NASA Astrophysics Data System (ADS)
Wang, Mengjie; Herdeiro, Carlos; Jing, Jiliang
2017-11-01
We study Dirac quasinormal modes of Schwarzschild-anti-de Sitter (Schwarzschild-AdS) black holes, following the generic principle for allowed boundary conditions proposed in [M. Wang, C. Herdeiro, and M. O. P. Sampaio, Phys. Rev. D 92, 124006 (2015)., 10.1103/PhysRevD.92.124006]. After deriving the equations of motion for Dirac fields on the aforementioned background, we impose vanishing energy flux boundary conditions to solve these equations. We find a set of two Robin boundary conditions are allowed. These two boundary conditions are used to calculate Dirac normal modes on empty AdS and quasinormal modes on Schwarzschild-AdS black holes. In the former case, we recover the known normal modes of empty AdS; in the latter case, the two sets of Robin boundary conditions lead to two different branches of quasinormal modes. The impact on these modes of the black hole size, the angular momentum quantum number and the overtone number are discussed. Our results show that vanishing energy flux boundary conditions are a robust principle, applicable not only to bosonic fields but also to fermionic fields.
Quantum quenches in a holographic Kondo model
NASA Astrophysics Data System (ADS)
Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.
2017-04-01
We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.
Fluctuations and instabilities of a holographic metal
NASA Astrophysics Data System (ADS)
Jokela, Niko; Järvinen, Matti; Lippert, Matthew
2013-02-01
We analyze the quasinormal modes of the D2-D8' model of 2+1-dimensional, strongly-coupled, charged fermions in a background magnetic field and at non-zero density. The model is known to include a quantum Hall phase with integer filling fraction. As expected, we find a hydrodynamical diffusion mode at small momentum and the nonzero-temperature holographic zero sound, which becomes massive above a critical magnetic field. We confirm the previously-known thermodynamic instability. In addition, we discover an instability at low temperature, large mass, and in a charge density and magnetic field range near the quantum Hall phase to an inhomogeneous striped phase.
Resonant kink-antikink scattering through quasinormal modes
NASA Astrophysics Data System (ADS)
Dorey, Patrick; Romańczukiewicz, Tomasz
2018-04-01
We investigate the role that quasinormal modes can play in kink-antikink collisions, via an example based on a deformation of the ϕ4 model. We find that narrow quasinormal modes can store energy during collision processes and later return it to the translational degrees of freedom. Quasinormal modes also decay, which leads to energy leakage, causing a closing of resonance windows and an increase of the critical velocity. We observe similar phenomena in an effective model, a small modification of the collective-coordinate approach to the ϕ4 model.
Are eikonal quasinormal modes linked to the unstable circular null geodesics?
NASA Astrophysics Data System (ADS)
Konoplya, R. A.; Stuchlík, Z.
2017-08-01
In Cardoso et al. [6] it was claimed that quasinormal modes which any stationary, spherically symmetric and asymptotically flat black hole emits in the eikonal regime are determined by the parameters of the circular null geodesic: the real and imaginary parts of the quasinormal mode are multiples of the frequency and instability timescale of the circular null geodesics respectively. We shall consider asymptotically flat black hole in the Einstein-Lovelock theory, find analytical expressions for gravitational quasinormal modes in the eikonal regime and analyze the null geodesics. Comparison of the both phenomena shows that the expected link between the null geodesics and quasinormal modes is violated in the Einstein-Lovelock theory. Nevertheless, the correspondence exists for a number of other cases and here we formulate its actual limits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babb, James; Kunstatter, Gabor; Daghigh, Ramin
2011-10-15
Quasinormal modes provide valuable information about the structure of spacetime outside a black hole. There is also a conjectured relationship between the highly damped quasinormal modes and the semiclassical spectrum of the horizon area/entropy. In this paper, we show that for spacetimes characterized by more than one scale, the 'infinitely damped' modes in principle probe the structure of spacetime outside the horizon at the shortest length scales. We demonstrate this with the calculation of the highly damped quasinormal modes of the nonsingular, single-horizon, quantum corrected black hole derived in [A. Peltola and G. Kunstatter, Phys. Rev. D 79, 061501 (2009);more » ].« less
Exact quasinormal modes for a special class of black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliva, Julio; Troncoso, Ricardo; Centro de Ingenieria de la Innovacion del CECS
2010-07-15
Analytic exact expressions for the quasinormal modes of scalar and electromagnetic perturbations around a special class of black holes are found in d{>=}3 dimensions. It is shown that the size of the black hole provides a lower bound for the angular momentum of the perturbation. Quasinormal modes appear when this bound is fulfilled; otherwise the excitations become purely damped.
NASA Astrophysics Data System (ADS)
Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin
2018-04-01
In this paper, Quasinormal modes of gravitational perturbation are investigated for the regular Bardeen black hole surrounded by quintessence. Considering the metric of the Bardeen spacetime surrounded by quintessence, we derived the perturbation equation for gravitational perturbation using Regge-Wheeler gauge. The third order Wentzel-Kramers-Brillouin (WKB) approximation method is used to evaluate quasinormal frequencies. Explicitly, the behaviors of the black hole potential and quasinormal modes were plotted. The results show that, due to the presence of quintessence, the gravitational perturbation around the black hole damps more slowly and oscillates more slowly.
An approach to the quantization of black hole quasi-normal modes
NASA Astrophysics Data System (ADS)
Pal, Soham; Rajeev, Karthik; Shankaranarayanan, S.
2015-07-01
In this work, we derive the asymptotic quasi-normal modes of a Banados-Teitelboim-Zanelli (BTZ) black hole using a quantum field theoretic Lagrangian. The BTZ black hole is a very popular system in the context of 2 + 1-dimensional quantum gravity. However, to our knowledge the quasi-normal modes of the BTZ black hole have been studied only in the classical domain. Here we show a way to quantize the quasi-normal modes of the BTZ black hole by mapping it to the Bateman-Feschbach-Tikochinsky oscillator and the Caldirola-Kanai oscillator. We have also discussed a couple of other black hole potentials to which this method can be applied.
Quasinormal modes of a strongly coupled nonconformal plasma and approach to criticality
NASA Astrophysics Data System (ADS)
Betzios, Panagiotis; Gürsoy, Umut; Järvinen, Matti; Policastro, Giuseppe
2018-04-01
We study fluctuations around equilibrium in a class of strongly interacting nonconformal plasmas using holographic techniques. In particular, we calculate the quasinormal mode spectrum of black hole backgrounds that approach Chamblin-Reall plasmas in the IR. In a specific limit, related to the exact linear-dilaton background in string theory, we observe that the plasma approaches criticality and we obtain the quasinormal spectrum analytically. We regulate the critical limit by gluing the IR geometry that corresponds to the nonconformal plasma to a part of AdS space-time in the UV. Near criticality, the spectrum can still be computed analytically and we find two sets of quasinormal modes, related to the IR and UV parts of the geometry. In the critical limit, the quasinormal modes accumulate to form a branch cut in the correlators of the energy-momentum tensor on the real axis of the complex frequency plane.
Quasinormal modes of asymptotically (A)dS black hole in Lovelock background
NASA Astrophysics Data System (ADS)
Abbasvandi, N.; Soleimani, M. J.; Abdullah, W. A. T. Wan; Radiman, Shahidan
2017-03-01
We study the quasinormal modes of the massless scalar field in asymptotically (A)dS black holes in Lovelock spacetime by using the sixth order of the WKB approximation. We consider the effects of the second and third order of Lovelock coupling constants on quasinormal frequencies spectrum as well as cosmological constant.
Quasinormal modes of black holes in Horndeski gravity
NASA Astrophysics Data System (ADS)
Tattersall, Oliver J.; Ferreira, Pedro G.
2018-05-01
We study the perturbations to general relativistic black holes (i.e., those without scalar hair) in Horndeski scalar-tensor gravity. First, we derive the equations of odd and even parity perturbations of both the metric and scalar field in the case of a Schwarzschild black hole, and show that the gravitational waves emitted from such a system contain a mixture of quasinormal mode frequencies from the usual general relativistic spectrum and those from the new scalar field spectrum, with the new scalar spectrum characterized by just two free parameters. We then specialize to the subfamily of Horndeski theories in which gravitational waves propagate at the speed of light c on cosmological backgrounds; the scalar quasinormal mode spectrum of such theories is characterized by just a single parameter μ acting as an effective mass of the scalar field. Analytical expressions for the quasinormal mode frequencies of the scalar spectrum in this subfamily of theories are provided for both static and slowly rotating black holes. In both regimes comparisons to quasinormal modes calculated numerically show good agreement with those calculated analytically in this work.
Scalar perturbations of nonsingular nonrotating black holes in conformal gravity
NASA Astrophysics Data System (ADS)
Toshmatov, Bobir; Bambi, Cosimo; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Schee, Jan
2017-09-01
We study scalar and electromagnetic perturbations of a family of nonsingular nonrotating black hole spacetimes that are solutions in a large class of conformally invariant theories of gravity. The effective potential for scalar perturbations depends on the exact form of the scaling factor. Electromagnetic perturbations do not feel the scaling factor, and the corresponding quasinormal mode spectrum is the same as in the Schwarzschild metric. We find that these black hole metrics are stable under scalar and electromagnetic perturbations. Assuming that the quasinormal mode spectrum for scalar perturbations is not too different from that for gravitational perturbations, we can expect that the calculation of the quasinormal mode spectrum and the observation with gravitational wave detectors of quasinormal modes from astrophysical black holes can constrain the scaling factor and test these solutions.
Quasi-Normal Modes of Stars and Black Holes.
Kokkotas, Kostas D; Schmidt, Bernd G
1999-01-01
Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordström, Kerr and Kerr-Newman) and relativistic stars (non-rotating and slowly-rotating). The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.
Quasi-normal modes from non-commutative matrix dynamics
NASA Astrophysics Data System (ADS)
Aprile, Francesco; Sanfilippo, Francesco
2017-09-01
We explore similarities between the process of relaxation in the BMN matrix model and the physics of black holes in AdS/CFT. Focusing on Dyson-fluid solutions of the matrix model, we perform numerical simulations of the real time dynamics of the system. By quenching the equilibrium distribution we study quasi-normal oscillations of scalar single trace observables, we isolate the lowest quasi-normal mode, and we determine its frequencies as function of the energy. Considering the BMN matrix model as a truncation of N=4 SYM, we also compute the frequencies of the quasi-normal modes of the dual scalar fields in the AdS5-Schwarzschild background. We compare the results, and we finda surprising similarity.
Linear perturbations of black holes: stability, quasi-normal modes and tails
NASA Astrophysics Data System (ADS)
Zhidenko, Alexander
2009-03-01
Black holes have their proper oscillations, which are called the quasi-normal modes. The proper oscillations of astrophysical black holes can be observed in the nearest future with the help of gravitational wave detectors. Quasi-normal modes are also very important in the context of testing of the stability of black objects, the anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence and in higher dimensional theories, such as the brane-world scenarios and string theory. This dissertation reviews a number of works, which provide a thorough study of the quasi-normal spectrum of a wide class of black holes in four and higher dimensions for fields of various spin and gravitational perturbations. We have studied numerically the dependance of the quasi-normal modes on a number of factors, such as the presence of the cosmological constant, the Gauss-Bonnet parameter or the aether in the space-time, the dependance of the spectrum on parameters of the black hole and fields under consideration. By the analysis of the quasi-normal spectrum, we have studied the stability of higher dimensional Reissner-Nordstrom-de Sitter black holes, Kaluza-Klein black holes with squashed horizons, Gauss-Bonnet black holes and black strings. Special attention is paid to the evolution of massive fields in the background of various black holes. We have considered their quasi-normal ringing and the late-time tails. In addition, we present two new numerical techniques: a generalisation of the Nollert improvement of the Frobenius method for higher dimensional problems and a qualitatively new method, which allows to calculate quasi-normal frequencies for black holes, which metrics are not known analytically.
Post-Kerr black hole spectroscopy
NASA Astrophysics Data System (ADS)
Glampedakis, Kostas; Pappas, George; Silva, Hector O.; Berti, Emanuele
2017-09-01
One of the central goals of the newborn field of gravitational wave astronomy is to test gravity in the highly nonlinear, strong field regime characterizing the spacetime of black holes. In particular, "black hole spectroscopy" (the observation and identification of black hole quasinormal mode frequencies in the gravitational wave signal) is expected to become one of the main tools for probing the structure and dynamics of Kerr black holes. In this paper we take a significant step toward that goal by constructing a "post-Kerr" quasinormal mode formalism. The formalism incorporates a parametrized but general perturbative deviation from the Kerr metric and exploits the well-established connection between the properties of the spacetime's circular null geodesics and the fundamental quasinormal mode to provide approximate, eikonal limit formulas for the modes' complex frequencies. The resulting algebraic toolkit can be used in waveform templates for ringing black holes with the purpose of measuring deviations from the Kerr metric. As a first illustrative application of our framework, we consider the Johannsen-Psaltis deformed Kerr metric and compute the resulting deviation in the quasinormal mode frequency relative to the known Kerr result.
Quasinormal modes of Reissner-Nordstrom black holes
NASA Technical Reports Server (NTRS)
Leaver, Edward W.
1990-01-01
A matrix-eigenvalue algorithm is presented for accurately computing the quasi-normal frequencies and modes of charged static blackholes. The method is then refined through the introduction of a continued-fraction step. The approach should generalize to a variety of nonseparable wave equations, including the Kerr-Newman case of charged rotating blackholes.
Quasi-normal modes of extremal BTZ black holes in TMG
NASA Astrophysics Data System (ADS)
Afshar, Hamid R.; Alishahiha, Mohsen; Mosaffa, Amir E.
2010-08-01
We study the spectrum of tensor perturbations on extremal BTZ black holes in topologically massive gravity for arbitrary values of the coefficient of the Chern-Simons term, μ. Imposing proper boundary conditions at the boundary of the space and at the horizon, we find that the spectrum contains quasi-normal modes.
Spectroscopy of the Schwarzschild black hole at arbitrary frequencies.
Casals, Marc; Ottewill, Adrian
2012-09-14
Linear field perturbations of a black hole are described by the Green function of the wave equation that they obey. After Fourier decomposing the Green function, its two natural contributions are given by poles (quasinormal modes) and a largely unexplored branch cut in the complex frequency plane. We present new analytic methods for calculating the branch cut on a Schwarzschild black hole for arbitrary values of the frequency. The branch cut yields a power-law tail decay for late times in the response of a black hole to an initial perturbation. We determine explicitly the first three orders in the power-law and show that the branch cut also yields a new logarithmic behavior T(-2ℓ-5)lnT for late times. Before the tail sets in, the quasinormal modes dominate the black hole response. For electromagnetic perturbations, the quasinormal mode frequencies approach the branch cut at large overtone index n. We determine these frequencies up to n(-5/2) and, formally, to arbitrary order. Highly damped quasinormal modes are of particular interest in that they have been linked to quantum properties of black holes.
Black hole spectroscopy: Systematic errors and ringdown energy estimates
NASA Astrophysics Data System (ADS)
Baibhav, Vishal; Berti, Emanuele; Cardoso, Vitor; Khanna, Gaurav
2018-02-01
The relaxation of a distorted black hole to its final state provides important tests of general relativity within the reach of current and upcoming gravitational wave facilities. In black hole perturbation theory, this phase consists of a simple linear superposition of exponentially damped sinusoids (the quasinormal modes) and of a power-law tail. How many quasinormal modes are necessary to describe waveforms with a prescribed precision? What error do we incur by only including quasinormal modes, and not tails? What other systematic effects are present in current state-of-the-art numerical waveforms? These issues, which are basic to testing fundamental physics with distorted black holes, have hardly been addressed in the literature. We use numerical relativity waveforms and accurate evolutions within black hole perturbation theory to provide some answers. We show that (i) a determination of the fundamental l =m =2 quasinormal frequencies and damping times to within 1% or better requires the inclusion of at least the first overtone, and preferably of the first two or three overtones; (ii) a determination of the black hole mass and spin with precision better than 1% requires the inclusion of at least two quasinormal modes for any given angular harmonic mode (ℓ , m ). We also improve on previous estimates and fits for the ringdown energy radiated in the various multipoles. These results are important to quantify theoretical (as opposed to instrumental) limits in parameter estimation accuracy and tests of general relativity allowed by ringdown measurements with high signal-to-noise ratio gravitational wave detectors.
Thermalization of Wightman functions in AdS/CFT and quasinormal modes
NASA Astrophysics Data System (ADS)
Keränen, Ville; Kleinert, Philipp
2016-07-01
We study the time evolution of Wightman two-point functions of scalar fields in AdS3 -Vaidya, a spacetime undergoing gravitational collapse. In the boundary field theory, the collapse corresponds to a quench process where the dual 1 +1 -dimensional CFT is taken out of equilibrium and subsequently thermalizes. From the two-point function, we extract an effective occupation number in the boundary theory and study how it approaches the thermal Bose-Einstein distribution. We find that the Wightman functions, as well as the effective occupation numbers, thermalize with a rate set by the lowest quasinormal mode of the scalar field in the BTZ black hole background. We give a heuristic argument for the quasinormal decay, which is expected to apply to more general Vaidya spacetimes also in higher dimensions. This suggests a unified picture in which thermalization times of one- and two-point functions are determined by the lowest quasinormal mode. Finally, we study how these results compare to previous calculations of two-point functions based on the geodesic approximation.
Connection between black-hole quasinormal modes and lensing in the strong deflection limit.
Stefanov, Ivan Zh; Yazadjiev, Stoytcho S; Gyulchev, Galin G
2010-06-25
The purpose of the current Letter is to give some relations between gravitational lensing in the strong-deflection limit and the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. On the one side, the relations obtained can give a physical interpretation of the strong-deflection limit parameters. On the other side, they also give an alternative method for the measurement of the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. They could be applied to the localization of the sources of gravitational waves and could tell us what frequencies of the gravitational waves we could expect from a black hole acting simultaneously as a gravitational lens and a source of gravitational waves.
NASA Astrophysics Data System (ADS)
Panotopoulos, Grigoris
2018-06-01
We perturb the non-rotating BTZ black hole with a non-minimally coupled massless scalar field, and we compute the quasinormal spectrum exactly. We solve the radial equation in terms of hypergeometric functions, and we obtain an analytical expression for the quasinormal frequencies. In addition, we compare our analytical results with the 6th order semi-analytical WKB method, and we find an excellent agreement. The impact of the nonminimal coupling as well as of the cosmological constant on the quasinormal spectrum is briefly discussed.
Regularized quasinormal modes for plasmonic resonators and open cavities
NASA Astrophysics Data System (ADS)
Kamandar Dezfouli, Mohsen; Hughes, Stephen
2018-03-01
Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.
NASA Astrophysics Data System (ADS)
Blázquez-Salcedo, Jose Luis; Eickhoff, Kevin
2018-05-01
We study axial quasinormal modes of static neutron stars in the nonminimal derivative coupling sector of Horndeski theory. We focus on the fundamental curvature mode, which we analyze for 10 different equations of state with different matter content. A comparison with the results obtained in pure general relativity reveals that, apart from modifying the spectrum of the frequencies and the damping times of the stars, this theory modifies several universal relations between the modes and physical parameters of the stars that are otherwise matter independent.
Is the Gravitational-Wave Ringdown a Probe of the Event Horizon?
Cardoso, Vitor; Franzin, Edgardo; Pani, Paolo
2016-04-29
It is commonly believed that the ringdown signal from a binary coalescence provides a conclusive proof for the formation of an event horizon after the merger. This expectation is based on the assumption that the ringdown waveform at intermediate times is dominated by the quasinormal modes of the final object. We point out that this assumption should be taken with great care, and that very compact objects with a light ring will display a similar ringdown stage, even when their quasinormal-mode spectrum is completely different from that of a black hole. In other words, universal ringdown waveforms indicate the presence of light rings, rather than of horizons. Only precision observations of the late-time ringdown signal, where the differences in the quasinormal-mode spectrum eventually show up, can be used to rule out exotic alternatives to black holes and to test quantum effects at the horizon scale.
NASA Astrophysics Data System (ADS)
da Rocha, R.; Sobreiro, R. F.; Tomaz, A. A.
2017-12-01
Sound waves on a fluid stream, in a de Laval nozzle, are shown to correspond to quasinormal modes emitted by black holes that are physical solutions in a quadratic curvature gravity with cosmological constant. Sound waves patterns in transsonic regimes at a laboratory are employed here to provide experimental data regarding generalized theories of gravity, comprised by the exact de Sitter-like solution and a perturbative solution around the Schwarzschild-de Sitter standard solution as well. Using the classical tests of General Relativity to bound free parameters in these solutions, acoustic perturbations on fluid flows in nozzles are then regarded, to study quasinormal modes of these black holes solutions, providing deviations of the de Laval nozzle cross-sectional area, when compared to the Schwarzschild solution. The fluid sonic point in the nozzle, for sound waves in the fluid, is shown to implement the acoustic event horizon corresponding to quasinormal modes.
Dirac and Klein-Gordon-Fock equations in Grumiller’s spacetime
NASA Astrophysics Data System (ADS)
Al-Badawi, A.; Sakalli, I.
We study the Dirac and the chargeless Klein-Gordon-Fock equations in the geometry of Grumiller’s spacetime that describes a model for gravity of a central object at large distances. The Dirac equation is separated into radial and angular equations by adopting the Newman-Penrose formalism. The angular part of the both wave equations are analytically solved. For the radial equations, we managed to reduce them to one dimensional Schrödinger-type wave equations with their corresponding effective potentials. Fermions’s potentials are numerically analyzed by serving their some characteristic plots. We also compute the quasinormal frequencies of the chargeless and massive scalar waves. With the aid of those quasinormal frequencies, Bekenstein’s area conjecture is tested for the Grumiller black hole. Thus, the effects of the Rindler acceleration on the waves of fermions and scalars are thoroughly analyzed.
NASA Astrophysics Data System (ADS)
Rincón, Ángel; Panotopoulos, Grigoris
2018-01-01
We study for the first time the stability against scalar perturbations, and we compute the spectrum of quasinormal modes of three-dimensional charged black holes in Einstein-power-Maxwell nonlinear electrodynamics assuming running couplings. Adopting the sixth order Wentzel-Kramers-Brillouin (WKB) approximation we investigate how the running of the couplings change the spectrum of the classical theory. Our results show that all modes corresponding to nonvanishing angular momentum are unstable both in the classical theory and with the running of the couplings, while the fundamental mode can be stable or unstable depending on the running parameter and the electric charge.
Quasinormal modes, scattering, and Hawking radiation of Kerr-Newman black holes in a magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.
2011-01-15
We perform a comprehensive analysis of the spectrum of proper oscillations (quasinormal modes), transmission/reflection coefficients, and Hawking radiation for a massive charged scalar field in the background of the Kerr-Newman black hole immersed in an asymptotically homogeneous magnetic field. There are two main effects: the Zeeman shift of the particle energy in the magnetic field and the difference of values of an electromagnetic potential between the horizon and infinity, i.e. the Faraday induction. We have shown that 'turning on' the magnetic field induces a stronger energy-emission rate and leads to 'recharging' of the black hole. Thus, a black hole immersedmore » in a magnetic field evaporates much quicker, achieving thereby an extremal state in a shorter period of time. Quasinormal modes are moderately affected by the presence of a magnetic field which is assumed to be relatively small compared to the gravitational field of the black hole.« less
Finite coupling corrections to holographic predictions for hot QCD
Waeber, Sebastian; Schafer, Andreas; Vuorinen, Aleksi; ...
2015-11-13
Finite ’t Hooft coupling corrections to multiple physical observables in strongly coupled N=4 supersymmetric Yang-Mills plasma are examined, in an attempt to assess the stability of the expansion in inverse powers of the ’t Hooft coupling λ. Observables considered include thermodynamic quantities, transport coefficients, and quasinormal mode frequencies. Furthermore large λ expansions for quasinormal mode frequencies are notably less well behaved than the expansions of other quantities, we find that a partial resummation of higher order corrections can significantly reduce the sensitivity of the results to the value of λ.
Damping of hard excitations in strongly coupled $$ \\mathcal{N} $$ = 4 plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuini, John F.; Uhlemann, Christoph F.; Yaffe, Laurence G.
2016-12-13
The damping of high momentum excitations in strongly coupled maximally supersymmetric Yang-Mills plasma is studied. Previous calculations of the asymptotic behavior of the quasinormal mode spectrum are extended and clarified. We con rm that subleading corrections to the lightlike dispersion relation ω(q) = |q| have a universal |q| -1/3 form. Sufficiently narrow, weak planar shocks may be viewed as coherent superpositions of short wavelength quasinormal modes. The attenuation and evolution in profile of narrow planar shocks are examined as an application of our results.
NASA Astrophysics Data System (ADS)
Núñez, Alvaro; Starinets, Andrei O.
2003-06-01
We use the Lorentzian AdS/CFT prescription to find the poles of the retarded thermal Green’s functions of N=4 SU(N) supersymmetric Yang-Mills theory in the limit of large N and large ’t Hooft coupling. In the process, we propose a natural definition for quasinormal modes in an asymptotically AdS spacetime, with boundary conditions dictated by the AdS/CFT correspondence. The corresponding frequencies determine the dispersion laws for the quasiparticle excitations in the dual finite-temperature gauge theory. Correlation functions of operators dual to massive scalar, vector and gravitational perturbations in a five-dimensional AdS-Schwarzschild background are considered. We find asymptotic formulas for quasinormal frequencies in the massive scalar and tensor cases, and an exact expression for vector perturbations. In the long-distance, low-frequency limit we recover results of the hydrodynamic approximation to thermal Yang-Mills theory.
Quasinormal modes, bifurcations, and nonuniqueness of charged scalar-tensor black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doneva, Daniela D.; Theoretical Astrophysics, Eberhard-Karls University of Tuebingen, Tuebingen 72076; Yazadjiev, Stoytcho S.
In the present paper, we study the scalar sector of the quasinormal modes of charged general relativistic, static, and spherically symmetric black holes coupled to nonlinear electrodynamics and embedded in a class of scalar-tensor theories. We find that for a certain domain of the parametric space, there exists unstable quasinormal modes. The presence of instabilities implies the existence of scalar-tensor black holes with primary hair that bifurcate from the embedded general relativistic black-hole solutions at critical values of the parameters corresponding to the static zero modes. We prove that such scalar-tensor black holes really exist by solving the full systemmore » of scalar-tensor field equations for the static, spherically symmetric case. The obtained solutions for the hairy black holes are nonunique, and they are in one-to-one correspondence with the bounded states of the potential governing the linear perturbations of the scalar field. The stability of the nonunique hairy black holes is also examined, and we find that the solutions for which the scalar field has zeros are unstable against radial perturbations. The paper ends with a discussion of possible formulations of a new classification conjecture.« less
Wormhole potentials and throats from quasi-normal modes
NASA Astrophysics Data System (ADS)
Völkel, Sebastian H.; Kokkotas, Kostas D.
2018-05-01
Exotic compact objects refer to a wide class of black hole alternatives or effective models to describe phenomenologically quantum gravitational effects on the horizon scale. In this work we show how the knowledge of the quasi-normal mode spectrum of non-rotating wormhole models can be used to reconstruct the effective potential that appears in perturbation equations. From this it is further possible to obtain the parameters that characterize the specific wormhole model, which in this paper was chosen to be the one by Damour and Solodukhin. We also address the question whether one can distinguish such type of wormholes from ultra compact stars, if only the quasi-normal mode spectrum is known. We have proven that this is not possible by using the trapped modes only, but requires additional information. The inverse method presented here is an extension of work that has previously been developed and applied to the oscillation spectra of ultra compact stars and gravastars. However, it is not limited to the study of exotic compact objects, but applicable to symmetric double barrier potentials that appear in one-dimensional wave equations. Therefore we think it can be of interest for other fields too.
Charged scalar perturbations on charged black holes in de Rham-Gabadadze-Tolley massive gravity
NASA Astrophysics Data System (ADS)
Burikham, Piyabut; Ponglertsakul, Supakchai; Tannukij, Lunchakorn
2017-12-01
We explore the quasistationary profile of a massive charged scalar field in a class of charged black holes in de Rham-Gabadadze-Tolley (dRGT) massive gravity. We discuss how the linear term in the metric, which is a unique character of the dRGT massive gravity, affects the structure of the spacetime. Numerical calculations of the quasinormal modes are performed for a charged scalar field in the dRGT black hole background. For an asymptotically de Sitter (dS) black hole, an improved asymptotic iteration method is used to obtain the associated quasinormal frequencies. The unstable modes are found for the ℓ=0 case, and their corresponding real parts satisfy the superradiant condition. For ℓ=2 , the results show that all the de Sitter black holes considered here are stable against a small perturbation. For an asymptotically dRGT anti-de Sitter (AdS) black hole, unstable modes are found with the frequency satisfying the superradiant condition. Effects of massive-gravity parameters are discussed. Analytic calculation reveals the unique diffusive nature of quasinormal modes in the massive-gravity model with the linear term. Numerical results confirm the existence of the characteristic diffusive modes in both the dS and AdS cases.
NASA Astrophysics Data System (ADS)
Hartman, Thomas; Hartnoll, Sean A.; Mahajan, Raghu
2017-10-01
The linear growth of operators in local quantum systems leads to an effective light cone even if the system is nonrelativistic. We show that the consistency of diffusive transport with this light cone places an upper bound on the diffusivity: D ≲v2τeq. The operator growth velocity v defines the light cone, and τeq is the local equilibration time scale, beyond which the dynamics of conserved densities is diffusive. We verify that the bound is obeyed in various weakly and strongly interacting theories. In holographic models, this bound establishes a relation between the hydrodynamic and leading nonhydrodynamic quasinormal modes of planar black holes. Our bound relates transport data—including the electrical resistivity and the shear viscosity—to the local equilibration time, even in the absence of a quasiparticle description. In this way, the bound sheds light on the observed T -linear resistivity of many unconventional metals, the shear viscosity of the quark-gluon plasma, and the spin transport of unitary fermions.
NASA Astrophysics Data System (ADS)
Destounis, Kyriakos; Panotopoulos, Grigoris; Rincón, Ángel
2018-02-01
We study the stability under scalar perturbations, and we compute the quasinormal modes of the Einstein-Born-Infeld dilaton spacetime in 1+3 dimensions. Solving the full radial equation in terms of hypergeometric functions, we provide an exact analytical expression for the spectrum. We find that the frequencies are purely imaginary, and we confirm our results by computing them numerically. Although the scalar field that perturbs the black hole is electrically neutral, an instability similar to that seen in charged scalar perturbations of the Reissner-Nordström black hole is observed.
Signatures of extra dimensions in gravitational waves from black hole quasinormal modes
NASA Astrophysics Data System (ADS)
Chakraborty, Sumanta; Chakravarti, Kabir; Bose, Sukanta; SenGupta, Soumitra
2018-05-01
In this work, we have derived the evolution equation for gravitational perturbation in four-dimensional spacetime in the presence of a spatial extra dimension. The evolution equation is derived by perturbing the effective gravitational field equations on the four-dimensional spacetime, which inherits nontrivial higher-dimensional effects. Note that this is different from the perturbation of the five-dimensional gravitational field equations that exist in the literature and possess quantitatively new features. The gravitational perturbation has further been decomposed into a purely four-dimensional part and another piece that depends on extra dimensions. The four-dimensional gravitational perturbation now admits massive propagating degrees of freedom, owing to the existence of higher dimensions. We have also studied the influence of these massive propagating modes on the quasinormal mode frequencies, signaling the higher-dimensional nature of the spacetime, and have contrasted these massive modes with the massless modes in general relativity. Surprisingly, it turns out that the massive modes experience damping much smaller than that of the massless modes in general relativity and may even dominate over and above the general relativity contribution if one observes the ringdown phase of a black hole merger event at sufficiently late times. Furthermore, the whole analytical framework has been supplemented by the fully numerical Cauchy evolution problem, as well. In this context, we have shown that, except for minute details, the overall features of the gravitational perturbations are captured both in the Cauchy evolution as well as in the analysis of quasinormal modes. The implications on observations of black holes with LIGO and proposed space missions such as LISA are also discussed.
Computing black hole partition functions from quasinormal modes
Arnold, Peter; Szepietowski, Phillip; Vaman, Diana
2016-07-07
We propose a method of computing one-loop determinants in black hole space-times (with emphasis on asymptotically anti-de Sitter black holes) that may be used for numerics when completely-analytic results are unattainable. The method utilizes the expression for one-loop determinants in terms of quasinormal frequencies determined by Denef, Hartnoll and Sachdev in [1]. A numerical evaluation must face the fact that the sum over the quasinormal modes, indexed by momentum and overtone numbers, is divergent. A necessary ingredient is then a regularization scheme to handle the divergent contributions of individual fixed-momentum sectors to the partition function. To this end, we formulatemore » an effective two-dimensional problem in which a natural refinement of standard heat kernel techniques can be used to account for contributions to the partition function at fixed momentum. We test our method in a concrete case by reproducing the scalar one-loop determinant in the BTZ black hole background. Furthermore, we then discuss the application of such techniques to more complicated spacetimes.« less
Massive Vector Fields in Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.; Krtouš, Pavel; KubizÅák, David; Santos, Jorge E.
2018-06-01
We demonstrate the separability of the massive vector (Proca) field equation in general Kerr-NUT-AdS black-hole spacetimes in any number of dimensions, filling a long-standing gap in the literature. The obtained separated equations are studied in more detail for the four-dimensional Kerr geometry and the corresponding quasinormal modes are calculated. Two of the three independent polarizations of the Proca field are shown to emerge from the separation ansatz and the results are found in an excellent agreement with those of the recent numerical study where the full coupled partial differential equations were tackled without using the separability property.
Massive Vector Fields in Rotating Black-Hole Spacetimes: Separability and Quasinormal Modes.
Frolov, Valeri P; Krtouš, Pavel; Kubizňák, David; Santos, Jorge E
2018-06-08
We demonstrate the separability of the massive vector (Proca) field equation in general Kerr-NUT-AdS black-hole spacetimes in any number of dimensions, filling a long-standing gap in the literature. The obtained separated equations are studied in more detail for the four-dimensional Kerr geometry and the corresponding quasinormal modes are calculated. Two of the three independent polarizations of the Proca field are shown to emerge from the separation ansatz and the results are found in an excellent agreement with those of the recent numerical study where the full coupled partial differential equations were tackled without using the separability property.
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-05-01
The quasinormal resonant modes of massless neutral fields in near-extremal Kerr-Newman-de Sitter black-hole spacetimes are calculated in the eikonal regime. It is explicitly proved that, in the angular momentum regime a bar >√{1 - 2 Λ bar/4 + Λ bar / 3 }, the black-hole spacetimes are characterized by slowly decaying resonant modes which are described by the compact formula ℑ ω (n) =κ+ ṡ (n + 1/2 ) [here the physical parameters { a bar ,κ+ , Λ bar , n } are respectively the dimensionless angular momentum of the black hole, its characteristic surface gravity, the dimensionless cosmological constant of the spacetime, and the integer resonance parameter]. Our results support the validity of the Penrose strong cosmic censorship conjecture in these black-hole spacetimes.
Gravitational waves from quasinormal modes of a class of Lorentzian wormholes
NASA Astrophysics Data System (ADS)
Aneesh, S.; Bose, Sukanta; Kar, Sayan
2018-06-01
Quasinormal modes of a two-parameter family of Lorentzian wormhole spacetimes, which arise as solutions in a specific scalar-tensor theory associated with braneworld gravity, are obtained using standard numerical methods. Being solutions in a scalar-tensor theory, these wormholes can exist with matter satisfying the weak energy condition. If one posits that the end-state of stellar-mass binary black hole mergers, of the type observed in GW150914, can be these wormholes, then we show how their properties can be measured from their distinct signatures in the gravitational waves emitted by them as they settle down in the postmerger phase from an initially perturbed state. We propose that their scalar quasinormal modes correspond to the so-called breathing modes, which normally arise in gravitational wave solutions in scalar-tensor theories. We show how the frequency and damping time of these modes depend on the wormhole parameters, including its mass. We derive the mode solutions and use them to determine how one can measure those parameters when these wormholes are the endstate of binary black hole mergers. Specifically, we find that if a breathing mode is observed in LIGO-like detectors with design sensitivity, and has a maximum amplitude equal to that of the tensor mode that was observed of GW150914, then for a range of values of the wormhole parameters, we will be able to discern it from a black hole. If in future observations we are able to confirm the existence of such wormholes, we would, at one go, have some indirect evidence of a modified theory of gravity as well as extra spatial dimensions.
Quasinormal modes and quantization of area/entropy for noncommutative BTZ black hole
NASA Astrophysics Data System (ADS)
Huang, Lu; Chen, Juhua; Wang, Yongjiu
2018-04-01
We investigate the quasinormal modes and area/entropy spectrum for the noncommutative BTZ black hole. The exact expressions for QNM frequencies are presented by expanding the noncommutative parameter in horizon radius. We find that the noncommutativity does not affect conformal weights (hL, hR), but it influences the thermal equilibrium. The intuitive expressions of the area/entropy spectrum are calculated in terms of Bohr-Sommerfeld quantization, and our results show that the noncommutativity leads to a nonuniform area/entropy spectrum. We also find that the coupling constant ξ , which is the coupling between the scalar and the gravitational fields, shifts the QNM frequencies but not influences the structure of area/entorpy spectrum.
Decoding Mode-mixing in Black-hole Merger Ringdown
NASA Technical Reports Server (NTRS)
Kelly, Bernard J.; Baker, John G.
2013-01-01
Optimal extraction of information from gravitational-wave observations of binary black-hole coalescences requires detailed knowledge of the waveforms. Current approaches for representing waveform information are based on spin-weighted spherical harmonic decomposition. Higher-order harmonic modes carrying a few percent of the total power output near merger can supply information critical to determining intrinsic and extrinsic parameters of the binary. One obstacle to constructing a full multi-mode template of merger waveforms is the apparently complicated behavior of some of these modes; instead of settling down to a simple quasinormal frequency with decaying amplitude, some |m| = modes show periodic bumps characteristic of mode-mixing. We analyze the strongest of these modes the anomalous (3, 2) harmonic mode measured in a set of binary black-hole merger waveform simulations, and show that to leading order, they are due to a mismatch between the spherical harmonic basis used for extraction in 3D numerical relativity simulations, and the spheroidal harmonics adapted to the perturbation theory of Kerr black holes. Other causes of mode-mixing arising from gauge ambiguities and physical properties of the quasinormal ringdown modes are also considered and found to be small for the waveforms studied here.
Quasinormal modes of modified gravity (MOG) black holes
NASA Astrophysics Data System (ADS)
Manfredi, Luciano; Mureika, Jonas; Moffat, John
2018-04-01
The Quasinormal modes (QNMs) for gravitational and electromagnetic perturbations are calculated in a Scalar-Tensor-Vector (Modified Gravity) spacetime, which was initially proposed to obtain correct dynamics of galaxies and galaxy clusters without the need for dark matter. It is found that for the increasing model parameter α, both the real and imaginary parts of the QNMs decrease compared to those for a standard Schwarzschild black hole. On the other hand, when taking into account the 1 / (1 + α) mass re-scaling factor present in MOG, Im (ω) matches almost identically that of GR, while Re (ω) is higher. These results can be identified in the ringdown phase of massive compact object mergers, and are thus timely in light of the recent gravitational wave detections by LIGO.
New Class of Quasinormal Modes of Neutron Stars in Scalar-Tensor Gravity
NASA Astrophysics Data System (ADS)
Mendes, Raissa F. P.; Ortiz, Néstor
2018-05-01
Detection of the characteristic spectrum of pulsating neutron stars can be a powerful tool not only to probe the nuclear equation of state but also to test modifications to general relativity. However, the shift in the oscillation spectrum induced by modified theories of gravity is often small and degenerate with our ignorance of the equation of state. In this Letter, we show that the coupling to additional degrees of freedom present in modified theories of gravity can give rise to new families of modes, with no counterpart in general relativity, which could be sufficiently well resolved in frequency space to allow for clear detection. We present a realization of this idea by performing a thorough study of radial oscillations of neutron stars in massless scalar-tensor theories of gravity. We anticipate astrophysical scenarios where the presence of this class of quasinormal modes could be probed with electromagnetic and gravitational wave measurements.
Quasinormal Modes and Strong Cosmic Censorship.
Cardoso, Vitor; Costa, João L; Destounis, Kyriakos; Hintz, Peter; Jansen, Aron
2018-01-19
The fate of Cauchy horizons, such as those found inside charged black holes, is intrinsically connected to the decay of small perturbations exterior to the event horizon. As such, the validity of the strong cosmic censorship (SCC) conjecture is tied to how effectively the exterior damps fluctuations. Here, we study massless scalar fields in the exterior of Reissner-Nordström-de Sitter black holes. Their decay rates are governed by quasinormal modes of the black hole. We identify three families of modes in these spacetimes: one directly linked to the photon sphere, well described by standard WKB-type tools; another family whose existence and time scale is closely related to the de Sitter horizon; finally, a third family which dominates for near-extremally charged black holes and which is also present in asymptotically flat spacetimes. The last two families of modes seem to have gone unnoticed in the literature. We give a detailed description of linear scalar perturbations of such black holes, and conjecture that SCC is violated in the near extremal regime.
Quasinormal Modes and Strong Cosmic Censorship
NASA Astrophysics Data System (ADS)
Cardoso, Vitor; Costa, João L.; Destounis, Kyriakos; Hintz, Peter; Jansen, Aron
2018-01-01
The fate of Cauchy horizons, such as those found inside charged black holes, is intrinsically connected to the decay of small perturbations exterior to the event horizon. As such, the validity of the strong cosmic censorship (SCC) conjecture is tied to how effectively the exterior damps fluctuations. Here, we study massless scalar fields in the exterior of Reissner-Nordström-de Sitter black holes. Their decay rates are governed by quasinormal modes of the black hole. We identify three families of modes in these spacetimes: one directly linked to the photon sphere, well described by standard WKB-type tools; another family whose existence and time scale is closely related to the de Sitter horizon; finally, a third family which dominates for near-extremally charged black holes and which is also present in asymptotically flat spacetimes. The last two families of modes seem to have gone unnoticed in the literature. We give a detailed description of linear scalar perturbations of such black holes, and conjecture that SCC is violated in the near extremal regime.
Quasinormal modes of black holes in Lovelock gravity
NASA Astrophysics Data System (ADS)
Yoshida, Daiske; Soda, Jiro
2016-02-01
We study quasinormal modes of black holes in Lovelock gravity. We formulate the WKB method adapted to Lovelock gravity for the calculation of quasinormal frequencies (QNFs). As a demonstration, we calculate various QNFs of Lovelock black holes in seven and eight dimensions. We find that the QNFs show remarkable features depending on the coefficients of the Lovelock terms, the species of perturbations, and spacetime dimensions. In the case of the scalar field, when we increase the coefficient of the third order Lovelock term, the real part of QNFs increases, but the decay rate becomes small irrespective of the mass of the black hole. For small black holes, the decay rate ceases to depend on the Gauss-Bonnet term. In the case of tensor type perturbations of the metric field, the tendency of the real part of QNFs is opposite to that of the scalar field. The QNFs of vector type perturbations of the metric show no particular behavior. The behavior of QNFs of the scalar type perturbations of the metric field is similar to the vector type. However, available data are rather sparse, which indicates that the WKB method is not applicable to many models for this sector.
Partition functions with spin in AdS2 via quasinormal mode methods
Keeler, Cynthia; Lisbão, Pedro; Ng, Gim Seng
2016-10-12
We extend the results of [1], computing one loop partition functions for massive fields with spin half in AdS 2 using the quasinormal mode method proposed by Denef, Hartnoll, and Sachdev [2]. We find the finite representations of SO(2,1) for spin zero and spin half, consisting of a highest weight state |hi and descendants with non-unitary values of h. These finite representations capture the poles and zeroes of the one loop determinants. Together with the asymptotic behavior of the partition functions (which can be easily computed using a large mass heat kernel expansion), these are sufficient to determine the fullmore » answer for the one loop determinants. We also discuss extensions to higher dimensional AdS 2n and higher spins.« less
Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes
NASA Astrophysics Data System (ADS)
Ma, Hong; Li, Jin
2018-04-01
In this paper, we describe quasinormal modes (QNMs) for gravitational perturbations of Einstein-Gauss-Bonnet black holes (BHs) in higher dimensional spacetimes, and derive the corresponding parameters of such black holes in three types of spacetime (flat, de Sitter (dS) and anti-de Sitter (AdS)). Our attention is concentrated on discussing the (in)stability of Einstein-Gauss-Bonnet AdS BHs through the temporal evolution of all types of gravitational perturbation fields (tensor, vector and scalar). It is concluded that the potential functions in vector and scalar gravitational perturbations have negative regions, which suppress quasinormal ringing. Furthermore, the influences of the Gauss-Bonnet coupling parameter α, the number of dimensions n and the angular momentum quantum number l on the Einstein-Gauss-Bonnet AdS BHs quasinormal spectrum are analyzed. The QNM frequencies have greater oscillation and lower damping rate with the growth of α. This indicates that QNM frequencies become increasingly unstable with large α. Meanwhile, the dynamic evolutions of the perturbation field are compliant with the results of computation from the Horowitz and Hubeny method. Because the number of extra dimensions is connected with the string scale, the relationship between α and properties of Einstein-Gauss-Bonnet AdS BHs might be beneficial for the exploitation of string theory and extra-dimensional brane worlds. Supported by FAPESP (2012/08934-0), National Natural Science Foundation of China (11205254, 11178018, 11375279, 11605015), the Natural Science Foundation Project of CQ CSTC (2011BB0052), and the Fundamental Research Funds for the Central Universities (106112016CDJXY300002, 106112017CDJXFLX0014, CDJRC10300003)
Wave Propagation and Localization via Quasi-Normal Modes and Transmission Eigenchannels
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Zhou; Davy, Matthieu; Genack, Azriel Z.
2013-10-01
Field transmission coefficients for microwave radiation between arrays of points on the incident and output surfaces of random samples are analyzed to yield the underlying quasi-normal modes and transmission eigenchannels of each realization of the sample. The linewidths, central frequencies, and transmitted speckle patterns associated with each of the modes of the medium are found. Modal speckle patterns are found to be strongly correlated leading to destructive interference between modes. This explains distinctive features of transmission spectra and pulsed transmission. An alternate description of wave transport is obtained from the eigenchannels and eigenvalues of the transmission matrix. The maximum transmission eigenvalue, τ1 is near unity for diffusive waves even in turbid samples. For localized waves, τ1 is nearly equal to the dimensionless conductance, which is the sum of all transmission eigenvalues, g = Στn. The spacings between the ensemble averages of successive values of lnτn are constant and equal to the inverse of the bare conductance in accord with predictions by Dorokhov. The effective number of transmission eigenvalues Neff determines the contrast between the peak and background of radiation focused for maximum peak intensity. The connection between the mode and channel approaches is discussed.
Wave Propagation and Localization via Quasi-Normal Modes and Transmission Eigenchannels
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Zhou; Davy, Matthieu; Genack, Azriel Z.
Field transmission coefficients for microwave radiation between arrays of points on the incident and output surfaces of random samples are analyzed to yield the underlying quasi-normal modes and transmission eigenchannels of each realization of the sample. The linewidths, central frequencies, and transmitted speckle patterns associated with each of the modes of the medium are found. Modal speckle patterns are found to be strongly correlated leading to destructive interference between modes. This explains distinctive features of transmission spectra and pulsed transmission. An alternate description of wave transport is obtained from the eigenchannels and eigenvalues of the transmission matrix. The maximum transmission eigenvalue, τ1 is near unity for diffusive waves even in turbid samples. For localized waves, τ1 is nearly equal to the dimensionless conductance, which is the sum of all transmission eigenvalues, g = Στn. The spacings between the ensemble averages of successive values of lnτn are constant and equal to the inverse of the bare conductance in accord with predictions by Dorokhov. The effective number of transmission eigenvalues Neff determines the contrast between the peak and background of radiation focused for maximum peak intensity. The connection between the mode and channel approaches is discussed.
Phase transition of charged-AdS black holes and quasinormal modes: A time domain analysis
NASA Astrophysics Data System (ADS)
Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.
2017-10-01
In this work, we investigate the time evolution of a massless scalar perturbation around small and large RN-AdS4 black holes for the purpose of probing the thermodynamic phase transition. We show that below the critical point the scalar perturbation decays faster with increasing of the black hole size, both for small and large black hole phases. Our analysis of the time profile of quasinormal mode reveals a sharp distinction between the behaviors of both phases, providing a reliable tool to probe the black hole phase transition. However at the critical point P=Pc, as the black hole size extends, we note that the damping time increases and the perturbation decays faster, the oscillation frequencies raise either in small and large black hole phase. In this case the time evolution approach fails to track the AdS4 black hole phase.
Black hole acoustics in the minimal geometric deformation of a de Laval nozzle
NASA Astrophysics Data System (ADS)
da Rocha, Roldão
2017-05-01
The correspondence between sound waves, in a de Laval propelling nozzle, and quasinormal modes emitted by brane-world black holes deformed by a 5D bulk Weyl fluid are here explored and scrutinized. The analysis of sound waves patterns in a de Laval nozzle in the laboratory, reciprocally, is here shown to provide relevant data about the 5D bulk Weyl fluid and its on-brane projection, comprised by the minimal geometrically deformed compact stellar distribution on the brane. Acoustic perturbations of the gas fluid flow in the de Laval nozzle are proved to coincide with the quasinormal modes of black holes solutions deformed by the 5D Weyl fluid, in the geometric deformation procedure. Hence, in a phenomenological Eötvös-Friedmann fluid brane-world model, the realistic shape of a de Laval nozzle is derived and its consequences studied.
Tweaking one-loop determinants in AdS3
NASA Astrophysics Data System (ADS)
Castro, Alejandra; Keeler, Cynthia; Szepietowski, Phillip
2017-10-01
We revisit the subject of one-loop determinants in AdS3 gravity via the quasi-normal mode method. Our goal is to evaluate a one-loop determinant with chiral boundary conditions for the metric field; chirality is achieved by imposing Dirichlet boundary conditions on certain components while others satisfy Neumann. Along the way, we give a generalization of the quasinormal mode method for stationary (non-static) thermal backgrounds, and propose a treatment for Neumann boundary conditions in this framework. We evaluate the graviton one-loop determinant on the Euclidean BTZ background with parity-violating boundary conditions (CSS), and find excellent agreement with the dual warped CFT. We also discuss a more general falloff in AdS3 that is related to two dimensional quantum gravity in lightcone gauge. The behavior of the ghost fields under both sets of boundary conditions is novel and we discuss potential interpretations.
Intrinsic cavity QED and emergent quasinormal modes for a single photon
NASA Astrophysics Data System (ADS)
Dong, H.; Gong, Z. R.; Ian, H.; Zhou, Lan; Sun, C. P.
2009-06-01
We propose a special cavity design that is constructed by terminating a one-dimensional waveguide with a perfect mirror at one end and doping a two-level atom at the other. We show that this atom plays the intrinsic role of a semitransparent mirror for single-photon transports such that quasinormal modes emerge spontaneously in the cavity system. This atomic mirror has its reflection coefficient tunable through its level spacing and its coupling to the cavity field, for which the cavity system can be regarded as a two-end resonator with a continuously tunable leakage. The overall investigation predicts the existence of quasibound states in the waveguide continuum. Solid-state implementations based on a dc-superconducting quantum interference device circuit and a defected line resonator embedded in a photonic crystal are illustrated to show the experimental accessibility of the generic model.
