However, the above approach is generally applied as is when simulating indistinguishable particles, with the particle statistics then applied to the propagated NP state vector to determine walker probabilities. We address the following question: How can we modify the underlying graph structure G□P in order to simulate multiple interacting fermionic CTQWs with a reduction in the size of the state space? In this paper, we present an algorithm for systematically removing "redundant" and forbidden quantum states from consideration, which provides a significant reduction in the effective dimension of the Hilbert space of the fermionic CTQW. As a result, as the number of interacting fermions in the system increases, the classical computational resources required no longer increases exponentially for fixed N .
Interplay between magnetism and relativistic fermions in Eu doped (Sr/Ba)MnSb2
NASA Astrophysics Data System (ADS)
Liu, Jinyu; Hu, Jin; Zhu, Yanglin; Chuang, Alyssa; Graf, David; Jaime, Marcelo; Balakirev, Fedor; Weickert, Franziska; Zhang, Qiang; Ditusa, John; Wu, Yan; Cao, Huibo; Mao, Zhiqiang
Layered compounds AMnBi2 (A =Ca, Sr, Ba, Eu, and Yb) have been established as Dirac materials with fascinating properties. In our previous work, we have demonstrated that Sr1-y Mn1-z Sb2 (y, z <0.1), isostructural to AMnBi2, not only host relativistic fermions, but also exhibit ferromagnetic properties, with its ferromagnetism being coupled to the relativistic fermions' transport. To gain further insight into the relativistic fermion-magnetism coupling, we have synthesized a series of Eu doped (Sr/Ba)MnSb2 single crystals and found Eu moments order antiferromagnetically. Through neutron scattering experiments, we determined the magnetic structures for Sr1-xEuxMnSb2 with x = 0.2, 0.5, and 0.8. From magnetotransport measurements, we find the Eu antiferromagnetism is also coupled to relativistic fermion transport. More importantly, we observed a novel quantum phase with saturated magnetoresistivity near the quantum limit for the 10% Eu doped BaMnSb2 sample. We will discuss possible mechanisms for this novel phase.
Fermionic Tunneling Effect and Hawking Radiation in a Non Commutative FRW Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhalouf, H.; Aissaoui, H.; Mebarki, N.
2010-10-31
The formalism of a non commutative gauge gravity is applied to an FRW universe and the corresponding modified metric, veirbein and spin connection components are obtained. Moreover, using the Hamilton-Jacobi method and as a pure space-time deformation effect, the NCG Hawking radiation via a fermionic tunneling transition through the dynamical NCG horizon is also studied.
Entanglement entropies and fermion signs of critical metals
NASA Astrophysics Data System (ADS)
Kaplis, N.; Krüger, F.; Zaanen, J.
2017-04-01
The fermion sign problem is often viewed as a sheer inconvenience that plagues numerical studies of strongly interacting electron systems. Only recently has it been suggested that fermion signs are fundamental for the universal behavior of critical metallic systems and crucially enhance their degree of quantum entanglement. In this work we explore potential connections between emergent scale invariance of fermion sign structures and scaling properties of bipartite entanglement entropies. Our analysis is based on a wave-function Ansatz that incorporates collective, long-range backflow correlations into fermionic Slater determinants. Such wave functions mimic the collapse of a Fermi liquid at a quantum critical point. Their nodal surfaces, a representation of the fermion sign structure in many-particle configurations space, show fractal behavior up to a length scale ξ that diverges at a critical backflow strength. We show that the Hausdorff dimension of the fractal nodal surface depends on ξ , the number of fermions and the exponent of the backflow. For the same wave functions we numerically calculate the second Rényi entanglement entropy S2. Our results show a crossover from volume scaling, S2˜ℓθ (θ =2 in d =2 dimensions), to the characteristic Fermi-liquid behavior S2˜ℓ lnℓ on scales larger than ξ . We find that volume scaling of the entanglement entropy is a robust feature of critical backflow fermions, independent of the backflow exponent and hence the fractal dimension of the scale invariant sign structure.
Statistical transmutation in doped quantum dimer models.
Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P
2012-07-06
We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.
Experimental simulation of the Unruh effect on an NMR quantum simulator
NASA Astrophysics Data System (ADS)
Jin, FangZhou; Chen, HongWei; Rong, Xing; Zhou, Hui; Shi, MingJun; Zhang, Qi; Ju, ChenYong; Cai, YiFu; Luo, ShunLong; Peng, XinHua; Du, JiangFeng
2016-03-01
The Unruh effect is one of the most fundamental manifestations of the fact that the particle content of a field theory is observer dependent. However, there has been so far no experimental verification of this effect, as the associated temperatures lie far below any observable threshold. Recently, physical phenomena, which are of great experimental challenge, have been investigated by quantum simulations in various fields. Here we perform a proof-of-principle simulation of the evolution of fermionic modes under the Unruh effect with a nuclear magnetic resonance (NMR) quantum simulator. By the quantum simulator, we experimentally demonstrate the behavior of Unruh temperature with acceleration, and we further investigate the quantum correlations quantified by quantum discord between two fermionic modes as seen by two relatively accelerated observers. It is shown that the quantum correlations can be created by the Unruh effect from the classically correlated states. Our work may provide a promising way to explore the quantum physics of accelerated systems.
Quantum Field Theory Approach to Condensed Matter Physics
NASA Astrophysics Data System (ADS)
Marino, Eduardo C.
2017-09-01
Preface; Part I. Condensed Matter Physics: 1. Independent electrons and static crystals; 2. Vibrating crystals; 3. Interacting electrons; 4. Interactions in action; Part II. Quantum Field Theory: 5. Functional formulation of quantum field theory; 6. Quantum fields in action; 7. Symmetries: explicit or secret; 8. Classical topological excitations; 9. Quantum topological excitations; 10. Duality, bosonization and generalized statistics; 11. Statistical transmutation; 12. Pseudo quantum electrodynamics; Part III. Quantum Field Theory Approach to Condensed Matter Systems: 13. Quantum field theory methods in condensed matter; 14. Metals, Fermi liquids, Mott and Anderson insulators; 15. The dynamics of polarons; 16. Polyacetylene; 17. The Kondo effect; 18. Quantum magnets in 1D: Fermionization, bosonization, Coulomb gases and 'all that'; 19. Quantum magnets in 2D: nonlinear sigma model, CP1 and 'all that'; 20. The spin-fermion system: a quantum field theory approach; 21. The spin glass; 22. Quantum field theory approach to superfluidity; 23. Quantum field theory approach to superconductivity; 24. The cuprate high-temperature superconductors; 25. The pnictides: iron based superconductors; 26. The quantum Hall effect; 27. Graphene; 28. Silicene and transition metal dichalcogenides; 29. Topological insulators; 30. Non-abelian statistics and quantum computation; References; Index.
Cyclotron resonance of dirac fermions in InAs/GaSb/InAs quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishtopenko, S. S.; Ikonnikov, A. V., E-mail: antikon@ipmras.ru; Maremyanin, K. V.
2017-01-15
The band structure of three-layer symmetric InAs/GaSb/InAs quantum wells confined between AlSb barriers is analyzed theoretically. It is shown that, depending on the thicknesses of the InAs and GaSb layers, a normal band structure, a gapless state with a Dirac cone at the center of the Brillouin zone, or inverted band structure (two-dimensional topological insulator) can be realized in this system. Measurements of the cyclotron resonance in structures with gapless band spectra carried out for different electron concentrations confirm the existence of massless Dirac fermions in InAs/GaSb/InAs quantum wells.
Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Systems, the Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.
In this final report, we present preliminary results of ground state phases of interacting spinless Dirac fermions. The name "Dirac fermion" originates from the fact that low-energy excitations of electrons hopping on the honeycomb lattice are described by a relativistic Dirac equation. Dirac fermions have received much attention particularly after the seminal work of Haldale1 which shows that the quantum Hall physics can be realized on the honeycomb lattice without magnetic fields. Haldane's work later becomes the foundation of topological insulators (TIs). While the physics of TIs is based largely on spin-orbit coupled non-interacting electrons, it was conjectured that topologicalmore » insulators can be induced by strong correlations alone.« less
Fermionic localization of the schwarzian theory
Stanford, Douglas; Witten, Edward
2017-10-02
The SYK model is a quantum mechanical model that has been proposed to be holographically dual to a 1 + 1-dimensional model of a quantum black hole. An emergent “gravitational” mode of this model is governed by an unusual action that has been called the Schwarzian action. It governs a reparametrization of a circle. We show that the path integral of the Schwarzian theory is one-loop exact. Here, the argument uses a method of fermionic localization, even though the model itself is purely bosonic.
Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter
NASA Astrophysics Data System (ADS)
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.
Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio
2017-02-17
We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.
Global optimization for quantum dynamics of few-fermion systems
NASA Astrophysics Data System (ADS)
Li, Xikun; Pecak, Daniel; Sowiński, Tomasz; Sherson, Jacob; Nielsen, Anne E. B.
2018-03-01
Quantum state preparation is vital to quantum computation and quantum information processing tasks. In adiabatic state preparation, the target state is theoretically obtained with nearly perfect fidelity if the control parameter is tuned slowly enough. As this, however, leads to slow dynamics, it is often desirable to be able to carry out processes more rapidly. In this work, we employ two global optimization methods to estimate the quantum speed limit for few-fermion systems confined in a one-dimensional harmonic trap. Such systems can be produced experimentally in a well-controlled manner. We determine the optimized control fields and achieve a reduction in the ramping time of more than a factor of four compared to linear ramping. We also investigate how robust the fidelity is to small variations of the control fields away from the optimized shapes.
Quasiparticles in condensed matter systems
NASA Astrophysics Data System (ADS)
Wölfle, Peter
2018-03-01
Quasiparticles are a powerful concept of condensed matter quantum theory. In this review, the appearence and the properties of quasiparticles are presented in a unifying perspective. The principles behind the existence of quasiparticle excitations in both quantum disordered and ordered phases of fermionic and bosonic systems are discussed. The lifetime of quasiparticles is considered in particular near a continuous classical or quantum phase transition, when the nature of quasiparticles on both sides of a transition into an ordered state changes. A new concept of critical quasiparticles near a quantum critical point is introduced, and applied to quantum phase transitions in heavy fermion metals. Fractional quasiparticles in systems of restricted dimensionality are reviewed. Dirac quasiparticles emerging in so-called Dirac materials are discussed. The more recent discoveries of topologically protected chiral quasiparticles in topological matter and Majorana quasiparticles in topological superconductors are briefly reviewed.
Towards the map of quantum gravity
NASA Astrophysics Data System (ADS)
Mielczarek, Jakub; Trześniewski, Tomasz
2018-06-01
In this paper we point out some possible links between different approaches to quantum gravity and theories of the Planck scale physics. In particular, connections between loop quantum gravity, causal dynamical triangulations, Hořava-Lifshitz gravity, asymptotic safety scenario, Quantum Graphity, deformations of relativistic symmetries and nonlinear phase space models are discussed. The main focus is on quantum deformations of the Hypersurface Deformations Algebra and Poincaré algebra, nonlinear structure of phase space, the running dimension of spacetime and nontrivial phase diagram of quantum gravity. We present an attempt to arrange the observed relations in the form of a graph, highlighting different aspects of quantum gravity. The analysis is performed in the spirit of a mind map, which represents the architectural approach to the studied theory, being a natural way to describe the properties of a complex system. We hope that the constructed graphs (maps) will turn out to be helpful in uncovering the global picture of quantum gravity as a particular complex system and serve as a useful guide for the researchers.
Quantization of set theory and generalization of the fermion algebra
NASA Astrophysics Data System (ADS)
Arik, M.; Tekin, S. C.
2002-05-01
The quantum states of a d-dimensional fermion algebra are in one to one correspondence with the subsets of a d-element universal set. In this paper we use this set theoretical motivation to construct a one-parameter deformation of the fermion algebra and extend it to a d-dimensional generalization which is invariant under the group U(d). This discrete fermionic oscillator system is extended to the continuous case. We also show that the q-deformation of these systems is related to supercovariant q-oscillators.
Loop Quantum Gravity and Asymptotically Flat Spaces
NASA Astrophysics Data System (ADS)
Arnsdorf, Matthias
2002-12-01
Remarkable progress has been made in the field of non-perturbative (loop) quantum gravity in the last decade or so and it is now a rigorously defined kinematical theory (c.f. [5] for a review and references). We are now at the stage where physical applications of loop quantum gravity can be studied and used to provide checks for the consistency of the quantisation programme. Equally, old fundamental problems of canonical quantum gravity such as the problem of time or the interpretation of quantum cosmology need to be reevaluated seriously. These issues can be addressed most profitably in the asymptotically flat sector of quantum gravity. Indeed, it is likely that we should obtain a quantum theory for this special case even if it is not possible to quantise full general relativity. The purpose of this summary is to advertise the extension of loop quantum gravity to this sector that was developed in [1]...
Broecker, Peter; Trebst, Simon
2016-12-01
In the absence of a fermion sign problem, auxiliary-field (or determinantal) quantum Monte Carlo (DQMC) approaches have long been the numerical method of choice for unbiased, large-scale simulations of interacting many-fermion systems. More recently, the conceptual scope of this approach has been expanded by introducing ingenious schemes to compute entanglement entropies within its framework. On a practical level, these approaches, however, suffer from a variety of numerical instabilities that have largely impeded their applicability. Here we report on a number of algorithmic advances to overcome many of these numerical instabilities and significantly improve the calculation of entanglement measures in the zero-temperature projective DQMC approach, ultimately allowing us to reach similar system sizes as for the computation of conventional observables. We demonstrate the applicability of this improved DQMC approach by providing an entanglement perspective on the quantum phase transition from a magnetically ordered Mott insulator to a band insulator in the bilayer square lattice Hubbard model at half filling.
Fractionally charged skyrmions in fractional quantum Hall effect
Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; ...
2015-11-26
The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less
Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals
NASA Astrophysics Data System (ADS)
Feldmeier, Johannes; Huber, Sebastian; Punk, Matthias
2018-05-01
We present an exact ground state solution of a quantum dimer model introduced by Punk, Allais, and Sachdev [Quantum dimer model for the pseudogap metal, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015)., 10.1073/pnas.1512206112], which features ordinary bosonic spin-singlet dimers as well as fermionic dimers that can be viewed as bound states of spinons and holons in a hole-doped resonating valence bond liquid. Interestingly, this model captures several essential properties of the metallic pseudogap phase in high-Tc cuprate superconductors. We identify a line in parameter space where the exact ground state wave functions can be constructed at an arbitrary density of fermionic dimers. At this exactly solvable line the ground state has a huge degeneracy, which can be interpreted as a flat band of fermionic excitations. Perturbing around the exactly solvable line, this degeneracy is lifted and the ground state is a fractionalized Fermi liquid with a small pocket Fermi surface in the low doping limit.
Universal relations with fermionic dark matter
NASA Astrophysics Data System (ADS)
Krut, A.; Argüelles, C. R.; Rueda, J. A.; Ruffini, R.
2018-01-01
We have recently introduced a new model for the distribution of dark matter (DM) in galaxies, the Ruffini-Argüelles-Rueda (RAR) model, based on a self-gravitating system of massive fermions at finite temperatures. The RAR model, for fermion masses above keV, successfully describes the DM halos in galaxies, and predicts the existence of a denser quantum core towards the center of each configuration. We demonstrate here, for the first time, that the introduction of a cutoff in the fermion phase-space distribution, necessary to account for galaxies finite size and mass, defines a new solution with a compact quantum core which represents an alternative to the central black hole (BH) scenario for SgrA*. For a fermion mass in the range 48keV ≤ mc2 ≤ 345keV, the DM halo distribution fulfills the most recent data of the Milky Way rotation curves while harbors a dense quantum core of 4×106M⊙ within the S2 star pericenter. In particular, for a fermion mass of mc2 ˜ 50keV the model is able to explain the DM halos from typical dwarf spheroidal to normal elliptical galaxies, while harboring dark and massive compact objects from ˜ 103M⊙ tp to 108M⊙ at their respective centers. The model is shown to be in good agreement with different observationally inferred universal relations, such as the ones connecting DM halos with supermassive dark central objects. Finally, the model provides a natural mechanism for the formation of supermassive BHs as heavy as few ˜ 108M⊙. We argue that larger BH masses (few ˜ 109-10M⊙) may be achieved by assuming subsequent accretion processes onto the above heavy seeds, depending on accretion efficiency and environment.
NASA Astrophysics Data System (ADS)
Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi
2016-07-01
Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.
NASA Astrophysics Data System (ADS)
Sepehri, Alireza
2016-07-01
Recently, some authors (Cruz and Rojas, 2013 [1]) have constructed a Born-Infeld type action which may be written in terms of the Lovelock brane Lagrangians for a given dimension p. We reconsider their model in M-theory and study the process of birth and growth of nonlinear spinor and bosonic gravity during the construction of Mp-branes. Then, by application of this idea to BIonic system, we construct a BIonic superconductor in the background of nonlinear gravity. In this model, first, M0-branes link to each other and build an M5-brane and an anti-M5-brane connected by an M2-brane. M0-branes are zero dimensional objects that only scalars are attached to them. By constructing higher dimensional branes from M0-branes, gauge fields are produced. Also, if M0-branes don't link to each other completely, the symmetry of system is broken and fermions are created. The curvature produced by fermions has the opposite sign the curvature produced by gauge fields. Fermions on M5-branes and M2 plays the role of bridge between them. By passing time, M2 dissolves in M5's and nonlinear bosonic and spinor gravities are produced. By closing M5-branes towards each other, coupling of two identical fermions on two branes to each other causes that the square mass of their system becomes negative and some tachyonic states are created. For removing these tachyons, M5-branes compact, the sign of gravity between branes reverses, anti-gravity is produced which causes that branes and identical fermions get away from each other. This is the reason for the emergence of Pauli exclusion principle in Bionic system. Also, the spinor gravity vanishes and its energy builds a new M2 between M5-branes. We obtain the resistivity in this system and find that its value decreases by closing M5 branes to each other and shrinks to zero at colliding point of branes. This idea has different applications. For example, in cosmology, universes are located on M5-branes and M2-brane has the role of bridge between universes. When M5-branes become close to each other, this bridge dissolves in universes and causes that they expand. Also, when branes get away from each other, universes are contracted by compacting branes. The reason for flatness of universe in this system may be the neutralizing of curvature produced by gauge and scalar fields by the curvature produced by fermions. Using this idea in cuprates, we show that by decreasing temperature of system, branes which electrons live on it approach to each other in extra dimensions and superconductivity creates. Applying this idea in QCD, we calculate the potential between particles and anti-particles which is in good agreement with predicted potential for confined color particles. This means that one BIonic superconductor between quark and antiquark may be the main reason of confinement in QCD. Finally, in biological system, the emergence of superconductor between two neurons of two different brains via extra dimension leads to transmission of information between them and happening telepathy.
Quantum self-gravitating collapsing matter in a quantum geometry
NASA Astrophysics Data System (ADS)
Campiglia, Miguel; Gambini, Rodolfo; Olmedo, Javier; Pullin, Jorge
2016-09-01
The problem of how space-time responds to gravitating quantum matter in full quantum gravity has been one of the main questions that any program of quantization of gravity should address. Here we analyze this issue by considering the quantization of a collapsing null shell coupled to spherically symmetric loop quantum gravity. We show that the constraint algebra of canonical gravity is Abelian both classically and when quantized using loop quantum gravity techniques. The Hamiltonian constraint is well defined and suitable Dirac observables characterizing the problem were identified at the quantum level. We can write the metric as a parameterized Dirac observable at the quantum level and study the physics of the collapsing shell and black hole formation. We show how the singularity inside the black hole is eliminated by loop quantum gravity and how the shell can traverse it. The construction is compatible with a scenario in which the shell tunnels into a baby universe inside the black hole or one in which it could emerge through a white hole.
NASA Astrophysics Data System (ADS)
Mazzucchi, Gabriel; Caballero-Benitez, Santiago F.; Mekhov, Igor B.
2016-08-01
Ultracold atomic systems offer a unique tool for understanding behavior of matter in the quantum degenerate regime, promising studies of a vast range of phenomena covering many disciplines from condensed matter to quantum information and particle physics. Coupling these systems to quantized light fields opens further possibilities of observing delicate effects typical of quantum optics in the context of strongly correlated systems. Measurement backaction is one of the most funda- mental manifestations of quantum mechanics and it is at the core of many famous quantum optics experiments. Here we show that quantum backaction of weak measurement can be used for tailoring long-range correlations of ultracold fermions, realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves. We demonstrate that such long-range correlations cannot be realized with local addressing, and they are a consequence of the competition between global but spatially structured backaction of weak quantum measurement and unitary dynamics of fermions.
Cosmological footprints of loop quantum gravity.
Grain, J; Barrau, A
2009-02-27
The primordial spectrum of cosmological tensor perturbations is considered as a possible probe of quantum gravity effects. Together with string theory, loop quantum gravity is one of the most promising frameworks to study quantum effects in the early universe. We show that the associated corrections should modify the potential seen by gravitational waves during the inflationary amplification. The resulting power spectrum should exhibit a characteristic tilt. This opens a new window for cosmological tests of quantum gravity.
NASA Astrophysics Data System (ADS)
Abanov, Ar.; Chubukov, Andrey V.; Schmalian, J.
2003-03-01
We present the full analysis of the normal state properties of the spin-fermion model near the antiferromagnetic instability in two dimensions. The model describes low-energy fermions interacting with their own collective spin fluctuations, which soften at the antiferromagnetic transition. We argue that in 2D, the system has two typical energies-an effective spin-fermion interaction bar g and an energy ysf below which the system behaves as a Fermi liquid. The ratio of the two determines the dimensionless coupling constant for spin-fermion interaction lambda (2) alpha /line g /omega _{sf} . We show that u scales with the spin correlation length and diverges at criticality. This divergence implies that the conventional perturbative expansion breaks down. We develop a novel approach to the problem-the expansion in either the inverse number of hot spots in the Brillouin zone, or the inverse number of fermionic flavours-which allows us to explicitly account for all terms which diverge as powers of u, and treat the remaining, O(logu) terms in the RG formalism. We apply this technique to study the properties of the spin-fermion model in various frequency and temperature regimes. We present the results for the fermionic spectral function, spin susceptibility, optical conductivity and other observables. We compare our results in detail with the normal state data for the cuprates, and argue that the spin-fermion model is capable of explaining the anomalous normal state properties of the high Tc materials. We also show that the conventional Ӓ theory of the quantum-critical behaviour is inapplicable in 2D due to the singularity of the Ӓ vertex.
Limitation to Communication of Fermionic System in Accelerated Frame
NASA Astrophysics Data System (ADS)
Chang, Jinho; Kwon, Younghun
2015-03-01
In this article, we investigate communication between an inertial observer and an accelerated observer, sharing fermionic system, when they use classical and quantum communication using single rail or dual rail encoding. The purpose of this work is to understand the limit to the communication between an inertial observer and an accelerated observer, with single rail or dual rail encoding of fermionic system. We observe that at the infinite acceleration, the coherent information of single(or double) rail quantum channel vanishes, but those of classical ones may have finite values. In addition, we see that even when considering a method beyond the single-mode approximation, for the communication between Alice and Bob, the dual rail entangled state seems to provide better information transfer than the single rail entangled state, when we take a fixed choice of the Unruh mode. Moreover, we find that the single-mode approximation may not be sufficient to analyze communication of fermionic system in an accelerated frame.
Quantum computing with Majorana fermion codes
NASA Astrophysics Data System (ADS)
Litinski, Daniel; von Oppen, Felix
2018-05-01
We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.
NASA Astrophysics Data System (ADS)
Sato, T.; Segawa, Kouji; Kosaka, K.; Souma, S.; Nakayama, K.; Eto, K.; Minami, T.; Ando, Yoichi; Takahashi, T.
2011-11-01
The three-dimensional (3D) topological insulator is a novel quantum state of matter where an insulating bulk hosts a linearly dispersing surface state, which can be viewed as a sea of massless Dirac fermions protected by the time-reversal symmetry (TRS). Breaking the TRS by a magnetic order leads to the opening of a gap in the surface state, and consequently the Dirac fermions become massive. It has been proposed theoretically that such a mass acquisition is necessary to realize novel topological phenomena, but achieving a sufficiently large mass is an experimental challenge. Here we report an unexpected discovery that the surface Dirac fermions in a solid-solution system TlBi(S1-xSex)2 acquire a mass without explicitly breaking the TRS. We found that this system goes through a quantum phase transition from the topological to the non-topological phase, and, by tracing the evolution of the electronic states using the angle-resolved photoemission, we observed that the massless Dirac state in TlBiSe2 switches to a massive state before it disappears in the non-topological phase. This result suggests the existence of a condensed-matter version of the `Higgs mechanism' where particles acquire a mass through spontaneous symmetry breaking.
Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming
2013-01-01
The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153
Majorana Fermions in Particle Physics, Solid State and Quantum Information
NASA Astrophysics Data System (ADS)
Borsten, L.; Duff, M. J.
This review is based on lectures given by M. J. Duff summarising the far reaching contributions of Ettore Majorana to fundamental physics, with special focus on Majorana fermions in all their guises. The theoretical discovery of the eponymous fcrmion in 1937 has since had profound implications for particlc physics, solid state and quantum computation. The breadth of these disciplines is testimony to Majorana's genius, which continues to permeate physics today. These lectures offer a whistle-stop tour through some limited subset of the key ideas. In addition to touching on these various applications, we will draw out some fascinating relations connecting the normed division algebras R, ℂ, H, O to spinors, trialities. K-theory and the classification of stable topological states of symmetry-protected gapped free-fermion systems.
Quantum corrections in thermal states of fermions on anti-de Sitter space-time
NASA Astrophysics Data System (ADS)
Ambruş, Victor E.; Winstanley, Elizabeth
2017-12-01
We study the energy density and pressure of a relativistic thermal gas of massless fermions on four-dimensional Minkowski and anti-de Sitter space-times using relativistic kinetic theory. The corresponding quantum field theory quantities are given by components of the renormalized expectation value of the stress-energy tensor operator acting on a thermal state. On Minkowski space-time, the renormalized vacuum expectation value of the stress-energy tensor is by definition zero, while on anti-de Sitter space-time the vacuum contribution to this expectation value is in general nonzero. We compare the properties of the vacuum and thermal expectation values of the energy density and pressure for massless fermions and discuss the circumstances in which the thermal contribution dominates over the vacuum one.
Double valley Dirac fermions for 3D and 2D Hg1-x Cd x Te with strong asymmetry
NASA Astrophysics Data System (ADS)
Marchewka, M.
2017-04-01
In this paper the possibility to bring about the double-valley Dirac fermions in some quantum structures is predicted. These quantum structures are: strained 3D Hg1-x Cd x Te topological insulator (TI) with strong interface inversion asymmetry and the asymmetric Hg1-x Cd x Te double quantum wells (DQW). The numerical analysis of the dispersion relation for 3D TI Hg1-x Cd x Te for the proper Cd (x)-content of the Hg1-x Cd x Te compound clearly shows that the inversion symmetry breaking together with the unaxial tensile strain causes the splitting of each of the Dirac nodes (two belonging to two interfaces) into two in the proximity of the Γ-point. Similar effects can be obtained for asymmetric Hg1-x Cd x Te DQW with the proper content of Cd and proper width of the quantum wells. The aim of this work is to explore the inversion symmetry breaking in 3D TI and 2D DQW mixed HgCdTe systems. It is shown that this symmetry breaking leads to the dependence of carriers energy on quasi-momentum similar to that of Weyl fermions.
Stern, Ady
2010-03-11
Quantum mechanics classifies all elementary particles as either fermions or bosons, and this classification is crucial to the understanding of a variety of physical systems, such as lasers, metals and superconductors. In certain two-dimensional systems, interactions between electrons or atoms lead to the formation of quasiparticles that break the fermion-boson dichotomy. A particularly interesting alternative is offered by 'non-Abelian' states of matter, in which the presence of quasiparticles makes the ground state degenerate, and interchanges of identical quasiparticles shift the system between different ground states. Present experimental studies attempt to identify non-Abelian states in systems that manifest the fractional quantum Hall effect. If such states can be identified, they may become useful for quantum computation.
Spin Entanglement Witness for Quantum Gravity.
Bose, Sougato; Mazumdar, Anupam; Morley, Gavin W; Ulbricht, Hendrik; Toroš, Marko; Paternostro, Mauro; Geraci, Andrew A; Barker, Peter F; Kim, M S; Milburn, Gerard
2017-12-15
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.
Spin Entanglement Witness for Quantum Gravity
NASA Astrophysics Data System (ADS)
Bose, Sougato; Mazumdar, Anupam; Morley, Gavin W.; Ulbricht, Hendrik; Toroš, Marko; Paternostro, Mauro; Geraci, Andrew A.; Barker, Peter F.; Kim, M. S.; Milburn, Gerard
2017-12-01
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.
On the simulation of indistinguishable fermions in the many-body Wigner formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellier, J.M., E-mail: jeanmichel.sellier@gmail.com; Dimov, I.
2015-01-01
The simulation of quantum systems consisting of interacting, indistinguishable fermions is an incredible mathematical problem which poses formidable numerical challenges. Many sophisticated methods addressing this problem are available which are based on the many-body Schrödinger formalism. Recently a Monte Carlo technique for the resolution of the many-body Wigner equation has been introduced and successfully applied to the simulation of distinguishable, spinless particles. This numerical approach presents several advantages over other methods. Indeed, it is based on an intuitive formalism in which quantum systems are described in terms of a quasi-distribution function, and highly scalable due to its Monte Carlo nature.more » In this work, we extend the many-body Wigner Monte Carlo method to the simulation of indistinguishable fermions. To this end, we first show how fermions are incorporated into the Wigner formalism. Then we demonstrate that the Pauli exclusion principle is intrinsic to the formalism. As a matter of fact, a numerical simulation of two strongly interacting fermions (electrons) is performed which clearly shows the appearance of a Fermi (or exchange–correlation) hole in the phase-space, a clear signature of the presence of the Pauli principle. To conclude, we simulate 4, 8 and 16 non-interacting fermions, isolated in a closed box, and show that, as the number of fermions increases, we gradually recover the Fermi–Dirac statistics, a clear proof of the reliability of our proposed method for the treatment of indistinguishable particles.« less
Novel foamy origin for singlet fermion masses
NASA Astrophysics Data System (ADS)
Ellis, John; Mavromatos, Nick E.; Nanopoulos, Dimitri V.
2017-10-01
We show how masses for singlet fermions can be generated by interactions with a D-particle model of space-time foam inspired by brane theory. It has been shown previously by one of the authors (N. E. M.) that such interactions may generate dynamically small masses for charged fermions via the recoils of D-particle defects interacting with photons. In this work we consider the direct interactions of D-particle with uncharged singlet fermions such as right-handed neutrinos. Quantum fluctuations of the lattice of D-particles have massless vector (spin-one) excitations that are analogues of phonons. These mediate forces with the singlet fermions, generating large dynamical masses that may be communicated to light neutrinos via the seesaw mechanism.
Cosmic censorship in quantum Einstein gravity
NASA Astrophysics Data System (ADS)
Bonanno, A.; Koch, B.; Platania, A.
2017-05-01
We study the quantum gravity modification of the Kuroda-Papapetrou model induced by the running of the Newton’s constant at high energy in quantum Einstein gravity. We argue that although the antiscreening character of the gravitational interaction favours the formation of a naked singularity, quantum gravity effects turn the classical singularity into a ‘whimper’ singularity which remains naked for a finite amount of advanced time.
Grassmann phase space methods for fermions. I. Mode theory
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Jeffers, J.; Barnett, S. M.
2016-07-01
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggest the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. The theory of Grassmann phase space methods for fermions based on separate modes is developed, showing how the distribution function is defined and used to determine quantum correlation functions, Fock state populations and coherences via Grassmann phase space integrals, how the Fokker-Planck equations are obtained and then converted into equivalent Ito equations for stochastic Grassmann variables. The fermion distribution function is an even Grassmann function, and is unique. The number of c-number Wiener increments involved is 2n2, if there are n modes. The situation is somewhat different to the bosonic c-number case where only 2 n Wiener increments are involved, the sign of the drift term in the Ito equation is reversed and the diffusion matrix in the Fokker-Planck equation is anti-symmetric rather than symmetric. The un-normalised B distribution is of particular importance for determining Fock state populations and coherences, and as pointed out by Plimak, Collett and Olsen, the drift vector in its Fokker-Planck equation only depends linearly on the Grassmann variables. Using this key feature we show how the Ito stochastic equations can be solved numerically for finite times in terms of c-number stochastic quantities. Averages of products of Grassmann stochastic variables at the initial time are also involved, but these are determined from the initial conditions for the quantum state. The detailed approach to the numerics is outlined, showing that (apart from standard issues in such numerics) numerical calculations for Grassmann phase space theories of fermion systems could be carried out without needing to represent Grassmann phase space variables on the computer, and only involving processes using c-numbers. We compare our approach to that of Plimak, Collett and Olsen and show that the two approaches differ. As a simple test case we apply the B distribution theory and solve the Ito stochastic equations to demonstrate coupling between degenerate Cooper pairs in a four mode fermionic system involving spin conserving interactions between the spin 1 / 2 fermions, where modes with momenta - k , + k-each associated with spin up, spin down states, are involved.
Simulations of "tunnelling of the 3rd kind"
NASA Astrophysics Data System (ADS)
Mou, Zong-Gang; Saffin, Paul M.; Tognarelli, Paul; Tranberg, Anders
2017-07-01
We consider the phenomenon of "tunnelling of the 3rd kind" [1], whereby a magnetic field may traverse a classically impenetrable barrier by pair creation of unimpeded quantum fermions. These propagate through the barrier and generate a magnetic field on the other side. We study this numerically using quantum fermions coupled to a classical Higgs-gauge system, where we set up a magnetic field outside a box shielded by two superconducting barriers. We examine the magnitude of the internal magnetic field, and find agreement with existing perturbative results within a factor of two.
Interacting quantum walkers: two-body bosonic and fermionic bound states
NASA Astrophysics Data System (ADS)
Krapivsky, P. L.; Luck, J. M.; Mallick, K.
2015-11-01
We investigate the dynamics of bound states of two interacting particles, either bosons or fermions, performing a continuous-time quantum walk on a one-dimensional lattice. We consider the situation where the distance between both particles has a hard bound, and the richer situation where the particles are bound by a smooth confining potential. The main emphasis is on the velocity characterizing the ballistic spreading of these bound states, and on the structure of the asymptotic distribution profile of their center-of-mass coordinate. The latter profile generically exhibits many internal fronts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qing Lin; Pan, Lei; Stern, Alexander L.
Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantummore » computing.« less
NASA Astrophysics Data System (ADS)
Foster, Kerwin Crayton
The fractional quantum Hall effect (FQHE) occurs when a two-dimensional electron gas is placed in a strong magnetic field at low temperatures. When this effect occurs the Hall resistance, RH, defined to be the Hall voltage divided by the current, is quantized, with RH = (1/nu)h/ e2 where nu = p/q is the Landau level filling fraction; and p and q are relatively prime integers. For almost all observed FQHE states, q is odd with one notable exception: the nu = 5/2 FQHE state. Understanding the nature of this incompressible even-denominator state is one of the central questions in the theory of the FQHE and is the subject of this Dissertation. We use a powerful theoretical tool for studying the FQHE: composite fermion theory. Composite fermions can be viewed as electrons bound to an even number of magnetic flux quanta. Jain has shown that the FQHE for electrons can be viewed as an integer quantum Hall effect (p = 1) for composite fermions. More recently, Halperin, Lee and Read developed a successful theory of the compressible nu = 1/2 state using composite fermions. There is now compelling theoretical evidence that the 5/2 state is a so-called Moore-Read state---a state which can be viewed as a spin-polarized p-wave superconductor of composite fermions. We have developed a semi-phenomenological description of this state by modifying the Halperin-Lee-Read theory, adding a p-wave pairing interaction between composite fermions by hand. The electromagnetic response functions for the resulting superconducting state of composite fermions are then calculated. We show that these response functions exhibit the expected BCS 'coherence factor' effects, such as the Hebel-Slichter peak. Using the composite fermion response functions, we then calculate the corresponding electronic response functions using Chern-Simons theory. We find that in the electronic response, the most striking coherence factor effects (e.g., the Hebel-Slichter peak) are strongly suppressed. However, the low-temperature o = 2Delta threshold behavior does show clear coherence factor effects. Finally, we use our model to predict the wave-vector and frequency dependence of the longitudinal conductivity, sigmaxx( q, o), which can be measured in surface-acoustic-wave propagation experiments.
NASA Astrophysics Data System (ADS)
Hansson, Johan; Francois, Stephane
The search for a theory of quantum gravity is the most fundamental problem in all of theoretical physics, but there are as yet no experimental results at all to guide this endeavor. What seems to be needed is a pragmatic way to test if gravitation really occurs between quantum objects or not. In this paper, we suggest such a potential way out of this deadlock, utilizing macroscopic quantum systems; superfluid helium, gaseous Bose-Einstein condensates and “macroscopic” molecules. It turns out that true quantum gravity effects — here defined as observable gravitational interactions between truly quantum objects — could and should be seen (if they occur in nature) using existing technology. A falsification of the low-energy limit in the accessible weak-field regime would also falsify the full theory of quantum gravity, making it enter the realm of testable, potentially falsifiable theories, i.e. becoming real physics after almost a century of pure theorizing. If weak-field gravity between quantum objects is shown to be absent (in the regime where the approximation should apply), we know that gravity then is a strictly classical phenomenon absent at the quantum level.
Parametrically coupled fermionic oscillators: Correlation functions and phase-space description
NASA Astrophysics Data System (ADS)
Ghosh, Arnab
2015-01-01
A fermionic analog of a parametric amplifier is used to describe the joint quantum state of the two interacting fermionic modes. Based on a two-mode generalization of the time-dependent density operator, time evolution of the fermionic density operator is determined in terms of its two-mode Wigner and P function. It is shown that the equation of motion of the Wigner function corresponds to a fermionic analog of Liouville's equation. The equilibrium density operator for fermionic fields developed by Cahill and Glauber is thus extended to a dynamical context to show that the mathematical structures of both the correlation functions and the weight factors closely resemble their bosonic counterpart. It has been shown that the fermionic correlation functions are marked by a characteristic upper bound due to Fermi statistics, which can be verified in the matter wave counterpart of photon down-conversion experiments.
Unitarity violation in noninteger dimensional Gross-Neveu-Yukawa model
NASA Astrophysics Data System (ADS)
Ji, Yao; Kelly, Michael
2018-05-01
We construct an explicit example of unitarity violation in fermionic quantum field theories in noninteger dimensions. We study the two-point correlation function of four-fermion operators. We compute the one-loop anomalous dimensions of these operators in the Gross-Neveu-Yukawa model. We find that at one-loop order, the four-fermion operators split into three classes with one class having negative norms. This implies that the theory violates unitarity, following the definition in Ref. [1].
New directions in the pursuit of Majorana fermions in solid state systems.
Alicea, Jason
2012-07-01
The 1937 theoretical discovery of Majorana fermions-whose defining property is that they are their own anti-particles-has since impacted diverse problems ranging from neutrino physics and dark matter searches to the fractional quantum Hall effect and superconductivity. Despite this long history the unambiguous observation of Majorana fermions nevertheless remains an outstanding goal. This review paper highlights recent advances in the condensed matter search for Majorana that have led many in the field to believe that this quest may soon bear fruit. We begin by introducing in some detail exotic 'topological' one- and two-dimensional superconductors that support Majorana fermions at their boundaries and at vortices. We then turn to one of the key insights that arose during the past few years; namely, that it is possible to 'engineer' such exotic superconductors in the laboratory by forming appropriate heterostructures with ordinary s-wave superconductors. Numerous proposals of this type are discussed, based on diverse materials such as topological insulators, conventional semiconductors, ferromagnetic metals and many others. The all-important question of how one experimentally detects Majorana fermions in these setups is then addressed. We focus on three classes of measurements that provide smoking-gun Majorana signatures: tunneling, Josephson effects and interferometry. Finally, we discuss the most remarkable properties of condensed matter Majorana fermions-the non-Abelian exchange statistics that they generate and their associated potential for quantum computation.
Gravitational decoherence, alternative quantum theories and semiclassical gravity
NASA Astrophysics Data System (ADS)
Hu, B. L.
2014-04-01
In this report we discuss three aspects: 1) Semiclassical gravity theory (SCG): 4 levels of theories describing the interaction of quantum matter with classical gravity. 2) Alternative Quantum Theories: Discerning those which are derivable from general relativity (GR) plus quantum field theory (QFT) from those which are not 3) Gravitational Decoherence: derivation of a master equation and examination of the assumptions which led to the claims of observational possibilities. We list three sets of corresponding problems worthy of pursuit: a) Newton-Schrödinger Equations in relation to SCG; b) Master equation of gravity-induced effects serving as discriminator of 2); and c) Role of gravity in macroscopic quantum phenomena.
Two-dimensional quantum ring in a graphene layer in the presence of a Aharonov–Bohm flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amaro Neto, José; Bueno, M.J.; Furtado, Claudio, E-mail: furtado@fisica.ufpb.br
2016-10-15
In this paper we study the relativistic quantum dynamics of a massless fermion confined in a quantum ring. We use a model of confining potential and introduce the interaction via Dirac oscillator coupling, which provides ring confinement for massless Dirac fermions. The energy levels and corresponding eigenfunctions for this model in graphene layer in the presence of Aharonov–Bohm flux in the centre of the ring and the expression for persistent current in this model are derived. We also investigate the model for quantum ring in graphene layer in the presence of a disclination and a magnetic flux. The energy spectrummore » and wave function are obtained exactly for this case. We see that the persistent current depends on parameters characterizing the topological defect.« less
Fundamental Structure of Loop Quantum Gravity
NASA Astrophysics Data System (ADS)
Han, Muxin; Ma, Yongge; Huang, Weiming
In the recent twenty years, loop quantum gravity, a background independent approach to unify general relativity and quantum mechanics, has been widely investigated. The aim of loop quantum gravity is to construct a mathematically rigorous, background independent, non-perturbative quantum theory for a Lorentzian gravitational field on a four-dimensional manifold. In the approach, the principles of quantum mechanics are combined with those of general relativity naturally. Such a combination provides us a picture of, so-called, quantum Riemannian geometry, which is discrete on the fundamental scale. Imposing the quantum constraints in analogy from the classical ones, the quantum dynamics of gravity is being studied as one of the most important issues in loop quantum gravity. On the other hand, the semi-classical analysis is being carried out to test the classical limit of the quantum theory. In this review, the fundamental structure of loop quantum gravity is presented pedagogically. Our main aim is to help non-experts to understand the motivations, basic structures, as well as general results. It may also be beneficial to practitioners to gain insights from different perspectives on the theory. We will focus on the theoretical framework itself, rather than its applications, and do our best to write it in modern and precise langauge while keeping the presentation accessible for beginners. After reviewing the classical connection dynamical formalism of general relativity, as a foundation, the construction of the kinematical Ashtekar-Isham-Lewandowski representation is introduced in the content of quantum kinematics. The algebraic structure of quantum kinematics is also discussed. In the content of quantum dynamics, we mainly introduce the construction of a Hamiltonian constraint operator and the master constraint project. At last, some applications and recent advances are outlined. It should be noted that this strategy of quantizing gravity can also be extended to obtain other background-independent quantum gauge theories. There is no divergence within this background-independent and diffeomorphism-invariant quantization program of matter coupled to gravity.
Bolech, C J; Heidrich-Meisner, F; Langer, S; McCulloch, I P; Orso, G; Rigol, M
2012-09-14
We study the sudden expansion of spin-imbalanced ultracold lattice fermions with attractive interactions in one dimension after turning off the longitudinal confining potential. We show that the momentum distribution functions of majority and minority fermions quickly approach stationary values due to a quantum distillation mechanism that results in a spatial separation of pairs and majority fermions. As a consequence, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations are lost during the expansion. Furthermore, we argue that the shape of the stationary momentum distribution functions can be understood by relating them to the integrals of motion in this integrable quantum system. We discuss our results in the context of proposals to observe FFLO correlations, related to recent experiments by Liao et al., Nature (London) 467, 567 (2010).
Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model
Chen, Cheng-Chien; Muechler, Lukas; Car, Roberto; ...
2016-08-25
We study the two-dimensional (2D) Hubbard model using exact diagonalization for spin-1/2 fermions on the triangular and honeycomb lattices decorated with a single hexagon per site. In certain parameter ranges, the Hubbard model maps to a quantum compass model on those lattices. On the triangular lattice, the compass model exhibits collinear stripe antiferromagnetism, implying d-density wave charge order in the original Hubbard model. On the honeycomb lattice, the compass model has a unique, quantum disordered ground state that transforms nontrivially under lattice reflection. The ground state of the Hubbard model on the decorated honeycomb lattice is thus a 2D fermionicmore » symmetry-protected topological phase. This state—protected by time-reversal and reflection symmetries—cannot be connected adiabatically to a free-fermion topological phase.« less
On Some Troubles with the Metaphysics of Fermionic Compositions
NASA Astrophysics Data System (ADS)
Bigaj, Tomasz
2016-09-01
In this paper I discuss some metaphysical consequences of an unorthodox approach to the problem of the identity and individuality of "indistinguishable" quantum particles. This approach is based on the assumption that the only admissible way of individuating separate components of a given system is with the help of the permutation-invariant qualitative properties of the total system. Such a method of individuation, when applied to fermionic compositions occupying so-called GMW-nonentangled states, yields highly implausible consequences regarding the number of distinct components of a given composite system. I specify the problem (which I call the problem of fermionic inflation) in detail, and I consider several strategies of solving it. The preferred solution of the problem is based on the premise that spatial location should play a privileged role in identifying and making reference to quantum-mechanical systems.
NASA Astrophysics Data System (ADS)
Bassi, Angelo; Großardt, André; Ulbricht, Hendrik
2017-10-01
We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity (G and g) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems.
Observation of the fractional quantum Hall effect in graphene.
Bolotin, Kirill I; Ghahari, Fereshte; Shulman, Michael D; Stormer, Horst L; Kim, Philip
2009-11-12
When electrons are confined in two dimensions and subject to strong magnetic fields, the Coulomb interactions between them can become very strong, leading to the formation of correlated states of matter, such as the fractional quantum Hall liquid. In this strong quantum regime, electrons and magnetic flux quanta bind to form complex composite quasiparticles with fractional electronic charge; these are manifest in transport measurements of the Hall conductivity as rational fractions of the elementary conductance quantum. The experimental discovery of an anomalous integer quantum Hall effect in graphene has enabled the study of a correlated two-dimensional electronic system, in which the interacting electrons behave like massless chiral fermions. However, owing to the prevailing disorder, graphene has so far exhibited only weak signatures of correlated electron phenomena, despite intense experimental and theoretical efforts. Here we report the observation of the fractional quantum Hall effect in ultraclean, suspended graphene. In addition, we show that at low carrier density graphene becomes an insulator with a magnetic-field-tunable energy gap. These newly discovered quantum states offer the opportunity to study correlated Dirac fermions in graphene in the presence of large magnetic fields.
Graphene based d-character Dirac Systems
NASA Astrophysics Data System (ADS)
Li, Yuanchang; Zhang, S. B.; Duan, Wenhui
From graphene to topological insulators, Dirac material continues to be the hot topics in condensed matter physics. So far, almost all of the theoretically predicted or experimentally observed Dirac materials are composed of sp -electrons. By using first-principles calculations, we find the new Dirac system of transition-metal intercalated epitaxial graphene on SiC(0001). Intrinsically different from the conventional sp Dirac system, here the Dirac-fermions are dominantly contributed by the transition-metal d-electrons, which paves the way to incorporate correlation effect with Dirac-cone physics. Many intriguing quantum phenomena are proposed based on this system, including quantum spin Hall effect with large spin-orbital gap, quantum anomalous Hall effect, 100% spin-polarized Dirac fermions and ferromagnet-to-topological insulator transition.
Quantum phases of spinful Fermi gases in optical cavities
NASA Astrophysics Data System (ADS)
Colella, E.; Citro, R.; Barsanti, M.; Rossini, D.; Chiofalo, M.-L.
2018-04-01
We explore the quantum phases emerging from the interplay between spin and motional degrees of freedom of a one-dimensional quantum fluid of spinful fermionic atoms, effectively interacting via a photon-mediating mechanism with tunable sign and strength g , as it can be realized in present-day experiments with optical cavities. We find the emergence, in the very same system, of spin- and atomic-density wave ordering, accompanied by the occurrence of superfluidity for g >0 , while cavity photons are seen to drive strong correlations at all g values, with fermionic character for g >0 , and bosonic character for g <0 . Due to the long-range nature of interactions, to infer these results we combine mean-field and exact-diagonalization methods supported by bosonization analysis.
Transition probability spaces in loop quantum gravity
NASA Astrophysics Data System (ADS)
Guo, Xiao-Kan
2018-03-01
We study the (generalized) transition probability spaces, in the sense of Mielnik and Cantoni, for spacetime quantum states in loop quantum gravity. First, we show that loop quantum gravity admits the structures of transition probability spaces. This is exemplified by first checking such structures in covariant quantum mechanics and then identifying the transition probability spaces in spin foam models via a simplified version of general boundary formulation. The transition probability space thus defined gives a simple way to reconstruct the discrete analog of the Hilbert space of the canonical theory and the relevant quantum logical structures. Second, we show that the transition probability space and in particular the spin foam model are 2-categories. Then we discuss how to realize in spin foam models two proposals by Crane about the mathematical structures of quantum gravity, namely, the quantum topos and causal sites. We conclude that transition probability spaces provide us with an alternative framework to understand various foundational questions of loop quantum gravity.
Fermion bag approach to Hamiltonian lattice field theories in continuous time
NASA Astrophysics Data System (ADS)
Huffman, Emilie; Chandrasekharan, Shailesh
2017-12-01
We extend the idea of fermion bags to Hamiltonian lattice field theories in the continuous time formulation. Using a class of models we argue that the temperature is a parameter that splits the fermion dynamics into small spatial regions that can be used to identify fermion bags. Using this idea we construct a continuous time quantum Monte Carlo algorithm and compute critical exponents in the 3 d Ising Gross-Neveu universality class using a single flavor of massless Hamiltonian staggered fermions. We find η =0.54 (6 ) and ν =0.88 (2 ) using lattices up to N =2304 sites. We argue that even sizes up to N =10 ,000 sites should be accessible with supercomputers available today.
Quantum coherence behaviors of fermionic system in non-inertial frame
NASA Astrophysics Data System (ADS)
Huang, Zhiming; Situ, Haozhen
2018-04-01
In this paper, we analyze the quantum coherence behaviors of a single qubit in the relativistic regime beyond the single-mode approximation. Firstly, we investigate the freezing condition of quantum coherence in fermionic system. We also study the quantum coherence tradeoff between particle and antiparticle sector. It is found that there exists quantum coherence transfer between particle and antiparticle sector, but the coherence lost in particle sector is not entirely compensated by the coherence generation of antiparticle sector. Besides, we emphatically discuss the cohering power and decohering power of Unruh channel with respect to the computational basis. It is shown that cohering power is vanishing and decohering power is dependent of the choice of Unruh mode and acceleration. Finally, we compare the behaviors of quantum coherence with geometric quantum discord and entanglement in relativistic setup. Our results show that this quantifiers in two region converge at infinite acceleration limit, which implies that this measures become independent of Unruh modes beyond the single-mode approximations. It is also demonstrated that the robustness of quantum coherence and geometric quantum discord are better than entanglement under the influence of acceleration, since entanglement undergoes sudden death.
Observing a scale anomaly and a universal quantum phase transition in graphene.
Ovdat, O; Mao, Jinhai; Jiang, Yuhang; Andrei, E Y; Akkermans, E
2017-09-11
One of the most interesting predictions resulting from quantum physics, is the violation of classical symmetries, collectively referred to as anomalies. A remarkable class of anomalies occurs when the continuous scale symmetry of a scale-free quantum system is broken into a discrete scale symmetry for a critical value of a control parameter. This is an example of a (zero temperature) quantum phase transition. Such an anomaly takes place for the quantum inverse square potential known to describe 'Efimov physics'. Broken continuous scale symmetry into discrete scale symmetry also appears for a charged and massless Dirac fermion in an attractive 1/r Coulomb potential. The purpose of this article is to demonstrate the universality of this quantum phase transition and to present convincing experimental evidence of its existence for a charged and massless fermion in an attractive Coulomb potential as realized in graphene.When the continuous scale symmetry of a quantum system is broken, anomalies occur which may lead to quantum phase transitions. Here, the authors provide evidence for such a quantum phase transition in the attractive Coulomb potential of vacancies in graphene, and further envision its universality for diverse physical systems.
Grassmann phase space theory and the Jaynes-Cummings model
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Garraway, B. M.; Jeffers, J.; Barnett, S. M.
2013-07-01
The Jaynes-Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes-Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker-Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker-Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes-Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker-Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker-Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions-that are also equivalent to the canonical Grassmann distribution function-to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum-atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes-Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum-atom optics.
Sachdev–Ye–Kitaev model as Liouville quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagrets, Dmitry; Altland, Alexander; Kamenev, Alex
2016-08-08
Here, we show that the proper inclusion of soft reparameterization modes in the Sachdev–Ye–Kitaev model of N randomly interacting Majorana fermions reduces its long-time behavior to that of Liouville quantum mechanics.
Two-stage crossed beam cooling with ⁶Li and ¹³³Cs atoms in microgravity.
Luan, Tian; Yao, Hepeng; Wang, Lu; Li, Chen; Yang, Shifeng; Chen, Xuzong; Ma, Zhaoyuan
2015-05-04
Applying the direct simulation Monte Carlo (DSMC) method developed for ultracold Bose-Fermi mixture gases research, we study the sympathetic cooling process of 6Li and 133Cs atoms in a crossed optical dipole trap. The obstacles to producing 6Li Fermi degenerate gas via direct sympathetic cooling with 133Cs are also analyzed, by which we find that the side-effect of the gravity is one of the main obstacles. Based on the dynamic nature of 6Li and 133Cs atoms, we suggest a two-stage cooling process with two pairs of crossed beams in microgravity environment. According to our simulations, the temperature of 6Li atoms can be cooled to T = 29.5 pK and T/TF = 0.59 with several thousand atoms, which propose a novel way to get ultracold fermion atoms with quantum degeneracy near pico-Kelvin.
Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems
ERIC Educational Resources Information Center
Sun, Kai
2009-01-01
This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…
Global analysis of fermion mixing with exotics
NASA Technical Reports Server (NTRS)
Nardi, Enrico; Roulet, Esteban; Tommasini, Daniele
1991-01-01
The limits are analyzed on deviation of the lepton and quark weak-couplings from their standard model values in a general class of models where the known fermions are allowed to mix with new heavy particles with exotic SU(2) x U(1) quantum number assignments (left-handed singlets or right-handed doublets). These mixings appear in many extensions of the electroweak theory such as models with mirror fermions, E(sub 6) models, etc. The results update previous analyses and improve considerably the existing bounds.
Coherent vs. incoherent pairing in 2D systems near magnetic instability
NASA Astrophysics Data System (ADS)
Abanov, Ar.; Chubukov, A. V.; Finkel'stein, A. M.
2001-05-01
We study the superconductivity in 2D fermionic systems near antiferromagnetic instability, assuming that the pairing is mediated by spin fluctuations. This pairing involves fully incoherent fermions and diffusive spin excitations. We show that the competition between fermionic incoherence and strong pairing interaction yields the pairing instability temperature Tins which increases and saturates as the magnetic correlation length ξ → ∞. We argue that in this quantum-critical regime the pairing problem is qualitatively different from the BCS one.
NASA Astrophysics Data System (ADS)
Moessner, Roderich
Condensed matter systems provide emergent mini-universes in which quasiparticles may exist which do not correspond to any experimentally detected elementary particle. Topological quantum materials have been particularly productive in this regard, with the present search focussing on Majorana fermions, known theoretically already for decades. Here, we discuss manifestations of magnetic Majorana fermions in the Kitaev model. We place particular emphasis on their fate when perturbations, such as Heisenberg terms, are added to the ideal model system, and address experimental signatures of their vestiges in phases adjacent to the spin liquid.
Entanglement of Dirac fields in an expanding spacetime
NASA Astrophysics Data System (ADS)
Fuentes, Ivette; Mann, Robert B.; Martín-Martínez, Eduardo; Moradi, Shahpoor
2010-08-01
We study the entanglement generated between Dirac modes in a 2-dimensional conformally flat Robertson-Walker universe. We find radical qualitative differences between the bosonic and fermionic entanglement generated by the expansion. The particular way in which fermionic fields get entangled encodes more information about the underlying spacetime than the bosonic case, thereby allowing us to reconstruct the parameters of the history of the expansion. This highlights the importance of bosonic/fermionic statistics to account for relativistic effects on the entanglement of quantum fields.
Magnetotransport study of Dirac fermions in YbMnBi 2 antiferromagnet
Wang, Aifeng; Zaliznyak, I.; Ren, Weijun; ...
2016-10-15
We report quantum transport and Dirac fermions in YbMnBi 2 single crystals. YbMnBi 2 is a layered material with anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, and small cyclotron mass indicate the presence of Dirac fermions. Lastly, angular-dependent magnetoresistance indicates a possible quasi-two-dimensional Fermi surface, whereas the deviation from the nontrivial Berry phase expected for Dirac states suggests the contribution of parabolic bands at the Fermi level or spin-orbit coupling.
Gravity quantized: Loop quantum gravity with a scalar field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domagala, Marcin; Kaminski, Wojciech; Giesel, Kristina
2010-11-15
...''but we do not have quantum gravity.'' This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational fieldmore » because no symmetry reduction has been performed at the classical level.« less
NASA Astrophysics Data System (ADS)
Martinetti, P.; Wallet, J.-C.; Amelino-Camelia, G.
2015-08-01
The conference Conceptual and Technical Challenges for Quantum Gravity at Sapienza University of Rome, from 8 to 12 September 2014, has provided a beautiful opportunity for an encounter between different approaches and different perspectives on the quantum-gravity problem. It contributed to a higher level of shared knowledge among the quantum-gravity communities pursuing each specific research program. There were plenary talks on many different approaches, including in particular string theory, loop quantum gravity, spacetime noncommutativity, causal dynamical triangulations, asymptotic safety and causal sets. Contributions from the perspective of philosophy of science were also welcomed. In addition several parallel sessions were organized. The present volume collects contributions from the Noncommutative Geometry and Quantum Gravity parallel session4, with additional invited contributions from specialists in the field. Noncommutative geometry in its many incarnations appears at the crossroad of many researches in theoretical and mathematical physics: • from models of quantum space-time (with or without breaking of Lorentz symmetry) to loop gravity and string theory, • from early considerations on UV-divergencies in quantum field theory to recent models of gauge theories on noncommutative spacetime, • from Connes description of the standard model of elementary particles to recent Pati-Salam like extensions. This volume provides an overview of these various topics, interesting for the specialist as well as accessible to the newcomer. 4partially funded by CNRS PEPS /PTI ''Metric aspect of noncommutative geometry: from Monge to Higgs''
Quantum oscillations in the type-II Dirac semi-metal candidate PtSe2
NASA Astrophysics Data System (ADS)
Yang, Hao; Schmidt, Marcus; Süss, Vicky; Chan, Mun; Balakirev, Fedor F.; McDonald, Ross D.; Parkin, Stuart S. P.; Felser, Claudia; Yan, Binghai; Moll, Philip J. W.
2018-04-01
Three-dimensional topological semi-metals carry quasiparticle states that mimic massless relativistic Dirac fermions, elusive particles that have never been observed in nature. As they appear in the solid body, they are not bound to the usual symmetries of space-time and thus new types of fermionic excitations that explicitly violate Lorentz-invariance have been proposed, the so-called type-II Dirac fermions. We investigate the electronic spectrum of the transition-metal dichalcogenide PtSe2 by means of quantum oscillation measurements in fields up to 65 T. The observed Fermi surfaces agree well with the expectations from band structure calculations, that recently predicted a type-II Dirac node to occur in this material. A hole- and an electron-like Fermi surface dominate the semi-metal at the Fermi level. The quasiparticle mass is significantly enhanced over the bare band mass value, likely by phonon renormalization. Our work is consistent with the existence of type-II Dirac nodes in PtSe2, yet the Dirac node is too far below the Fermi level to support free Dirac–fermion excitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinotti, M.; Pal, A.; Ren, W. J.
Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. These quasi-two-dimensional bismuth layers based materials were recently designed and provide an arena for studying the interplay between anisotropic Dirac fermions, magnetism, and structural changes, allowing the formation of Weyl fermions in condensed matter. We perform an optical investigation of YbMnBi 2 , a representative type-II Weyl semimetal, and contrast its excitation spectrum with the optical response of the more conventional semimetal EuMnBi 2 . This comparative study allows us to disentangle the optical fingerprints of type-II Weyl fermions, but also challengesmore » the present theoretical understanding of their electrodynamic response.« less
Stochastic series expansion simulation of the t -V model
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Ye-Hua; Troyer, Matthias
2016-04-01
We present an algorithm for the efficient simulation of the half-filled spinless t -V model on bipartite lattices, which combines the stochastic series expansion method with determinantal quantum Monte Carlo techniques widely used in fermionic simulations. The algorithm scales linearly in the inverse temperature, cubically with the system size, and is free from the time-discretization error. We use it to map out the finite-temperature phase diagram of the spinless t -V model on the honeycomb lattice and observe a suppression of the critical temperature of the charge-density-wave phase in the vicinity of a fermionic quantum critical point.
Holographic description of a quantum black hole on a computer
NASA Astrophysics Data System (ADS)
Hanada, Masanori; Hyakutake, Yoshifumi; Ishiki, Goro; Nishimura, Jun
2014-05-01
Black holes have been predicted to radiate particles and eventually evaporate, which has led to the information loss paradox and implies that the fundamental laws of quantum mechanics may be violated. Superstring theory, a consistent theory of quantum gravity, provides a possible solution to the paradox if evaporating black holes can actually be described in terms of standard quantum mechanical systems, as conjectured from the theory. Here, we test this conjecture by calculating the mass of a black hole in the corresponding quantum mechanical system numerically. Our results agree well with the prediction from gravity theory, including the leading quantum gravity correction. Our ability to simulate black holes offers the potential to further explore the yet mysterious nature of quantum gravity through well-established quantum mechanics.
Quantum scar and breakdown of universality in graphene: A theoretical insight
NASA Astrophysics Data System (ADS)
Iyakutti, Kombiah; Rajeswarapalanichamy, Ratnavelu; Surya, Velappa Jayaraman; Kawazoe, Yoshiyuki
2017-12-01
Graphene has brought forward a lot of new physics. One of them is the emergence of massless Dirac fermions in addition to the electrons and these features are new to physics. In this theoretical study, the signatures for quantum scar and the breakdown of universality in graphene are investigated with reference to the presence of these two types of fermions. Taking the graphene quantum dot (QD) potential as the confining potential, the radial part of Dirac equations are solved numerically. Concentrations of the two component eigen-wavefunctions about classical periodic orbits emerge as the signatures for the quantum scar. The sudden variations, in the ratio of the radial wave-functions (large and small components), R(g/f), with mass ratio κ are the signatures for breakdown of universality in graphene. The breakdown of universality occurs for the states k = -1 and k = 1, and the state k = -1 is more susceptible to the breakdown of universality.
Approximating quantum many-body wave functions using artificial neural networks
NASA Astrophysics Data System (ADS)
Cai, Zi; Liu, Jinguo
2018-01-01
In this paper, we demonstrate the expressibility of artificial neural networks (ANNs) in quantum many-body physics by showing that a feed-forward neural network with a small number of hidden layers can be trained to approximate with high precision the ground states of some notable quantum many-body systems. We consider the one-dimensional free bosons and fermions, spinless fermions on a square lattice away from half-filling, as well as frustrated quantum magnetism with a rapidly oscillating ground-state characteristic function. In the latter case, an ANN with a standard architecture fails, while that with a slightly modified one successfully learns the frustration-induced complex sign rule in the ground state and approximates the ground states with high precisions. As an example of practical use of our method, we also perform the variational method to explore the ground state of an antiferromagnetic J1-J2 Heisenberg model.
One-loop quantum gravity repulsion in the early Universe.
Broda, Bogusław
2011-03-11
Perturbative quantum gravity formalism is applied to compute the lowest order corrections to the classical spatially flat cosmological Friedmann-Lemaître-Robertson-Walker solution (for the radiation). The presented approach is analogous to the approach applied to compute quantum corrections to the Coulomb potential in electrodynamics, or rather to the approach applied to compute quantum corrections to the Schwarzschild solution in gravity. In the framework of the standard perturbative quantum gravity, it is shown that the corrections to the classical deceleration, coming from the one-loop graviton vacuum polarization (self-energy), have (UV cutoff free) opposite to the classical repulsive properties which are not negligible in the very early Universe. The repulsive "quantum forces" resemble those known from loop quantum cosmology.
Grassmann phase space methods for fermions. II. Field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, B.J., E-mail: bdalton@swin.edu.au; Jeffers, J.; Barnett, S.M.
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, thoughmore » fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.« less
Chern-Simons expectation values and quantum horizons from loop quantum gravity and the Duflo map.
Sahlmann, Hanno; Thiemann, Thomas
2012-03-16
We report on a new approach to the calculation of Chern-Simons theory expectation values, using the mathematical underpinnings of loop quantum gravity, as well as the Duflo map, a quantization map for functions on Lie algebras. These new developments can be used in the quantum theory for certain types of black hole horizons, and they may offer new insights for loop quantum gravity, Chern-Simons theory and the theory of quantum groups.
NASA Astrophysics Data System (ADS)
Samuel, Joseph
2011-08-01
The problem of quantum gravity has been with us for over 80 years. After quantum theory was established in the 1920s, it was successfully applied to the electromagnetic field. Over the years there have been many attempts to bring gravity into the fold. There has been work on the Hamiltonian formulation of general relativity, perturbative approaches to quantum gravity and more. Much intellectual effort went into understanding conceptual and technical problems stemming from the general covariance of the theory. However, in earlier decades, the subject of quantum gravity was relatively on the fringes of theoretical physics research, pursued by a small and diverse community of people. In the mid 1980s the situation changed dramatically. The subject of quantum gravity came to the forefront of fundamental physics research, no longer a backwater but the mainstream. Quantum gravity was widely acknowledged as the last frontier of fundamental physics and attracted the brightest young people. Unlike in previous decades, workers in this area were no longer isolated groups or individuals ploughing lonely furrows, but organised into coherent `programmes' for a concerted attack on the problem. The main programmes coincidentally were all formulated in the mid 1980s. The two `programmes' covered in this section are string theory and loop quantum gravity. String theory was born an offshoot of Hadronic models in particle physics and reflects the particle physicists view that gravity is just one more interaction to be encompassed by a unified theory. Loop quantum gravity reflects the general relativist's conviction that gravity is different and should not be treated as a perturbation about Minkowski spacetime. Each of these approaches has its proponents, adherents and critics. It is now about a quarter of a century since these programmes started. It is perhaps a good time to take stock and assess where we are now and where each of these programmes is headed. The idea in this focus section is to get a comparative perspective on these programmes, by asking our reviewers to critically evaluate progress in their programmes over the last 25 years (1986-2011). This section features invited review articles from physicists who have been associated with these programmes from their inception. They were invited to write a retrospective review: what were the initial hopes? To what extent have these hopes been realised? What were the major successes, surprises, and disappointments? The emphasis is on what has come out of the programme rather than technical developments internal to the programme. We hope that the reader, whatever his/her persuasion, will be able to form a panoramic view of quantum gravity research today within these two programmes. We hope to complement this view with a topical review of causal sets in the future.
NASA Astrophysics Data System (ADS)
Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia
2016-04-01
We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.