Quantum tunneling and quasinormal modes in the spacetime of the Alcubierre warp drive
NASA Astrophysics Data System (ADS)
Jusufi, Kimet; Sakallı, İzzet; Övgün, Ali
2018-01-01
In a seminal paper, Alcubierre showed that Einstein's theory of general relativity appears to allow a super-luminal motion. In the present study, we use a recent eternal-warp-drive solution found by Alcubierre to study the effect of Hawking radiation upon an observer located within the warp drive in the framework of the quantum tunneling method. We find the same expression for the Hawking temperatures associated with the tunneling of both massive vector and scalar particles, and show this expression to be proportional to the velocity of the warp drive. On the other hand, since the discovery of gravitational waves, the quasinormal modes (QNMs) of black holes have also been extensively studied. With this purpose in mind, we perform a QNM analysis of massive scalar field perturbations in the background of the eternal-Alcubierre-warp-drive spacetime. Our analytical analysis shows that massive scalar perturbations lead to stable QNMs.
Gravitational radiation emitted when a mass falls onto a compact star.
NASA Astrophysics Data System (ADS)
Borelli, A.
1997-03-01
The authors study the energy spectrum related to the axial perturbations of a compact star when a particle falls spiralling onto it. They find that both slowly-damped quasi-normal modes and strongly damped w-modes are excited, and that a part of the energy in the process is associated to these w-modes. A substantial difference between the energy spectra of compact stars and black holes is shown.
Linear mode stability of the Kerr-Newman black hole and its quasinormal modes.
Dias, Óscar J C; Godazgar, Mahdi; Santos, Jorge E
2015-04-17
We provide strong evidence that, up to 99.999% of extremality, Kerr-Newman black holes (KNBHs) are linear mode stable within Einstein-Maxwell theory. We derive and solve, numerically, a coupled system of two partial differential equations for two gauge invariant fields that describe the most general linear perturbations of a KNBH. We determine the quasinormal mode (QNM) spectrum of the KNBH as a function of its three parameters and find no unstable modes. In addition, we find that the lowest radial overtone QNMs that are connected continuously to the gravitational ℓ=m=2 Schwarzschild QNM dominate the spectrum for all values of the parameter space (m is the azimuthal number of the wave function and ℓ measures the number of nodes along the polar direction). Furthermore, the (lowest radial overtone) QNMs with ℓ=m approach Reω=mΩH(ext) and Imω=0 at extremality; this is a universal property for any field of arbitrary spin |s|≤2 propagating on a KNBH background (ω is the wave frequency and ΩH(ext) the black hole angular velocity at extremality). We compare our results with available perturbative results in the small charge or small rotation regimes and find good agreement.
Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole
NASA Astrophysics Data System (ADS)
Liang, Jun
2018-01-01
Not Available Supported by the Natural Science Foundation of Education Department of Shannxi Province under Grant No 15JK1077, and the Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No BJ12-02.
Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity
NASA Astrophysics Data System (ADS)
Zhang, Ming; Yue, Rui-Hong
2018-04-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11647050, 11675139 and 51575420, and the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No 16JK1394.
Quasinormal Modes of Charged Dilaton Black Holes and Their Entropy Spectra
NASA Astrophysics Data System (ADS)
Sakalli, I.
2013-08-01
In this study, we employ the scalar perturbations of the charged dilaton black hole (CDBH) found by Chan, Horne and Mann (CHM), and described with an action which emerges in the low-energy limit of the string theory. A CDBH is neither asymptotically flat (AF) nor non-asymptotically flat (NAF) spacetime. Depending on the value of its dilaton parameter a, it has both Schwarzschild and linear dilaton black hole (LDBH) limits. We compute the complex frequencies of the quasinormal modes (QNMs) of the CDBH by considering small perturbations around its horizon. By using the highly damped QNM in the process prescribed by Maggiore, we obtain the quantum entropy and area spectra of these black holes (BHs). Although the QNM frequencies are tuned by a, we show that the quantum spectra do not depend on a, and they are equally spaced. On the other hand, the obtained value of undetermined dimensionless constant ɛ is the double of Bekenstein's result. The possible reason of this discrepancy is also discussed.
Quasi-normal modes of holographic system with Weyl correction and momentum dissipation
NASA Astrophysics Data System (ADS)
Wu, Jian-Pin; Liu, Peng
2018-05-01
We study the charge response in complex frequency plane and the quasi-normal modes (QNMs) of the boundary quantum field theory with momentum dissipation dual to a probe generalized Maxwell system with Weyl correction. When the strength of the momentum dissipation α ˆ is small, the pole structure of the conductivity is similar to the case without the momentum dissipation. The qualitative correspondence between the poles of the real part of the conductivity of the original theory and the ones of its electromagnetic (EM) dual theory approximately holds when γ → - γ with γ being the Weyl coupling parameter. While the strong momentum dissipation alters the pole structure such that most of the poles locate at the purely imaginary axis. At this moment, the correspondence between the poles of the original theory and its EM dual one is violated when γ → - γ. In addition, for the dominant pole, the EM duality almost holds when γ → - γ for all α ˆ except for a small region of α ˆ .
Holography and thermalization in optical pump-probe spectroscopy
NASA Astrophysics Data System (ADS)
Bagrov, A.; Craps, B.; Galli, F.; Keränen, V.; Keski-Vakkuri, E.; Zaanen, J.
2018-04-01
Using holography, we model experiments in which a 2 +1 D strange metal is pumped by a laser pulse into a highly excited state, after which the time evolution of the optical conductivity is probed. We consider a finite-density state with mildly broken translation invariance and excite it by oscillating electric field pulses. At zero density, the optical conductivity would assume its thermalized value immediately after the pumping has ended. At finite density, pulses with significant dc components give rise to slow exponential relaxation, governed by a vector quasinormal mode. In contrast, for high-frequency pulses the amplitude of the quasinormal mode is strongly suppressed, so that the optical conductivity assumes its thermalized value effectively instantaneously. This surprising prediction may provide a stimulus for taking up the challenge to realize these experiments in the laboratory. Such experiments would test a crucial open question faced by applied holography: are its predictions artifacts of the large N limit or do they enjoy sufficient UV independence to hold at least qualitatively in real-world systems?
Parametrically coupled fermionic oscillators: Correlation functions and phase-space description
NASA Astrophysics Data System (ADS)
Ghosh, Arnab
2015-01-01
A fermionic analog of a parametric amplifier is used to describe the joint quantum state of the two interacting fermionic modes. Based on a two-mode generalization of the time-dependent density operator, time evolution of the fermionic density operator is determined in terms of its two-mode Wigner and P function. It is shown that the equation of motion of the Wigner function corresponds to a fermionic analog of Liouville's equation. The equilibrium density operator for fermionic fields developed by Cahill and Glauber is thus extended to a dynamical context to show that the mathematical structures of both the correlation functions and the weight factors closely resemble their bosonic counterpart. It has been shown that the fermionic correlation functions are marked by a characteristic upper bound due to Fermi statistics, which can be verified in the matter wave counterpart of photon down-conversion experiments.
Baby Skyrme model and fermionic zero modes
NASA Astrophysics Data System (ADS)
Queiruga, J. M.
2016-09-01
In this work we investigate some features of the fermionic sector of the supersymmetric version of the baby Skyrme model. We find that, in the background of Bogomol'nyi-Prasad-Sommerfield compact baby Skyrmions, fermionic zero modes are confined to the defect core. Further, we show that, while three Supersymmetry (SUSY) generators are broken in the defect core, SUSY is completely restored outside. We study also the effect of a D-term deformation of the model. Such a deformation allows for the existence of fermionic zero modes and broken SUSY outside the compact defect.
Anatomy of the binary black hole recoil: A multipolar analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnittman, Jeremy D.; Buonanno, Alessandra; Meter, James R. van
2008-02-15
We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and nonzero, nonprecessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within {approx_equal}2%) and that only a few dominant modes contribute significantly to it (within {approx_equal}5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical resultsmore » can be reproduced by an 'effective Newtonian' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulas with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasinormal modes. Analytic formulas, obtained by expressing the multipole moments in terms of the fundamental quasinormal modes of a Kerr black hole, are able to explain the onset and amount of 'antikick' for each of the simulations. Lastly, we apply this multipolar analysis to help explain the remarkable difference between the amplitudes of planar and nonplanar kicks for equal-mass spinning black holes.« less
Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure
He, Qing Lin; Pan, Lei; Stern, Alexander L.; ...
2017-07-21
Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantummore » computing.« less
Quasinormal modes of charged magnetic black branes & chiral magnetic transport
NASA Astrophysics Data System (ADS)
Ammon, Martin; Kaminski, Matthias; Koirala, Roshan; Leiber, Julian; Wu, Jackson
2017-04-01
We compute quasinormal modes (QNMs) of the metric and gauge field perturbations about black branes electrically and magnetically charged in the Einstein-Maxwell-Chern-Simons theory. By the gauge/gravity correspondence, this theory is dual to a particular class of field theories with a chiral anomaly, in a thermal charged plasma state subjected to a constant external magnetic field, B. The QNMs are dual to the poles of the two-point functions of the energy-momentum and axial current operators, and they encode information about the dissipation and transport of charges in the plasma. Complementary to the gravity calculation, we work out the hydrodynamic description of the dual field theory in the presence of a chiral anomaly, and a constant external B. We find good agreement with the weak field hydrodynamics, which can extend beyond the weak B regime into intermediate regimes. Furthermore, we provide results that can be tested against thermodynamics and hydrodynamics in the strong B regime. We find QNMs exhibiting Landau level behavior, which become long-lived at large B if the anomaly coefficient exceeds a critical magnitude. Chiral transport is analyzed beyond the hydrodynamic approximation for the five (formerly) hydrodynamic modes, including a chiral magnetic wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, Gerardo, E-mail: ortizg@indiana.edu; Cobanera, Emilio
We investigate Majorana modes of number-conserving fermionic superfluids from both basic physics principles, and concrete models perspectives. After reviewing a criterion for establishing topological superfluidity in interacting systems, based on many-body fermionic parity switches, we reveal the emergence of zero-energy modes anticommuting with fermionic parity. Those many-body Majorana modes are constructed as coherent superpositions of states with different number of fermions. While realization of Majorana modes beyond mean field is plausible, we show that the challenge to quantum-control them is compounded by particle-conservation, and more realistic protocols will have to balance engineering needs with astringent constraints coming from superselection rules.more » Majorana modes in number-conserving systems are the result of a peculiar interplay between quantum statistics, fermionic parity, and an unusual form of spontaneous symmetry breaking. We test these ideas on the Richardson–Gaudin–Kitaev chain, a number-conserving model solvable by way of the algebraic Bethe ansatz, and equivalent in mean field to a long-range Kitaev chain.« less
NASA Astrophysics Data System (ADS)
Liang, >Jun
2018-05-01
Not Available Supported by the Natural Science Foundation of Education Department of Shannxi Province under Grant No 15JK1077, and the Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No BJ12-02.
Scalar Hairy Black Holes in Four Dimensions are Unstable
NASA Astrophysics Data System (ADS)
Ganchev, Bogdan; Santos, Jorge E.
2018-04-01
We present a numerical analysis of the stability properties of the black holes with scalar hair constructed by Herdeiro and Radu. We prove the existence of a novel gauge where the scalar field perturbations decouple from the metric perturbations, and analyze the resulting quasinormal mode spectrum. We find unstable modes with characteristic growth rates which for uniformly small hair are almost identical to those of a massive scalar field on a fixed Kerr background.
Scalar Hairy Black Holes in Four Dimensions are Unstable.
Ganchev, Bogdan; Santos, Jorge E
2018-04-27
We present a numerical analysis of the stability properties of the black holes with scalar hair constructed by Herdeiro and Radu. We prove the existence of a novel gauge where the scalar field perturbations decouple from the metric perturbations, and analyze the resulting quasinormal mode spectrum. We find unstable modes with characteristic growth rates which for uniformly small hair are almost identical to those of a massive scalar field on a fixed Kerr background.
Majorana-Based Fermionic Quantum Computation.
O'Brien, T E; Rożek, P; Akhmerov, A R
2018-06-01
Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O(1) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.
Majorana-Based Fermionic Quantum Computation
NASA Astrophysics Data System (ADS)
O'Brien, T. E.; RoŻek, P.; Akhmerov, A. R.
2018-06-01
Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O (1 ) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.
Fermionic entanglement that survives a black hole
NASA Astrophysics Data System (ADS)
Martín-Martínez, Eduardo; León, Juan
2009-10-01
We introduce an arbitrary number of accessible modes when analyzing bipartite entanglement degradation due to Unruh effect between two partners Alice and Rob. Under the single mode approximation (SMA) a fermion field only had a few accessible levels due to Pauli exclusion principle conversely to bosonic fields which had an infinite number of excitable levels. This was argued to justify entanglement survival in the fermionic case in the SMA infinite acceleration limit. Here we relax SMA. Hence, an infinite number of modes are excited as the observer Rob accelerates, even for a fermion field. We will prove that, despite this analogy with the bosonic case, entanglement loss is limited. We will show that this comes from fermionic statistics through the characteristic structure it imposes on the infinite dimensional density matrix for Rob. Surprisingly, the surviving entanglement is independent of the specific maximally entangled state chosen, the kind of fermionic field analyzed, and the number of accessible modes considered. We shall discuss whether this surviving entanglement goes beyond the purely statistical correlations, giving insight concerning the black hole information paradox.
Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure.
He, Qing Lin; Pan, Lei; Stern, Alexander L; Burks, Edward C; Che, Xiaoyu; Yin, Gen; Wang, Jing; Lian, Biao; Zhou, Quan; Choi, Eun Sang; Murata, Koichi; Kou, Xufeng; Chen, Zhijie; Nie, Tianxiao; Shao, Qiming; Fan, Yabin; Zhang, Shou-Cheng; Liu, Kai; Xia, Jing; Wang, Kang L
2017-07-21
Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantum computing. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Quasinormal modes as a distinguisher between general relativity and f (R ) gravity
NASA Astrophysics Data System (ADS)
Bhattacharyya, Soham; Shankaranarayanan, S.
2017-09-01
Quasinormal modes (QNMs) or the ringdown phase of gravitational waves provide critical information about the structure of compact objects like black holes. Thus, QNMs can be a tool to test general relativity (GR) and possible deviations from it. In the case of GR, it has been known for a long time that a relation between two types of black hole perturbations—scalar (Zerilli) and vector (Regge-Wheeler)—leads to an equal share of emitted gravitational energy. With the direct detection of gravitational waves, it is now natural to ask whether the same relation (between scalar and vector perturbations) holds for modified gravity theories, and if not, whether one can use this as a way to probe deviations from general relativity. As a first step, we show explicitly that the above relation between Regge-Wheeler and Zerilli perturbations breaks down for a general f (R ) model and hence the two perturbations do not share equal amounts of emitted gravitational energy. We discuss the implication of this imbalance for observations and the no-hair conjecture.
NASA Astrophysics Data System (ADS)
Yang, Kun
2017-12-01
We consider an interface separating the Moore-Read state and Halperin 331 state in a half-filled Landau level, which can be realized in a double quantum well system with varying interwell tunneling and/or interaction strengths. In the presence of electron tunneling and strong Coulomb interactions across the interface, we find that all charge modes localize and the only propagating mode left is a chiral Majorana fermion mode. Methods to probe this neutral mode are proposed. A quantum phase transition between the Moore-Read and Halperin 331 states is described by a network of such Majorana fermion modes. In addition to a direct transition, they may also be separated by a phase in which the Majorana fermions are delocalized, realizing an incompressible state which exhibits quantum Hall charge transport and bulk heat conduction.
Self-force calculations with matched expansions and quasinormal mode sums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casals, Marc; Dolan, Sam; Ottewill, Adrian C.
2009-06-15
Accurate modeling of gravitational wave emission by extreme-mass ratio inspirals is essential for their detection by the LISA mission. A leading perturbative approach involves the calculation of the self-force acting upon the smaller orbital body. In this work, we present the first application of the Poisson-Wiseman-Anderson method of 'matched expansions' to compute the self-force acting on a point particle moving in a curved spacetime. The method employs two expansions for the Green function, which are, respectively, valid in the 'quasilocal' and 'distant past' regimes, and which may be matched together within the normal neighborhood. We perform our calculation in amore » static region of the spherically symmetric Nariai spacetime (dS{sub 2}xS{sup 2}), in which scalar-field perturbations are governed by a radial equation with a Poeschl-Teller potential (frequently used as an approximation to the Schwarzschild radial potential) whose solutions are known in closed form. The key new ingredients in our study are (i) very high order quasilocal expansions and (ii) expansion of the distant past Green function in quasinormal modes. In combination, these tools enable a detailed study of the properties of the scalar-field Green function. We demonstrate that the Green function is singular whenever x and x{sup '} are connected by a null geodesic, and apply asymptotic methods to determine the structure of the Green function near the null wave front. We show that the singular part of the Green function undergoes a transition each time the null wave front passes through a caustic point, following a repeating fourfold sequence {delta}({sigma}), 1/{pi}{sigma}, -{delta}({sigma}), -1/{pi}{sigma}, etc., where {sigma} is Synge's world function. The matched-expansion method provides insight into the nonlocal properties of the self-force. We show that the self-force generated by the segment of the worldline lying outside the normal neighborhood is not negligible. We apply the matched-expansion method to compute the scalar self-force acting on a static particle on the Nariai spacetime, and validate against an alternative method, obtaining agreement to six decimal places. We conclude with a discussion of the implications for wave propagation and self-force calculations. On black hole spacetimes, any expansion of the Green function in quasinormal modes must be augmented by a branch-cut integral. Nevertheless, we expect the Green function in Schwarzschild spacetime to inherit certain key features, such as a fourfold singular structure manifesting itself through the asymptotic behavior of quasinormal modes. In this way, the Nariai spacetime provides a fertile testing ground for developing insight into the nonlocal part of the self-force on black hole spacetimes.« less
NASA Astrophysics Data System (ADS)
González, P. A.; Papantonopoulos, Eleftherios; Saavedra, Joel; Vásquez, Yerko
2017-03-01
We study the instability of near extremal and extremal four-dimensional anti-de Sitter charged hairy black holes to radial neutral massive and charged massless scalar field perturbations. We solve the scalar field equation by using the improved asymptotic iteration method and the time domain analysis, and we find the quasinormal frequencies. For the charged scalar perturbations, we find the superradiance condition by computing the reflection coefficient in the low-frequency limit, and we show that in the superradiance regime, which depends on the scalar hair charge, all modes of radial charged massless perturbations are unstable, indicating that the charged hairy black hole is superradiantly unstable. On the other hand, calculating the quasinormal frequencies of radial neutral scalar perturbations in this background, we find stability of the charged hairy black hole.
Staggered fermions, zero modes, and flavor-singlet mesons
Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; ...
2011-09-12
We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold onmore » realistic lattice gauge fields. We find that the needed structure does indeed emerge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qing Lin; Pan, Lei; Stern, Alexander L.
Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantummore » computing.« less
Pani, Paolo; Berti, Emanuele; Gualtieri, Leonardo
2013-06-14
The most general stationary black-hole solution of Einstein-Maxwell theory in vacuum is the Kerr-Newman metric, specified by three parameters: mass M, spin J, and charge Q. Within classical general relativity, one of the most important and challenging open problems in black-hole perturbation theory is the study of gravitational and electromagnetic fields in the Kerr-Newman geometry, because of the indissoluble coupling of the perturbation functions. Here we circumvent this long-standing problem by working in the slow-rotation limit. We compute the quasinormal modes up to linear order in J for any value of Q and provide the first, fully consistent stability analysis of the Kerr-Newman metric. For scalar perturbations the quasinormal modes can be computed exactly, and we demonstrate that the method is accurate within 3% for spins J/J(max) ≲ 0.5, where J(max) is the maximum allowed spin for any value of Q. Quite remarkably, we find numerical evidence that the axial and polar sectors of the gravitoelectromagnetic perturbations are isospectral to linear order in the spin. The extension of our results to nonasymptotically flat space-times could be useful in the context of gauge-gravity dualities and string theory.
Black holes and gravitational waves in models of minicharged dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardoso, Vitor; Perimeter Institute for Theoretical Physics,31 Caroline Street North Waterloo, Ontario N2L 2Y5; Macedo, Caio F.B.
In viable models of minicharged dark matter, astrophysical black holes might be charged under a hidden U(1) symmetry and are formally described by the same Kerr-Newman solution of Einstein-Maxwell theory. These objects are unique probes of minicharged dark matter and dark photons. We show that the recent gravitational-wave detection of a binary black-hole coalescence by aLIGO provides various observational bounds on the black hole’s charge, regardless of its nature. The pre-merger inspiral phase can be used to constrain the dipolar emission of (ordinary and dark) photons, whereas the detection of the quasinormal modes set an upper limit on the finalmore » black hole’s charge. By using a toy model of a point charge plunging into a Reissner-Nordstrom black hole, we also show that in dynamical processes the (hidden) electromagnetic quasinormal modes of the final object are excited to considerable amplitude in the gravitational-wave spectrum only when the black hole is nearly extremal. The coalescence produces a burst of low-frequency dark photons which might provide a possible electromagnetic counterpart to black-hole mergers in these scenarios.« less
Multipartite entanglement in fermionic systems via a geometric measure
NASA Astrophysics Data System (ADS)
Lari, Behzad; Durganandini, P.; Joag, Pramod S.
2010-12-01
We study multipartite entanglement in a system consisting of indistinguishable fermions. Specifically, we have proposed a geometric entanglement measure for N spin-(1)/(2) fermions distributed over 2L modes (single-particle states). The measure is defined on the 2L qubit space isomorphic to the Fock space for 2L single-particle states. This entanglement measure is defined for a given partition of 2L modes containing m⩾2 subsets. Thus this measure applies to m⩽2L partite fermionic systems where L is any finite number, giving the number of sites. The Hilbert spaces associated with these subsets may have different dimensions. Further, we have defined the local quantum operations with respect to a given partition of modes. This definition is generic and unifies different ways of dividing a fermionic system into subsystems. We have shown, using a representative case, that the geometric measure is invariant under local unitary operators corresponding to a given partition. We explicitly demonstrate the use of the measure to calculate multipartite entanglement in some correlated electron systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodama, Yuta; Kokubu, Kento; Sawado, Nobuyuki
We construct brane solutions in 6-dimensional Einstein-Skyrme systems. A class of baby-Skyrmion solutions realizes warped compactification of the extra dimensions and gravity localization on the brane for the negative bulk cosmological constant. Coupling of the fermions with brane Skyrmions leads to brane localized fermions. In terms of the level crossing picture, emergence of the massive localized modes are observed. The nonlinear nature of Skyrmions brings richer information for the fermions' level structure. It comprises doubly degenerate lowest plus single excited modes. Three generations of fundamental fermions are associated with this distinctive structure. The mass hierarchy of quarks or leptons appearedmore » in terms of slightly deformed baby Skyrmions with topological charge three.« less
Grassmann phase space methods for fermions. II. Field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, B.J., E-mail: bdalton@swin.edu.au; Jeffers, J.; Barnett, S.M.
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, thoughmore » fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.« less
Analytic family of post-merger template waveforms
NASA Astrophysics Data System (ADS)
Del Pozzo, Walter; Nagar, Alessandro
2017-06-01
Building on the analytical description of the post-merger (ringdown) waveform of coalescing, nonprecessing, spinning binary black holes introduced by Damour and Nagar [Phys. Rev. D 90, 024054 (2014), 10.1103/PhysRevD.90.024054], we propose an analytic, closed form, time-domain, representation of the ℓ=m =2 gravitational radiation mode emitted after merger. This expression is given as a function of the component masses and dimensionless spins (m1 ,2,χ1 ,2) of the two inspiraling objects, as well as of the mass MBH and (complex) frequency σ1 of the fundamental quasinormal mode of the remnant black hole. Our proposed template is obtained by fitting the post-merger waveform part of several publicly available numerical relativity simulations from the Simulating eXtreme Spacetimes (SXS) catalog and then suitably interpolating over (symmetric) mass ratio and spins. We show that this analytic expression accurately reproduces (˜0.01 rad ) the phasing of the post-merger data of other data sets not used in its construction. This is notably the case of the spin-aligned run SXS:BBH:0305, whose intrinsic parameters are consistent with the 90% credible intervals reported in the parameter-estimation followup of GW150914 by B.P. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016), 10.1103/PhysRevLett.116.241102]. Using SXS waveforms as "experimental" data, we further show that our template could be used on the actual GW150914 data to perform a new measure of the complex frequency of the fundamental quasinormal mode so as to exploit the complete (high signal-to-noise-ratio) post-merger waveform. We assess the usefulness of our proposed template by analyzing, in a realistic setting, SXS full inspiral-merger-ringdown waveforms and constructing posterior probability distribution functions for the central frequency damping time of the first overtone of the fundamental quasinormal mode as well as for the physical parameters of the systems. We also briefly explore the possibility opened by our waveform model to test the second law of black hole dynamics. Our model will help improve current tests of general relativity, in particular the general-relativistic no-hair theorem, and allow for novel tests, such as that of the area theorem.
Investigations of black-hole spectra: Purely-imaginary modes and Kerr ringdown radiation
NASA Astrophysics Data System (ADS)
Zalutskiy, Maxim P.
When black holes are perturbed they give rise to characteristic waves that propagate outwards carrying information about the black hole. In the linear regime these waves are described in terms of quasinormal modes (QNM). Studying QNM is an important topic which may provide a connection to the quantum theory of gravity in addition to their astrophysical applications. Quasinormal modes correspond to complex frequencies where the real part represents oscillation and the imaginary part represents damping. We have developed a new code for calculating QNM with high precision and accuracy, which we applied to the Schwarzschild and Kerr geometries. The high accuracy of our calculations was a significant improvement over prior work, allowing us to compute QNM much closer to the negative imaginary axis (NIA) than it was possible before. The existence of QNM on the NIA has remained poorly understood, but our high accuracy studies have highlighted the importance of understanding their nature. In this work we show how the purely-imaginary modes can be calculated with the help of the theory of confluent Heun polynomials with the conclusion that all modes on the NIA correspond to polynomial solutions. We also show that certain types of these modes correspond to Kerr QNM. Finally, using our highly accurate QNM data we model the ringdown, a remnant black hole's decaying radiation. Ringdown occurs in the final stages of such violent astrophysical events as supernovae and black hole collisions. We use our model to analyse the ringdown waveforms from the publicly available binary black hole coalescence catalog maintained by the SXS collaboration. In our analysis we use a number of methods: Fourier transform, multi-mode nonlinear fitting and waveform overlap. Both our fitting and overlap approach allow inclusion of many modes in the ringdown model with the goal being to extract information about the nature of the astrophysical source of the ringdown signal.
Gravitational quasi-normal modes of static R 2 Anti-de Sitter black holes
NASA Astrophysics Data System (ADS)
Ma, Hong; Li, Jin
2017-06-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11205254, 11178018, 11375279, and 11605015), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 106112016CDJXY300002 and CDJRC10300003), the Chinese State Scholarship Fund, FAPESP (Grant No. 2012/08934-0), and the Natural Science Foundation Project of CQ CSTC (Grant No. 2011BB0052).
Quasinormal acoustic oscillations in the Michel flow
NASA Astrophysics Data System (ADS)
Chaverra, Eliana; Morales, Manuel D.; Sarbach, Olivier
2015-05-01
We study spherical and nonspherical linear acoustic perturbations of the Michel flow, which describes the steady radial accretion of a perfect fluid into a nonrotating black hole. The dynamics of such perturbations are governed by a scalar wave equation on an effective curved background geometry determined by the acoustic metric, which is constructed from the spacetime metric and the particle density and four-velocity of the fluid. For the problem under consideration in this paper the acoustic metric has the same qualitative features as an asymptotically flat, static and spherically symmetric black hole, and thus it represents a natural astrophysical analogue black hole. As for the case of a scalar field propagating on a Schwarzschild background, we show that acoustic perturbations of the Michel flow exhibit quasinormal oscillations. Based on a new numerical method for determining the solutions of the radial mode equation, we compute the associated frequencies and analyze their dependency on the mass of the black hole, the radius of the sonic horizon and the angular momentum number. Our results for the fundamental frequencies are compared to those obtained from an independent numerical Cauchy evolution, finding good agreement between the two approaches. When the radius of the sonic horizon is large compared to the event horizon radius, we find that the quasinormal frequencies scale approximately like the surface gravity associated with the sonic horizon.
Sarkar, Sujit
2017-05-12
An attempt is made to understand the topological quantum phase transition, emergence of relativistic modes and local topological order of light in a strongly interacting light-matter system. We study this system, in a one dimensional array of nonlinear cavities. Topological quantum phase transition occurs with massless excitation only for the finite detuning process. We present a few results based on the exact analytical calculations along with the physical explanations. We observe the emergence of massive Majorana fermion mode at the topological state, massless Majorana-Weyl fermion mode during the topological quantum phase transition and Dirac fermion mode for the non-topological state. Finally, we study the quantized Berry phase (topological order) and its connection to the topological number (winding number).
Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli
2015-01-01
We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion’s scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit. PMID:26522094
Scalar field coupling to Einstein tensor in regular black hole spacetime
NASA Astrophysics Data System (ADS)
Zhang, Chi; Wu, Chen
2018-02-01
In this paper, we study the perturbation property of a scalar field coupling to Einstein's tensor in the background of the regular black hole spacetimes. Our calculations show that the the coupling constant η imprints in the wave equation of a scalar perturbation. We calculated the quasinormal modes of scalar field coupling to Einstein's tensor in the regular black hole spacetimes by the 3rd order WKB method.
Dirac Quasinormal Modes of Static f(R) de Sitter Black Holes
NASA Astrophysics Data System (ADS)
Ma, Hong
2018-02-01
Quasinormal modes (QNMs) for Dirac perturbations of f(R) black holes (BHs) are described in this paper, involving two types of f(R) solution: f(R) (Schwarzschild) BHs and f(R) (Maxwell) BHs. With the finite difference method, the stability of the f(R) black holes (BHs) is analysed and the threshold range of f(R) (Schwarzschild) BHs and f(R) (Maxwell) BHs is defined respectively. The results show that due to the presence of the correction factor R0, the damping rate of Dirac field decreases. Meanwhile, the influence of angular quantum number values |k| on the f(R) BHs is investigated. The results indicate that the QNMs oscillation becomes tenser and damping speed slowly decreases with |k| increasing. Furthermore, under the Dirac perturbation, the stability of f(R) solutions can be reflected in the manner of Dirac QNMs. The relationships between the QNMs and the parameters (|k|, charge Q and mass m) are discussed in massless, and massive cases, by contrast to the classical BHs. Supported by FAPESP No. 2012/08934-0, National Natural Science Foundation of China under Grant Nos. 11205254, 11178018, 11375279, 11605015, and the Natural Science Foundation Project of CQ CSTC 2011BB0052, and the Fundamental Research Funds for the Central Universities 106112016CDJXY300002 and CDJRC10300003
NASA Astrophysics Data System (ADS)
Shifman, M.; Yung, A.
2018-03-01
Non-Abelian strings are considered in non-supersymmetric theories with fermions in various appropriate representations of the gauge group U(N). We derive the electric charge quantization conditions and the index theorems counting fermion zero modes in the string background both for the left-handed and right-handed fermions. In both cases we observe a non-trivial N dependence.
The spectrum of static subtracted geometries
NASA Astrophysics Data System (ADS)
Andrade, Tomás; Castro, Alejandra; Cohen-Maldonado, Diego
2017-05-01
Subtracted geometries are black hole solutions of the four dimensional STU model with rather interesting ties to asymptotically flat black holes. A peculiar feature is that the solutions to the Klein-Gordon equation on this subtracted background can be organized according to representations of the conformal group SO(2, 2). We test if this behavior persists for the linearized fluctuations of gravitational and matter fields on static, electrically charged backgrounds of this kind. We find that there is a subsector of the modes that do display conformal symmetry, while some modes do not. We also discuss two different effective actions that describe these subtracted geometries and how the spectrum of quasinormal modes is dramatically different depending upon the action used.
Diffusion for holographic lattices
NASA Astrophysics Data System (ADS)
Donos, Aristomenis; Gauntlett, Jerome P.; Ziogas, Vaios
2018-03-01
We consider black hole spacetimes that are holographically dual to strongly coupled field theories in which spatial translations are broken explicitly. We discuss how the quasinormal modes associated with diffusion of heat and charge can be systematically constructed in a long wavelength perturbative expansion. We show that the dispersion relation for these modes is given in terms of the thermoelectric DC conductivity and static susceptibilities of the dual field theory and thus we derive a generalised Einstein relation from Einstein's equations. A corollary of our results is that thermodynamic instabilities imply specific types of dynamical instabilities of the associated black hole solutions.
Nonperturbative quantization of the electroweak model's electrodynamic sector
NASA Astrophysics Data System (ADS)
Fry, M. P.
2015-04-01
Consider the Euclidean functional integral representation of any physical process in the electroweak model. Integrating out the fermion degrees of freedom introduces 24 fermion determinants. These multiply the Gaussian functional measures of the Maxwell, Z , W , and Higgs fields to give an effective functional measure. Suppose the functional integral over the Maxwell field is attempted first. This paper is concerned with the large amplitude behavior of the Maxwell effective measure. It is assumed that the large amplitude variation of this measure is insensitive to the presence of the Z , W , and H fields; they are assumed to be a subdominant perturbation of the large amplitude Maxwell sector. Accordingly, we need only examine the large amplitude variation of a single QED fermion determinant. To facilitate this the Schwinger proper time representation of this determinant is decomposed into a sum of three terms. The advantage of this is that the separate terms can be nonperturbatively estimated for a measurable class of large amplitude random fields in four dimensions. It is found that the QED fermion determinant grows faster than exp [c e2∫d4x Fμν 2] , c >0 , in the absence of zero mode supporting random background potentials. This raises doubt on whether the QED fermion determinant is integrable with any Gaussian measure whose support does not include zero mode supporting potentials. Including zero mode supporting background potentials can result in a decaying exponential growth of the fermion determinant. This is prima facie evidence that Maxwellian zero modes are necessary for the nonperturbative quantization of QED and, by implication, for the nonperturbative quantization of the electroweak model.
Limitation to Communication of Fermionic System in Accelerated Frame
NASA Astrophysics Data System (ADS)
Chang, Jinho; Kwon, Younghun
2015-03-01
In this article, we investigate communication between an inertial observer and an accelerated observer, sharing fermionic system, when they use classical and quantum communication using single rail or dual rail encoding. The purpose of this work is to understand the limit to the communication between an inertial observer and an accelerated observer, with single rail or dual rail encoding of fermionic system. We observe that at the infinite acceleration, the coherent information of single(or double) rail quantum channel vanishes, but those of classical ones may have finite values. In addition, we see that even when considering a method beyond the single-mode approximation, for the communication between Alice and Bob, the dual rail entangled state seems to provide better information transfer than the single rail entangled state, when we take a fixed choice of the Unruh mode. Moreover, we find that the single-mode approximation may not be sufficient to analyze communication of fermionic system in an accelerated frame.
Modeling electron fractionalization with unconventional Fock spaces.
Cobanera, Emilio
2017-08-02
It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality [Formula: see text] of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.
Mode entanglement of Gaussian fermionic states
NASA Astrophysics Data System (ADS)
Spee, C.; Schwaiger, K.; Giedke, G.; Kraus, B.
2018-04-01
We investigate the entanglement of n -mode n -partite Gaussian fermionic states (GFS). First, we identify a reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC) among pure n -partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian SLOCC classes of pure n -mode n -partite states and derive them explicitly for few-mode states. Furthermore, we consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n -mode n -partite GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside this set via fermionic LOCC. We generalize these findings also to the pure m -mode n -partite (for m >n ) case.
Grassmann phase space methods for fermions. I. Mode theory
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Jeffers, J.; Barnett, S. M.
2016-07-01
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggest the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. The theory of Grassmann phase space methods for fermions based on separate modes is developed, showing how the distribution function is defined and used to determine quantum correlation functions, Fock state populations and coherences via Grassmann phase space integrals, how the Fokker-Planck equations are obtained and then converted into equivalent Ito equations for stochastic Grassmann variables. The fermion distribution function is an even Grassmann function, and is unique. The number of c-number Wiener increments involved is 2n2, if there are n modes. The situation is somewhat different to the bosonic c-number case where only 2 n Wiener increments are involved, the sign of the drift term in the Ito equation is reversed and the diffusion matrix in the Fokker-Planck equation is anti-symmetric rather than symmetric. The un-normalised B distribution is of particular importance for determining Fock state populations and coherences, and as pointed out by Plimak, Collett and Olsen, the drift vector in its Fokker-Planck equation only depends linearly on the Grassmann variables. Using this key feature we show how the Ito stochastic equations can be solved numerically for finite times in terms of c-number stochastic quantities. Averages of products of Grassmann stochastic variables at the initial time are also involved, but these are determined from the initial conditions for the quantum state. The detailed approach to the numerics is outlined, showing that (apart from standard issues in such numerics) numerical calculations for Grassmann phase space theories of fermion systems could be carried out without needing to represent Grassmann phase space variables on the computer, and only involving processes using c-numbers. We compare our approach to that of Plimak, Collett and Olsen and show that the two approaches differ. As a simple test case we apply the B distribution theory and solve the Ito stochastic equations to demonstrate coupling between degenerate Cooper pairs in a four mode fermionic system involving spin conserving interactions between the spin 1 / 2 fermions, where modes with momenta - k , + k-each associated with spin up, spin down states, are involved.
Adding gauge fields to Kaplan's fermions
NASA Astrophysics Data System (ADS)
Blum, T.; Kärkkäinen, Leo
1994-04-01
We experiment with adding dynamical gauge field to Kaplan (defect) fermions. In the case of U (1) gauge theory we use an inhomogenous Higgs mechanism to restrict the 3d gauge dynamics to a planar 2d defect. In our simulations the 3d theory produce the correct 2d gauge dynamics. We measure fermion propagators with dynamical gauge fields. They posses the correct chiral structure. The fermions at the boundary of the support of the gauge field (waveguide) are non-chiral, and have a mass two times heavier than the chiral modes. Moreover, these modes cannot be excited by a source at the defect; implying that they are dynamically decoupled. We have also checked that the anomaly relation is fullfilled for the case of a smooth external gauge field.
Entanglement Hamiltonians for Chiral Fermions with Zero Modes.
Klich, Israel; Vaman, Diana; Wong, Gabriel
2017-09-22
In this Letter, we study the effect of topological zero modes on entanglement Hamiltonians and the entropy of free chiral fermions in (1+1)D. We show how Riemann-Hilbert solutions combined with finite rank perturbation theory allow us to obtain exact expressions for entanglement Hamiltonians. In the absence of the zero mode, the resulting entanglement Hamiltonians consist of local and bilocal terms. In the periodic sector, the presence of a zero mode leads to an additional nonlocal contribution to the entanglement Hamiltonian. We derive an exact expression for this term and for the resulting change in the entanglement entropy.
Anderson localization in sigma models
NASA Astrophysics Data System (ADS)
Bruckmann, Falk; Wellnhofer, Jacob
2018-03-01
In QCD above the chiral restoration temperature there exists an Anderson transition in the fermion spectrum from localized to delocalized modes. We investigate whether the same holds for nonlinear sigma models which share properties like dynamical mass generation and asymptotic freedom with QCD. In particular we study the spectra of fermions coupled to (quenched) CP(N-1) configurations at high temperatures. We compare results in two and three space-time dimensions: in two dimensions the Anderson transition is absent, since all fermion modes are localized, while in three dimensions it is present. Our measurements include a more recent observable characterizing level spacings: the distribution of ratios of consecutive level spacings.
Xu, Jin-Peng; Wang, Mei-Xiao; Liu, Zhi Long; Ge, Jian-Feng; Yang, Xiaojun; Liu, Canhua; Xu, Zhu An; Guan, Dandan; Gao, Chun Lei; Qian, Dong; Liu, Ying; Wang, Qiang-Hua; Zhang, Fu-Chun; Xue, Qi-Kun; Jia, Jin-Feng
2015-01-09
Majorana fermions have been intensively studied in recent years for their importance to both fundamental science and potential applications in topological quantum computing. They are predicted to exist in a vortex core of superconducting topological insulators. However, it is extremely difficult to distinguish them experimentally from other quasiparticle states for the tiny energy difference between Majorana fermions and these states, which is beyond the energy resolution of most available techniques. Here, we circumvent the problem by systematically investigating the spatial profile of the Majorana mode and the bound quasiparticle states within a vortex in Bi(2)Te(3) films grown on a superconductor NbSe(2). While the zero bias peak in local conductance splits right off the vortex center in conventional superconductors, it splits off at a finite distance ∼20 nm away from the vortex center in Bi(2)Te(3). This unusual splitting behavior has never been observed before and could be possibly due to the Majorana fermion zero mode. While the Majorana mode is destroyed by the interaction between vortices, the zero bias peak splits as a conventional superconductor again. This work provides self-consistent evidences of Majorana fermions and also suggests a possible route to manipulating them.
Hierarchy of Modes in an Interacting One-Dimensional System
NASA Astrophysics Data System (ADS)
Tsyplyatyev, O.; Schofield, A. J.; Jin, Y.; Moreno, M.; Tan, W. K.; Ford, C. J. B.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.
2015-05-01
Studying interacting fermions in one dimension at high energy, we find a hierarchy in the spectral weights of the excitations theoretically, and we observe evidence for second-level excitations experimentally. Diagonalizing a model of fermions (without spin), we show that levels of the hierarchy are separated by powers of R2/L2, where R is a length scale related to interactions and L is the system length. The first-level (strongest) excitations form a mode with parabolic dispersion, like that of a renormalized single particle. The second-level excitations produce a singular power-law line shape to the first-level mode and multiple power laws at the spectral edge. We measure momentum-resolved tunneling of electrons (fermions with spin) from or to a wire formed within a GaAs heterostructure, which shows parabolic dispersion of the first-level mode and well-resolved spin-charge separation at low energy with appreciable interaction strength. We find structure resembling the second-level excitations, which dies away quite rapidly at high momentum.
Observation of a hierarchy of modes in an interacting one-dimensional system
NASA Astrophysics Data System (ADS)
Ford, Christopher; Moreno, Maria; Jin, Yiqing; Tan, Wooi Kiat; Griffiths, Jon; Farrer, Ian; Jones, Geb; Anthore, Anne; Ritchie, David; Tsyplyatyev, Oleksandr; Schofield, Andrew
2015-03-01
Studying interacting fermions in 1D at high energy, we find a hierarchy in the spectral weights of the excitations theoretically and we observe evidence for second-level excitations experimentally. Diagonalising a model of fermions (without spin), we show that levels of the hierarchy are separated by powers of 2 /L2 , where is a length-scale related to interactions and L is the system length. The first-level (strongest) excitations form a mode with parabolic dispersion, like that of a renormalised single particle. The second-level excitations produce a singular power-law line shape to the first-level mode and multiple power-laws at the spectral edge. We measure momentum-resolved tunneling of electrons (fermions with spin) from/to a wire formed within a GaAs heterostructure, which shows parabolic dispersion of the first-level mode and well-resolved spin-charge separation at low energy with appreciable interaction strength. We find structure resembling the second-level excitations, which dies away quite rapidly at high momentum.
Extrapolation of operators acting into quasi-Banach spaces
NASA Astrophysics Data System (ADS)
Lykov, K. V.
2016-01-01
Linear and sublinear operators acting from the scale of L_p spaces to a certain fixed quasinormed space are considered. It is shown how the extrapolation construction proposed by Jawerth and Milman at the end of 1980s can be used to extend a bounded action of an operator from the L_p scale to wider spaces. Theorems are proved which generalize Yano's extrapolation theorem to the case of a quasinormed target space. More precise results are obtained under additional conditions on the quasinorm. Bibliography: 35 titles.
Nonlinear Bogolyubov-Valatin transformations: Two modes
NASA Astrophysics Data System (ADS)
Scharnhorst, K.; van Holten, J.-W.
2011-11-01
Extending our earlier study of nonlinear Bogolyubov-Valatin transformations (canonical transformations for fermions) for one fermionic mode, in the present paper, we perform a thorough study of general (nonlinear) canonical transformations for two fermionic modes. We find that the Bogolyubov-Valatin group for n=2 fermionic modes, which can be implemented by means of unitary SU(2n=4) transformations, is isomorphic to SO(6;R)/Z2. The investigation touches on a number of subjects. As a novelty from a mathematical point of view, we study the structure of nonlinear basis transformations in a Clifford algebra [specifically, in the Clifford algebra C(0,4)] entailing (supersymmetric) transformations among multivectors of different grades. A prominent algebraic role in this context is being played by biparavectors (linear combinations of products of Dirac matrices, quadriquaternions, sedenions) and spin bivectors (antisymmetric complex matrices). The studied biparavectors are equivalent to Eddington's E-numbers and can be understood in terms of the tensor product of two commuting copies of the division algebra of quaternions H. From a physical point of view, we present a method to diagonalize any arbitrary two-fermion Hamiltonians. Relying on Jordan-Wigner transformations for two-spin- {1}/{2} and single-spin- {3}/{2} systems, we also study nonlinear spin transformations and the related problem of diagonalizing arbitrary two-spin- {1}/{2} and single-spin- {3}/{2} Hamiltonians. Finally, from a calculational point of view, we pay due attention to explicit parametrizations of SU(4) and SO(6;R) matrices (of respective sizes 4×4 and 6×6) and their mutual relation.
NASA Astrophysics Data System (ADS)
Su, Daiqin; Ho, C. T. Marco; Mann, Robert B.; Ralph, Timothy C.
2017-09-01
We show that the gravitational quasinormal modes (QNMs) of a Schwarzschild black hole play the role of a multimode squeezer that can generate particles. For a minimally coupled scalar field, the QNMs "squeeze" the initial state of the scalar field (even for the vacuum) and produce scalar particles. The maximal squeezing amplitude is inversely proportional to the cube of the imaginary part of the QNM frequency, implying that the particle generation efficiency is higher for lower decaying QNMs. Our results show that the gravitational perturbations can amplify Hawking radiation.
NASA Astrophysics Data System (ADS)
Das, Aritra; Bandyopadhyay, Aritra; Roy, Pradip K.; Mustafa, Munshi G.
2018-02-01
We have systematically constructed the general structure of the fermion self-energy and the effective quark propagator in the presence of a nontrivial background such as a hot magnetized medium. This is applicable to both QED and QCD. The hard thermal loop approximation has been used for the heat bath. We have also examined transformation properties of the effective fermion propagator under some of the discrete symmetries of the system. Using the effective fermion propagator we have analyzed the fermion dispersion spectra in a hot magnetized medium along with the spinor for each fermion mode obtained by solving the modified Dirac equation. The fermion spectra is found to reflect the discrete symmetries of the two-point functions. We note that for a chirally symmetric theory the degenerate left- and right-handed chiral modes in vacuum or in a heat bath get separated and become asymmetric in the presence of a magnetic field without disturbing the chiral invariance. The obtained general structure of the two-point functions is verified by computing the three-point function, which agrees with the existing results in one-loop order. Finally, we have computed explicitly the spectral representation of the two-point functions which would be very important to study the spectral properties of the hot magnetized medium corresponding to QED and QCD with background magnetic field.
Minimally doubled fermions and spontaneous chiral symmetry breaking
NASA Astrophysics Data System (ADS)
Osmanaj (Zeqirllari), Rudina; Hyka (Xhako), Dafina
2018-03-01
Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks - Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss - Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.
Phenomenology of fermion production during axion inflation
NASA Astrophysics Data System (ADS)
Adshead, Peter; Pearce, Lauren; Peloso, Marco; Roberts, Michael A.; Sorbo, Lorenzo
2018-06-01
We study the production of fermions through a derivative coupling with a pseudoscalar inflaton and the effects of the produced fermions on the scalar primordial perturbations. We present analytic results for the modification of the scalar power spectrum due to the produced fermions, and we estimate the amplitude of the non-Gaussianities in the equilateral regime. Remarkably, we find a regime where the effect of the fermions gives the dominant contribution to the scalar spectrum while the amplitude of the bispectrum is small and in agreement with observation. We also note the existence of a regime in which the backreaction of the fermions on the evolution of the zero-mode of the inflaton can lead to inflation even if the potential of the inflaton is steep and does not satisfy the slow-roll conditions.
Lattice gauge action suppressing near-zero modes of H{sub W}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukaya, Hidenori; Hashimoto, Shoji; Kaneko, Takashi
2006-11-01
We propose a lattice action including unphysical Wilson fermions with a negative mass m{sub 0} of the order of the inverse lattice spacing. With this action, the exact zero mode of the Hermitian Wilson-Dirac operator H{sub W}(m{sub 0}) cannot appear and near-zero modes are strongly suppressed. By measuring the spectral density {rho}({lambda}{sub W}), we find a gap near {lambda}{sub W}=0 on the configurations generated with the standard and improved gauge actions. This gap provides a necessary condition for the proof of the exponential locality of the overlap-Dirac operator by Hernandez, Jansen, and Luescher. Since the number of near-zero modes ismore » small, the numerical cost to calculate the matrix sign function of H{sub W}(m{sub 0}) is significantly reduced, and the simulation including dynamical overlap fermions becomes feasible. We also introduce a pair of twisted mass pseudofermions to cancel the unwanted higher mode effects of the Wilson fermions. The gauge coupling renormalization due to the additional fields is then minimized. The topological charge measured through the index of the overlap-Dirac operator is conserved during continuous evolutions of gauge field variables.« less
Entanglement dynamics in itinerant fermionic and bosonic systems
NASA Astrophysics Data System (ADS)
Pillarishetty, Durganandini
2017-04-01
The concept of quantum entanglement of identical particles is fundamental in a wide variety of quantum information contexts involving composite quantum systems. However, the role played by particle indistinguishabilty in entanglement determination is being still debated. In this work, we study, theoretically, the entanglement dynamics in some itinerant bosonic and fermionic systems. We show that the dynamical behaviour of particle entanglement and spatial or mode entanglement are in general different. We also discuss the effect of fermionic and bosonic statistics on the dynamical behaviour. We suggest that the different dynamical behaviour can be used to distinguish between particle and mode entanglement in identical particle systems and discuss possible experimental realizations for such studies. I acknowledge financial support from DST, India through research Grant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, David H.
2008-05-15
To investigate the viability of the 4th root trick for the staggered fermion determinant in a simpler setting, we consider a 2-taste (flavor) lattice fermion formulation with no taste mixing but with exact taste-nonsinglet chiral symmetries analogous to the taste-nonsinglet U(1){sub A} symmetry of staggered fermions. Creutz's objections to the rooting trick apply just as much in this setting. To counter them we show that the formulation has robust would-be zero modes in topologically nontrivial gauge backgrounds, and that these manifest themselves in a viable way in the rooted fermion determinant and also in the disconnected piece of the pseudoscalarmore » meson propagator as required to solve the U(1) problem. Also, our rooted theory is heuristically seen to be in the right universality class for QCD if the same is true for an unrooted mixed fermion action theory.« less
Second Sound in Systems of One-Dimensional Fermions
Matveev, K. A.; Andreev, A. V.