Band and Correlated Insulators of Cold Fermions in a Mesoscopic Lattice
NASA Astrophysics Data System (ADS)
Lebrat, Martin; Grišins, Pjotrs; Husmann, Dominik; Häusler, Samuel; Corman, Laura; Giamarchi, Thierry; Brantut, Jean-Philippe; Esslinger, Tilman
2018-01-01
We investigate the transport properties of neutral, fermionic atoms passing through a one-dimensional quantum wire containing a mesoscopic lattice. The lattice is realized by projecting individually controlled, thin optical barriers on top of a ballistic conductor. Building an increasingly longer lattice, one site after another, we observe and characterize the emergence of a band insulating phase, demonstrating control over quantum-coherent transport. We explore the influence of atom-atom interactions and show that the insulating state persists as contact interactions are tuned from moderately to strongly attractive. Using bosonization and classical Monte Carlo simulations, we analyze such a model of interacting fermions and find good qualitative agreement with the data. The robustness of the insulating state supports the existence of a Luther-Emery liquid in the one-dimensional wire. Our work realizes a tunable, site-controlled lattice Fermi gas strongly coupled to reservoirs, which is an ideal test bed for nonequilibrium many-body physics.
Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z
2012-12-07
We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.
Holographic description of a quantum black hole on a computer.
Hanada, Masanori; Hyakutake, Yoshifumi; Ishiki, Goro; Nishimura, Jun
2014-05-23
Black holes have been predicted to radiate particles and eventually evaporate, which has led to the information loss paradox and implies that the fundamental laws of quantum mechanics may be violated. Superstring theory, a consistent theory of quantum gravity, provides a possible solution to the paradox if evaporating black holes can actually be described in terms of standard quantum mechanical systems, as conjectured from the theory. Here, we test this conjecture by calculating the mass of a black hole in the corresponding quantum mechanical system numerically. Our results agree well with the prediction from gravity theory, including the leading quantum gravity correction. Our ability to simulate black holes offers the potential to further explore the yet mysterious nature of quantum gravity through well-established quantum mechanics. Copyright © 2014, American Association for the Advancement of Science.
How to construct a consistent and physically relevant the Fock space of neutrino flavor states?
NASA Astrophysics Data System (ADS)
Lobanov, A. E.
2016-10-01
We propose a modification of the electroweak theory, where the fermions with the same electroweak quantum numbers are combined in multiplets and are treated as different quantum states of a single particle. Thereby, in describing the electroweak interactions it is possible to use four fundamental fermions only. In this model, the mixing and oscillations of the particles arise as a direct consequence of the general principles of quantum field theory. The developed approach enables one to calculate the probabilities of the processes taking place in the detector at long distances from the particle source. Calculations of higher-order processes including the computation of the contributions due to radiative corrections can be performed in the framework of perturbation theory using the regular diagram technique.
More on Weinberg's no-go theorem in quantum gravity
NASA Astrophysics Data System (ADS)
Nagahama, Munehiro; Oda, Ichiro
2018-05-01
We complement Weinberg's no-go theorem on the cosmological constant problem in quantum gravity by generalizing it to the case of a scale-invariant theory. Our analysis makes use of the effective action and the BRST symmetry in a manifestly covariant quantum gravity instead of the classical Lagrangian density and the G L (4 ) symmetry in classical gravity. In this sense, our proof is very general since it does not depend on details of quantum gravity and holds true for general gravitational theories which are invariant under diffeomorphisms. As an application of our theorem, we comment on an idea that in the asymptotic safety scenario the functional renormalization flow drives a cosmological constant to zero, solving the cosmological constant problem without reference to fine tuning of parameters. Finally, we also comment on the possibility of extending the Weinberg theorem in quantum gravity to the case where the translational invariance is spontaneously broken.
Observation of three-component fermions in the topological semimetal molybdenum phosphide.
Lv, B Q; Feng, Z-L; Xu, Q-N; Gao, X; Ma, J-Z; Kong, L-Y; Richard, P; Huang, Y-B; Strocov, V N; Fang, C; Weng, H-M; Shi, Y-G; Qian, T; Ding, H
2017-06-29
In quantum field theory, Lorentz invariance leads to three types of fermion-Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.
Gaps, Pseudogaps, and the Nature of Charge in Holographic Fermion Models
NASA Astrophysics Data System (ADS)
Vanacore, Garrett; Phillips, Philip
Building on prior holographic constructions of Fermi arcs and Mott physics, we investigate the landscape of gapped and gapless strongly-correlated phases resulting from bulk fermion interactions in gauge/gravity duality. We test a proposed connection between bulk chiral symmetry and gapless boundary states, and discuss implications for discrete symmetry breaking in pseudogapped systems like the cuprate superconductors. Numerical methods are used to treat gravitational backreaction of bulk fermions, allowing more rigorous investigation of the existence of holographic Fermi surfaces and their adherence to Luttinger's rule. We use these techniques to study deviations from Luttinger's rule in holography, testing a recent claim that momentum-deconfined charges are at the heart of the Mott state.
Radiation from quantum weakly dynamical horizons in loop quantum gravity.
Pranzetti, Daniele
2012-07-06
We provide a statistical mechanical analysis of quantum horizons near equilibrium in the grand canonical ensemble. By matching the description of the nonequilibrium phase in terms of weakly dynamical horizons with a local statistical framework, we implement loop quantum gravity dynamics near the boundary. The resulting radiation process provides a quantum gravity description of the horizon evaporation. For large black holes, the spectrum we derive presents a discrete structure which could be potentially observable.
Natural inflation and quantum gravity.
de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman
2015-04-17
Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinckmann, Jan; Woelfle, Peter
2004-11-01
The nearest-neighbor quantum antiferromagnetic (AF) Heisenberg model for spin-1/2 on a two-dimensional square lattice is studied in the auxiliary-fermion representation. Expressing spin operators by canonical fermionic particles requires a constraint on the fermion charge Q{sub i}=1 on each lattice site i, which is imposed approximately through the thermal average. The resulting interacting fermion system is first treated in mean-field theory (MFT), which yields an AF ordered ground state and spin waves in quantitative agreement with conventional spin-wave theory. At finite temperature a self-consistent approximation beyond mean field is required in order to fulfill the Mermin-Wagner theorem. We first discuss amore » fully self-consistent approximation, where fermions are renormalized due to fluctuations of their spin density, in close analogy to FLEX. While static properties like the correlation length, {xi}(T){proportional_to}exp(aJ/T), come out correctly, the dynamical response lacks the magnon-like peaks which would reflect the appearance of short-range order at low T. This drawback, which is caused by overdamping, is overcome in a 'minimal self-consistent approximation' (MSCA), which we derive from the equations of motion. The MSCA features dynamical scaling at small energy and temperature and is qualitatively correct both in the regime of order-parameter relaxation at long wavelengths {lambda}>{xi} and in the short-range-order regime at {lambda}<{xi}. We also discuss the impact of vertex corrections and the problem of pseudo-gap formation in the single-particle density of states due to long-range fluctuations. Finally we show that the (short-range) magnetic order in MFT and MSCA helps to fulfill the constraint on the local fermion occupancy.« less
Superpersistent Currents in Dirac Fermion Systems
2017-03-06
development of quantum mechanics,, but also to quantum information processing and computing . Exploiting various physical systems to realize two-level...Here, using the QSD method, we calculated the dynamical trajectories of the system in the quantum regime. Our computations extending to the long time...currents in 2D Dirac material systems and pertinent phenomena in the emerging field of relativistic quantum nonlinear dynamics and chaos. Systematic
Yang-Baxter and other relations for free-fermion and Ising models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, B.
1987-02-01
Eight-vertex, free fermion, and Ising models are formulated using a convention that emphasizes the algebra of the local transition operators that arise in the quantum inverse method. Equivalent classes of models, are investigated, with particular emphasis on the role of the star-triangle relations. Using these results, a natural and symmetrical parametrization is introduced and Yang-Baxter relations are constructed in an elementary way. The paper concludes with a consideration of duality, which links the present work to a recent paper of Baxter on the free fermion model.
Residual entanglement of accelerated fermions is not nonlocal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friis, Nicolai; Koehler, Philipp; Bertlmann, Reinhold A.
2011-12-15
We analyze the operational meaning of the residual entanglement in noninertial fermionic systems in terms of the achievable violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality. We demonstrate that the quantum correlations of fermions, which were previously found to survive in the infinite acceleration limit, cannot be considered to be nonlocal. The entanglement shared by an inertial and an accelerated observer cannot be utilized for the violation of the CHSH inequality in case of high accelerations. Our results are shown to extend beyond the single-mode approximation commonly used in the literature.
Landau-Khalatnikov-Fradkin transformation for the fermion propagator in QED in arbitrary dimensions
Jia, Shaoyang; Pennington, Michael R.
2017-04-10
Here, we explore the dependence of fermion propagators on the covariant gauge fixing parameter in quantum electrodynamics (QED) with the number of spacetime dimensions kept explicit. Gauge covariance is controlled by the the Landau -Khalatnikov-Fradkin transformation (LKFT). Utilizing its group nature, the LKFT for a fermion propagator in Minkowski space is solved exactly. The special scenario of 3D has been used to test claims made for general cases. When renormalized correctly, the simplification of the LKFT in 4D has been achieved with the help of fractional calculus.
Feynman propagator for spin foam quantum gravity.
Oriti, Daniele
2005-03-25
We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".
BOOK REVIEW: A First Course in Loop Quantum Gravity A First Course in Loop Quantum Gravity
NASA Astrophysics Data System (ADS)
Dittrich, Bianca
2012-12-01
Students who are interested in quantum gravity usually face the difficulty of working through a large amount of prerequisite material before being able to deal with actual quantum gravity. A First Course in Loop Quantum Gravity by Rodolfo Gambini and Jorge Pullin, aimed at undergraduate students, marvellously succeeds in starting from the basics of special relativity and covering basic topics in Hamiltonian dynamics, Yang Mills theory, general relativity and quantum field theory, ending with a tour on current (loop) quantum gravity research. This is all done in a short 173 pages! As such the authors cannot cover any of the subjects in depth and indeed this book should be seen more as a motivation and orientation guide so that students can go on to follow the hints for further reading. Also, as there are many subjects to cover beforehand, slightly more than half of the book is concerned with more general subjects (special and general relativity, Hamiltonian dynamics, constrained systems, quantization) before the starting point for loop quantum gravity, the Ashtekar variables, are introduced. The approach taken by the authors is heuristic and uses simplifying examples in many places. However they take care in motivating all the main steps and succeed in presenting the material pedagogically. Problem sets are provided throughout and references for further reading are given. Despite the shortness of space, alternative viewpoints are mentioned and the reader is also referred to experimental results and bounds. In the second half of the book the reader gets a ride through loop quantum gravity; the material covers geometric operators and their spectra, the Hamiltonian constraints, loop quantum cosmology and, more broadly, black hole thermodynamics. A glimpse of recent developments and open problems is given, for instance a discussion on experimental predictions, where the authors carefully point out the very preliminary nature of the results. The authors close with an 'open issues and controversies' section, addressing some of the criticism of loop quantum gravity and pointing to weak points of the theory. Again, readers aiming at starting research in loop quantum gravity should take this as a guide and motivation for further study, as many technicalities are naturally left out. In summary this book fully reaches the aim set by the authors - to introduce the topic in a way that is widely accessible to undergraduates - and as such is highly recommended.
Superfield Hamiltonian quantization in terms of quantum antibrackets
NASA Astrophysics Data System (ADS)
Batalin, Igor A.; Lavrov, Peter M.
2016-04-01
We develop a new version of the superfield Hamiltonian quantization. The main new feature is that the BRST-BFV charge and the gauge fixing Fermion are introduced on equal footing within the sigma model approach, which provides for the actual use of the quantum/derived antibrackets. We study in detail the generating equations for the quantum antibrackets and their primed counterparts. We discuss the finite quantum anticanonical transformations generated by the quantum antibracket.
Quasi-local holographic dualities in non-perturbative 3D quantum gravity
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Goeller, Christophe; Livine, Etera R.; Riello, Aldo
2018-07-01
We present a line of research aimed at investigating holographic dualities in the context of three dimensional quantum gravity within finite bounded regions. The bulk quantum geometrodynamics is provided by the Ponzano–Regge state-sum model, which defines 3D quantum gravity as a discrete topological quantum field theory (TQFT). This formulation provides an explicit and detailed definition of the quantum boundary states, which allows a rich correspondence between quantum boundary conditions and boundary theories, thereby leading to holographic dualities between 3D quantum gravity and 2D statistical models as used in condensed matter. After presenting the general framework, we focus on the concrete example of the coherent twisted torus boundary, which allows for a direct comparison with other approaches to 3D/2D holography at asymptotic infinity. We conclude with the most interesting questions to pursue in this framework.
Quantum supersymmetric Bianchi IX cosmology
NASA Astrophysics Data System (ADS)
Damour, Thibault; Spindel, Philippe
2014-11-01
We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle effect" between small-volume universes and large-volume ones, and to a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like excited versions of the Planckian-size universes described by the discrete states at fermionic levels NF=0 and 1.
Pauli structures arising from confined particles interacting via a statistical potential
NASA Astrophysics Data System (ADS)
Batle, Josep; Ciftja, Orion; Farouk, Ahmed; Alkhambashi, Majid; Abdalla, Soliman
2017-09-01
There have been suggestions that the Pauli exclusion principle alone can lead a non-interacting (free) system of identical fermions to form crystalline structures dubbed Pauli crystals. Single-shot imaging experiments for the case of ultra-cold systems of free spin-polarized fermionic atoms in a two-dimensional harmonic trap appear to show geometric arrangements that cannot be characterized as Wigner crystals. This work explores this idea and considers a well-known approach that enables one to treat a quantum system of free fermions as a system of classical particles interacting with a statistical interaction potential. The model under consideration, though classical in nature, incorporates the quantum statistics by endowing the classical particles with an effective interaction potential. The reasonable expectation is that possible Pauli crystal features seen in experiments may manifest in this model that captures the correct quantum statistics as a first order correction. We use the Monte Carlo simulated annealing method to obtain the most stable configurations of finite two-dimensional systems of confined particles that interact with an appropriate statistical repulsion potential. We consider both an isotropic harmonic and a hard-wall confinement potential. Despite minor differences, the most stable configurations observed in our model correspond to the reported Pauli crystals in single-shot imaging experiments of free spin-polarized fermions in a harmonic trap. The crystalline configurations observed appear to be different from the expected classical Wigner crystal structures that would emerge should the confined classical particles had interacted with a pair-wise Coulomb repulsion.
Observation of three-component fermions in the topological semimetal molybdenum phosphide
NASA Astrophysics Data System (ADS)
Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Gao, X.; Ma, J.-Z.; Kong, L.-Y.; Richard, P.; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, T.; Ding, H.
2017-06-01
In quantum field theory, Lorentz invariance leads to three types of fermion—Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.
Electronic Griffiths phase and quantum interference in disordered heavy-fermion systems
NASA Astrophysics Data System (ADS)
Gnida, Daniel
2018-02-01
We investigated the specific heat and electrical resistivity of disordered heavy-fermion systems Ce2Co0.8Si3.2 and Ce2Co0.4Rh0.4Si3.2 . Results show that pronounced non-Fermi-liquid behavior in these Kondo disordered compounds originates from approaching metal-insulator transition rather than from proximity to magnetic instability. Power-law divergence of the local Kondo temperature distribution, P (TK) , in the limit of TK→0 , and clear signature of the quantum interference corrections in the resistivity detected deep below the onset of Kondo coherent state, point to electronic Griffiths phase formation in the studied compounds.
High-precision multiband spectroscopy of ultracold fermions in a nonseparable optical lattice
NASA Astrophysics Data System (ADS)
Fläschner, Nick; Tarnowski, Matthias; Rem, Benno S.; Vogel, Dominik; Sengstock, Klaus; Weitenberg, Christof
2018-05-01
Spectroscopic tools are fundamental for the understanding of complex quantum systems. Here, we demonstrate high-precision multiband spectroscopy in a graphenelike lattice using ultracold fermionic atoms. From the measured band structure, we characterize the underlying lattice potential with a relative error of 1.2 ×10-3 . Such a precise characterization of complex lattice potentials is an important step towards precision measurements of quantum many-body systems. Furthermore, we explain the excitation strengths into different bands with a model and experimentally study their dependency on the symmetry of the perturbation operator. This insight suggests the excitation strengths as a suitable observable for interaction effects on the eigenstates.
Canonical methods in classical and quantum gravity: An invitation to canonical LQG
NASA Astrophysics Data System (ADS)
Reyes, Juan D.
2018-04-01
Loop Quantum Gravity (LQG) is a candidate quantum theory of gravity still under construction. LQG was originally conceived as a background independent canonical quantization of Einstein’s general relativity theory. This contribution provides some physical motivations and an overview of some mathematical tools employed in canonical Loop Quantum Gravity. First, Hamiltonian classical methods are reviewed from a geometric perspective. Canonical Dirac quantization of general gauge systems is sketched next. The Hamiltonian formultation of gravity in geometric ADM and connection-triad variables is then presented to finally lay down the canonical loop quantization program. The presentation is geared toward advanced undergradute or graduate students in physics and/or non-specialists curious about LQG.
Infinite variance in fermion quantum Monte Carlo calculations.
Shi, Hao; Zhang, Shiwei
2016-03-01
For important classes of many-fermion problems, quantum Monte Carlo (QMC) methods allow exact calculations of ground-state and finite-temperature properties without the sign problem. The list spans condensed matter, nuclear physics, and high-energy physics, including the half-filled repulsive Hubbard model, the spin-balanced atomic Fermi gas, and lattice quantum chromodynamics calculations at zero density with Wilson Fermions, and is growing rapidly as a number of problems have been discovered recently to be free of the sign problem. In these situations, QMC calculations are relied on to provide definitive answers. Their results are instrumental to our ability to understand and compute properties in fundamental models important to multiple subareas in quantum physics. It is shown, however, that the most commonly employed algorithms in such situations have an infinite variance problem. A diverging variance causes the estimated Monte Carlo statistical error bar to be incorrect, which can render the results of the calculation unreliable or meaningless. We discuss how to identify the infinite variance problem. An approach is then proposed to solve the problem. The solution does not require major modifications to standard algorithms, adding a "bridge link" to the imaginary-time path integral. The general idea is applicable to a variety of situations where the infinite variance problem may be present. Illustrative results are presented for the ground state of the Hubbard model at half-filling.
Grassmann phase space theory and the Jaynes–Cummings model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, B.J., E-mail: bdalton@swin.edu.au; Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Victoria 3122; Garraway, B.M.
2013-07-15
The Jaynes–Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherentmore » state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes–Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker–Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker–Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes–Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker–Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker–Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions–that are also equivalent to the canonical Grassmann distribution function–to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum–atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes–Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum–atom optics. -- Highlights: •Novel phase space theory of the Jaynes–Cummings model using Grassmann variables. •Fokker–Planck equations solved analytically. •Results agree with the standard quantum optics treatment. •Grassmann phase space theory applicable to fermion many-body problems.« less
Chern-Simons Term: Theory and Applications.
NASA Astrophysics Data System (ADS)
Gupta, Kumar Sankar
1992-01-01
We investigate the quantization and applications of Chern-Simons theories to several systems of interest. Elementary canonical methods are employed for the quantization of abelian and nonabelian Chern-Simons actions using ideas from gauge theories and quantum gravity. When the spatial slice is a disc, it yields quantum states at the edge of the disc carrying a representation of the Kac-Moody algebra. We next include sources in this model and their quantum states are shown to be those of a conformal family. Vertex operators for both abelian and nonabelian sources are constructed. The regularized abelian Wilson line is proved to be a vertex operator. The spin-statistics theorem is established for Chern-Simons dynamics using purely geometrical techniques. Chern-Simons action is associated with exotic spin and statistics in 2 + 1 dimensions. We study several systems in which the Chern-Simons action affects the spin and statistics. The first class of systems we study consist of G/H models. The solitons of these models are shown to obey anyonic statistics in the presence of a Chern-Simons term. The second system deals with the effect of the Chern -Simons term in a model for high temperature superconductivity. The coefficient of the Chern-Simons term is shown to be quantized, one of its possible values giving fermionic statistics to the solitons of this model. Finally, we study a system of spinning particles interacting with 2 + 1 gravity, the latter being described by an ISO(2,1) Chern-Simons term. An effective action for the particles is obtained by integrating out the gauge fields. Next we construct operators which exchange the particles. They are shown to satisfy the braid relations. There are ambiguities in the quantization of this system which can be exploited to give anyonic statistics to the particles. We also point out that at the level of the first quantized theory, the usual spin-statistics relation need not apply to these particles.
Theory of scanning tunneling spectroscopy: from Kondo impurities to heavy fermion materials
NASA Astrophysics Data System (ADS)
Morr, Dirk K.
2017-01-01
Kondo systems ranging from the single Kondo impurity to heavy fermion materials present us with a plethora of unconventional properties whose theoretical understanding is still one of the major open problems in condensed matter physics. Over the last few years, groundbreaking scanning tunneling spectroscopy (STS) experiments have provided unprecedented new insight into the electronic structure of Kondo systems. Interpreting the results of these experiments—the differential conductance and the quasi-particle interference spectrum—however, has been complicated by the fact that electrons tunneling from the STS tip into the system can tunnel either into the heavy magnetic moment or the light conduction band states. In this article, we briefly review the theoretical progress made in understanding how quantum interference between these two tunneling paths affects the experimental STS results. We show how this theoretical insight has allowed us to interpret the results of STS experiments on a series of heavy fermion materials providing detailed knowledge of their complex electronic structure. It is this knowledge that is a conditio sine qua non for developing a deeper understanding of the fascinating properties exhibited by heavy fermion materials, ranging from unconventional superconductivity to non-Fermi-liquid behavior in the vicinity of quantum critical points.
Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock
NASA Astrophysics Data System (ADS)
Bromley, S. L.; Kolkowitz, S.; Bothwell, T.; Kedar, D.; Safavi-Naini, A.; Wall, M. L.; Salomon, C.; Rey, A. M.; Ye, J.
2018-04-01
Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.
Quantum gravity from noncommutative spacetime
NASA Astrophysics Data System (ADS)
Lee, Jungjai; Yang, Hyun Seok
2014-12-01
We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative ★-algebra) of quantum gravity.
Universality of quantum gravity corrections.
Das, Saurya; Vagenas, Elias C
2008-11-28
We show that the existence of a minimum measurable length and the related generalized uncertainty principle (GUP), predicted by theories of quantum gravity, influence all quantum Hamiltonians. Thus, they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to the Lamb shift, the Landau levels, and the tunneling current in a scanning tunneling microscope. We show that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, beyond the reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parameter in the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the future should either be able to test these predictions, or further tighten the above bounds and predict an intermediate length scale between the electroweak and the Planck scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosales-Zarate, Laura E. C.; Drummond, P. D.
We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. Themore » preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.« less
NASA Astrophysics Data System (ADS)
Marletto, C.; Vedral, V.
2017-12-01
All existing quantum-gravity proposals are extremely hard to test in practice. Quantum effects in the gravitational field are exceptionally small, unlike those in the electromagnetic field. The fundamental reason is that the gravitational coupling constant is about 43 orders of magnitude smaller than the fine structure constant, which governs light-matter interactions. For example, detecting gravitons—the hypothetical quanta of the gravitational field predicted by certain quantum-gravity proposals—is deemed to be practically impossible. Here we adopt a radically different, quantum-information-theoretic approach to testing quantum gravity. We propose witnessing quantumlike features in the gravitational field, by probing it with two masses each in a superposition of two locations. First, we prove that any system (e.g., a field) mediating entanglement between two quantum systems must be quantum. This argument is general and does not rely on any specific dynamics. Then, we propose an experiment to detect the entanglement generated between two masses via gravitational interaction. By our argument, the degree of entanglement between the masses is a witness of the field quantization. This experiment does not require any quantum control over gravity. It is also closer to realization than detecting gravitons or detecting quantum gravitational vacuum fluctuations.
Marletto, C; Vedral, V
2017-12-15
All existing quantum-gravity proposals are extremely hard to test in practice. Quantum effects in the gravitational field are exceptionally small, unlike those in the electromagnetic field. The fundamental reason is that the gravitational coupling constant is about 43 orders of magnitude smaller than the fine structure constant, which governs light-matter interactions. For example, detecting gravitons-the hypothetical quanta of the gravitational field predicted by certain quantum-gravity proposals-is deemed to be practically impossible. Here we adopt a radically different, quantum-information-theoretic approach to testing quantum gravity. We propose witnessing quantumlike features in the gravitational field, by probing it with two masses each in a superposition of two locations. First, we prove that any system (e.g., a field) mediating entanglement between two quantum systems must be quantum. This argument is general and does not rely on any specific dynamics. Then, we propose an experiment to detect the entanglement generated between two masses via gravitational interaction. By our argument, the degree of entanglement between the masses is a witness of the field quantization. This experiment does not require any quantum control over gravity. It is also closer to realization than detecting gravitons or detecting quantum gravitational vacuum fluctuations.
Quantum Phase Transitions in the Bose Hubbard Model and in a Bose-Fermi Mixture
NASA Astrophysics Data System (ADS)
Duchon, Eric Nicholas
Ultracold atomic gases may be the ultimate quantum simulator. These isolated systems have the lowest temperatures in the observable universe, and their properties and interactions can be precisely and accurately tuned across a full spectrum of behaviors, from few-body physics to highly-correlated many-body effects. The ability to impose potentials on and tune interactions within ultracold gases to mimic complex systems mean they could become a theorist's playground. One of their great strengths, however, is also one of the largest obstacles to this dream: isolation. This thesis touches on both of these themes. First, methods to characterize phases and quantum critical points, and to construct finite temperature phase diagrams using experimentally accessible observables in the Bose Hubbard model are discussed. Then, the transition from a weakly to a strongly interacting Bose-Fermi mixture in the continuum is analyzed using zero temperature numerical techniques. Real materials can be emulated by ultracold atomic gases loaded into optical lattice potentials. We discuss the characteristics of a single boson species trapped in an optical lattice (described by the Bose Hubbard model) and the hallmarks of the quantum critical region that separates the superfluid and the Mott insulator ground states. We propose a method to map the quantum critical region using the single, experimentally accessible, local quantity R, the ratio of compressibility to local number fluctuations. The procedure to map a phase diagram with R is easily generalized to inhomogeneous systems and generic many-body Hamiltonians. We illustrate it here using quantum Monte Carlo simulations of the 2D Bose Hubbard model. Secondly, we investigate the transition from a degenerate Fermi gas weakly coupled to a Bose Einstein condensate to the strong coupling limit of composite boson-fermion molecules. We propose a variational wave function to investigate the ground state properties of such a Bose-Fermi mixture with equal population, as a function of increasing attraction between bosons and fermions. The variational wave function captures the weak and the strong coupling limits and at intermediate coupling we make two predictions using zero temperature quantum Monte Carlo methods: (I) a complete destruction of the atomic Fermi surface and emergence of a molecular Fermi sea that coexists with a remnant of the Bose-Einstein condensate, and (II) evidence for enhanced short-ranged fermion-fermion correlations mediated by bosons.
Two Perspectives of the 2D Unit Area Quantum Sphere and Their Equivalence
NASA Astrophysics Data System (ADS)
Aru, Juhan; Huang, Yichao; Sun, Xin
2017-11-01
2D Liouville quantum gravity (LQG) is used as a toy model for 4D quantum gravity and is the theory of world-sheet in string theory. Recently there has been growing interest in studying LQG in the realm of probability theory: David et al. (Liouville quantum gravity on the Riemann sphere. Commun Math Phys 342(3):869-907, 2016) and Duplantier et al. (Liouville quantum gravity as a mating of trees. ArXiv e-prints: arXiv:1409.7055, 2014) both provide a probabilistic perspective of the LQG on the 2D sphere. In particular, in each of them one may find a definition of the so-called unit area quantum sphere. We examine these two perspectives and prove their equivalence by showing that the respective unit area quantum spheres are the same. This is done by considering a unified limiting procedure for defining both objects.
Tunable Fermi Contour Anisotropy in GaAs Electron and Hole Systems
NASA Astrophysics Data System (ADS)
Kamburov, Dobromir G.
This Thesis explores the ballistic transport of quasi two-dimensional (2D) electron and hole systems confined to GaAs quantum wells and subjected to a periodic, strain-induced density modulation. In the presence of an applied perpendicular magnetic field, whenever the diameter of the charged carriers' cyclotron orbit becomes commensurate with the period of the density modulation, the sample's resistance exhibits commensurability features. We use the commensurability effects to directly probe the size of the cyclotron orbit, the Fermi contour, and the spin-polarization of particles at low magnetic field and of composite fermions near even-denominator Landau level filling factors (nu). We establish how the commensurability signatures depend on the sample parameters, including the carrier density, the modulation period, and the width of the confining quantum well. In the presence of a small perpendicular magnetic field (B⊥ ), both 2D electrons and holes are essentially spin-unpolarized and their Fermi contours are nearly circular. When an additional parallel component B∥ is introduced, it couples to the carriers' out-of-plane motion and leads to a severe distortion of the energy bands and the Fermi contours. The degree of anisotropy is typically stronger in the wider quantum wells but it also depends on the carrier type. For a given QW width, holes become anisotropic more readily than electrons. The application of B ∥ also affects the spin-polarization of the carriers. Hole samples, for example, become more spin-polarized compared to electrons. We can semi-quantitatively explain the shape and size of the electron and hole Fermi contours with a theoretical calculation with no adjustable parameters based on an 8 x 8 Kane Hamiltonian. In addition to the electron and hole data at low perpendicular magnetic fields, we observe commensurability features for composite fermions near Landau level filling factors nu = 3=2, 1/2, and 1/4. Our data reveal an asymmetry of the composite fermion commensurability features on the two sides of filling factors nu = 1=2 and 3=2. The asymmetry is a fascinating manifestation of a subtle breaking of the particle-hole equivalence in the ballistic transport of composite fermions. It is consistent with a transport picture in which the minority carriers capture flux quanta to form composite fermions. We also employ commensurability oscillations as a tool to probe and quantify the effect of B∥ on the composite fermion Fermi contours. Our measurements reveal that, thanks to the finite layer thickness of the carriers and the coupling of their out-of-plane motion to B∥, the Fermi contours of nu = 1=2 and 3/2 composite fermions are significantly distorted. Furthermore, depending on the width of the quantum well and the sample density, in the vicinity of nu = 3=2 the spin-polarization of the composite fermions varies while near nu = 1=2 they remain fully spin-polarized.
Peculiarities of the momentum distribution functions of strongly correlated charged fermions
NASA Astrophysics Data System (ADS)
Larkin, A. S.; Filinov, V. S.; Fortov, V. E.
2018-01-01
New numerical version of the Wigner approach to quantum thermodynamics of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations based on different kinds of perturbation theories cannot be applied. An explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. A new quantum Monte-Carlo method for calculations of average values of arbitrary quantum operators has been developed. Calculations of the momentum distribution functions and the pair correlation functions of degenerate ideal Fermi gas have been carried out for testing the developed approach. Comparison of the obtained momentum distribution functions of strongly correlated Coulomb systems with the Maxwell-Boltzmann and the Fermi distributions shows the significant influence of interparticle interaction both at small momenta and in high energy quantum ‘tails’.
Chiral sp-orbital paired superfluid of fermionic atoms in a 2D spin-dependent optical lattice
NASA Astrophysics Data System (ADS)
Liu, Bo; Li, Xiaopeng; Wu, Biao; Liu, W. Vincent
2014-03-01
Recent progress in realizing synthetic quantum orbital materials in chequerboard and hexagonal optical lattices opens an avenue towards exploiting unconventional quantum states, advancing our understanding of correlated quantum matter. Here, we unveil a chiral sp -orbital paired superfluid state for an interacting two-component Fermi gas in a 2D spin-dependent optical lattice. Surprisingly, this novel state is found to exist in a wide regime of experimentally tunable interaction strengths. The coexistence of this chiral superfluid and the ferro-orbital order is reminiscent of that of magnetism and superconductivity which is a long-standing issue in condensed matter physics. The topological properties are demonstrated by the existence of gapless chiral fermions in the presence of domain wall defects, reminiscent of quantum Hall edge states. Such properties can be measured by radio frequency spectroscopy in cold atomic experiments. Work supported in part by U.S. ARO, AFOSR, and DARPA-OLE-ARO, Kaufman Foundation, and NSF of China.
Electrodynamic response of the type-II Weyl semimetal YbMnBi 2
Chinotti, M.; Pal, A.; Ren, W. J.; ...
2016-12-01
Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. These quasi-two-dimensional bismuth layers based materials were recently designed and provide an arena for studying the interplay between anisotropic Dirac fermions, magnetism, and structural changes, allowing the formation of Weyl fermions in condensed matter. We perform an optical investigation of YbMnBi 2 , a representative type-II Weyl semimetal, and contrast its excitation spectrum with the optical response of the more conventional semimetal EuMnBi 2 . This comparative study allows us to disentangle the optical fingerprints of type-II Weyl fermions, but also challengesmore » the present theoretical understanding of their electrodynamic response.« less
Discovery of Lorentz-violating type II Weyl fermions in LaAlGe
Xu, Su-Yang; Alidoust, Nasser; Chang, Guoqing; Lu, Hong; Singh, Bahadur; Belopolski, Ilya; Sanchez, Daniel S.; Zhang, Xiao; Bian, Guang; Zheng, Hao; Husanu, Marious-Adrian; Bian, Yi; Huang, Shin-Ming; Hsu, Chuang-Han; Chang, Tay-Rong; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Strocov, Vladimir N.; Lin, Hsin; Jia, Shuang; Hasan, M. Zahid
2017-01-01
In quantum field theory, Weyl fermions are relativistic particles that travel at the speed of light and strictly obey the celebrated Lorentz symmetry. Their low-energy condensed matter analogs are Weyl semimetals, which are conductors whose electronic excitations mimic the Weyl fermion equation of motion. Although the traditional (type I) emergent Weyl fermions observed in TaAs still approximately respect Lorentz symmetry, recently, the so-called type II Weyl semimetal has been proposed, where the emergent Weyl quasiparticles break the Lorentz symmetry so strongly that they cannot be smoothly connected to Lorentz symmetric Weyl particles. Despite some evidence of nontrivial surface states, the direct observation of the type II bulk Weyl fermions remains elusive. We present the direct observation of the type II Weyl fermions in crystalline solid lanthanum aluminum germanide (LaAlGe) based on our photoemission data alone, without reliance on band structure calculations. Moreover, our systematic data agree with the theoretical calculations, providing further support on our experimental results. PMID:28630919
Direct optical detection of Weyl fermion chirality in a topological semimetal
NASA Astrophysics Data System (ADS)
Ma, Qiong; Xu, Su-Yang; Chan, Ching-Kit; Zhang, Cheng-Long; Chang, Guoqing; Lin, Yuxuan; Xie, Weiwei; Palacios, Tomás; Lin, Hsin; Jia, Shuang; Lee, Patrick A.; Jarillo-Herrero, Pablo; Gedik, Nuh
2017-09-01
A Weyl semimetal is a novel topological phase of matter, in which Weyl fermions arise as pseudo-magnetic monopoles in its momentum space. The chirality of the Weyl fermions, given by the sign of the monopole charge, is central to the Weyl physics, since it directly serves as the sign of the topological number and gives rise to exotic properties such as Fermi arcs and the chiral anomaly. Here, we directly detect the chirality of the Weyl fermions by measuring the photocurrent in response to circularly polarized mid-infrared light. The resulting photocurrent is determined by both the chirality of Weyl fermions and that of the photons. Our results pave the way for realizing a wide range of theoretical proposals for studying and controlling the Weyl fermions and their associated quantum anomalies by optical and electrical means. More broadly, the two chiralities, analogous to the two valleys in two-dimensional materials, lead to a new degree of freedom in a three-dimensional crystal with potential novel pathways to store and carry information.
TOPICAL REVIEW: Knot theory and a physical state of quantum gravity
NASA Astrophysics Data System (ADS)
Liko, Tomás; Kauffman, Louis H.
2006-02-01
We discuss the theory of knots, and describe how knot invariants arise naturally in gravitational physics. The focus of this review is to delineate the relationship between knot theory and the loop representation of non-perturbative canonical quantum general relativity (loop quantum gravity). This leads naturally to a discussion of the Kodama wavefunction, a state which is conjectured to be the ground state of the gravitational field with positive cosmological constant. This review can serve as a self-contained introduction to loop quantum gravity and related areas. Our intent is to make the paper accessible to a wider audience that may include topologists, knot theorists, and other persons innocent of the physical background to this approach to quantum gravity.
3D quantum gravity and effective noncommutative quantum field theory.
Freidel, Laurent; Livine, Etera R
2006-06-09
We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.
Ward identities and chiral anomalies for coupled fermionic chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, L. C.; Ferraz, A.; Mastropietro, Vieri
2013-12-15
Coupled fermionic chains are usually described by an effective model written in terms of bonding and anti-bonding fermionic fields with linear dispersion in the vicinities of the respective Fermi points. We derive for the first time exact Ward Identities (WI) for this model, proving the existence of chiral anomalies which verify the Adler-Bardeen non-renormalization property. Such WI are expected to play a crucial role in the understanding of the thermodynamic properties of the system. Our results are non-perturbative and are obtained analyzing Grassmann functional integrals by means of constructive quantum field theory methods.
NASA Astrophysics Data System (ADS)
Finster, Felix; Murro, Simone; Röken, Christian
2016-07-01
We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.
Quantum correction to classical gravitational interaction between two polarizable objects
NASA Astrophysics Data System (ADS)
Wu, Puxun; Hu, Jiawei; Yu, Hongwei
2016-12-01
When gravity is quantized, there inevitably exist quantum gravitational vacuum fluctuations which induce quadrupole moments in gravitationally polarizable objects and produce a quantum correction to the classical Newtonian interaction between them. Here, based upon linearized quantum gravity and the leading-order perturbation theory, we study, from a quantum field-theoretic prospect, this quantum correction between a pair of gravitationally polarizable objects treated as two-level harmonic oscillators. We find that the interaction potential behaves like r-11 in the retarded regime and r-10 in the near regime. Our result agrees with what were recently obtained in different approaches. Our study seems to indicate that linearized quantum gravity is robust in dealing with quantum gravitational effects at low energies.
Polynomial complexity despite the fermionic sign
NASA Astrophysics Data System (ADS)
Rossi, R.; Prokof'ev, N.; Svistunov, B.; Van Houcke, K.; Werner, F.
2017-04-01
It is commonly believed that in unbiased quantum Monte Carlo approaches to fermionic many-body problems, the infamous sign problem generically implies prohibitively large computational times for obtaining thermodynamic-limit quantities. We point out that for convergent Feynman diagrammatic series evaluated with a recently introduced Monte Carlo algorithm (see Rossi R., arXiv:1612.05184), the computational time increases only polynomially with the inverse error on thermodynamic-limit quantities.
Computational and Theoretical Investigations of Strongly Correlated Fermions in Optical Lattices
2013-08-29
and two-particle spectral functions across the disorder - driven superconductor - insulator transition". 22. Invited speaker, \\Fermions in Optical...energy gaps across the disorder - driven superconductor - insulator transition", October 7, 2010, Harvard. 27. Seminar on \\Probing Quantum Phases of...Perimeter Institute, November 14, 2011. 37. Seminar on \\Single and two-particle energy gaps across the disorder - driven superconductor - insulator transition
Local Criticality and non-Fermi Liquid Behavior in Heavy Fermions
NASA Astrophysics Data System (ADS)
Si, Qimiao
2002-03-01
Quantum criticality provides a means to understand the apparent non-Fermi liquid phenomena in strongly correlated metals. Heavy fermion metals have emerged as a prototype system; many of them explicitly display a magnetic QCP. Experiments have shown that the quantum critical behavior is much richer than expected. One surprise came from neutron scattering, which found that the spin dynamics is anomalous not only near the antiferromagnetic wavevectors but also essentially everywhere in the Brillouin zone. In this talk, I will review the experiments and describe our theoretical work on the subject [1,2,3]. The notion of "local criticality" will be introduced and will be argued to apply to the heavy fermions. Some broader implications of the results will also be discussed. [1] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature 413, 804 (2001). [2] Q. Si, J. L. Smith and K. Ingersent, Int. Journ. Mod. Phys. B13, 2331 (1999). [3] J. L. Smith and Q. Si, Phys. Rev. B61, 5184 (2000).
NASA Astrophysics Data System (ADS)
Lai, Hsin-Hua; Nica, Emilian; Si, Qimiao
Motivated by the properties of the heavy-fermion Ce3Pd20Si6 compound which exhibits both antiferro-magnetic (AFM) and antiferro-quadrupolar (AFQ) orders, we study a simplified quantum non-linear sigma model for spin-1 systems, with generalized multi-pole Kondo couplings to conduction electrons. We first consider the case when an SU(3) symmetry relates the spin and quadrupolar channels. We then analyze the effect of breaking the SU(3) symmetry, so that the interaction parameters in the spin and quadrupolar sectors are no longer equivalent, and different stages of Kondo screenings are allowed. A renormalization group analysis is used to analyze the interplay between the Kondo effect and the AFM/AFQ orders. Our work paves the way for understanding the global phase diagram in settings beyond the prototypical spin-1/2 cases. We also discuss similar considerations in the non-Kramers systems such as the heavy fermion compound PrV2Al20
Weyl-Kondo semimetal in heavy-fermion systems
NASA Astrophysics Data System (ADS)
Lai, Hsin-Hua; Grefe, Sarah E.; Paschen, Silke; Si, Qimiao
2018-01-01
Insulating states can be topologically nontrivial, a well-established notion that is exemplified by the quantum Hall effect and topological insulators. By contrast, topological metals have not been experimentally evidenced until recently. In systems with strong correlations, they have yet to be identified. Heavy-fermion semimetals are a prototype of strongly correlated systems and, given their strong spin-orbit coupling, present a natural setting to make progress. Here, we advance a Weyl-Kondo semimetal phase in a periodic Anderson model on a noncentrosymmetric lattice. The quasiparticles near the Weyl nodes develop out of the Kondo effect, as do the surface states that feature Fermi arcs. We determine the key signatures of this phase, which are realized in the heavy-fermion semimetal Ce3Bi4Pd3. Our findings provide the much-needed theoretical foundation for the experimental search of topological metals with strong correlations and open up an avenue for systematic studies of such quantum phases that naturally entangle multiple degrees of freedom.
Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions
NASA Astrophysics Data System (ADS)
Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.
2014-10-01
Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.
Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.
Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun
2017-08-15
Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.
The metric on field space, functional renormalization, and metric–torsion quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reuter, Martin, E-mail: reuter@thep.physik.uni-mainz.de; Schollmeyer, Gregor M., E-mail: schollmeyer@thep.physik.uni-mainz.de
Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein–Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and “tetrad-only” gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modifiedmore » FRGE is obtained if this metric is scale-dependent, as it happens in the metric–torsion system considered.« less
Time and a physical Hamiltonian for quantum gravity.
Husain, Viqar; Pawłowski, Tomasz
2012-04-06
We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society
Metallic phases from disordered (2+1)-dimensional quantum electrodynamics
Goswami, Pallab; Goldman, Hart; Raghu, S.
2017-06-15
Metallic phases have been observed in several disordered two-dimensional (2D) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2D metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2D metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED 3) with a large, even number of fermion flavors remains metallic in the presence of weakmore » scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. In conclusion, we also show that QED 3 with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.« less
Topological superfluids with finite-momentum pairing and Majorana fermions.
Qu, Chunlei; Zheng, Zhen; Gong, Ming; Xu, Yong; Mao, Li; Zou, Xubo; Guo, Guangcan; Zhang, Chuanwei
2013-01-01
Majorana fermions (MFs), quantum particles that are their own antiparticles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently MFs have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing with zero total momentum. On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell (FF) Larkin-Ovchinnikov (LO) states, were widely studied in many branches of physics. However, whether FF and LO superconductors can support MFs has not been explored. Here we show that MFs can exist in certain types of gapped FF states, yielding a new quantum matter: topological FF superfluids/superconductors. We demonstrate the existence of such topological FF superfluids and the associated MFs using spin-orbit-coupled degenerate Fermi gases and derive their parameter regions. The implementation of topological FF superconductors in semiconductor/superconductor heterostructures is also discussed.
Metallic phases from disordered (2+1)-dimensional quantum electrodynamics
NASA Astrophysics Data System (ADS)
Goswami, Pallab; Goldman, Hart; Raghu, S.
2017-06-01
Metallic phases have been observed in several disordered two-dimensional (2D) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2D metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2D metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED3) with a large, even number of fermion flavors remains metallic in the presence of weak scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. We also show that QED3 with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.
Quantum phase transition of chiral Majorana fermions in the presence of disorder
NASA Astrophysics Data System (ADS)
Lian, Biao; Wang, Jing; Sun, Xiao-Qi; Vaezi, Abolhassan; Zhang, Shou-Cheng
2018-03-01
We study the quantum phase transitions of a disordered two-dimensional quantum anomalous Hall insulator with s -wave superconducting proximity, which are governed by the percolation theory of chiral Majorana fermions. Based on symmetry arguments and a renormalization-group analysis, we show there are generically two phase transitions from Bogoliubov-de Gennes Chern number N =0 to N =1 (p +i p chiral topological superconductor) and then to N =2 , in agreement with the conclusion from the band theory without disorders. Further, we discuss the critical scaling behavior of the e2/2 h conductance half plateau induced by the N =1 chiral topological superconductor recently observed in the experiment. In particular, we compare the critical behavior of the half plateau induced by the topological superconductor with that predicted recently by alternative explanations of the half plateau and show that they can be distinguished in experiments.
Quantum phase transition of chiral Majorana fermions in the presence of disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Biao; Wang, Jing; Sun, Xiao -Qi
Here, we study the quantum phase transitions of a disordered two-dimensional quantum anomalous Hall insulator with s-wave superconducting proximity, which are governed by the percolation theory of chiral Majorana fermions. Based on symmetry arguments and a renormalization-group analysis, we show there are generically two phase transitions from Bogoliubov–de Gennes Chern number N=0 to N=1(p+ip chiral topological superconductor) and then to N=2, in agreement with the conclusion from the band theory without disorders. Further, we discuss the critical scaling behavior of the e 2/2h conductance half plateau induced by the N=1 chiral topological superconductor recently observed in the experiment. In particular,more » we compare the critical behavior of the half plateau induced by the topological superconductor with that predicted recently by alternative explanations of the half plateau and show that they can be distinguished in experiments.« less
Quantum phase transition of chiral Majorana fermions in the presence of disorder
Lian, Biao; Wang, Jing; Sun, Xiao -Qi; ...
2018-03-09
Here, we study the quantum phase transitions of a disordered two-dimensional quantum anomalous Hall insulator with s-wave superconducting proximity, which are governed by the percolation theory of chiral Majorana fermions. Based on symmetry arguments and a renormalization-group analysis, we show there are generically two phase transitions from Bogoliubov–de Gennes Chern number N=0 to N=1(p+ip chiral topological superconductor) and then to N=2, in agreement with the conclusion from the band theory without disorders. Further, we discuss the critical scaling behavior of the e 2/2h conductance half plateau induced by the N=1 chiral topological superconductor recently observed in the experiment. In particular,more » we compare the critical behavior of the half plateau induced by the topological superconductor with that predicted recently by alternative explanations of the half plateau and show that they can be distinguished in experiments.« less
A spin-orbital-entangled quantum liquid on a honeycomb lattice
NASA Astrophysics Data System (ADS)
Kitagawa, K.; Takayama, T.; Matsumoto, Y.; Kato, A.; Takano, R.; Kishimoto, Y.; Bette, S.; Dinnebier, R.; Jackeli, G.; Takagi, H.
2018-02-01
The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin-orbital-entangled pseudospin-1/2 moments have been proposed, including the 5d-electron systems α-Na2IrO3 (ref. 5) and α-Li2IrO3 (ref. 6) and the 4d-electron system α-RuCl3 (ref. 7). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures, owing to non-Kitaev interactions. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5d-electron honeycomb compound H3LiIr2O6. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 100 kelvin. We observe signatures of low-energy fermionic excitations that originate from a small number of spin defects in the nuclear-magnetic-resonance relaxation and the specific heat. We therefore conclude that H3LiIr2O6 is a quantum spin liquid. This result opens the door to finding exotic quasiparticles in a strongly spin-orbit-coupled 5d-electron transition-metal oxide.
Entanglement entropy and correlations in loop quantum gravity
NASA Astrophysics Data System (ADS)
Feller, Alexandre; Livine, Etera R.
2018-02-01
Black hole entropy is one of the few windows into the quantum aspects of gravitation, and its study over the years has highlighted the holographic nature of gravity. At the non-perturbative level in quantum gravity, promising explanations are being explored in terms of the entanglement entropy between regions of space. In the context of loop quantum gravity, this translates into an analysis of the correlations between the regions of the spin network states defining the quantum state of the geometry of space. In this paper, we explore a class of states, motivated by results in condensed matter physics, satisfying an area law for entanglement entropy and having non-trivial correlations. We highlight that entanglement comes from holonomy operators acting on loops crossing the boundary of the region.
Constraining the loop quantum gravity parameter space from phenomenology
NASA Astrophysics Data System (ADS)
Brahma, Suddhasattwa; Ronco, Michele
2018-03-01
Development of quantum gravity theories rarely takes inputs from experimental physics. In this letter, we take a small step towards correcting this by establishing a paradigm for incorporating putative quantum corrections, arising from canonical quantum gravity (QG) theories, in deriving falsifiable modified dispersion relations (MDRs) for particles on a deformed Minkowski space-time. This allows us to differentiate and, hopefully, pick between several quantization choices via testable, state-of-the-art phenomenological predictions. Although a few explicit examples from loop quantum gravity (LQG) (such as the regularization scheme used or the representation of the gauge group) are shown here to establish the claim, our framework is more general and is capable of addressing other quantization ambiguities within LQG and also those arising from other similar QG approaches.
NASA Astrophysics Data System (ADS)
Landsman, N. P. Klaas
2016-09-01
We reconsider the (non-relativistic) quantum theory of indistinguishable particles on the basis of Rieffel’s notion of C∗-algebraic (“strict”) deformation quantization. Using this formalism, we relate the operator approach of Messiah and Greenberg (1964) to the configuration space approach pioneered by Souriau (1967), Laidlaw and DeWitt-Morette (1971), Leinaas and Myrheim (1977), and others. In dimension d > 2, the former yields bosons, fermions, and paraparticles, whereas the latter seems to leave room for bosons and fermions only, apparently contradicting the operator approach as far as the admissibility of parastatistics is concerned. To resolve this, we first prove that in d > 2 the topologically non-trivial configuration spaces of the second approach are quantized by the algebras of observables of the first. Secondly, we show that the irreducible representations of the latter may be realized by vector bundle constructions, among which the line bundles recover the results of the second approach. Mathematically speaking, representations on higher-dimensional bundles (which define parastatistics) cannot be excluded, which render the configuration space approach incomplete. Physically, however, we show that the corresponding particle states may always be realized in terms of bosons and/or fermions with an unobserved internal degree of freedom (although based on non-relativistic quantum mechanics, this conclusion is analogous to the rigorous results of the Doplicher-Haag-Roberts analysis in algebraic quantum field theory, as well as to the heuristic arguments which led Gell-Mann and others to QCD (i.e. Quantum Chromodynamics)).
NASA Astrophysics Data System (ADS)
Nori, Franco
2014-03-01
We study a heterostructure which consists of a topological insulator and a superconductor with a hole. This system supports a robust Majorana fermion state bound to the vortex core. We study the possibility of using scanning tunneling spectroscopy (i) to detect the Majorana fermion in this setup and (ii) to study excited states bound to the vortex core. The Majorana fermion manifests itself as an H-dependent zero-bias anomaly of the tunneling conductance. The excited states spectrum differs from the spectrum of a typical Abrikosov vortex, providing additional indirect confirmation of the Majorana state observation. We also study how to manipulate and probe Majorana fermions using super-conducting circuits. In we consider a semiconductor nanowire quantum dot with strong spin-orbit coupling (SOC), which can be used to achieve a spin-orbit qubit. In contrast to a spin qubit, the spin-orbit qubit can respond to an external ac electric field, i.e., electric-dipole spin resonance. We develop a theory that can apply in the strong SOC regime. We find that there is an optimal SOC strength ηopt = √ 2/2, where the Rabi frequency induced by the ac electric field becomes maximal. Also, we show that both the level spacing and the Rabi frequency of the spin-orbit qubit have periodic responses to the direction of the external static magnetic field. These responses can be used to determine the SOC in the nanowire. FN is partly supported by the RIKEN CEMS, iTHES Project, MURI Center for Dynamic Magneto-Optics, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.
Review of the fermionic dark matter model applied to galactic structures
NASA Astrophysics Data System (ADS)
Krut, A.; Argüelles, C. R.; Rueda, J.; Ruffini, R.
2015-12-01
Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion) is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.
Review of the fermionic dark matter model applied to galactic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krut, A.; Argüelles, C. R.; Rueda, J.
2015-12-17
Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion)more » is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.« less
BOOK REVIEW: Quantum Gravity: third edition Quantum Gravity: third edition
NASA Astrophysics Data System (ADS)
Rovelli, Carlo
2012-09-01
The request by Classical and Quantum Gravity to review the third edition of Claus Kiefer's 'Quantum Gravity' puts me in a slightly awkward position. This is a remarkably good book, which every person working in quantum gravity should have on the shelf. But in my opinion quantum gravity has undergone some dramatic advances in the last few years, of which the book makes no mention. Perhaps the omission only attests to the current vitality of the field, where progress is happening fast, but it is strange for me to review a thoughtful, knowledgeable and comprehensive book on my own field of research, which ignores what I myself consider the most interesting results to date. Kiefer's book is unique as a broad introduction and a reliable overview of quantum gravity. There are numerous books in the field which (often notwithstanding titles) focus on a single approach. There are also countless conference proceedings and article collections aiming to be encyclopaedic, but offering disorganized patchworks. Kiefer's book is a careful and thoughtful presentation of all aspects of the immense problem of quantum gravity. Kiefer is very learned, and brings together three rare qualities: he is pedagogical, he is capable of simplifying matter to the bones and capturing the essential, and he offers a serious and balanced evaluation of views and ideas. In a fractured field based on a major problem that does not yet have a solution, these qualities are precious. I recommend Kiefer's book to my students entering the field: to work in quantum gravity one needs a vast amount of technical knowledge as well as a grasp of different ideas, and Kiefer's book offers this with remarkable clarity. This novel third edition simplifies and improves the presentation of several topics, but also adds very valuable new material on quantum gravity phenomenology, loop quantum cosmology, asymptotic safety, Horava-Lifshitz gravity, analogue gravity, the holographic principle, and more. This is a testament to the wide-angle attention of Claus Kiefer to the recent evolution of the field. It is also because of this attention that the neglect of a thriving research direction on which a large number of research groups are currently engaged jumps to the eye. The book provides a nice introduction to loop quantum gravity. The main kinematical results of the loop approach are carefully explained. At the point of discussing dynamics, however, it focuses only on the canonical formulation, mentioning the covariant loop theory only en passant. Given Kiefer's open-mindness, I imagine that the shortfall is due to the novelty of the major results of the covariant theory (or spinfoam formalism). The theorem proving the finiteness of the transition amplitudes to all orders, due to Han, Fairbairn and Meusburger, for instance, dates only from 2010. But the various theorems on the asymptotic of the vertex amplitude, by Barrett-Pereira-Dowdall-Fairbairn-Hellmann, Friedel-Conrady and others, which have sparked interest in the spinfoam approach by indicating that the theory may have the correct classical limit, are from 2009. The fact that they are not even mentioned in Kiefer's book is strident for me. The covariant loop amplitudes may not be the final solution to the problem of quantum gravity, but the existence of a family of Lorentz covariant amplitudes with indications of the correct classical limit, which are finite at each order of the expansion, is a result that cannot be ignored in a broad book that aims at being comprehensive in quantum gravity. There are other pages of the book where I was not very happy. For instance, the discussion of the so-called 'problem of time'. But surely a broad book in a recalcitrant field like quantum gravity will never make everybody entirely happy: at least as long as the problem is not solved. Which, we all hope, might not be too far into the future. Few fundamental problems have resisted the investigation of theoretical physics for so long, and today advances are fast. So, here is my recommendation: study this book, complement it with what is missing, and help us in finally solving the extraordinarily beautiful problem of understanding quantum spacetime.
How is quantum information localized in gravity?
NASA Astrophysics Data System (ADS)
Donnelly, William; Giddings, Steven B.
2017-10-01
A notion of localization of information within quantum subsystems plays a key role in describing the physics of quantum systems, and in particular is a prerequisite for discussing important concepts such as entanglement and information transfer. While subsystems can be readily defined for finite quantum systems and in local quantum field theory, a corresponding definition for gravitational systems is significantly complicated by the apparent nonlocality arising due to gauge invariance, enforced by the constraints. A related question is whether "soft hair" encodes otherwise localized information, and the question of such localization also remains an important puzzle for proposals that gravity emerges from another structure such as a boundary field theory as in AdS/CFT. This paper describes different approaches to defining local subsystem structure, and shows that at least classically, perturbative gravity has localized subsystems based on a split structure, generalizing the split property of quantum field theory. This, and related arguments for QED, give simple explanations that in these theories there is localized information that is independent of fields outside a region, in particular so that there is no role for "soft hair" in encoding such information. Additional subtleties appear in quantum gravity. We argue that localized information exists in perturbative quantum gravity in the presence of global symmetries, but that nonperturbative dynamics is likely tied to a modification of such structure.
Testing quantum gravity through dumb holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourhassan, Behnam, E-mail: b.pourhassan@du.ac.ir; Faizal, Mir, E-mail: f2mir@uwaterloo.ca; Irving K. Barber School of Arts and Sciences, University of British Columbia - Okanagan, Kelowna, BC V1V 1V7
We propose a method to test the effects of quantum fluctuations on black holes by analyzing the effects of thermal fluctuations on dumb holes, the analogs for black holes. The proposal is based on the Jacobson formalism, where the Einstein field equations are viewed as thermodynamical relations, and so the quantum fluctuations are generated from the thermal fluctuations. It is well known that all approaches to quantum gravity generate logarithmic corrections to the entropy of a black hole and the coefficient of this term varies according to the different approaches to the quantum gravity. It is possible to demonstrate thatmore » such logarithmic terms are also generated from thermal fluctuations in dumb holes. In this paper, we claim that it is possible to experimentally test such corrections for dumb holes, and also obtain the correct coefficient for them. This fact can then be used to predict the effects of quantum fluctuations on realistic black holes, and so it can also be used, in principle, to experimentally test the different approaches to quantum gravity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Junzhang; Yi, Changjiang; Lv, Baiqing
Topological insulators (TIs) host novel states of quantum matter characterized by nontrivial conducting boundary states connecting valence and conduction bulk bands. All TIs discovered experimentally so far rely on either time-reversal or mirror crystal symmorphic symmetry to protect massless Dirac-like boundary states. Several materials were recently proposed to be TIs with nonsymmorphic symmetry, where a glide mirror protects exotic surface fermions with hourglass-shaped dispersion. However, an experimental confirmation of this new fermion is missing. Using angle-resolved photoemission spectroscopy, we provide experimental evidence of hourglass fermions on the (010) surface of crystalline KHgSb, whereas the (001) surface has no boundary state,more » in agreement with first-principles calculations. Our study will stimulate further research activities of topological properties of nonsymmorphic materials.« less
Ma, Junzhang; Yi, Changjiang; Lv, Baiqing; ...
2017-05-05
Topological insulators (TIs) host novel states of quantum matter characterized by nontrivial conducting boundary states connecting valence and conduction bulk bands. All TIs discovered experimentally so far rely on either time-reversal or mirror crystal symmorphic symmetry to protect massless Dirac-like boundary states. Several materials were recently proposed to be TIs with nonsymmorphic symmetry, where a glide mirror protects exotic surface fermions with hourglass-shaped dispersion. However, an experimental confirmation of this new fermion is missing. Using angle-resolved photoemission spectroscopy, we provide experimental evidence of hourglass fermions on the (010) surface of crystalline KHgSb, whereas the (001) surface has no boundary state,more » in agreement with first-principles calculations. Our study will stimulate further research activities of topological properties of nonsymmorphic materials.« less
Landau Levels of Majorana Fermions in a Spin Liquid.
Rachel, Stephan; Fritz, Lars; Vojta, Matthias
2016-04-22
Majorana fermions, originally proposed as elementary particles acting as their own antiparticles, can be realized in condensed-matter systems as emergent quasiparticles, a situation often accompanied by topological order. Here we propose a physical system which realizes Landau levels-highly degenerate single-particle states usually resulting from an orbital magnetic field acting on charged particles-for Majorana fermions. This is achieved in a variant of a quantum spin system due to Kitaev which is distorted by triaxial strain. This strained Kitaev model displays a spin-liquid phase with charge-neutral Majorana-fermion excitations whose spectrum corresponds to that of Landau levels, here arising from a tailored pseudomagnetic field. We show that measuring the dynamic spin susceptibility reveals the Landau-level structure by a remarkable mechanism of probe-induced bound-state formation.
Birefringent breakup of Dirac fermions on a square optical lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennett, Malcolm P.; Komeilizadeh, Nazanin; Kaveh, Kamran
2011-05-15
We introduce a lattice model for fermions in a spatially periodic magnetic field that also has spatially periodic hopping amplitudes. We discuss how this model might be realized with cold atoms in an artificial magnetic field on a square optical lattice. When there is an average flux of half a flux quantum per plaquette, the spectrum of low-energy excitations can be described by massless Dirac fermions in which the usually doubly degenerate Dirac cones split into cones with different ''speeds of light.'' These gapless birefringent Dirac fermions arise because of broken chiral symmetry in the kinetic energy term of themore » effective low-energy Hamiltonian. We characterize the effects of various perturbations to the low-energy spectrum, including staggered potentials, interactions, and domain-wall topological defects.« less
Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity
NASA Astrophysics Data System (ADS)
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
2018-06-01
In this paper we will discuss how to localise a quantum wave-packet due to self-gravitating meso-scopic object by taking into account gravitational self-interaction in the Schrödinger equation beyond General Relativity. In particular, we will study soliton-like solutions in infinite derivative ghost free theories of gravity, which resolves the gravitational 1 / r singularity in the potential. We will show a unique feature that the quantum spread of such a gravitational system is larger than that of the Newtonian gravity, therefore enabling us a window of opportunity to test classical and quantum properties of such theories of gravity in the near future at a table-top experiment.
Integrated devices for quantum information and quantum simulation with polarization encoded qubits
NASA Astrophysics Data System (ADS)
Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto
2012-06-01
The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. The technology for handling polarization-encoded qubits, the most commonly adopted approach, was still missing in quantum optical circuits until the ultrafast laser writing (ULW) technique was adopted for the first time to realize integrated devices able to support and manipulate polarization encoded qubits.1 Thanks to this method, polarization dependent and independent devices can be realized. In particular the maintenance of polarization entanglement was demonstrated in a balanced polarization independent integrated beam splitter1 and an integrated CNOT gate for polarization qubits was realized and carachterized.2 We also exploited integrated optics for quantum simulation tasks: by adopting the ULW technique an integrated quantum walk circuit was realized3 and, for the first time, we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle discrete quantum walk. Such experiment has been realized by adopting two-photon entangled states and an array of integrated symmetric directional couplers. The polarization entanglement was exploited to simulate the bunching-antibunching feature of non interacting bosons and fermions. To this scope a novel three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization independent behaviour, maintaining a remarkable control on both phase and balancement of the directional couplers.
D-foam-induced flavor condensates and breaking of supersymmetry in free Wess-Zumino fluids
NASA Astrophysics Data System (ADS)
Mavromatos, Nick E.; Sarkar, Sarben; Tarantino, Walter
2011-08-01
Recently [N. E. Mavromatos and S. Sarkar, New J. Phys. 10, 073009 (2008) NJOPFM1367-263010.1088/1367-2630/10/7/073009; N. E. Mavromatos, S. Sarkar, and W. Tarantino, Phys. Rev. DPRVDAQ1550-7998 80, 084046 (2009)10.1103/PhysRevD.80.084046], we argued that a particular model of string-inspired quantum space-time foam (D-foam) may induce oscillations and mixing among flavored particles. As a result, rather than the mass-eigenstate vacuum, the correct ground state to describe the underlying dynamics is the flavor vacuum, proposed some time ago by Blasone and Vitiello as a description of quantum field theories with mixing. At the microscopic level, the breaking of target-space supersymmetry is induced in our space-time foam model by the relative transverse motion of brane defects. Motivated by these results, we show that the flavor vacuum, introduced through an inequivalent representation of the canonical (anti-) commutation relations, provides a vehicle for the breaking of supersymmetry at a low-energy effective field-theory level; on considering the flavor-vacuum expectation value of the energy-momentum tensor and comparing with the form of a perfect relativistic fluid, it is found that the bosonic sector contributes as dark energy while the fermion contribution is like dust. This indicates a strong and novel breaking of supersymmetry, of a nonperturbative nature, which may characterize the low-energy field theory of certain quantum-gravity models.
Anomaly-free cosmological perturbations in effective canonical quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrau, Aurelien; Bojowald, Martin; Kagan, Mikhail
2015-05-01
This article lays out a complete framework for an effective theory of cosmological perturbations with corrections from canonical quantum gravity. Since several examples exist for quantum-gravity effects that change the structure of space-time, the classical perturbative treatment must be rethought carefully. The present discussion provides a unified picture of several previous works, together with new treatments of higher-order perturbations and the specification of initial states.
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Ghaffary, Tooraj; Naimi, Yaghoob
2018-03-01
We obtain the action of Moffat's Modified Gravity (MOG), a scalar-tensor-vector theory of gravitation, by generalizing the Horava-Witten mechanism to fourteen dimensions. We show that the resulting theory is anomaly-free. We propose an extended version of MOG that includes fermionic fields.
Exact Boson-Fermion Duality on a 3D Euclidean Lattice
Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; ...
2018-01-05
The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. Here, we describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.
Exact Boson-Fermion Duality on a 3D Euclidean Lattice.
Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; Raghu, S
2018-01-05
The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. We describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.
Exact Boson-Fermion Duality on a 3D Euclidean Lattice
NASA Astrophysics Data System (ADS)
Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; Raghu, S.
2018-01-01
The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. We describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.
Statistical Transmutation in Floquet Driven Optical Lattices.
Sedrakyan, Tigran A; Galitski, Victor M; Kamenev, Alex
2015-11-06
We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state.
Massless rotating fermions inside a cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambruş, Victor E., E-mail: victor.ambrus@gmail.com; Winstanley, Elizabeth
2015-12-07
We study rotating thermal states of a massless quantum fermion field inside a cylinder in Minkowski space-time. Two possible boundary conditions for the fermion field on the cylinder are considered: the spectral and MIT bag boundary conditions. If the radius of the cylinder is sufficiently small, rotating thermal expectation values are finite everywhere inside the cylinder. We also study the Casimir divergences on the boundary. The rotating thermal expectation values and the Casimir divergences have different properties depending on the boundary conditions applied at the cylinder. This is due to the local nature of the MIT bag boundary condition, whilemore » the spectral boundary condition is nonlocal.« less
Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices
NASA Astrophysics Data System (ADS)
Zhu, Yan-Qing; Zhang, Dan-Wei; Yan, Hui; Xing, Ding-Yu; Zhu, Shi-Liang
2017-09-01
The discovery of relativistic spin-1/2 fermions such as Dirac and Weyl fermions in condensed-matter or artificial systems opens a new era in modern physics. An interesting but rarely explored question is whether other relativistic spinal excitations could be realized with artificial systems. Here, we construct two- and three-dimensional tight-binding models realizable with cold fermionic atoms in optical lattices, where the low energy excitations are effectively described by the spin-1 Maxwell equations in the Hamiltonian form. These relativistic (linear dispersion) excitations with unconventional integer pseudospin, beyond the Dirac-Weyl-Majorana fermions, are an exotic kind of fermions named as Maxwell fermions. We demonstrate that the systems have rich topological features. For instance, the threefold degenerate points called Maxwell points may have quantized Berry phases and anomalous quantum Hall effects with spin-momentum locking may appear in topological Maxwell insulators in the two-dimensional lattices. In three dimensions, Maxwell points may have nontrivial monopole charges of ±2 with two Fermi arcs connecting them, and the merging of the Maxwell points leads to topological phase transitions. Finally, we propose realistic schemes for realizing the model Hamiltonians and detecting the topological properties of the emergent Maxwell quasiparticles in optical lattices.