2017-12-27
We study sound in Galilean invariant systems of one-dimensional fermions. At low temperatures, we find a broad range of frequencies in which in addition to the waves of density there is a second sound corresponding to ballistic propagation of heat in the system. The damping of the second sound mode is weak, provided the frequency is large compared to a relaxation rate that is exponentially small at low temperatures. At lower frequencies the second sound mode is damped, and the propagation of heat is diffusive.
Second Sound in Systems of One-Dimensional Fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveev, K. A.; Andreev, A. V.
We study sound in Galilean invariant systems of one-dimensional fermions. At low temperatures, we find a broad range of frequencies in which in addition to the waves of density there is a second sound corresponding to ballistic propagation of heat in the system. The damping of the second sound mode is weak, provided the frequency is large compared to a relaxation rate that is exponentially small at low temperatures. At lower frequencies the second sound mode is damped, and the propagation of heat is diffusive.
Second Sound in Systems of One-Dimensional Fermions
NASA Astrophysics Data System (ADS)
Matveev, K. A.; Andreev, A. V.
2017-12-01
We study sound in Galilean invariant systems of one-dimensional fermions. At low temperatures, we find a broad range of frequencies in which in addition to the waves of density there is a second sound corresponding to the ballistic propagation of heat in the system. The damping of the second sound mode is weak, provided the frequency is large compared to a relaxation rate that is exponentially small at low temperatures. At lower frequencies, the second sound mode is damped, and the propagation of heat is diffusive.
Amplified fermion production from overpopulated Bose fields
NASA Astrophysics Data System (ADS)
Berges, J.; Gelfand, D.; Sexty, D.
2014-01-01
We study the real-time dynamics of fermions coupled to scalar fields in a linear sigma model, which is often employed in the context of preheating after inflation or as a low-energy effective model for quantum chromodynamics. We find a dramatic amplification of fermion production in the presence of highly occupied bosonic quanta for weak as well as strong effective couplings. For this we consider the range of validity of different methods: lattice simulations with male/female fermions, the mode functions approach and the quantum 2PI effective action with its associated kinetic theory. For strongly coupled fermions we find a rapid approach to a Fermi-Dirac distribution with time-dependent temperature and chemical potential parameters, while the bosons are still far from equilibrium.
Can one hear the Riemann zeros in black hole ringing?
NASA Astrophysics Data System (ADS)
Aros, Rodrigo; Bugini, Fabrizzio; Diaz, Danilo E.
2016-05-01
We elaborate on an entry of the AdS/CFT dictionary relating functional determinants: the determinant of the one-loop contribution to the effective gravitational action by bulk scalars in an asymptotically locally AdS background X, and the determinant of the two-point function of the dual operator (a.k.a. scattering matrix) at the conformal boundary M. The formula originates from AdS/CFT heuristics that map a quantum contribution in the bulk gravitational partition function to a subleading large-N contribution in the boundary CFT partition function: The formula applies to quotients of AdS as well [1]. In the particular case of the BTZ black hole, a closed expression can be worked out in terms of an associated Patterson-Selberg zeta function ZBTZ (λ) [2]. The determinants can then be thought of as regularized products of either zeta zeros, scattering resonances or quasinormal frequencies [3]. In this sense, one could say that the zeros of ZBTZ (λ) can be heard in the spectrum of quasinormal modes of the BTZ black hole. The question we want to pose is whether a similar situation might exist for the celebrated zeros of the Riemann zeta function.
A mystery of black-hole gravitational resonances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hod, Shahar; The Hadassah Academic College, Jerusalem 91010
More than three decades ago, Detweiler provided an analytical formula for the gravitational resonant frequencies of rapidly-rotating Kerr black holes. In the present work we shall discuss an important discrepancy between the famous analytical prediction of Detweiler and the recent numerical results of Zimmerman et al. In addition, we shall refute the claim that recently appeared in the physics literature that the Detweiler-Teukolsky-Press resonance equation for the characteristic gravitational eigenfrequencies of rapidly-rotating Kerr black holes is not valid in the regime of damped quasinormal resonances with ℑω/T{sub BH}≫1 (here ω and T{sub BH} are respectively the characteristic quasinormal resonant frequencymore » of the Kerr black hole and its Bekenstein-Hawking temperature). The main goal of the present paper is to highlight and expose this important black-hole quasinormal mystery (that is, the intriguing discrepancy between the analytical and numerical results regarding the gravitational quasinormal resonance spectra of rapidly-rotating Kerr black holes).« less
Entanglement of Dirac fields in an expanding spacetime
NASA Astrophysics Data System (ADS)
Fuentes, Ivette; Mann, Robert B.; Martín-Martínez, Eduardo; Moradi, Shahpoor
2010-08-01
We study the entanglement generated between Dirac modes in a 2-dimensional conformally flat Robertson-Walker universe. We find radical qualitative differences between the bosonic and fermionic entanglement generated by the expansion. The particular way in which fermionic fields get entangled encodes more information about the underlying spacetime than the bosonic case, thereby allowing us to reconstruct the parameters of the history of the expansion. This highlights the importance of bosonic/fermionic statistics to account for relativistic effects on the entanglement of quantum fields.
Observing fermionic statistics with photons in arbitrary processes
Matthews, Jonathan C. F.; Poulios, Konstantinos; Meinecke, Jasmin D. A.; Politi, Alberto; Peruzzo, Alberto; Ismail, Nur; Wörhoff, Kerstin; Thompson, Mark G.; O'Brien, Jeremy L.
2013-01-01
Quantum mechanics defines two classes of particles-bosons and fermions-whose exchange statistics fundamentally dictate quantum dynamics. Here we develop a scheme that uses entanglement to directly observe the correlated detection statistics of any number of fermions in any physical process. This approach relies on sending each of the entangled particles through identical copies of the process and by controlling a single phase parameter in the entangled state, the correlated detection statistics can be continuously tuned between bosonic and fermionic statistics. We implement this scheme via two entangled photons shared across the polarisation modes of a single photonic chip to directly mimic the fermion, boson and intermediate behaviour of two-particles undergoing a continuous time quantum walk. The ability to simulate fermions with photons is likely to have applications for verifying boson scattering and for observing particle correlations in analogue simulation using any physical platform that can prepare the entangled state prescribed here. PMID:23531788
Renormalization of Coulomb interactions in a system of two-dimensional tilted Dirac fermions
NASA Astrophysics Data System (ADS)
Lee, Yu-Wen; Lee, Yu-Li
2018-01-01
We investigate the effects of long-ranged Coulomb interactions in a tilted Dirac semimetal in two dimensions by using the perturbative renormalization-group (RG) method. Depending on the magnitude of the tilting parameter, the undoped system can have either Fermi points (type I) or Fermi lines (type II). Previous studies usually performed the renormalization-group transformations by integrating out the modes with large momenta. This is problematic when the Fermi surface is open, like type-II Dirac fermions. In this work we study the effects of Coulomb interactions, following the spirit of Shankar [Rev. Mod. Phys. 66, 129 (1994), 10.1103/RevModPhys.66.129], by introducing a cutoff in the energy scale around the Fermi surface and integrating out the high-energy modes. For type-I Dirac fermions, our result is consistent with that of the previous work. On the other hand, we find that for type-II Dirac fermions, the magnitude of the tilting parameter increases monotonically with lowering energies. This implies the stability of type-II Dirac fermions in the presence of Coulomb interactions, in contrast with previous results. Furthermore, for type-II Dirac fermions, the velocities in different directions acquire different renormalization even if they have the same bare values. By taking into account the renormalization of the tilting parameter and the velocities due to the Coulomb interactions, we show that while the presence of a charged impurity leads only to charge redistribution around the impurity for type-I Dirac fermions, for type-II Dirac fermions, the impurity charge is completely screened, albeit with a very long screening length. The latter indicates that the temperature dependence of physical observables are essentially determined by the RG equations we derived. We illustrate this by calculating the temperature dependence of the compressibility and specific heat of the interacting tilted Dirac fermions.
Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romatschke, Paul
In this paper, the collective modes of an effective kinetic theory description based on the Boltzmann equation in a relaxation-time approximation applicable to gauge theories at weak but finite coupling and low frequencies are studied. Real time retarded two-point correlators of the energy-momentum tensor and the R-charge current are calculated at finite temperature in flat space-times for large N gauge theories. It is found that the real-time correlators possess logarithmic branch cuts which in the limit of large coupling disappear and give rise to non-hydrodynamic poles that are reminiscent of quasi-normal modes in black holes. In addition to branch cuts,more » correlators can have simple hydrodynamic poles, generalizing the concept of hydrodynamic modes to intermediate wavelength. Surprisingly, the hydrodynamic poles cease to exist for some critical value of the wavelength and coupling reminiscent of the properties of onset transitions.« less
Is black-hole ringdown a memory of its progenitor?
Kamaretsos, Ioannis; Hannam, Mark; Sathyaprakash, B S
2012-10-05
We perform an extensive numerical study of coalescing black-hole binaries to understand the gravitational-wave spectrum of quasinormal modes excited in the merged black hole. Remarkably, we find that the masses and spins of the progenitor are clearly encoded in the mode spectrum of the ringdown signal. Some of the mode amplitudes carry the signature of the binary's mass ratio, while others depend critically on the spins. Simulations of precessing binaries suggest that our results carry over to generic systems. Using Bayesian inference, we demonstrate that it is possible to accurately measure the mass ratio and a proper combination of spins even when the binary is itself invisible to a detector. Using a mapping of the binary masses and spins to the final black-hole spin allows us to further extract the spin components of the progenitor. Our results could have tremendous implications for gravitational astronomy by facilitating novel tests of general relativity using merging black holes.
Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset transitions
Romatschke, Paul
2016-06-24
In this paper, the collective modes of an effective kinetic theory description based on the Boltzmann equation in a relaxation-time approximation applicable to gauge theories at weak but finite coupling and low frequencies are studied. Real time retarded two-point correlators of the energy-momentum tensor and the R-charge current are calculated at finite temperature in flat space-times for large N gauge theories. It is found that the real-time correlators possess logarithmic branch cuts which in the limit of large coupling disappear and give rise to non-hydrodynamic poles that are reminiscent of quasi-normal modes in black holes. In addition to branch cuts,more » correlators can have simple hydrodynamic poles, generalizing the concept of hydrodynamic modes to intermediate wavelength. Surprisingly, the hydrodynamic poles cease to exist for some critical value of the wavelength and coupling reminiscent of the properties of onset transitions.« less
Superconductivity from a non-Fermi-liquid metal: Kondo fluctuation mechanism in slave-fermion theory
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok
2010-03-01
We propose Kondo fluctuation mechanism of superconductivity, differentiated from the spin-fluctuation theory as the standard model for unconventional superconductivity in the weak-coupling approach. Based on the U(1) slave-fermion representation of an effective Anderson lattice model, where localized spins are described by the Schwinger boson theory and hybridization or Kondo fluctuations weaken antiferromagnetic correlations of localized spins, we found an antiferromagnetic quantum critical point from an antiferromagnetic metal to a heavy-fermion metal in our recent study. The Kondo-induced antiferromagnetic quantum critical point was shown to be described by both conduction electrons and fermionic holons interacting with critical spin fluctuations given by deconfined bosonic spinons with a spin quantum number 1/2. Surprisingly, such critical modes turned out to be described by the dynamical exponent z=3 , giving rise to the well-known non-Fermi-liquid physics such as the divergent Grüneisen ratio with an exponent 2/3 and temperature-linear resistivity in three dimensions. We find that the z=3 antiferromagnetic quantum critical point becomes unstable against superconductivity, where critical spinon excitations give rise to pairing correlations between conduction electrons and between fermionic holons, respectively, via hybridization fluctuations. Such two kinds of pairing correlations result in multigap unconventional superconductivity around the antiferromagnetic quantum critical point of the slave-fermion theory, where s -wave pairing is not favored generically due to strong correlations. We show that the ratio between each superconducting gap for conduction electrons Δc and holons Δf and the transition temperature Tc is 2Δc/Tc˜9 and 2Δf/Tc˜O(10-1) , remarkably consistent with CeCoIn5 . A fingerprint of the Kondo mechanism is emergence of two kinds of resonance modes in not only spin but also charge fluctuations, where the charge resonance mode at an antiferromagnetic wave vector originates from d -wave pairing of spinless holons. We discuss how the Kondo fluctuation theory differs from the spin-fluctuation approach.
Surface Majorana fermions and bulk collective modes in superfluid 3He-B
NASA Astrophysics Data System (ADS)
Park, YeJe; Chung, Suk Bum; Maciejko, Joseph
2015-02-01
The theoretical study of topological superfluids and superconductors has so far been carried out largely as a translation of the theory of noninteracting topological insulators into the superfluid language, whereby one replaces electrons by Bogoliubov quasiparticles and single-particle band Hamiltonians by Bogoliubov-de Gennes Hamiltonians. Band insulators and superfluids are, however, fundamentally different: While the former exist in the absence of interparticle interactions, the latter are broken symmetry states that owe their very existence to such interactions. In particular, unlike the static energy gap of a band insulator, the gap in a superfluid is due to a dynamical order parameter that is subject to both thermal and quantum fluctuations. In this work, we explore the consequences of bulk quantum fluctuations of the order parameter in the B phase of superfluid 3He on the topologically protected Majorana surface states. Neglecting the high-energy amplitude modes, we find that one of the three spin-orbit Goldstone modes in 3He-B couples to the surface Majorana fermions. This coupling in turn induces an effective short-range two-body interaction between the Majorana fermions, with coupling constant inversely proportional to the strength of the nuclear dipole-dipole interaction in bulk 3He. A mean-field theory suggests that the surface Majorana fermions in 3He-B may be in the vicinity of a metastable gapped time-reversal-symmetry-breaking phase.
Classification of compactified su( N c ) gauge theories with fermions in all representations
NASA Astrophysics Data System (ADS)
Anber, Mohamed M.; Vincent-Genod, Loïc
2017-12-01
We classify su( N c ) gauge theories on R^3× S^1 with massless fermions in higher representations obeying periodic boundary conditions along S^1 . In particular, we single out the class of theories that is asymptotically free and weakly coupled in the infrared, and therefore, is amenable to semi-classical treatment. Our study is conducted by carefully identifying the vacua inside the affine Weyl chamber using Verma bases and Frobenius formula techniques. Theories with fermions in pure representations are generally strongly coupled. The only exceptions are the four-index symmetric representation of su(2) and adjoint representation of su( N c ). However, we find a plethora of admissible theories with fermions in mixed representations. A sub-class of these theories have degenerate perturbative vacua separated by domain walls. In particular, su( N c ) theories with fermions in the mixed representations adjoint⊕fundamental and adjoint⊕two-index symmetric admit degenerate vacua that spontaneously break the parity P , charge conjugation C , and time reversal T symmetries. These are the first examples of strictly weakly coupled gauge theories on R^3× S^1 with spontaneously broken C , P , and T symmetries. We also compute the fermion zero modes in the background of monopole-instantons. The monopoles and their composites (topological molecules) proliferate in the vacuum leading to the confinement of electric charges. Interestingly enough, some theories have also accidental degenerate vacua, which are not related by any symmetry. These vacua admit different numbers of fermionic zero modes, and hence, different kinds of topological molecules. The lack of symmetry, however, indicates that such degeneracy might be lifted by higher order corrections. Finally, we study the general phase structure of adjoint⊕fundamental theories in the small circle and decompactification limits.
A fermionic de Finetti theorem
NASA Astrophysics Data System (ADS)
Krumnow, Christian; Zimborás, Zoltán; Eisert, Jens
2017-12-01
Quantum versions of de Finetti's theorem are powerful tools, yielding conceptually important insights into the security of key distribution protocols or tomography schemes and allowing one to bound the error made by mean-field approaches. Such theorems link the symmetry of a quantum state under the exchange of subsystems to negligible quantum correlations and are well understood and established in the context of distinguishable particles. In this work, we derive a de Finetti theorem for finite sized Majorana fermionic systems. It is shown, much reflecting the spirit of other quantum de Finetti theorems, that a state which is invariant under certain permutations of modes loses most of its anti-symmetric character and is locally well described by a mode separable state. We discuss the structure of the resulting mode separable states and establish in specific instances a quantitative link to the quality of the Hartree-Fock approximation of quantum systems. We hint at a link to generalized Pauli principles for one-body reduced density operators. Finally, building upon the obtained de Finetti theorem, we generalize and extend the applicability of Hudson's fermionic central limit theorem.
Gauge and Non-Gauge Tensor Multiplets in 5D Conformal Supergravity
NASA Astrophysics Data System (ADS)
Kugo, T.; Ohashi, K.
2002-12-01
An off-shell formulation of two distinct tensor multiplets, a massive tensor multiplet and a tensor gauge multiplet, is presented in superconformal tensor calculus in five-dimensional space-time. Both contain a rank 2 antisymmetric tensor field, but there is no gauge symmetry in the former, while it is a gauge field in the latter. Both multiplets have 4 bosonic and 4 fermionic on-shell modes, but the former consists of 16 (boson)+16 (fermion) component fields, while the latter consists of 8 (boson)+8 (fermion) component fields.
Residual entanglement of accelerated fermions is not nonlocal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friis, Nicolai; Koehler, Philipp; Bertlmann, Reinhold A.
2011-12-15
We analyze the operational meaning of the residual entanglement in noninertial fermionic systems in terms of the achievable violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality. We demonstrate that the quantum correlations of fermions, which were previously found to survive in the infinite acceleration limit, cannot be considered to be nonlocal. The entanglement shared by an inertial and an accelerated observer cannot be utilized for the violation of the CHSH inequality in case of high accelerations. Our results are shown to extend beyond the single-mode approximation commonly used in the literature.
Universality of Generalized Bunching and Efficient Assessment of Boson Sampling.
Shchesnovich, V S
2016-03-25
It is found that identical bosons (fermions) show a generalized bunching (antibunching) property in linear networks: the absolute maximum (minimum) of the probability that all N input particles are detected in a subset of K output modes of any nontrivial linear M-mode network is attained only by completely indistinguishable bosons (fermions). For fermions K is arbitrary; for bosons it is either (i) arbitrary for only classically correlated bosons or (ii) satisfies K≥N (or K=1) for arbitrary input states of N particles. The generalized bunching allows us to certify in a polynomial in N number of runs that a physical device realizing boson sampling with an arbitrary network operates in the regime of full quantum coherence compatible only with completely indistinguishable bosons. The protocol needs only polynomial classical computations for the standard boson sampling, whereas an analytic formula is available for the scattershot version.
Dai, Li; Kuo, Watson; Chung, Ming-Chiang
2015-01-01
We propose a scheme for extracting entangled charge qubits from quantum-dot chains that support zero-energy edge modes. The edge mode is composed of Majorana fermions localized at the ends of each chain. The qubit, logically encoded in double quantum dots, can be manipulated through tunneling and pairing interactions between them. The detailed form of the entangled state depends on both the parity measurement (an even or odd number) of the boundary-site electrons in each chain and the teleportation between the chains. The parity measurement is realized through the dispersive coupling of coherent-state microwave photons to the boundary sites, while the teleportation is performed via Bell measurements. Our scheme illustrates localizable entanglement in a fermionic system, which serves feasibly as a quantum repeater under realistic experimental conditions, as it allows for finite temperature effect and is robust against disorders, decoherence and quasi-particle poisoning. PMID:26062033
Heisenberg symmetry and collective modes of one dimensional unitary correlated fermions
NASA Astrophysics Data System (ADS)
Abhinav, Kumar; Chandrasekhar, B.; Vyas, Vivek M.; Panigrahi, Prasanta K.
2017-02-01
The correlated fermionic many-particle system, near infinite scattering length, reveals an underlying Heisenberg symmetry in one dimension, as compared to an SO (2 , 1) symmetry in two dimensions. This facilitates an exact map from the interacting to the non-interacting system, both with and without a harmonic trap, and explains the short-distance scaling behavior of the wave-function. Taking advantage of the phenomenological Calogero-Sutherland-type interaction, motivated by the density functional approach, we connect the ground-state energy shift, to many-body correlation effect. For the excited states, modes at integral values of the harmonic frequency ω are predicted in one dimension, in contrast to the breathing modes with frequency 2ω in two dimensions.
Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair
NASA Astrophysics Data System (ADS)
Čubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad
2011-10-01
We provide evidence that the holographic dual to a strongly coupled charged Fermi liquid has a non-zero fermion density in the bulk. We show that the pole-strength of the stable quasiparticle characterizing the Fermi surface is encoded in the AdS probability density of a single normalizable fermion wavefunction in AdS. Recalling Migdal's theorem which relates the pole strength to the Fermi-Dirac characteristic discontinuity in the number density at ω F , we conclude that the AdS dual of a Fermi liquid is described by occupied on-shell fermionic modes in AdS. Encoding the occupied levels in the total spatially averaged probability density of the fermion field directly, we show that an AdS Reissner-Nordström black holein a theory with charged fermions has a critical temperature, at which the system undergoes a first-order transition to a black hole with a non-vanishing profile for the bulk fermion field. Thermodynamics and spectral analysis support that the solution with non-zero AdS fermion-profile is the preferred ground state at low temperatures.
Implementing the sine transform of fermionic modes as a tensor network
NASA Astrophysics Data System (ADS)
Epple, Hannes; Fries, Pascal; Hinrichsen, Haye
2017-09-01
Based on the algebraic theory of signal processing, we recursively decompose the discrete sine transform of the first kind (DST-I) into small orthogonal block operations. Using a diagrammatic language, we then second-quantize this decomposition to construct a tensor network implementing the DST-I for fermionic modes on a lattice. The complexity of the resulting network is shown to scale as 5/4 n logn (not considering swap gates), where n is the number of lattice sites. Our method provides a systematic approach of generalizing Ferris' spectral tensor network for nontrivial boundary conditions.
Binary Neutron Stars with Arbitrary Spins in Numerical Relativity
NASA Astrophysics Data System (ADS)
Pfeiffer, Harald; Tacik, Nick; Foucart, Francois; Haas, Roland; Kaplan, Jeffrey; Muhlberger, Curran; Duez, Matt; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela
2015-04-01
We present a code to construct initial data for binary neutron star where the stars are rotating. Our code, based on the formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ~ 0 . 1 % . Preliminary evolutions show that spin- and orbit-precession of Neutron stars is well described by post-Newtonian approximation. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.
Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown
NASA Astrophysics Data System (ADS)
Berti, Emanuele; Yagi, Kent; Yang, Huan; Yunes, Nicolás
2018-05-01
The LIGO/Virgo detections of binary black hole mergers marked a watershed moment in astronomy, ushering in the era of precision tests of Kerr dynamics. We review theoretical and experimental challenges that must be overcome to carry out black hole spectroscopy with present and future gravitational wave detectors. Among other topics, we discuss quasinormal mode excitation in binary mergers, astrophysical event rates, tests of black hole dynamics in modified theories of gravity, parameterized "post-Kerr" ringdown tests, exotic compact objects, and proposed data analysis methods to improve spectroscopic tests of Kerr dynamics by stacking multiple events.
Small black holes in global AdS spacetime
NASA Astrophysics Data System (ADS)
Jokela, Niko; Pönni, Arttu; Vuorinen, Aleksi
2016-04-01
We study the properties of two-point functions and quasinormal modes in a strongly coupled field theory holographically dual to a small black hole in global anti-de Sitter spacetime. Our results are seen to smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, demonstrating that the Son-Starinets prescription works even when there is no black hole in the spacetime. Omitting issues related to the internal space, the results can be given a field theory interpretation in terms of the microcanonical ensemble, which provides access to energy densities forbidden in the canonical description.
New wrinkles on black hole perturbations: Numerical treatment of acoustic and gravitational waves
NASA Astrophysics Data System (ADS)
Tenyotkin, Valery
2009-06-01
This thesis develops two main topics. A full relativistic calculation of quasinormal modes of an acoustic black hole is carried out. The acoustic black hole is formed by a perfect, inviscid, relativistic, ideal gas that is spherically accreting onto a Schwarzschild black hole. The second major part is the calculation of sourceless vector (electromagnetic) and tensor (gravitational) covariant field evolution equations for perturbations on a Schwarzschild background using the relatively recent [Special characters omitted.] decomposition method. Scattering calculations are carried out in Schwarzschild coordinates for electromagnetic and gravitational cases as validation of the method and the derived equations.
Can Black Hole Relax Unitarily?
NASA Astrophysics Data System (ADS)
Solodukhin, S. N.
2005-03-01
We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.
Grassmann phase space theory and the Jaynes-Cummings model
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Garraway, B. M.; Jeffers, J.; Barnett, S. M.
2013-07-01
The Jaynes-Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherent state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes-Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker-Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker-Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes-Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker-Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker-Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions-that are also equivalent to the canonical Grassmann distribution function-to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum-atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes-Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum-atom optics.
Spin imbalance effect on the Larkin-Ovchinnikov-Fulde-Ferrel state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshii, Ryosuke; Tsuchiya, Shunji; Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521
2011-07-01
We study spin imbalance effects on the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state relevant for superconductors under a strong magnetic field and spin polarized ultracold Fermi gas. We obtain the exact solution for the condensates with arbitrary spin imbalance and the fermion spectrum perturbatively in the presence of small spin imbalance. We also obtain fermion zero mode exactly without perturbation theory.
A braided monoidal category for free super-bosons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runkel, Ingo, E-mail: ingo.runkel@uni-hamburg.de
The chiral conformal field theory of free super-bosons is generated by weight one currents whose mode algebra is the affinisation of an abelian Lie super-algebra h with non-degenerate super-symmetric pairing. The mode algebras of a single free boson and of a single pair of symplectic fermions arise for even|odd dimension 1|0 and 0|2 of h, respectively. In this paper, the representations of the untwisted mode algebra of free super-bosons are equipped with a tensor product, a braiding, and an associator. In the symplectic fermion case, i.e., if h is purely odd, the braided monoidal structure is extended to representations ofmore » the Z/2Z-twisted mode algebra. The tensor product is obtained by computing spaces of vertex operators. The braiding and associator are determined by explicit calculations from three- and four-point conformal blocks.« less
Grassmann phase space theory and the Jaynes–Cummings model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, B.J., E-mail: bdalton@swin.edu.au; Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Victoria 3122; Garraway, B.M.
2013-07-15
The Jaynes–Cummings model of a two-level atom in a single mode cavity is of fundamental importance both in quantum optics and in quantum physics generally, involving the interaction of two simple quantum systems—one fermionic system (the TLA), the other bosonic (the cavity mode). Depending on the initial conditions a variety of interesting effects occur, ranging from ongoing oscillations of the atomic population difference at the Rabi frequency when the atom is excited and the cavity is in an n-photon Fock state, to collapses and revivals of these oscillations starting with the atom unexcited and the cavity mode in a coherentmore » state. The observation of revivals for Rydberg atoms in a high-Q microwave cavity is key experimental evidence for quantisation of the EM field. Theoretical treatments of the Jaynes–Cummings model based on expanding the state vector in terms of products of atomic and n-photon states and deriving coupled equations for the amplitudes are a well-known and simple method for determining the effects. In quantum optics however, the behaviour of the bosonic quantum EM field is often treated using phase space methods, where the bosonic mode annihilation and creation operators are represented by c-number phase space variables, with the density operator represented by a distribution function of these variables. Fokker–Planck equations for the distribution function are obtained, and either used directly to determine quantities of experimental interest or used to develop c-number Langevin equations for stochastic versions of the phase space variables from which experimental quantities are obtained as stochastic averages. Phase space methods have also been developed to include atomic systems, with the atomic spin operators being represented by c-number phase space variables, and distribution functions involving these variables and those for any bosonic modes being shown to satisfy Fokker–Planck equations from which c-number Langevin equations are often developed. However, atomic spin operators satisfy the standard angular momentum commutation rules rather than the commutation rules for bosonic annihilation and creation operators, and are in fact second order combinations of fermionic annihilation and creation operators. Though phase space methods in which the fermionic operators are represented directly by c-number phase space variables have not been successful, the anti-commutation rules for these operators suggest the possibility of using Grassmann variables—which have similar anti-commutation properties. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of phase space methods in quantum optics to treat fermionic systems by representing fermionic annihilation and creation operators directly by Grassmann phase space variables is rather rare. This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the TLA) can be used to treat the Jaynes–Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker–Planck equation involving both left and right Grassmann differentiations can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, in which the correspondence rules for the bosonic operators are non-standard and hence the Fokker–Planck equation is also unusual. Initial conditions, such as those above for initially uncorrelated states, are discussed and used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enable the six coupled equations for the new c-number functions–that are also equivalent to the canonical Grassmann distribution function–to be solved analytically, based on an ansatz from an earlier paper by Stenholm. It is then shown that the distribution function is exactly the same as that determined from the well-known solution based on coupled amplitude equations. In quantum–atom optics theories for many atom bosonic and fermionic systems are needed. With large atom numbers, treatments must often take into account many quantum modes—especially for fermions. Generalisations of phase space distribution functions of phase space variables for a few modes to phase space distribution functionals of field functions (which represent the field operators, c-number fields for bosons, Grassmann fields for fermions) are now being developed for large systems. For the fermionic case, the treatment of the simple two mode problem represented by the Jaynes–Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for fermionic applications in quantum–atom optics. -- Highlights: •Novel phase space theory of the Jaynes–Cummings model using Grassmann variables. •Fokker–Planck equations solved analytically. •Results agree with the standard quantum optics treatment. •Grassmann phase space theory applicable to fermion many-body problems.« less
Gravitational Radiation Characteristics of Nonspinning Black-Hole Binaries
NASA Technical Reports Server (NTRS)
Kelly, B. J.; Baker, J. G.; Boggs, W. D.; Centrella, J. M.; vanMeter, J. R.; McWilliams, S. T.
2008-01-01
We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source, applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the l = m modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.
Strong cosmic censorship in de Sitter space
NASA Astrophysics Data System (ADS)
Dias, Oscar J. C.; Eperon, Felicity C.; Reall, Harvey S.; Santos, Jorge E.
2018-05-01
Recent work indicates that the strong cosmic censorship hypothesis is violated by nearly extremal Reissner-Nordström-de Sitter black holes. It was argued that perturbations of such a black hole decay sufficiently rapidly that the perturbed spacetime can be extended across the Cauchy horizon as a weak solution of the equations of motion. In this paper we consider the case of Kerr-de Sitter black holes. We find that, for any nonextremal value of the black hole parameters, there are quasinormal modes which decay sufficiently slowly to ensure that strong cosmic censorship is respected. Our analysis covers both scalar field and linearized gravitational perturbations.
Realizing universal Majorana fermionic quantum computation
NASA Astrophysics Data System (ADS)
Wu, Ya-Jie; He, Jing; Kou, Su-Peng
2014-08-01
Majorana fermionic quantum computation (MFQC) was proposed by S. B. Bravyi and A. Yu. Kitaev [Ann. Phys. (NY) 298, 210 (2002), 10.1006/aphy.2002.6254], who indicated that a (nontopological) fault-tolerant quantum computer built from Majorana fermions may be more efficient than that built from distinguishable two-state systems. However, until now scientists have not known how to realize a MFQC in a physical system. In this paper we propose a possible realization of MFQC. We find that the end of a line defect of a p-wave superconductor or superfluid in a honeycomb lattice traps a Majorana zero mode, which becomes the starting point of MFQC. Then we show how to manipulate Majorana fermions to perform universal MFQC, which possesses possibilities for high-level local controllability through individually addressing the quantum states of individual constituent elements by using timely cold-atom technology.
Graphene surface plasmons mediated thermal radiation
NASA Astrophysics Data System (ADS)
Li, Jiayu; Liu, Baoan; Shen, Sheng
2018-02-01
A graphene nanostructure can simultaneously serve as a plasmonic optical resonator and a thermal emitter when thermally heated up. The unique electronic and optical properties of graphene have rendered tremendous potential in the active manipulation of light and the microscopic energy transport in nanostructures. Here we show that the thermally pumped surface plasmonic modes along graphene nanoribbons could dramatically modulate their thermal emission spectra in both near- and far-fields. Based on the fluctuating surface current method implemented by the resistive boundary method, we directly calculate the thermal emission spectrum from single graphene ribbons and vertically paired graphene ribbons. Furthermore, we demonstrate that both the near- and far-field thermal emission from graphene nanostructures can be optimized by tuning the chemical potential of doped graphene. The general guideline to maximize the thermal emission is illustrated by the our recently developed theory on resonant thermal emitters modulated by quasi-normal modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliev, Alikram N., E-mail: alikram.n.aliev@gmail.com
We examine the black hole bomb model which consists of a rotating black hole of five-dimenensional minimal ungauged supergravity and a reflecting mirror around it. For low-frequency scalar perturbations, we find solutions to the Klein-Gordon equation in the near-horizon and far regions of the black hole spacetime. To avoid solutions with logarithmic terms, we assume that the orbital quantum number l takes on nearly, but not exactly, integer values and perform the matching of these solutions in an intermediate region. This allows us to calculate analytically the frequency spectrum of quasinormal modes, taking the limits as l approaches even ormore » odd integers separately. We find that all l modes of scalar perturbations undergo negative damping in the regime of superradiance, resulting in exponential growth of their amplitudes. Thus, the model under consideration would exhibit the superradiant instability, eventually behaving as a black hole bomb in five dimensions.« less
Evolution of perturbations of squashed Kaluza-Klein black holes: Escape from instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, Hideki; Kimura, Masashi; Konoplya, Roman A.
2008-04-15
The squashed Kaluza-Klien (KK) black holes differ from the Schwarzschild black holes with asymptotic flatness or the black strings even at energies for which the KK modes are not excited yet, so that squashed KK black holes open a window in higher dimensions. Another important feature is that the squashed KK black holes are apparently stable and, thereby, let us avoid the Gregory-Laflamme instability. In the present paper, the evolution of scalar and gravitational perturbations in time and frequency domains is considered for these squashed KK black holes. The scalar field perturbations are analyzed for general rotating squashed KK blackmore » holes. Gravitational perturbations for the so-called zero mode are shown to be decayed for nonrotating black holes, in concordance with the stability of the squashed KK black holes. The correlation of quasinormal frequencies with the size of extra dimension is discussed.« less
On Born approximation in black hole scattering
NASA Astrophysics Data System (ADS)
Batic, D.; Kelkar, N. G.; Nowakowski, M.
2011-12-01
A massless field propagating on spherically symmetric black hole metrics such as the Schwarzschild, Reissner-Nordström and Reissner-Nordström-de Sitter backgrounds is considered. In particular, explicit formulae in terms of transcendental functions for the scattering of massless scalar particles off black holes are derived within a Born approximation. It is shown that the conditions on the existence of the Born integral forbid a straightforward extraction of the quasi normal modes using the Born approximation for the scattering amplitude. Such a method has been used in literature. We suggest a novel, well defined method, to extract the large imaginary part of quasinormal modes via the Coulomb-like phase shift. Furthermore, we compare the numerically evaluated exact scattering amplitude with the Born one to find that the approximation is not very useful for the scattering of massless scalar, electromagnetic as well as gravitational waves from black holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Jun, E-mail: j.feng1@uq.edu.au; Zhang, Yao-Zhong; Gould, Mark D.
We study the quantum correlation and quantum communication channel of both free scalar and fermionic fields in de Sitter space, while the Planckian modification presented by the choice of a particular α-vacuum has been considered. We show the occurrence of degradation of quantum entanglement between field modes for an inertial observer in curved space, due to the radiation associated with its cosmological horizon. Comparing with standard Bunch–Davies choice, the possible Planckian physics causes some extra decrement on the quantum correlation, which may provide the means to detect quantum gravitational effects via quantum information methodology in future. Beyond single-mode approximation, wemore » construct proper Unruh modes admitting general α-vacua, and find a convergent feature of both bosonic and fermionic entanglements. In particular, we show that the convergent points of fermionic entanglement negativity are dependent on the choice of α. Moreover, an one-to-one correspondence between convergent points H{sub c} of negativity and zeros of quantum capacity of quantum channels in de Sitter space has been proved. - Highlights: • Quantum correlation and quantum channel in de Sitter space are studied. • Gibbons–Hawking effect causes entanglement degradation for static observer. • Planckian physics causes extra decrement on quantum correlation. • Convergent feature of negativity relies on the choice of alpha-vacua. • Link between negativity convergence and quantum channel capacity is given.« less
Existence and stability of periodic solutions of quasi-linear Korteweg — de Vries equation
NASA Astrophysics Data System (ADS)
Glyzin, S. D.; Kolesov, A. Yu; Preobrazhenskaia, M. M.
2017-01-01
We consider the scalar nonlinear differential-difference equation with two delays, which models electrical activity of a neuron. Under some additional suppositions for this equation well known method of quasi-normal forms can be applied. Its essence lies in the formal normalization of the Poincare - Dulac obtaining quasi-normal form and the subsequent application of the theorems of conformity. In this case, the result of the application of quasi-normal forms is a countable system of differential-difference equations, which can be turned into a boundary value problem of the Korteweg - de Vries equation. The investigation of this boundary value problem allows us to draw a conclusion about the behaviour of the original equation. Namely, for a suitable choice of parameters in the framework of this equation is implemented buffer phenomenon consisting in the presence of the bifurcation mechanism for the birth of an arbitrarily large number of stable cycles.
Scattering of massless fermions by Schwarzschild and Reissner-Nordström black holes
NASA Astrophysics Data System (ADS)
Sporea, Ciprian A.
2017-12-01
We study the scattering of massless Dirac fermions by Schwarzschild and Reissner-Nordström black holes. This is done by applying partial wave analysis to the scattering modes obtained after solving the massless Dirac equation in the asymptotic regions of the two black hole geometries. We successfully obtain analytic phase shifts, with the help of which the scattering cross section is computed. The glory and spiral scattering phenomena are shown to be present, as in the case of massive fermion scattering by black holes. Supported by a grant of the Ministry of National Education and Scientific Research, RDI Programme for Space Technology and Advanced Research - STAR, project number 181/20.07.2017
Parametric control in coupled fermionic oscillators
NASA Astrophysics Data System (ADS)
Ghosh, Arnab
2014-10-01
A simple model of parametric coupling between two fermionic oscillators is considered. Statistical properties, in particular the mean and variance of quanta for a single mode, are described by means of a time-dependent reduced density operator for the system and the associated P function. The density operator for fermionic fields as introduced by Cahill and Glauber [K. E. Cahill and R. J. Glauber, Phys. Rev. A 59, 1538 (1999), 10.1103/PhysRevA.59.1538] thus can be shown to provide a quantum mechanical description of the fields closely resembling their bosonic counterpart. In doing so, special emphasis is given to population trapping, and quantum control over the states of the system.
Entanglement negativity bounds for fermionic Gaussian states
NASA Astrophysics Data System (ADS)
Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán
2018-04-01
The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.
Impurity-generated non-Abelions
NASA Astrophysics Data System (ADS)
Simion, G.; Kazakov, A.; Rokhinson, L. P.; Wojtowicz, T.; Lyanda-Geller, Y. B.
2018-06-01
Two classes of topological superconductors and Majorana modes in condensed matter systems are known to date: one in which disorder induced by impurities strongly suppresses topological superconducting gap and is detrimental to Majorana modes, and another where Majorana fermions are protected by a disorder-robust topological superconductor gap. Observation and control of Majorana fermions and other non-Abelions often requires a symmetry of an underlying system leading to a gap in the single-particle or quasiparticle spectra. In semiconductor structures, impurities that provide charge carriers introduce states into the gap and enable conductance and proximity-induced superconductivity via the in-gap states. Thus a third class of topological superconductivity and Majorana modes emerges, in which topological superconductivity and Majorana fermions appear exclusively when impurities generate in-gap states. We show that impurity-enabled topological superconductivity is realized in a quantum Hall ferromagnet, when a helical domain wall is coupled to an s -wave superconductor. As an example of emergence of topological superconductivity in quantum Hall ferromagnets, we consider the integer quantum Hall effect in Mn-doped CdTe quantum wells. Recent experiments on transport through the quantum Hall ferromagnet domain wall in this system indicated a vital role of impurities in the conductance, but left unresolved the question whether impurities preclude generation of Majorana fermions and other non-Abelions in such systems in general. Here, solving a general quantum-mechanical problem of impurity bound states in a system of spin-orbit coupled Landau levels, we demonstrate that impurity-induced Majorana modes emerge at boundaries between topological and conventional superconducting states generated in a domain wall due to proximity to an s superconductor. We consider both short-range disorder and a smooth random potential. The phase diagram of the system is defined by characteristic disorder, gate voltage induced angular momentum splitting of impurity levels, and by a proximity superconducting gap. The phase diagram exhibits two ranges of gate voltage with conventional superconducting order separated by a gate voltage range with topological superconductivity. We show that electrostatic control of domain walls in an integer quantum Hall ferromagnet allows manipulation of Majorana fermions. Ferromagnetic transitions in the fractional quantum Hall regime may lead to the formation and electrostatic control of higher order non-Abelian excitations.
Supersymmetry and fermionic modes in an oscillon background
NASA Astrophysics Data System (ADS)
Correa, R. A. C.; Ospedal, L. P. R.; de Paula, W.; Helayël-Neto, J. A.
2018-05-01
The excitations referred to as oscillons are long-lived time-dependent field configurations which emerge dynamically from non-linear field theories. Such long-lived solutions are of interest in applications that include systems of Condensed Matter Physics, the Standard Model of Particle Physics, Lorentz-symmetry violating scenarios and Cosmology. In this work, we show how oscillons may be accommodated in a supersymmetric scenario. We adopt as our framework simple (N = 1) supersymmetry in D = 1 + 1 dimensions. We focus on the bosonic sector with oscillon configurations and their (classical) effects on the corresponding fermionic modes, (supersymmetric) partners of the oscillons. The particular model we adopt to pursue our investigation displays cubic superfield which, in the physical scalar sector, corresponds to the usual quartic self-coupling.
Probing large extra dimensions with IceCube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esmaili, Arman; Peres, O.L.G.; Tabrizi, Zahra, E-mail: arman@ipm.ir, E-mail: orlando@ifi.unicamp.br, E-mail: tabrizi.physics@ipm.ir
2014-12-01
In models with Large Extra Dimensions the smallness of neutrino masses can be naturally explained by introducing gauge singlet fermions which propagate in the bulk. The Kaluza-Klein modes of these fermions appear as towers of sterile neutrino states on the brane. We study the phenomenological consequences of this picture for the high energy atmospheric neutrinos. For this purpose we construct a detailed equivalence between a model with large extra dimensions and a (3+n) scenario consisting of three active and n extra sterile neutrino states, which provides a clear intuitive understanding of Kaluza-Klein modes. Finally, we analyze the collected data ofmore » high energy atmospheric neutrinos by IceCube experiment and obtain bounds on the radius of extra dimensions.« less
NASA Astrophysics Data System (ADS)
Hays, M.; de Lange, G.; Serniak, K.; van Woerkom, D. J.; Väyrynen, J. I.; van Heck, B.; Vool, U.; Krogstrup, P.; Nygård, J.; Frunzio, L.; Geresdi, A.; Glazman, L. I.; Devoret, M. H.
Proximitized semiconducting nanowires subject to magnetic field should display topological superconductivity and support Majorana zero modes which have non-Abelian braiding statistics. The conventional Andreev levels formed in such wires in the absence of field are a precursor to these exotic zero modes. The fermion-parity switching time of Andreev levels sets a lower bound on the bandwidth required for experiments aimed at harnessing non-Abelian braiding statistics. We demonstrate the observation of quantum jumps between even and odd-parity states of an individual Andreev bound state in a non-topological junction, providing a direct measurement of the state populations and the parity lifetime. Work supported by: ARO, ONR, AFOSR, EU Marie Curie and YINQE.
Exact ground states and topological order in interacting Kitaev/Majorana chains
NASA Astrophysics Data System (ADS)
Katsura, Hosho; Schuricht, Dirk; Takahashi, Masahiro
2015-09-01
We study a system of interacting spinless fermions in one dimension that, in the absence of interactions, reduces to the Kitaev chain [Kitaev, Phys. Usp. 44, 131 (2001), 10.1070/1063-7869/44/10S/S29]. In the noninteracting case, a signal of topological order appears as zero-energy modes localized near the edges. We show that the exact ground states can be obtained analytically even in the presence of nearest-neighbor repulsive interactions when the on-site (chemical) potential is tuned to a particular function of the other parameters. As with the noninteracting case, the obtained ground states are twofold degenerate and differ in fermionic parity. We prove the uniqueness of the obtained ground states and show that they can be continuously deformed to the ground states of the noninteracting Kitaev chain without gap closing. We also demonstrate explicitly that there exists a set of operators each of which maps one of the ground states to the other with opposite fermionic parity. These operators can be thought of as an interacting generalization of Majorana edge zero modes.
Topological superconductors: a review.
Sato, Masatoshi; Ando, Yoichi
2017-07-01
This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.
Topological superconductors: a review
NASA Astrophysics Data System (ADS)
Sato, Masatoshi; Ando, Yoichi
2017-07-01
This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.
Fermion dipole moment and holography
NASA Astrophysics Data System (ADS)
Kulaxizi, Manuela; Rahman, Rakibur
2015-12-01
In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.
Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM
NASA Astrophysics Data System (ADS)
Baum, Sebastian; Carena, Marcela; Shah, Nausheen R.; Wagner, Carlos E. M.
2018-04-01
We analyze a low energy effective model of Dark Matter in which the thermal relic density is provided by a singlet Majorana fermion which interacts with the Higgs fields via higher dimensional operators. Direct detection signatures may be reduced if blind spot solutions exist, which naturally appear in models with extended Higgs sectors. Explicit mass terms for the Majorana fermion can be forbidden by a Z 3 symmetry, which in addition leads to a reduction of the number of higher dimensional operators. Moreover, a weak scale mass for the Majorana fermion is naturally obtained from the vacuum expectation value of a scalar singlet field. The proper relic density may be obtained by the s-channel interchange of Higgs and gauge bosons, with the longitudinal mode of the Z boson (the neutral Goldstone mode) playing a relevant role in the annihilation process. This model shares many properties with the Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) with light singlinos and heavy scalar and gauge superpartners. In order to test the validity of the low energy effective field theory, we compare its predictions with those of the ultraviolet complete NMSSM. Extending our framework to include Z 3 neutral Majorana fermions, analogous to the bino in the NMSSM, we find the appearance of a new bino-singlino well tempered Dark Matter region.
Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baum, Sebastian; Carena, Marcela; Shah, Nausheen R.
2018-04-01
We analyze a low energy effective model of Dark Matter in which the thermal relic density is provided by a singlet Majorana fermion which interacts with the Higgs fields via higher dimensional operators. Direct detection signatures may be reduced if blind spot solutions exist, which naturally appear in models with extended Higgs sectors. Explicit mass terms for the Majorana fermion can be forbidden by amore » $$Z_3$$ symmetry, which in addition leads to a reduction of the number of higher dimensional operators. Moreover, a weak scale mass for the Majorana fermion is naturally obtained from the vacuum expectation value of a scalar singlet field. The proper relic density may be obtained by the $s$-channel interchange of Higgs and gauge bosons, with the longitudinal mode of the $Z$ boson (the neutral Goldstone mode) playing a relevant role in the annihilation process. This model shares many properties with the Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) with light singlinos and heavy scalar and gauge superpartners. In order to test the validity of the low energy effective field theory, we compare its predictions with those of the ultraviolet complete NMSSM. Extending our framework to include $$Z_3$$ neutral Majorana fermions, analogous to the bino in the NMSSM, we find the appearance of a new bino-singlino well tempered Dark Matter region.« less
Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baum, Sebastian; Carena, Marcela; Shah, Nausheen R.
We analyze a low energy effective model of Dark Matter in which the thermal relic density is provided by a singlet Majorana fermion which interacts with the Higgs fields via higher dimensional operators. Direct detection signatures may be reduced if blind spot solutions exist, which naturally appear in models with extended Higgs sectors. Explicit mass terms for the Majorana fermion can be forbidden by amore » $$Z_3$$ symmetry, which in addition leads to a reduction of the number of higher dimensional operators. Moreover, a weak scale mass for the Majorana fermion is naturally obtained from the vacuum expectation value of a scalar singlet field. The proper relic density may be obtained by the $s$-channel interchange of Higgs and gauge bosons, with the longitudinal mode of the $Z$ boson (the neutral Goldstone mode) playing a relevant role in the annihilation process. This model shares many properties with the Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) with light singlinos and heavy scalar and gauge superpartners. In order to test the validity of the low energy effective field theory, we compare its predictions with those of the ultraviolet complete NMSSM. Extending our framework to include $$Z_3$$ neutral Majorana fermions, analogous to the bino in the NMSSM, we find the appearance of a new bino-singlino well tempered Dark Matter region.« less
Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM
Baum, Sebastian; Carena, Marcela; Shah, Nausheen R.; ...
2018-04-12
We analyze a low energy effective model of Dark Matter in which the thermal relic density is provided by a singlet Majorana fermion which interacts with the Higgs fields via higher dimensional operators. Direct detection signatures may be reduced if blind spot solutions exist, which naturally appear in models with extended Higgs sectors. Explicit mass terms for the Majorana fermion can be forbidden by amore » $$Z_3$$ symmetry, which in addition leads to a reduction of the number of higher dimensional operators. Moreover, a weak scale mass for the Majorana fermion is naturally obtained from the vacuum expectation value of a scalar singlet field. The proper relic density may be obtained by the $s$-channel interchange of Higgs and gauge bosons, with the longitudinal mode of the $Z$ boson (the neutral Goldstone mode) playing a relevant role in the annihilation process. This model shares many properties with the Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) with light singlinos and heavy scalar and gauge superpartners. In order to test the validity of the low energy effective field theory, we compare its predictions with those of the ultraviolet complete NMSSM. Extending our framework to include $$Z_3$$ neutral Majorana fermions, analogous to the bino in the NMSSM, we find the appearance of a new bino-singlino well tempered Dark Matter region.« less
General theories of linear gravitational perturbations to a Schwarzschild black hole
NASA Astrophysics Data System (ADS)
Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena
2018-02-01
We use the covariant formulation proposed by Tattersall, Lagos, and Ferreira [Phys. Rev. D 96, 064011 (2017), 10.1103/PhysRevD.96.064011] to analyze the structure of linear perturbations about a spherically symmetric background in different families of gravity theories, and hence study how quasinormal modes of perturbed black holes may be affected by modifications to general relativity. We restrict ourselves to single-tensor, scalar-tensor and vector-tensor diffeomorphism-invariant gravity models in a Schwarzschild black hole background. We show explicitly the full covariant form of the quadratic actions in such cases, which allow us to then analyze odd parity (axial) and even parity (polar) perturbations simultaneously in a straightforward manner.
Phases and stability of non-uniform black strings
NASA Astrophysics Data System (ADS)
Emparan, Roberto; Luna, Raimon; Martínez, Marina; Suzuki, Ryotaku; Tanabe, Kentaro
2018-05-01
We construct solutions of non-uniform black strings in dimensions from D ≈ 9 all the way up to D = ∞, and investigate their thermodynamics and dynamical stability. Our approach employs the large- D perturbative expansion beyond the leading order, including corrections up to 1 /D 4. Combining both analytical techniques and relatively simple numerical solution of ODEs, we map out the ranges of parameters in which non-uniform black strings exist in each dimension and compute their thermodynamics and quasinormal modes with accuracy. We establish with very good precision the existence of Sorkin's critical dimension and we prove that not only the thermodynamic stability, but also the dynamic stability of the solutions changes at it.
Search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballmer, S.; Barker, D.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Behnke, B.; Benacquista, M.; Bennett, M. F.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bork, R.; Born, M.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Cain, J.; Camp, J. B.; Cannizzo, J.; Cannon, K. C.; Cao, J.; Capano, C.; Cardenas, L.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Dahl, K.; Danilishin, S. L.; Danzmann, K.; Daudert, B.; Davies, G.; Daw, E. J.; Dayanga, T.; Debra, D.; Degallaix, J.; Dergachev, V.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Driggers, J.; Dueck, J.; Duke, I.; Dumas, J.-C.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Faltas, Y.; Fan, Y.; Fazi, D.; Fehrmann, H.; Finn, L. S.; Flasch, K.; Foley, S.; Forrest, C.; Fotopoulos, N.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Garofoli, J. A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goetz, E.; Goggin, L. M.; González, G.; Goßler, S.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G. D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Isogai, T.; Ivanov, A.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khan, R.; Khazanov, E.; Kim, H.; King, P. J.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kozak, D.; Kringel, V.; Krishnan, B.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Lei, M.; Leindecker, N.; Leonor, I.; Lin, H.; Lindquist, P. E.; Littenberg, T. B.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Mak, C.; Mandel, I.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McKechan, D. J. A.; Mehmet, M.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merrill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Miller, J.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S. D.; Mohapatra, S. R. P.; Moreno, G.; Mors, K.; Mossavi, K.; Mowlowry, C.; Mueller, G.; Müller-Ebhardt, H.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Newton, G.; Nishida, E.; Nishizawa, A.; O'Dell, J.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; Ogin, G. H.; Oldenburg, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pan, Y.; Pankow, C.; Papa, M. A.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Pickenpack, M.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raics, Z.; Rakhmanov, M.; Raymond, V.; Reed, C. M.; Reed, T.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Röver, C.; Rollins, J.; Romano, J. D.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sakata, S.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F.; Stein, A. J.; Stein, L. C.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Torres, C.; Torrie, C. I.; Traylor, G.; Trias, M.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Wilmut, I.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; Buchner, S.
2011-02-01
The physical mechanisms responsible for pulsar timing glitches are thought to excite quasinormal mode oscillations in their parent neutron star that couple to gravitational-wave emission. In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two colocated Hanford gravitational-wave detectors of the Laser Interferometer Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational-wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational-wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6.3×10-21 to 1.4×10-20 on the peak intrinsic strain amplitude of gravitational-wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0×1044 to 1.3×1045erg.
Search for Gravitational Waves Associated with the August 2006 Timing Glitch of the Vela Pulsar
NASA Technical Reports Server (NTRS)
Camp, J. B.; Cannizzo, J.; Stroeer, A.
2011-01-01
The physical mechanisms responsible for pulsar timing glitches are thought to excite quasinormal mode oscillations in their parent neutron star that couple to gravitational-wave emission, In August 2006, a timing glitch was observed in the radio emission of PSR B0833-45, the Vela pulsar. At the time of the glitch, the two colocated Hanford gravitational-wave detectors of the Laser Interferometer Gravitational-wave observatory (LIGO) were operational and taking data as part of the fifth LIGO science run (S5). We present the first direct search for the gravitational-wave emission associated with oscillations of the fundamental quadrupole mode excited by a pulsar timing glitch. No gravitational-wave detection candidate was found. We place Bayesian 90% confidence upper limits of 6,3 x 10(exp -21) to 1.4 x 10(exp -20) on the peak: intrinsic strain amplitude of gravitational-wave ring-down signals, depending on which spherical harmonic mode is excited. The corresponding range of energy upper limits is 5.0 x 10(exp 44) to 1.3 x 10(exp 45) erg.
Fermionic localization of the schwarzian theory
Stanford, Douglas; Witten, Edward
2017-10-02
The SYK model is a quantum mechanical model that has been proposed to be holographically dual to a 1 + 1-dimensional model of a quantum black hole. An emergent “gravitational” mode of this model is governed by an unusual action that has been called the Schwarzian action. It governs a reparametrization of a circle. We show that the path integral of the Schwarzian theory is one-loop exact. Here, the argument uses a method of fermionic localization, even though the model itself is purely bosonic.
On choosing the start time of binary black hole ringdowns
NASA Astrophysics Data System (ADS)
Bhagwat, Swetha; Okounkova, Maria; Ballmer, Stefan W.; Brown, Duncan A.; Giesler, Matthew; Scheel, Mark A.; Teukolsky, Saul A.
2018-05-01
The final stage of a binary black hole merger is ringdown, in which the system is described by a Kerr black hole with quasinormal mode perturbations. It is far from straightforward to identify the time at which the ringdown begins. Yet determining this time is important for precision tests of the general theory of relativity that compare an observed signal with quasinormal mode descriptions of the ringdown, such as tests of the no-hair theorem. We present an algorithmic method to analyze the choice of ringdown start time in the observed waveform. This method is based on determining how close the strong field is to a Kerr black hole (Kerrness). Using numerical relativity simulations, we characterize the Kerrness of the strong-field region close to the black hole using a set of local, gauge-invariant geometric and algebraic conditions that measure local isometry to Kerr. We produce a map that associates each time in the gravitational waveform with a value of each of these Kerrness measures; this map is produced by following outgoing null characteristics from the strong and near-field regions to the wave zone. We perform this analysis on a numerical relativity simulation with parameters consistent with GW150914—the first gravitational-wave detection. We find that the choice of ringdown start time of 3 ms after merger used in the GW150914 study [B. P. Abbott et al. (
NASA Astrophysics Data System (ADS)
Nguyen, Dung Xuan; Gromov, Andrey; Son, Dam Thanh
2018-05-01
We perform a detailed comparison of the Dirac composite fermion and the recently proposed bimetric theory for a quantum Hall Jain states near half filling. By tuning the composite Fermi liquid to the vicinity of a nematic phase transition, we find that the two theories are equivalent to each other. We verify that the single mode approximation for the response functions and the static structure factor becomes reliable near the phase transition. We show that the dispersion relation of the nematic mode near the phase transition can be obtained from the Dirac brackets between the components of the nematic order parameter. The dispersion is quadratic at low momenta and has a magnetoroton minimum at a finite momentum, which is not related to any nearby inhomogeneous phase.
Strongly Correlated Metal Built from Sachdev-Ye-Kitaev Models
NASA Astrophysics Data System (ADS)
Song, Xue-Yang; Jian, Chao-Ming; Balents, Leon
2017-11-01
Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond the quasiparticle description. The Sachdev-Ye-Kitaev (SYK) model describes a (0 +1 )D quantum cluster with random all-to-all four-fermion interactions among N fermion modes which becomes exactly solvable as N →∞ , exhibiting a zero-dimensional non-Fermi-liquid with emergent conformal symmetry and complete absence of quasiparticles. Here we study a lattice of complex-fermion SYK dots with random intersite quadratic hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in temperature resistivity in the incoherent regime, and a Lorentz ratio L ≡(κ ρ /T ) varies between two universal values as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated metal.
Fate of Majorana fermions and Chern numbers after a quantum quench.
Sacramento, P D
2014-09-01
In the sequence of quenches to either nontopological phases or other topological phases, we study the stability of Majorana fermions at the edges of a two-dimensional topological superconductor with spin-orbit coupling and in the presence of a Zeeman term. Both instantaneous and slow quenches are considered. In the case of instantaneous quenches, the Majorana modes generally decay, but for a finite system there is a revival time that scales to infinity as the system size grows. Exceptions to this decaying behavior are found in some cases due to the presence of edge states with the same momentum in the final state. Quenches to a topological Z(2) phase reveal some robustness of the Majorana fermions in the sense that even though the survival probability of the Majorana state is small, it does not vanish. If the pairing is not aligned with the spin-orbit Rashba coupling, it is found that the Majorana fermions are fairly robust with a finite survival probability. It is also shown that the Chern number remains invariant after the quench, until the propagation of the mode along the transverse direction reaches the middle point, beyond which the Chern number fluctuates between increasing values. The effect of varying the rate of change in slow quenches is also analyzed. It is found that the defect production is nonuniversal and does not follow the Kibble-Zurek scaling with the quench rate, as obtained before for other systems with topological edge states.
Flavorful Z‧ signatures at LHC and ILC
NASA Astrophysics Data System (ADS)
Chen, Shao-Long; Okada, Nobuchika
2008-10-01
There are lots of new physics models which predict an extra neutral gauge boson, referred as Z‧-boson. In a certain class of these new physics models, the Z‧-boson has flavor-dependent couplings with the fermions in the Standard Model (SM). Based on a simple model in which couplings of the SM fermions in the third generation with the Z‧-boson are different from those of the corresponding fermions in the first two generations, we study the signatures of Z‧-boson at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). We show that at the LHC, the Z‧-boson with mass around 1 TeV can be produced through the Drell-Yan processes and its dilepton decay modes provide us clean signatures not only for the resonant production of Z‧-boson but also for flavor-dependences of the production cross sections. We also study fermion pair productions at the ILC involving the virtual Z‧-boson exchange. Even though the center-of-energy of the ILC is much lower than a Z‧-boson mass, the angular distributions and the forward-backward asymmetries of fermion pair productions show not only sizable deviations from the SM predictions but also significant flavor-dependences.
NASA Astrophysics Data System (ADS)
Gong, M.; Alexandru, A.; Chen, Y.; Doi, T.; Dong, S. J.; Draper, T.; Freeman, W.; Glatzmaier, M.; Li, A.; Liu, K. F.; Liu, Z.
2013-07-01
We present a calculation of the strangeness and charmness contents ⟨N|s¯s|N⟩ and ⟨N|c¯c|N⟩ of the nucleon from dynamical lattice QCD with 2+1 flavors. The calculation is performed with overlap valence quarks on 2+1-flavor domain-wall fermion gauge configurations. The configurations are generated by the RBC collaboration on a 243×64 lattice with sea-quark mass aml=0.005, ams=0.04, and inverse lattice spacing a-1=1.73GeV. Both actions have chiral symmetry which is essential in avoiding contamination due to the operator mixing with other flavors. The nucleon propagator and the quark loops are both computed with stochastic grid sources, while low-mode substitution and low-mode averaging methods are used respectively which substantially improve the signal-to-noise ratio. We obtain the strangeness matrix element fTs=ms⟨N|s¯s|N⟩/MN=0.0334(62), and the charmness content fTc=mc⟨N|c¯c|N⟩/MN=0.094(31) which is resolved from zero by 3σ precision for the first time.
NASA Astrophysics Data System (ADS)
Sundin, Per
2010-04-01
We perform a detailed study of the type IIA superstring in {text{Ad}}{{text{S}}_4} × mathbb{C}{mathbb{P}_3} . After introducing suitable bosonic light-cone and fermionic kappa worldsheet gauges we derive the pure boson and fermion SU(2|2)×U(1) covariant light-cone Hamiltonian up to quartic order in fields. As a first application of our derivation we calculate energy shifts for string configurations in a closed fermionic subsector and successfully match these with a set of light-cone Bethe equations. We then turn to investigate the mismatch between the degrees of freedom of scattering states and oscillatory string modes. Since only light string modes appear as fundamental Bethe roots in the scattering theory, the physical role of the remaining 4 F + 4 B massive oscillators is rather unclear. By continuing a line of research initiated by Zarembo, we shed light on this question by calculating quantum corrections for the propagators of the bosonic massive fields. We show that, once loop corrections are incorporated, the massive coordinates dissolve in a continuum state of two light particles.
Order and anarchy hand in hand in 5D SO(10)
NASA Astrophysics Data System (ADS)
Vicino, D.
2015-07-01
A mechanism to generate flavour hierarchy via 5D wave-function localization is revisited in the context of SO(10) grand unified theory. In an extra-dimension compactified on an orbifold, fermions (living in the same 16 representation of SO(10)) result having exponential zero-modes profiles, localized around one of the brane. The breaking of SO(10) down to SU(5) × U(1)x provides the key parameter that distinguishes the profiles of the different SU(5) components inside the same 16 representation. Utilizing a suitable set of scalar fields, a predictive model for fermion masses and mixing is constructed and shown to be viable with the current data through a detailed numerical analysis. The scalar field content of the model is also suitable to solve the doublet-triplet splitting problem through the missing partner mechanism. All the Yukawa couplings in the model are anarchical and of order unity, while the hierarchies among different fermions result only from zero-mode profiles. The naturalness of Anarchical Yukawa couplings is studied, showing a preference for a normal ordered neutrino spectrum; predictions for various observables in the lepton sector are also derived.
Intersecting branes, Higgs sector, and chirality from N = 4 SYM with soft SUSY breaking
NASA Astrophysics Data System (ADS)
Sperling, Marcus; Steinacker, Harold C.
2018-04-01
We consider SU( N ) N = 4 super Yang-Mills with cubic and quadratic soft SUSY breaking potential, such that the global SU(4) R is broken to SU(3) or further. As shown recently, this set-up supports a rich set of non-trivial vacua with the geometry of self-intersecting SU(3) branes in 6 extra dimensions. The zero modes on these branes can be interpreted as 3 generations of bosonic and chiral fermionic strings connecting the branes at their intersections. Here, we uncover a large class of exact solutions consisting of branes connected by Higgs condensates, leading to Yukawa couplings between the chiral fermionic zero modes. Under certain decoupling conditions, the backreaction of the Higgs on the branes vanishes exactly. The resulting physics is that of a spontaneously broken chiral gauge theory on branes with fluxes. In particular, we identify combined brane plus Higgs configurations which lead to gauge fields that couple to chiral fermions at low energy. This turns out to be quite close to the Standard Model and its constructions via branes in string theory. As a by-product, we construct a G 2-brane solution corresponding to a squashed fuzzy coadjoint orbit of G 2.
Topological charge and the spectrum of exactly massless fermions on the lattice
NASA Astrophysics Data System (ADS)
Chiu, Ting-Wai
1998-10-01
The square root of the positive definite Hermitian operator D†wDw in Neuberger's proposal of exactly massless quarks on the lattice is implemented by the recursion formula Yk+1=12(Yk+D†wDwY-1k) with Y0=1, where Y2k converges to D†wDw quadratically. The spectrum of the lattice Dirac operator for single massless fermion in two dimensional background U(1) gauge fields is investigated. For smooth background gauge fields with nonzero topological charge, the exact zero modes with definite chirality are reproduced to a very high precision on a finite lattice and the index theorem is satisfied exactly. The fermionic determinants are also computed and they are in good agreement with the continuum exact solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hye-Sung; Soni, Amarjit
2013-01-01
We present a very simple 4th-generation (4G) model with an Abelian gauge interaction under which only the 4G fermions have nonzero charge. The U(1) gauge symmetry can have a Z_2 residual discrete symmetry (4G-parity), which can stabilize the lightest 4G particle (L4P). When the 4G neutrino is the L4P, it would be a neutral and stable particle and the other 4G fermions would decay into the L4P leaving the trace of missing energy plus the standard model fermions. Because of the new symmetry, the 4G particle creation and decay modes are different from those of the sequential 4G model, andmore » the 4G particles can be appreciably lighter than typical experimental bounds.« less
A Yang-Mills field on the extremal Reissner-Nordström black hole
NASA Astrophysics Data System (ADS)
Bizoń, Piotr; Kahl, Michał
2016-09-01
We consider a spherically symmetric (magnetic) SU(2) Yang-Mills field propagating on the exterior of the extremal Reissner-Nordström black hole. Taking advantage of the conformal symmetry, we reduce the problem to the study of the Yang-Mills equation in a geodesically complete spacetime with two asymptotically flat ends. We prove the existence of infinitely many static solutions (two of which are found in closed form) and determine the spectrum of their linear perturbations and quasinormal modes. Finally, using the hyperboloidal approach to the initial value problem, we describe the process of relaxation to the static endstates of evolution, both stable (for generic initial data) and unstable (for codimension-one initial data).
Gravitational radiation from extreme Kerr black hole
NASA Technical Reports Server (NTRS)
Sasaki, Misao; Nakamura, Takashi
1989-01-01
Gravitational radiation induced by a test particle falling into an extreme Kerr black hole was investigated analytically. Assuming the radiation is dominated by the infinite sequence of quasi-normal modes which has the limiting frequency m/(2M), where m is an azimuthal eigenvalue and M is the mass of the black hole, it was found that the radiated energy diverges logarithmically in time. Then the back reaction to the black hole was evaluated by appealing to the energy and angular momentum conservation laws. It was found that the radiation has a tendency to increase the ratio of the angular momentum to mass of the black hole, which is completely different from non-extreme case, while the contribution of the test particle is to decrease it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cartas-Fuentevilla, Roberto; Escalante, Alberto; Germán, Gabriel
Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aimsmore » we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ-bar in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb’s law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb’s law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb’s law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally observed or astrophysically inferred photon mass, are far beyond its upper bound, positively testing the viability of our tachyonic braneworld. Moreover, the 5D parameters that define these corrections possess the same order, providing naturalness to our model, however, a fine-tuning between them is needed in order to fit the corresponding upper bound on the photon mass.« less
Effect of Interaction on the Majorana Zero Modes in the Kitaev Chain at Half Filling
NASA Astrophysics Data System (ADS)
Li, Zhidan; Han, Qiang
2018-04-01
The one dimension interacting Kitaev chain at half filling is studied. The symmetry of the Hamiltonian is examined by dual transformations and various physical quantities as functions of the fermion-fermion interaction $U$ are calculated systematically using the density matrix renormalization group method. A special value of interaction $U_p$ is revealed in the topological region of the phase diagram. We show that at $U_p$ the ground states are strictly two-fold degenerate even though the chain length is finite and the zero-energy peak due to the Majorana zero modes is maximally enhanced and exactly localized at the end sites. $U_p$ may be attractive or repulsive depending on other system parameters. We also give a qualitative understanding of the effect of interaction under the self-consistent mean field framework.
Topological phase in a two-dimensional metallic heavy-fermion system
NASA Astrophysics Data System (ADS)
Yoshida, Tsuneya; Peters, Robert; Fujimoto, Satoshi; Kawakami, Norio
2013-04-01
We report on a topological insulating state in a heavy-fermion system away from half filling, which is hidden within a ferromagnetic metallic phase. In this phase, the cooperation of the RKKY interaction and the Kondo effect, together with the spin-orbit coupling, induces a spin-selective gap, bringing about topologically nontrivial properties. This topological phase is robust against a change in the chemical potential in a much wider range than the gap size. We analyze these remarkable properties by using dynamical mean field theory and the numerical renormalization group. Its topological properties support a gapless chiral edge mode, which exhibits a non-Tomonaga-Luttinger liquid behavior due to the coupling with bulk ferromagnetic spin fluctuations. We also propose that the effects of the spin fluctuations on the edge mode can be detected via the NMR relaxation time measurement.
Topological Superfluid and Majorana Zero Modes in Synthetic Dimension
Yan, Zhongbo; Wan, Shaolong; Wang, Zhong
2015-01-01
Recently it has been shown that multicomponent spin-orbit-coupled fermions in one-dimensional optical lattices can be viewed as spinless fermions moving in two-dimensional synthetic lattices with synthetic magnetic flux. The quantum Hall edge states in these systems have been observed in recent experiments. In this paper we study the effect of an attractive Hubbard interaction. Since the Hubbard interaction is long-range in the synthetic dimension, it is able to efficiently induce Cooper pairing between the counterpropagating chiral edge states. The topological class of the resultant one-dimensional superfluid is determined by the parity (even/odd) of the Chern number in the two-dimensional synthetic lattice. We also show the presence of a chiral symmetry in our model, which implies Z classification and the robustness of multiple zero modes when this symmetry is unbroken. PMID:26515084
Duality invariance of s ≥ 3/2 fermions in AdS
Deser, S.; Seminara, D.
2014-09-30
The research show that in D = 4 AdS, s ≥ 3/2 partially massless (PM) fermions retain the duality invariances of their flat space massless counterparts. They have tuned ratios m 2/M 2 ≠ 0 that turn them into sums of effectively massless unconstrained helicity ±(s, ···, 3/2) excitations, shorn of the lowest (non-dual) helicity ±1/2-rung and — more generally — of succeeding higher rung as well. Each helicity mode is separately duality invariant, like its flat space counterpart.
Tiwari, Rakesh P; Zülicke, U; Bruder, C
2013-05-03
We show that the interplay of cyclotron motion and Andreev reflection experienced by massless-Dirac-like charge carriers in topological-insulator surface states generates a Majorana-particle excitation. On the basis of an envelope-function description of the Dirac-Andreev edge states, we discuss the kinematic properties of the Majorana mode and find them to be tunable by changing the superconductor's chemical potential and/or the magnitude of the perpendicular magnetic field. Our proposal opens up new possibilities for studying Majorana fermions in a controllable setup.
Quantum coherence behaviors of fermionic system in non-inertial frame
NASA Astrophysics Data System (ADS)
Huang, Zhiming; Situ, Haozhen
2018-04-01
In this paper, we analyze the quantum coherence behaviors of a single qubit in the relativistic regime beyond the single-mode approximation. Firstly, we investigate the freezing condition of quantum coherence in fermionic system. We also study the quantum coherence tradeoff between particle and antiparticle sector. It is found that there exists quantum coherence transfer between particle and antiparticle sector, but the coherence lost in particle sector is not entirely compensated by the coherence generation of antiparticle sector. Besides, we emphatically discuss the cohering power and decohering power of Unruh channel with respect to the computational basis. It is shown that cohering power is vanishing and decohering power is dependent of the choice of Unruh mode and acceleration. Finally, we compare the behaviors of quantum coherence with geometric quantum discord and entanglement in relativistic setup. Our results show that this quantifiers in two region converge at infinite acceleration limit, which implies that this measures become independent of Unruh modes beyond the single-mode approximations. It is also demonstrated that the robustness of quantum coherence and geometric quantum discord are better than entanglement under the influence of acceleration, since entanglement undergoes sudden death.
Sachdev–Ye–Kitaev model as Liouville quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagrets, Dmitry; Altland, Alexander; Kamenev, Alex
2016-08-08
Here, we show that the proper inclusion of soft reparameterization modes in the Sachdev–Ye–Kitaev model of N randomly interacting Majorana fermions reduces its long-time behavior to that of Liouville quantum mechanics.
Persistent current and zero-energy Majorana modes in a p -wave disordered superconducting ring
NASA Astrophysics Data System (ADS)
Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico
2017-04-01
We discuss the emergence of zero-energy Majorana modes in a disordered finite-length p -wave one-dimensional superconducting ring, pierced by a magnetic flux Φ tuned at an appropriate value Φ =Φ* . In the absence of fermion parity conservation, we evidence the emergence of the Majorana modes by looking at the discontinuities in the persistent current I [Φ ] at Φ =Φ* . By monitoring the discontinuities in I [Φ ] , we map out the region in parameter space characterized by the emergence of Majorana modes in the disordered ring.
Multiscale Monte Carlo equilibration: Two-color QCD with two fermion flavors
Detmold, William; Endres, Michael G.
2016-12-02
In this study, we demonstrate the applicability of a recently proposed multiscale thermalization algorithm to two-color quantum chromodynamics (QCD) with two mass-degenerate fermion flavors. The algorithm involves refining an ensemble of gauge configurations that had been generated using a renormalization group (RG) matched coarse action, thereby producing a fine ensemble that is close to the thermalized distribution of a target fine action; the refined ensemble is subsequently rethermalized using conventional algorithms. Although the generalization of this algorithm from pure Yang-Mills theory to QCD with dynamical fermions is straightforward, we find that in the latter case, the method is susceptible tomore » numerical instabilities during the initial stages of rethermalization when using the hybrid Monte Carlo algorithm. We find that these instabilities arise from large fermion forces in the evolution, which are attributed to an accumulation of spurious near-zero modes of the Dirac operator. We propose a simple strategy for curing this problem, and demonstrate that rapid thermalization--as probed by a variety of gluonic and fermionic operators--is possible with the use of this solution. Also, we study the sensitivity of rethermalization rates to the RG matching of the coarse and fine actions, and identify effective matching conditions based on a variety of measured scales.« less
Two-component quantum Hall effects in topological flat bands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Tian-Sheng; Zhu, Wei; Sheng, D. N.
2017-03-27
Here in this paper, we study quantum Hall states for two-component particles (hardcore bosons and fermions) loading in topological lattice models. By tuning the interplay of interspecies and intraspecies interactions, we demonstrate that two-component fractional quantum Hall states emerge at certain fractional filling factors ν = 1/2 for fermions (ν = 2/3 for bosons) in the lowest Chern band, classified by features from ground states including the unique Chern number matrix (inverse of the K matrix), the fractional charge and spin pumpings, and two parallel propagating edge modes. Moreover, we also apply our strategy to two-component fermions at integer fillingmore » factor ν = 2 , where a possible topological Neel antiferromagnetic phase is under intense debate very recently. For the typical π -flux checkerboard lattice, by tuning the onsite Hubbard repulsion, we establish a first-order phase transition directly from a two-component fermionic ν = 2 quantum Hall state at weak interaction to a topologically trivial antiferromagnetic insulator at strong interaction, and therefore exclude the possibility of an intermediate topological phase for our system.« less
Patterns of symmetry breaking in chiral QCD
NASA Astrophysics Data System (ADS)
Bolognesi, Stefano; Konishi, Kenichi; Shifman, Mikhail
2018-05-01
We consider S U (N ) Yang-Mills theory with massless chiral fermions in a complex representation of the gauge group. The main emphasis is on the so-called hybrid ψ χ η model. The possible patterns of realization of the continuous chiral flavor symmetry are discussed. We argue that the chiral symmetry is broken in conjunction with a dynamical Higgsing of the gauge group (complete or partial) by bifermion condensates. As a result a color-flavor locked symmetry is preserved. The 't Hooft anomaly matching proceeds via saturation of triangles by massless composite fermions or, in a mixed mode, i.e. also by the "weakly" coupled fermions associated with dynamical Abelianization, supplemented by a number of Nambu-Goldstone mesons. Gauge-singlet condensates are of the multifermion type and, though it cannot be excluded, the chiral symmetry realization via such gauge invariant condensates is more contrived (requires a number of four-fermion condensates simultaneously and, even so, problems remain) and less plausible. We conclude that in the model at hand, chiral flavor symmetry implies dynamical Higgsing by bifermion condensates.
Fermion dark matter in gauge-Higgs unification
Maru, Nobuhito; Miyaji, Takashi; Okada, Nobuchika; ...
2017-07-11
Here, we propose a Majorana fermion dark matter in the context of a s imple gauge-Higgs Unification (GHU) scenario based on the gauge group SU(3)×U(1)' in 5-dimensional Minkowski space with a compactification of the 5th dimension on S 1/Z 2 orbifold. The dark matter particle is identified with the lightest mode in SU(3) triplet fermions additionally introduced in the 5-dimensional bulk. We find an allowed parameter region for the dark matter mass around a half of the Standard Model Higgs boson mass, which is consistent with the observed dark matter density and the constraint from the LUX 2016 result formore » the direct dark matter search. The entire allowed region will be covered by, for example, the LUX-ZEPLIN dark matter experiment in the near future. We also show that in the presence of the bulk SU(3) triplet fermions the 125 GeV Higgs boson mas s is reproduced through the renormalization group evolution of Higgs quartic coupling with the compactification scale of around 10 8 GeV.« less
Six-dimensional regularization of chiral gauge theories
NASA Astrophysics Data System (ADS)
Fukaya, Hidenori; Onogi, Tetsuya; Yamamoto, Shota; Yamamura, Ryo
2017-03-01
We propose a regularization of four-dimensional chiral gauge theories using six-dimensional Dirac fermions. In our formulation, we consider two different mass terms having domain-wall profiles in the fifth and the sixth directions, respectively. A Weyl fermion appears as a localized mode at the junction of two different domain walls. One domain wall naturally exhibits the Stora-Zumino chain of the anomaly descent equations, starting from the axial U(1) anomaly in six dimensions to the gauge anomaly in four dimensions. Another domain wall implies a similar inflow of the global anomalies. The anomaly-free condition is equivalent to requiring that the axial U(1) anomaly and the parity anomaly are canceled among the six-dimensional Dirac fermions. Since our formulation is based on a massive vector-like fermion determinant, a nonperturbative regularization will be possible on a lattice. Putting the gauge field at the four-dimensional junction and extending it to the bulk using the Yang-Mills gradient flow, as recently proposed by Grabowska and Kaplan, we define the four-dimensional path integral of the target chiral gauge theory.
Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model
NASA Astrophysics Data System (ADS)
Borcherding, Daniel; Frahm, Holger
2018-05-01
The contribution of anyonic degrees of freedom emerging in the non-Abelian spin sector of a one-dimensional system of interacting fermions carrying both spin and SU(N f ) orbital degrees of freedom to the thermodynamic properties of the latter is studied based on the exact solution of the model. For sufficiently small temperatures and magnetic fields the anyons appear as zero energy modes localized at the massive kink excitations (Tsvelik 2014 Phys. Rev. Lett. 113 066401). From their quantum dimension they are identified as spin- anyons. The density of kinks (and anyons) can be controlled by an external magnetic field leading to the formation of a collective state of these anyons described by a parafermion conformal field theory for large fields. Based on the numerical analysis of the thermodynamic Bethe ansatz equations we propose a phase diagram for the anyonic modes.
NASA Astrophysics Data System (ADS)
Park, Seong Chan; Shin, Chang Sub
2018-01-01
We propose new mechanisms for small neutrino masses based on clockwork mechanism. The Standard Model neutrinos and lepton number violating operators communicate through the zero mode of clockwork gears, one of the two couplings of the zero mode is exponentially suppressed by clockwork mechanism. Including all known examples for the clockwork realization of the neutrino masses, different types of models are realized depending on the profile and chirality of the zero mode fermion. Each type of realization would have phenomenologically distinctive features with the accompanying heavy neutrinos.
125 GeV Higgs boson mass from 5D gauge-Higgs unification
NASA Astrophysics Data System (ADS)
Carson, Jason; Okada, Nobuchika
2018-03-01
In the context of a simple gauge-Higgs unification (GHU) scenario based on the gauge group SU(3)×U(1)^' in a 5D flat space-time, we investigate the possibility of reproducing the observed Higgs boson mass of around 125 GeV. We introduce bulk fermion multiplets with a bulk mass and a (half-)periodic boundary condition. In our analysis, we adopt a low-energy effective theoretical approach of the GHU scenario, where the running Higgs quartic coupling is required to vanish at the compactification scale. Under this "gauge-Higgs condition," we investigate the renormalization group evolution of the Higgs quartic coupling and find a relation between the bulk mass and the compactification scale so as to reproduce the 125 GeV Higgs boson mass. Through quantum corrections at the one-loop level, the bulk fermions contribute to the Higgs boson production and decay processes and deviate the Higgs boson signal strengths at the Large Hadron Collider experiments from the Standard Model (SM) predictions. Employing the current experimental data that show that the Higgs boson signal strengths for a variety of Higgs decay modes are consistent with the SM predictions, we obtain lower mass bounds on the lightest mode of the bulk fermions to be around 1 TeV.
NASA Astrophysics Data System (ADS)
Xu, B.; Xiao, H.; Gao, B.; Ma, Y. H.; Mu, G.; Marsik, P.; Sheveleva, E.; Lyzwa, F.; Dai, Y. M.; Lobo, R. P. S. M.; Bernhard, C.
2018-05-01
We performed optical studies on CaFeAsF single crystals, a parent compound of the 1111-type iron-based superconductors that undergoes a structural phase transition from tetragonal to orthorhombic at Ts=121 K and a magnetic one to a spin density wave (SDW) state at TN=110 K. In the low-temperature optical conductivity spectrum, after the subtraction of a narrow Drude peak, we observe a pronounced singularity around 300 cm-1 that separates two regions of quasilinear conductivity. We outline that these characteristic absorption features are signatures of Dirac fermions, similar to what was previously reported for the BaFe2As2 system [Z.-G. Chen et al., Phys. Rev. Lett. 119, 096401 (2017), 10.1103/PhysRevLett.119.096401]. In support of this interpretation, we show that for the latter system this singular feature disappears rapidly upon electron and hole doping, as expected if it arises from a van Hove singularity in between two Dirac cones. Finally, we show that one of the infrared-active phonon modes (the Fe-As mode at 250 cm-1) develops a strongly asymmetric line shape in the SDW state and note that this behavior can be explained in terms of a strong coupling with the Dirac fermions.
Weyl fermions in a family of Gödel-type geometries with a topological defect
NASA Astrophysics Data System (ADS)
Garcia, G. Q.; Oliveira, J. R. De S.; Furtado, C.
In this paper, we study Weyl fermions in a family of Gödel-type geometries in Einstein general relativity. We also consider that these solutions are embedded in a topological defect background. We solve the Weyl equation and find the energy eigenvalues and eigenspinors for all three cases of Gödel-type geometries where a topological defect is passing through them. We show that the presence of a topological defect in these geometries contributes to the modification of the spectrum of energy. The energy zero modes for all three cases of the Gödel geometries are discussed.
Anapole dark matter annihilation into photons
NASA Astrophysics Data System (ADS)
Latimer, David C.
2017-05-01
In models of anapole dark matter (DM), the DM candidate is a Majorana fermion whose primary interaction with standard model (SM) particles is through an anapole coupling to off-shell photons. As such, at tree-level, anapole DM undergoes p-wave annihilation into SM charged fermions via a virtual photon. But, generally, Majorana fermions are polarizable, coupling to two real photons. This fact admits the possibility that anapole DM can annihilate into two photons in an s-wave process. Using an explicit model, we compute both the tree-level and diphoton contributions to the anapole DM annihilation cross section. Depending on model parameters, the s-wave process can either rival or be dwarfed by the p-wave contribution to the total annihilation cross section. Subjecting the model to astrophysical upper bounds on the s-wave annihilation mode, we rule out the model with large s-wave annihilation.
Collider signatures of flavorful Higgs bosons
Altmannshofer, Wolfgang; Eby, Joshua; Gori, Stefania; ...
2016-12-30
Motivated by our limited knowledge of the Higgs couplings to the first two generation fermions, we analyze the collider phenomenology of a class of two Higgs doublet models (2HDMs) with a nonstandard Yukawa sector. One Higgs doublet is mainly responsible for the masses of the weak gauge bosons and the third-generation fermions, while the second Higgs doublet provides mass for the lighter fermion generations. The characteristic collider signatures of this setup differ significantly from well-studied 2HDMs with natural flavor conservation, flavor alignment, or minimal flavor violation. New production mechanisms for the heavy scalar, pseudoscalar, and charged Higgs involving second-generation quarksmore » can become dominant. The most interesting decay modes include H/A → cc,tc,μμ,τμ and H ± → cb,cs,μν. As a result, searches for low-mass dimuon resonances are currently among the best probes of the heavy Higgs bosons in this setup.« less
Chiral Majorana fermion modes regulated by a scanning tunneling microscope tip
NASA Astrophysics Data System (ADS)
Zhou, Yan-Feng; Hou, Zhe; Zhang, Ying-Tao; Sun, Qing-Feng
2018-03-01
The Majorana fermion can be described by a real wave function with only two phases (zero and π ) which provide a controllable degree of freedom. We propose a strategy to regulate the phase of the chiral Majorana state by coupling with a scanning tunneling microscope tip in a system consisting of a quantum anomalous Hall insulator coupled with a superconductor. With the change in the chemical potential, the chiral Majorana state can be tuned alternately between zero and π , in which the perfect normal tunneling and perfect crossed Andreev reflection appear, respectively. The perfect crossed Andreev reflection, by which a Cooper pair can be split into two electrons going into different terminals completely, leads to a pumping current and distinct quantized resistances. These findings may provide a signature of Majorana fermions and pave a feasible avenue to regulate the phase of the Majorana state.
Fractionally charged skyrmions in fractional quantum Hall effect
Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.
2015-01-01
The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906
Majorana modes in solid state systems and its dynamics
NASA Astrophysics Data System (ADS)
Zhang, Qi; Wu, Biao
2018-04-01
We review the properties of Majorana fermions in particle physics and point out that Majorana modes in solid state systems are significantly different. The key reason is the concept of anti-particle in solid state systems is different from its counterpart in particle physics. We define Majorana modes as the eigenstates of Majorana operators and find that they can exist both at edges and in the bulk. According to our definition, only one single Majorana mode can exist in a system no matter at edges or in the bulk. Kitaev's spinless p-wave superconductor is used to illustrate our results and the dynamical behavior of the Majorana modes.
On the interpretation of a possible ~ 750 GeV particle decaying into γγ
Ellis, John; Ellis, Sebastian A. R.; Quevillon, Jeremie; ...
2016-03-25
We consider interpretations of the recent ~3σ reports by the CMS and ATLAS collaborations of a possible X(~ 750 GeV) state decaying into yy final states. We focus on the possibilities that this is a scalar or pseudoscalar electroweak isoscalar state produced by gluon-gluon fusion mediated by loops of heavy fermions. We consider several models for these fermions, including a single vector-like charge 2/3 T quark, a doublet of vector-like quarks (T;B), and a vector-like generation of quarks, with or without leptons that also contribute to the X → yy decay amplitude. We also consider the possibility that X(750) ismore » a dark matter mediator, with a neutral vector-like dark matter particle. These scenarios are compatible with the present and prospective direct limits on vector-like fermions from LHC Runs 1 and 2, as well as indirect constraints from electroweak precision measurements, and we show that the required Yukawa-like couplings between the X particle and the heavy vector-like fermions are small enough to be perturbative so long as the X particle has dominant decay modes into gg and yy. In conclusion, the decays X → ZZ,Zy and W +W - are interesting prospective signatures that may help distinguish between different vector-like fermion scenarios.« less
Non-Abelian fermion parity interferometry of Majorana bound states in a Fermi sea
NASA Astrophysics Data System (ADS)
Dahan, Daniel; Tanhayi Ahari, Mostafa; Ortiz, Gerardo; Seradjeh, Babak; Grosfeld, Eytan
We study the quantum dynamics of Majorana and regular fermion bound states coupled to a one-dimensional lead. The dynamics following the quench in the coupling to the lead exhibits a series of dynamical revivals as the bound state propagates in the lead and reflects from the boundaries. We show that the nature of revivals for a single Majorana bound state depends uniquely on the presence of a resonant level in the lead. When two spatially separated Majorana modes are coupled to the lead, the revivals depend only on the phase difference between their host superconductors. Remarkably, the quench in this case effectively performs a fermion-parity interferometry between Majorana bound states, revealing their unique non-Abelian braiding. Using both analytical and numerical techniques, we find the pattern of fermion parity transfers following the quench, study its evolution in the presence of disorder and interactions, and thus, ascertain the fate of Majorana in a rough Fermi sea. Work supported in part by BSF Grant No. 2014345, ISF Grant Nos. 401/12 and 1626/16, EU Seventh Framework Programme (FP7/2007-2013) Grant No. 303742, NSF CAREER Grant DMR-1350663 and the College of Arts and Sciences at Indiana University.
Complexity of Quantum Impurity Problems
NASA Astrophysics Data System (ADS)
Bravyi, Sergey; Gosset, David
2017-12-01
We give a quasi-polynomial time classical algorithm for estimating the ground state energy and for computing low energy states of quantum impurity models. Such models describe a bath of free fermions coupled to a small interacting subsystem called an impurity. The full system consists of n fermionic modes and has a Hamiltonian {H=H_0+H_{imp}}, where H 0 is quadratic in creation-annihilation operators and H imp is an arbitrary Hamiltonian acting on a subset of O(1) modes. We show that the ground energy of H can be approximated with an additive error {2^{-b}} in time {n^3 \\exp{[O(b^3)]}}. Our algorithm also finds a low energy state that achieves this approximation. The low energy state is represented as a superposition of {\\exp{[O(b^3)]}} fermionic Gaussian states. To arrive at this result we prove several theorems concerning exact ground states of impurity models. In particular, we show that eigenvalues of the ground state covariance matrix decay exponentially with the exponent depending very mildly on the spectral gap of H 0. A key ingredient of our proof is Zolotarev's rational approximation to the {√{x}} function. We anticipate that our algorithms may be used in hybrid quantum-classical simulations of strongly correlated materials based on dynamical mean field theory. We implemented a simplified practical version of our algorithm and benchmarked it using the single impurity Anderson model.
Granular superconductor in a honeycomb lattice as a realization of bosonic Dirac material
NASA Astrophysics Data System (ADS)
Banerjee, S.; Fransson, J.; Black-Schaffer, A. M.; Ågren, H.; Balatsky, A. V.
2016-04-01
We examine the low-energy effective theory of phase oscillations in a two-dimensional granular superconducting sheet where the grains are arranged in a honeycomb lattice structure. Using the example of graphene, we present evidence for the engineered Dirac nodes in the bosonic excitations: the spectra of the collective bosonic modes cross at the K and K' points in the Brillouin zone and form Dirac nodes. We show how two different types of collective phase oscillations are obtained and that they are analogous to the Leggett and the Bogoliubov-Anderson-Gorkov modes in a two-band superconductor. We show that the Dirac node is preserved in the presence of an intergrain interaction, despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sublattice symmetry by choosing different on-site potentials for the two sublattices leads to a gap opening near the Dirac node, in analogy with fermionic Dirac materials. The Dirac node dispersion of bosonic excitations is thus expanding the discussion of the conventional Dirac cone excitations to the case of bosons. We call this case as a representative of bosonic Dirac materials (BDM), similar to the case of Fermionic Dirac materials extensively discussed in the literature.
AdS and Lifshitz black hole solutions in conformal gravity sourced with a scalar field
NASA Astrophysics Data System (ADS)
Herrera, Felipe; Vásquez, Yerko
2018-07-01
In this paper we obtain exact asymptotically anti-de Sitter black hole solutions and asymptotically Lifshitz black hole solutions with dynamical exponents z = 0 and z = 4 of four-dimensional conformal gravity coupled with a self-interacting conformally invariant scalar field. Then, we compute their thermodynamical quantities, such as the mass, the Wald entropy and the Hawking temperature. The mass expression is obtained by using the generalized off-shell Noether potential formulation. It is found that the anti-de Sitter black holes as well as the Lifshitz black holes with z = 0 have zero mass and zero entropy, although they have non-zero temperature. A similar behavior has been observed in previous works, where the integration constant is not associated with a conserved charge, and it can be interpreted as a kind of gravitational hair. On the other hand, the Lifshitz black holes with dynamical exponent z = 4 have non-zero conserved charges, and the first law of black hole thermodynamics holds. Also, we analyze the horizon thermodynamics for the Lifshitz black holes with z = 4, and we show that the first law of black hole thermodynamics arises from the field equations evaluated on the horizon. Furthermore, we study the propagation of a conformally coupled scalar field on these backgrounds and we find the quasinormal modes analytically in several cases. We find that for anti-de Sitter black holes and Lifshitz black holes with z = 4, there is a continuous spectrum of frequencies for Dirichlet boundary condition; however, we show that discrete sets of well defined quasinormal frequencies can be obtained by considering Neumann boundary conditions.
Gravitational waves from plunges into Gargantua
NASA Astrophysics Data System (ADS)
Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang
2018-05-01
We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.
Can the graviton have a large mass near black holes?
NASA Astrophysics Data System (ADS)
Zhang, Jun; Zhou, Shuang-Yong
2018-04-01
The mass of the graviton, if nonzero, is usually considered to be very small, e.g., of the Hubble scale, from several observational constraints. In this paper, we propose a gravity model where the graviton mass is very small in the usual weak gravity environments, below all the current graviton mass bounds, but becomes much larger in the strong gravity regime such as a black hole's vicinity. For black holes in this model, significant deviations from general relativity emerge very close to the black hole horizon and alter the black hole quasinormal modes, which can be extracted from the ringdown wave form of black hole binary mergers. Also, the enhancement of the graviton mass near the horizon can result in echoes in the late-time ringdown, which can be verified in the upcoming gravitational wave observations of higher sensitivity.
Electromagnetic radiation due to naked singularity formation in self-similar gravitational collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitsuda, Eiji; Yoshino, Hirotaka; Tomimatsu, Akira
Dynamical evolution of test fields in background geometry with a naked singularity is an important problem relevant to the Cauchy horizon instability and the observational signatures different from black hole formation. In this paper we study electromagnetic perturbations generated by a given current distribution in collapsing matter under a spherically symmetric self-similar background. Using the Green's function method, we construct the formula to evaluate the outgoing energy flux observed at the future null infinity. The contributions from 'quasinormal' modes of the self-similar system as well as 'high-frequency' waves are clarified. We find a characteristic power-law time evolution of the outgoingmore » energy flux which appears just before naked singularity formation and give the criteria as to whether or not the outgoing energy flux diverges at the future Cauchy horizon.« less
Experimental simulation of the Unruh effect on an NMR quantum simulator
NASA Astrophysics Data System (ADS)
Jin, FangZhou; Chen, HongWei; Rong, Xing; Zhou, Hui; Shi, MingJun; Zhang, Qi; Ju, ChenYong; Cai, YiFu; Luo, ShunLong; Peng, XinHua; Du, JiangFeng
2016-03-01
The Unruh effect is one of the most fundamental manifestations of the fact that the particle content of a field theory is observer dependent. However, there has been so far no experimental verification of this effect, as the associated temperatures lie far below any observable threshold. Recently, physical phenomena, which are of great experimental challenge, have been investigated by quantum simulations in various fields. Here we perform a proof-of-principle simulation of the evolution of fermionic modes under the Unruh effect with a nuclear magnetic resonance (NMR) quantum simulator. By the quantum simulator, we experimentally demonstrate the behavior of Unruh temperature with acceleration, and we further investigate the quantum correlations quantified by quantum discord between two fermionic modes as seen by two relatively accelerated observers. It is shown that the quantum correlations can be created by the Unruh effect from the classically correlated states. Our work may provide a promising way to explore the quantum physics of accelerated systems.
Clockwork for neutrino masses and lepton flavor violation
NASA Astrophysics Data System (ADS)
Ibarra, Alejandro; Kushwaha, Ashwani; Vempati, Sudhir K.
2018-05-01
We investigate the generation of small neutrino masses in a clockwork framework which includes Dirac mass terms as well as Majorana mass terms for the new fermions. We derive analytic formulas for the masses of the new particles and for their Yukawa couplings to the lepton doublets, in the scenario where the clockwork parameters are universal. When the universal Majorana mass vanishes, the zero mode of the clockwork sector forms a Dirac pair with the active neutrino, with a mass which is in agreement with oscillations experiments for a sufficiently large number of clockwork gears. On the other hand, when it does not vanish, neutrino masses are generated via the seesaw mechanism. In this case, and due to the fact that the effective Yukawa couplings of the higher modes can be sizable, neutrino masses can only be suppressed by postulating a large Majorana mass scale. Finally, we discuss the constraints on the mass scale of the clockwork fermions from the non-observation of the rare leptonic decay μ → eγ.
On the stability of a superspinar
NASA Astrophysics Data System (ADS)
Nakao, Ken-ichi; Joshi, Pankaj S.; Guo, Jun-Qi; Kocherlakota, Prashant; Tagoshi, Hideyuki; Harada, Tomohiro; Patil, Mandar; Królak, Andrzej
2018-05-01
The superspinar proposed by Gimon and Hořava is a rapidly rotating compact entity whose exterior is described by the over-spinning Kerr geometry. The compact entity itself is expected to be governed by superstringy effects, and in astrophysical scenarios it can give rise to interesting observable phenomena. Earlier it was suggested that the superspinar may not be stable but we point out here that this does not necessarily follow from earlier studies. We show, by analytically treating the Teukolsky equations by Detwiler's method, that in fact there are infinitely many boundary conditions that make the superspinar stable at least against the linear perturbations of m = l modes, and that the modes will decay in time. Further consideration leads us to the conclusion that it is possible to set the inverse problem to the linear stability issue: since the radial Teukolsky equation for the superspinar has no singular point on the real axis, we obtain regular solutions to the Teukolsky equation for arbitrary discrete frequency spectrum of the quasi-normal modes (no incoming waves) and the boundary conditions at the "surface" of the superspinar are found from obtained solutions. It follows that we need to know more on the physical nature of the superspinar in order to decide on its stability in physical reality.
Dielectric properties of proteins from simulations: tools and techniques
NASA Astrophysics Data System (ADS)
Simonson, Thomas; Perahia, David
1995-09-01
Tools and techniques to analyze the dielectric properties of proteins are described. Microscopic dielectric properties are determined by a susceptibility tensor of order 3 n, where n is the number of protein atoms. For perturbing charges not too close to the protein, the dielectric relaxation free energy is directly related to the dipole-dipole correlation matrix of the unperturbed protein, or equivalently to the covariance matrix of its atomic displacements. These are straightforward to obtain from existing molecular dynamics packages such as CHARMM or X- PLOR. Macroscopic dielectric properties can be derived from the dipolar fluctuations of the protein, by idealizing the protein as one or more spherical media. The dipolar fluctuations are again directly related to the covariance matrix of the atomic displacements. An interesting consequence is that the quasiharmonic approximation, which by definition exactly reproduces this covariance matrix, gives the protein dielectric constant exactly. Finally a technique is reviewed to obtain normal or quasinormal modes of vibration of symmetric protein assemblies. Using elementary group theory, and eliminating the high-frequency modes of vibration of each monomer, the limiting step in terms of memory and computation is finding the normal modes of a single monomer, with the other monomers held fixed. This technique was used to study the dielectric properties of the Tobacco Mosaic Virus protein disk.
Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.
2007-01-01
We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.
Probing Many-Body Interactions in an Optical Lattice Clock (Preprint)
2013-10-23
impressive potential gain over their microwave counterparts. Optical frequencies on the other hand are very difficult to measure, as the oscillations ...source can be compared. Here, the laboratory radiation source is an ultra-stable continuous-wave laser. It acts as the local oscillator (or pendulum...where φ Z 0 is the ground longitudinal mode in a lattice site and φn are transverse harmonic oscillator eigenmodes. ĉ†αn creates a fermion in mode n
Fractionally charged skyrmions in fractional quantum Hall effect
Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; ...
2015-11-26
The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less
Chiral Tricritical Point: A New Universality Class in Dirac Systems
NASA Astrophysics Data System (ADS)
Yin, Shuai; Jian, Shao-Kai; Yao, Hong
2018-05-01
Tricriticality, as a sister of criticality, is a fundamental and absorbing issue in condensed-matter physics. It has been verified that the bosonic Wilson-Fisher universality class can be changed by gapless fermionic modes at criticality. However, the counterpart phenomena at tricriticality have rarely been explored. In this Letter, we study a model in which a tricritical Ising model is coupled to massless Dirac fermions. We find that the massless Dirac fermions result in the emergence of a new tricritical point, which we refer to as the chiral tricritical point (CTP), at the phase boundary between the Dirac semimetal and the charge-density wave insulator. From functional renormalization group analysis of the effective action, we obtain the critical behaviors of the CTP, which are qualitatively distinct from both the tricritical Ising universality and the chiral Ising universality. We further extend the calculations of the chiral tricritical behaviors of Ising spins to the case of Heisenberg spins. The experimental relevance of the CTP in two-dimensional Dirac semimetals is also discussed.