Scattering from a quantum anapole at low energies
NASA Astrophysics Data System (ADS)
Whitcomb, Kyle M.; Latimer, David C.
2017-12-01
In quantum field theory, the photon-fermion vertex can be described in terms of four form-factors that encode the static electromagnetic properties of the particle, namely, its charge, magnetic dipole moment, electric dipole moment, and anapole moment. For Majorana fermions, only the anapole moment can be nonzero, a consequence of the fact that these particles are their own antiparticles. Using the framework of quantum field theory, we perform a scattering calculation that probes the anapole moment with a spinless charged particle. In the limit of low momentum transfer, we confirm that the anapole can be classically likened to a point-like toroidal solenoid whose magnetic field is confined to the origin. Such a toroidal current distribution can be used to demonstrate the Aharonov-Bohm effect. We find that, in the non-relativistic limit, our scattering cross section agrees with a quantum mechanical computation of the cross section for a spinless current scattered by an infinitesimally thin toroidal solenoid. Our presentation is geared toward advanced undergraduate or beginning graduate students. This work serves as an introduction to the anapole moment and also provides an example of how one can develop an understanding of a particle's electromagnetic properties in quantum field theory.
NASA Astrophysics Data System (ADS)
Brandt, Benedikt B.; Yannouleas, Constantine; Landman, Uzi
2018-05-01
Identification and understanding of the evolution of interference patterns in two-particle momentum correlations as a function of the strength of interatomic interactions are important in explorations of the nature of quantum states of trapped particles. Together with the analysis of two-particle spatial correlations, they offer the prospect of uncovering fundamental symmetries and structure of correlated many-body states, as well as opening vistas into potential control and utilization of correlated quantum states as quantum-information resources. With the use of the second-order density matrix constructed via exact diagonalization of the microscopic Hamiltonian, and an analytic Hubbard-type model, we explore here the systematic evolution of characteristic interference patterns in the two-body momentum and spatial correlation maps of two entangled ultracold fermionic atoms in a double well, for the entire attractive- and repulsive-interaction range. We uncover quantum-statistics-governed bunching and antibunching, as well as interaction-dependent interference patterns, in the ground and excited states, and interpret our results in light of the Hong-Ou-Mandel interference physics, widely exploited in photon indistinguishability testing and quantum-information science.
NASA Astrophysics Data System (ADS)
Zhang, Yicheng; Vidmar, Lev; Rigol, Marcos
2018-02-01
We use quantum information measures to study the local quantum phase transition that occurs for trapped spinless fermions in one-dimensional lattices. We focus on the case of a harmonic confinement. The transition occurs upon increasing the characteristic density and results in the formation of a band-insulating domain in the center of the trap. We show that the ground-state bipartite entanglement entropy can be used as an order parameter to characterize this local quantum phase transition. We also study excited eigenstates by calculating the average von Neumann and second Renyi eigenstate entanglement entropies, and compare the results with the thermodynamic entropy and the mutual information of thermal states at the same energy density. While at low temperatures we observe a linear increase of the thermodynamic entropy with temperature at all characteristic densities, the average eigenstate entanglement entropies exhibit a strikingly different behavior as functions of temperature below and above the transition. They are linear in temperature below the transition but exhibit activated behavior above it. Hence, at nonvanishing energy densities above the ground state, the average eigenstate entanglement entropies carry fingerprints of the local quantum phase transition.
NASA Astrophysics Data System (ADS)
Mazzucchi, Gabriel; Kozlowski, Wojciech; Caballero-Benitez, Santiago F.; Elliott, Thomas J.; Mekhov, Igor B.
2016-02-01
Trapping ultracold atoms in optical lattices enabled numerous breakthroughs uniting several disciplines. Coupling these systems to quantized light leads to a plethora of new phenomena and has opened up a new field of study. Here we introduce an unusual additional source of competition in a many-body strongly correlated system: We prove that quantum backaction of global measurement is able to efficiently compete with intrinsic short-range dynamics of an atomic system. The competition becomes possible due to the ability to change the spatial profile of a global measurement at a microscopic scale comparable to the lattice period without the need of single site addressing. In coherence with a general physical concept, where new competitions typically lead to new phenomena, we demonstrate nontrivial dynamical effects such as large-scale multimode oscillations, long-range entanglement, and correlated tunneling, as well as selective suppression and enhancement of dynamical processes beyond the projective limit of the quantum Zeno effect. We demonstrate both the breakup and protection of strongly interacting fermion pairs by measurement. Such a quantum optical approach introduces into many-body physics novel processes, objects, and methods of quantum engineering, including the design of many-body entangled environments for open systems.
Van Dyke, John S.; Massee, Freek; Allan, Milan P.; Davis, J. C. Séamus; Petrovic, Cedomir; Morr, Dirk K.
2014-01-01
To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high-temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference imaging to reveal quantitatively the momentum space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ekα,β with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5 then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by f-electron magnetism. PMID:25062692
Fermions tunneling from a general static Riemann black hole
NASA Astrophysics Data System (ADS)
Chen, Ge-Rui; Huang, Yong-Chang
2015-05-01
In this paper we investigate the tunneling of fermions from a general static Riemann black hole by following Kerner and Mann (Class Quantum Gravit 25:095014, 2008a; Phys Lett B 665:277-283, 2008b) methods. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the Dirac equation, we obtain the standard Hawking temperature. Furthermore, Kerner and Mann (Class Quantum Gravit 25:095014, 2008a; Phys Lett B 665:277-283, 2008b) only calculated the tunneling spectrum of the Dirac particles with spin-up, and we extend the methods to investigate the tunneling of Dirac particles with arbitrary spin directions and also obtain the expected Hawking temperature. Our result provides further evidence for the universality of black hole radiation.
NASA Astrophysics Data System (ADS)
Cha, Min-Chul; Chung, Myung-Hoon
2018-05-01
We study quantum phase transition of interacting fermions by measuring the local entanglement entropy in the one-dimensional Hubbard model. The reduced density matrices for blocks of a few sites are constructed from the ground state wave function in infinite systems by adopting the matrix product state representation where time-evolving block decimations are performed to obtain the lowest energy states. The local entanglement entropy, constructed from the reduced density matrices, as a function of the chemical potential shows clear signatures of the Mott transition. The value of the central charge, numerically determined from the universal properties of the local entanglement entropy, confirms that the transition is caused by the suppression of the charge degrees of freedom.
Dual Vector Spaces and Physical Singularities
NASA Astrophysics Data System (ADS)
Rowlands, Peter
Though we often refer to 3-D vector space as constructed from points, there is no mechanism from within its definition for doing this. In particular, space, on its own, cannot accommodate the singularities that we call fundamental particles. This requires a commutative combination of space as we know it with another 3-D vector space, which is dual to the first (in a physical sense). The combination of the two spaces generates a nilpotent quantum mechanics/quantum field theory, which incorporates exact supersymmetry and ultimately removes the anomalies due to self-interaction. Among the many natural consequences of the dual space formalism are half-integral spin for fermions, zitterbewegung, Berry phase and a zero norm Berwald-Moor metric for fermionic states.
NASA Astrophysics Data System (ADS)
Hays, M.; de Lange, G.; Serniak, K.; van Woerkom, D. J.; Väyrynen, J. I.; van Heck, B.; Vool, U.; Krogstrup, P.; Nygård, J.; Frunzio, L.; Geresdi, A.; Glazman, L. I.; Devoret, M. H.
Proximitized semiconducting nanowires subject to magnetic field should display topological superconductivity and support Majorana zero modes which have non-Abelian braiding statistics. The conventional Andreev levels formed in such wires in the absence of field are a precursor to these exotic zero modes. The fermion-parity switching time of Andreev levels sets a lower bound on the bandwidth required for experiments aimed at harnessing non-Abelian braiding statistics. We demonstrate the observation of quantum jumps between even and odd-parity states of an individual Andreev bound state in a non-topological junction, providing a direct measurement of the state populations and the parity lifetime. Work supported by: ARO, ONR, AFOSR, EU Marie Curie and YINQE.
NASA Astrophysics Data System (ADS)
Majorana-Fermi-Segre, E.-L.; Antonoff-Overhauser-Salam, Marvin-Albert-Abdus; Siegel, Edward Carl-Ludwig
2013-03-01
Majorana-fermions, being their own antiparticles, following non-Abelian anyon/semion quantum-statistics: in Zhang et.al.-...-Detwiler et.al.-...``Worlds-in-Collision'': solid-state/condensed-matter - physics spin-orbit - coupled topological-excitations in superconductors and/or superfluids -to- particle-physics neutrinos: ``When `Worlds' Collide'', analysis via Siegel[Schrodinger Centenary Symp., Imperial College, London (1987); in The Copenhagen-Interpretation Fifty-Years After the Como-Lecture, Symp. Fdns. Mod.-Phys., Joensu(1987); Symp. on Fractals, MRS Fall-Mtg., Boston(1989)-5-papers!!!] ``complex quantum-statistics in fractal-dimensions'', which explains hidden-dark-matter(HDM) IN Siegel ``Sephirot'' scenario for The Creation, uses Takagi[Prog.Theo.Phys. Suppl.88,1(86)]-Ooguri[PR D33,357(85)] - Picard-Lefschetz-Arnol'd-Vassil'ev[``Principia Read After 300 Years'', Not.AMS(1989); quantum-theory caveats comment-letters(1990); Applied Picard-Lefschetz Theory, AMS(2006)] - theorem quantum-statistics, which via Euler- formula becomes which via de Moivre- -formula further becomes which on unit-circle is only real for only, i.e, for, versus complex with imaginary-damping denominator for, i.e, for, such that Fermi-Dirac quantum-statistics for
Tensor Network Wavefunctions for Topological Phases
NASA Astrophysics Data System (ADS)
Ware, Brayden Alexander
The combination of quantum effects and interactions in quantum many-body systems can result in exotic phases with fundamentally entangled ground state wavefunctions--topological phases. Topological phases come in two types, both of which will be studied in this thesis. In topologically ordered phases, the pattern of entanglement in the ground state wavefunction encodes the statistics of exotic emergent excitations, a universal indicator of a phase that is robust to all types of perturbations. In symmetry protected topological phases, the entanglement instead encodes a universal response of the system to symmetry defects, an indicator that is robust only to perturbations respecting the protecting symmetry. Finding and creating these phases in physical systems is a motivating challenge that tests all aspects--analytical, numerical, and experimental--of our understanding of the quantum many-body problem. Nearly three decades ago, the creation of simple ansatz wavefunctions--such as the Laughlin fractional quantum hall state, the AKLT state, and the resonating valence bond state--spurred analytical understanding of both the role of entanglement in topological physics and physical mechanisms by which it can arise. However, quantitative understanding of the relevant phase diagrams is still challenging. For this purpose, tensor networks provide a toolbox for systematically improving wavefunction ansatz while still capturing the relevant entanglement properties. In this thesis, we use the tools of entanglement and tensor networks to analyze ansatz states for several proposed new phases. In the first part, we study a featureless phase of bosons on the honeycomb lattice and argue that this phase can be topologically protected under any one of several distinct subsets of the crystalline lattice symmetries. We discuss methods of detecting such phases with entanglement and without. In the second part, we consider the problem of constructing fixed-point wavefunctions for intrinsically fermionic topological phases, i.e. topological phases contructed out of fermions with a nontrivial response to fermion parity defects. A zero correlation length wavefunction and a commuting projector Hamiltonian that realizes this wavefunction as its ground state are constructed. Using an appropriate generalization of the minimally entangled states method for extraction of topological order from the ground states on a torus to the intrinsically fermionic case, we fully characterize the corresponding topological order as Ising x (px - ipy). We argue that this phase can be captured using fermionic tensor networks, expanding the applicability of tensor network methods.
Topological Quantum Information Processing Mediated Via Hybrid Topogical Insulator Structures
2014-03-28
formation, manipulation, entanglement and detection of Majorana fermions in diamond-topological insulator - superconductor heterojunctions. Furthermore...between Superconductors and Topological Insulators Recent advances have revealed a new type of information processing, topological quantum...Topological Insulator - Superconductor Heterostructures," Physical Review B 84, 144507 (2011). 7 Hsiang-Hsuan Hung, Pouyan Ghaemi, Taylor L
Physics in one dimension: theoretical concepts for quantum many-body systems.
Schönhammer, K
2013-01-09
Various sophisticated approximation methods exist for the description of quantum many-body systems. It was realized early on that the theoretical description can simplify considerably in one-dimensional systems and various exact solutions exist. The focus in this introductory paper is on fermionic systems and the emergence of the Luttinger liquid concept.
NASA Astrophysics Data System (ADS)
Wang, Yi-Yan; Xu, Sheng; Sun, Lin-Lin; Xia, Tian-Long
2018-02-01
Dirac semimetals, which host Dirac fermions and represent a new state of quantum matter, have been studied intensively in condensed-matter physics. The exploration of new materials with topological states is important in both physics and materials science. We report the synthesis and the transport properties of high-quality single crystals of YbMnSb2. YbMnSb2 is a new compound with metallic behavior. Quantum oscillations, including Shubnikov-de Haas (SdH) oscillation and de Haas-van Alphen-type oscillation, have been observed at low temperature and high magnetic field. Small effective masses and nontrivial Berry phase are extracted from the analyses of quantum oscillations, which provide the transport evidence for the possible existence of Dirac fermions in YbMnSb2. The measurements of angular-dependent interlayer magnetoresistance indicate that the interlayer transport is coherent. The Fermi surface of YbMnSb2 possesses a quasi-two-dimensional characteristic as determined by the angular dependence of SdH oscillation frequency. These findings suggest that YbMnSb2 is a new candidate of topological Dirac semimetals.
NASA Astrophysics Data System (ADS)
Bai, Ke-Ke; Zhou, Jiao-Jiao; Wei, Yi-Cong; Qiao, Jia-Bin; Liu, Yi-Wen; Liu, Hai-Wen; Jiang, Hua; He, Lin
2018-01-01
Creation of high-quality p -n junctions in graphene monolayer is vital in studying many exotic phenomena of massless Dirac fermions. However, even with the fast progress of graphene technology for more than ten years, it remains conspicuously difficult to generate nanoscale and atomically sharp p -n junctions in graphene. Here, we realized nanoscale p -n junctions with atomically sharp boundaries in graphene monolayer by using monolayer vacancy island of Cu surface. The generated sharp p -n junctions with the height as high as 660 meV isolate the graphene above the Cu monolayer vacancy island as nanoscale graphene quantum dots (GQDs) in a continuous graphene sheet. Massless Dirac fermions are confined by the p -n junctions for a finite time to form quasibound states in the GQDs. By using scanning tunneling microscopy, we observe resonances of quasibound states in the GQDs with various sizes and directly visualize effects of geometries of the GQDs on the quantum interference patterns of the quasibound states, which allow us to test the quantum electron optics based on graphene in atomic scale.
Strongly correlated fermions after a quantum quench.
Manmana, S R; Wessel, S; Noack, R M; Muramatsu, A
2007-05-25
Using the adaptive time-dependent density-matrix renormalization group method, we study the time evolution of strongly correlated spinless fermions on a one-dimensional lattice after a sudden change of the interaction strength. For certain parameter values, two different initial states (e.g., metallic and insulating) lead to observables which become indistinguishable after relaxation. We find that the resulting quasistationary state is nonthermal. This result holds for both integrable and nonintegrable variants of the system.
Spectra of eigenstates in fermionic tensor quantum mechanics
NASA Astrophysics Data System (ADS)
Klebanov, Igor R.; Milekhin, Alexey; Popov, Fedor; Tarnopolsky, Grigory
2018-05-01
We study the O (N1)×O (N2)×O (N3) symmetric quantum mechanics of 3-index Majorana fermions. When the ranks Ni are all equal, this model has a large N limit which is dominated by the melonic Feynman diagrams. We derive an integral formula which computes the number of group invariant states for any set of Ni. It is non-vanishing only when each Ni is even. For equal ranks the number of singlets exhibits rapid growth with N : it jumps from 36 in the O (4 )3 model to 595 354 780 in the O (6 )3 model. We derive bounds on the values of energy, which show that they scale at most as N3 in the large N limit, in agreement with expectations. We also show that the splitting between the lowest singlet and non-singlet states is of order 1 /N . For N3=1 the tensor model reduces to O (N1)×O (N2) fermionic matrix quantum mechanics, and we find a simple expression for the Hamiltonian in terms of the quadratic Casimir operators of the symmetry group. A similar expression is derived for the complex matrix model with S U (N1)×S U (N2)×U (1 ) symmetry. Finally, we study the N3=2 case of the tensor model, which gives a more intricate complex matrix model whose symmetry is only O (N1)×O (N2)×U (1 ). All energies are again integers in appropriate units, and we derive a concise formula for the spectrum. The fermionic matrix models we studied possess standard 't Hooft large N limits where the ground state energies are of order N2, while the energy gaps are of order 1.
Spacetime Singularities in Quantum Gravity
NASA Astrophysics Data System (ADS)
Minassian, Eric A.
2000-04-01
Recent advances in 2+1 dimensional quantum gravity have provided tools to study the effects of quantization of spacetime on black hole and big bang/big crunch type singularities. I investigate effects of quantization of spacetime on singularities of the 2+1 dimensional BTZ black hole and the 2+1 dimensional torus universe. Hosoya has considered the BTZ black hole, and using a "quantum generalized affine parameter" (QGAP), has shown that, for some specific paths, quantum effects "smear" the singularities. Using gaussian wave functions as generic wave functions, I found that, for both BTZ black hole and the torus universe, there are families of paths that still reach the singularities with a finite QGAP, suggesting that singularities persist in quantum gravity. More realistic calculations, using modular invariant wave functions of Carlip and Nelson for the torus universe, offer further support for this conclusion. Currently work is in progress to study more realistic quantum gravity effects for BTZ black holes and other spacetime models.
The realization of Majorana fermions in Kitaev Quantum Spin Lattice
NASA Astrophysics Data System (ADS)
Do, Seung-Hwan; Park, Sang-Youn; Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi; Kwon, Y. S.; Adroja, D. T.; Voneshen, D.; Park, J.-H.; Choi, Kwang-Yong; Ji, Sungdae
The Kitaev honeycomb lattice is envisioned as an ideal host for Majorana fermions that are created out of the spin liquid background. Combining specific heat and neutron scattering experiments with theoretical calculations, here, we establish a hitherto unparalleled spin fractionalization to two species of Majorana fermions in the Kitaev material α-RuCl3. The specific heat data unveil a two-stage release of magnetic entropy by (R/2)ln2 and the T-linear dependence at intermediate temperatures. Our inelastic neutron scattering measurements further corroborate two distinct characters of fractionalized excitations: an Y-like, dispersive, magnetic continuum at higher energies and a dispersionless excitation at low energies around the Brillouin zone center. These dual features are well described by a Ferromagnetic Kitaev model, providing a smoking gun proof of the itinerant and localized Majorana fermions emergent in Kitaev magnets.
High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems
NASA Astrophysics Data System (ADS)
Chin, Siu A.
2015-03-01
In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.
NASA Astrophysics Data System (ADS)
Gu, Je-An
2014-01-01
Darkessence, the dark source of anti-gravity and that of attractive gravity, serves as the largest testing ground of the interplay between quantum matter and classical gravity. We expect it to shed light on the conflict between quantum physics and gravity, the most important puzzle in fundamental physics in the 21st century. In this paper we attempt to reveal the guidelines hinted by darkessence for clarifying or even resolving the conflict. To this aim, we question (1) the compatibility of the renormalization-group (RG) running with the energy conservation, (2) the effectiveness of an effective action in quantum field theory for describing the gravitation of quantum matter, and (3) the way quantum vacuum energy gravitates. These doubts illustrate the conflict and suggest several guidelines on the resolution: the preservation of the energy conservation and the equivalence principle (or its variant) under RG running, and a natural relief of the vacuum energy catastrophe.
New 'phase' of quantum gravity.
Wang, Charles H-T
2006-12-15
The emergence of loop quantum gravity over the past two decades has stimulated a great resurgence of interest in unifying general relativity and quantum mechanics. Among a number of appealing features of this approach is the intuitive picture of quantum geometry using spin networks and powerful mathematical tools from gauge field theory. However, the present form of loop quantum gravity suffers from a quantum ambiguity, owing to the presence of a free (Barbero-Immirzi) parameter. Following the recent progress on conformal decomposition of gravitational fields, we present a new phase space for general relativity. In addition to spin-gauge symmetry, the new phase space also incorporates conformal symmetry making the description parameter free. The Barbero-Immirzi ambiguity is shown to occur only if the conformal symmetry is gauge fixed prior to quantization. By withholding its full symmetries, the new phase space offers a promising platform for the future development of loop quantum gravity. This paper aims to provide an exposition, at a reduced technical level, of the above theoretical advances and their background developments. Further details are referred to cited references.
Hybrid Monte Carlo approach to the entanglement entropy of interacting fermions
NASA Astrophysics Data System (ADS)
Drut, Joaquín E.; Porter, William J.
2015-09-01
The Monte Carlo calculation of Rényi entanglement entropies Sn of interacting fermions suffers from a well-known signal-to-noise problem, even for a large number of situations in which the infamous sign problem is absent. A few methods have been proposed to overcome this issue, such as ensemble switching and the use of auxiliary partition-function ratios. Here, we present an approach that builds on the recently proposed free-fermion decomposition method; it incorporates entanglement in the probability measure in a natural way; it takes advantage of the hybrid Monte Carlo algorithm (an essential tool in lattice quantum chromodynamics and other gauge theories with dynamical fermions); and it does not suffer from noise problems. This method displays no sign problem for the same cases as other approaches and is therefore useful for a wide variety of systems. As a proof of principle, we calculate S2 for the one-dimensional, half-filled Hubbard model and compare with results from exact diagonalization and the free-fermion decomposition method.
Multipartite entanglement in fermionic systems via a geometric measure
NASA Astrophysics Data System (ADS)
Lari, Behzad; Durganandini, P.; Joag, Pramod S.
2010-12-01
We study multipartite entanglement in a system consisting of indistinguishable fermions. Specifically, we have proposed a geometric entanglement measure for N spin-(1)/(2) fermions distributed over 2L modes (single-particle states). The measure is defined on the 2L qubit space isomorphic to the Fock space for 2L single-particle states. This entanglement measure is defined for a given partition of 2L modes containing m⩾2 subsets. Thus this measure applies to m⩽2L partite fermionic systems where L is any finite number, giving the number of sites. The Hilbert spaces associated with these subsets may have different dimensions. Further, we have defined the local quantum operations with respect to a given partition of modes. This definition is generic and unifies different ways of dividing a fermionic system into subsystems. We have shown, using a representative case, that the geometric measure is invariant under local unitary operators corresponding to a given partition. We explicitly demonstrate the use of the measure to calculate multipartite entanglement in some correlated electron systems.
Heavy fermion behavior in the quasi-one-dimensional Kondo lattice CeCo 2Ga 8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Le; Fu, Zhaoming; Sun, Jianping
Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo 2Ga 8. Resistivity measurements at ambient pressure reveal the onset of coherence at T * ≈ 20 K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 and 2 K and reaches 800 mJ/mol K 2 atmore » 1 K, suggesting that CeCo 2Ga 8 is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature–pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional spin chain from 300 K down to T *, and first-principles calculations predict flat Fermi surfaces for the itinerant f-electron bands. These suggest that CeCo 2Ga 8 is a rare example of the quasi-one-dimensional Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh 2Si 2 family. The study of the quasi-one-dimensional CeCo 2Ga 8 family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.« less
Heavy fermion behavior in the quasi-one-dimensional Kondo lattice CeCo2Ga8
NASA Astrophysics Data System (ADS)
Wang, Le; Fu, Zhaoming; Sun, Jianping; Liu, Min; Yi, Wei; Yi, Changjiang; Luo, Yongkang; Dai, Yaomin; Liu, Guangtong; Matsushita, Yoshitaka; Yamaura, Kazunari; Lu, Li; Cheng, Jin-Guang; Yang, Yi-feng; Shi, Youguo; Luo, Jianlin
2017-07-01
Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo2Ga8. Resistivity measurements at ambient pressure reveal the onset of coherence at T * ≈ 20 K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 and 2 K and reaches 800 mJ/mol K2 at 1 K, suggesting that CeCo2Ga8 is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature-pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional spin chain from 300 K down to T *, and first-principles calculations predict flat Fermi surfaces for the itinerant f-electron bands. These suggest that CeCo2Ga8 is a rare example of the quasi-one-dimensional Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh2Si2 family. The study of the quasi-one-dimensional CeCo2Ga8 family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.
Heavy fermion behavior in the quasi-one-dimensional Kondo lattice CeCo 2Ga 8
Wang, Le; Fu, Zhaoming; Sun, Jianping; ...
2017-07-04
Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo 2Ga 8. Resistivity measurements at ambient pressure reveal the onset of coherence at T * ≈ 20 K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 and 2 K and reaches 800 mJ/mol K 2 atmore » 1 K, suggesting that CeCo 2Ga 8 is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature–pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional spin chain from 300 K down to T *, and first-principles calculations predict flat Fermi surfaces for the itinerant f-electron bands. These suggest that CeCo 2Ga 8 is a rare example of the quasi-one-dimensional Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh 2Si 2 family. The study of the quasi-one-dimensional CeCo 2Ga 8 family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.« less
Entangled cloning of stabilizer codes and free fermions
NASA Astrophysics Data System (ADS)
Hsieh, Timothy H.
2016-10-01
Though the no-cloning theorem [Wooters and Zurek, Nature (London) 299, 802 (1982), 10.1038/299802a0] prohibits exact replication of arbitrary quantum states, there are many instances in quantum information processing and entanglement measurement in which a weaker form of cloning may be useful. Here, I provide a construction for generating an "entangled clone" for a particular but rather expansive and rich class of states. Given a stabilizer code or free fermion Hamiltonian, this construction generates an exact entangled clone of the original ground state, in the sense that the entanglement between the original and the exact copy can be tuned to be arbitrarily small but finite, or large, and the relation between the original and the copy can also be modified to some extent. For example, this Rapid Communication focuses on generating time-reversed copies of stabilizer codes and particle-hole transformed ground states of free fermion systems, although untransformed clones can also be generated. The protocol leverages entanglement to simulate a transformed copy of the Hamiltonian without having to physically implement it and can potentially be realized in superconducting qubits or ultracold atomic systems.
Hardware-efficient fermionic simulation with a cavity-QED system
NASA Astrophysics Data System (ADS)
Zhu, Guanyu; Subaşı, Yiǧit; Whitfield, James D.; Hafezi, Mohammad
2018-03-01
In digital quantum simulation of fermionic models with qubits, non-local maps for encoding are often encountered. Such maps require linear or logarithmic overhead in circuit depth which could render the simulation useless, for a given decoherence time. Here we show how one can use a cavity-QED system to perform digital quantum simulation of fermionic models. In particular, we show that highly nonlocal Jordan-Wigner or Bravyi-Kitaev transformations can be efficiently implemented through a hardware approach. The key idea is using ancilla cavity modes, which are dispersively coupled to a qubit string, to collectively manipulate and measure qubit states. Our scheme reduces the circuit depth in each Trotter step of the Jordan-Wigner encoding by a factor of N2, comparing to the scheme for a device with only local connectivity, where N is the number of orbitals for a generic two-body Hamiltonian. Additional analysis for the Fermi-Hubbard model on an N × N square lattice results in a similar reduction. We also discuss a detailed implementation of our scheme with superconducting qubits and cavities.
Approximating the Sachdev-Ye-Kitaev model with Majorana wires
NASA Astrophysics Data System (ADS)
Chew, Aaron; Essin, Andrew; Alicea, Jason
The Sachdev-Ye-Kitaev (SYK) model describes a large collection of Majorana fermions coupled via random, `all-to-all' four-fermion interactions. This model enjoys broad interdisciplinary interest because it provides a solvable realization of holography in 0+1 dimensions, exhibits unusual spectral and thermodynamic properties, and shares deep connections to chaos and black holes. We propose a solid-state implementation of the SYK Hamiltonian that employs quantum dots coupled to arrays of topological superconductors hosting Majorana end-states. All-to-all four-Majorana couplings are mediated by interactions in the dot, while the randomness originates from disorder in the hoppings between the Majorana modes and dot levels. Using perturbation theory and explicit numerics, we study the properties of the dot-wire array system under various experimental conditions. Interestingly, our setup not only allows exploration of SYK physics, but also provides a controlled testbed for interaction effects on the topological classification of fermionic phases. Supported by the National Science Foundation (DMR-1341822), Institute for Quantum Information and Matter, and Walter Burke Institute at Caltech. AC gratefully acknowledges support from the Dominic Orr Fellowship.
Collapse and revival of the Fermi sea in a Bose-Fermi mixture
NASA Astrophysics Data System (ADS)
Iyer, Deepak; Will, Sebastian; Rigol, Marcos
2014-05-01
The collapse and revival of quantum fields is one of the most pristine forms of coherent quantum dynamics far from equilibrium. Until now, it has only been observed in the dynamical evolution of bosonic systems. We report on the first observation of the boson mediated collapse and revival of the Fermi sea in a Bose-Fermi mixture. Specifically, we present a simple model which captures the experimental observations shown in the talk titled Observation of Collapse and Revival Dynamics in the Fermionic Component of a Lattice Bose-Fermi Mixture by Sebastian Will. Our theoretical analysis shows why the results are robust to the presence of harmonic traps during the loading or the time evolution phase. It also makes apparent that the fermionic dynamics is independent of whether the bosonic component consists of a coherent state or localized Fock states with random occupation numbers. Because of the robustness of the experimental results, we argue that this kind of collapse and revival experiment can be used to accurately characterize interactions between bosons and fermions in a lattice.
Bounds on quantum communication via Newtonian gravity
NASA Astrophysics Data System (ADS)
Kafri, D.; Milburn, G. J.; Taylor, J. M.
2015-01-01
Newtonian gravity yields specific observable consequences, the most striking of which is the emergence of a 1/{{r}2} force. In so far as communication can arise via such interactions between distant particles, we can ask what would be expected for a theory of gravity that only allows classical communication. Many heuristic suggestions for gravity-induced decoherence have this restriction implicitly or explicitly in their construction. Here we show that communication via a 1/{{r}2} force has a minimum noise induced in the system when the communication cannot convey quantum information, in a continuous time analogue to Bell's inequalities. Our derived noise bounds provide tight constraints from current experimental results on any theory of gravity that does not allow quantum communication.
Complexity of Quantum Impurity Problems
NASA Astrophysics Data System (ADS)
Bravyi, Sergey; Gosset, David
2017-12-01
We give a quasi-polynomial time classical algorithm for estimating the ground state energy and for computing low energy states of quantum impurity models. Such models describe a bath of free fermions coupled to a small interacting subsystem called an impurity. The full system consists of n fermionic modes and has a Hamiltonian {H=H_0+H_{imp}}, where H 0 is quadratic in creation-annihilation operators and H imp is an arbitrary Hamiltonian acting on a subset of O(1) modes. We show that the ground energy of H can be approximated with an additive error {2^{-b}} in time {n^3 \\exp{[O(b^3)]}}. Our algorithm also finds a low energy state that achieves this approximation. The low energy state is represented as a superposition of {\\exp{[O(b^3)]}} fermionic Gaussian states. To arrive at this result we prove several theorems concerning exact ground states of impurity models. In particular, we show that eigenvalues of the ground state covariance matrix decay exponentially with the exponent depending very mildly on the spectral gap of H 0. A key ingredient of our proof is Zolotarev's rational approximation to the {√{x}} function. We anticipate that our algorithms may be used in hybrid quantum-classical simulations of strongly correlated materials based on dynamical mean field theory. We implemented a simplified practical version of our algorithm and benchmarked it using the single impurity Anderson model.
Non-Abelian fermionization and fractional quantum Hall transitions
NASA Astrophysics Data System (ADS)
Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah
2018-02-01
There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall interplateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length exponent ν ≈2.3 and that ν is observed to be superuniversal, i.e., the same in the vicinity of distinct critical points [Sondhi et al., Rev. Mod. Phys. 69, 315 (1997), 10.1103/RevModPhys.69.315]. Duality motivates effective descriptions for a fractional quantum Hall plateau transition involving a Chern-Simons field with U (Nc) gauge group coupled to Nf=1 fermion. We study one class of theories in a controlled limit where Nf≫Nc and calculate ν to leading nontrivial order in the absence of disorder. Although these theories do not yield an anomalously large exponent ν within the large Nf≫Nc expansion, they do offer a new parameter space of theories that is apparently different from prior works involving Abelian Chern-Simons gauge fields [Wen and Wu, Phys. Rev. Lett. 70, 1501 (1993), 10.1103/PhysRevLett.70.1501; Chen et al., Phys. Rev. B 48, 13749 (1993), 10.1103/PhysRevB.48.13749].
Evaporation Spectrum of Black Holes from a Local Quantum Gravity Perspective.
Barrau, Aurélien
2016-12-30
We revisit the hypothesis of a possible line structure in the Hawking evaporation spectrum of black holes. Because of nonperturbative quantum gravity effects, this would take place arbitrarily far away from the Planck mass. We show, based on a speculative but consistent hypothesis, that this naive prediction might in fact hold in the specific context of loop quantum gravity. A small departure from the ideal case is expected for some low-spin transitions and could allow us to distinguish several quantum gravity models. We also show that the effect is not washed out by the dynamics of the process, by the existence of a mass spectrum up to a given width, or by the secondary component induced by the decay of neutral pions emitted during the time-integrated evaporation.
Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.
Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2016-04-22
Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.
Bojowald, Martin
2008-06-06
When quantum gravity is used to discuss the big bang singularity, the most important, though rarely addressed, question is what role genuine quantum degrees of freedom play. Here, complete effective equations are derived for isotropic models with an interacting scalar to all orders in the expansions involved. The resulting coupling terms show that quantum fluctuations do not affect the bounce much. Quantum correlations, however, do have an important role and could even eliminate the bounce. How quantum gravity regularizes the big bang depends crucially on properties of the quantum state.