Creation of mass dimension one fermionic particles in asymptotically expanding universe
NASA Astrophysics Data System (ADS)
Pereira, S. H.; Lima, Rodrigo C.
In the present work we study the process of particle creation for mass dimension one fermionic fields (sometimes named Elko) as a consequence of expansion of the universe. We study the effect driven by an expanding background that is asymptotically Minkowski in the past and future. The differential equation that governs the time mode function is obtained for the conformal coupling case and, although its solution is nonanalytic, within an approximation that preserves the characteristics of the terms that break analyticity, analytic solutions are obtained. Thus, by means of Bogolyubov transformations technique, the number density of particles created is obtained, which can be compared to exact solutions already present in literature for scalar and Dirac particles. The spectrum of the created particles was obtained and it was found that it is a generalization of the scalar field case, which converges to the scalar field one when the specific terms concerning the Elko field are dropped out. We also found that lighter Elko particles are created in larger quantities than the Dirac fermionic particles. By considering the Elko particles as candidate to the dark matter in the universe, such result shows that there are more light dark matter (Elko) particles created by the gravitational effects in the universe than baryonic (fermionic) matter, in agreement to the standard model.
Fermionic entanglement in superconducting systems
NASA Astrophysics Data System (ADS)
Di Tullio, M.; Gigena, N.; Rossignoli, R.
2018-06-01
We examine distinct measures of fermionic entanglement in the exact ground state of a finite superconducting system. It is first shown that global measures such as the one-body entanglement entropy, which represents the minimum relative entropy between the exact ground state and the set of fermionic Gaussian states, exhibit a close correlation with the BCS gap, saturating in the strong superconducting regime. The same behavior is displayed by the bipartite entanglement between the set of all single-particle states k of positive quasimomenta and their time-reversed partners k ¯. In contrast, the entanglement associated with the reduced density matrix of four single-particle modes k ,k ¯ , k',k¯' , which can be measured through a properly defined fermionic concurrence, exhibits a different behavior, showing a peak in the vicinity of the superconducting transition for states k ,k' close to the Fermi level and becoming small in the strong coupling regime. In the latter, such reduced state exhibits, instead, a finite mutual information and quantum discord. While the first measures can be correctly estimated with the BCS approximation, the previous four-level concurrence lies strictly beyond the latter, requiring at least a particle-number projected BCS treatment for its description. Formal properties of all previous entanglement measures are as well discussed.
Anomaly-free models for flavour anomalies
NASA Astrophysics Data System (ADS)
Ellis, John; Fairbairn, Malcolm; Tunney, Patrick
2018-03-01
We explore the constraints imposed by the cancellation of triangle anomalies on models in which the flavour anomalies reported by LHCb and other experiments are due to an extra U(1)^' gauge boson Z^' . We assume universal and rational U(1)^' charges for the first two generations of left-handed quarks and of right-handed up-type quarks but allow different charges for their third-generation counterparts. If the right-handed charges vanish, cancellation of the triangle anomalies requires all the quark U(1)^' charges to vanish, if there are either no exotic fermions or there is only one Standard Model singlet dark matter (DM) fermion. There are non-trivial anomaly-free models with more than one such `dark' fermion, or with a single DM fermion if right-handed up-type quarks have non-zero U(1)^' charges. In some of the latter models the U(1)^' couplings of the first- and second-generation quarks all vanish, weakening the LHC Z^' constraint, and in some other models the DM particle has purely axial couplings, weakening the direct DM scattering constraint. We also consider models in which anomalies are cancelled via extra vector-like leptons, showing how the prospective LHC Z^' constraint may be weakened because the Z^' → μ ^+ μ ^- branching ratio is suppressed relative to other decay modes.
Fermion determinants in static, inhomogeneous magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fry, M.P.
1995-01-15
The renormalized fermionic determinant of QED in 3+1 dimensions, det[sub ren], in a static, unidirectional, inhomogeneous magnetic field with finite flux can be calculated from the massive Euclidean Schwinger model's determinant det[sub Sch] in the same field by integrating det[sub Sch] over the fermion's mass. Since det[sub ren] for general fields is central to QED, it is desirable to have nonperturbative information on this determinant, even for the restricted magnetic fields considered here. To this end we continue our study of the physically relevant determinant det[sub Sch]. It is shown that the contribution of the massless Schwinger model to det[submore » Sch] is canceled by a contribution from the massive sector of QED in 1+1 dimensions and that zero modes are suppressed in det[sub Sch]. We then calculate det[sub Sch] analytically in the presence of a finite flux, cylindrical magnetic field. Its behavior for large flux and small fermion mass suggests that the zero-energy bound states of the two-dimensional Pauli Hamiltonian are the controlling factor in the growth of ln det[sub Sch]. Evidence is presented that det[sub Sch] does not converge to the determinant of the massless Schwinger model in the small mass limit for finite, nonzero flux magnetic fields.« less
Binary neutron stars with arbitrary spins in numerical relativity
NASA Astrophysics Data System (ADS)
Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D.; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla
2015-12-01
We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasilocal angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of ˜2 ×10-4 . Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin and orbit precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ˜0.1 % . The neutron stars show quasinormal mode oscillations at an amplitude which increases with the rotation rate of the stars.
NASA Astrophysics Data System (ADS)
González, P. A.; Övgün, Ali; Saavedra, Joel; Vásquez, Yerko
2018-06-01
In this paper we consider the three-dimensional Gödel black hole as a background and we study the vector particle tunneling from this background in order to obtain the Hawking temperature. Then, we study the propagation of a massive charged scalar field and we find the quasinormal modes analytically, which turns out be unstable as a consequence of the existence of closed time-like curves. Also, we consider the flux at the horizon and at infinity, and we compute the reflection and transmission coefficients as well as the absorption cross section. Mainly, we show that massive charged scalar waves can be superradiantly amplified by the three-dimensional Gödel black hole and that the coefficients have an oscillatory behavior. Moreover, the absorption cross section is null at the high frequency limit and for certain values of the frequency.
Nucleon decay in non-minimal supersymmetric SO(10)
NASA Astrophysics Data System (ADS)
Macpherson, Alick L.
1996-02-01
Evaluation of nucleon decay modes and branching ratios in a non-minimal supersymmetric SO(10) grand unified theory is presented. The non-minimal GUT considered is the supersymmetrised version of the 'realistic' SO(10) model originally proposed by Harvey, Reiss and Ramond, which is realistic in that it gives acceptable charged fermion and neutrino masses within the context of a phenomenological fit to the low-energy standard model inputs. Despite a complicated Higgs sector, the SO(10) 10 Higgs superfield mass insertion is found to be the sole contribution to the tree-level F-term governing nucleon decay. The resulting dimension-5 operators that mediate nucleon decay give branching ratio predictions parameterised by a single parameter, the ratio of the Yukawa couplings of the 10 to the fermion generations. For parameter values corresponding to a lack of dominance of the third family self-coupling, the dominant nucleon decay modes are p → K + + overlineνμand n → K 0 + overlineνμ as expected. Further, the charged muon decay modes are enhanced by two orders of magnitude over the standard minimal SUSY SU(5) predictions, thus predicting a distinct spectrum of 'visible' modes. These charged muon decay modes, along with p → π + + overlineνμand n → π 0 + overlineνμ, which are moderately enhanced over the SUSY SU(5) prediction, suggest a distinguishing fingerprint of this particular GUT model, and if nucleon decay is observed at Super-KAMIOKANDE the predicted branching ratio spectrum can be used to determine the validity of this 'realistic' SO(10) SUSY GUT model.
Nasreen, Farzana; Antonio, Daniel; VanGennep, Derrick; ...
2016-02-15
© 2016 IOP Publishing Ltd. We report a study of high pressure x-ray absorption (XAS) performed in the partial fluorescence yield mode (PFY) at the U L 3 edge (0-28.2 GPa) and single crystal x-ray diffraction (SXD) (0-20 GPa) on the UCd 11 heavy fermion compound at room temperature. Under compression, the PFY-XAS results show that the white line is shifted by +4.1(3) eV at the highest applied pressure of 28.2 GPa indicating delocalization of the 5f electrons. The increase in full width at half maxima and decrease in relative amplitude of the white line with respect to the edgemore » jump point towards 6d band broadening under high pressure. A bulk modulus of K 0 = 62(1) GPa and its pressure derivative, = 4.9(2) was determined from high pressure SXD results. Both the PFY-XAS and diffraction results do not show any sign of a structural phase transition in the applied pressure range.« less
Investigation of a driven fermionic system and detecting chiral edge modes in an optical lattice
NASA Astrophysics Data System (ADS)
Görg, Frederik; Messer, Michael; Jotzu, Gregor; Sandholzer, Kilian; Desbuquois, Rémi; Goldman, Nathan; Esslinger, Tilman
2017-04-01
Periodically driven systems of ultracold fermions in optical lattices allow to implement a large variety of effective Hamiltonians through Floquet engineering. An important question is whether this method can be extended to interacting systems. We investigate driven two-body systems in an array of double wells and measure the double occupancy and the spin-spin correlator in the large frequency limit and when driving resonantly to an energy scale of the underlying static Hamiltonian. We analyze whether the emerging states of the driven system can be adiabatically connected to states in the unshaken lattice. In addition, we measure the amplitude of the micromotion which describes the short time dynamics of the system and compare it directly to theory. In another context we propose a method to create topological interfaces and detect chiral edge modes in a two dimensional optical lattice. We illustrate this through an optical lattice realization of the Haldane model for cold atoms, where an additional spatially-varying lattice potential induces distinct topological phases in separated regions of space.
Floquet Topological Order in Interacting Systems of Bosons and Fermions
NASA Astrophysics Data System (ADS)
Harper, Fenner; Roy, Rahul
2017-03-01
Periodically driven noninteracting systems may exhibit anomalous chiral edge modes, despite hosting bands with trivial topology. We find that these drives have surprising many-body analogs, corresponding to class A, which exhibit anomalous charge and information transport at the boundary. Drives of this form are applicable to generic systems of bosons, fermions, and spins, and may be characterized by the anomalous unitary operator that acts at the edge of an open system. We find that these operators are robust to all local perturbations and may be classified by a pair of coprime integers. This defines a notion of dynamical topological order that may be applied to general time-dependent systems, including many-body localized phases or time crystals.
Plethystic vertex operators and boson-fermion correspondences
NASA Astrophysics Data System (ADS)
Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C.
2016-10-01
We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.
Mergers of Non-spinning Black-hole Binaries: Gravitational Radiation Characteristics
NASA Technical Reports Server (NTRS)
Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.
2008-01-01
We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an implicit rotating source. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the l = m modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the l = m modes among all mass-ratios. We identify relationships, with a simple interpretation in terms of the implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time radiation. These detailed relationships provide sufficient information about the late-time radiation to yield a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.
Mergers of nonspinning black-hole binaries: Gravitational radiation characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, John G.; Centrella, Joan; Kelly, Bernard J.
2008-08-15
We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of nonspinning black holes, based on numerical simulations of systems varying from equal mass to a 6 ratio 1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an implicit rotating source. This interpretation applies uniformly to the full wave train, from inspiral through ringdown. We emphasizemore » strong relationships among the l=m modes that persist through the full wave train. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the l=m modes among all mass ratios. We identify relationships, with a simple interpretation in terms of the implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time radiation. These detailed relationships provide sufficient information about the late-time radiation to yield a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.« less
Phase transition with trivial quantum criticality in an anisotropic Weyl semimetal
NASA Astrophysics Data System (ADS)
Li, Xin; Wang, Jing-Rong; Liu, Guo-Zhu
2018-05-01
When a metal undergoes continuous quantum phase transition, the correlation length diverges at the critical point and the quantum fluctuation of order parameter behaves as a gapless bosonic mode. Generically, the coupling of this boson to fermions induces a variety of unusual quantum critical phenomena, such as non-Fermi liquid behavior and various emergent symmetries. Here, we perform a renormalization group analysis of the semimetal-superconductor quantum criticality in a three-dimensional anisotropic Weyl semimetal. Surprisingly, distinct from previously studied quantum critical systems, the anomalous dimension of anisotropic Weyl fermions flows to zero very quickly with decreasing energy, and the quasiparticle residue takes a nonzero value. These results indicate that the quantum fluctuation of superconducting order parameter is irrelevant at low energies, and a simple mean-field calculation suffices to capture the essential physics of the superconducting transition. We thus obtain a phase transition that exhibits trivial quantum criticality, which is unique comparing to other invariably nontrivial quantum critical systems. Our theoretical prediction can be experimentally verified by measuring the fermion spectral function and specific heat.
Hardware-efficient fermionic simulation with a cavity-QED system
NASA Astrophysics Data System (ADS)
Zhu, Guanyu; Subaşı, Yiǧit; Whitfield, James D.; Hafezi, Mohammad
2018-03-01
In digital quantum simulation of fermionic models with qubits, non-local maps for encoding are often encountered. Such maps require linear or logarithmic overhead in circuit depth which could render the simulation useless, for a given decoherence time. Here we show how one can use a cavity-QED system to perform digital quantum simulation of fermionic models. In particular, we show that highly nonlocal Jordan-Wigner or Bravyi-Kitaev transformations can be efficiently implemented through a hardware approach. The key idea is using ancilla cavity modes, which are dispersively coupled to a qubit string, to collectively manipulate and measure qubit states. Our scheme reduces the circuit depth in each Trotter step of the Jordan-Wigner encoding by a factor of N2, comparing to the scheme for a device with only local connectivity, where N is the number of orbitals for a generic two-body Hamiltonian. Additional analysis for the Fermi-Hubbard model on an N × N square lattice results in a similar reduction. We also discuss a detailed implementation of our scheme with superconducting qubits and cavities.
Approximating the Sachdev-Ye-Kitaev model with Majorana wires
NASA Astrophysics Data System (ADS)
Chew, Aaron; Essin, Andrew; Alicea, Jason
The Sachdev-Ye-Kitaev (SYK) model describes a large collection of Majorana fermions coupled via random, `all-to-all' four-fermion interactions. This model enjoys broad interdisciplinary interest because it provides a solvable realization of holography in 0+1 dimensions, exhibits unusual spectral and thermodynamic properties, and shares deep connections to chaos and black holes. We propose a solid-state implementation of the SYK Hamiltonian that employs quantum dots coupled to arrays of topological superconductors hosting Majorana end-states. All-to-all four-Majorana couplings are mediated by interactions in the dot, while the randomness originates from disorder in the hoppings between the Majorana modes and dot levels. Using perturbation theory and explicit numerics, we study the properties of the dot-wire array system under various experimental conditions. Interestingly, our setup not only allows exploration of SYK physics, but also provides a controlled testbed for interaction effects on the topological classification of fermionic phases. Supported by the National Science Foundation (DMR-1341822), Institute for Quantum Information and Matter, and Walter Burke Institute at Caltech. AC gratefully acknowledges support from the Dominic Orr Fellowship.
NASA Astrophysics Data System (ADS)
Tang, Feng; Luo, Xi; Du, Yongping; Yu, Yue; Wan, Xiangang
Very recently, there has been significant progress in realizing high-energy particles in condensed matter system (CMS) such as the Dirac, Weyl and Majorana fermions. Besides the spin-1/2 particles, the spin-3/2 elementary particle, known as the Rarita-Schwinger (RS) fermion, has not been observed or simulated in the laboratory. The main obstacle of realizing RS fermion in CMS lies in the nontrivial constraints that eliminate the redundant degrees of freedom in its representation of the Poincaré group. In this Letter, we propose a generic method that automatically contains the constraints in the Hamiltonian and prove the RS modes always exist and can be separated from the other non-RS bands. Through symmetry considerations, we show that the two dimensional (2D) massive RS (M-RS) quasiparticle can emerge in several trigonal and hexagonal lattices. Based on ab initio calculations, we predict that the thin film of CaLiX (X=Ge and Si) may host 2D M-RS excitations near the Fermi level. and Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.
Song, Yu; Van Dyke, John; Lum, I. K.; White, B. D.; Jang, Sooyoung; Yazici, Duygu; Shu, L.; Schneidewind, A.; Čermák, Petr; Qiu, Y.; Maple, M. B.; Morr, Dirk K.; Dai, Pengcheng
2016-01-01
The neutron spin resonance is a collective magnetic excitation that appears in the unconventional copper oxide, iron pnictide and heavy fermion superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1−xYbxCoIn5 with x=0, 0.05 and 0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with a random phase approximation calculation using the electronic structure and the momentum dependence of the -wave superconducting gap determined from scanning tunnelling microscopy (STM) for CeCoIn5, we conclude that the robust upward-dispersing resonance mode in Ce1−xYbxCoIn5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario. PMID:27677397
New decay modes of heavy Higgs bosons in a two Higgs doublet model with vectorlike leptons
Dermíšek, Radovan; Lunghi, Enrico; Shin, Seodong
2016-05-25
In models with extended Higgs sector and additional matter fields, the decay modes of heavy Higgs bosons can be dominated by cascade decays through the new fermions rendering present search strategies ineffective. Here, we investigate new decay topologies of heavy neutral Higgses in two Higgs doublet model with vectorlike leptons. We also discus constraints from existing searches and discovery prospects. Among the most interesting signatures are monojet, mono Z, mono Higgs, and Z and Higgs bosons produced with a pair of charged leptons.
NASA Astrophysics Data System (ADS)
Koma, Y.
The derivative of the topological susceptibility at zero momentum is responsible for the validity of the Witten-Veneziano formula for the η mass, and also for the resolution of the EMC pro- ton spin problem. We investigate the momentum dependence of the topological susceptibility and its derivative at zero momentum using lattice QCD simulations with overlap fermions within quenched approximation. We expose the role of the low-lying Dirac eigenmodes for the topolog- ical charge density, and find the negative value for the derivative. While the sign of the derivative is consistent with the QCD sum rule in pure Yang-Mills theory, the absolute value becomes larger if only the contribution from the zero modes and the low-lying eigenmodes is taken into account.
NASA Astrophysics Data System (ADS)
Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio
The possibility that anyons -- quantum particles other than fermions or bosons -- can emerge in condensed matter systems has motivated generations of physicists. In addition to being of fundamental scientific importance, so-called non-Abelian anyons are particularly sought-after for potential applications to quantum computing. However, experimental evidence of anyons in electronic systems remains inconclusive. We propose to demonstrate non-Abelian braiding by injecting coherent states of light into ``topological guided modes'' in specially-fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases. We propose an optical interference experiment to probe this non-Abelian braiding directly. T.I. is supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1247312.
Quantized charge transport in chiral Majorana edge modes
NASA Astrophysics Data System (ADS)
Rachel, Stephan; Mascot, Eric; Cocklin, Sagen; Vojta, Matthias; Morr, Dirk K.
2017-11-01
Majorana fermions can be realized as quasiparticles in topological superconductors, with potential applications in topological quantum computing. Recently, lattices of magnetic adatoms deposited on the surface of s -wave superconductors—Shiba lattices—have been proposed as a new platform for topological superconductivity. These systems possess the great advantage that they are accessible via scanning-probe techniques and thus enable the local manipulation and detection of Majorana modes. Using a nonequilibrium Green's function technique we demonstrate that the topological Majorana edge modes of nanoscopic Shiba islands display universal electronic and transport properties. Most remarkably, these Majorana modes possess a quantized charge conductance that is proportional to the topological Chern number, C , and carry a supercurrent whose chirality reflects the sign of C . These results establish nanoscopic Shiba islands as promising components in future topology-based devices.
On-chip generation of Einstein-Podolsky-Rosen states with arbitrary symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gräfe, Markus; Heilmann, René; Nolte, Stefan
We experimentally demonstrate a method for integrated-optical generation of two-photon Einstein-Podolsky-Rosen states featuring arbitrary symmetries. In our setting, we employ detuned directional couplers to impose a freely tailorable phase between the two modes of the state. Our results allow to mimic the quantum random walk statistics of bosons, fermions, and anyons, particles with fractional exchange statistics.
Optical Lattice Gases of Interacting Fermions
2015-12-02
artificial gauge fields or spin-orbit coupling. This topological insulator phase turns into a topological superconductor featuring Majorana zero modes at... superconductors , are a prototypical topological superfluid. Despite its conceptually different origin, the state found by the research team for s-wave...release 2 external field [7]. A Weyl superconductor or superfluid is a gapless topological state of matter that features nontrivial (hedgehog
NASA Astrophysics Data System (ADS)
Jia, Jinfeng
Majorana fermion (MF) zero modes have been predicted in a wide variety of condensed matter systems and proposed as a potential building block for fault-tolerant quantum computer. Signatures of the MFs have been reported in the form of zero-energy conductance peak in various systems. As predicted, MFs appear as zero-energy vortex core modes with distinctive spatial profile in proximity-induced superconducting surface states of topological insulators. Furthermore, MFs can induce spin selective Andreev reflection (SSAR), a unique signature of MFs. We report the observation of all the three features for the MFs inside vortices in Bi2Te3/NbSe2 hetero-structure, in which proximity-induced superconducting gap on topological surface states was previously established. Especially, by using spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS), we observed the spin dependent tunneling effect, and fully supported by theoretical analyses, which is a direct evidence for the SSAR from MFs. More importantly, all evidences are self-consistent. Our work provides definitive evidences of MFs and will stimulate the MFs research on their novel physical properties, hence a step towards their non-Abelian statistics and application in quantum computing.
A duality principle for the multi-block entanglement entropy of free fermion systems.
Carrasco, J A; Finkel, F; González-López, A; Tempesta, P
2017-09-11
The analysis of the entanglement entropy of a subsystem of a one-dimensional quantum system is a powerful tool for unravelling its critical nature. For instance, the scaling behaviour of the entanglement entropy determines the central charge of the associated Virasoro algebra. For a free fermion system, the entanglement entropy depends essentially on two sets, namely the set A of sites of the subsystem considered and the set K of excited momentum modes. In this work we make use of a general duality principle establishing the invariance of the entanglement entropy under exchange of the sets A and K to tackle complex problems by studying their dual counterparts. The duality principle is also a key ingredient in the formulation of a novel conjecture for the asymptotic behavior of the entanglement entropy of a free fermion system in the general case in which both sets A and K consist of an arbitrary number of blocks. We have verified that this conjecture reproduces the numerical results with excellent precision for all the configurations analyzed. We have also applied the conjecture to deduce several asymptotic formulas for the mutual and r-partite information generalizing the known ones for the single block case.
Song, Yu; Van Dyke, John; Lum, I. K.; ...
2016-09-28
Here, the neutron spin resonance is a collective magnetic excitation that appears in copper oxide, iron pnictide, and heavy fermion unconventional superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s ±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce 1–xYb xCoIn 5 with x=0,0.05,0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with random phase approximation calculation usingmore » the electronic structure and the momentum dependence of the d x2 –y2-wave superconducting gap determined from scanning tunneling microscopy for CeCoIn 5, we conclude the robust upward dispersing resonance mode in Ce 1–xYb xCoIn 5 is inconsistent with the downward dispersion predicted within the spin-exciton scenari« less
Lepton-flavor universality limits in warped space
NASA Astrophysics Data System (ADS)
Megías, Eugenio; Quirós, Mariano; Salas, Lindber
2017-10-01
We explore the limits on lepton-flavor universality (LFU) violation in theories where the hierarchy problem is solved by means of a warped extra dimension. In those theories, LFU violation, in fermion interaction with Kaluza-Klein modes of gauge bosons, is provided ab initio when different flavors of fermions are differently localized along the extra dimension. As this fact arises from the mass pattern of quarks and leptons, LFU violation is natural in this class of theories. We analyze the experimental data pointing toward LFU violation, as well as the most relevant electroweak and flavor observables, and the LFU tests in the μ /e and τ /μ sectors. We find agreement with RK(*) and RD(*) data at 95% C.L., provided the third-generation left-handed fermions are composite (0.14
Photonic zero mode in a non-Hermitian photonic lattice.
Pan, Mingsen; Zhao, Han; Miao, Pei; Longhi, Stefano; Feng, Liang
2018-04-03
Zero-energy particles (such as Majorana fermions) are newly predicted quasiparticles and are expected to play an important role in fault-tolerant quantum computation. In conventional Hermitian quantum systems, however, such zero states are vulnerable and even become vanishing if couplings with surroundings are of the same topological nature. Here we demonstrate a robust photonic zero mode sustained by a spatial non-Hermitian phase transition in a parity-time (PT) symmetric lattice, despite the same topological order across the entire system. The non-Hermitian-enhanced topological protection ensures the reemergence of the zero mode at the phase transition interface when the two semi-lattices under different PT phases are decoupled effectively in their real spectra. Residing at the midgap level of the PT symmetric spectrum, the zero mode is topologically protected against topological disorder. We experimentally validated the robustness of the zero-energy mode by ultrafast heterodyne measurements of light transport dynamics in a silicon waveguide lattice.
NASA Astrophysics Data System (ADS)
Hou, Chang-Yu; Shtengel, Kirill; Refael, Gil
2014-03-01
Can one transfer information encoded in Majorana modes between two distinct platforms? Or must one read out the information before transferring it to a new medium? We explore this question, and find that not only can information be transfered, but in some cases a fermionic occupation number can be stored non-locally by Majorana modes localized in two distinct p-wave superconductors with opposite chirality, as long as some tunneling contact between the two exists. This work is supported in part by the DARPA- QuEST program, NSF award DMR-0748925, the Packard foundation and the IQIM, an NSF center supported in part by the Moore fundation.
Efficient propagation of the hierarchical equations of motion using the matrix product state method
NASA Astrophysics Data System (ADS)
Shi, Qiang; Xu, Yang; Yan, Yaming; Xu, Meng
2018-05-01
We apply the matrix product state (MPS) method to propagate the hierarchical equations of motion (HEOM). It is shown that the MPS approximation works well in different type of problems, including boson and fermion baths. The MPS method based on the time-dependent variational principle is also found to be applicable to HEOM with over one thousand effective modes. Combining the flexibility of the HEOM in defining the effective modes and the efficiency of the MPS method thus may provide a promising tool in simulating quantum dynamics in condensed phases.
Astroseismology of neutron stars from gravitational waves in the limit of perfect measurement
NASA Astrophysics Data System (ADS)
Suvorov, A. G.
2018-04-01
The oscillation spectrum of a perturbed neutron star is intimately related to the physical properties of the star, such as the equation of state. Observing pulsating neutron stars therefore allows one to place constraints on these physical properties. However, it is not obvious exactly how much can be learnt from such measurements. If we observe for long enough, and precisely enough, is it possible to learn everything about the star? A classical result in the theory of spectral geometry states that one cannot uniquely `hear the shape of a drum'. More formally, it is known that an eigenfrequency spectrum may not uniquely correspond to a particular geometry; some `drums' may be indistinguishable from a normal-mode perspective. In contrast, we show that the drum result does not extend to perturbations of simple neutron stars within general relativity - in the case of axial (toroidal) perturbations of static, perfect fluid stars, a quasi-normal mode spectrum uniquely corresponds to a stellar profile. We show in this paper that it is not possible for two neutron stars, with distinct fluid profiles, to oscillate in an identical manner. This result has the information-theoretic consequence that gravitational waves completely encode the properties of any given oscillating star: unique identifications are possible in the limit of perfect measurement.
Observing binary black hole ringdowns by advanced gravitational wave detectors
NASA Astrophysics Data System (ADS)
Maselli, Andrea; Kokkotas, Kostas D.; Laguna, Pablo
2017-05-01
The direct discovery of gravitational waves from compact binary systems leads for the first time to explore the possibility of black hole spectroscopy. Newly formed black holes produced by coalescing events are copious emitters of gravitational radiation, in the form of damped sinusoids, the quasinormal modes. The latter provides a precious source of information on the nature of gravity in the strong field regime, as they represent a powerful tool to investigate the validity of the no-hair theorem. In this work we perform a systematic study on the accuracy with which current and future interferometers will measure the fundamental parameters of ringdown events, such as frequencies and damping times. We analyze how these errors affect the estimate of the mass and the angular momentum of the final black hole, constraining the parameter space which will lead to the most precise measurements. We explore both single and multimode events, showing how the uncertainties evolve when multiple detectors are available. We also prove that, for the second generation of interferometers, a network of instruments is a crucial and necessary ingredient to perform strong-gravity tests of the no-hair theorem. Finally, we analyze the constraints that a third generation of detectors may be able to set on the mode's parameters, comparing the projected bounds against those obtained for current facilities.
Astroseismology of neutron stars from gravitational waves in the limit of perfect measurement
NASA Astrophysics Data System (ADS)
Suvorov, A. G.
2018-07-01
The oscillation spectrum of a perturbed neutron star is intimately related to the physical properties of the star, such as the equation of state. Observing pulsating neutron stars therefore allows one to place constraints on these physical properties. However, it is not obvious exactly how much can be learnt from such measurements. If we observe for long enough, and precisely enough, is it possible to learn everything about the star? A classical result in the theory of spectral geometry states that one cannot uniquely `hear the shape of a drum'. More formally, it is known that an eigenfrequency spectrum may not uniquely correspond to a particular geometry; some `drums' may be indistinguishable from a normal-mode perspective. In contrast, we show that the drum result does not extend to perturbations of simple neutron stars within general relativity - in the case of axial (toroidal) perturbations of static, perfect fluid stars, a quasi-normal mode spectrum uniquely corresponds to a stellar profile. We show in this paper that it is not possible for two neutron stars, with distinct fluid profiles, to oscillate in an identical manner. This result has the information-theoretic consequence that gravitational waves completely encode the properties of any given oscillating star: unique identifications are possible in the limit of perfect measurement.
Analytical approximation for the Einstein-dilaton-Gauss-Bonnet black hole metric
NASA Astrophysics Data System (ADS)
Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.
2017-09-01
We construct an analytical approximation for the numerical black hole metric of P. Kanti et al. [Phys. Rev. D 54, 5049 (1996), 10.1103/PhysRevD.54.5049] in the four-dimensional Einstein-dilaton-Gauss-Bonnet (EdGB) theory. The continued fraction expansion in terms of a compactified radial coordinate, used here, converges slowly when the dilaton coupling approaches its extremal values, but for a black hole far from the extremal state, the analytical formula has a maximal relative error of a fraction of one percent already within the third order of the continued fraction expansion. The suggested analytical representation of the numerical black hole metric is relatively compact and a good approximation in the whole space outside the black hole event horizon. Therefore, it can serve in the same way as an exact solution when analyzing particles' motion, perturbations, quasinormal modes, Hawking radiation, accreting disks, and many other problems in the vicinity of a black hole. In addition, we construct the approximate analytical expression for the dilaton field.
Holographic Tools for Probing the Dynamics of Strongly Coupled Field Theories
NASA Astrophysics Data System (ADS)
Fuini, John F.
Since it was conjectured almost 20 years ago, AdS/CFT duality, or holography, has enabled steady progress in understanding certain gauge theories in the strongly coupled limit. In this thesis we examine various aspects of holography and holographic techniques, as well as particular applications to the dynamics of strongly coupled plasmas. We discuss the energy loss of general probe defects in generic holographic plasmas and the lifetime of quasinormal modes of sufficiently short-wavelength in a strongly coupled N = 4 Super Yang-Mills (SYM) plasma. We then perform a thorough investigation of the far-from-equilibrium dynamics of the SYM plasma, focusing on how the presence of large magnetic fields or chemical potentials affect the timescale of equilibration. Finally we discuss some non-relativistic directions by finding a covariant construction of Lagrangians for spinor fields in generic Newton-Cartan backgrounds via a non-relativistic reduction, which may assist in the construction of non-relativistic versions of holography.
Spectroscopy of Kerr Black Holes with Earth- and Space-Based Interferometers.
Berti, Emanuele; Sesana, Alberto; Barausse, Enrico; Cardoso, Vitor; Belczynski, Krzysztof
2016-09-02
We estimate the potential of present and future interferometric gravitational-wave detectors to test the Kerr nature of black holes through "gravitational spectroscopy," i.e., the measurement of multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like Cosmic Explorer is necessary to go beyond z∼3. In contrast, detectors like eLISA (evolved Laser Interferometer Space Antenna) should carry out a few-or even hundreds-of these tests every year, depending on uncertainties in massive black hole formation models. Many space-based spectroscopical measurements will occur at high redshift, testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections to general relativity (if they occur in nature) must be significant.
Universal far-from-equilibrium dynamics of a holographic superconductor.
Sonner, Julian; Del Campo, Adolfo; Zurek, Wojciech H
2015-06-23
Symmetry-breaking phase transitions are an example of non-equilibrium processes that require real-time treatment, a major challenge in strongly coupled systems without long-lived quasiparticles. Holographic duality provides such an approach by mapping strongly coupled field theories in D dimensions into weakly coupled quantum gravity in D+1 anti-de Sitter spacetime. Here we use holographic duality to study the formation of topological defects-winding numbers-in the course of a superconducting transition in a strongly coupled theory in a 1D ring. When the system undergoes the transition on a given quench time, the condensate builds up with a delay that can be deduced using the Kibble-Zurek mechanism from the quench time and the universality class of the theory, as determined from the quasinormal mode spectrum of the dual model. Typical winding numbers deposited in the ring exhibit a universal fractional power law dependence on the quench time, also predicted by the Kibble-Zurek Mechanism.
Charged black rings at large D
NASA Astrophysics Data System (ADS)
Chen, Bin; Li, Peng-Cheng; Wang, Zi-zhi
2017-04-01
We study the charged slowly rotating black holes in the Einstein-Maxwell theory in the large dimensions ( D). By using the 1 /D expansion in the near regions of the black holes we obtain the effective equations for the charged slowly rotating black holes. The effective equations capture the dynamics of various stationary solutions, including the charged black ring, the charged slowly rotating Myers-Perry black hole and the charged slowly boosted black string. Via different embeddings we construct these stationary solutions explicitly. For the charged black ring at large D, we find that the charge lowers the angular momentum due to the regularity condition on the solution. By performing the perturbation analysis of the effective equations, we obtain the quasinormal modes of the charge perturbation and the gravitational perturbation analytically. Like the neutral case the charged thin black ring suffers from the Gregory-Laflamme-like instability under the non-axisymmetric perturbations, but the charge weakens the instability. Besides, we find that the large D analysis always respects the cosmic censorship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosales-Zarate, Laura E. C.; Drummond, P. D.
We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. Themore » preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.« less
Bosse, J; Pathak, K N; Singh, G S
2011-10-01
The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T
Strain manipulation of Majorana fermions in graphene armchair nanoribbons
NASA Astrophysics Data System (ADS)
Wang, Zhen-Hua; Castro, Eduardo V.; Lin, Hai-Qing
2018-01-01
Graphene nanoribbons with armchair edges are studied for externally enhanced but realistic parameter values: enhanced Rashba spin-orbit coupling due to proximity to a transition-metal dichalcogenide, such as WS2, and enhanced Zeeman field due to exchange coupling with a magnetic insulator, such as EuS under an applied magnetic field. The presence of s -wave superconductivity, induced either by proximity or by decoration with alkali-metal atoms, such as Ca or Li, leads to a topological superconducting phase with Majorana end modes. The topological phase is highly sensitive to the application of uniaxial strain with a transition to the trivial state above a critical strain well below 0.1%. This sensitivity allows for real-space manipulation of Majorana fermions by applying nonuniform strain profiles. Similar manipulation is also possible by applying an inhomogeneous Zeeman field or chemical potential.
Index theorem and universality properties of the low-lying eigenvalues of improved staggered quarks.
Follana, E; Hart, A; Davies, C T H
2004-12-10
We study various improved staggered quark Dirac operators on quenched gluon backgrounds in lattice QCD generated using a Symanzik-improved gluon action. We find a clear separation of the spectrum into would-be zero modes and others. The number of would-be zero modes depends on the topological charge as expected from the index theorem, and their chirality expectation value is large ( approximately 0.7). The remaining modes have low chirality and show clear signs of clustering into quartets and approaching the random matrix theory predictions for all topological charge sectors. We conclude that improvement of the fermionic and gauge actions moves the staggered quarks closer to the continuum limit where they respond correctly to QCD topology.
Quantum Algorithms for Fermionic Quantum Field Theories
2014-04-28
preskill@theory.caltech.edu 1 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is...NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98...operators of momentum modes. (The choice between these forms of measurement depends on the application.) 2.3 Complexity In this section we bound the
Selected topics on dynamical symmetry breaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veldhuis, W.T.A.
1993-12-31
In chapter 2 the fermion number induced by nontrivial topological configurations in the O(3) nonlinear {sigma} model in 2 + 1 dimensions is studied in the presence of a parity breaking fermion mass term. We consider a scalar background configuration that adiabatically evolves from the normal vacuum to a soliton of winding number unity. The appearance of zero energy modes is analyzed as a function of the relative magnitudes of the explicit, odd parity, fermion mass, m{sub odd}, the fermion mass induced by the Yukawa coupling, m{sub Y}, and the inverse soliton width, 1/{rho}{sub s}. We find {rho}{sub c}, themore » maximum value of {rho} = {rho}{sub s}m{sub Y} for which a fermion zero energy level crossing occurs during the adiabatical evolution. We obtain that whenever the ratio M{sub f} = m{sub odd}/m{sub Y} < 1 and {rho} > {rho}{sub c}(M{sub f}) the ground state charge of the soliton is wholly determined by its topological charge. Otherwise, it vanishes. In chapter 3 the top quark mass prediction in supersymmetric top condensate models is found to be insensitive to the inclusion of the effects of higher dimensional operators. For associated coefficients of characteristically moderate strength, the supersymmetric renormalization group trajectories are strongly focused to the infrared quasi-fixed point of the top Yukawa coupling constant. In chapter 4 the sensitivity of the top quark and Higgs boson masses in the top condensate model to two loop radiative corrections is studied. Both the top quark and the Higgs boson masses vary by a few GeV with respect to their values in the one loop calculation. Finally, in chapter 5 an upper bound on the mass of the lightest neutral scalar Higgs boson is calculated in an extended version of the minimal supersymmetric standard model that contains an additional Higgs singlet.« less
Travel behavior of U.S. domestic airline passengers and its impacts on infrastructure utilization
DOT National Transportation Integrated Search
2009-09-30
Unexpected and unannounced delays and cancellations of flights have emerged as a quasinormal : phenomenon in recent months and years. The airline unreliability has become : unbearable day by day. The volume of airline passengers on domestic routes in...
Dissipationless conductance in a topological coaxial cable
NASA Astrophysics Data System (ADS)
Schuster, Thomas; Iadecola, Thomas; Chamon, Claudio; Jackiw, Roman; Pi, So-Young
2016-09-01
We present a dynamical mechanism leading to dissipationless conductance, whose quantized value is controllable in a (3+1)-dimensional electronic system. The mechanism is exemplified by a theory of Weyl fermions coupled to a Higgs field, also known as an axion insulator. We show that the insertion of an axial gauge flux can induce vortex lines in the Higgs field, similar to the development of vortices in a superconductor upon the insertion of magnetic flux. We further show that the necessary axial gauge flux can be generated using Rashba spin-orbit coupling or a magnetic field. Vortex lines in the Higgs field are known to bind chiral fermionic modes, each of which serves as a one-way channel for electric charge with conductance e2/h . Combining these elements, we present a physical picture, the "topological coaxial cable," illustrating how the value of the quantized conductance could be controlled in such an axion insulator.
Topological phase transitions and chiral inelastic transport induced by the squeezing of light
Peano, Vittorio; Houde, Martin; Brendel, Christian; Marquardt, Florian; Clerk, Aashish A.
2016-01-01
There is enormous interest in engineering topological photonic systems. Despite intense activity, most works on topological photonic states (and more generally bosonic states) amount in the end to replicating a well-known fermionic single-particle Hamiltonian. Here we show how the squeezing of light can lead to the formation of qualitatively new kinds of topological states. Such states are characterized by non-trivial Chern numbers, and exhibit protected edge modes, which give rise to chiral elastic and inelastic photon transport. These topological bosonic states are not equivalent to their fermionic (topological superconductor) counterparts and, in addition, cannot be mapped by a local transformation onto topological states found in particle-conserving models. They thus represent a new type of topological system. We study this physics in detail in the case of a kagome lattice model, and discuss possible realizations using nonlinear photonic crystals or superconducting circuits. PMID:26931620
Modified many-body wave function for BCS-BEC crossover in Fermi gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Shina; Levin, K.
2006-10-15
We present a many-body formalism for BCS-BEC crossover, which represents a modification of the Bardeen-Cooper-Schrieffer-Leggett ground state to include four-fermion and higher correlations. In the Bose-Einstein condensate regime, we show how our approach contains the four-fermion behavior of Petrov et al. and associated scattering length a{sub dd} at short distances and, second, reduces to composite-boson Bogoliubov physics at long distances. It reproduces the Lee-Yang term, whose numerical value is also fixed by a{sub dd}. We have also examined the next term beyond the Lee-Yang correction in a phenomenological fashion, building on cloud size data and collective mode experiments, although onemore » has to view this phenomenological analysis with some caution since experiments are in a state of flux and are performed close to unitarity.« less
Topological phase transitions and chiral inelastic transport induced by the squeezing of light
NASA Astrophysics Data System (ADS)
Peano, Vittorio; Houde, Martin; Brendel, Christian; Marquardt, Florian; Clerk, Aashish A.
2016-03-01
There is enormous interest in engineering topological photonic systems. Despite intense activity, most works on topological photonic states (and more generally bosonic states) amount in the end to replicating a well-known fermionic single-particle Hamiltonian. Here we show how the squeezing of light can lead to the formation of qualitatively new kinds of topological states. Such states are characterized by non-trivial Chern numbers, and exhibit protected edge modes, which give rise to chiral elastic and inelastic photon transport. These topological bosonic states are not equivalent to their fermionic (topological superconductor) counterparts and, in addition, cannot be mapped by a local transformation onto topological states found in particle-conserving models. They thus represent a new type of topological system. We study this physics in detail in the case of a kagome lattice model, and discuss possible realizations using nonlinear photonic crystals or superconducting circuits.
Majorana Fermion and bound states in the continuum on a cross-shaped quantum dot hybrid structure
NASA Astrophysics Data System (ADS)
Zambrano, David; Ramos, Juan Pablo; Orellana, Pedro
We show how transmission, differential conductance and density of states (DOS) behave when two superconductor/semiconductors topological nanowires are placed next to the ends of a quantum-dot (QD) chain, where the central QD is attached to normal conductors leads. Results in a single QD coupled to two Kitaev chains within the topological phase and a T-shaped QD hybrid structure suggest these kind of system are strong candidates for qubits. We show how bound states in the continuum (BICs) arise as zero energy modes on conductance and DOS for different sets of system parameters showing evidence of Majorana fermions, and we also study how they behave for different numbers (even/odd) of QD in the cross-shaped structure. The authors acknowledge financial support from CONICYT, under Grant PAI-79140064, scholarship 21141034 and from FONDECYT, under Grant 1140571.
Cavity-Mediated Coherent Coupling between Distant Quantum Dots
NASA Astrophysics Data System (ADS)
Nicolí, Giorgio; Ferguson, Michael Sven; Rössler, Clemens; Wolfertz, Alexander; Blatter, Gianni; Ihn, Thomas; Ensslin, Klaus; Reichl, Christian; Wegscheider, Werner; Zilberberg, Oded
2018-06-01
Scalable architectures for quantum information technologies require one to selectively couple long-distance qubits while suppressing environmental noise and cross talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot to a cavity hosting fermionic modes offers a new solution to this technological challenge. Here, we demonstrate coherent coupling between two spatially separated quantum dots using an electronic cavity design that takes advantage of whispering-gallery modes in a two-dimensional electron gas. The cavity-mediated, long-distance coupling effectively minimizes undesirable direct cross talk between the dots and defines a scalable architecture for all-electronic semiconductor-based quantum information processing.
Extended Quantum Field Theory, Index Theory, and the Parity Anomaly
NASA Astrophysics Data System (ADS)
Müller, Lukas; Szabo, Richard J.
2018-06-01
We use techniques from functorial quantum field theory to provide a geometric description of the parity anomaly in fermionic systems coupled to background gauge and gravitational fields on odd-dimensional spacetimes. We give an explicit construction of a geometric cobordism bicategory which incorporates general background fields in a stack, and together with the theory of symmetric monoidal bicategories we use it to provide the concrete forms of invertible extended quantum field theories which capture anomalies in both the path integral and Hamiltonian frameworks. Specialising this situation by using the extension of the Atiyah-Patodi-Singer index theorem to manifolds with corners due to Loya and Melrose, we obtain a new Hamiltonian perspective on the parity anomaly. We compute explicitly the 2-cocycle of the projective representation of the gauge symmetry on the quantum state space, which is defined in a parity-symmetric way by suitably augmenting the standard chiral fermionic Fock spaces with Lagrangian subspaces of zero modes of the Dirac Hamiltonian that naturally appear in the index theorem. We describe the significance of our constructions for the bulk-boundary correspondence in a large class of time-reversal invariant gauge-gravity symmetry-protected topological phases of quantum matter with gapless charged boundary fermions, including the standard topological insulator in 3 + 1 dimensions.
Volovik, G E
1999-05-25
There are several classes of homogeneous Fermi systems that are characterized by the topology of the energy spectrum of fermionic quasiparticles: (i) gapless systems with a Fermi surface, (ii) systems with a gap in their spectrum, (iii) gapless systems with topologically stable point nodes (Fermi points), and (iv) gapless systems with topologically unstable lines of nodes (Fermi lines). Superfluid 3He-A and electroweak vacuum belong to the universality class 3. The fermionic quasiparticles (particles) in this class are chiral: they are left-handed or right-handed. The collective bosonic modes of systems of class 3 are the effective gauge and gravitational fields. The great advantage of superfluid 3He-A is that we can perform experiments by using this condensed matter and thereby simulate many phenomena in high energy physics, including axial anomaly, baryoproduction, and magnetogenesis. 3He-A textures induce a nontrivial effective metrics of the space, where the free quasiparticles move along geodesics. With 3He-A one can simulate event horizons, Hawking radiation, rotating vacuum, etc. High-temperature superconductors are believed to belong to class 4. They have gapless fermionic quasiparticles with a "relativistic" spectrum close to gap nodes, which allows application of ideas developed for superfluid 3He-A.
Experimental discovery of a topological Weyl semimetal state in TaP
Xu, Su -Yang; Belopolski, Ilya; Sanchez, Daniel S.; ...
2015-11-13
Here, Weyl semimetals are expected to open up new horizons in physics and materials science because they provide the first realization of Weyl fermions and exhibit protected Fermi arc surface states. However, they had been found to be extremely rare in nature. Recently, a family of compounds, consisting of tantalum arsenide, tantalum phosphide (TaP), niobium arsenide, and niobium phosphide, was predicted as a Weyl semimetal candidates. We experimentally realize a Weyl semimetal state in TaP. Using photoemission spectroscopy, we directly observe the Weyl fermion cones and nodes in the bulk, and the Fermi arcs on the surface. Moreover, we findmore » that the surface states show an unexpectedly rich structure, including both topological Fermi arcs and several topologically trivial closed contours in the vicinity of the Weyl points, which provides a promising platform to study the interplay between topological and trivial surface states on a Weyl semimetal’s surface. We directly demonstrate the bulk-boundary correspondence and establish the topologically nontrivial nature of the Weyl semimetal state in TaP, by resolving the net number of chiral edge modes on a closed path that encloses the Weyl node. This also provides, for the first time, an experimentally practical approach to demonstrating a bulk Weyl fermion from a surface state dispersion measured in photoemission.« less
Negative magnetoresistance of ultra-narrow superconducting nanowires in the resistive state
NASA Astrophysics Data System (ADS)
Arutyunov, K. Yu.
2008-02-01
We present a phenomenological model that qualitatively explains negative magnetoresistance in quasi-one-dimensional superconducting channels in the resistive state. The model is based on the assumption that fluctuations of the order parameter (phase slips) are responsible for the finite effective resistance of a narrow superconducting wire sufficiently close to the critical temperature. Each fluctuation is accompanied by an instantaneous formation of a quasi-normal region, of the order of the non-equilibrium quasiparticle relaxation length, ‘pinned’ to the core of the phase slip. The effective time-averaged voltage measured in experiments is a sum of two terms. The first is the conventional contribution associated with the rate of the fluctuations via the Josephson relation. The second term is the Ohmic contribution of this quasi-normal region. Depending on the material properties of the wire, there might be a range of magnetic fields where the first term is not significantly affected, while the second term is effectively suppressed, contributing to the experimentally observed negative magnetoresistance.
Self-consistent frequencies of the electron-photon system
NASA Astrophysics Data System (ADS)
Hawton, Margaret
1993-09-01
The Heisenberg equations describing the dynamics of coupled Fermion photon operators are solved self-consistently. Photon modes, for which ω~=kc, and particlelike Bohr modes with frequencies ωnI~=(En-EI)/ħ are both approximate solutions to the system of equations that results if the current density is the source in the operator Maxwell equations. Current fluctuations associated with the Bohr modes and required by a fluctuation-dissipation theorem are attributed to the point nature of the particle. The interaction energy is given by the Casimir-force-like expression ΔE=1/2ħtsum(ΔωnI+Δωkc) or by the expectation value of 1/2(qcphi-qp^.A^/mc+q2A2/mc2). It is verified that the equal-time momentum-density and vector-potential operators commute if the contributions of both the Bohr modes and vacuum fluctuations are included. Both electromagnetic and Bohr or radiation-reaction modes are found to contribute equally to spontaneous emission and to the Lamb shift.
Tests of General Relativity with GW150914
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, M. K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Campanelli, M.; Hemberger, D. A.; Kidder, L. E.; Ossokine, S.; Scheel, M. A.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific; Virgo Collaborations
2016-06-01
The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 1013 km . In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.
Tests of General Relativity with GW150914.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, M K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Campanelli, M; Hemberger, D A; Kidder, L E; Ossokine, S; Scheel, M A; Szilagyi, B; Teukolsky, S; Zlochower, Y
2016-06-03
The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 10^{13} km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.
Parafermionic zero modes in gapless edge states
NASA Astrophysics Data System (ADS)
Clarke, David
It has been recently demonstrated1 that Majorana zero modes may occur in the gapless edge of Abelian quantum Hall states at a boundary between different edge phases bordering the same bulk. Such a zero mode is guaranteed to occur when an edge phase that supports fermionic excitations borders one that does not. Here we generalize to the non-charge conserving case such as may occur when a superconductor abuts the quantum Hall edge. We find that not only Majorana zero modes, but their ℤN generalizations (known as parafermionic zero modes) may occur at boundaries between edge phases in a fractional quantum Hall state. In particular, we find thst the ν = 1 / 3 fractional quantum Hall state supports topologically distinct edge phases separated by ℤ3 parafermionic zero modes when charge conservation is broken. Paradoxically, an arrangement of phases can be made such that only an odd number of localized parafermionic zero modes occur around the edge of a quantum Hall droplet. Such an arrangement is not allowed in a gapped system, but here the paradox is resolved due to an extended zero mode in the edge spectrum. LPS-MPO-CMTC, JQI-NSF-PFC, Microsoft Station Q.
Critical N = (1, 1) general massive supergravity
NASA Astrophysics Data System (ADS)
Deger, Nihat Sadik; Moutsopoulos, George; Rosseel, Jan
2018-04-01
In this paper we study the supermultiplet structure of N = (1, 1) General Massive Supergravity at non-critical and critical points of its parameter space. To do this, we first linearize the theory around its maximally supersymmetric AdS3 vacuum and obtain the full linearized Lagrangian including fermionic terms. At generic values, linearized modes can be organized as two massless and 2 massive multiplets where supersymmetry relates them in the standard way. At critical points logarithmic modes appear and we find that in three of such points some of the supersymmetry transformations are non-invertible in logarithmic multiplets. However, in the fourth critical point, there is a massive logarithmic multiplet with invertible supersymmetry transformations.
Electrostatic and magnetic fields in bilayer graphene
NASA Astrophysics Data System (ADS)
Jellal, Ahmed; Redouani, Ilham; Bahlouli, Hocine
2015-08-01
We compute the transmission probability through rectangular potential barriers and p-n junctions in the presence of a magnetic and electric fields in bilayer graphene taking into account contributions from the full four bands of the energy spectrum. For energy E higher than the interlayer coupling γ1 (E >γ1) two propagation modes are available for transport giving rise to four possible ways for transmission and reflection coefficients. However, when the energy is less than the height of the barrier the Dirac fermions exhibit transmission resonances and only one mode of propagation is available for transport. We study the effect of the interlayer electrostatic potential denoted by δ and variations of different barrier geometry parameters on the transmission probability.
Spectroscopy of Kerr black holes with Earth- and space-based interferometers
NASA Astrophysics Data System (ADS)
Berti, Emanuele; Sesana, Alberto; Barausse, Enrico; Cardoso, Vitor; Belczynski, Krzysztof
2017-01-01
We estimate the potential of present and future interferometric gravitational-wave detectors to test the Kerr nature of black holes through ``gravitational spectroscopy,'' i.e. the measurement of multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like Cosmic Explorer is necessary to go beyond z 3 . In contrast, eLISA-like detectors should carry out a few - or even hundreds - of these tests every year, depending on uncertainties in massive black hole formation models. Many space-based spectroscopical measurements will occur at high redshift, testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections to general relativity (if they occur in nature) must be significant. NSF CAREER Grant No. PHY-1055103, NSF Grant No. PHY-1607130, FCT contract IF/00797/2014/CP1214/CT0012.
Camelio, Giovanni; Lovato, Alessandro; Gualtieri, Leonardo; ...
2017-08-30
In a core-collapse supernova, a huge amount of energy is released in the Kelvin-Helmholtz phase subsequent to the explosion, when the proto-neutron star cools and deleptonizes as it loses neutrinos. Most of this energy is emitted through neutrinos, but a fraction of it can be released through gravitational waves. We model the evolution of a proto-neutron star in the Kelvin-Helmholtz phase using a general relativistic numerical code, and a recently proposed finite temperature, many-body equation of state; from this we consistently compute the diffusion coefficients driving the evolution. To include the many-body equation of state, we develop a new fittingmore » formula for the high density baryon free energy at finite temperature and intermediate proton fraction. Here, we estimate the emitted neutrino signal, assessing its detectability by present terrestrial detectors, and we determine the frequencies and damping times of the quasinormal modes which would characterize the gravitational wave signal emitted in this stage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camelio, Giovanni; Lovato, Alessandro; Gualtieri, Leonardo
In a core-collapse supernova, a huge amount of energy is released in the Kelvin-Helmholtz phase subsequent to the explosion, when the proto-neutron star cools and deleptonizes as it loses neutrinos. Most of this energy is emitted through neutrinos, but a fraction of it can be released through gravitational waves. We model the evolution of a proto-neutron star in the Kelvin-Helmholtz phase using a general relativistic numerical code, and a recently proposed finite temperature, many-body equation of state; from this we consistently compute the diffusion coefficients driving the evolution. To include the many-body equation of state, we develop a new fittingmore » formula for the high density baryon free energy at finite temperature and intermediate proton fraction. Here, we estimate the emitted neutrino signal, assessing its detectability by present terrestrial detectors, and we determine the frequencies and damping times of the quasinormal modes which would characterize the gravitational wave signal emitted in this stage.« less
Nonlinear evolution dynamics of holographic superconductor model with scalar self-interaction
NASA Astrophysics Data System (ADS)
Li, Ran; Zi, Tieguang; Zhang, Hongbao
2018-04-01
We investigate the holographic superconductor model that is described by the Einstein-Maxwell theory with the self-interaction term λ |Ψ |4 of complex scalar field in asymptotic anti-de Sitter (AdS) spacetime. Below critical temperature Tc, the planar Reissner-Nordström-AdS black hole is unstable due to the near-horizon scalar condensation instability. We study the full nonlinear development of this instability by numerically solving the gravitational dynamics in the asymptotic AdS spacetime, and observe a dynamical process from the perturbed Reissner-Nordström-AdS black hole to a hairy black hole when the initial black hole temperature T
Bold Diagrammatic Monte Carlo for Fermionic and Fermionized Systems
NASA Astrophysics Data System (ADS)
Svistunov, Boris
2013-03-01
In three different fermionic cases--repulsive Hubbard model, resonant fermions, and fermionized spins-1/2 (on triangular lattice)--we observe the phenomenon of sign blessing: Feynman diagrammatic series features finite convergence radius despite factorial growth of the number of diagrams with diagram order. Bold diagrammatic Monte Carlo technique allows us to sample millions of skeleton Feynman diagrams. With the universal fermionization trick we can fermionize essentially any (bosonic, spin, mixed, etc.) lattice system. The combination of fermionization and Bold diagrammatic Monte Carlo yields a universal first-principle approach to strongly correlated lattice systems, provided the sign blessing is a generic fermionic phenomenon. Supported by NSF and DARPA
Fermion masses through four-fermion condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayyar, Venkitesh; Chandrasekharan, Shailesh
Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the twomore » phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.« less
Spin fluctations and heavy fermions in the Kondo lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaliullin, G.G.
1994-09-01
This paper studies the spectrum of the spin and electronic excitations of the Kondo lattice at low temperatures. To avoid unphysical states, the Mattis {open_quotes}drone{close_quotes}-fermion representation for localized spins is employed. First, the known Fermi liquid properties of a single impurity are examined. The behavior of the correlator between a localized spin and the electron spin density at large distances shows that the effective interaction between electrons on the Fermi level and low-energy localized spin fluctuations scales as {rho}{sup {minus}1}, where {rho} is the band-state density. This fact is developed into a renormalization of the band spectrum in a periodicmore » lattice. If the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between localized spins is much smaller than the Kondo fluctuation frequency {omega}{sub k}, the temperature of the crossover to the single-parameter Fermi liquid mode is determined by {omega}{sub k}. When the RKKY interaction becomes of order {omega}{sub k}, there is a new scale {omega}{sub sf}, the energy of the (antiferromagnetic) paramagnon mode, with {omega}{sub sf}{much_lt}{omega}{sub k}. Here the coherent Fermi liquid regime is realized only below a temperature T{sub coh} of order {omega}{sub sf}, while above T{sub coh} quasiparticle damping exhibits a linear temperature dependence. Finally, the nuclear-spin relaxation rate is calculated. 42 refs.« less
Higgs boson as a top-mode pseudo-Nambu-Goldstone boson
NASA Astrophysics Data System (ADS)
Fukano, Hidenori S.; Kurachi, Masafumi; Matsuzaki, Shinya; Yamawaki, Koichi
2014-09-01
In the spirit of the top-quark condensation, we propose a model which has a naturally light composite Higgs boson, "tHiggs" (ht0), to be identified with the 126 GeV Higgs discovered at the LHC. The tHiggs, a bound state of the top quark and its flavor (vectorlike) partner, emerges as a pseudo-Nambu-Goldstone boson (NGB), "top-mode pseudo-Nambu-Goldstone boson," together with the exact NGBs to be absorbed into the W and Z bosons as well as another (heavier) top-mode pseudo-Nambu-Goldstone bosons (CP-odd composite scalar, At0). Those five composite (exact/pseudo-) NGBs are dynamically produced simultaneously by a single supercritical four-fermion interaction having U(3)×U(1) symmetry which includes the electroweak symmetry, where the vacuum is aligned by a small explicit breaking term so as to break the symmetry down to a subgroup, U(2)×U(1)', in a way not to retain the electroweak symmetry, in sharp contrast to the little Higgs models. The explicit breaking term for the vacuum alignment gives rise to a mass of the tHiggs, which is protected by the symmetry and hence naturally controlled against radiative corrections. Realistic top-quark mass is easily realized similarly to the top-seesaw mechanism by introducing an extra (subcritical) four-fermion coupling which explicitly breaks the residual U(2)'×U(1)' symmetry with U(2)' being an extra symmetry besides the above U(3)L×U(1). We present a phenomenological Lagrangian of the top-mode pseudo-Nambu-Goldstone bosons along with the Standard Model particles, which will be useful for the study of the collider phenomenology. The coupling property of the tHiggs is shown to be consistent with the currently available data reported from the LHC. Several phenomenological consequences and constraints from experiments are also addressed.
Topological Superconductivity on the Surface of Fe-Based Superconductors.
Xu, Gang; Lian, Biao; Tang, Peizhe; Qi, Xiao-Liang; Zhang, Shou-Cheng
2016-07-22
As one of the simplest systems for realizing Majorana fermions, the topological superconductor plays an important role in both condensed matter physics and quantum computations. Based on ab initio calculations and the analysis of an effective 8-band model with superconducting pairing, we demonstrate that the three-dimensional extended s-wave Fe-based superconductors such as Fe_{1+y}Se_{0.5}Te_{0.5} have a metallic topologically nontrivial band structure, and exhibit a normal-topological-normal superconductivity phase transition on the (001) surface by tuning the bulk carrier doping level. In the topological superconductivity (TSC) phase, a Majorana zero mode is trapped at the end of a magnetic vortex line. We further show that the surface TSC phase only exists up to a certain bulk pairing gap, and there is a normal-topological phase transition driven by the temperature, which has not been discussed before. These results pave an effective way to realize the TSC and Majorana fermions in a large class of superconductors.
Neutron and proton electric dipole moments from N f=2+1 domain-wall fermion lattice QCD
Shintani, Eigo; Blum, Thomas; Izubuchi, Taku; ...
2016-05-05
We present a lattice calculation of the neutron and proton electric dipole moments (EDM’s) with N f = 2 + 1 flavors of domain-wall fermions. The neutron and proton EDM form factors are extracted from three-point functions at the next-to-leading order in the θ vacuum of QCD. In this computation, we use pion masses 330 and 420 MeV and 2.7 fm 3 lattices with Iwasaki gauge action and a 170 MeV pion and 4.6 fm 3 lattice with I-DSDR gauge action, all generated by the RBC and UKQCD collaborations. The all-mode-averaging technique enables an efficient, high statistics calculation; however themore » statistical errors on our results are still relatively large, so we investigate a new direction to reduce them, reweighting with the local topological charge density which appears promising. Furthermore, we discuss the chiral behavior and finite size effects of the EDM’s in the context of baryon chiral perturbation theory.« less
Magnetic manipulation of topological states in p-wave superconductors
NASA Astrophysics Data System (ADS)
Mercaldo, Maria Teresa; Cuoco, Mario; Kotetes, Panagiotis
2018-05-01
Substantial experimental investigation has provided evidence for spin-triplet pairing in diverse classes of materials and in a variety of artificial heterostructures. One of the fundamental challenges in this framework is how to manipulate the topological behavior of p-wave superconductors (PSC). In this work we investigate the magnetic field response of one-dimensional (1d) PSCs and we focus on the relation between the structure of the Cooper pair spin-configuration and the occurrence of topological phases with an enhanced number N of Majorana fermions per edge. The topological phase diagram, consisting of phases harboring Majorana modes, becomes significantly modified when one tunes the strength of the applied field, the direction of the d-vector and allows for long range hopping amplitudes in the 1d PSC. We find transitions between phases with different number N of Majorana fermions per edge and we show how they can be both induced by a variation of the hopping strength and a spin rotation of d.
NASA Astrophysics Data System (ADS)
Zhu, Jian-Xin; Tai, Yuan-Yen
Majorana fermions are believed to perform better than regular fermions in keeping quantum coherence, which is an important factor for quantum computation. Recently there has been intensive interest in their realization in solid-state systems. Zero-energy quasiparticle modes in a superconductor serve as a promising candidate. We present a theoretical study on the influence of a two-dimensional (2D) skyrmion texture of localized spins on the pairing instability and quasiparticle properties in an unconventional superconductor. By solving the Bogoliubov-de Gennes equations for an effective BCS model Hamiltonian with nearest-neighbor pairing interaction on a 2D square lattice, we analyze the spatial dependence of superconducting order parameter for varying strength of spin-exchange interaction. The quasiparticle properties are studied by calculating local density of states and its spatial dependence. This work was supported by U.S. DOE NNSA through the LANL LDRD Program, and by Center for Integrated Nanotechnologies, a U.S. DOE BES user facility.
Axial U(1) current in Grabowska and Kaplan's formulation
NASA Astrophysics Data System (ADS)
Hamada, Yu; Kawai, Hikaru
2017-06-01
Recently, Grabowska and Kaplan [Phys. Rev. Lett. 116, 211602 (2016); Phys. Rev. D 94, 114504 (2016)] suggested a nonperturbative formulation of a chiral gauge theory, which consists of the conventional domain-wall fermion and a gauge field that evolves by gradient flow from one domain wall to the other. We introduce two sets of domain-wall fermions belonging to complex conjugate representations so that the effective theory is a 4D vector-like gauge theory. Then, as a natural definition of the axial-vector current, we consider a current that generates simultaneous phase transformations for the massless modes in 4 dimensions. However, this current is exactly conserved and does not reproduce the correct anomaly. In order to investigate this point precisely, we consider the mechanism of the conservation. We find that this current includes not only the axial current on the domain wall but also a contribution from the bulk, which is nonlocal in the sense of 4D fields. Therefore, the local current is obtained by subtracting the bulk contribution from it.
Spinors fields in co-dimension one braneworlds
NASA Astrophysics Data System (ADS)
Mendes, W. M.; Alencar, G.; Landim, R. R.
2018-02-01
In this work we analyze the zero mode localization and resonances of 1/2-spin fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-like, domain walls and deformed domain walls membranes. Beyond the influence of the spacetime dimension D we also consider three types of couplings: (i) the standard Yukawa coupling with the scalar field and parameter η 1, (ii) a Yukawa-dilaton coupling with two parameters η 2 and λ and (iii) a dilaton derivative coupling with parameter h. Together with the deformation parameter s, we end up with five free parameter to be considered. For the zero mode we find that the localization is dependent of D, because the spinorial representation changes when the bulk dimensionality is odd or even and must be treated separately. For case (i) we find that in odd dimensions only one chirality can be localized and for even dimension a massless Dirac spinor is trapped over the brane. In the cases (ii) and (iii) we find that for some values of the parameters, both chiralities can be localized in odd dimensions and for even dimensions we obtain that the massless Dirac spinor is trapped over the brane. We also calculated numerically resonances for cases (ii) and (iii) by using the transfer matrix method. We find that, for deformed defects, the increasing of D induces a shift in the peaks of resonances. For a given λ with domain walls, we find that the resonances can show up by changing the spacetime dimensionality. For example, the same case in D = 5 do not induces resonances but when we consider D = 10 one peak of resonance is found. Therefore the introduction of more dimensions, diversely from the bosonic case, can change drastically the zero mode and resonances in fermion fields.
NASA Astrophysics Data System (ADS)
Monthus, Cécile
2018-06-01
For random interacting Majorana models where the only symmetries are the parity P and the time-reversal-symmetry T, various approaches are compared to construct exact even and odd normalized zero modes Γ in finite size, i.e. Hermitian operators that commute with the Hamiltonian, that square to the identity, and that commute (even) or anticommute (odd) with the parity P. Even normalized zero-modes are well known under the name of ‘pseudo-spins’ in the field of many-body-localization or more precisely ‘local integrals of motion’ (LIOMs) in the many-body-localized-phase where the pseudo-spins happens to be spatially localized. Odd normalized zero-modes are popular under the name of ‘Majorana zero modes’ or ‘strong zero modes’. Explicit examples for small systems are described in detail. Applications to real-space renormalization procedures based on blocks containing an odd number of Majorana fermions are also discussed.
All-optical materials design of chiral edge modes in transition-metal dichalcogenides
Claassen, Martin; Jia, Chunjing; Moritz, Brian; ...
2016-10-10
Monolayer transition-metal dichalcogenides are novel materials which at low energies constitute a condensed-matter realization of massive relativistic fermions in two dimensions. Here, we show that this picture breaks for optical pumping—instead, the added complexity of a realistic materials description leads to a new mechanism to optically induce topologically protected chiral edge modes, facilitating optically switchable conduction channels that are insensitive to disorder. In contrast to graphene and previously discussed toy models, the underlying mechanism relies on the intrinsic three-band nature of transition-metal dichalcogenide monolayers near the band edges. Photo-induced band inversions scale linearly in applied pump field and exhibit transitionsmore » from one to two chiral edge modes on sweeping from red to blue detuning. As a result, we develop an ab initio strategy to understand non-equilibrium Floquet–Bloch bands and topological transitions, and illustrate for WS 2 that control of chiral edge modes can be dictated solely from symmetry principles and is not qualitatively sensitive to microscopic materials details.« less
All-optical materials design of chiral edge modes in transition-metal dichalcogenides
Claassen, Martin; Jia, Chunjing; Moritz, Brian; Devereaux, Thomas P.
2016-01-01
Monolayer transition-metal dichalcogenides are novel materials which at low energies constitute a condensed-matter realization of massive relativistic fermions in two dimensions. Here, we show that this picture breaks for optical pumping—instead, the added complexity of a realistic materials description leads to a new mechanism to optically induce topologically protected chiral edge modes, facilitating optically switchable conduction channels that are insensitive to disorder. In contrast to graphene and previously discussed toy models, the underlying mechanism relies on the intrinsic three-band nature of transition-metal dichalcogenide monolayers near the band edges. Photo-induced band inversions scale linearly in applied pump field and exhibit transitions from one to two chiral edge modes on sweeping from red to blue detuning. We develop an ab initio strategy to understand non-equilibrium Floquet–Bloch bands and topological transitions, and illustrate for WS2 that control of chiral edge modes can be dictated solely from symmetry principles and is not qualitatively sensitive to microscopic materials details. PMID:27721504
NASA Astrophysics Data System (ADS)
Rostworowski, A.
2007-01-01
We adopt Leaver's [E. Leaver, {ITALIC Proc. R. Soc. Lond.} {A402}, 285 (1985)] method to determine quasi normal frequencies of the Schwarzschild black hole in higher (D geq 10) dimensions. In D-dimensional Schwarzschild metric, when D increases, more and more singularities, spaced uniformly on the unit circle |r|=1, approach the horizon at r=rh=1. Thus, a solution satisfying the outgoing wave boundary condition at the horizon must be continued to some mid point and only then the continued fraction condition can be applied. This prescription is general and applies to all cases for which, due to regular singularities on the way from the point of interest to the irregular singularity, Leaver's method in its original setting breaks down. We illustrate the method calculating gravitational vector and tensor quasinormal frequencies of the Schwarzschild black hole in D=11 and D=10 dimensions. We also give the details for the D=9 case, considered in the work of P. Bizoz, T. Chmaj, A. Rostworowski, B.G. Schmidt and Z. Tabor {ITALIC Phys. Rev.}{D72}, 121502(R) (2005) .
NASA Astrophysics Data System (ADS)
Glinka, Yuri D.; Babakiray, Sercan; Johnson, Trent A.; Holcomb, Mikel B.; Lederman, David
2016-09-01
Low-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator Bi2Se3. Using transient second-harmonic generation, a technique capable of independently monitoring the in-plane and out-of-plane electron dynamics in the films, the GHz-range oscillations were observed without corresponding oscillations in the transient reflectivity. These oscillations were assigned to the transverse magnetic and transverse electric guided CADP modes induced by the evanescent guided Lamb acoustic waves and remained Landau undamped due to fermion tunnelling between the opposite-surface Dirac states.
Bosonic Dirac materials in two dimensions
NASA Astrophysics Data System (ADS)
Banerjee, Saikat; Fransson, Jonas; Black-Schaffer, Annica; Ågren, Hans; Balatsky, Alexander
We examine the low energy effective theory of phase oscillations in a two-dimensional granular superconducting sheet where the grains are arranged in honeycomb lattice structure. Two different types of collective phase oscillations are obtained, which are analogous to the massive Leggett and massless Bogoliubov-Anderson-Gorkov modes in a two-band superconductor. It is shown that the spectra of these collective bosonic modes cross each other at the K and K' points in the Brillouin zone and form a Dirac node. Dirac node dispersion of bosonic excitations is representative of Bosonic Dirac Materials (BDM). We show that the Dirac node is preserved in presence of an inter-grain interaction, despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sublattice symmetry by choosing different on-site potentials for the two sublattices leads to a gap opening near the Dirac node, in analogy with Fermionic Dirac materials.
NASA Astrophysics Data System (ADS)
Grozdanov, Sašo; Poovuttikul, Napat
2018-05-01
In this work, we show how states with conserved numbers of dynamical defects (strings, domain walls, etc.) can be understood as possessing generalized global symmetries even when the microscopic origins of these symmetries are unknown. Using this philosophy, we build an effective theory of a 2 +1 -dimensional fluid state with two perpendicular sets of immersed elastic line defects. When the number of defects is independently conserved in each set, then the state possesses two one-form symmetries. Normally, such viscoelastic states are described as fluids coupled to Goldstone bosons associated with spontaneous breaking of translational symmetry caused by the underlying microscopic structure—the principle feature of which is a transverse sound mode. At the linear, nondissipative level, we verify that our theory, based entirely on symmetry principles, is equivalent to a viscoelastic theory. We then build a simple holographic dual of such a state containing dynamical gravity and two two-form gauge fields, and use it to study its hydrodynamic and higher-energy spectral properties characterized by nonhydrodynamic, gapped modes. Based on the holographic analysis of transverse two-point functions, we study consistency between low-energy predictions of the bulk theory and the effective boundary theory. Various new features of the holographic dictionary are explained in theories with higher-form symmetries, such as the mixed-boundary-condition modification of the quasinormal mode prescription that depends on the running coupling of the boundary double-trace deformations. Furthermore, we examine details of low- and high-energy parts of the spectrum that depend on temperature, line defect densities and the renormalization group scale.
Observation of three-component fermions in the topological semimetal molybdenum phosphide.
Lv, B Q; Feng, Z-L; Xu, Q-N; Gao, X; Ma, J-Z; Kong, L-Y; Richard, P; Huang, Y-B; Strocov, V N; Fang, C; Weng, H-M; Shi, Y-G; Qian, T; Ding, H
2017-06-29
In quantum field theory, Lorentz invariance leads to three types of fermion-Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.
Topology and Edge Modes in Quantum Critical Chains
NASA Astrophysics Data System (ADS)
Verresen, Ruben; Jones, Nick G.; Pollmann, Frank
2018-02-01
We show that topology can protect exponentially localized, zero energy edge modes at critical points between one-dimensional symmetry-protected topological phases. This is possible even without gapped degrees of freedom in the bulk—in contrast to recent work on edge modes in gapless chains. We present an intuitive picture for the existence of these edge modes in the case of noninteracting spinless fermions with time-reversal symmetry (BDI class of the tenfold way). The stability of this phenomenon relies on a topological invariant defined in terms of a complex function, counting its zeros and poles inside the unit circle. This invariant can prevent two models described by the same conformal field theory (CFT) from being smoothly connected. A full classification of critical phases in the noninteracting BDI class is obtained: Each phase is labeled by the central charge of the CFT, c ∈1/2 N , and the topological invariant, ω ∈Z . Moreover, c is determined by the difference in the number of edge modes between the phases neighboring the transition. Numerical simulations show that the topological edge modes of critical chains can be stable in the presence of interactions and disorder.
Fermion number of twisted kinks in the NJL2 model revisited
NASA Astrophysics Data System (ADS)
Thies, Michael
2018-03-01
As a consequence of axial current conservation, fermions cannot be bound in localized lumps in the massless Nambu-Jona-Lasinio model. In the case of twisted kinks, this manifests itself in a cancellation between the valence fermion density and the fermion density induced in the Dirac sea. To attribute the correct fermion number to these bound states requires an infrared regularization. Recently, this has been achieved by introducing a bare fermion mass, at least in the nonrelativistic regime of small twist angles and fermion numbers. Here, we propose a simpler regularization using a finite box which preserves integrability and can be applied at any twist angle. A consistent and physically plausible assignment of fermion number to all twisted kinks emerges.
Observation of three-component fermions in the topological semimetal molybdenum phosphide
NASA Astrophysics Data System (ADS)
Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Gao, X.; Ma, J.-Z.; Kong, L.-Y.; Richard, P.; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, T.; Ding, H.
2017-06-01
In quantum field theory, Lorentz invariance leads to three types of fermion—Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.
Non-Abelian statistics of vortices with non-Abelian Dirac fermions.
Yasui, Shigehiro; Hirono, Yuji; Itakura, Kazunori; Nitta, Muneto
2013-05-01
We extend our previous analysis on the exchange statistics of vortices having a single Dirac fermion trapped in each core to the case where vortices trap two Dirac fermions with U(2) symmetry. Such a system of vortices with non-Abelian Dirac fermions appears in color superconductors at extremely high densities and in supersymmetric QCD. We show that the exchange of two vortices having doublet Dirac fermions in each core is expressed by non-Abelian representations of a braid group, which is explicitly verified in the matrix representation of the exchange operators when the number of vortices is up to four. We find that the result contains the matrices previously obtained for the vortices with a single Dirac fermion in each core as a special case. The whole braid group does not immediately imply non-Abelian statistics of identical particles because it also contains exchanges between vortices with different numbers of Dirac fermions. However, we find that it does contain, as its subgroup, genuine non-Abelian statistics for the exchange of the identical particles, that is, vortices with the same number of Dirac fermions. This result is surprising compared with conventional understanding because all Dirac fermions are defined locally at each vortex, unlike the case of Majorana fermions for which Dirac fermions are defined nonlocally by Majorana fermions located at two spatially separated vortices.
Fermion number anomaly with the fluffy mirror fermion
NASA Astrophysics Data System (ADS)
Okumura, Ken-ichi; Suzuki, Hiroshi
2016-12-01
Quite recently, Grabowska and Kaplan presented a 4-dimensional lattice formulation of chiral gauge theories based on the chiral overlap operator. We study this formulation from the perspective of the fermion number anomaly and possible associated phenomenology. A simple argument shows that the consistency of the formulation implies that the fermion with the opposite chirality to the physical one, the "fluffy mirror fermion" or "fluff", suffers from the fermion number anomaly in the same magnitude (with the opposite sign) as the physical fermion. This immediately shows that if at least one of the fluff quarks is massless, the formulation provides a simple viable solution to the strong CP problem. Also, if the fluff interacts with gravity essentially in the same way as the physical fermion, the formulation can realize the asymmetric dark matter scenario.
State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter
Bhardwaj, Lakshya; Gaiotto, Davide; Kapustin, Anton
2017-04-18
It is possible to describe fermionic phases of matter and spin-topological field theories in 2+1d in terms of bosonic “shadow” theories, which are obtained from the original theory by “gauging fermionic parity”. Furthemore, the fermionic/spin theories are recovered from their shadow by a process of fermionic anyon condensation: gauging a one-form symmetry generated by quasi-particles with fermionic statistics. We apply the formalism to theories which admit gapped boundary conditions. We obtain Turaev-Viro-like and Levin-Wen-like constructions of fermionic phases of matter. Here, we describe the group structure of fermionic SPT phases protected by Z 2f × G. The quaternion group makesmore » a surprise appearance.« less
High-temperature atomic superfluidity in lattice Bose-Fermi mixtures.
Illuminati, Fabrizio; Albus, Alexander
2004-08-27
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions.
MSW-resonant fermion mixing during reheating
NASA Astrophysics Data System (ADS)
Kanai, Tsuneto; Tsujikawa, Shinji
2003-10-01
We study the dynamics of reheating in which an inflaton field couples two flavor fermions through Yukawa-couplings. When two fermions have a mixing term with a constant coupling, we show that the Mikheyev-Smirnov-Wolfenstein (MSW)-type resonance emerges due to a time-dependent background in addition to the standard fermion creation via parametric resonance. This MSW resonance not only alters the number densities of fermions generated by a preheating process but also can lead to the larger energy transfer from the inflaton to fermions. Our mechanism can provide additional source terms for the creation of superheavy fermions which may be relevant for the leptogenesis scenario.
Xu, Yong; Chu, Rui-Lin; Zhang, Chuanwei
2014-04-04
Weyl fermions, first proposed for describing massless chiral Dirac fermions in particle physics, have not been observed yet in experiments. Recently, much effort has been devoted to explore Weyl fermions around band touching points of single-particle energy dispersions in certain solid state materials (named Weyl semimetals), similar as graphene for Dirac fermions. Here we show that such Weyl semimetals also exist in the quasiparticle excitation spectrum of a three-dimensional spin-orbit-coupled Fulde-Ferrell superfluid. By varying Zeeman fields, the properties of Weyl fermions, such as their creation and annihilation, number and position, as well as anisotropic linear dispersions around band touching points, can be tuned. We study the manifestation of anisotropic Weyl fermions in sound speeds of Fulde-Ferrell fermionic superfluids, which are detectable in experiments.
NASA Astrophysics Data System (ADS)
Zhao, Zuyu
1990-06-01
Two nonconventional superfluids, superfluid ^3He-B and the heavy fermion superconductor UPt_3 have been studied using different techniques: (1) A study of ^3He -B was performed in an acoustic sound cell with a path length of 381mum using the single-ended, c.w., acoustic impedance technique. The fundamental frequency of the x-cut quartz transducer employed in the experiments was 12.80 MHz. The following studies were performed: (a) A systematic measurement was made on the pair-breaking edge in zero magnetic field with ultrasonic frequencies of 64.3 MHz, 90.1 MHz, 141.6 MHz and 167.4 MHz, in the pressure range from 3 bar to 28 bar. The results of our measurements indirectly support the temperature scale of Greywall and the weak coupling plus (WCP) model of Rainer and Serene for the gap function. The pair-breaking edge was also measured in magnetic fields up to 1.36 kG perpendicular to the sound propagation direction and the predicted shift of the effective pair-breaking threshold (from 2 Delta(T) in zero field) by Omega = {gamma Hover 1+{1 over3}F_sp{o}{a}(2+Y) }(the renormalized Larmor frequency) has been observed. (b) The (imaginary) squashing mode was excited with sound frequencies of 141.6 MHz and 115.8 MHz. A doublet splitting (of about 0.3 MHz) of this mode was observed. This doublet splitting was found to be strongly pressure and frequency dependent, but independent of the magnetic field (at the low fields studied). Possible causes of this splitting include superfluid flow induced texture effects and finite wavevector (dispersion) effects. (c) Structure was observed with a sound frequency of 64.3 MHz in the vicinity of 2Delta(T) in a magnetic field of about 580 Gauss which is thought to be J_{z} = -1 component of the J = 1^- collective mode. (2) A surface impedance study of heavy Fermion superconductor UPt_3 was performed with an X-band microwave spectrometer (f ~eq 11.42 GHz) integrated with an Oxford 400 TLE dilution refrigerator so as to have top-loading capability. (3) Using a top loading magnetometer, measurements of the H_{cl} on UPt_3 were performed and kinks were observed along the c axis and in the basal plane. The results support a model of unconventional superconductivity by Hess, Tokuyasu and Sauls.
Searches for new quarks and leptons in Z boson decays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Kooten, R.J.
1990-06-01
Searches for the decay of Z bosons into pairs of new quarks and leptons in a data sample including 455 hadronic Z decays are presented. The Z bosons were produced in electon-positron annihilations at the SLAC Linear Collider operating in the center-of-mass energy range from 89.2 to 93.0 GeV. The Standard Model provides no prediction for fermion masses and does not exclude new generations of fermions. The existence and masses of these new particles may provide valuable information to help understand the pattern of fermion masses, and physics beyond the Standard Model. Specific searches for top quarks and sequential fourthmore » generation charge--1/3(b{prime}) quarks are made considering a variety of possible standard and non-standard decay modes. In addition, searches for sequential fourth generation massive neutrinos {nu}{sub 4} and their charged lepton partners L{sup {minus}} are pursued. The {nu}{sub 4} may be stable or decay through mixing to the lighter generations. The data sample is examined for new particle topologies of events with high-momentum isolated tracks, high-energy isolated photons, spherical event shapes, and detached vertices. No evidence is observed for the production of new quarks and leptons. 95% confidence lower mass limits of 40.7 GeV/c{sup 2} for the top quark and 42.0 GeV/c{sup 2} for the b{prime}-quark mass are obtained regardless of the branching fractions to the considered decay modes. A significant range of mixing matrix elements of {nu}{sub 4} to other generation neutrinos for a {nu}{sub 4} mass from 1 GeV/c{sup 2} to 43 GeV/c{sup 2} is excluded at 95% confidence level. Measurements of the upper limit of the invisible width of the Z exclude additional values of the {nu}{sub 4} mass and mixing matrix elements, and also permit the exclusion of a region in the L{sup {minus}} mass versus {nu}{sub 4} mass plane.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, Lakshya; Gaiotto, Davide; Kapustin, Anton
It is possible to describe fermionic phases of matter and spin-topological field theories in 2+1d in terms of bosonic “shadow” theories, which are obtained from the original theory by “gauging fermionic parity”. Furthemore, the fermionic/spin theories are recovered from their shadow by a process of fermionic anyon condensation: gauging a one-form symmetry generated by quasi-particles with fermionic statistics. We apply the formalism to theories which admit gapped boundary conditions. We obtain Turaev-Viro-like and Levin-Wen-like constructions of fermionic phases of matter. Here, we describe the group structure of fermionic SPT phases protected by Z 2f × G. The quaternion group makesmore » a surprise appearance.« less
Superfluid Boson-Fermion Mixture: Structure Formation and Collective Periodic Motion
NASA Astrophysics Data System (ADS)
Mitra, A.
2018-01-01
Multiple periodic domain formation due to a modulation instability in a boson-fermion mixture superfluid in the unitary regime has been studied. The periodicity of the structure evolves with time. At the early stage of evolution, bosonic domains show the periodic nature, whereas the periodicity in the fermionic (Cooper pair) domains appears at the late stage of evolution. The nature of interatomic interspecies interactions affects the domain formation. In a harmonic trap, the mixture executes an undamped oscillation. The frequency of the oscillation depends on the relative coupling strength between boson-fermion and fermion-fermion. The repulsive boson-fermion interaction reduces the oscillation frequency, whereas the attractive interaction enhances the frequency significantly.
Fermion emission from a Julia-Zee dyon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaer, A.S.; Christ, N.H.; Tang, J.
1982-04-15
A relationship is obtained between the S matrix for the charge-exchange scattering of a fermion by a Julia-Zee dyon and the flux of fermions emitted by the dyon when the mass of the fermions is sufficiently small. In the limit of a pointlike dyon, the required S-matrix elements are obtained in closed form and the corresponding fermion flux is computed explicitly.
Theory of the spin-1 bosonic liquid metal - Equilibrium properties of liquid metallic deuterium
NASA Technical Reports Server (NTRS)
Oliva, J.; Ashcroft, N. W.
1984-01-01
The theory of a two-component quantum fluid comprised of spin-1/2 fermions and nonzero spin bosons is examined. This system is of interest because it embodies a possible quantum liquid metallic phase of highly compressed deuterium. Bose condensation is assumed present and the two cases of nuclear-spin-polarized and -unpolarized systems are considered. A significant feature in the unpolarized case is the presence of a nonmagnetic mode with quadratic dispersion owing its existence to nonzero boson spin. The physical character of this mode is examined in detail within a Bogoliubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid and corresponding normal solid metallic phase are predicted.
Observation of antiphase coherent phonons in the warped Dirac cone of Bi2Te3
NASA Astrophysics Data System (ADS)
Golias, E.; Sánchez-Barriga, J.
2016-10-01
In this Rapid Communication we investigate the coupling between excited electrons and phonons in the highly anisotropic electronic structure of the prototypical topological insulator Bi2Te3 . Using time- and angle-resolved photoemission spectroscopy we are able to identify the emergence and ultrafast temporal evolution of the longitudinal-optical A1 g coherent-phonon mode in Bi2Te3 . We observe an antiphase behavior in the onset of the coherent-phonon oscillations between the Γ K ¯ and the Γ M ¯ high-symmetry directions that is consistent with warping. The qualitative agreement between our density-functional theory calculations and the experimental results reveals the critical role of the anisotropic coupling between Dirac fermions and phonon modes in the topological insulator Bi2Te3 .
Weakly-coupled quasi-1D helical modes in disordered 3D topological insulator quantum wires
NASA Astrophysics Data System (ADS)
Dufouleur, J.; Veyrat, L.; Dassonneville, B.; Xypakis, E.; Bardarson, J. H.; Nowka, C.; Hampel, S.; Schumann, J.; Eichler, B.; Schmidt, O. G.; Büchner, B.; Giraud, R.
2017-04-01
Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi2Te3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder.
Weakly-coupled quasi-1D helical modes in disordered 3D topological insulator quantum wires
Dufouleur, J.; Veyrat, L.; Dassonneville, B.; Xypakis, E.; Bardarson, J. H.; Nowka, C.; Hampel, S.; Schumann, J.; Eichler, B.; Schmidt, O. G.; Büchner, B.; Giraud, R.
2017-01-01
Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi2Te3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder. PMID:28374744
Sensing Floquet-Majorana fermions via heat transfer
NASA Astrophysics Data System (ADS)
Molignini, Paolo; van Nieuwenburg, Evert; Chitra, R.
2017-09-01
Time periodic modulations of the transverse field in the closed X Y spin-1/2 chain generate a very rich dynamical phase diagram, with a hierarchy of Zn topological phases characterized by differing numbers of Floquet-Majorana modes. This rich phase diagram survives when the system is coupled to dissipative end reservoirs. Circumventing the obstacle of preparing and measuring quasienergy configurations endemic to Floquet-Majorana detection schemes, we show that stroboscopic heat transport and spin density are robust observables to detect both the dynamical phase transitions and Majorana modes in dissipative settings. We find that the heat current provides very clear signatures of these Floquet topological phase transitions. In particular, we observe that the derivative of the heat current, with respect to a control parameter, changes sign at the boundaries separating topological phases with differing nonzero numbers of Floquet-Majorana modes. We present a simple scheme to directly count the number of Floquet-Majorana modes in a phase from the Fourier transform of the local spin density profile. Our results are valid provided the anisotropies are not strong and can be easily implemented in quantum engineered systems.
Weakly-coupled quasi-1D helical modes in disordered 3D topological insulator quantum wires.
Dufouleur, J; Veyrat, L; Dassonneville, B; Xypakis, E; Bardarson, J H; Nowka, C; Hampel, S; Schumann, J; Eichler, B; Schmidt, O G; Büchner, B; Giraud, R
2017-04-04
Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi 2 Te 3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder.
Resurgence and hydrodynamic attractors in Gauss-Bonnet holography
NASA Astrophysics Data System (ADS)
Casalderrey-Solana, Jorge; Gushterov, Nikola I.; Meiring, Ben
2018-04-01
We study the convergence of the hydrodynamic series in the gravity dual of Gauss-Bonnet gravity in five dimensions with negative cosmological constant via holography. By imposing boost invariance symmetry, we find a solution to the Gauss-Bonnet equation of motion in inverse powers of the proper time, from which we can extract high order corrections to Bjorken flow for different values of the Gauss-Bonnet parameter λGB. As in all other known examples the gradient expansion is, at most, an asymptotic series which can be understood through applying the techniques of Borel-Padé summation. As expected from the behaviour of the quasi-normal modes in the theory, we observe that the singularities in the Borel plane of this series show qualitative features that interpolate between the infinitely strong coupling limit of N=4 Super Yang Mills theory and the expectation from kinetic theory. We further perform the Borel resummation to constrain the behaviour of hydrodynamic attractors beyond leading order in the hydrodynamic expansion. We find that for all values of λGB considered, the convergence of different initial conditions to the resummation and its hydrodynamization occur at large and comparable values of the pressure anisotropy.
A recipe for echoes from exotic compact objects
NASA Astrophysics Data System (ADS)
Mark, Zachary; Zimmerman, Aaron; Du, Song Ming; Chen, Yanbei
2017-10-01
Gravitational wave astronomy provides an unprecedented opportunity to test the nature of black holes and search for exotic, compact alternatives. Recent studies have shown that exotic compact objects (ECOs) can ring down in a manner similar to black holes, but can also produce a sequence of distinct pulses resembling the initial ringdown. These "echoes" would provide definite evidence for the existence of ECOs. In this work we study the generation of these echoes in a generic, parametrized model for the ECO, using Green's functions. We show how to reprocess radiation in the near-horizon region of a Schwarzschild black hole into the asymptotic radiation from the corresponding source in an ECO spacetime. Our methods allow us to understand the connection between distinct echoes and ringing at the resonant frequencies of the compact object. We find that the quasinormal mode ringing in the black hole spacetime plays a central role in determining the shape of the first few echoes. We use this observation to develop a simple template for echo waveforms. This template preforms well over a variety of ECO parameters, and with improvements may prove useful in the analysis of gravitational waves.
Phonon Dispersion and the Competition between Pairing and Charge Order
NASA Astrophysics Data System (ADS)
Costa, N. C.; Blommel, T.; Chiu, W.-T.; Batrouni, G.; Scalettar, R. T.
2018-05-01
The Holstein model describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At higher densities, the phonons mediate collective superconducting (SC) and charge-density wave (CDW) phases. Quantum Monte Carlo (QMC) simulations have considered both these limits but have not yet focused on the physics of more general phonon spectra. Here we report QMC studies of the role of phonon dispersion on SC and CDW order in such models. We quantify the effect of finite phonon bandwidth and curvature on the critical temperature Tcdw for CDW order and also uncover several novel features of diagonal long-range order in the phase diagram, including a competition between charge patterns at momenta q =(π ,π ) and q =(0 ,π ) which lends insight into the relationship between Fermi surface nesting and the wave vector at which charge order occurs. We also demonstrate SC order at half filling in situations where a nonzero bandwidth sufficiently suppresses Tcdw.
Majorana surface modes of nodal topological pairings in spin-3/2 semimetals
NASA Astrophysics Data System (ADS)
Yang, Wang; Xiang, Tao; Wu, Congjun
2017-10-01
When solid state systems possess active orbital-band structures subject to spin-orbit coupling, their multicomponent electronic structures are often described in terms of effective large-spin fermion models. Their topological structures of superconductivity are beyond the framework of spin singlet and triplet Cooper pairings for spin-1/2 systems. Examples include the half-Heusler compound series of RPtBi, where R stands for a rare-earth element. Their spin-orbit coupled electronic structures are described by the Luttinger-Kohn model with effective spin-3/2 fermions and are characterized by band inversion. Recent experiments provide evidence to unconventional superconductivity in the YPtBi material with nodal spin-septet pairing. We systematically study topological pairing structures in spin-3/2 systems with the cubic group symmetries and calculate the surface Majorana spectra, which exhibit zero energy flat bands, or, cubic dispersion depending on the specific symmetry of the superconducting gap functions. The signatures of these surface states in the quasiparticle interference patterns of tunneling spectroscopy are studied, which can be tested in future experiments.
Chiral anomaly and anomalous finite-size conductivity in graphene
NASA Astrophysics Data System (ADS)
Shen, Shun-Qing; Li, Chang-An; Niu, Qian
2017-09-01
Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host two spin degenerate pairs of massless two-dimensional Dirac fermions with different chirality. It is known that the existence of non-zero electric polarization in reduced momentum space which is associated with a hidden chiral symmetry will lead to the zero-energy flat band of a zigzag nanoribbon and some anomalous transport properties. Here it is proposed that the Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral charges of Dirac fermions at different valleys can be realized in a confined ribbon of finite width, even in the absence of a magnetic field. In the laterally diffusive regime, the finite-size correction to conductivity is always positive and is inversely proportional to the square of the lateral dimension W, which is different from the finite-size correction inversely proportional to W from the boundary modes. This anomalous finite-size conductivity reveals the signature of the chiral anomaly in graphene, and it is measurable experimentally. This finding provides an alternative platform to explore the purely quantum mechanical effect in graphene.
Chiral current generation in QED by longitudinal photons
NASA Astrophysics Data System (ADS)
Acosta Avalo, J. L.; Pérez Rojas, H.
2016-08-01
We report the generation of a pseudovector electric current having imbalanced chirality in an electron-positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler-Bell-Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone). In the static limit, an electric pseudovector current is obtained in the lowest Landau level.
NASA Astrophysics Data System (ADS)
Montorsi, Arianna; Dolcini, Fabrizio; Iotti, Rita C.; Rossi, Fausto
2017-06-01
The low energy behavior of a huge variety of one-dimensional interacting spinful fermionic systems exhibits spin-charge separation, described in the continuum limit by two sine-Gordon models decoupled in the charge and spin channels. Interaction is known to induce, besides the gapless Luttinger liquid phase, eight possible gapped phases, among which are the Mott, Haldane, charge-/spin-density, and bond-ordered wave insulators, and the Luther Emery liquid. Here we prove that some of these physically distinct phases have nontrivial topological properties, notably the presence of degenerate protected edge modes with fractionalized charge/spin. Moreover, we show that the eight gapped phases are in one-to-one correspondence with the symmetry-protected topological (SPT) phases classified by group cohomology theory in the presence of particle-hole symmetry P. The latter result is also exploited to characterize SPT phases by measurable nonlocal order parameters which follow the system evolution to the quantum phase transition. The implications on the appearance of exotic orders in the class of microscopic Hubbard Hamiltonians, possibly without P symmetry at higher energies, are discussed.
Disordered Kitaev chains with long-range pairing.
Cai, Xiaoming
2017-03-22
We study the competition of disorder and superconductivity for a generalized Kitaev model in incommensurate potentials. The generalized Kitaev model describes one dimensional spinless fermions with long-range p-wave superconducting pairing, which decays with distance l as a power law ∼[Formula: see text]. We focus on the transition from the topological superconducting phase to the topologically trivial Anderson localized phase, and effects of the exponent α on this phase transition. In the topological superconducting phase, for a system under open boundary condition the amplitude of zero-mode Majorana fermion has a hybrid exponential-algebraic decay as the distance increases from the edge. In the Anderson localized phase, some single-particle states remain critical for very strong disorders and the number of critical states increases as α decreases. In addition, except for critical disorders, the correlation function always has an exponential decay at the short range and an algebraic decay at the long range. Phase transition points are also numerically determined and the topological phase transition happens earlier at a smaller disorder strength for a system with smaller α.
Lectures on Non-Abelian Bosonization
NASA Astrophysics Data System (ADS)
Tsvelik, A. M.
The following sections are included: * Introduction * Kac-Moody algebra * Conformal embedding. Sugawara Hamiltonian * SU(N)×SU(M) model * From the fermionic to WZNW model * The perturbed SUk(2) WZNW model * Correlation functions and Quasi Long Range order * Generalization from SU(2) to SU(N) * A model with Sp(2N) symmetry * Solution for the special case gcdw = gsc * Attraction in the orbital channel. Competing orders. Emergent integrability. ZN parafermions. * Parafermion zero modes * Conclusions and Acknowledgements * Appendix A. TBA equations for the Sp1(2N) model * Appendix B. Bosonization of of Z4 parafermions * References
Charged fermions below 100 GeV
NASA Astrophysics Data System (ADS)
Egana-Ugrinovic, Daniel; Low, Matthew; Ruderman, Joshua T.
2018-05-01
How light can a fermion be if it has unit electric charge? We revisit the lore that LEP robustly excludes charged fermions lighter than about 100 GeV. We review LEP chargino searches, and find them to exclude charged fermions lighter than 90 GeV, assuming a higgsino-like cross section. However, if the charged fermion couples to a new scalar, destructive interference among production channels can lower the LEP cross section by a factor of 3. In this case, we find that charged fermions as light as 75 GeV can evade LEP bounds, while remaining consistent with constraints from the LHC. As the LHC collects more data, charged fermions in the 75-100 GeV mass range serve as a target for future monojet and disappearing track searches.
Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6
Liang, Tian; Koohpayeh, S. M.; Krizan, J. W.; McQueen, T. M.; Cava, R. J.; Ong, N. P.
2015-01-01
The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition. PMID:26146018
Bosonic Dirac Materials in 2 dimensions
NASA Astrophysics Data System (ADS)
Banerjee, Saikat; Black-Schaffer, A. M.; Fransson, J.; Agren, H.; Balatsky, A. V.
We examine the low energy effective theory of phase oscillations in a two dimensional granular superconducting sheet where the grains are arranged in honeycomb lattice structure. Two different types of collective phase oscillations are obtained, which are analogous to the massive Leggett and massless Bogoliubov-Anderson-Gorkov modes for two-band superconductor. It is explicitly shown that the spectra of these collective Bosonic modes cross each other at K and K' points in the Brillouin zone and form a Dirac node. This Dirac node behavior in Bosonic excitations represent the case of Bosonic Dirac Materials (BDM). Dirac node is preserved in presence of an inter-grain interaction despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sub lattice symmetry by choosing different on-site potentials for the two sub lattices leads to a gap opening near the Dirac node, in analogy with Fermionic Dirac material. Supported by US DOE E304, ERC DM 321031, KAW, VR2012-3447.
Ghost free systems with coexisting bosons and fermions
NASA Astrophysics Data System (ADS)
Kimura, Rampei; Sakakihara, Yuki; Yamaguchi, Masahide
2017-08-01
We study the coexistence system of both bosonic and fermionic degrees of freedom. Even if a Lagrangian does not include higher derivatives, fermionic ghosts exist. For a Lagrangian with up to first derivatives, we find the fermionic ghost free condition in Hamiltonian analysis, which is found to be the same as requiring that the equations of motion of fermions be first order in Lagrangian formulation. When fermionic degrees of freedom are present, the uniqueness of time evolution is not guaranteed a priori because of the Grassmann property. We confirm that the additional condition, which is introduced to close Hamiltonian analysis, also ensures the uniqueness of the time evolution of the system.
NASA Astrophysics Data System (ADS)
Duret, Q.; Machet, B.
2010-10-01
Starting from Wigner's symmetry representation theorem, we give a general account of discrete symmetries (parity P, charge conjugation C, time-reversal T), focusing on fermions in Quantum Field Theory. We provide the rules of transformation of Weyl spinors, both at the classical level (grassmanian wave functions) and quantum level (operators). Making use of Wightman's definition of invariance, we outline ambiguities linked to the notion of classical fermionic Lagrangian. We then present the general constraints cast by these transformations and their products on the propagator of the simplest among coupled fermionic system, the one made with one fermion and its antifermion. Last, we put in correspondence the propagation of C eigenstates (Majorana fermions) and the criteria cast on their propagator by C and CP invariance.
Discovery of proton decay: A must for theory, a challenge for experiment
NASA Astrophysics Data System (ADS)
Pati, Jogesh C.