Global Well-Posedness of the NLS System for Infinitely Many Fermions
NASA Astrophysics Data System (ADS)
Chen, Thomas; Hong, Younghun; Pavlović, Nataša
2017-04-01
In this paper, we study the mean field quantum fluctuation dynamics for a system of infinitely many fermions with delta pair interactions in the vicinity of an equilibrium solution (the Fermi sea) at zero temperature, in dimensions d = 2, 3, and prove global well-posedness of the corresponding Cauchy problem. Our work extends some of the recent important results obtained by Lewin and Sabin in [33,34], who addressed this problem for more regular pair interactions.
Surface Majorana fermions and bulk collective modes in superfluid 3He-B
NASA Astrophysics Data System (ADS)
Park, YeJe; Chung, Suk Bum; Maciejko, Joseph
2015-02-01
The theoretical study of topological superfluids and superconductors has so far been carried out largely as a translation of the theory of noninteracting topological insulators into the superfluid language, whereby one replaces electrons by Bogoliubov quasiparticles and single-particle band Hamiltonians by Bogoliubov-de Gennes Hamiltonians. Band insulators and superfluids are, however, fundamentally different: While the former exist in the absence of interparticle interactions, the latter are broken symmetry states that owe their very existence to such interactions. In particular, unlike the static energy gap of a band insulator, the gap in a superfluid is due to a dynamical order parameter that is subject to both thermal and quantum fluctuations. In this work, we explore the consequences of bulk quantum fluctuations of the order parameter in the B phase of superfluid 3He on the topologically protected Majorana surface states. Neglecting the high-energy amplitude modes, we find that one of the three spin-orbit Goldstone modes in 3He-B couples to the surface Majorana fermions. This coupling in turn induces an effective short-range two-body interaction between the Majorana fermions, with coupling constant inversely proportional to the strength of the nuclear dipole-dipole interaction in bulk 3He. A mean-field theory suggests that the surface Majorana fermions in 3He-B may be in the vicinity of a metastable gapped time-reversal-symmetry-breaking phase.
Non-Markovian dynamics of fermionic and bosonic systems coupled to several heat baths
NASA Astrophysics Data System (ADS)
Hovhannisyan, A. A.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Lacroix, D.
2018-03-01
Employing the fermionic and bosonic Hamiltonians for the collective oscillator linearly FC-coupled with several heat baths, the analytical expressions for the collective occupation number are derived within the non-Markovian quantum Langevin approach. The master equations for the occupation number of collective subsystem are derived and discussed. In the case of Ohmic dissipation with Lorenzian cutoffs, the possibility of reduction of the system with several heat baths to the system with one heat bath is analytically demonstrated. For the fermionic and bosonic systems, a comparative analysis is performed between the collective subsystem coupled to two heat baths and the reference case of the subsystem coupled to one bath.
Deterministic Impulsive Vacuum Foundations for Quantum-Mechanical Wavefunctions
NASA Astrophysics Data System (ADS)
Valentine, John S.
2013-09-01
By assuming that a fermion de-constitutes immediately at source, that its constituents, as bosons, propagate uniformly as scalar vacuum terms with phase (radial) symmetry, and that fermions are unique solutions for specific phase conditions, we find a model that self-quantizes matter from continuous waves, unifying bosons and fermion ontologies in a single basis, in a constitution-invariant process. Vacuum energy has a wavefunction context, as a mass-energy term that enables wave collapse and increases its amplitude, with gravitational field as the gradient of the flux density. Gravitational and charge-based force effects emerge as statistics without special treatment. Confinement, entanglement, vacuum statistics, forces, and wavefunction terms emerge from the model's deterministic foundations.
Counting statistics of many-particle quantum walks
NASA Astrophysics Data System (ADS)
Mayer, Klaus; Tichy, Malte C.; Mintert, Florian; Konrad, Thomas; Buchleitner, Andreas
2011-06-01
We study quantum walks of many noninteracting particles on a beam splitter array as a paradigmatic testing ground for the competition of single- and many-particle interference in a multimode system. We derive a general expression for multimode particle-number correlation functions, valid for bosons and fermions, and infer pronounced signatures of many-particle interferences in the counting statistics.
NASA Astrophysics Data System (ADS)
Swingle, Brian
2018-03-01
This is an idiosyncratic colloquium-style review of the idea that spacetime and gravity can emerge from entanglement. Drawing inspiration from the conjectured duality between quantum gravity in anti de Sitter space and certain conformal field theories, we argue that tensor networks can be used to define a discrete geometry that encodes entanglement geometrically. With the additional assumption that a continuum limit can be taken, the resulting geometry necessarily obeys Einstein's equations. The discussion takes the point of view that the emergence of spacetime and gravity is a mysterious phenomenon of quantum many-body physics that we would like to understand. We also briefly discuss possible experiments to detect emergent gravity in highly entangled quantum systems.
New Spin Foam Models of Quantum Gravity
NASA Astrophysics Data System (ADS)
Miković, A.
We give a brief and a critical review of the Barret-Crane spin foam models of quantum gravity. Then we describe two new spin foam models which are obtained by direct quantization of General Relativity and do not have some of the drawbacks of the Barret-Crane models. These are the model of spin foam invariants for the embedded spin networks in loop quantum gravity and the spin foam model based on the integration of the tetrads in the path integral for the Palatini action.
Probing loop quantum gravity with evaporating black holes.
Barrau, A; Cailleteau, T; Cao, X; Diaz-Polo, J; Grain, J
2011-12-16
This Letter aims at showing that the observation of evaporating black holes should allow the usual Hawking behavior to be distinguished from loop quantum gravity (LQG) expectations. We present a full Monte Carlo simulation of the evaporation in LQG and statistical tests that discriminate between competing models. We conclude that contrarily to what was commonly thought, the discreteness of the area in LQG leads to characteristic features that qualify evaporating black holes as objects that could reveal quantum gravity footprints. © 2011 American Physical Society
Prima facie questions in quantum gravity
NASA Astrophysics Data System (ADS)
Isham, C. J.
The long history of the study of quantum gravity has thrown up a complex web of ideas and approaches. The aim of this article is to unravel this web a little by analysing some of the {\\em prima facie\\/} questions that can be asked of almost any approach to quantum gravity and whose answers assist in classifying the different schemes. Particular emphasis is placed on (i) the role of background conceptual and technical structure; (ii) the role of spacetime diffeomorphisms; and (iii) the problem of time.
NASA Astrophysics Data System (ADS)
Carollo, Federico; Garrahan, Juan P.; Lesanovsky, Igor; Pérez-Espigares, Carlos
2017-11-01
We consider a class of either fermionic or bosonic noninteracting open quantum chains driven by dissipative interactions at the boundaries and study the interplay of coherent transport and dissipative processes, such as bulk dephasing and diffusion. Starting from the microscopic formulation, we show that the dynamics on large scales can be described in terms of fluctuating hydrodynamics. This is an important simplification as it allows us to apply the methods of macroscopic fluctuation theory to compute the large deviation (LD) statistics of time-integrated currents. In particular, this permits us to show that fermionic open chains display a third-order dynamical phase transition in LD functions. We show that this transition is manifested in a singular change in the structure of trajectories: while typical trajectories are diffusive, rare trajectories associated with atypical currents are ballistic and hyperuniform in their spatial structure. We confirm these results by numerically simulating ensembles of rare trajectories via the cloning method, and by exact numerical diagonalization of the microscopic quantum generator.
Carollo, Federico; Garrahan, Juan P; Lesanovsky, Igor; Pérez-Espigares, Carlos
2017-11-01
We consider a class of either fermionic or bosonic noninteracting open quantum chains driven by dissipative interactions at the boundaries and study the interplay of coherent transport and dissipative processes, such as bulk dephasing and diffusion. Starting from the microscopic formulation, we show that the dynamics on large scales can be described in terms of fluctuating hydrodynamics. This is an important simplification as it allows us to apply the methods of macroscopic fluctuation theory to compute the large deviation (LD) statistics of time-integrated currents. In particular, this permits us to show that fermionic open chains display a third-order dynamical phase transition in LD functions. We show that this transition is manifested in a singular change in the structure of trajectories: while typical trajectories are diffusive, rare trajectories associated with atypical currents are ballistic and hyperuniform in their spatial structure. We confirm these results by numerically simulating ensembles of rare trajectories via the cloning method, and by exact numerical diagonalization of the microscopic quantum generator.
Probing density and spin correlations in two-dimensional Hubbard model with ultracold fermions
NASA Astrophysics Data System (ADS)
Chan, Chun Fai; Drewes, Jan Henning; Gall, Marcell; Wurz, Nicola; Cocchi, Eugenio; Miller, Luke; Pertot, Daniel; Brennecke, Ferdinand; Koehl, Michael
2017-04-01
Quantum gases of interacting fermionic atoms in optical lattices is a promising candidate to study strongly correlated quantum phases of the Hubbard model such as the Mott-insulator, spin-ordered phases, or in particular d-wave superconductivity. We experimentally realise the two-dimensional Hubbard model by loading a quantum degenerate Fermi gas of 40 K atoms into a three-dimensional optical lattice geometry. High-resolution absorption imaging in combination with radiofrequency spectroscopy is applied to spatially resolve the atomic distribution in a single 2D layer. We investigate in local measurements of spatial correlations in both the density and spin sector as a function of filling, temperature and interaction strength. In the density sector, we compare the local density fluctuations and the global thermodynamic quantities, and in the spin sector, we observe the onset of non-local spin correlation, signalling the emergence of the anti-ferromagnetic phase. We would report our recent experimental endeavours to investigate further down in temperature in the spin sector.
Semi-stochastic full configuration interaction quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Holmes, Adam; Petruzielo, Frank; Khadilkar, Mihir; Changlani, Hitesh; Nightingale, M. P.; Umrigar, C. J.
2012-02-01
In the recently proposed full configuration interaction quantum Monte Carlo (FCIQMC) [1,2], the ground state is projected out stochastically, using a population of walkers each of which represents a basis state in the Hilbert space spanned by Slater determinants. The infamous fermion sign problem manifests itself in the fact that walkers of either sign can be spawned on a given determinant. We propose an improvement on this method in the form of a hybrid stochastic/deterministic technique, which we expect will improve the efficiency of the algorithm by ameliorating the sign problem. We test the method on atoms and molecules, e.g., carbon, carbon dimer, N2 molecule, and stretched N2. [4pt] [1] Fermion Monte Carlo without fixed nodes: a Game of Life, death and annihilation in Slater Determinant space. George Booth, Alex Thom, Ali Alavi. J Chem Phys 131, 050106, (2009).[0pt] [2] Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo. Deidre Cleland, George Booth, and Ali Alavi. J Chem Phys 132, 041103 (2010).
Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helm, T.; Bachmann, M.; Moll, P.J.W.
2017-03-23
Electronic nematicity appears in proximity to unconventional high-temperature superconductivity in the cuprates and iron-arsenides, yet whether they cooperate or compete is widely discussed. While many parallels are drawn between high-T c and heavy fermion superconductors, electronic nematicity was not believed to be an important aspect in their superconductivity. We have found evidence for a field-induced strong electronic in-plane symmetry breaking in the tetragonal heavy fermion superconductor CeRhIn 5. At ambient pressure and zero field, it hosts an anti-ferromagnetic order (AFM) of nominally localized 4f electrons at TN=3.8K(1). Moderate pressure of 17kBar suppresses the AFM order and a dome of superconductivitymore » appears around the quantum critical point. Similarly, a density-wave-like correlated phase appears centered around the field-induced AFM quantum critical point. In this phase, we have now observed electronic nematic behavior.« less
Coherent Dynamics of Open Quantum System in the Presence of Majorana Fermions
NASA Astrophysics Data System (ADS)
Assuncao, Maryzaura O.; Diniz, Ginetom S.; Vernek, Edson; Souza, Fabricio M.
In recent years the research on quantum coherent dynamics of open systems has attracted great attention due to its relevance for future implementation of quantum computers. In the present study we apply the Kadanoff-Baym formalism to simulate the population dynamics of a double-dot molecular system attached to both a superconductor and fermionic reservoirs. We solve both analytically and numerically a set of coupled differential equations that account for crossed Andreev reflection (CAR), intramolecular hopping and tunneling. We pay particular attention on how Majorana bound states can affect the population dynamics of the molecule. We investigate on how initial state configuration affects the dynamics. For instance, if one dot is occupied and the other one is empty, the dynamics is dictated by the inter dot tunneling. On the other hand, for initially empty dots, the CAR dominates. We also investigate how the source and drain currents evolve in time. This work was supporte by FAPEMIG, CNPq and CAPES.
Optical probing of quantum Hall effect of composite fermions and of the liquid-insulator transition
NASA Astrophysics Data System (ADS)
Rossella, F.; Bellani, V.; Dionigi, F.; Amado, M.; Diez, E.; Kowalik, K.; Biasiol, G.; Sorba, L.
2011-12-01
In the photoluminescence spectra of a two-dimensional electron gas in the fractional quantum Hall regime we observe the states at filling factors ν = 4/5, 5/7, 4/11 and 3/8 as clear minima in the intensity or area emission peak. The first three states are described as interacting composite fermions in fractional quantum Hall regime. The minimum in the intensity at ν = 3/8, which is not explained within this picture, can be an evidence of a suppression of the screening of the Coulomb interaction among the effective quasi-particles involved in this intriguing state. The magnetic field energy dispersion at very low temperatures is also discussed. At low field the emission follows a Landau dispersion with a screened magneto-Coulomb contribution. At intermediate fields the hidden symmetry manifests. At high field above ν = 1/3 the electrons correlate into an insulating phase, and the optical emission behaviour at the liquid-insulator transition is coherent with a charge ordering driven by Coulomb correlations.
Can chaos be observed in quantum gravity?
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Höhn, Philipp A.; Koslowski, Tim A.; Nelson, Mike I.
2017-06-01
Full general relativity is almost certainly 'chaotic'. We argue that this entails a notion of non-integrability: a generic general relativistic model, at least when coupled to cosmologically interesting matter, likely possesses neither differentiable Dirac observables nor a reduced phase space. It follows that the standard notion of observable has to be extended to include non-differentiable or even discontinuous generalized observables. These cannot carry Poisson-algebraic structures and do not admit a standard quantization; one thus faces a quantum representation problem of gravitational observables. This has deep consequences for a quantum theory of gravity, which we investigate in a simple model for a system with Hamiltonian constraint that fails to be completely integrable. We show that basing the quantization on standard topology precludes a semiclassical limit and can even prohibit any solutions to the quantum constraints. Our proposed solution to this problem is to refine topology such that a complete set of Dirac observables becomes continuous. In the toy model, it turns out that a refinement to a polymer-type topology, as e.g. used in loop gravity, is sufficient. Basing quantization of the toy model on this finer topology, we find a complete set of quantum Dirac observables and a suitable semiclassical limit. This strategy is applicable to realistic candidate theories of quantum gravity and thereby suggests a solution to a long-standing problem which implies ramifications for the very concept of quantization. Our work reveals a qualitatively novel facet of chaos in physics and opens up a new avenue of research on chaos in gravity which hints at deep insights into the structure of quantum gravity.
Neutron scattering in the proximate quantum spin liquid α-RuCl3
NASA Astrophysics Data System (ADS)
Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A.; Stone, Matthew B.; Lumsden, Mark D.; Mandrus, David G.; Tennant, David A.; Moessner, Roderich; Nagler, Stephen E.
2017-06-01
The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials.
Interlayer Pairing Symmetry of Composite Fermions in Quantum Hall Bilayers
Isobe, Hiroki; Fu, Liang
2017-04-17
Here, we study the pairing symmetry of the interlayer paired state of composite fermions in quantum Hall bilayers. Based on the Halperin-Lee-Read (HLR) theory, the effect of the long-range Coulomb interaction and the internal Chern-Simons gauge fluctuation is analyzed with the random-phase approximation beyond the leading order contribution in small momentum expansion, and we observe that the interlayer paired states with a relative angular momentummore » $l=+1$ are energetically favored for filling ν=$$\\frac{1}2$$+$$\\frac{1}2$$ and $$\\frac{1}4$$+$$\\frac{1}4$$. The degeneracy between states with $±l$ is lifted by the interlayer density-current interaction arising from the interplay of the long-range Coulomb interaction and the Chern-Simons term in the HLR theory.« less
NASA Astrophysics Data System (ADS)
Nguyen, Dung Xuan; Gromov, Andrey; Son, Dam Thanh
2018-05-01
We perform a detailed comparison of the Dirac composite fermion and the recently proposed bimetric theory for a quantum Hall Jain states near half filling. By tuning the composite Fermi liquid to the vicinity of a nematic phase transition, we find that the two theories are equivalent to each other. We verify that the single mode approximation for the response functions and the static structure factor becomes reliable near the phase transition. We show that the dispersion relation of the nematic mode near the phase transition can be obtained from the Dirac brackets between the components of the nematic order parameter. The dispersion is quadratic at low momenta and has a magnetoroton minimum at a finite momentum, which is not related to any nearby inhomogeneous phase.
Pairing Symmetry Transitions in the Even-Denominator FQHE System
NASA Astrophysics Data System (ADS)
Nomura, Kentaro; Yoshioka, Daijiro
2001-12-01
Transitions from a paired quantum Hall state to another quantum Hall state in bilayer systems are discussed in the framework of the edge theory. Starting from the edge theory for the Haldane Rezayi state, it is shown that the charging effect of a bilayer system which breaks the SU(2) symmetry of the pseudospin shifts the central charge and the conformal dimensions of the fermionic fields which describe the pseudospin sector in the edge theory. This corresponds to the transition from the Haldane Rezayi state to Halperin's 331 state, or from a singlet d-wave to a triplet p-wave ABM type paired state in the composite fermion picture. Considering interlayer tunneling, the tunneling rate-capacitance phase diagram for the ν=5/2 paired bilayer system is discussed.
NASA Astrophysics Data System (ADS)
Iadecola, Thomas; Hsieh, Timothy H.
2018-05-01
We show that time-reflection symmetry in periodically driven (Floquet) quantum systems enables an inherently nonequilibrium phenomenon structurally similar to quantum-mechanical supersymmetry. In particular, we find Floquet analogs of the Witten index that place lower bounds on the degeneracies of states with quasienergies 0 and π . Moreover, we show that in some cases time-reflection symmetry can also interchange fermions and bosons, leading to fermion-boson pairs with opposite quasienergy. We provide a simple class of disordered, interacting, and ergodic Floquet models with an exponentially large number of states at quasienergies 0 and π , which are robust as long as the time-reflection symmetry is preserved. Floquet supersymmetry manifests itself in the evolution of certain local observables as a period-doubling effect with dramatic finite-size scaling, providing a clear signature for experiments.
Dynamical Disentangling and Cooling of Atoms in Bilayer Optical Lattices
NASA Astrophysics Data System (ADS)
Kantian, A.; Langer, S.; Daley, A. J.
2018-02-01
We show how experimentally available bilayer lattice systems can be used to prepare quantum many-body states with exceptionally low entropy in one layer, by dynamically disentangling the two layers. This disentangling operation moves one layer—subsystem A —into a regime where excitations in A develop a single-particle gap. As a result, this operation maps directly to cooling for subsystem A , with entropy being shuttled to the other layer. For both bosonic and fermionic atoms, we study the corresponding dynamics showing that disentangling can be realized cleanly in ongoing experiments. The corresponding entanglement entropies are directly measurable with quantum gas microscopes, and, as a tool for producing lower-entropy states, this technique opens a range of applications beginning with simplifying production of magnetically ordered states of bosons and fermions.
Rovelli, Carlo
2008-01-01
The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Emergence of a classical Universe from quantum gravity and cosmology.
Kiefer, Claus
2012-09-28
I describe how we can understand the classical appearance of our world from a universal quantum theory. The essential ingredient is the process of decoherence. I start with a general discussion in ordinary quantum theory and then turn to quantum gravity and quantum cosmology. There is a whole hierarchy of classicality from the global gravitational field to the fluctuations in the cosmic microwave background, which serve as the seeds for the structure in the Universe.
NASA Astrophysics Data System (ADS)
Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.
2013-04-01
The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad interdisciplinary appeal and include new studies of high temperature superfluidity, viscosity, spin-transport, spin-imbalanced mixtures, and three-component gases, this last having a close parallel to color superconductivity. Another system important for the field of strongly-interacting quantum fluids was revealed by analysis of data from the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Despite naive expectations based on asymptotic freedom that the deconfinement of quarks and gluons at high temperatures would lead to a weakly-interacting quark gluon plasma (QGP), the system appeared to be quite strongly coupled. Subsequent estimates of the viscosity-to-entropy ratio suggest that the system is tantalizingly close to the postulated bound from AdS/CFT calculations. The field is quite dynamic at the moment; new measurements are expected from upgraded detectors at RHIC, and an entirely new energy regime is being opened up by heavy ion collisions at the Large Hadron Collider (LHC) at CERN. On the theoretical side, much work remains to be done to extract the precise values of the transport coefficients, and to characterize the nature of quasi-particle excitations in the plasma. Finally, holographic dualities such as anti-de Sitter/conformal field theory (AdS/CFT) have opened a new theoretical window on strongly correlated fluids. Holography relates strongly-interacting quantum many-body systems to weakly-coupled semi-classical gravitational systems, replacing quasiparticles with geometry and translating various difficult questions about quantum fluids into simple and calculable geometric exercises. Already, some of the earliest lessons of holography, such as the conjectural bound on the viscosity-to-entropy ratio, have had a considerable impact on the theoretical and experimental study of strongly correlated fluids, from RHIC to ultracold atoms. More recently, the study of holographic superconductors, non-Fermi liquids and unitary quantum gases has touched off a flurry of interest in holography as a toolkit for studying strongly-correlated many-body systems more generally. Holography also allows us to use results from quantum fluids to study classical and quantum gravity; for example, the phase structure of a quantum many-body system translates into a rich classification of black holes in the dual space-time. Given both the rapid progress in applied holography and the exciting developments in ultracold quantum gases and QCD plasmas discussed above, the time is ripe for new collaborations across traditional lines of specialization. This focus issue explores the convergence between three heretofore separate areas of physics. Over forty research groups have contributed original work, and there will be a review article which complements these advances, overviewing them and presenting them in the context of all three fields and their interconnections. The review concludes with a list of open questions. This sets the tone for the present focus issue; namely, interdisciplinary dialog, openness, innovation, and possibility, an emphasis for which New Journal of Physics, an open-access journal of the highest quality, is especially fitted.
Exact quantization of Einstein-Rosen waves coupled to massless scalar matter.
Barbero G, J Fernando; Garay, Iñaki; Villaseñor, Eduardo J S
2005-07-29
We show in this Letter that gravity coupled to a massless scalar field with full cylindrical symmetry can be exactly quantized by an extension of the techniques used in the quantization of Einstein-Rosen waves. This system provides a useful test bed to discuss a number of issues in quantum general relativity, such as the emergence of the classical metric, microcausality, and large quantum gravity effects. It may also provide an appropriate framework to study gravitational critical phenomena from a quantum point of view, issues related to black hole evaporation, and the consistent definition of test fields and particles in quantum gravity.
NASA Astrophysics Data System (ADS)
Petrov, Pavel
In this thesis we study the properties of strongly-coupled large-N conformal field theories (CFT's) using AdS/CFT correspondence. Chapter 1 serves as an introduction. In Chapter 2 we study the shear viscosity of strongly-coupled large-N conformal field theories. We find that it is affected by R2 corrections to the AdS action and present an example of 4D theory in which the the conjectured universal lower bound on viscosity-to-entropy ratio η/s > 1/4π is violated by 1/N corrections. This fact proves that there is no universal lower bound of 1/4π on viscosity-to-entropy ratio and may be relevant for the studies of QCD quark-gluon plasma for which this ratio is experimentally found to be close to 1/4π. In Chapter 3 we study the formation of the electron star in 4D AdS space. We show that in a gravity theory with charged fermions a layer of charged fermion fluid may form at a finite distance from the charged black hole. We show that these “electron stars” are candidate gravity duals for strongly interacting fermion systems at finite density and finite temperature. Entropy density for such systems scales as s ˜ T2/z at low temperatures as expected from IR criticality of electron stars solutions.
Glamazda, A.; Lemmens, P.; Do, S. -H.; Choi, Y. S.; Choi, K. -Y.
2016-01-01
The fractionalization of elementary excitations in quantum spin systems is a central theme in current condensed matter physics. The Kitaev honeycomb spin model provides a prominent example of exotic fractionalized quasiparticles, composed of itinerant Majorana fermions and gapped gauge fluxes. However, identification of the Majorana fermions in a three-dimensional honeycomb lattice remains elusive. Here we report spectroscopic signatures of fractional excitations in the harmonic-honeycomb iridates β- and γ-Li2IrO3. Using polarization-resolved Raman spectroscopy, we find that the dynamical Raman response of β- and γ-Li2IrO3 features a broad scattering continuum with distinct polarization and composition dependence. The temperature dependence of the Raman spectral weight is dominated by the thermal damping of fermionic excitations. These results suggest the emergence of Majorana fermions from spin fractionalization in a three-dimensional Kitaev–Heisenberg system. PMID:27457278
Cooling a band insulator with a metal: fermionic superfluid in a dimerized holographic lattice.
Haldar, Arijit; Shenoy, Vijay B
2014-10-17
A cold atomic realization of a quantum correlated state of many fermions on a lattice, eg. superfluid, has eluded experimental realization due to the entropy problem. Here we propose a route to realize such a state using holographic lattice and confining potentials. The potentials are designed to produces a band insulating state (low heat capacity) at the trap center, and a metallic state (high heat capacity) at the periphery. The metal "cools" the central band insulator by extracting out the excess entropy. The central band insulator can be turned into a superfluid by tuning an attractive interaction between the fermions. Crucially, the holographic lattice allows the emergent superfluid to have a high transition temperature - even twice that of the effective trap temperature. The scheme provides a promising route to a laboratory realization of a fermionic lattice superfluid, even while being adaptable to simulate other many body states.
Quantum collapse of dust shells in 2 + 1 gravity
NASA Astrophysics Data System (ADS)
Ortíz, L.; Ryan, M. P.
2007-08-01
This paper considers the quantum collapse of infinitesimally thin dust shells in 2 + 1 gravity. In 2 + 1 gravity a shell is no longer a sphere, but a ring of matter. The classical equation of motion of such shells in terms of variables defined on the shell has been considered by Peleg and Steif (Phys Rev D 51:3992, 1995), using the 2 + 1 version of the original formulation of Israel (Nuovo Cimento B 44:1, 1966), and Crisóstomo and Olea (Phys Rev D 69:104023, 2004), using canonical methods. The minisuperspace quantum problem can be reduced to that of a harmonic oscillator in terms of the curvature radius of the shell, which allows us to use well-known methods to find the motion of coherent wave packets that give the quantum collapse of the shell. Classically, as the radius of the shell falls below a certain point, a horizon forms. In the quantum problem one can define various quantities that give “indications” of horizon formation. Without a proper definition of a “horizon” in quantum gravity, these can be nothing but indications.
Holography as a principle in quantum gravity?-Some historical and systematic observations
NASA Astrophysics Data System (ADS)
Sieroka, Norman; Mielke, Eckehard W.
2014-05-01
Holography is a fruitful concept in modern physics. However, there is no generally accepted definition of the term, and its significance, especially as a guiding principle in quantum gravity, is rather uncertain. The present paper critically evaluates variants of the holographic principle from two perspectives: (i) their relevance in contemporary approaches to quantum gravity and in closely related areas; (ii) their historical forerunners in the early twentieth century and the role played by past and present concepts of holography in attempts to unify physics. By combining these two perspectives a certain depth of focus is gained which allows us to draw some tentative conclusions about what might be reasonable aspirations and prospects for holography in quantum gravity. By the same token, we will have a brief and critical look at wider philosophical interpretations of the term.
Nontrivial Berry phase in magnetic BaMnSb2 semimetal
Huang, Silu; Shelton, W. A.; Plummer, E. W.; Jin, Rongying
2017-01-01
The subject of topological materials has attracted immense attention in condensed-matter physics because they host new quantum states of matter containing Dirac, Majorana, or Weyl fermions. Although Majorana fermions can only exist on the surface of topological superconductors, Dirac and Weyl fermions can be realized in both 2D and 3D materials. The latter are semimetals with Dirac/Weyl cones either not tilted (type I) or tilted (type II). Although both Dirac and Weyl fermions have massless nature with the nontrivial Berry phase, the formation of Weyl fermions in 3D semimetals require either time-reversal or inversion symmetry breaking to lift degeneracy at Dirac points. Here we demonstrate experimentally that canted antiferromagnetic BaMnSb2 is a 3D Weyl semimetal with a 2D electronic structure. The Shubnikov–de Hass oscillations of the magnetoresistance give nearly zero effective mass with high mobility and the nontrivial Berry phase. The ordered magnetic arrangement (ferromagnetic ordering in the ab plane and antiferromagnetic ordering along the c axis below 286 K) breaks the time-reversal symmetry, thus offering us an ideal platform to study magnetic Weyl fermions in a centrosymmetric material. PMID:28539436
Simplicity constraints: A 3D toy model for loop quantum gravity
NASA Astrophysics Data System (ADS)
Charles, Christoph
2018-05-01
In loop quantum gravity, tremendous progress has been made using the Ashtekar-Barbero variables. These variables, defined in a gauge fixing of the theory, correspond to a parametrization of the solutions of the so-called simplicity constraints. Their geometrical interpretation is however unsatisfactory as they do not constitute a space-time connection. It would be possible to resolve this point by using a full Lorentz connection or, equivalently, by using the self-dual Ashtekar variables. This leads however to simplicity constraints or reality conditions which are notoriously difficult to implement in the quantum theory. We explore in this paper the possibility of using completely degenerate actions to impose such constraints at the quantum level in the context of canonical quantization. To do so, we define a simpler model, in 3D, with similar constraints by extending the phase space to include an independent vielbein. We define the classical model and show that a precise quantum theory by gauge unfixing can be defined out of it, completely equivalent to the standard 3D Euclidean quantum gravity. We discuss possible future explorations around this model as it could help as a stepping stone to define full-fledged covariant loop quantum gravity.
NASA Astrophysics Data System (ADS)
Kiefer, C.
2005-10-01
The most difficult unsolved problem in fundamental theoretical physics is the consistent implementation of the gravitational interaction into a quantum framework, which would lead to a theory of quantum gravity. Although a final answer is still pending, several promising attempts do exist. Despite the general title, this book is about one of them - loop quantum gravity. This approach proceeds from the idea that a direct quantization of Einstein's theory of general relativity is possible. In contrast to string theory, it presupposes that the unification of all interactions is not needed as a prerequisite for quantum gravity. Usually one divides theories of quantum general relativity into covariant and canonical approaches. Covariant theories employ four-dimensional concepts in its formulation, one example being the path integral approach. Canonical theories start from a classical Hamiltonian version of the theory in which spacetime is foliated into spacelike hypersurfaces. Loop quantum gravity is a variant of the canonical approach, the oldest being quantum geometrodynamics where the fundamental configuration variable is the three-metric. Loop quantum gravity has developed from a new choice of canonical variables introduced by Abhay Ashtekar in 1986, the new configuration variable being a connection defined on a three-manifold. Instead of the connection itself, the loop approach employs a non-local version in which the connection is integrated over closed loops. This is similar to the Wilson loops used in gauge theories. Carlo Rovelli is one of the pioneers of loop quantum gravity which he started to develop with Lee Smolin in two papers written in 1988 and 1990. In his book, he presents a comprehensive and competent overview of this approach and provides at the same time the necessary technical background in order to make the treatment self-contained. In fact, half of the book is devoted to 'preparations' giving a detailed account of Hamiltonian mechanics, quantum mechanics, general relativity and other topics. According to the level of the reader, this part can be skipped or studied as interesting material on its own. The penetrating theme of the whole book (its leitmotiv) is background independence. In non-gravitational theories, dynamical fields are formulated on a fixed background spacetime that plays the role of an absolute structure in the theory. In general relativity, on the other hand, there is no background structure - all fields are dynamical. This was a confusing point already during the development of general relativity and led Albert Einstein in 1913 erroneously to give up general covariance before recognizing his error and presenting his final correct field equations that are of course covariant. This story is instructive, circling around the famous 'hole problem', and is told in detail in Rovelli's book. Its solution is that points on a bare manifold do not make sense in physics; everything, including the gravitational field, is dragged around by a diffeomorphism - there is just no background available, only the fields exist. In loop quantum gravity, physical space (called 'quantum geometry') itself is formed by loop-like quantum states: a suitable orthonormal basis is provided by spin-network states (a spin-network is a graph with edges and nodes, where spins are assigned to the edges), and the quantum geometry is a superposition of such states. Time and space in the usual sense have disappeared. In the second half of his book, Rovelli discusses at length the major successes of this approach. First of all, the formalism yields a unique kinematical Hilbert space for the quantum states obeying the Gauss and diffeomorphism constraints. The situation with the Hamiltonian constraint is more subtle. The need for a Hilbert-space structure in quantum gravity is, however, not discussed. After all, the Hilbert-space structure in quantum mechanics is tied to the presence of an external time and the conservation of probability with respect to this external time. But in quantum gravity there is no background structure, in particular no external time. Secondly, there exist two important operators that are connected, respectively, with area and volume in the classical limit. These operators have a discrete spectrum and thus provide elementary 'quanta' of area and volume. This gives a vague hint of a discrete structure at the Planck scale, about which there were speculations for many decades. In spite of these promising results, loop quantum gravity is still far away from a physical theory. This is also reflected in this volume where the technical treatment prevails and where physical applications are relegated to about 20 pages. These applications deal with quantum cosmology and black holes. The part on loop quantum cosmology summarizes briefly recent results about a possible singularity avoidance and a new mechanism for inflation. These results are not derived from loop quantum gravity but from imposing the discrete structure of the full theory directly on the quantum cosmological models. The part on black holes discusses the derivation of the Bekenstein-Hawking entropy from counting the number of relevant spin-network states. Since the theory contains a free parameter (the 'Barbero-Immirzi parameter'), the best one can do is to determine this parameter by demanding that the result be the Bekenstein-Hawking entropy. The book does not yet contain the results of recent papers, published in 2004, that correct the earlier entropy calculations presented here. From the new value of the Barbero-Immirzi parameter, the appealing connection with quasi-normal modes, as discussed in the book, may be lost. The book concludes with a brief discussion of the major open issues. Among these are the following: a well-defined and physically sensible semiclassical limit, the precise form of the Hamiltonian, the role of unification (most of the work in loop quantum gravity deals only with pure gravity) and, last but not least, the issue of quantitative and testable predictions. Whether loop quantum gravity will become a physical theory is not clear. Nor is this clear for string theory or any other approach. However, loop quantum gravity provides a fascinating line of research and has much conceptual appeal. The present volume gives both an introduction and a review of this approach, making it suitable for advanced students as well as experts. It is certainly of interest for the readers of Classical and Quantum Gravity.