2000-08-01
It is noted that, but for one missing piece—proton decay—the evidence in support of grand unification is now strong. It includes: (i) the observed family-structure, (ii) the meeting of the gauge couplings, (iii) neutrino-oscillations, (iv) the intricate pattern of the masses and mixings of all fermions, including the neutrinos, and (v) the need for B-L as a generator, to implement baryogenesis. Taken together, these not only favor grand unification but in fact select out a particular route to such unification, based on the ideas of supersymmetry, SU(4)-color and left-right symmetry. Thus they point to the relevance of an effective string-unified G(224) or SO(10)-symmetry. A concrete proposal is presented, within a predictive SO(10)/G(224)-framework, that successfully describes the masses and mixings of all fermions, including the neutrinos—with eight predictions, all in agreement with observation. Within this framework, a systematic study of proton decay is carried out, which pays special attention to its dependence on the fermion masses, including the superheavy Majorana masses of the right-handed neutrinos. The study shows that a conservative upper limit on the proton lifetime is about (1/2-1)×1034yrs, with ν¯K+ being the dominant decay mode, and as a distinctive feature, μ+K0 being prominent. This in turn strongly suggests that an improvement in the current sensitivity by a factor of five to ten (compared to SuperK) ought to reveal proton decay. Otherwise some promising and remarkably successful ideas on unification would suffer a major setback.
NASA Astrophysics Data System (ADS)
Lai, Hon-Lam; Yang, Pei-Yun; Huang, Yu-Wei; Zhang, Wei-Min
2018-02-01
In this paper, we use the exact master equation approach to investigate the decoherence dynamics of Majorana zero modes in the Kitaev model, a 1D p -wave spinless topological superconducting chain (TSC) that is disturbed by gate-induced charge fluctuations. The exact master equation is derived by extending Feynman-Vernon influence functional technique to fermionic open systems involving pairing excitations. We obtain the exact master equation for the zero-energy Bogoliubov quasiparticle (bogoliubon) in the TSC, and then transfer it into the master equation for the Majorana zero modes. Within this exact master equation formalism, we can describe in detail the non-Markovian decoherence dynamics of the zero-energy bogoliubon as well as Majorana zero modes under local perturbations. We find that at zero temperature, local charge fluctuations induce level broadening to one of the Majorana zero modes but there is an isolated peak (localized bound state) located at zero energy that partially protects the Majorana zero mode from decoherence. At finite temperatures, the zero-energy localized bound state does not precisely exist, but the coherence of the Majorana zero mode can still be partially but weakly protected, due to the sharp dip of the spectral density near the zero frequency. The decoherence will be enhanced as one increases the charge fluctuations and/or the temperature of the gate.
Scales of mass generation for quarks, leptons, and majorana neutrinos.
Dicus, Duane A; He, Hong-Jian
2005-06-10
We study 2-->n inelastic fermion-(anti)fermion scattering into multiple longitudinal weak gauge bosons and derive universal upper bounds on the scales of fermion mass generation by imposing unitarity of the S matrix. We place new upper limits on the scales of fermion mass generation, independent of the electroweak symmetry breaking scale. Strikingly, we find that the strongest 2-->n limits fall in a narrow range, 3-170 TeV (with n=2-24), depending on the observed fermion masses.
Novel topological effects in dense QCD in a magnetic field
NASA Astrophysics Data System (ADS)
Ferrer, E. J.; de la Incera, V.
2018-06-01
We study the electromagnetic properties of dense QCD in the so-called Magnetic Dual Chiral Density Wave phase. This inhomogeneous phase exhibits a nontrivial topology that comes from the fermion sector due to the asymmetry of the lowest Landau level modes. The nontrivial topology manifests in the electromagnetic effective action via a chiral anomaly term θFμνF˜μν, with a dynamic axion field θ given by the phase of the Dual Chiral Density Wave condensate. The coupling of the axion with the electromagnetic field leads to several macroscopic effects that include, among others, an anomalous, nondissipative Hall current, an anomalous electric charge, magnetoelectricity, and the formation of a hybridized propagating mode known as an axion polariton. Connection to topological insulators and Weyls semimetals, as well as possible implications for heavy-ion collisions and neutron stars are all highlighted.
Stochastic quantization and holographic Wilsonian renormalization group of free massive fermion
NASA Astrophysics Data System (ADS)
Moon, Sung Pil
2018-06-01
We examine a suggested relation between stochastic quantization and the holographic Wilsonian renormalization group in the massive fermion case on Euclidean AdS space. The original suggestion about the general relation between the two theories is posted in arXiv:1209.2242. In the previous researches, it is already verified that scalar fields, U(1) gauge fields, and massless fermions are consistent with the relation. In this paper, we examine the relation in the massive fermion case. Contrary to the other case, in the massive fermion case, the action needs particular boundary terms to satisfy boundary conditions. We finally confirm that the proposed suggestion is also valid in the massive fermion case.
A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies
NASA Astrophysics Data System (ADS)
Lu, Wei
2017-09-01
We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.
Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.
Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun
2017-08-15
Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.
Bilinear Factor Matrix Norm Minimization for Robust PCA: Algorithms and Applications.
Shang, Fanhua; Cheng, James; Liu, Yuanyuan; Luo, Zhi-Quan; Lin, Zhouchen
2017-09-04
The heavy-tailed distributions of corrupted outliers and singular values of all channels in low-level vision have proven effective priors for many applications such as background modeling, photometric stereo and image alignment. And they can be well modeled by a hyper-Laplacian. However, the use of such distributions generally leads to challenging non-convex, non-smooth and non-Lipschitz problems, and makes existing algorithms very slow for large-scale applications. Together with the analytic solutions to Lp-norm minimization with two specific values of p, i.e., p=1/2 and p=2/3, we propose two novel bilinear factor matrix norm minimization models for robust principal component analysis. We first define the double nuclear norm and Frobenius/nuclear hybrid norm penalties, and then prove that they are in essence the Schatten-1/2 and 2/3 quasi-norms, respectively, which lead to much more tractable and scalable Lipschitz optimization problems. Our experimental analysis shows that both our methods yield more accurate solutions than original Schatten quasi-norm minimization, even when the number of observations is very limited. Finally, we apply our penalties to various low-level vision problems, e.g. moving object detection, image alignment and inpainting, and show that our methods usually outperform the state-of-the-art methods.
Anomaly-free dark matter models are not so simple
NASA Astrophysics Data System (ADS)
Ellis, John; Fairbairn, Malcolm; Tunney, Patrick
2017-08-01
We explore the anomaly-cancellation constraints on simplified dark matter (DM) models with an extra U(1)' gauge boson Z '. We show that, if the Standard Model (SM) fermions are supplemented by a single DM fermion χ that is a singlet of the SM gauge group, and the SM quarks have non-zero U(1)' charges, the SM leptons must also have non-zero U(1)' charges, in which case LHC searches impose strong constraints on the Z ' mass. Moreover, the DM fermion χ must have a vector-like U(1)' coupling. If one requires the DM particle to have a purely axial U(1)' coupling, which would be the case if χ were a Majorana fermion and would reduce the impact of direct DM searches, the simplest possibility is that it is accompanied by one other new singlet fermion, but in this case the U(1)' charges of the SM leptons still do not vanish. This is also true in a range of models with multiple new singlet fermions with identical charges. Searching for a leptophobic model, we then introduce extra fermions that transform non-trivially under the SM gauge group. We find several such models if the DM fermion is accompanied by two or more other new fermions with non-identical charges, which may have interesting experimental signatures. We present benchmark representatives of the various model classes we discuss.
Phase space methods for Majorana fermions
NASA Astrophysics Data System (ADS)
Rushin Joseph, Ria; Rosales-Zárate, Laura E. C.; Drummond, Peter D.
2018-06-01
Fermionic phase space representations are a promising method for studying correlated fermion systems. The fermionic Q-function and P-function have been defined using Gaussian operators of fermion annihilation and creation operators. The resulting phase-space of covariance matrices belongs to the symmetry class D, one of the non-standard symmetry classes. This was originally proposed to study mesoscopic normal-metal-superconducting hybrid structures, which is the type of structure that has led to recent experimental observations of Majorana fermions. Under a unitary transformation, it is possible to express these Gaussian operators using real anti-symmetric matrices and Majorana operators, which are much simpler mathematical objects. We derive differential identities involving Majorana fermion operators and an antisymmetric matrix which are relevant to the derivation of the corresponding Fokker–Planck equations on symmetric space. These enable stochastic simulations either in real or imaginary time. This formalism has direct relevance to the study of fermionic systems in which there are Majorana type excitations, and is an alternative to using expansions involving conventional Fermi operators. The approach is illustrated by showing how a linear coupled Hamiltonian as used to study topological excitations can be transformed to Fokker–Planck and stochastic equation form, including dissipation through particle losses.
Vector-like quarks and leptons, SU(5) ⊗ SU(5) grand unification, and proton decay
NASA Astrophysics Data System (ADS)
Lee, Chang-Hun; Mohapatra, Rabindra N.
2017-02-01
SU(5) ⊗ SU(5) provides a minimal grand unification scheme for fermions and gauge forces if there are vector-like quarks and leptons in nature. We explore the gauge coupling unification in a non-supersymmetric model of this type, and study its implications for proton decay. The properties of vector-like quarks and intermediate scales that emerge from coupling unification play a central role in suppressing proton decay. We find that in this model, the familiar decay mode p → e +π0 may have a partial lifetime within the reach of currently planned experiments.
NASA Astrophysics Data System (ADS)
Jolos, R. V.; Kartavenko, V. G.; Kolganova, E. A.
2018-03-01
Nucleon pair correlations in atomic nuclei are analyzed within a nuclear microscopic model with residual isovector pairing forces. These are formulated in the boson representation of fermion operators whereby the collective mode of pair excitations can be isolated without restricting the size of the one-particle basis. This method allows one to analyze the fluctuations in the nonsuperfluid phase of nuclear matter, its phase transition to the superfluid phase, and strong pair correlations. The performance of the method is exemplified by numerical results for the nuclei in the vicinity of the doubly magic 56Ni nucleus.
Exponential protection of zero modes in Majorana islands.
Albrecht, S M; Higginbotham, A P; Madsen, M; Kuemmeth, F; Jespersen, T S; Nygård, J; Krogstrup, P; Marcus, C M
2016-03-10
Majorana zero modes are quasiparticle excitations in condensed matter systems that have been proposed as building blocks of fault-tolerant quantum computers. They are expected to exhibit non-Abelian particle statistics, in contrast to the usual statistics of fermions and bosons, enabling quantum operations to be performed by braiding isolated modes around one another. Quantum braiding operations are topologically protected insofar as these modes are pinned near zero energy, with the departure from zero expected to be exponentially small as the modes become spatially separated. Following theoretical proposals, several experiments have identified signatures of Majorana modes in nanowires with proximity-induced superconductivity and atomic chains, with small amounts of mode splitting potentially explained by hybridization of Majorana modes. Here, we use Coulomb-blockade spectroscopy in an InAs nanowire segment with epitaxial aluminium, which forms a proximity-induced superconducting Coulomb island (a 'Majorana island') that is isolated from normal-metal leads by tunnel barriers, to measure the splitting of near-zero-energy Majorana modes. We observe exponential suppression of energy splitting with increasing wire length. For short devices of a few hundred nanometres, sub-gap state energies oscillate as the magnetic field is varied, as is expected for hybridized Majorana modes. Splitting decreases by a factor of about ten for each half a micrometre of increased wire length. For devices longer than about one micrometre, transport in strong magnetic fields occurs through a zero-energy state that is energetically isolated from a continuum, yielding uniformly spaced Coulomb-blockade conductance peaks, consistent with teleportation via Majorana modes. Our results help to explain the trivial-to-topological transition in finite systems and to quantify the scaling of topological protection with end-mode separation.
Implication of Tsallis entropy in the Thomas–Fermi model for self-gravitating fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ourabah, Kamel; Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr
The Thomas–Fermi approach for self-gravitating fermions is revisited within the theoretical framework of the q-statistics. Starting from the q-deformation of the Fermi–Dirac distribution function, a generalized Thomas–Fermi equation is derived. It is shown that the Tsallis entropy preserves a scaling property of this equation. The q-statistical approach to Jeans’ instability in a system of self-gravitating fermions is also addressed. The dependence of the Jeans’ wavenumber (or the Jeans length) on the parameter q is traced. It is found that the q-statistics makes the Fermionic system unstable at scales shorter than the standard Jeans length. -- Highlights: •Thomas–Fermi approach for self-gravitatingmore » fermions. •A generalized Thomas–Fermi equation is derived. •Nonextensivity preserves a scaling property of this equation. •Nonextensive approach to Jeans’ instability of self-gravitating fermions. •It is found that nonextensivity makes the Fermionic system unstable at shorter scales.« less
Fermionic topological quantum states as tensor networks
NASA Astrophysics Data System (ADS)
Wille, C.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.
Majorana-assisted nonlocal electron transport through a floating topological superconductor
NASA Astrophysics Data System (ADS)
Ulrich, Jascha; Hassler, Fabian
2015-08-01
The nonlocal nature of the fermionic mode spanned by a pair of Majorana bound states in a one-dimensional topological superconductor has inspired many proposals aiming at demonstrating this property in transport. In particular, transport through the mode from a lead attached to the left bound state to a lead attached to the right will result in current cross correlations. For ideal zero modes on a grounded superconductor, the cross correlations are however completely suppressed in favor of purely local Andreev reflection. In order to obtain a nonvanishing cross correlation, previous studies have required the presence of an additional global charging energy. Adding nonlocal terms in the form of a global charging energy to the Hamiltonian when testing the intrinsic nonlocality of the Majorana modes seems to be conceptually troublesome. Here, we show that a floating superconductor allows observing nonlocal current correlations in the absence of charging energy. We show that the noninteracting and the Coulomb-blockade regime have the same peak conductance e2/h but different shot-noise power; whereas the shot noise is sub-Poissonian in the Coulomb-blockade regime in the large-bias limit, Poissonian shot noise is generically obtained in the noninteracting case.
Dynamic origins of fermionic D -terms
NASA Astrophysics Data System (ADS)
Hudson, Jonathan; Schweitzer, Peter
2018-03-01
The D -term is defined through matrix elements of the energy-momentum tensor, similarly to mass and spin, yet this important particle property is experimentally not known any fermion. In this work we show that the D -term of a spin 1/2 fermion is of dynamical origin: it vanishes for a free fermion. This is in pronounced contrast to the bosonic case where already a free spin-0 boson has a non-zero intrinsic D -term. We illustrate in two simple models how interactions generate the D -term of a fermion with an internal structure, the nucleon. All known matter is composed of elementary fermions. This indicates the importance to study this interesting particle property in more detail, which will provide novel insights especially on the structure of the nucleon.
Superfluid and Insulating Phases of Fermion Mixtures in Optical Lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iskin, M.; Sa de Melo, C. A. R.
2007-08-24
The ground state phase diagram of fermion mixtures in optical lattices is analyzed as a function of interaction strength, fermion filling factor, and tunneling parameters. In addition to standard superfluid, phase-separated or coexisting superfluid-excess-fermion phases found in homogeneous or harmonically trapped systems, fermions in optical lattices have several insulating phases, including a molecular Bose-Mott insulator (BMI), a Fermi-Pauli (band) insulator (FPI), a phase-separated BMI-FPI mixture or a Bose-Fermi checkerboard (BFC). The molecular BMI phase is the fermion mixture counterpart of the atomic BMI found in atomic Bose systems, the BFC or BMI-FPI phases exist in Bose-Fermi mixtures, and lastly themore » FPI phase is particular to the Fermi nature of the constituent atoms of the mixture.« less
Many-body physics using cold atoms
NASA Astrophysics Data System (ADS)
Sundar, Bhuvanesh
Advances in experiments on dilute ultracold atomic gases have given us access to highly tunable quantum systems. In particular, there have been substantial improvements in achieving different kinds of interaction between atoms. As a result, utracold atomic gases oer an ideal platform to simulate many-body phenomena in condensed matter physics, and engineer other novel phenomena that are a result of the exotic interactions produced between atoms. In this dissertation, I present a series of studies that explore the physics of dilute ultracold atomic gases in different settings. In each setting, I explore a different form of the inter-particle interaction. Motivated by experiments which induce artificial spin-orbit coupling for cold fermions, I explore this system in my first project. In this project, I propose a method to perform universal quantum computation using the excitations of interacting spin-orbit coupled fermions, in which effective p-wave interactions lead to the formation of a topological superfluid. Motivated by experiments which explore the physics of exotic interactions between atoms trapped inside optical cavities, I explore this system in a second project. I calculate the phase diagram of lattice bosons trapped in an optical cavity, where the cavity modes mediates effective global range checkerboard interactions between the atoms. I compare this phase diagram with one that was recently measured experimentally. In two other projects, I explore quantum simulation of condensed matter phenomena due to spin-dependent interactions between particles. I propose a method to produce tunable spin-dependent interactions between atoms, using an optical Feshbach resonance. In one project, I use these spin-dependent interactions in an ultracold Bose-Fermi system, and propose a method to produce the Kondo model. I propose an experiment to directly observe the Kondo effect in this system. In another project, I propose using lattice bosons with a large hyperfine spin, which have Feshbach-induced spin-dependent interactions, to produce a quantum dimer model. I propose an experiment to detect the ground state in this system. In a final project, I develop tools to simulate the dynamics of fermionic superfluids in which fermions interact via a short-range interaction.
On the regularized fermionic projector of the vacuum
NASA Astrophysics Data System (ADS)
Finster, Felix
2008-03-01
We construct families of fermionic projectors with spherically symmetric regularization, which satisfy the condition of a distributional MP-product. The method is to analyze regularization tails with a power law or logarithmic scaling in composite expressions in the fermionic projector. The resulting regularizations break the Lorentz symmetry and give rise to a multilayer structure of the fermionic projector near the light cone. Furthermore, we construct regularizations which go beyond the distributional MP-product in that they yield additional distributional contributions supported at the origin. The remaining freedom for the regularization parameters and the consequences for the normalization of the fermionic states are discussed.
Semiclassical fermion pair creation in de Sitter spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stahl, Clément, E-mail: clement.stahl@icranet.org; Eckhard, Strobel, E-mail: eckhard.strobel@irap-phd.eu; Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome
2015-12-17
We present a method to semiclassically compute the pair creation rate of bosons and fermions in de Sitter spacetime. The results in the bosonic case agree with the ones in the literature. We find that for the constant electric field the fermionic and bosonic pair creation rate are the same. This analogy of bosons and fermions in the semiclassical limit is known from several flat spacetime examples.
Perturbative quantum field theory in the framework of the fermionic projector
NASA Astrophysics Data System (ADS)
Finster, Felix
2014-04-01
We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.
Single top quarks and dark matter
NASA Astrophysics Data System (ADS)
Pinna, Deborah; Zucchetta, Alberto; Buckley, Matthew R.; Canelli, Florencia
2017-08-01
Processes with dark matter interacting with the standard model fermions through new scalars or pseudoscalars with flavor-diagonal couplings proportional to fermion mass are well motivated theoretically, and provide a useful phenomenological model with which to interpret experimental results. Two modes of dark matter production from these models have been considered in the existing literature: pairs of dark matter produced through top quark loops with an associated monojet in the event, and pair production of dark matter with pairs of heavy flavored quarks (tops or bottoms). In this paper, we demonstrate that a third, previously overlooked channel yields a non-negligible contribution to LHC dark matter searches in these models. In spite of a generally lower production cross section at LHC when compared to the associated top-pair channel, non-flavor violating single top quark processes are kinematically favored and can significantly increase the sensitivity to these models. Including dark matter production in association with a single top quark through scalar or pseudoscalar mediators, the exclusion limit set by the LHC searches for dark matter can be improved by 30% up to a factor of two, depending on the mass assumed for the mediator particle.
Anomalous transport and generalized axial charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirilin, Vladimir P.; Sadofyev, Andrey V.
For this article, we continue studying the modification of the axial charge in chiral media by macroscopic helicities. Recently it was shown that magnetic reconnections result in a persistent current of zero mode along flux tubes. Here we argue that in general a change in the helical part of the generalized axial charge results in the same phenomenon. Thus one may say that there is a novel realization of chiral effects requiring no initial chiral asymmetry. The transfer of flow helicity to zero modes is analyzed in a toy model based on a vortex reconnection in a chiral superfluid. Then,more » we discuss the balance between the two competing processes effect of reconnections and the chiral instability on the example of magnetic helicity. We argue that in the general case there is a possibility for the distribution of the axial charge between the magnetic and fermionic forms at the end of the instability.« less
Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang; Ren, Xiao; Zhang, Haoxiong; Deng, Ke; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun
2016-12-09
Transition metal dichalcogenide MoTe 2 is an important candidate for realizing the newly predicted type-II Weyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature phase of MoTe 2 by systematic Raman experiments and first-principles calculations. We identify five lattice vibrational modes that are Raman-active only in the low-temperature noncentrosymmetric structure. A hysteresis is also observed in the peak intensity of inversion symmetry-activated Raman modes, confirming a temperature-induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low-temperature noncentrosymmetric T d phase from vibrational spectroscopy, and suggest MoTe 2 as an ideal candidate for investigating the temperature-induced topological phase transition.
Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang; Ren, Xiao; Zhang, Haoxiong; Deng, Ke; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun
2016-01-01
Transition metal dichalcogenide MoTe2 is an important candidate for realizing the newly predicted type-II Weyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature phase of MoTe2 by systematic Raman experiments and first-principles calculations. We identify five lattice vibrational modes that are Raman-active only in the low-temperature noncentrosymmetric structure. A hysteresis is also observed in the peak intensity of inversion symmetry-activated Raman modes, confirming a temperature-induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low-temperature noncentrosymmetric Td phase from vibrational spectroscopy, and suggest MoTe2 as an ideal candidate for investigating the temperature-induced topological phase transition. PMID:27934874
Raman spectroscopy of magneto-phonon resonances in graphene and graphite
NASA Astrophysics Data System (ADS)
Goler, Sarah; Yan, Jun; Pellegrini, Vittorio; Pinczuk, Aron
2012-08-01
The magneto-phonon resonance or MPR occurs in semiconductor materials when the energy spacing between Landau levels is continuously tuned to cross the energy of an optical phonon mode. MPRs have been largely explored in bulk semiconductors, in two-dimensional systems and in quantum dots. Recently there has been significant interest in the MPR interactions of the Dirac fermion magneto-excitons in graphene, and a rich splitting and anti-crossing phenomena of the even parity E2g long wavelength optical phonon mode have been theoretically proposed and experimentally observed. The MPR has been found to crucially depend on disorder in the graphene layer. This is a feature that creates new venues for the study of interplays between disorder and interactions in the atomic layers. We review here the fundamentals of MRP in graphene and the experimental Raman scattering works that have led to the observation of these phenomena in graphene and graphite.
Shot noise generated by graphene p–n junctions in the quantum Hall effect regime
Kumada, N.; Parmentier, F. D.; Hibino, H.; Glattli, D. C.; Roulleau, P.
2015-01-01
Graphene offers a unique system to investigate transport of Dirac Fermions at p–n junctions. In a magnetic field, combination of quantum Hall physics and the characteristic transport across p–n junctions leads to a fractionally quantized conductance associated with the mixing of electron-like and hole-like modes and their subsequent partitioning. The mixing and partitioning suggest that a p–n junction could be used as an electronic beam splitter. Here we report the shot noise study of the mode-mixing process and demonstrate the crucial role of the p–n junction length. For short p–n junctions, the amplitude of the noise is consistent with an electronic beam-splitter behaviour, whereas, for longer p–n junctions, it is reduced by the energy relaxation. Remarkably, the relaxation length is much larger than typical size of mesoscopic devices, encouraging using graphene for electron quantum optics and quantum information processing. PMID:26337067
Manipulating Topological Edge Spins in One-Dimensional Optical Lattice
NASA Astrophysics Data System (ADS)
Liu, Xiong-Jun; Liu, Zheng-Xin; Cheng, Meng
2013-03-01
We propose to observe and manipulate topological edge spins in 1D optical lattice based on currently available experimental platforms. Coupling the atomic spin states to a laser-induced periodic Zeeman field, the lattice system can be driven into a symmetry protected topological (SPT) phase, which belongs to the chiral unitary (AIII) class protected by particle number conservation and chiral symmetries. In free-fermion case the SPT phase is classified by a Z invariant which reduces to Z4 with interactions. The zero edge modes of the SPT phase are spin-polarized, with left and right edge spins polarized to opposite directions and forming a topological spin-qubit (TSQ). We demonstrate a novel scheme to manipulate the zero modes and realize single spin control in optical lattice. The manipulation of TSQs has potential applications to quantum computation. We acknowledge the support from JQI-NSF-PFC, Microsoft-Q, and DARPA- QuEST.
Anomalous transport and generalized axial charge
Kirilin, Vladimir P.; Sadofyev, Andrey V.
2017-07-25
For this article, we continue studying the modification of the axial charge in chiral media by macroscopic helicities. Recently it was shown that magnetic reconnections result in a persistent current of zero mode along flux tubes. Here we argue that in general a change in the helical part of the generalized axial charge results in the same phenomenon. Thus one may say that there is a novel realization of chiral effects requiring no initial chiral asymmetry. The transfer of flow helicity to zero modes is analyzed in a toy model based on a vortex reconnection in a chiral superfluid. Then,more » we discuss the balance between the two competing processes effect of reconnections and the chiral instability on the example of magnetic helicity. We argue that in the general case there is a possibility for the distribution of the axial charge between the magnetic and fermionic forms at the end of the instability.« less
NASA Astrophysics Data System (ADS)
Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang; Ren, Xiao; Zhang, Haoxiong; Deng, Ke; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun
2016-12-01
Transition metal dichalcogenide MoTe2 is an important candidate for realizing the newly predicted type-II Weyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature phase of MoTe2 by systematic Raman experiments and first-principles calculations. We identify five lattice vibrational modes that are Raman-active only in the low-temperature noncentrosymmetric structure. A hysteresis is also observed in the peak intensity of inversion symmetry-activated Raman modes, confirming a temperature-induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low-temperature noncentrosymmetric Td phase from vibrational spectroscopy, and suggest MoTe2 as an ideal candidate for investigating the temperature-induced topological phase transition.
Perfect transmission at oblique incidence by trigonal warping in graphene P-N junctions
NASA Astrophysics Data System (ADS)
Zhang, Shu-Hui; Yang, Wen
2018-01-01
We develop an analytical mode-matching technique for the tight-binding model to describe electron transport across graphene P-N junctions. This method shares the simplicity of the conventional mode-matching technique for the low-energy continuum model and the accuracy of the tight-binding model over a wide range of energies. It further reveals an interesting phenomenon on a sharp P-N junction: the disappearance of the well-known Klein tunneling (i.e., perfect transmission) at normal incidence and the appearance of perfect transmission at oblique incidence due to trigonal warping at energies beyond the linear Dirac regime. We show that this phenomenon arises from the conservation of a generalized pseudospin in the tight-binding model. We expect this effect to be experimentally observable in graphene and other Dirac fermions systems, such as the surface of three-dimensional topological insulators.
Topology and strong four fermion interactions in four dimensions
NASA Astrophysics Data System (ADS)
Catterall, Simon; Butt, Nouman
2018-05-01
We study massless fermions interacting through a particular four-fermion term in four dimensions. Exact symmetries prevent the generation of bilinear fermion mass terms. We determine the structure of the low-energy effective action for the auxiliary field needed to generate the four-fermion term and find it has an novel structure that admits topologically nontrivial defects with nonzero Hopf invariant. We show that fermions propagating in such a background pick up a mass without breaking symmetries. Furthermore, pairs of such defects experience a logarithmic interaction. We argue that a phase transition separates a phase where these defects proliferate from a broken phase where they are bound tightly. We conjecture that, by tuning one additional operator, the broken phase can be eliminated with a single BKT-like phase transition separating the massless from massive phases.
Chen, Hua-Jun; Zhu, Ka-Di
2015-01-01
In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions. PMID:26310929
Cosmological singularities and bounce in Cartan-Einstein theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucat, Stefano; Prokopec, Tomislav, E-mail: s.lucat@students.uu.nl, E-mail: t.prokopec@uu.nl
We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh ( in-in ) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins inmore » a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce . We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).« less
Cosmological singularities and bounce in Cartan-Einstein theory
NASA Astrophysics Data System (ADS)
Lucat, Stefano; Prokopec, Tomislav
2017-10-01
We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh (in-in) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins in a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce. We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).
Argyres, Philip C.; Uensal, Mithat
2012-08-10
We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are magnetic bions which carry net magnetic charge and induce a massmore » gap for gauge fluctuations. Another type are neutral bions which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics — which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription — to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion-anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Écalle’s resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.« less
Fermion systems in discrete space-time
NASA Astrophysics Data System (ADS)
Finster, Felix
2007-05-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
New chiral fermions, a new gauge interaction, Dirac neutrinos, and dark matter
de Gouvea, Andre; Hernandez, Daniel
2015-10-07
Here, we propose that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard-model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. Hypercharge, for example, plays this role for the SM fermions. We introduce a new symmetry, U(1) ν , for all new light fermionic states. Anomaly cancellations mandate the existence of several new fermion fields with nontrivial U(1) ν charges. We develop a concrete model of this type, for which we show that (i) some fermions remain massless after U(1) ν breaking — similar to SM neutrinos —more » and (ii) accidental global symmetries translate into stable massive particles — similar to SM protons. These ingredients provide a solution to the dark matter and neutrino mass puzzles assuming one also postulates the existence of heavy degrees of freedom that act as “mediators” between the two sectors. The neutrino mass mechanism described here leads to parametrically small Dirac neutrino masses, and the model also requires the existence of at least four Dirac sterile neutrinos. Finally, we describe a general technique to write down chiral-fermions-only models that are at least anomaly-free under a U(1) gauge symmetry.« less
New chiral fermions, a new gauge interaction, Dirac neutrinos, and dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Gouvea, Andre; Hernandez, Daniel
Here, we propose that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard-model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. Hypercharge, for example, plays this role for the SM fermions. We introduce a new symmetry, U(1) ν , for all new light fermionic states. Anomaly cancellations mandate the existence of several new fermion fields with nontrivial U(1) ν charges. We develop a concrete model of this type, for which we show that (i) some fermions remain massless after U(1) ν breaking — similar to SM neutrinos —more » and (ii) accidental global symmetries translate into stable massive particles — similar to SM protons. These ingredients provide a solution to the dark matter and neutrino mass puzzles assuming one also postulates the existence of heavy degrees of freedom that act as “mediators” between the two sectors. The neutrino mass mechanism described here leads to parametrically small Dirac neutrino masses, and the model also requires the existence of at least four Dirac sterile neutrinos. Finally, we describe a general technique to write down chiral-fermions-only models that are at least anomaly-free under a U(1) gauge symmetry.« less
String theory, quantum phase transitions, and the emergent Fermi liquid.
Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad
2009-07-24
A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid.
Bosonization of fermions coupled to topologically massive gravity
NASA Astrophysics Data System (ADS)
Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.
2014-03-01
We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.
A four-dimensional model with the fermionic determinant exactly evaluated
NASA Astrophysics Data System (ADS)
Mignaco, J. A.; Rego Monteiro, M. A.
1986-07-01
A method is presented to compute the fermion determinant of some class of field theories. By this method the following results of the fermion determinant in two dimensions are easily recovered: (i) Schwinger model without reference to a particular gauge. (ii) QCD in the light-cone gauge. (iii) Gauge invariant result of QCD. The method is finally applied to give an analytical solution of the fermion determinant of a four-dimensional, non-abelian, Dirac-like theory with massless fermions interacting with an external vector field through a pseudo-vectorial coupling. Fellow of the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil.
Jia, Shaoyang; Pennington, M. R.
2017-08-01
With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé approximation for the spectral functions is also investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Shaoyang; Pennington, M. R.
With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé approximation for the spectral functions is also investigated.
Critical phenomena in the general spherically symmetric Einstein-Yang-Mills system
NASA Astrophysics Data System (ADS)
Maliborski, Maciej; Rinne, Oliver
2018-02-01
We study critical behavior in gravitational collapse of a general spherically symmetric Yang-Mills field coupled to the Einstein equations. Unlike the magnetic ansatz used in previous numerical work, the general Yang-Mills connection has two degrees of freedom in spherical symmetry. This fact changes the phenomenology of critical collapse dramatically. The magnetic sector features both type I and type II critical collapse, with universal critical solutions. In contrast, in the general system type I disappears and the critical behavior at the threshold between dispersal and black hole formation is always type II. We obtain values of the mass scaling and echoing exponents close to those observed in the magnetic sector, however we find some indications that the critical solution differs from the purely magnetic discretely self-similar attractor and exact self-similarity and universality might be lost. The additional "type III" critical phenomenon in the magnetic sector, where black holes form on both sides of the threshold but the Yang-Mills potential is in different vacuum states and there is a mass gap, also disappears in the general system. We support our dynamical numerical simulations with calculations in linear perturbation theory; for instance, we compute quasi-normal modes of the unstable attractor (the Bartnik-McKinnon soliton) in type I collapse in the magnetic sector.
Effective interaction of electroweak-interacting dark matter with Higgs boson and its phenomenology
NASA Astrophysics Data System (ADS)
Hisano, Junji; Kobayashi, Daiki; Mori, Naoya; Senaha, Eibun
2015-03-01
We study phenomenology of electroweak-interacting fermionic dark matter (DM) with a mass of O (100) GeV. Constructing the effective Lagrangian that describes the interactions between the Higgs boson and the SU (2)L isospin multiplet fermion, we evaluate the electric dipole moment (EDM) of electron, the signal strength of Higgs boson decay to two photons and the spin-independent elastic-scattering cross section with proton. As representative cases, we consider the SU (2)L triplet fermions with zero/nonzero hypercharges and SU (2)L doublet fermion. It is found that the electron EDM gives stringent constraints on those model parameter spaces. In the cases of the triplet fermion with zero hypercharge and the doublet fermion, the Higgs signal strength does not deviate from the standard model prediction by more than a few % once the current DM direct detection constraint is taken into account, even if the CP violation is suppressed. On the contrary, O (10- 20)% deviation may occur in the case of the triplet fermion with nonzero hypercharge. Our representative scenarios may be tested by the future experiments.
Shock-Wave Boundary Layer Interactions
1986-02-01
Security Classification of Document UNCLASSIFIED 6. Title TURBULENT SHOCK-WAVE/BOUNDARY-LAYER INTERACTION 7. Presented at 8. Author(s)/Editor(s...contrary effects. The above demonstration puts an emphasis on inertia forces in the sense that the "fullness" for the Incoming boundary-layer profile is...expression "quasi-normal" means that in most transonic streams, the shocks are strong oblique shock, in the sense of the strong solution of the oblique shock
Quenched dynamics and spin-charge separation in an interacting topological lattice
NASA Astrophysics Data System (ADS)
Barbiero, L.; Santos, L.; Goldman, N.
2018-05-01
We analyze the static and dynamical properties of a one-dimensional topological lattice, the fermionic Su-Schrieffer-Heeger model, in the presence of on-site interactions. Based on a study of charge and spin correlation functions, we elucidate the nature of the topological edge modes, which, depending on the sign of the interactions, either display particles of opposite spin on opposite edges, or a pair and a holon. This study of correlation functions also highlights the strong entanglement that exists between the opposite edges of the system. This last feature has remarkable consequences upon subjecting the system to a quench, where an instantaneous edge-to-edge signal appears in the correlation functions characterizing the edge modes. Besides, other correlation functions are shown to propagate in the bulk according to the light cone imposed by the Lieb-Robinson bound. Our study reveals how one-dimensional lattices exhibiting entangled topological edge modes allow for a nontrivial correlation spreading, while providing an accessible platform to detect spin-charge separation using state-of-the-art experimental techniques.
Dynamics of streaming instability with quantum correction
NASA Astrophysics Data System (ADS)
Goutam, H. P.; Karmakar, P. K.
2017-05-01
A modified quantum hydrodynamic model (m-QHD) is herein proposed on the basis of the Thomas-Fermi (TF) theory of many fermionic quantum systems to investigate the dynamics of electrostatic streaming instability modes in a complex (dusty) quantum plasma system. The newly formulated m-QHD, as an amelioration over the existing usual QHD, employs a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D-2)/3D], in the electron quantum dynamics, where D symbolizing the problem dimensionality under consideration. The normal mode analysis of the coupled structure equations reveals the excitation of two distinct streaming modes associated with the flowing ions (against electrons and dust) and the flowing dust particulates (against the electrons and ions). It is mainly shown that the γ-factor introduces a new source of stability and dispersive effects to the ion-streaming instability solely; but not to the dust counterparts. A non-trivial application of our investigation in electrostatic beam-plasma (flow-driven) coupled dynamics leading to the development of self-sustained intense electric current, and hence, of strong magnetic field in compact astrophysical objects (in dwarf-family stars) is summarily indicated.
NASA Astrophysics Data System (ADS)
Yan, Jun; Chen, Shao-Yu; Naylor, Carl; Goldstein, Thomas; Johnson, Charlie; Venkataraman, Dhandapani; Ramasubramaniam, Ashwin
Distorted octahedral (T') transition metal dichalcogenides (TMDCs) are topologically interesting material systems. Inversion-symmetry-broken bulk T'-TMDCs are predicted to be type II Weyl semimetals and inversion-symmetric monolayer (1L) T'-TMDCs are shown to be 2D topological insulators. In this talk, I will show that both the inversion symmetry and the mirror symmetry are important for understanding the lattice dynamics and Raman scattering of T'-TMDCs. The mirror plane that is perpendicular to the zigzag transition metal atomic chain classifies lattice vibrations into z-modes and m-modes where ` z' stands for zigzag and ` m' stands for mirror. Raman active z- and m- modes can be experimentally determined with light-polarization and crystal angle-resolved Raman tensor analysis. We report observation of all 9 even-parity zone-center phonons in 1L-T'-MoTe2. In bulk T'-MoTe2, we monitor inversion symmetry breaking with the shear lattice vibrations, which is important for supporting Weyl fermions. This work is supported by the Armstrong Fund for Science and NSF EFRI 2DARE EFMA-1542879.
Integrability and conformal data of the dimer model
NASA Astrophysics Data System (ADS)
Morin-Duchesne, Alexi; Rasmussen, Jørgen; Ruelle, Philippe
2016-04-01
The central charge of the dimer model on the square lattice is still being debated in the literature. In this paper, we provide evidence supporting the consistency of a c=-2 description. Using Lieb’s transfer matrix and its description in terms of the Temperley-Lieb algebra {{TL}}n at β =0, we provide a new solution of the dimer model in terms of the model of critical dense polymers on a tilted lattice and offer an understanding of the lattice integrability of the dimer model. The dimer transfer matrix is analyzed in the scaling limit, and the result for {L}0-\\frac{c}{24} is expressed in terms of fermions. Higher Virasoro modes are likewise constructed as limits of elements of {{TL}}n and are found to yield a c=-2 realization of the Virasoro algebra, familiar from fermionic bc ghost systems. In this realization, the dimer Fock spaces are shown to decompose, as Virasoro modules, into direct sums of Feigin-Fuchs modules, themselves exhibiting reducible yet indecomposable structures. In the scaling limit, the eigenvalues of the lattice integrals of motion are found to agree exactly with those of the c=-2 conformal integrals of motion. Consistent with the expression for {L}0-\\frac{c}{24} obtained from the transfer matrix, we also construct higher Virasoro modes with c = 1 and find that the dimer Fock space is completely reducible under their action. However, the transfer matrix is found not to be a generating function for the c = 1 integrals of motion. Although this indicates that Lieb’s transfer matrix description is incompatible with the c = 1 interpretation, it does not rule out the existence of an alternative, c = 1 compatible, transfer matrix description of the dimer model.
Novel foamy origin for singlet fermion masses
NASA Astrophysics Data System (ADS)
Ellis, John; Mavromatos, Nick E.; Nanopoulos, Dimitri V.
2017-10-01
We show how masses for singlet fermions can be generated by interactions with a D-particle model of space-time foam inspired by brane theory. It has been shown previously by one of the authors (N. E. M.) that such interactions may generate dynamically small masses for charged fermions via the recoils of D-particle defects interacting with photons. In this work we consider the direct interactions of D-particle with uncharged singlet fermions such as right-handed neutrinos. Quantum fluctuations of the lattice of D-particles have massless vector (spin-one) excitations that are analogues of phonons. These mediate forces with the singlet fermions, generating large dynamical masses that may be communicated to light neutrinos via the seesaw mechanism.
Coupled kinetic equations for fermions and bosons in the relaxation-time approximation
NASA Astrophysics Data System (ADS)
Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw
2018-02-01
Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.
Quantum Gas Microscope for Fermionic Atoms
NASA Astrophysics Data System (ADS)
Okan, Melih; Cheuk, Lawrence; Nichols, Matthew; Lawrence, Katherine; Zhang, Hao; Zwierlein, Martin
2016-05-01
Strongly interacting fermions define the properties of complex matter throughout nature, from atomic nuclei and modern solid state materials to neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. In this poster we demonstrate the realization of a quantum gas microscope for fermionic 40 K atoms trapped in an optical lattice and the recent experiments which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high- resolution optics to simultaneously cool and image individual atoms with single lattice site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site resolved imaging of fermions enables the direct observation of magnetic order, time resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement. NSF, AFOSR-PECASE, AFOSR-MURI on Exotic Phases of Matter, ARO-MURI on Atomtronics, ONR, a Grant from the Army Research Office with funding from the DARPA OLE program, and the David and Lucile Packard Foundation.
Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices
NASA Astrophysics Data System (ADS)
Zhu, Yan-Qing; Zhang, Dan-Wei; Yan, Hui; Xing, Ding-Yu; Zhu, Shi-Liang
2017-09-01
The discovery of relativistic spin-1/2 fermions such as Dirac and Weyl fermions in condensed-matter or artificial systems opens a new era in modern physics. An interesting but rarely explored question is whether other relativistic spinal excitations could be realized with artificial systems. Here, we construct two- and three-dimensional tight-binding models realizable with cold fermionic atoms in optical lattices, where the low energy excitations are effectively described by the spin-1 Maxwell equations in the Hamiltonian form. These relativistic (linear dispersion) excitations with unconventional integer pseudospin, beyond the Dirac-Weyl-Majorana fermions, are an exotic kind of fermions named as Maxwell fermions. We demonstrate that the systems have rich topological features. For instance, the threefold degenerate points called Maxwell points may have quantized Berry phases and anomalous quantum Hall effects with spin-momentum locking may appear in topological Maxwell insulators in the two-dimensional lattices. In three dimensions, Maxwell points may have nontrivial monopole charges of ±2 with two Fermi arcs connecting them, and the merging of the Maxwell points leads to topological phase transitions. Finally, we propose realistic schemes for realizing the model Hamiltonians and detecting the topological properties of the emergent Maxwell quasiparticles in optical lattices.
Non-thermal leptogenesis with distinct CP violation and minimal dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hang; Gu, Pei-Hong, E-mail: einsteinzh@sjtu.edu.cn, E-mail: peihong.gu@sjtu.edu.cn
We demonstrate a unified scenario for neutrino mass, baryon asymmetry, dark matter and inflation. In addition to a fermion triplet for the so-called minimal dark matter, we extend the standard model by three heavy fields including a scalar singlet, a fermion triplet and a fermion singlet/Higgs triplet. The heavy scalar singlet, which is expected to drive an inflation, and the dark matter fermion triplet are odd under an unbroken Z {sub 2} discrete symmetry, while the other fields are all even. The heavy fermion triplet offers a tree-level type-III seesaw and then mediates a three-body decay of the inflaton intomore » the standard model lepton and Higgs doublets with the dark matter fermion triplet. The heavy fermion singlet/Higgs triplet not only results in a type-I/II seesaw at tree level but also contributes to the inflaton decay at one-loop level. In this scenario, the type-I/II seesaw contains all of the physical CP phases in the lepton sector and hence the CP violation for the non-thermal leptogenesis by the inflaton decay exactly comes from the imaginary part of the neutrino mass matrix.« less
Fermion-induced quantum critical points.
Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong
2017-08-22
A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.
NASA Astrophysics Data System (ADS)
Sakamoto, R.; Ono, Y.; Hatsuda, R.; Shiina, K.; Arahata, E.; Mori, H.
2018-03-01
We found that a spin current of fermions could be induced in spin-orbit coupled Bose-Fermi mixture at zero temperature. Since spatial change of the spin structure of the bosons is necessary to induce the spin current of the fermions, we analyzed the ground state of the bosons in the mixture system, using a variational method. The obtained phase diagram indicated the presence of a bosonic phase that allowed the fermions to have a spin current.
Spin-Orbit Coupling and Novel Electronic States at the Interfaces of Heavy Fermion Materials
2016-02-22
idea, which is to study novel electronic phases at the interfaces of heavy fermion heterostructures. The key physics is that the strong and tunable...of Heavy Fermion Materials The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 2D heavy fermions, quantum criticality, spin-orbit
Fermion mass without symmetry breaking
Catterall, Simon
2016-01-20
We examine a model of reduced staggered fermions in three dimensions interacting through an SO (4) invariant four fermion interaction. The model is similar to that considered in a recent paper by Ayyer and Chandrasekharan. We present theoretical arguments and numerical evidence which support the idea that the system develops a mass gap for sufficiently strong four fermi coupling without producing a symmetry breaking fermion bilinear condensate. As a result, massless and massive phases appear to be separated by a continuous phase transition.
Squeezing as a route to photonic analogues of topological superconductors
NASA Astrophysics Data System (ADS)
Houde, Martin; Peano, Vittorio; Brendel, Christian; Marquardt, Florian; Clerk, Aashish
There has been considerable recent interest in studying topological phases of photonic systems. In many cases the resulting system is described by a quadratic particle-conserving Hamiltonian which is directly equivalent to its fermionic counterpart. Here, we consider a class of photonic topological phases where this correspondence fails: photonic systems where particle-number non-conserving terms break time-reversal symmetry. We show that these phases support protected edge modes which facilitate chiral inelastic and elastic transport channels. We also discuss the possibility of quantum amplification using these edge states. Our system could be realized in a variety of systems, including nonlinear photonic crystals, superconducting circuits and optomechanical systems.
Itinerant quantum multicriticality of two-dimensional Dirac fermions
NASA Astrophysics Data System (ADS)
Roy, Bitan; Goswami, Pallab; Juričić, Vladimir
2018-05-01
We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d =2 ) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S1) and O(S2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the ɛ =(3 -d ) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S1+S2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either O(S1) or O(S2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.
NASA Astrophysics Data System (ADS)
Abanov, Ar.; Chubukov, Andrey V.; Schmalian, J.
2003-03-01
We present the full analysis of the normal state properties of the spin-fermion model near the antiferromagnetic instability in two dimensions. The model describes low-energy fermions interacting with their own collective spin fluctuations, which soften at the antiferromagnetic transition. We argue that in 2D, the system has two typical energies-an effective spin-fermion interaction bar g and an energy ysf below which the system behaves as a Fermi liquid. The ratio of the two determines the dimensionless coupling constant for spin-fermion interaction lambda (2) alpha /line g /omega _{sf} . We show that u scales with the spin correlation length and diverges at criticality. This divergence implies that the conventional perturbative expansion breaks down. We develop a novel approach to the problem-the expansion in either the inverse number of hot spots in the Brillouin zone, or the inverse number of fermionic flavours-which allows us to explicitly account for all terms which diverge as powers of u, and treat the remaining, O(logu) terms in the RG formalism. We apply this technique to study the properties of the spin-fermion model in various frequency and temperature regimes. We present the results for the fermionic spectral function, spin susceptibility, optical conductivity and other observables. We compare our results in detail with the normal state data for the cuprates, and argue that the spin-fermion model is capable of explaining the anomalous normal state properties of the high Tc materials. We also show that the conventional Ӓ theory of the quantum-critical behaviour is inapplicable in 2D due to the singularity of the Ӓ vertex.
Superfluid response in heavy fermion superconductors
NASA Astrophysics Data System (ADS)
Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang
2017-10-01
Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.
Localization enhanced and degraded topological order in interacting p -wave wires
NASA Astrophysics Data System (ADS)
Kells, G.; Moran, N.; Meidan, D.
2018-02-01
We numerically study the effect of disorder on the stability of the many-body zero mode in a Kitaev chain with local interactions. Our numerical procedure allows us to resolve the position space and multiparticle structure of the zero modes, as well as providing estimates for the mean energy splitting between pairs of states of opposite fermion parity, over the full many-body spectrum. We find that the parameter space of a clean system can be divided into regions where interaction induced decay transitions are suppressed (region I) and where they are not (region II). In region I we observe that disorder has an adverse effect on the zero mode, which extends further into the bulk and is accompanied by an increased energy splitting between pairs of states of opposite parity. Conversely region II sees a more intricate effect of disorder, showing an enhancement of localization at the system's end accompanied by a reduction in the mean pairwise energy splitting. We discuss our results in the context of the many-body localization (MBL). We show that while the mechanism that drives the MBL transition also contributes to the fock-space localization of the many-body zero modes, measures that characterize the degree of MBL do not necessarily correlate with an enhancement of the zero mode or an improved stability of the topological region.
Fermion bag approach to Hamiltonian lattice field theories in continuous time
NASA Astrophysics Data System (ADS)
Huffman, Emilie; Chandrasekharan, Shailesh
2017-12-01
We extend the idea of fermion bags to Hamiltonian lattice field theories in the continuous time formulation. Using a class of models we argue that the temperature is a parameter that splits the fermion dynamics into small spatial regions that can be used to identify fermion bags. Using this idea we construct a continuous time quantum Monte Carlo algorithm and compute critical exponents in the 3 d Ising Gross-Neveu universality class using a single flavor of massless Hamiltonian staggered fermions. We find η =0.54 (6 ) and ν =0.88 (2 ) using lattices up to N =2304 sites. We argue that even sizes up to N =10 ,000 sites should be accessible with supercomputers available today.