Implementing quantum Ricci curvature
NASA Astrophysics Data System (ADS)
Klitgaard, N.; Loll, R.
2018-05-01
Quantum Ricci curvature has been introduced recently as a new, geometric observable characterizing the curvature properties of metric spaces, without the need for a smooth structure. Besides coordinate invariance, its key features are scalability, computability, and robustness. We demonstrate that these properties continue to hold in the context of nonperturbative quantum gravity, by evaluating the quantum Ricci curvature numerically in two-dimensional Euclidean quantum gravity, defined in terms of dynamical triangulations. Despite the well-known, highly nonclassical properties of the underlying quantum geometry, its Ricci curvature can be matched well to that of a five-dimensional round sphere.
Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction
NASA Astrophysics Data System (ADS)
Rovelli, Carlo; Speziale, Simone
2003-03-01
A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes argued that this minimal length might conflict with Lorentz invariance, because a boosted observer can see the minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In loop quantum gravity the minimal length (more precisely, minimal area) does not appear as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable. The boosted observer can see the same observable spectrum, with the same minimal area. What changes continuously in the boost transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area measurement in quantum gravity. We compute the transformation of the area operator under a local boost, propose an explicit expression for the generator of local boosts, and give the conditions under which its action is unitary.
Hawking temperature of rotating charged black strings from tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Jamil; Saifullah, K., E-mail: jamil_051@yahoo.com, E-mail: saifullah@qau.edu.pk
2011-11-01
Thermal radiations from spherically symmetric black holes have been studied from the point of view of quantum tunneling. In this paper we extend this approach to study radiation of fermions from charged and rotating black strings. Using WKB approximation and Hamilton-Jacobi method we work out the tunneling probabilities of incoming and outgoing fermions and find the correct Hawking temperature for these objects. We show that in appropriate limits the results reduce to those for the uncharged and non-rotating black strings.
Many-body physics using cold atoms
NASA Astrophysics Data System (ADS)
Sundar, Bhuvanesh
Advances in experiments on dilute ultracold atomic gases have given us access to highly tunable quantum systems. In particular, there have been substantial improvements in achieving different kinds of interaction between atoms. As a result, utracold atomic gases oer an ideal platform to simulate many-body phenomena in condensed matter physics, and engineer other novel phenomena that are a result of the exotic interactions produced between atoms. In this dissertation, I present a series of studies that explore the physics of dilute ultracold atomic gases in different settings. In each setting, I explore a different form of the inter-particle interaction. Motivated by experiments which induce artificial spin-orbit coupling for cold fermions, I explore this system in my first project. In this project, I propose a method to perform universal quantum computation using the excitations of interacting spin-orbit coupled fermions, in which effective p-wave interactions lead to the formation of a topological superfluid. Motivated by experiments which explore the physics of exotic interactions between atoms trapped inside optical cavities, I explore this system in a second project. I calculate the phase diagram of lattice bosons trapped in an optical cavity, where the cavity modes mediates effective global range checkerboard interactions between the atoms. I compare this phase diagram with one that was recently measured experimentally. In two other projects, I explore quantum simulation of condensed matter phenomena due to spin-dependent interactions between particles. I propose a method to produce tunable spin-dependent interactions between atoms, using an optical Feshbach resonance. In one project, I use these spin-dependent interactions in an ultracold Bose-Fermi system, and propose a method to produce the Kondo model. I propose an experiment to directly observe the Kondo effect in this system. In another project, I propose using lattice bosons with a large hyperfine spin, which have Feshbach-induced spin-dependent interactions, to produce a quantum dimer model. I propose an experiment to detect the ground state in this system. In a final project, I develop tools to simulate the dynamics of fermionic superfluids in which fermions interact via a short-range interaction.
Fermionic vacuum polarization by an Abelian magnetic tube in the cosmic string spacetime
NASA Astrophysics Data System (ADS)
Maior de Sousa, M. S.; Ribeiro, R. F.; Bezerra de Mello, E. R.
2017-02-01
In this paper, we consider a charged massive fermionic quantum field in the idealized cosmic string spacetime and in the presence of a magnetic field confined in a cylindrical tube of finite radius. Three distinct configurations for the magnetic fields are taken into account: (i) a cylindrical shell of radius a , (ii) a magnetic field proportional to 1 /r , and (iii) a constant magnetic field. In these three cases, the axis of the infinitely long tube of radius a coincides with the cosmic string. Our main objectives in this paper are to analyze the fermionic condensate (FC) and the vacuum expectation value (VEV) of the fermionic energy-momentum tensor. In order to do that, we explicitly construct the complete set of normalized wave functions for each configuration of the magnetic field. We show that in the region outside the tube, the FC and the VEV of the energy-momentum tensor are decomposed into two parts: The first ones correspond to the zero-thickness magnetic flux contributions, and the second ones are induced by the nontrivial structure of the magnetic field, named core-induced contributions. The latter present specific forms depending on the magnetic field configuration considered. We also show that the VEV of the energy-momentum tensor is diagonal and obeys the conservation condition, and its trace is expressed in terms of the fermionic condensate. The zero-thickness contributions to the FC and VEV of the energy-momentum tensor depend only on the fractional part of the ration of the magnetic flux inside the tube by the quantum one. As to the core-induced contributions, they depend on the total magnetic flux inside the tube and, consequently, in general, are not a periodic function of the magnetic flux.
Quantum spreading of a self-gravitating wave-packet in singularity free gravity
NASA Astrophysics Data System (ADS)
Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam
2018-01-01
In this paper we will study for the first time how the wave-packet of a self-gravitating meso-scopic system spreads in theories beyond Einstein's general relativity. In particular, we will consider a ghost-free infinite derivative gravity, which resolves the 1 / r singularity in the potential - such that the gradient of the potential vanishes within the scale of non-locality. We will show that a quantum wave-packet spreads faster for a ghost-free and singularity-free gravity as compared to the Newtonian case, therefore providing us a unique scenario for testing classical and quantum properties of short-distance gravity in a laboratory in the near future.
Extension of loop quantum gravity to f(R) theories.
Zhang, Xiangdong; Ma, Yongge
2011-04-29
The four-dimensional metric f(R) theories of gravity are cast into connection-dynamical formalism with real su(2) connections as configuration variables. Through this formalism, the classical metric f(R) theories are quantized by extending the loop quantization scheme of general relativity. Our results imply that the nonperturbative quantization procedure of loop quantum gravity is valid not only for general relativity but also for a rather general class of four-dimensional metric theories of gravity.
SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene
NASA Astrophysics Data System (ADS)
Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike
2017-03-01
A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.
Hydrodynamic & Transport Properties of Dirac Materials in the Quantum Limit
NASA Astrophysics Data System (ADS)
Gochan, Matthew; Bedell, Kevin
Dirac materials are a versatile class of materials in which an abundance of unique physical phenomena can be observed. Such materials are found in all dimensions, with the shared property that their low-energy fermionic excitations behave as massless Dirac fermions and are therefore governed by the Dirac equation. The most popular Dirac material, its two dimensional version in graphene, is the focus of this work. We seek a deeper understanding of the interactions in the quantum limit within graphene. Specifically, we derive hydrodynamic and transport properties, such as the conductivity, viscosity, and spin diffusion, in the low temperature regime where electron-electron scattering is dominant. To conclude, we look at the so-called universal lower bound conjectured by the anti-de Sitter/conformal field theory (AdS/CFT) correspondence for the ratio of shear viscosity to entropy density ratio. The lower bound, given by η / s >= ℏ / (4 πkB) , is supposedly obeyed by all quantum fluids. This leads us to ask whether or not graphene can be considered a quantum fluid and perhaps a ''nearly perfect fluid''(NPF) if this is the case, is it possible to find a violation of this bound at low temperatures.
Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry
NASA Technical Reports Server (NTRS)
Hsu, J. P.
1981-01-01
A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.
Behavior of light polarization in photon-scalar interaction
NASA Astrophysics Data System (ADS)
Azizi, Azizollah; Nasirimoghadam, Soudabe
2017-11-01
Quantum theories of gravity help us to improve our insight into the gravitational interactions. Motivated by the interesting effect of gravity on the photon trajectory, we treat a quantum recipe concluding a classical interaction of light and a massive object such as the sun. We use the linear quantum gravity to compute the classical potential of a photon interacting with a massive scalar. The leading terms have a traditional 1/r subordinate and demonstrate a polarization-dependent behavior. This result challenges the equivalence principle; attractive and/or repulsive interactions are admissible.
Benefits of Objective Collapse Models for Cosmology and Quantum Gravity
NASA Astrophysics Data System (ADS)
Okon, Elias; Sudarsky, Daniel
2014-02-01
We display a number of advantages of objective collapse theories for the resolution of long-standing problems in cosmology and quantum gravity. In particular, we examine applications of objective reduction models to three important issues: the origin of the seeds of cosmic structure, the problem of time in quantum gravity and the information loss paradox; we show how reduction models contain the necessary tools to provide solutions for these issues. We wrap up with an adventurous proposal, which relates the spontaneous collapse events of objective collapse models to microscopic virtual black holes.
A note on the Poisson bracket of 2d smeared fluxes in loop quantum gravity
NASA Astrophysics Data System (ADS)
Cattaneo, Alberto S.; Perez, Alejandro
2017-05-01
We show that the non-Abelian nature of geometric fluxes—the corner-stone in the definition of quantum geometry in the framework of loop quantum gravity (LQG)—follows directly form the continuum canonical commutations relations of gravity in connection variables and the validity of the Gauss law. The present treatment simplifies previous formulations and thus identifies more clearly the root of the discreteness of geometric operators in LQG. Our statement generalizes to arbitrary gauge theories and relies only on the validity of the Gauss law.
Black Hole Interior in Quantum Gravity.
Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J
2015-05-22
We discuss the interior of a black hole in quantum gravity, in which black holes form and evaporate unitarily. The interior spacetime appears in the sense of complementarity because of special features revealed by the microscopic degrees of freedom when viewed from a semiclassical standpoint. The relation between quantum mechanics and the equivalence principle is subtle, but they are still consistent.
Fidelity for kicked atoms with gravity near a quantum resonance.
Dubertrand, Rémy; Guarneri, Italo; Wimberger, Sandro
2012-03-01
Kicked atoms under a constant Stark or gravity field are investigated for experimental setups with cold and ultracold atoms. The parametric stability of the quantum dynamics is studied using the fidelity. In the case of a quantum resonance, it is shown that the behavior of the fidelity depends on arithmetic properties of the gravity parameter. Close to a quantum resonance, the long-time asymptotics of the fidelity is studied by means of a pseudoclassical approximation introduced by Fishman et al. [J. Stat. Phys. 110, 911 (2003)]. The long-time decay of fidelity arises from the tunneling out of pseudoclassical stable islands, and a simple ansatz is proposed which satisfactorily reproduces the main features observed in numerical simulations.
From Majorana fermions to topological order.
Terhal, Barbara M; Hassler, Fabian; DiVincenzo, David P
2012-06-29
We consider a system consisting of a 2D network of links between Majorana fermions on superconducting islands. We show that the fermionic Hamiltonian modeling this system is topologically ordered in a region of parameter space: we show that Kitaev's toric code emerges in fourth-order perturbation theory. By using a Jordan-Wigner transformation we can map the model onto a family of signed 2D Ising models in a transverse field where the signs, ferromagnetic or antiferromagnetic, are determined by additional gauge bits. Our mapping allows an understanding of the nonperturbative regime and the phase transition to a nontopological phase. We discuss the physics behind a possible implementation of this model and argue how it can be used for topological quantum computation by adiabatic changes in the Hamiltonian.
Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stottmeister, Alexander, E-mail: alexander.stottmeister@gravity.fau.de; Thiemann, Thomas, E-mail: thomas.thiemann@gravity.fau.de
2016-06-15
This article, as the first of three, aims at establishing the (time-dependent) Born-Oppenheimer approximation, in the sense of space adiabatic perturbation theory, for quantum systems constructed by techniques of the loop quantum gravity framework, especially the canonical formulation of the latter. The analysis presented here fits into a rather general framework and offers a solution to the problem of applying the usual Born-Oppenheimer ansatz for molecular (or structurally analogous) systems to more general quantum systems (e.g., spin-orbit models) by means of space adiabatic perturbation theory. The proposed solution is applied to a simple, finite dimensional model of interacting spin systems,more » which serves as a non-trivial, minimal model of the aforesaid problem. Furthermore, it is explained how the content of this article and its companion affect the possible extraction of quantum field theory on curved spacetime from loop quantum gravity (including matter fields).« less
Towards a space-borne quantum gravity gradiometer: progress in laboratory demonstration
NASA Technical Reports Server (NTRS)
Yu, Nan; Kohel, James M.; Kellogg, James R.; Maleki, Lute
2005-01-01
This paper describes the working principles and technical benefits of atom-wave interferometer-based inertial sensors, and gives a progress report on the development of a quantum gravity gradiometer for space applications at JPL.
NASA Astrophysics Data System (ADS)
Bodendorfer, N.; Schäfer, A.; Schliemann, J.
2018-04-01
Chamseddine and Mukhanov recently proposed a modified version of general relativity that implements the idea of a limiting curvature. In the spatially flat, homogeneous, and isotropic sector, their theory turns out to agree with the effective dynamics of the simplest version of loop quantum gravity if one identifies their limiting curvature with a multiple of the Planck curvature. At the same time, it extends to full general relativity without any symmetry assumptions and thus provides an ideal toy model for full loop quantum gravity in the form of a generally covariant effective action known to all orders. In this paper, we study the canonical structure of this theory and point out some interesting lessons for loop quantum gravity. We also highlight in detail how the two theories are connected in the spatially flat, homogeneous, and isotropic sector.
NASA Astrophysics Data System (ADS)
Andrews, Bartholomew; Möller, Gunnar
2018-01-01
We study the stability of composite fermion fractional quantum Hall states in Harper-Hofstadter bands with Chern number |C |>1 . From composite fermion theory, states are predicted to be found at filling factors ν =r /(k r |C |+1 ),r ∈Z , with k =1 for bosons and k =2 for fermions. Here, we closely analyze these series in both cases, with contact interactions for bosons and nearest-neighbor interactions for (spinless) fermions. In particular, we analyze how the many-body gap scales as the bands are tuned to the effective continuum limit of Chern number |C | bands, realized near flux density nϕ=1 /|C | . Near these points, the Hofstadter model requires large magnetic unit cells that yield bands with perfectly flat dispersion and Berry curvature. We exploit the known scaling of energies in the effective continuum limit in order to maintain a fixed square aspect ratio in finite-size calculations. Based on exact diagonalization calculations of the band-projected Hamiltonian for these lattice geometries, we show that for both bosons and fermions, the vast majority of finite-size spectra yield the ground-state degeneracy predicted by composite fermion theory. For the chosen interactions, we confirm that states with filling factor ν =1 /(k |C |+1 ) are the most robust and yield a clear gap in the thermodynamic limit. For bosons with contact interactions in |C |=2 and |C |=3 bands, our data for the composite fermion states are compatible with a finite gap in the thermodynamic limit. We also report new evidence for gapped incompressible states stabilized for fermions with nearest-neighbor interactions in |C |>1 bands. For cases with a clear gap, we confirm that the thermodynamic limit commutes with the effective continuum limit within finite-size error bounds. We analyze the nature of the correlation functions for the Abelian composite fermion states and find that the correlation functions for |C |>1 states are smooth functions for positions separated by |C | sites along both axes, giving rise to |C| 2 sheets; some of which can be related by inversion symmetry. We also comment on two cases which are associated with a bosonic integer quantum Hall effect (BIQHE): For ν =2 in |C |=1 bands, we find a strong competing state with a higher ground-state degeneracy, so no clear BIQHE is found in the band-projected Hofstadter model; for ν =1 in |C |=2 bands, we present additional data confirming the existence of a BIQHE state.
NASA Astrophysics Data System (ADS)
Strasberg, Philipp; Schaller, Gernot; Schmidt, Thomas L.; Esposito, Massimiliano
2018-05-01
We establish a theoretical method which goes beyond the weak-coupling and Markovian approximations while remaining intuitive, using a quantum master equation in a larger Hilbert space. The method is applicable to all impurity Hamiltonians tunnel coupled to one (or multiple) baths of free fermions. The accuracy of the method is in principle not limited by the system-bath coupling strength, but rather by the shape of the spectral density and it is especially suited to study situations far away from the wide-band limit. In analogy to the bosonic case, we call it the fermionic reaction coordinate mapping. As an application, we consider a thermoelectric device made of two Coulomb-coupled quantum dots. We pay particular attention to the regime where this device operates as an autonomous Maxwell demon shoveling electrons against the voltage bias thanks to information. Contrary to previous studies, we do not rely on a Markovian weak-coupling description. Our numerical findings reveal that in the regime of strong coupling and non-Markovianity, the Maxwell demon is often doomed to disappear except in a narrow parameter regime of small power output.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matuttis, Hans-Georg; Wang, Xiaoxing
Decomposition methods of the Suzuki-Trotter type of various orders have been derived in different fields. Applying them both to classical ordinary differential equations (ODEs) and quantum systems allows to judge their effectiveness and gives new insights for many body quantum mechanics where reference data are scarce. Further, based on data for 6 × 6 system we conclude that sampling with sign (minus-sign problem) is probably detrimental to the accuracy of fermionic simulations with determinant algorithms.
Quantum Algorithms for Computational Physics: Volume 3 of Lattice Gas Dynamics
2007-01-03
time- dependent state |q(t)〉 of a two- energy level quantum mechanical system, which is a fermionic qubit and is governed by the Schroedinger wave...on-site ket of size 2B |Ψ〉 total system ket of size 2Q 2.2 The quantum state in the number representation From the previous section, a time- dependent ...duration depend on the particular experimental realization, so that the natural coupling along with the program of externally applied pulses together
Abrahams, Elihu; Wölfle, Peter
2012-01-01
We use the recently developed critical quasiparticle theory to derive the scaling behavior associated with a quantum critical point in a correlated metal. This is applied to the magnetic-field induced quantum critical point observed in YbRh2Si2, for which we also derive the critical behavior of the specific heat, resistivity, thermopower, magnetization and susceptibility, the Grüneisen coefficient, and the thermal expansion coefficient. The theory accounts very well for the available experimental results. PMID:22331893
The Grammatical Universe and the Laws of Thermodynamics and Quantum Entanglement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcer, Peter J.; Rowlands, Peter
2010-11-24
The universal nilpotent computational rewrite system (UNCRS) is shown to formalize an irreversible process of evolution in conformity with the First, Second and Third Laws of Thermodynamics, in terms of a single algebraic creation operator (ikE+ip+jm) which delivers the whole quantum mechanical language apparatus, where k, i, j are quaternions units and E, p, m are energy, momentum and rest mass. This nilpotent evolution describes 'a dynamic zero totality universe' in terms of its fermion states (each of which, by Pauli exclusion, is unique and nonzero), where, together with their boson interactions, these define physics at the fundamental level. (Themore » UNCRS implies that the inseparability of objects and fields in the quantum universe is based on the fact that the only valid mathematical representations are all automorphisms of the universe itself, and that this is the mathematical meaning of quantum entanglement. It thus appears that the nilpotent fermion states are in fact what is called the splitting field in Quantum Mechanics of the Galois group which leads to the roots of the corresponding algebraic equation, and concerns in this case the alternating group of even permutations which are themselves automorphisms). In the nilpotent evolutionary process: (i) the Quantum Carnot Engine (QCE) extended model of thermodynamic irreversibility, consisting of a single heat bath of an ensemble of Standard Model elementary particles, retains a small amount of quantum coherence / entanglement, so as to constitute new emergent fermion states of matter, and (ii) the metric (E{sup 2}-p{sup 2}m{sup 2}) = 0 ensures the First Law of the conservation of energy operates at each nilpotent stage, so that (iii) prior to each creation (and implied corresponding annihilation / conserve operation), E and m can be postulated to constitute dark energy and matter respectively. It says that the natural language form of the rewrite grammar of the evolution consists of the well known precepts of the Laws of Thermodynamics, formalized by the UNCRS regress, so as to become (as UNCRS rewrites already published at CASYS), firstly the Quantum Laws of Physics in the form of the generalized Dirac equation and later at higher stages of QCE ensemble complexity, the Laws of Life in the form of Nature's (DNA / RNA genetic) Code and then subsequently those of Intelligence and Consciousness (Nature's Rules).« less
Magnetic Dirac Fermions and Chern Insulator Supported on Pristine Silicon Surface
NASA Astrophysics Data System (ADS)
Fu, Huixia; Liu, Zheng; Sun, Jia-Tao; Meng, Sheng
Emergence of ferromagnetism in non-magnetic semiconductors is strongly desirable, especially in topological materials thanks to the possibility to achieve quantum anomalous Hall effect. Based on first principles calculations, we propose that for Si thin film grown on metal substrate, the pristine Si(111)-r3xr3 surface with a spontaneous weak reconstruction has a strong tendency of ferromagnetism and nontrivial topological properties, characterized by spin polarized Dirac-fermion surface states. In contrast to conventional routes relying on introduction of alien charge carriers or specially patterned substrates, the spontaneous magnetic order and spin-orbit coupling on the pristine silicon surface together gives rise to quantized anomalous Hall effect with a finite Chern number C = -1. This work suggests exciting opportunities in silicon-based spintronics and quantum computing free from alien dopants or proximity effects.
Bosse, J; Pathak, K N; Singh, G S
2011-10-01
The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T
NASA Astrophysics Data System (ADS)
Derakhshani, Maaneli
In this thesis, we consider the implications of solving the quantum measurement problem for the Newtonian description of semiclassical gravity. First we review the formalism of the Newtonian description of semiclassical gravity based on standard quantum mechanics---the Schroedinger-Newton theory---and two well-established predictions that come out of it, namely, gravitational 'cat states' and gravitationally-induced wavepacket collapse. Then we review three quantum theories with 'primitive ontologies' that are well-known known to solve the measurement problem---Schroedinger's many worlds theory, the GRW collapse theory with matter density ontology, and Nelson's stochastic mechanics. We extend the formalisms of these three quantum theories to Newtonian models of semiclassical gravity and evaluate their implications for gravitational cat states and gravitational wavepacket collapse. We find that (1) Newtonian semiclassical gravity based on Schroedinger's many worlds theory is mathematically equivalent to the Schroedinger-Newton theory and makes the same predictions; (2) Newtonian semiclassical gravity based on the GRW theory differs from Schroedinger-Newton only in the use of a stochastic collapse law, but this law allows it to suppress gravitational cat states so as not to be in contradiction with experiment, while allowing for gravitational wavepacket collapse to happen as well; (3) Newtonian semiclassical gravity based on Nelson's stochastic mechanics differs significantly from Schroedinger-Newton, and does not predict gravitational cat states nor gravitational wavepacket collapse. Considering that gravitational cat states are experimentally ruled out, but gravitational wavepacket collapse is testable in the near future, this implies that only the latter two are viable theories of Newtonian semiclassical gravity and that they can be experimentally tested against each other in future molecular interferometry experiments that are anticipated to be capable of testing the gravitational wavepacket collapse prediction.
Out-of-time-ordered correlators in a quantum Ising chain
NASA Astrophysics Data System (ADS)
Lin, Cheng-Ju; Motrunich, Olexei I.
2018-04-01
Out-of-time-ordered correlators (OTOC) have been proposed to characterize quantum chaos in generic systems. However, they can also show interesting behavior in integrable models, resembling the OTOC in chaotic systems in some aspects. Here we study the OTOC for different operators in the exactly-solvable one-dimensional quantum Ising spin chain. The OTOC for spin operators that are local in terms of the Jordan-Wigner fermions has a "shell-like" structure: After the wavefront passes, the OTOC approaches its original value in the long-time limit, showing no signature of scrambling; the approach is described by a t-1 power law at long time t . On the other hand, the OTOC for spin operators that are nonlocal in the Jordan-Wigner fermions has a "ball-like" structure, with its value reaching zero in the long-time limit, looking like a signature of scrambling; the approach to zero, however, is described by a slow power law t-1 /4 for the Ising model at the critical coupling. These long-time power-law behaviors in the lattice model are not captured by conformal field theory calculations. The mixed OTOC with both local and nonlocal operators in the Jordan-Wigner fermions also has a "ball-like" structure, but the limiting values and the decay behavior appear to be nonuniversal. In all cases, we are not able to define a parametrically large window around the wavefront to extract the Lyapunov exponent.
Notes on "Quantum Gravity" and Noncommutative Geometry
NASA Astrophysics Data System (ADS)
Gracia-Bondía, J. M.
I hesitated for a long time before giving shape to these notes, originally intended for preliminary reading by the attendees to the Summer School "New paths towards quantum gravity" (Holbaek Bay, Denmark, May 2008). At the end, I decide against just selling my mathematical wares, and for a survey, necessarily very selective, but taking a global phenomenological approach to its subject matter. After all, noncommutative geometry does not purport yet to solve the riddle of quantum gravity; it is more of an insurance policy against the probable failure of the other approaches. The plan is as follows: the introduction invites students to the fruitful doubts and conundrums besetting the application of even classical gravity. Next, the first experiments detecting quantum gravitational states inoculate us a healthy dose of scepticism on some of the current ideologies. In Sect. 1.3 we look at the action for general relativity as a consequence of gauge theory for quantum tensor fields. Section 1.4 briefly deals with the unimodular variants. Section 1.5 arrives at noncommutative geometry. I am convinced that, if this is to play a role in quantum gravity, commutative and noncommutative manifolds must be treated on the same footing, which justifies the place granted to the reconstruction theorem. Together with Sect. 1.3, this part constitutes the main body of the notes. Only very summarily at the end of this section do we point to some approaches to gravity within the noncommutative realm. The last section delivers a last dose of scepticism. My efforts will have been rewarded if someone from the young generation learns to mistrust current mindsets.
The Spin-Foam Approach to Quantum Gravity.
Perez, Alejandro
2013-01-01
This article reviews the present status of the spin-foam approach to the quantization of gravity. Special attention is payed to the pedagogical presentation of the recently-introduced new models for four-dimensional quantum gravity. The models are motivated by a suitable implementation of the path integral quantization of the Plebanski formulation of gravity on a simplicial regularization. The article also includes a self-contained treatment of 2+1 gravity. The simple nature of the latter provides the basis and a perspective for the analysis of both conceptual and technical issues that remain open in four dimensions.
NASA Astrophysics Data System (ADS)
Chakraborty, Ahana; Sensarma, Rajdeep
2018-03-01
The Born-Markov approximation is widely used to study the dynamics of open quantum systems coupled to external baths. Using Keldysh formalism, we show that the dynamics of a system of bosons (fermions) linearly coupled to a noninteracting bosonic (fermionic) bath falls outside this paradigm if the bath spectral function has nonanalyticities as a function of frequency. In this case, we show that the dissipative and noise kernels governing the dynamics have distinct power-law tails. The Green's functions show a short-time "quasi"-Markovian exponential decay before crossing over to a power-law tail governed by the nonanalyticity of the spectral function. We study a system of bosons (fermions) hopping on a one-dimensional lattice, where each site is coupled linearly to an independent bath of noninteracting bosons (fermions). We obtain exact expressions for the Green's functions of this system, which show power-law decay ˜|t - t'|-3 /2 . We use these to calculate the density and current profile, as well as unequal-time current-current correlators. While the density and current profiles show interesting quantitative deviations from Markovian results, the current-current correlators show qualitatively distinct long-time power-law tails |t - t'|-3 characteristic of non-Markovian dynamics. We show that the power-law decays survive in the presence of interparticle interaction in the system, but the crossover time scale is shifted to larger values with increasing interaction strength.
Cosmological singularity resolution from quantum gravity: The emergent-bouncing universe
NASA Astrophysics Data System (ADS)
Alesci, Emanuele; Botta, Gioele; Cianfrani, Francesco; Liberati, Stefano
2017-08-01
Alternative scenarios to the big bang singularity have been subject of intense research for several decades by now. Most popular in this sense have been frameworks were such singularity is replaced by a bounce around some minimal cosmological volume or by some early quantum phase. This latter scenario was devised a long time ago and referred as an "emergent universe" (in the sense that our universe emerged from a constant volume quantum phase). We show here that within an improved framework of canonical quantum gravity (the so-called quantum reduced loop gravity) the Friedmann equations for cosmology are modified in such a way to replace the big bang singularity with a short bounce preceded by a metastable quantum phase in which the volume of the universe oscillates between a series of local maxima and minima. We call this hybrid scenario an "emergent-bouncing universe" since after a pure oscillating quantum phase the classical Friedmann spacetime emerges. Perspective developments and possible tests of this scenario are discussed in the end.
Vacuum polarization and Hawking radiation
NASA Astrophysics Data System (ADS)
Rahmati, Shohreh
Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.
NASA Astrophysics Data System (ADS)
Wuthrich, Christian
My dissertation studies the foundations of loop quantum gravity (LQG), a candidate for a quantum theory of gravity based on classical general relativity. At the outset, I discuss two---and I claim separate---questions: first, do we need a quantum theory of gravity at all; and second, if we do, does it follow that gravity should or even must be quantized? My evaluation of different arguments either way suggests that while no argument can be considered conclusive, there are strong indications that gravity should be quantized. LQG attempts a canonical quantization of general relativity and thereby provokes a foundational interest as it must take a stance on many technical issues tightly linked to the interpretation of general relativity. Most importantly, it codifies general relativity's main innovation, the so-called background independence, in a formalism suitable for quantization. This codification pulls asunder what has been joined together in general relativity: space and time. It is thus a central issue whether or not general relativity's four-dimensional structure can be retrieved in the alternative formalism and how it fares through the quantization process. I argue that the rightful four-dimensional spacetime structure can only be partially retrieved at the classical level. What happens at the quantum level is an entirely open issue. Known examples of classically singular behaviour which gets regularized by quantization evoke an admittedly pious hope that the singularities which notoriously plague the classical theory may be washed away by quantization. This work scrutinizes pronouncements claiming that the initial singularity of classical cosmological models vanishes in quantum cosmology based on LQG and concludes that these claims must be severely qualified. In particular, I explicate why casting the quantum cosmological models in terms of a deterministic temporal evolution fails to capture the concepts at work adequately. Finally, a scheme is developed of how the re-emergence of the smooth spacetime from the underlying discrete quantum structure could be understood.
Cavity-Mediated Coherent Coupling between Distant Quantum Dots
NASA Astrophysics Data System (ADS)
Nicolí, Giorgio; Ferguson, Michael Sven; Rössler, Clemens; Wolfertz, Alexander; Blatter, Gianni; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner; Zilberberg, Oded
2018-06-01
Scalable architectures for quantum information technologies require one to selectively couple long-distance qubits while suppressing environmental noise and cross talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot to a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated, long-distance coupling effectively minimizes undesirable direct cross talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.
NASA Astrophysics Data System (ADS)
Thomas, C.; Crauste, O.; Haas, B.; Jouneau, P.-H.; Bäuerle, C.; Lévy, L. P.; Orignac, E.; Carpentier, D.; Ballet, P.; Meunier, T.
2017-12-01
We demonstrate evidences of electronic transport via topological Dirac surface states in a thin film of strained HgTe. At high perpendicular magnetic fields, we show that the electron transport reaches the quantum Hall regime with vanishing resistance. Furthermore, quantum Hall transport spectroscopy reveals energy splittings of relativistic Landau levels specific to coupled Dirac surface states. This study provides insights in the quantum Hall effect of topological insulator (TI) slabs, in the crossover regime between two- and three-dimensional TIs, and in the relevance of thin TI films to explore circuit functionalities in spintronics and quantum nanoelectronics.
Background-independent condensed matter models for quantum gravity
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Markopoulou, Fotini
2011-09-01
A number of recent proposals on a quantum theory of gravity are based on the idea that spacetime geometry and gravity are derivative concepts and only apply at an approximate level. There are two fundamental challenges to any such approach. At the conceptual level, there is a clash between the 'timelessness' of general relativity and emergence. Secondly, the lack of a fundamental spacetime renders difficult the straightforward application of well-known methods of statistical physics to the problem. We recently initiated a study of such problems using spin systems based on the evolution of quantum networks with no a priori geometric notions as models for emergent geometry and gravity. In this paper, we review two such models. The first model is a model of emergent (flat) space and matter, and we show how to use methods from quantum information theory to derive features such as the speed of light from a non-geometric quantum system. The second model exhibits interacting matter and geometry, with the geometry defined by the behavior of matter. This model has primitive notions of gravitational attraction that we illustrate with a toy black hole, and exhibits entanglement between matter and geometry and thermalization of the quantum geometry.
Testing holography using lattice super-Yang-Mills theory on a 2-torus
NASA Astrophysics Data System (ADS)
Catterall, Simon; Jha, Raghav G.; Schaich, David; Wiseman, Toby
2018-04-01
We consider maximally supersymmetric SU (N ) Yang-Mills theory in Euclidean signature compactified on a flat two-dimensional torus with antiperiodic ("thermal") fermion boundary conditions imposed on one cycle. At large N , holography predicts that this theory describes certain black hole solutions in type IIA and IIB supergravity, and we use lattice gauge theory to test this. Unlike the one-dimensional quantum mechanics case where there is only the dimensionless temperature to vary, here we emphasize there are two more parameters which determine the shape of the flat torus. While a rectangular Euclidean torus yields a thermal interpretation, allowing for skewed tori modifies the holographic dual black hole predictions and results in another direction to test holography. Our lattice calculations are based on a supersymmetric formulation naturally adapted to a particular skewing. Using this we perform simulations up to N =16 with several lattice spacings for both skewed and rectangular tori. We observe the two expected black hole phases with their predicted behavior, with a transition between them that is consistent with the gravity prediction based on the Gregory-Laflamme transition.