Heavy Fermion Materials and Quantum Phase Transitions Workshop on Frontiers of the Kondo Effect
2016-02-12
Stefan Kirchner (Max Planck) discussed the role of quantum criticality on the superconducting condensation in heavy-fermion superconductors , and...Collin Broholm (Johns Hopkins) discussed magnetic excitations of heavy fermion superconductors . The workshop concluded with a wide-ranging talk by
Connecting dark matter annihilation to the vertex functions of Standard Model fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Jason; Light, Christopher, E-mail: jkumar@hawaii.edu, E-mail: lightc@hawaii.edu
We consider scenarios in which dark matter is a Majorana fermion which couples to Standard Model fermions through the exchange of charged mediating particles. The matrix elements for various dark matter annihilation processes are then related to one-loop corrections to the fermion-photon vertex, where dark matter and the charged mediators run in the loop. In particular, in the limit where Standard Model fermion helicity mixing is suppressed, the cross section for dark matter annihilation to various final states is related to corrections to the Standard Model fermion charge form factor. These corrections can be extracted in a gauge-invariant manner frommore » collider cross sections. Although current measurements from colliders are not precise enough to provide useful constraints on dark matter annihilation, improved measurements at future experiments, such as the International Linear Collider, could improve these constraints by several orders of magnitude, allowing them to surpass the limits obtainable by direct observation.« less
Discovery of Lorentz-violating type II Weyl fermions in LaAlGe
Xu, Su-Yang; Alidoust, Nasser; Chang, Guoqing; Lu, Hong; Singh, Bahadur; Belopolski, Ilya; Sanchez, Daniel S.; Zhang, Xiao; Bian, Guang; Zheng, Hao; Husanu, Marious-Adrian; Bian, Yi; Huang, Shin-Ming; Hsu, Chuang-Han; Chang, Tay-Rong; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Strocov, Vladimir N.; Lin, Hsin; Jia, Shuang; Hasan, M. Zahid
2017-01-01
In quantum field theory, Weyl fermions are relativistic particles that travel at the speed of light and strictly obey the celebrated Lorentz symmetry. Their low-energy condensed matter analogs are Weyl semimetals, which are conductors whose electronic excitations mimic the Weyl fermion equation of motion. Although the traditional (type I) emergent Weyl fermions observed in TaAs still approximately respect Lorentz symmetry, recently, the so-called type II Weyl semimetal has been proposed, where the emergent Weyl quasiparticles break the Lorentz symmetry so strongly that they cannot be smoothly connected to Lorentz symmetric Weyl particles. Despite some evidence of nontrivial surface states, the direct observation of the type II bulk Weyl fermions remains elusive. We present the direct observation of the type II Weyl fermions in crystalline solid lanthanum aluminum germanide (LaAlGe) based on our photoemission data alone, without reliance on band structure calculations. Moreover, our systematic data agree with the theoretical calculations, providing further support on our experimental results. PMID:28630919
Direct optical detection of Weyl fermion chirality in a topological semimetal
NASA Astrophysics Data System (ADS)
Ma, Qiong; Xu, Su-Yang; Chan, Ching-Kit; Zhang, Cheng-Long; Chang, Guoqing; Lin, Yuxuan; Xie, Weiwei; Palacios, Tomás; Lin, Hsin; Jia, Shuang; Lee, Patrick A.; Jarillo-Herrero, Pablo; Gedik, Nuh
2017-09-01
A Weyl semimetal is a novel topological phase of matter, in which Weyl fermions arise as pseudo-magnetic monopoles in its momentum space. The chirality of the Weyl fermions, given by the sign of the monopole charge, is central to the Weyl physics, since it directly serves as the sign of the topological number and gives rise to exotic properties such as Fermi arcs and the chiral anomaly. Here, we directly detect the chirality of the Weyl fermions by measuring the photocurrent in response to circularly polarized mid-infrared light. The resulting photocurrent is determined by both the chirality of Weyl fermions and that of the photons. Our results pave the way for realizing a wide range of theoretical proposals for studying and controlling the Weyl fermions and their associated quantum anomalies by optical and electrical means. More broadly, the two chiralities, analogous to the two valleys in two-dimensional materials, lead to a new degree of freedom in a three-dimensional crystal with potential novel pathways to store and carry information.
New vector-like fermions and flavor physics
Ishiwata, Koji; Ligeti, Zoltan; Wise, Mark B.
2015-10-06
We study renormalizable extensions of the standard model that contain vector-like fermions in a (single) complex representation of the standard model gauge group. There are 11 models where the vector-like fermions Yukawa couple to the standard model fermions via the Higgs field. These models do not introduce additional fine-tunings. They can lead to, and are constrained by, a number of different flavor-changing processes involving leptons and quarks, as well as direct searches. An interesting feature of the models with strongly interacting vector-like fermions is that constraints from neutral meson mixings (apart from CP violation inmore » $$ {K}^0-{\\overline{K}}^0 $$ mixing) are not sensitive to higher scales than other flavor-changing neutral-current processes. We identify order 1/(4πM) 2 (where M is the vector-like fermion mass) one-loop contributions to the coefficients of the four-quark operators for meson mixing, that are not suppressed by standard model quark masses and/or mixing angles.« less
Entanglement entropies and fermion signs of critical metals
NASA Astrophysics Data System (ADS)
Kaplis, N.; Krüger, F.; Zaanen, J.
2017-04-01
The fermion sign problem is often viewed as a sheer inconvenience that plagues numerical studies of strongly interacting electron systems. Only recently has it been suggested that fermion signs are fundamental for the universal behavior of critical metallic systems and crucially enhance their degree of quantum entanglement. In this work we explore potential connections between emergent scale invariance of fermion sign structures and scaling properties of bipartite entanglement entropies. Our analysis is based on a wave-function Ansatz that incorporates collective, long-range backflow correlations into fermionic Slater determinants. Such wave functions mimic the collapse of a Fermi liquid at a quantum critical point. Their nodal surfaces, a representation of the fermion sign structure in many-particle configurations space, show fractal behavior up to a length scale ξ that diverges at a critical backflow strength. We show that the Hausdorff dimension of the fractal nodal surface depends on ξ , the number of fermions and the exponent of the backflow. For the same wave functions we numerically calculate the second Rényi entanglement entropy S2. Our results show a crossover from volume scaling, S2˜ℓθ (θ =2 in d =2 dimensions), to the characteristic Fermi-liquid behavior S2˜ℓ lnℓ on scales larger than ξ . We find that volume scaling of the entanglement entropy is a robust feature of critical backflow fermions, independent of the backflow exponent and hence the fractal dimension of the scale invariant sign structure.
Opendf - An Implementation of the Dual Fermion Method for Strongly Correlated Systems
NASA Astrophysics Data System (ADS)
Antipov, Andrey E.; LeBlanc, James P. F.; Gull, Emanuel
The dual fermion method is a multiscale approach for solving lattice problems of interacting strongly correlated systems. In this paper, we present the opendfcode, an open-source implementation of the dual fermion method applicable to fermionic single- orbital lattice models in dimensions D = 1, 2, 3 and 4. The method is built on a dynamical mean field starting point, which neglects all local correlations, and perturbatively adds spatial correlations. Our code is distributed as an open-source package under the GNU public license version 2.
Fermions tunnelling from the charged dilatonic black holes
NASA Astrophysics Data System (ADS)
Chen, De-You; Jiang, Qing-Quan; Zu, Xiao-Tao
2008-10-01
Kerner and Mann's recent work shows that for an uncharged and non-rotating black hole its Hawking temperature can be correctly derived by fermions tunnelling from its horizons. In this paper, our main work is to improve the analysis to deal with charged fermion tunnelling from the general dilatonic black holes, specifically including the charged, spherically symmetric dilatonic black hole, the rotating Einstein Maxwell dilaton axion (EMDA) black hole and the rotating Kaluza Klein (KK) black hole. As a result, the correct Hawking temperatures are well recovered by charged fermions tunnelling from these black holes.
SDG Fermion-Pair Algebraic SO(12) and Sp(10) Models and Their Boson Realizations
NASA Astrophysics Data System (ADS)
Navratil, P.; Geyer, H. B.; Dobes, J.; Dobaczewski, J.
1995-11-01
It is shown how the boson mapping formalism may be applied as a useful many-body tool to solve a fermion problem. This is done in the context of generalized Ginocchio models for which we introduce S-, D-, and G-pairs of fermions and subsequently construct the sdg-boson realizations of the generalized Dyson type. The constructed SO(12) and Sp(10) fermion models are solved beyond the explicit symmetry limits. Phase transitions to rotational structures are obtained also in situations where there is no underlying SU(3) symmetry.
Quantization of set theory and generalization of the fermion algebra
NASA Astrophysics Data System (ADS)
Arik, M.; Tekin, S. C.
2002-05-01
The quantum states of a d-dimensional fermion algebra are in one to one correspondence with the subsets of a d-element universal set. In this paper we use this set theoretical motivation to construct a one-parameter deformation of the fermion algebra and extend it to a d-dimensional generalization which is invariant under the group U(d). This discrete fermionic oscillator system is extended to the continuous case. We also show that the q-deformation of these systems is related to supercovariant q-oscillators.
Two-dimensional conductors with interactions and disorder from particle-vortex duality
NASA Astrophysics Data System (ADS)
Goldman, H.; Mulligan, M.; Raghu, S.; Torroba, G.; Zimet, M.
2017-12-01
We study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U (1 ) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.
Instantons and Massless Fermions in Two Dimensions
DOE R&D Accomplishments Database
Callan, C. G. Jr.; Dashen, R.; Gross, D. J.
1977-05-01
The role of instantons in the breakdown of chiral U(N) symmetry is studied in a two dimensional model. Chiral U(1) is always destroyed by the axial vector anomaly. For N = 2 chiral SU(N) is also spontaneously broken yielding massive fermions and three (decoupled) Goldstone bosons. For N greater than or equal to 3 the fermions remain massless. Realistic four dimensional theories are believed to behave in a similar way but the critical N above which the fermions cease to be massive is not known in four dimensions.
Jia, Shaoyang; Pennington, M. R.
2016-12-12
In this paper, we derive the gauge covariance requirement imposed on the QED fermion-photon three-point function within the framework of a spectral representation for fermion propagators. When satisfied, such requirement ensures solutions to the fermion propagator Schwinger-Dyson equation (SDE) in any covariant gauge with arbitrary numbers of spacetime dimensions to be consistent with the Landau-Khalatnikov-Fradkin transformation (LKFT). The general result has been verified by the special cases of three and four dimensions. Additionally, we present the condition that ensures the vacuum polarization is independent of the gauge parameter. Finally, as an illustration, we show how the gauge technique dimensionally regularizedmore » in four dimensions does not satisfy the covariance requirement.« less
Diffusion in higher dimensional SYK model with complex fermions
NASA Astrophysics Data System (ADS)
Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong
2018-01-01
We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.
Experimental Observation of Three-Component New Fermions in Topological Semimetal MoP
NASA Astrophysics Data System (ADS)
Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Ma, J.-Z.; Kong, L.-Y.; Richard, Pierre; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, Tian; Ding, Hong; Paul Scherrer Institute, Swiss Light Source, CH-5232 Villigen PSI, Switzerland Team; Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics Team; University of Chinese Academy of Sciences, Beijing 100190, China Team; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Team
Condensed matter systems can host quasiparticle excitations that are analogues to elementary particles such as Majorana, Weyl, and Dirac fermions. Recent advances in band theory have expanded the classification of fermions in crystals, and revealed crystal symmetry-protected electron excitations that have no high-energy counterparts. Here, using angle-resolved photoemission spectroscopy, we demonstrate the existence of a triply degenerate point in the electronic structure of MoP crystal, where the quasiparticle excitations are beyond the Majorana-Weyl-Dirac classification. Furthermore, we observe pairs of Weyl points in the bulk electronic structure coexisting with the new fermions, thus introducing a platform for studying the interplay between different types of fermions. We thank Binbin Fu, Nan Xu, and Xin Gao for the assistance in the ARPES experiments.
Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution
NASA Astrophysics Data System (ADS)
Staples, G. Stacey
2017-12-01
Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph's adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph's vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an "indeterminate" fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.
NASA Astrophysics Data System (ADS)
Giuliano, Domenico; Nava, Andrea
2015-09-01
Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within the bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.
Hartree-Fock treatment of Fermi polarons using the Lee-Low-Pine transformation
NASA Astrophysics Data System (ADS)
Kain, Ben; Ling, Hong Y.
2017-09-01
We consider the Fermi polaron problem at zero temperature, where a single impurity interacts with noninteracting host fermions. We approach the problem starting with a Fröhlich-like Hamiltonian where the impurity is described with canonical position and momentum operators. We apply the Lee-Low-Pine (LLP) transformation to change the fermionic Fröhlich Hamiltonian into the fermionic LLP Hamiltonian, which describes a many-body system containing host fermions only. We adapt the self-consistent Hartree-Fock (HF) approach, first proposed by Edwards, to the fermionic LLP Hamiltonian in which a pair of host fermions with momenta k and k' interact with a potential proportional to k .k' . We apply the HF theory, which has the advantage of not restricting the number of particle-hole pairs, to repulsive Fermi polarons in one dimension. When the impurity and host fermion masses are equal our variational ansatz, where HF orbitals are expanded in terms of free-particle states, produces results in excellent agreement with McGuire's exact analytical results based on the Bethe ansatz. This work raises the prospect of using the HF ansatz and its time-dependent generalization as building blocks for developing all-coupling theories for both equilibrium and nonequilibrium Fermi polarons in higher dimensions.
Type-III and IV interacting Weyl points
NASA Astrophysics Data System (ADS)
Nissinen, J.; Volovik, G. E.
2017-04-01
3+1-dimensional Weyl fermions in interacting systems are described by effective quasi-relativistic Green's functions parametrized by a 16-element matrix e α μ in an expansion around the Weyl point. The matrix e α μ can be naturally identified as an effective tetrad field for the fermions. The correspondence between the tetrad field and an effective quasi-relativistic metric gμν governing the Weyl fermions allows for the possibility to simulate different classes of metric fields emerging in general relativity in interacting Weyl semimetals. According to this correspondence, there can be four types of Weyl fermions, depending on the signs of the components g 00 and g 00 of the effective metric. In addition to the conventional type-I fermions with a tilted Weyl cone and type-II fermions with an overtilted Weyl cone for g 00 > 0 and, respectively, g 00 > 0 or g 00 < 0, we find additional "type-III" and "type-IV" Weyl fermions with instabilities (complex frequencies) for g 00 < 0 and g 00 > 0 or g 00 < 0, respectively. While the type-I and type-II Weyl points allow us to simulate the black hole event horizon at an interface where g 00 changes sign, the type-III Weyl point leads to effective spacetimes with closed timelike curves.
Simple Z2 lattice gauge theories at finite fermion density
NASA Astrophysics Data System (ADS)
Prosko, Christian; Lee, Shu-Ping; Maciejko, Joseph
2017-11-01
Lattice gauge theories are a powerful language to theoretically describe a variety of strongly correlated systems, including frustrated magnets, high-Tc superconductors, and topological phases. However, in many cases gauge fields couple to gapless matter degrees of freedom, and such theories become notoriously difficult to analyze quantitatively. In this paper we study several examples of Z2 lattice gauge theories with gapless fermions at finite density, in one and two spatial dimensions, that are either exactly soluble or whose solution reduces to that of a known problem. We consider complex fermions (spinless and spinful) as well as Majorana fermions and study both theories where Gauss' law is strictly imposed and those where all background charge sectors are kept in the physical Hilbert space. We use a combination of duality mappings and the Z2 slave-spin representation to map our gauge theories to models of gauge-invariant fermions that are either free, or with on-site interactions of the Hubbard or Falicov-Kimball type that are amenable to further analysis. In 1D, the phase diagrams of these theories include free-fermion metals, insulators, and superconductors, Luttinger liquids, and correlated insulators. In 2D, we find a variety of gapped and gapless phases, the latter including uniform and spatially modulated flux phases featuring emergent Dirac fermions, some violating Luttinger's theorem.
Diphoton resonance from a warped extra dimension
NASA Astrophysics Data System (ADS)
Bauer, Martin; Hörner, Clara; Neubert, Matthias
2016-07-01
We argue that extensions of the Standard Model (SM) with a warped extra dimension, which successfully address the hierarchy and flavor problems of elementary particle physics, can provide an elegant explanation of the 750 GeV diphoton excess recently reported by ATLAS and CMS. A gauge-singlet bulk scalar with {O} (1) couplings to fermions is identified as the new resonance S, and the vector-like Kaluza-Klein excitations of the SM quarks and leptons mediate its loop-induced couplings to photons and gluons. The electroweak gauge symmetry almost unambiguously dictates the bulk matter content and hence the hierarchies of the Sto γ γ, W W,ZZ,Zγ, toverline{t} and dijet decay rates. We find that the S → Zγ decay mode is strongly suppressed, such that Br( S → Zγ) /Br( S → γγ) < 0 .1. The hierarchy problem for the new scalar boson is solved in analogy with the Higgs boson by localizing it near the infrared brane. The infinite sums over the Kaluza-Klein towers of fermion states converge and can be calculated in closed form with a remarkably simple result. Reproducing the observed pp → S → γγ signal requires Kaluza-Klein masses in the multi-TeV range, consistent with bounds from flavor physics and electroweak precision observables.
NASA Astrophysics Data System (ADS)
Šimkovic, Fedor; Liu, Xuan-Wen; Deng, Youjin; Kozik, Evgeny
2016-08-01
We obtain a complete and numerically exact in the weak-coupling limit (U →0 ) ground-state phase diagram of the repulsive fermionic Hubbard model on the square lattice for filling factors 0
NASA Astrophysics Data System (ADS)
Stone, Michael; Lopes, Pedro L. e. S.
2016-05-01
Motivated by an apparent paradox in [X.-L. Qi, E. Witten, and S.-C. Zhang, Phys. Rev. B 87, 134519 (2013), 10.1103/PhysRevB.87.134519], we use the method of gauged Wess-Zumino-Witten functionals to construct an effective action for a Weyl fermion with a Majorana mass that arises from coupling to a charged condensate. We obtain expressions for the current induced by an external gauge field and observe that the topological part of the current is only one-third of that that might have been expected from the gauge anomaly. The anomaly is not changed by the induced mass gap, however. The topological current is supplemented by a conventional supercurrent that provides the remaining two-thirds of the anomaly once the equation of motion for the Goldstone mode is satisfied. We apply our formula for the current to resolve the apparent paradox and also to the chiral magnetic effect (CME), where it predicts a reduction of the CME current to one-third of its value for a free Weyl gas in thermal equilibrium. We attribute this reduction to a partial cancellation of the CME by a chiral vortical effect current arising from the persistent rotation of the fluid induced by the external magnetic field.
Quantum Spin Liquids and Fractionalization
NASA Astrophysics Data System (ADS)
Misguich, Grégoire
This chapter discusses quantum antiferromagnets which do not break any symmetries at zero temperature - also called "spin liquids" - and focuses on lattice spin models with Heisenberg-like (i.e. SU(2)-symmetric) interactions in dimensions larger than one. We begin by discussing the Lieb-Schultz-Mattis theorem and its recent extension to D > 1 by Hastings (2004), which establishes an important distinction between spin liquids with an integer and with a half-integer spin per unit cell. Spin liquids of the first kind, "band insulators", can often be understood by elementary means, whereas the latter, "Mott insulators", are more complex (featuring "topological order") and support spin-1/2 excitations (spinons). The fermionic formalism (Affleck and Marston, 1988) is described and the effect of fluctuations about mean-field solutions, such as the possible creation of instabilities, is discussed in a qualitative way. In particular, we explain the emergence of gauge modes and their relation to fractionalization. The concept of the projective symmetry group (X.-G. Wen, 2002) is introduced, with the aid of some examples. Finally, we present the phenomenology of (gapped) short-ranged resonating-valence-bond spin liquids, and make contact with the fermionic approach by discussing their description in terms of a fluctuating Z 2 gauge field. Some recent references are given to other types of spin liquid, including gapless ones.
Heavy fermion behavior explained by bosons
NASA Technical Reports Server (NTRS)
Kallio, A.; Poykko, S.; Apaja, V.
1995-01-01
Conventional heavy fermion (HF) theories require existence of massive fermions. We show that heavy fermion phenomena can also be simply explained by existence of bosons with moderate mass but temperature dependent concentration below the formation temperature T(sub B), which in turn is close to room temperature. The bosons B(++) are proposed to be in chemical equilibrium with a system of holes h(+): B(++) = h(+) + h(+). This equilibrium is governed by a boson breaking function f(T), which determines the decreasing boson density and the increasing fermion density with increasing temperature. Since HF-compounds are hybridized from minimum two elements, we assume in addition existence of another fermion component h(sub s)(+) with temperature independent density. This spectator component is thought to be the main agent in binding the bosons in analogy with electronic or muonic molecules. Using a linear boson breaking function we can explain temperature dependence of the giant linear specific heat coefficient gamma(T) coming essentially from bosons. The maxima in resistivity, Hall coefficient, and susceptibility are explained by boson localization effects due to the Wigner crystallization. The antiferromagnetic transitions in turn are explained by similar localization of the pairing fermion system when their density n(sub h)(T(sub FL)) becomes lower than n(sub WC), the critical density of Wigner crystallization. The model applies irrespective whether a compound is superconducting or not. The same model explains the occurrence of low temperature antiferromagnetism also in high-T(sub c) superconductors. The double transition in UPt3 is proposed to be due to the transition of the pairing fermion liquid from spin polarized to unpolarized state.
Gravitational wave sources: reflections and echoes
NASA Astrophysics Data System (ADS)
Price, Richard H.; Khanna, Gaurav
2017-11-01
The recent detection of gravitational waves has generated interest in alternatives to the black hole interpretation of sources. A subset of such alternatives involves a prediction of gravitational wave ‘echoes’. We consider two aspects of possible echoes: first, general features of echoes coming from spacetime reflecting conditions. We find that the detailed nature of such echoes does not bear any clear relationship to quasi-normal frequencies. Second, we point out the pitfalls in the analysis of local reflecting ‘walls’ near the horizon of rapidly rotating black holes.
Gravitational radiation during plunge - a Green's function approach
NASA Astrophysics Data System (ADS)
Nampalliwar, Sourabh; Price, Richard; Khanna, Gaurav
2015-04-01
During the merger of binary compact objects, an important stage is the plunge. A short part of the Gravitational waveform, it marks the end of early inspiral and determines the quasinormal ringing (QNR) of the final product of the merger. In this talk, we describe the approach of using the Fourier domain Green's function in the particle perturbation approximation to understand the excitation of QNR. We show that the resulting understanding is successful in explaining QNR in toy models and in the Schwarzschild background.
Infrared problem in non-Abelian gauge theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Y.
1976-03-22
I extend the Bloch--Nordsieck idea to show that in the lowest nontrivial order of radiative correction the fermion--fermion and gauge-meson--fermion scattering rates are finite, provided that they are averaged over the initial and summed over the final internal spin states. Questions of the physical gauge coupling and infrared slavery are discussed. (AIP)
Superalgebra and fermion-boson symmetry
Miyazawa, Hironari
2010-01-01
Fermions and bosons are quite different kinds of particles, but it is possible to unify them in a supermultiplet, by introducing a new mathematical scheme called superalgebra. In this article we discuss the development of the concept of symmetry, starting from the rotational symmetry and finally arriving at this fermion-boson (FB) symmetry. PMID:20228617
Relaxation of Fermionic Excitations in a Strongly Attractive Fermi Gas in an Optical Lattice
2011-09-27
decreases both with temperature and deviation of the fermion density from half filling. We show that quasiparticle and phase degrees of freedom are...the interaction strength to the bandwidth of the system. Thus, at strong coupling, the fermionic quasiparticles and the motion of the bosonic molecules
Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials.
Wang, Jing
2018-03-28
We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.
Bose-Fermi degeneracies in large N adjoint QCD
Basar, Gokce; Cherman, Aleksey; McGady, David
2015-07-06
Here, we analyze the large N limit of adjoint QCD, an SU( N) gauge theory with N f flavors of massless adjoint Majorana fermions, compactified on S 3 × S 1. We focus on the weakly-coupled confining small- S 3 regime. If the fermions are given periodic boundary conditions on S 1, we show that there are large cancellations between bosonic and fermionic contributions to the twisted partition function. These cancellations follow a pattern previously seen in the context of misaligned supersymmetry, and lead to the absence of Hagedorn instabilities for any S 1 size L, even though the bosonicmore » and fermionic densities of states both have Hagedorn growth. Adjoint QCD stays in the confining phase for any L ~ N 0, explaining how it is able to enjoy large N volume independence for any L. The large N boson-fermion cancellations take place in a setting where adjoint QCD is manifestly non-supersymmetric at any finite N, and are consistent with the recent conjecture that adjoint QCD has emergent fermionic symmetries in the large N limit.« less
NASA Astrophysics Data System (ADS)
Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; Dagotto, Elbio
2015-06-01
Lattice spin-fermion models are important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the "spins," are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The "traveling cluster approximation" (TCA) is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 103 sites. In this publication, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. This allows us to solve generic spin-fermion models easily on 104 lattice sites and with some effort on 105 lattice sites, representing the record lattice sizes studied for this family of models.
Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials
NASA Astrophysics Data System (ADS)
Wang, Jing
2018-03-01
We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.
Van Dyke, John S.; Massee, Freek; Allan, Milan P.; Davis, J. C. Séamus; Petrovic, Cedomir; Morr, Dirk K.
2014-01-01
To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high-temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference imaging to reveal quantitatively the momentum space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ekα,β with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5 then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by f-electron magnetism. PMID:25062692
Zitterbewegung in time-reversal Weyl semimetals
NASA Astrophysics Data System (ADS)
Huang, Tongyun; Ma, Tianxing; Wang, Li-Gang
2018-06-01
We perform a systematic study of the Zitterbewegung effect of fermions, which are described by a Gaussian wave with broken spatial-inversion symmetry in a three-dimensional low-energy Weyl semimetal. Our results show that the motion of fermions near the Weyl points is characterized by rectilinear motion and Zitterbewegung oscillation. The ZB oscillation is affected by the width of the Gaussian wave packet, the position of the Weyl node, and the chirality and anisotropy of the fermions. By introducing a one-dimensional cosine potential, the new generated massless fermions have lower Fermi velocities, which results in a robust relativistic oscillation. Modulating the height and periodicity of periodic potential demonstrates that the ZB effect of fermions in the different Brillouin zones exhibits quasi-periodic behavior. These results may provide an appropriate system for probing the Zitterbewegung effect experimentally.
Trial wave functions for a composite Fermi liquid on a torus
NASA Astrophysics Data System (ADS)
Fremling, M.; Moran, N.; Slingerland, J. K.; Simon, S. H.
2018-01-01
We study the two-dimensional electron gas in a magnetic field at filling fraction ν =1/2 . At this filling the system is in a gapless state which can be interpreted as a Fermi liquid of composite fermions. We construct trial wave functions for the system on a torus, based on this idea, and numerically compare these to exact wave functions for small systems found by exact diagonalization. We find that the trial wave functions give an excellent description of the ground state of the system, as well as its charged excitations, in all momentum sectors. We analyze the dispersion of the composite fermions and the Berry phase associated with dragging a single fermion around the Fermi surface and comment on the implications of our results for the current debate on whether composite fermions are Dirac fermions.
Wigner functions for fermions in strong magnetic fields
NASA Astrophysics Data System (ADS)
Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun
2018-02-01
We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.
Benchmark results in the 2D lattice Thirring model with a chemical potential
NASA Astrophysics Data System (ADS)
Ayyar, Venkitesh; Chandrasekharan, Shailesh; Rantaharju, Jarno
2018-03-01
We study the two-dimensional lattice Thirring model in the presence of a fermion chemical potential. Our model is asymptotically free and contains massive fermions that mimic a baryon and light bosons that mimic pions. Hence, it is a useful toy model for QCD, especially since it, too, suffers from a sign problem in the auxiliary field formulation in the presence of a fermion chemical potential. In this work, we formulate the model in both the world line and fermion-bag representations and show that the sign problem can be completely eliminated with open boundary conditions when the fermions are massless. Hence, we are able accurately compute a variety of interesting quantities in the model, and these results could provide benchmarks for other methods that are being developed to solve the sign problem in QCD.
Projective flatness in the quantisation of bosons and fermions
NASA Astrophysics Data System (ADS)
Wu, Siye
2015-07-01
We compare the quantisation of linear systems of bosons and fermions. We recall the appearance of projectively flat connection and results on parallel transport in the quantisation of bosons. We then discuss pre-quantisation and quantisation of fermions using the calculus of fermionic variables. We define a natural connection on the bundle of Hilbert spaces and show that it is projectively flat. This identifies, up to a phase, equivalent spinor representations constructed by various polarisations. We introduce the concept of metaplectic correction for fermions and show that the bundle of corrected Hilbert spaces is naturally flat. We then show that the parallel transport in the bundle of Hilbert spaces along a geodesic is a rescaled projection provided that the geodesic lies within the complement of a cut locus. Finally, we study the bundle of Hilbert spaces when there is a symmetry.
Fermion localization on a split brane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.
2011-05-15
In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.
Two-dimensional conductors with interactions and disorder from particle-vortex duality
Goldman, H.; Mulligan, M.; Raghu, S.; ...
2017-12-27
Here, we study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U(1) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.
A search for excited fermions in electron-proton collisions at HERA
NASA Astrophysics Data System (ADS)
Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Schlereth, J.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Romeo, G. Cara; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Frasconi, F.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Garcia, Y. Zamora; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckart, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schneider, J.-L.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarebska, E.; Suszycki, L.; Zajac, J.; Kedzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Böttcher, S.; Coldewey, C.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Göttlicher, P.; Gutjahr, B.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Kroger, W.; Krüger, J.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Schroeder, J.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, I.; Jamieson, V. A.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Fürtjes, A.; Hagge, L.; Lohrmann, E.; Mainusch, J.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Terron, J.; Zetsche, F.; Bacon, T. C.; Beuselinck, R.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Del Peso, J.; Puga, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Bentvelsen, S.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Jong, P.; de Kamps, M.; Kooijman, P.; Kruse, A.; O'Dell, V.; Tenner, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; Lindemann, L.; McFall, J.; Nath, C.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; de Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Iori, M.; Marini, G.; Mattioli, M.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nagira, T.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprazak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Tsurugai, T.; Bhadra, S.; Frisken, W. R.; Furutani, K. M.
1995-12-01
A search for excited states of the standard model fermions was performed using the ZEUS detector at the HERA electron-proton collider, operating at a centre of mass energy of 296 GeV. In a sample corresponding to an integrated luminosity of 0.55 pb-1, no evidence was found for any resonant state decaying into final states composed of a fermion and a gauge boson. Limits on the coupling strength times branching ratio of excited fermions are presented for masses between 50 GeV and 250 GeV, extending previous search regions significantly.
The 't Hooft vertex for staggered fermions and flavor-singlet mesons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald, Gordon C.; Davies, Christine T.H.; Follana, Eduardo
2011-01-01
We derive the ’t Hooft vertex for staggered fermions and examine its symmetries for nonzero lattice spacing. We also derive a set of structural properties for the eigenvectors of the staggered Dirac operator, which should emerge in the continuum limit, if staggered fermions yield four species. This property also is needed for flavor-taste-singlet correlators to behave correctly. We then test numerically whether the needed structure arises: it does. This structure and symmetry of (unrooted) staggered fermions also imply that Creutz’s (latest) objections to the rooted determinant are without foundation.
Cosmological BCS mechanism and the big bang singularity
NASA Astrophysics Data System (ADS)
Alexander, Stephon; Biswas, Tirthabir
2009-07-01
We provide a novel mechanism that resolves the big bang singularity present in Friedman-Lemaitre-Robertson-Walker space-times without the need for ghost fields. Building on the fact that a four-fermion interaction arises in general relativity when fermions are covariantly coupled, we show that at early times the decrease in scale factor enhances the correlation between pairs of fermions. This enhancement leads to a BCS-like condensation of the fermions and opens a gap dynamically driving the Hubble parameter H to zero and results in a nonsingular bounce, at least in some special cases.
Iliesiu, Luca; Kos, Filip; Poland, David; ...
2016-03-17
We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Two-dimensional conductors with interactions and disorder from particle-vortex duality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, H.; Mulligan, M.; Raghu, S.
Here, we study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U(1) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.
Fluctuations of a q-deformed fermion gas
NASA Astrophysics Data System (ADS)
Zeng, Qijun; Ge, Jing; Luo, Yongsong
2018-05-01
The theory of q-deformed fermions is one of the theories of q-deformed oscillators. Within the framework of this theory and the traditional fluctuation theory, we investigate fluctuations of q-deformed fermion gas and obtain the expressions of fluctuations of the internal energy U, the particle number N and the correlation of fluctuations of the two physical quantities above. Further numerical calculation reveals that fluctuations of such a system have some interesting and particular features. We consider that this work may provide much insight into the theory of q fermions, and may also be helpful for the theory of q-deformed oscillators.
Review of Physics Results from the Tevatron: Higgs Boson Physics
Junk, Thomas R.; Juste, Aurelio
2015-02-17
We review the techniques and results of the searches for the Higgs boson performed by the two Tevatron collaborations, CDF and DØ. The Higgs boson predicted by the Standard Model was sought in the mass range 90 GeV < m H < 200 GeV in all main production modes at the Tevatron: gluon–gluon fusion, WH and ZH associated production, vector boson fusion, and tt - H production, and in five main decay modes: H→ bb -, H→τ +τ -, H→WW (*), H→ZZ (*) and H→γγ. An excess of events was seen in the H→ bb - searches consistent with amore » Standard Model Higgs boson with a mass in the range 115 GeV < m H < 135 GeV. We assume a Higgs boson mass of m H = 125 GeV, studies of Higgs boson properties were performed, including measurements of the product of the cross section times the branching ratio in various production and decay modes, constraints on Higgs boson couplings to fermions and vector bosons, and tests of spin and parity. We also summarize the results of searches for supersymmetric Higgs bosons, and Higgs bosons in other extensions of the Standard Model.« less
NASA Astrophysics Data System (ADS)
Zwierlein, Martin
2017-04-01
Strongly interacting fermions govern physics at all length scales, from nuclear matter to modern electronic materials and neutron stars. The interplay of the Pauli principle with strong interactions can give rise to exotic properties that we do not understand even at a qualitative level. In recent years, ultracold Fermi gases of atoms have emerged as a new type of strongly interacting fermionic matter that can be created and studied in the laboratory with exquisite control. Feshbach resonances allow for unitarity limited interactions, leading to scale invariance, universal thermodynamics and a superfluid phase transition already at 17 Trapped in optical lattices, fermionic atoms realize the Fermi-Hubbard model, believed to capture the essence of cuprate high-temperature superconductors. Here, a microscope allows for single-atom, single-site resolved detection of density and spin correlations, revealing the Pauli hole as well as anti-ferromagnetic and doublon-hole correlations. Novel states of matter are predicted for fermions interacting via long-range dipolar interactions. As an intriguing candidate we created stable fermionic molecules of NaK at ultralow temperatures featuring large dipole moments and second-long spin coherence times. In some of the above examples the experiment outperformed the most advanced computer simulations of many-fermion systems, giving hope for a new level of understanding of strongly interacting fermions.
NASA Astrophysics Data System (ADS)
Killi, Matthew; Trotzky, Stefan; Paramekanti, Arun
2012-12-01
Bosons and fermions, in the presence of frustration or background gauge fields, can form many-body ground states that support equilibrium charge or spin currents. Motivated by the experimental creation of frustration or synthetic gauge fields in ultracold atomic systems, we propose a general scheme by which making a sudden anisotropic quench of the atom tunneling across the lattice and tracking the ensuing density modulations provides a powerful and gauge-invariant route to probing diverse equilibrium current patterns. Using illustrative examples of trapped superfluid Bose and normal Fermi systems in the presence of artificial magnetic fluxes on square lattices, and frustrated bosons in a triangular lattice, we show that this scheme to probe equilibrium bulk current order works independent of particle statistics. We also show that such quenches can detect chiral edge modes in gapped topological states, such as quantum Hall or quantum spin Hall insulators.
Quantum Phase Transitions and Collective Modes in d-Wave Superconductors
NASA Astrophysics Data System (ADS)
Vojta, Matthias; Sachdev, Subir
Fluctuations near second-order quantum phase transitions in d-wave superconductors can cause strong damping of fermionic excitations, as observed in photoemission experiments. The damping of the gapless nodal quasiparticles can arise naturally in the quantum-critical region of a transition with an additional spin-singlet, zero momentum order parameter; we argue that the transition to a dx^2-y^2+ i dxy pairing state is the most likely possibility in this category. On the other hand, the gapped antinodal quasiparticles can be strongly damped by the coupling to antiferromagnetic spin fluctuations arising from the proximity to a Neel-ordered state. We review some aspects of the low-energy field theories for both transitions and the corresponding quantum-critical behavior.In addition, we discuss the spectral properties of the collective modes associated with the proximity to a superconductor with dx^2-y^2+ i dxy symmetry, and implications for experiments.
Photonic Weyl degeneracies in magnetized plasma
NASA Astrophysics Data System (ADS)
Gao, Wenlong; Yang, Biao; Lawrence, Mark; Fang, Fengzhou; Béri, Benjamin; Zhang, Shuang
2016-08-01
Weyl particles are elusive relativistic fermionic particles with vanishing mass. While not having been found as an elementary particle, they are found to emerge in solid-state materials where three-dimensional bands develop a topologically protected point-like crossing, a so-called Weyl point. Photonic Weyl points have been recently realised in three-dimensional photonic crystals with complex structures. Here we report the presence of a novel type of plasmonic Weyl points in a naturally existing medium--magnetized plasma, in which Weyl points arise as crossings between purely longitudinal plasma modes and transverse helical propagating modes. These photonic Weyl points are right at the critical transition between a Weyl point with the traditional closed finite equifrequency surfaces and the newly proposed `type II' Weyl points with open equifrequency surfaces. Striking observable features of plasmon Weyl points include a half k-plane chirality manifested in electromagnetic reflection. Our study introduces Weyl physics into homogeneous photonic media, which could pave way for realizing new topological photonic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BLUM,T.; SONI,A.
The workshop was held to mark the 10th anniversary of the first numerical simulations of QCD using domain wall fermions initiated at BNL. It is very gratifying that in the intervening decade widespread use of domain wall and overlap fermions is being made. It therefore seemed appropriate at this stage for some ''communal introspection'' of the progress that has been made, hurdles that need to be overcome, and physics that can and should be done with chiral fermions. The meeting was very well attended, drawing about 60 registered participants primarily from Europe, Japan and the US. It was quite remarkablemore » that pioneers David Kaplan, Herbert Neuberger, Rajamani Narayanan, Yigal Shamir, Sinya Aoki, and Pavlos Vranas all attended the workshop. Comparisons between domain wall and overlap formulations, with their respective advantages and limitations, were discussed at length, and a broad physics program including pion and kaon physics, the epsilon regime, nucleon structure, and topology, among others, emerged. New machines and improved algorithms have played a key role in realizing realistic dynamical fermion lattice simulations (small quark mass, large volume, and so on), so much in fact that measurements are now as costly. Consequently, ways to make the measurements more efficient were also discussed. We were very pleased to see the keen and ever growing interest in chiral fermions in our community and the significant strides our colleagues have made in bringing chiral fermions to the fore of lattice QCD calculations. Their contributions made the workshop a success, and we thank them deeply for sharing their time and ideas. Finally, we must especially acknowledge Norman Christ and Bob Mawhinney for their early and continued collaboration without which the success of domain wall fermions would not have been possible.« less
Multiple Types of Topological Fermions in Transition Metal Silicides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Peizhe; Zhou, Quan; Zhang, Shou -Cheng
Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, whichmore » is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.« less
Chiral fermions in asymptotically safe quantum gravity
NASA Astrophysics Data System (ADS)
Meibohm, J.; Pawlowski, J. M.
2016-05-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Conceptual Foundations of Soliton Versus Particle Dualities Toward a Topological Model for Matter
NASA Astrophysics Data System (ADS)
Kouneiher, Joseph
2016-06-01
The idea that fermions could be solitons was actually confirmed in theoretical models in 1975 in the case when the space-time is two-dimensional and with the sine-Gordon model. More precisely S. Coleman showed that two different classical models end up describing the same fermions particle, when the quantum theory is constructed. But in one model the fermion is a quantum excitation of the field and in the other model the particle is a soliton. Hence both points of view can be reconciliated.The principal aim in this paper is to exhibit a solutions of topological type for the fermions in the wave zone, where the equations of motion are non-linear field equations, i.e. using a model generalizing sine- Gordon model to four dimensions, and describe the solutions for linear and circular polarized waves. In other words, the paper treat fermions as topological excitations of a bosonic field.
Two- and four-dimensional representations of the PT - and CPT -symmetric fermionic algebras
NASA Astrophysics Data System (ADS)
Beygi, Alireza; Klevansky, S. P.; Bender, Carl M.
2018-03-01
Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry considerations being that T2=-1 for fermionic systems. In PT -symmetric quantum mechanics an operator has both PT and CPT adjoints. Fermionic operators η , which are quadratically nilpotent (η2=0 ), and algebras with PT and CPT adjoints can be constructed. These algebras obey different anticommutation relations: η ηPT+ηPTη =-1 , where ηPT is the PT adjoint of η , and η ηCPT+ηCPTη =1 , where ηCPT is the CPT adjoint of η . This paper presents matrix representations for the operator η and its PT and CPT adjoints in two and four dimensions. A PT -symmetric second-quantized Hamiltonian modeled on quantum electrodynamics that describes a system of interacting fermions and bosons is constructed within this framework and is solved exactly.
Chiral fermions in asymptotically safe quantum gravity.
Meibohm, J; Pawlowski, J M
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Free-fermion descriptions of parafermion chains and string-net models
NASA Astrophysics Data System (ADS)
Meichanetzidis, Konstantinos; Turner, Christopher J.; Farjami, Ashk; Papić, Zlatko; Pachos, Jiannis K.
2018-03-01
Topological phases of matter remain a focus of interest due to their unique properties: fractionalization, ground-state degeneracy, and exotic excitations. While some of these properties can occur in systems of free fermions, their emergence is generally associated with interactions between particles. Here, we quantify the role of interactions in general classes of topological states of matter in one and two spatial dimensions, including parafermion chains and string-net models. Surprisingly, we find that certain topological states can be exactly described by free fermions, while others saturate the maximum possible distance from their optimal free-fermion description [C. J. Turner et al., Nat. Commun. 8, 14926 (2017), 10.1038/ncomms14926]. Our work opens the door to understanding the complexity of topological models by establishing new types of fermionization procedures to describe their low-energy physics, thus making them amenable to experimental realizations.
Phase diagram and re-entrant fermionic entanglement in a hybrid Ising-Hubbard ladder
NASA Astrophysics Data System (ADS)
Sousa, H. S.; Pereira, M. S. S.; de Oliveira, I. N.; Strečka, J.; Lyra, M. L.
2018-05-01
The degree of fermionic entanglement is examined in an exactly solvable Ising-Hubbard ladder, which involves interacting electrons on the ladder's rungs described by Hubbard dimers at half-filling on each rung, accounting for intrarung hopping and Coulomb terms. The coupling between neighboring Hubbard dimers is assumed to have an Ising-like nature. The ground-state phase diagram consists of four distinct regions corresponding to the saturated paramagnetic, the classical antiferromagnetic, the quantum antiferromagnetic, and the mixed classical-quantum phase. We have exactly computed the fermionic concurrence, which measures the degree of quantum entanglement between the pair of electrons on the ladder rungs. The effects of the hopping amplitude, the Coulomb term, temperature, and magnetic fields on the fermionic entanglement are explored in detail. It is shown that the fermionic concurrence displays a re-entrant behavior when quantum entanglement is being generated at moderate temperatures above the classical saturated paramagnetic ground state.
Multiple Types of Topological Fermions in Transition Metal Silicides
Tang, Peizhe; Zhou, Quan; Zhang, Shou -Cheng
2017-11-17
Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, whichmore » is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.« less
NASA Astrophysics Data System (ADS)
Prado, F. O.; de Almeida, N. G.; Duzzioni, E. I.; Moussa, M. H. Y.; Villas-Boas, C. J.
2011-07-01
In this paper we detail some results advanced in a recent letter [Prado , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.073008 102, 073008 (2009).] showing how to engineer reservoirs for two-level systems at absolute zero by means of a time-dependent master equation leading to a nonstationary superposition equilibrium state. We also present a general recipe showing how to build nonadiabatic coherent evolutions of a fermionic system interacting with a bosonic mode and investigate the influence of thermal reservoirs at finite temperature on the fidelity of the protected superposition state. Our analytical results are supported by numerical analysis of the full Hamiltonian model.
Crossover from BCS to Bose superconductivity: A functional integral approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randeria, M.; Sa de Melo, C.A.R.; Engelbrecht, J.R.
1993-04-01
We use a functional integral formulation to study the crossover from cooperative Cooper pairing to the formation and condensation of tightly bound pairs in a 3D continuum model of fermions with attractive interactions. The inadequacy of a saddle point approximation with increasing coupling is pointed out, and the importance of temporal (quantum) fluctuations for normal state properties at intermediate and strong coupling is emphasized. In addition to recovering the Nozieres-Schmitt-Pink interpolation scheme for T{sub c}, and the Leggett variational results for T = 0, we also present results for evolution of the time-dependent Ginzburg-Landau equation and collective mode spectrum asmore » a function of the coupling.« less
Quench-induced breathing mode of one-dimensional Bose gases.
Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle
2014-07-18
We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.
Quench-Induced Breathing Mode of One-Dimensional Bose Gases
NASA Astrophysics Data System (ADS)
Fang, Bess; Carleo, Giuseppe; Johnson, Aisling; Bouchoule, Isabelle
2014-07-01
We measure the position- and momentum-space breathing dynamics of trapped one-dimensional Bose gases at finite temperature. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas crossover. A comparison with theoretical models taking temperature into account is provided. In momentum space, we report the first observation of a frequency doubling in the quasicondensate regime, corresponding to a self-reflection mechanism due to the repulsive interactions. Such a mechanism is predicted for a fermionized system, and has not been observed to date. The disappearance of the frequency doubling through the crossover is mapped out experimentally, giving insights into the dynamics of the breathing evolution.
Time dependent Schrödinger equation for black hole evaporation: No information loss
NASA Astrophysics Data System (ADS)
Corda, Christian
2015-02-01
In 1976 S. Hawking claimed that "Because part of the information about the state of the system is lost down the hole, the final situation is represented by a density matrix rather than a pure quantum state".1 In a series of papers, together with collaborators, we naturally interpreted BH quasi-normal modes (QNMs) in terms of quantum levels discussing a model of excited BH somewhat similar to the historical semi-classical Bohr model of the structure of a hydrogen atom. Here we explicitly write down, for the same model, a time dependent Schrödinger equation for the system composed by Hawking radiation and BH QNMs. The physical state and the correspondent wave function are written in terms of a unitary evolution matrix instead of a density matrix. Thus, the final state results to be a pure quantum state instead of a mixed one. Hence, Hawking's claim is falsified because BHs result to be well defined quantum mechanical systems, having ordered, discrete quantum spectra, which respect 't Hooft's assumption that Schrödinger equations can be used universally for all dynamics in the universe. As a consequence, information comes out in BH evaporation in terms of pure states in a unitary time dependent evolution. In Section 4 of this paper we show that the present approach permits also to solve the entanglement problem connected with the information paradox.
The Fermionic Projector, entanglement and the collapse of the wave function
NASA Astrophysics Data System (ADS)
Finster, Felix
2011-07-01
After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.
Drude Conductivity of Dirac Fermions in Graphene
2010-01-01
interband transitions, as required by the sum rule. Our surprising observation indicates that many-body effects and Dirac fermion-impurity interactions...reduction of free electron oscillator strength is corroborated by corresponding changes in graphene interband transitions, as required by the sum...dimensions. Researchers have demonstrated in graphene exotic Dirac fermion phenomena ranging from anomalous quantum Hall effects 1,2 to Klein tunneling 3 in
New excitations in the Thirring model
NASA Astrophysics Data System (ADS)
Cortés, J. L.; Gamboa, J.; Schmidt, I.; Zanelli, J.
1998-12-01
The quantization of the massless Thirring model in the light-cone using functional methods is considered. The need to compactify the coordinate x- in the light-cone spacetime implies that the quantum effective action for left-handed fermions contains excitations similar to abelian instantons produced by composite of left-handed fermions. Right-handed fermions don't have a similar effective action. Thus, quantum mechanically, chiral symmetry must be broken as a result of the topological excitations. The conserved charge associated to the topological states is quantized. Different cases with only fermionic excitations or bosonic excitations or both can occur depending on the boundary conditions and the value of the coupling.
Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors
Schemm, E. R.; Levenson-Falk, E. M.; Kapitulnik, A.
2016-11-30
The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. Moreover, with the notable exception of 3He-B, all of the known or suspected chiral – that is to say time-reversal symmetry-breaking (TRSB) – superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. We review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.
NASA Astrophysics Data System (ADS)
Markov, Yu. A.; Shishmarev, A. A.
2010-11-01
Based on the most general principles of materiality, gauge, and re-parameterized invariance, the problem of constructing an action describing the dynamics of a classical color-charged particle moving in external non-Abelian gauge and fermion fields is considered. The case of a linear Lagrangian dependence on the external fermion fields is discussed. Within the framework of the description of the color degree of freedom of the particle with half-integer spin by the Grassmann color charges, a new concept of the Grassmann color source of the particle being a fermion analog of the conventional color current is introduced.
A beam splitter for Dirac-Weyl fermions through the Goos-Hänchen-like shift
NASA Astrophysics Data System (ADS)
Zheng, Ren-fei; Zhou, Lu; Zhang, Weiping
2017-12-01
We propose a method of realizing an effective beam splitter for Dirac-Weyl fermions through the Goos-Hänchen-like shift. It is implemented via the birefringence of a wave packet of pseudospin-3/2 Dirac-Weyl fermions impinging upon a potential barrier. It is shown that experimentally observable spatial separation between the transmitted fermions with helicity-1/2 and 3/2 can be generated by the Goos-Hänchen-like shift. The dependence of Goos-Hänchen-like shift and the corresponding transmission probability on the incident angle, the height and width of the potential barrier are carefully studied.
The Rational Hybrid Monte Carlo algorithm
NASA Astrophysics Data System (ADS)
Clark, Michael
2006-12-01
The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.
Ladder physics in the spin fermion model
NASA Astrophysics Data System (ADS)
Tsvelik, A. M.
2017-05-01
A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. It is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d -Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.
Stability of the two-dimensional Fermi polaron
NASA Astrophysics Data System (ADS)
Griesemer, Marcel; Linden, Ulrich
2018-02-01
A system composed of an ideal gas of N fermions interacting with an impurity particle in two space dimensions is considered. The interaction between impurity and fermions is given in terms of two-body point interactions whose strength is determined by the two-body binding energy, which is a free parameter of the model. If the mass of the impurity is 1.225 times larger than the mass of a fermion, it is shown that the energy is bounded below uniformly in the number N of fermions. This result improves previous, N-dependent lower bounds, and it complements a recent, similar bound for the Fermi polaron in three space dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinotti, M.; Pal, A.; Ren, W. J.
Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. These quasi-two-dimensional bismuth layers based materials were recently designed and provide an arena for studying the interplay between anisotropic Dirac fermions, magnetism, and structural changes, allowing the formation of Weyl fermions in condensed matter. We perform an optical investigation of YbMnBi 2 , a representative type-II Weyl semimetal, and contrast its excitation spectrum with the optical response of the more conventional semimetal EuMnBi 2 . This comparative study allows us to disentangle the optical fingerprints of type-II Weyl fermions, but also challengesmore » the present theoretical understanding of their electrodynamic response.« less
Fermion localization and resonances on a de Sitter thick brane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yuxiao; Yang Jie; Zhao Zhenhua
2009-09-15
In C. A. S. Almeida, R. Casana, M. M. Ferreira, Jr., and A. R. Gomes, Phys. Rev. D 79, 125022 (2009), the simplest Yukawa coupling {eta}{psi}{phi}{chi}{psi} was considered for a two-scalar-generated Bloch brane model. Fermionic resonances for both chiralities were obtained, and their appearance is related to branes with internal structure. Inspired on this result, we investigate the localization and resonance spectrum of fermions on a one-scalar-generated de Sitter thick brane with a class of scalar-fermion couplings {eta}{psi}{phi}{sup k}{psi} with positive odd integer k. A set of massive fermionic resonances for both chiralities is obtained when provided large coupling constantmore » {eta}. We find that the masses and lifetimes of left and right chiral resonances are almost the same, which demonstrates that it is possible to compose massive Dirac fermions from the left and right chiral resonances. The resonance with lower mass has longer lifetime. For a same set of parameters, the number of resonances increases with k and the lifetime of the lower level resonance for larger k is much longer than the one for smaller k.« less