The equivalence principle in a quantum world
NASA Astrophysics Data System (ADS)
Bjerrum-Bohr, N. E. J.; Donoghue, John F.; El-Menoufi, Basem Kamal; Holstein, Barry R.; Planté, Ludovic; Vanhove, Pierre
2015-09-01
We show how modern methods can be applied to quantum gravity at low energy. We test how quantum corrections challenge the classical framework behind the equivalence principle (EP), for instance through introduction of nonlocality from quantum physics, embodied in the uncertainty principle. When the energy is small, we now have the tools to address this conflict explicitly. Despite the violation of some classical concepts, the EP continues to provide the core of the quantum gravity framework through the symmetry — general coordinate invariance — that is used to organize the effective field theory (EFT).
Studies of quantum dots in the quantum Hall regime
NASA Astrophysics Data System (ADS)
Goldmann, Eyal
We present two studies of quantum dots in the quantum Hall regime. In the first study, presented in Chapter 3, we investigate the edge reconstruction phenomenon believed to occur when the quantum dot filling fraction is n≲1 . Our approach involves the examination of large dots (≤40 electrons) using a partial diagonalization technique in which the occupancies of the deep interior orbitals are frozen. To interpret the results of this calculation, we evaluate the overlap between the diagonalized ground state and a set of trial wavefunctions which we call projected necklace (PN) states. A PN state is simply the angular momentum projection of a maximum density droplet surrounded by a ring of localized electrons. Our calculations reveal that PN states have up to 99% overlap with the diagonalized ground states, and are lower in energy than the states identified in Chamon and Wen's study of the edge reconstruction. In the second study, presented in Chapter 4, we investigate quantum dots in the fractional quantum Hall regime using a Hartree formulation of composite fermion theory. We find that under appropriate conditions, the chemical potential of the dots oscillates periodically with B due to the transfer of composite fermions between quasi-Landau bands. This effect is analogous the addition spectrum oscillations which occur in quantum dots in the integer quantum Hall regime. Period f0 oscillations are found in sharply confined dots with filling factors nu = 2/5 and nu = 2/3. Period 3 f0 oscillations are found in a parabolically confined nu = 2/5 dot. More generally, we argue that the oscillation period of dots with band pinning should vary continuously with B, whereas the period of dots without band pinning is f0 .
NASA Astrophysics Data System (ADS)
Goradia, Shantilal
2012-10-01
When Rutherford discovered the nuclear force in 1919, he felt the force he discovered reflected some deviation of Newtonian gravity. Einstein too in his 1919 paper published the failure of the general relativity and Newtonian gravity to explain nuclear force and, in his concluding remarks, he retracted his earlier introduction of the cosmological constant. Consistent with his genius, we modify Newtonian gravity as probabilistic gravity using natural Planck units for a realistic study of nature. The result is capable of expressing both (1) nuclear force [strong coupling], and (2) Newtonian gravity in one equation, implying in general, in layman's words, that gravity is the cumulative effect of all quantum mechanical forces which are impossible to measure at long distances. Non discovery of graviton and quantum gravity silently support our findings. Continuing to climb on the shoulders of the giants enables us to see horizons otherwise unseen, as reflected in our book: ``Quantum Consciousness - The Road to Reality,'' and physics/0210040, where we derive the fine structure constant as a function of the age of the universe in Planck times consistent with Gamow's hint, using natural logarithm consistent with Feynman's hint.
PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity
NASA Astrophysics Data System (ADS)
Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier
2012-05-01
Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not only was it a showroom for the research currently being carried out by many groups throughout the world, but there was also a permanent look towards the future. During these days, the CSIC Campus witnessed many scientific conversations triggered by the interaction amongst the people and groups that participated in LOOPS'11 Madrid and which, in many cases, will crystallise into new results and advances in the field. The conference would not have been possible without the generous help of a number of national and international institutions. The organizers would like to acknowledge the financial support provided by the Spanish Ministry of Science and Innovation (Ministerio de Ciencia e Innovación), the Spanish Research Council, CSIC (Consejo Superior de Investigaciones Cientĺficas), The BBVA Foundation (Fundación BBVA), The CONSOLIDER-CPAN project, the Spanish Society for Gravitation and Relativity (SEGRE), The Universidad Carlos III of Madrid (UC3M), and the European Science Foundation (ESF). The ESF, through the Quantum Gravity and Quantum Geometry network, provided full support for a number of young participants that have contributed to these proceedings: Dario Benedetti (Albert Einstein Institute, Potsdam, Germany), Norbert Bodendorfer (Institute for Theoretical Physics III, FAU Erlangen Nürnberg, Germany), Mariam Bouhmadi López (CENTRA, Centro Multidisciplinar de Astrofĺsica, Lisbon), Timothy Budd (Institute for Theoretical Physics, Utrecht University, The Netherlands), Miguel Campiglia (Institute for Gravitation and the Cosmos, Penn State University, USA), Gianluca Delfino (School of Mathematical Sciences, University of Nottingham, UK), Maite Dupuis (Institute for Theoretical Physics III, FAU Erlangen Nürnberg, Germany), Michał Dziendzikowski (Institute of Theoretical Physics, Warsaw University, Poland), Muxin Han (Centre de Physique Théorique de Luminy, Marseille, France), Philipp Höhn (Institute for Theoretical Physics, Utrecht University, The Netherlands), Jacek Puchta (Centre de Physique Théorique de Luminy, Marseille, France), James Ryan (Albert Einstein Institute, Potsdam, Germany), Lorenzo Sindoni (Albert Einstein Institute, Golm, Germany), David Sloan (Institute for Theoretical Physics, Utrecht University, The Netherlands), Johannes Tambornino (Laboratoire de Physique, ENS Lyon, France), Andreas Thurn (Institute for Theoretical Physics III, FAU Erlangen Nürnberg, Germany), Francesca Vidotto (Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France), and Matteo Smerlak (Albert Einstein Institute, Golm, Germany). We would like to conclude this preamble by thanking all the attendants of the conference for their high and enthusiastic participation. The presence of a large number of past and present Loop Quantum Gravity practitioners, as well as a significant number of top researchers in other approaches to quantum gravity, provided ample opportunities for fruitful scientific exchanges and a very lively atmosphere. It is encouraging to see that, 25 years after the inception of Loop Quantum Gravity, there is a vibrant young community of researchers entering the field. Let us hope that, with their help, the quantization of general relativity can be successfully accomplished in the near future. The Editors Conference photograph
BOOK REVIEW: Modern Canonical Quantum General Relativity
NASA Astrophysics Data System (ADS)
Kiefer, Claus
2008-06-01
The open problem of constructing a consistent and experimentally tested quantum theory of the gravitational field has its place at the heart of fundamental physics. The main approaches can be roughly divided into two classes: either one seeks a unified quantum framework of all interactions or one starts with a direct quantization of general relativity. In the first class, string theory (M-theory) is the only known example. In the second class, one can make an additional methodological distinction: while covariant approaches such as path-integral quantization use the four-dimensional metric as an essential ingredient of their formalism, canonical approaches start with a foliation of spacetime into spacelike hypersurfaces in order to arrive at a Hamiltonian formulation. The present book is devoted to one of the canonical approaches—loop quantum gravity. It is named modern canonical quantum general relativity by the author because it uses connections and holonomies as central variables, which are analogous to the variables used in Yang Mills theories. In fact, the canonically conjugate variables are a holonomy of a connection and the flux of a non-Abelian electric field. This has to be contrasted with the older geometrodynamical approach in which the metric of three-dimensional space and the second fundamental form are the fundamental entities, an approach which is still actively being pursued. It is the author's ambition to present loop quantum gravity in a way in which every step is formulated in a mathematically rigorous form. In his own words: 'loop quantum gravity is an attempt to construct a mathematically rigorous, background-independent, non-perturbative quantum field theory of Lorentzian general relativity and all known matter in four spacetime dimensions, not more and not less'. The formal Leitmotiv of loop quantum gravity is background independence. Non-gravitational theories are usually quantized on a given non-dynamical background. In contrast, due to the geometrical nature of gravity, no such background exists in quantum gravity. Instead, the notion of a background is supposed to emerge a posteriori as an approximate notion from quantum states of geometry. As a consequence, the standard ultraviolet divergences of quantum field theory do not show up because there is no limit of Δx → 0 to be taken in a given spacetime. On the other hand, it is open whether the theory is free of any type of divergences and anomalies. A central feature of any canonical approach, independent of the choice of variables, is the existence of constraints. In geometrodynamics, these are the Hamiltonian and diffeomorphism constraints. They also hold in loop quantum gravity, but are supplemented there by the Gauss constraint, which emerges due to the use of triads in the formalism. These constraints capture all the physics of the quantum theory because no spacetime is present anymore (analogous to the absence of trajectories in quantum mechanics), so no additional equations of motion are needed. This book presents a careful and comprehensive discussion of these constraints. In particular, the constraint algebra is calculated in a transparent and explicit way. The author makes the important assumption that a Hilbert-space structure is still needed on the fundamental level of quantum gravity. In ordinary quantum theory, such a structure is needed for the probability interpretation, in particular for the conservation of probability with respect to external time. It is thus interesting to see how far this concept can be extrapolated into the timeless realm of quantum gravity. On the kinematical level, that is, before the constraints are imposed, an essentially unique Hilbert space can be constructed in terms of spin-network states. Potentially problematic features are the implementation of the diffeomorphism and Hamiltonian constraints. The Hilbert space Hdiff defined on the diffeomorphism subspace can throw states out of the kinematical Hilbert space and is thus not contained in it. Moreover, the Hamiltonian constraint does not seem to preserve Hdiff, so its implementation remains open. To avoid some of these problems, the author proposes his 'master constraint programme' in which the infinitely many local Hamiltonian constraints are combined into one master constraint. This is a subject of his current research. With regard to this situation, it is not surprising that the main results in loop quantum gravity are found on the kinematical level. An especially important feature are the discrete spectra of geometric operators such as the area operator. This quantifies the earlier heuristic ideas about a discreteness at the Planck scale. The hope is that these results survive the consistent implementation of all constraints. The status of loop quantum gravity is concisely and competently summarized in this volume, whose author is himself one of the pioneers of this approach. What is the relation of this book to the other monograph on loop quantum gravity, written by Carlo Rovelli and published in 2004 under the title Quantum Gravity with the same company? In the words of the present author: 'the two books are complementary in the sense that they can be regarded almost as volume I ('introduction and conceptual framework') and volume II ('mathematical framework and applications') of a general presentation of quantum general relativity in general and loop quantum gravity in particular'. In fact, the present volume gives a complete and self-contained presentation of the required mathematics, especially on the approximately 200 pages of chapters 18 33. As for the physical applications, the main topic is the microscopic derivation of the black-hole entropy. This is presented in a clear and detailed form. Employing the concept of an isolated horizon (a local generalization of an event horizon), the counting of surface states gives an entropy proportional to the horizon area. It also contains the Barbero Immirzi parameter β, which is a free parameter of the theory. Demanding, on the other hand, that the entropy be equal to the Bekenstein Hawking entropy would fix this parameter. Other applications such as loop quantum cosmology are only briefly touched upon. Since loop quantum gravity is a very active field of research, the author warns that the present book can at best be seen as a snapshot. Part of the overall picture may thus in the future be subject to modifications. For example, recent work by the author using a concept of dust time is not yet covered here. Nevertheless, I expect that this volume will continue to serve as a valuable introduction and reference book. It is essential reading for everyone working on loop quantum gravity.
Quantum Algorithms for Fermionic Quantum Field Theories
2014-04-28
preskill@theory.caltech.edu 1 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is...NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98...operators of momentum modes. (The choice between these forms of measurement depends on the application.) 2.3 Complexity In this section we bound the
Quantum Criticality and Superconductivity in β-YbAlB4
NASA Astrophysics Data System (ADS)
Nakatsuji, Satoru
2009-03-01
Heavy fermion systems have provided a number of prototypical compounds to study unconventional superconductivity and non-Fermi-liquid (NFL) states. A long standing issue in the research of heavy fermion superconductivity in 4f intermetallics is the dramatically different behavior between the electron like Ce (4f^1) and hole like Yb (4f^13) compounds. While superconductivity has been found in a number of Ce based heavy fermion compounds, no superconductivity has been reported for the corresponding Yb systems. In this talk, I present our recent finding of the superconductivity in the new heavy fermion system β-YbAlB4 [1-3]. The superconducting transition temperature is 80 mK, and above it, the system exhibits pronounced NFL behavior in the transport and thermodynamic properties [2,3]. Furthermore, the magnetic field dependence of the NFL behavior indicates that the system is a rare example of a pure metal that displays quantum criticality at ambient pressure and under zero magnetic field. Using our latest results, we discuss the detailed properties of superconductivity and quantum criticality. This is the work performed in collaboration with K. Kuga, Y. Matsumoto, T. Tomita, Y. Machida, T. Tayama, T. Sakakibara, Y. Karaki, H. Ishimoto, S. Yonezawa, Y. Maeno, E. Pearson, G. G. Lonzarich, L.Balicas, H. Lee, and Z. Fisk. [4pt] [1] Robin T. Macaluso, Satoru Nakatsuji, Kentaro Kuga, Evan Lyle Thomas, Yo Machida, Yoshiteru Maeno, Zachary Fisk, and Julia Y. Chan, Chem. Mater. 19 1918 (2007). [0pt] [2] S. Nakatsuji, K.Kuga, Y. Machida, T. Tayama, T. Sakakibara, Y. Karaki, H. Ishimoto, S. Yonezawa, Y. Maeno, E. Pearson, G. G. Lonzarich, L.Balicas, H. Lee, and Z. Fisk, Nature Phys 4, 603-607 (2008). [0pt] [3] K. Kuga, Y. Karaki, Y. Matsumoto, Y. Machida, and S. Nakatsuji, Phys. Rev. Lett. 101, 137004 (2008).
NASA Astrophysics Data System (ADS)
Wang, Juven; Ohmori, Kantaro; Putrov, Pavel; Zheng, Yunqin; Wan, Zheyan; Guo, Meng; Lin, Hai; Gao, Peng; Yau, Shing-Tung
2018-05-01
Distinct quantum vacua of topologically ordered states can be tunneled into each other via extended operators. The possible applications include condensed matter and quantum cosmology. We present a straightforward approach to calculate the partition function on various manifolds and ground state degeneracy (GSD), mainly based on continuum/cochain topological quantum field theories (TQFTs), in any dimension. This information can be related to the counting of extended operators of bosonic/fermionic TQFTs. On the lattice scale, anyonic particles/strings live at the ends of line/surface operators. Certain systems in different dimensions are related to each other through dimensional reduction schemes, analogous to (de)categorification. Examples include spin TQFTs derived from gauging the interacting fermionic symmetry-protected topological states (with fermion parity {Z}_2^f) of symmetry groups {Z}_4× {Z}_2 and ({Z}_4)^2 in 3+1D, also {Z}_2 and ({Z}_2)^2 in 2+1D. Gauging the last three cases begets non-Abelian spin TQFTs (fermionic topological order). We consider situations where a TQFT lives on (1) a closed spacetime or (2) a spacetime with a boundary, such that the bulk and boundary are fully gapped and short- or long-range entangled (SRE/LRE). Anyonic excitations can be deconfined on the boundary. We introduce new exotic topological interfaces on which neither particle nor string excitations alone condense, but only fuzzy-composite objects of extended operators can end (e.g., a string-like composite object formed by a set of particles can end on a special 2+1D boundary of 3+1D bulk). We explore the relations between group extension constructions and partially breaking constructions (e.g., 0-form/higher-form/"composite" breaking) of topological boundaries, after gauging. We comment on the implications of entanglement entropy for some such LRE systems.
Quantum equivalence of f (R) gravity and scalar-tensor theories in the Jordan and Einstein frames
NASA Astrophysics Data System (ADS)
Ohta, Nobuyoshi
2018-03-01
The f(R) gravity and scalar-tensor theory are known to be equivalent at the classical level. We study if this equivalence is valid at the quantum level. There are two descriptions of the scalar-tensor theory in the Jordan and Einstein frames. It is shown that these three formulations of the theories give the same determinant or effective action on shell, and thus they are equivalent at the quantum one-loop level on shell in arbitrary dimensions. We also compute the one-loop divergence in f(R) gravity on an Einstein space.
Three waves for quantum gravity
NASA Astrophysics Data System (ADS)
Calmet, Xavier; Latosh, Boris
2018-03-01
Using effective field theoretical methods, we show that besides the already observed gravitational waves, quantum gravity predicts two further massive classical fields leading to two new massive waves. We set a limit on the masses of these new modes using data from the Eöt-Wash experiment. We point out that the existence of these new states is a model independent prediction of quantum gravity. We then explain how these new classical fields could impact astrophysical processes and in particular the binary inspirals of neutron stars or black holes. We calculate the emission rate of these new states in binary inspirals astrophysical processes.
Classical analysis of quantum phase transitions in a bilayer model.
Figueiredo, Mariane Camargos; Cotta, Tathiana Moreira; Pellegrino, Giancarlo Queiroz
2010-01-01
In this Brief Report we extend the classical analysis performed on the schematic model proposed in [T. Moreira, G. Q. Pellegrino, J. G. Peixoto de Faria, M. C. Nemes, F. Camargo, and A. F. R. Toledo Piza, Phys. Rev. E 77, 051102 (2008)] concerning quantum phase transitions in a bilayer system. We show that appropriate integrations along the classical periodic orbits reproduce with excellent agreement both the quantum spectrum and the expected mean value for the number of excitons in the system, quantities which are directly related to the observed boson-fermion quantum phase transition.
NASA Astrophysics Data System (ADS)
Laino, Luigi
2018-06-01
In the following paper, the author will try to test the meaning of the transcendental approach in respect of the inner changes implied by the idea of quantum gravity. He will firstly describe the basic methodological Kant's aim, viz. the grounding of a meta-science of physics as the a priori corpus of physical knowledge. After that, he will take into account the problematic physical and philosophical relationship between the theory of relativity and the quantum mechanics; in showing how the elementary ontological and epistemological assumptions of experience result to be changed within them, he will also show the further modifications occurred in the development of the loop quantum gravity. He will particularly focus on the tough problem of the relationship space-matter, in order to settle the decisive question about the possibility of keeping a transcendental approach in the light of quantum gravity. He will positively answer by recalling Cassirer's theory of the invariants of experience, although he will also add some problematic issues arising from the new physical context.
NASA Astrophysics Data System (ADS)
Bonderson, Parsa; Lutchyn, Roman M.
2011-04-01
We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.
How Kondo-holes create intense nanoscale heavy-fermion hybridization disorder
Hamidian, Mohammad H.; Schmidt, Andrew R.; Firmo, Inês A.; Allan, Milan P.; Bradley, Phelim; Garrett, Jim D.; Williams, Travis J.; Luke, Graeme M.; Dubi, Yonatan; Balatsky, Alexander V.; Davis, J. C.
2011-01-01
Replacing a magnetic atom by a spinless atom in a heavy-fermion compound generates a quantum state often referred to as a “Kondo-hole”. No experimental imaging has been achieved of the atomic-scale electronic structure of a Kondo-hole, or of their destructive impact [Lawrence JM, et al. (1996) Phys Rev B 53:12559–12562] [Bauer ED, et al. (2011) Proc Natl Acad Sci. 108:6857–6861] on the hybridization process between conduction and localized electrons which generates the heavy-fermion state. Here we report visualization of the electronic structure at Kondo-holes created by substituting spinless thorium atoms for magnetic uranium atoms in the heavy-fermion system URu2Si2. At each thorium atom, an electronic bound state is observed. Moreover, surrounding each thorium atom we find the unusual modulations of hybridization strength recently predicted to occur at Kondo-holes [Figgins J, Morr DK (2011) Phys Rev Lett 107:066401]. Then, by introducing the “hybridization gapmap” technique to heavy-fermion studies, we discover intense nanoscale heterogeneity of hybridization due to a combination of the randomness of Kondo-hole sites and the long-range nature of the hybridization oscillations. These observations provide direct insight into both the microscopic processes of heavy-fermion forming hybridization and the macroscopic effects of Kondo-hole doping. PMID:22006302
NASA Astrophysics Data System (ADS)
Bai, Ke-Ke; Qiao, Jia-Bin; Jiang, Hua; Liu, Haiwen; He, Lin
2017-05-01
Massless Dirac fermions in graphene provide unprecedented opportunities to realize the Klein paradox, which is one of the most exotic and striking properties of relativistic particles. In the seminal theoretical work [M. I. Katsnelson et al., Nat. Phys. 2, 620 (2006), 10.1038/nphys384], it was predicted that the massless Dirac fermions can pass through one-dimensional (1D) potential barriers unimpededly at normal incidence. Such a result seems to preclude confinement of the massless Dirac fermions in graphene by using 1D potential barriers. Here, we demonstrate both experimentally and theoretically that massless Dirac fermions can be trapped in a quasi-1D n p n junction of a continuous graphene monolayer. Because of highly anisotropic transmission of the massless Dirac fermions at n-p junction boundaries (the so-called Klein tunneling in graphene), charge carriers incident at large oblique angles will be reflected from one edge of the junction with high probability and continue to bounce from the opposite edge. Consequently, these electrons are trapped for a finite time to form quasibound states in the quasi-1D n p n junction. The quasibound states seen as pronounced resonances are probed and the quantum interference patterns arising from these states are directly visualized in our scanning tunneling microscope measurements.
Cyclotron Orbits of Composite Fermions in the Fractional Quantum Hall Regime
NASA Astrophysics Data System (ADS)
Jo, Insun; Deng, Hao; Liu, Yang; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.
2018-01-01
We study a bilayer GaAs hole system that hosts two distinct many-body phases at low temperatures and high perpendicular magnetic fields. The higher-density (top) layer develops a Fermi sea of composite fermions (CFs) in its half-filled lowest Landau level, while the lower-density (bottom) layer forms a Wigner crystal (WC) as its filling becomes very small. Owing to the interlayer interaction, the CFs in the top layer feel the periodic Coulomb potential of the WC in the bottom layer. We measure the magnetoresistance of the top layer while changing the bottom-layer density. As the WC layer density increases, the resistance peaks separating the adjacent fractional quantum Hall states in the top layer change nonmonotonically and attain maximum values when the cyclotron orbit of the CFs encloses one WC lattice point. These features disappear at T =275 mK when the WC melts. The observation of such geometric resonance features is unprecedented and surprising as it implies that the CFs retain a well-defined cyclotron orbit and Fermi wave vector even deep in the fractional quantum Hall regime, far from half-filling.
Bojowald, Martin
2008-01-01
Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.
Schramm-Loewner evolution and Liouville quantum gravity.
Duplantier, Bertrand; Sheffield, Scott
2011-09-23
We show that when two boundary arcs of a Liouville quantum gravity random surface are conformally welded to each other (in a boundary length-preserving way) the resulting interface is a random curve called the Schramm-Loewner evolution. We also develop a theory of quantum fractal measures (consistent with the Knizhnik-Polyakov-Zamolochikov relation) and analyze their evolution under conformal welding maps related to Schramm-Loewner evolution. As an application, we construct quantum length and boundary intersection measures on the Schramm-Loewner evolution curve itself.
Introduction: Principles of quantum gravity
NASA Astrophysics Data System (ADS)
Crowther, Karen; Rickles, Dean
2014-05-01
In this introduction, we describe the rationale behind this special issue on Principles of Quantum Gravity. We explain what we mean by 'principles' and relate this to the various contributions. Finally, we draw out some general themes that can be found running throughout these contributions.
Generalized Stefan-Boltzmann Law
NASA Astrophysics Data System (ADS)
Montambaux, Gilles
2018-03-01
We reconsider the thermodynamic derivation by L. Boltzmann of the Stefan law and we generalize it for various different physical systems whose chemical potential vanishes. Being only based on classical arguments, therefore independent of the quantum statistics, this derivation applies as well to the saturated Bose gas in various geometries as to "compensated" Fermi gas near a neutrality point, such as a gas of Weyl Fermions. It unifies in the same framework the thermodynamics of many different bosonic or fermionic non-interacting gases which were until now described in completely different contexts.
2013-10-24
cooled both fermionic and bosonic isotopes of potassium. In related work, a group at Rice University showed that the analogous transition could be used in...changed from their in situ distributions. The top row shows bosonic 39K, and the bottom row shows fermionic 40K. The most exciting application of this...using a sub-micron period to allow for tunneling transport. Both of these pio- neering experiments used bosonic 87Rb. Our experiment is built to be a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao
The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. Here, we describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.
Three-dimensional dualities with bosons and fermions
NASA Astrophysics Data System (ADS)
Benini, Francesco
2018-02-01
We propose new infinite families of non-supersymmetric IR dualities in three space-time dimensions, between Chern-Simons gauge theories (with classical gauge groups) with both scalars and fermions in the fundamental representation. In all cases we study the phase diagram as we vary two relevant couplings, finding interesting lines of phase transitions. In various cases the dualities lead to predictions about multi-critical fixed points and the emergence of IR quantum symmetries. For unitary groups we also discuss the coupling to background gauge fields and the map of simple monopole operators.
Loop-quantum-gravity vertex amplitude.
Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo
2007-10-19
Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loh, Yen Lee; Randeria, Mohit; Trivedi, Nandini
The direct transition from an insulator to a superconductor (SC) in Fermi systems is a problem of long-standing interest, which necessarily goes beyond the standard BCS paradigm of superconductivity as a Fermi surface instability. We introduce here a simple, translationally invariant lattice fermion model that undergoes a SC-insulator transition (SIT) and elucidate its properties using analytical methods and quantum Monte Carlo simulations. We show that there is a fermionic band insulator to bosonic insulator crossover in the insulating phase and a BCS-to-BEC crossover in the SC. The SIT is always found to be from a bosonic insulator to a BEC-likemore » SC, with an energy gap for fermions that remains finite across the SIT. Hence, the energy scales that go critical at the SIT are the gap to pair excitations in the insulator and the superfluid stiffness in the SC. In addition to giving insight into important questions about the SIT in solid-state systems, our model should be experimentally realizable using ultracold fermions in optical lattices.« less
Superconductor-insulator transition and Fermi-Bose crossovers
Loh, Yen Lee; Randeria, Mohit; Trivedi, Nandini; ...
2016-05-31
The direct transition from an insulator to a superconductor (SC) in Fermi systems is a problem of long-standing interest, which necessarily goes beyond the standard BCS paradigm of superconductivity as a Fermi surface instability. We introduce here a simple, translationally invariant lattice fermion model that undergoes a SC-insulator transition (SIT) and elucidate its properties using analytical methods and quantum Monte Carlo simulations. We show that there is a fermionic band insulator to bosonic insulator crossover in the insulating phase and a BCS-to-BEC crossover in the SC. The SIT is always found to be from a bosonic insulator to a BEC-likemore » SC, with an energy gap for fermions that remains finite across the SIT. Hence, the energy scales that go critical at the SIT are the gap to pair excitations in the insulator and the superfluid stiffness in the SC. In addition to giving insight into important questions about the SIT in solid-state systems, our model should be experimentally realizable using ultracold fermions in optical lattices.« less
Strongly Correlated Metal Built from Sachdev-Ye-Kitaev Models
NASA Astrophysics Data System (ADS)
Song, Xue-Yang; Jian, Chao-Ming; Balents, Leon
2017-11-01
Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond the quasiparticle description. The Sachdev-Ye-Kitaev (SYK) model describes a (0 +1 )D quantum cluster with random all-to-all four-fermion interactions among N fermion modes which becomes exactly solvable as N →∞ , exhibiting a zero-dimensional non-Fermi-liquid with emergent conformal symmetry and complete absence of quasiparticles. Here we study a lattice of complex-fermion SYK dots with random intersite quadratic hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in temperature resistivity in the incoherent regime, and a Lorentz ratio L ≡(κ ρ /T ) varies between two universal values as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated metal.
R. Y. Chen; Gu, G. D.; Chen, Z. G.; ...
2015-10-22
We present a magnetoinfrared spectroscopy study on a newly identified three-dimensional (3D) Dirac semimetal ZrTe 5. We observe clear transitions between Landau levels and their further splitting under a magnetic field. Both the sequence of transitions and their field dependence follow quantitatively the relation expected for 3D massless Dirac fermions. The measurement also reveals an exceptionally low magnetic field needed to drive the compound into its quantum limit, demonstrating that ZrTe 5 is an extremely clean system and ideal platform for studying 3D Dirac fermions. The splitting of the Landau levels provides direct, bulk spectroscopic evidence that a relatively weakmore » magnetic field can produce a sizable Zeeman effect on the 3D Dirac fermions, which lifts the spin degeneracy of Landau levels. As a result, our analysis indicates that the compound evolves from a Dirac semimetal into a topological line-node semimetal under the current magnetic field configuration.« less
The half-filled Landau level: The case for Dirac composite fermions
NASA Astrophysics Data System (ADS)
Geraedts, Scott D.; Zaletel, Michael P.; Mong, Roger S. K.; Metlitski, Max A.; Vishwanath, Ashvin; Motrunich, Olexei I.
2016-04-01
In a two-dimensional electron gas under a strong magnetic field, correlations generate emergent excitations distinct from electrons. It has been predicted that “composite fermions”—bound states of an electron with two magnetic flux quanta—can experience zero net magnetic field and form a Fermi sea. Using infinite-cylinder density matrix renormalization group numerical simulations, we verify the existence of this exotic Fermi sea, but find that the phase exhibits particle-hole symmetry. This is self-consistent only if composite fermions are massless Dirac particles, similar to the surface of a topological insulator. Exploiting this analogy, we observe the suppression of 2kF backscattering, a characteristic of Dirac particles. Thus, the phenomenology of Dirac fermions is also relevant to two-dimensional electron gases in the quantum Hall regime.
Quantum light in coupled interferometers for quantum gravity tests.
Ruo Berchera, I; Degiovanni, I P; Olivares, S; Genovese, M
2013-05-24
In recent years quantum correlations have received a lot of attention as a key ingredient in advanced quantum metrology protocols. In this Letter we show that they provide even larger advantages when considering multiple-interferometer setups. In particular, we demonstrate that the use of quantum correlated light beams in coupled interferometers leads to substantial advantages with respect to classical light, up to a noise-free scenario for the ideal lossless case. On the one hand, our results prompt the possibility of testing quantum gravity in experimental configurations affordable in current quantum optics laboratories and strongly improve the precision in "larger size experiments" such as the Fermilab holometer; on the other hand, they pave the way for future applications to high precision measurements and quantum metrology.
Fermionic influence on inflationary fluctuations
NASA Astrophysics Data System (ADS)
Boyanovsky, Daniel
2016-04-01
Motivated by apparent persistent large scale anomalies in the cosmic microwave background we study the influence of fermionic degrees of freedom on the dynamics of inflaton fluctuations as a possible source of violations of (nearly) scale invariance on cosmological scales. We obtain the nonequilibrium effective action of an inflaton-like scalar field with Yukawa interactions (YD ,M) to light fermionic degrees of freedom both for Dirac and Majorana fields in de Sitter space-time. The effective action leads to Langevin equations of motion for the fluctuations of the inflaton-like field, with self-energy corrections and a stochastic Gaussian noise. We solve the Langevin equation in the super-Hubble limit implementing a dynamical renormalization group resummation. For a nearly massless inflaton its power spectrum of super-Hubble fluctuations is enhanced, P (k ;η )=(H/2 π )2eγt[-k η ] with γt[-k η ]=1/6 π2 [∑i =1 NDYi,D 2+2 ∑j =1 NMYj,M 2]{ln2[-k η ]-2 ln [-k η ]ln [-k η0]} for ND Dirac and NM Majorana fermions, and η0 is the renormalization scale at which the inflaton mass vanishes. The full power spectrum is shown to be renormalization group invariant. These corrections to the super-Hubble power spectrum entail a violation of scale invariance as a consequence of the coupling to the fermionic fields. The effective action is argued to be exact in the limit of a large number of fermionic fields. A cancellation between the enhancement from fermionic degrees of freedom and suppression from light scalar degrees of freedom conformally coupled to gravity suggests the possibility of a finely tuned supersymmetry among these fields.
A universal test for gravitational decoherence
Pfister, C.; Kaniewski, J.; Tomamichel, M.; Mantri, A.; Schmucker, R.; McMahon, N.; Milburn, G.; Wehner, S.
2016-01-01
Quantum mechanics and the theory of gravity are presently not compatible. A particular question is whether gravity causes decoherence. Several models for gravitational decoherence have been proposed, not all of which can be described quantum mechanically. Since quantum mechanics may need to be modified, one may question the use of quantum mechanics as a calculational tool to draw conclusions from the data of experiments concerning gravity. Here we propose a general method to estimate gravitational decoherence in an experiment that allows us to draw conclusions in any physical theory where the no-signalling principle holds, even if quantum mechanics needs to be modified. As an example, we propose a concrete experiment using optomechanics. Our work raises the interesting question whether other properties of nature could similarly be established from experimental observations alone—that is, without already having a rather well-formed theory of nature to make sense of experimental data. PMID:27694976
Machine learning spatial geometry from entanglement features
NASA Astrophysics Data System (ADS)
You, Yi-Zhuang; Yang, Zhao; Qi, Xiao-Liang
2018-02-01
Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on a 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system towards the gapless critical point (CFT2 point).
Topological model of composite fermions in the cyclotron band generator picture: New insights
NASA Astrophysics Data System (ADS)
Staśkiewicz, Beata
2018-03-01
A combinatorial group theory in the braid groups is correlated with the unusual "anyon" statistic of particles in 2D Hall system in the fractional quantum regime well. On this background has been derived cyclotron band generator as a modification and generalization band generator, first established to solve the word and conjugacy problems in the braid group terms. Topological commensurability condition has been embraced by canonical factors - like, based on the concept of parallel descending cycles. Owing to this we can mathematically capture the general hierarchy of correlated states in the lowest Landau level, describing the fractional quantum Hall effect hierarchy, in terms of cyclotron band generators, especially for those being beyond conventional composite fermions model. It has been also shown that cyclotron braid subgroups, developed for interpretation of Laughlin correlations, are a special case of the right-angled Artin groups.