Bold Diagrammatic Monte Carlo for Fermionic and Fermionized Systems
NASA Astrophysics Data System (ADS)
Svistunov, Boris
2013-03-01
In three different fermionic cases--repulsive Hubbard model, resonant fermions, and fermionized spins-1/2 (on triangular lattice)--we observe the phenomenon of sign blessing: Feynman diagrammatic series features finite convergence radius despite factorial growth of the number of diagrams with diagram order. Bold diagrammatic Monte Carlo technique allows us to sample millions of skeleton Feynman diagrams. With the universal fermionization trick we can fermionize essentially any (bosonic, spin, mixed, etc.) lattice system. The combination of fermionization and Bold diagrammatic Monte Carlo yields a universal first-principle approach to strongly correlated lattice systems, provided the sign blessing is a generic fermionic phenomenon. Supported by NSF and DARPA
Fermion masses through four-fermion condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayyar, Venkitesh; Chandrasekharan, Shailesh
Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the twomore » phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.« less
Observation of three-component fermions in the topological semimetal molybdenum phosphide.
Lv, B Q; Feng, Z-L; Xu, Q-N; Gao, X; Ma, J-Z; Kong, L-Y; Richard, P; Huang, Y-B; Strocov, V N; Fang, C; Weng, H-M; Shi, Y-G; Qian, T; Ding, H
2017-06-29
In quantum field theory, Lorentz invariance leads to three types of fermion-Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.
Fermion number of twisted kinks in the NJL2 model revisited
NASA Astrophysics Data System (ADS)
Thies, Michael
2018-03-01
As a consequence of axial current conservation, fermions cannot be bound in localized lumps in the massless Nambu-Jona-Lasinio model. In the case of twisted kinks, this manifests itself in a cancellation between the valence fermion density and the fermion density induced in the Dirac sea. To attribute the correct fermion number to these bound states requires an infrared regularization. Recently, this has been achieved by introducing a bare fermion mass, at least in the nonrelativistic regime of small twist angles and fermion numbers. Here, we propose a simpler regularization using a finite box which preserves integrability and can be applied at any twist angle. A consistent and physically plausible assignment of fermion number to all twisted kinks emerges.
Observation of three-component fermions in the topological semimetal molybdenum phosphide
NASA Astrophysics Data System (ADS)
Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Gao, X.; Ma, J.-Z.; Kong, L.-Y.; Richard, P.; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, T.; Ding, H.
2017-06-01
In quantum field theory, Lorentz invariance leads to three types of fermion—Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments. However, in condensed-matter systems, fermions in crystals are constrained by the symmetries of the 230 crystal space groups rather than by Lorentz invariance, giving rise to the possibility of finding other types of fermionic excitation that have no counterparts in high-energy physics. Here we use angle-resolved photoemission spectroscopy to demonstrate the existence of a triply degenerate point in the electronic structure of crystalline molybdenum phosphide. Quasiparticle excitations near a triply degenerate point are three-component fermions, beyond the conventional Dirac-Weyl-Majorana classification, which attributes Dirac and Weyl fermions to four- and two-fold degenerate points, respectively. We also observe pairs of Weyl points in the bulk electronic structure of the crystal that coexist with the three-component fermions. This material thus represents a platform for studying the interplay between different types of fermions. Our experimental discovery opens up a way of exploring the new physics of unconventional fermions in condensed-matter systems.
Non-Abelian statistics of vortices with non-Abelian Dirac fermions.
Yasui, Shigehiro; Hirono, Yuji; Itakura, Kazunori; Nitta, Muneto
2013-05-01
We extend our previous analysis on the exchange statistics of vortices having a single Dirac fermion trapped in each core to the case where vortices trap two Dirac fermions with U(2) symmetry. Such a system of vortices with non-Abelian Dirac fermions appears in color superconductors at extremely high densities and in supersymmetric QCD. We show that the exchange of two vortices having doublet Dirac fermions in each core is expressed by non-Abelian representations of a braid group, which is explicitly verified in the matrix representation of the exchange operators when the number of vortices is up to four. We find that the result contains the matrices previously obtained for the vortices with a single Dirac fermion in each core as a special case. The whole braid group does not immediately imply non-Abelian statistics of identical particles because it also contains exchanges between vortices with different numbers of Dirac fermions. However, we find that it does contain, as its subgroup, genuine non-Abelian statistics for the exchange of the identical particles, that is, vortices with the same number of Dirac fermions. This result is surprising compared with conventional understanding because all Dirac fermions are defined locally at each vortex, unlike the case of Majorana fermions for which Dirac fermions are defined nonlocally by Majorana fermions located at two spatially separated vortices.
Fermion number anomaly with the fluffy mirror fermion
NASA Astrophysics Data System (ADS)
Okumura, Ken-ichi; Suzuki, Hiroshi
2016-12-01
Quite recently, Grabowska and Kaplan presented a 4-dimensional lattice formulation of chiral gauge theories based on the chiral overlap operator. We study this formulation from the perspective of the fermion number anomaly and possible associated phenomenology. A simple argument shows that the consistency of the formulation implies that the fermion with the opposite chirality to the physical one, the "fluffy mirror fermion" or "fluff", suffers from the fermion number anomaly in the same magnitude (with the opposite sign) as the physical fermion. This immediately shows that if at least one of the fluff quarks is massless, the formulation provides a simple viable solution to the strong CP problem. Also, if the fluff interacts with gravity essentially in the same way as the physical fermion, the formulation can realize the asymmetric dark matter scenario.
State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter
Bhardwaj, Lakshya; Gaiotto, Davide; Kapustin, Anton
2017-04-18
It is possible to describe fermionic phases of matter and spin-topological field theories in 2+1d in terms of bosonic “shadow” theories, which are obtained from the original theory by “gauging fermionic parity”. Furthemore, the fermionic/spin theories are recovered from their shadow by a process of fermionic anyon condensation: gauging a one-form symmetry generated by quasi-particles with fermionic statistics. We apply the formalism to theories which admit gapped boundary conditions. We obtain Turaev-Viro-like and Levin-Wen-like constructions of fermionic phases of matter. Here, we describe the group structure of fermionic SPT phases protected by Z 2f × G. The quaternion group makesmore » a surprise appearance.« less
High-temperature atomic superfluidity in lattice Bose-Fermi mixtures.
Illuminati, Fabrizio; Albus, Alexander
2004-08-27
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions.
MSW-resonant fermion mixing during reheating
NASA Astrophysics Data System (ADS)
Kanai, Tsuneto; Tsujikawa, Shinji
2003-10-01
We study the dynamics of reheating in which an inflaton field couples two flavor fermions through Yukawa-couplings. When two fermions have a mixing term with a constant coupling, we show that the Mikheyev-Smirnov-Wolfenstein (MSW)-type resonance emerges due to a time-dependent background in addition to the standard fermion creation via parametric resonance. This MSW resonance not only alters the number densities of fermions generated by a preheating process but also can lead to the larger energy transfer from the inflaton to fermions. Our mechanism can provide additional source terms for the creation of superheavy fermions which may be relevant for the leptogenesis scenario.
Xu, Yong; Chu, Rui-Lin; Zhang, Chuanwei
2014-04-04
Weyl fermions, first proposed for describing massless chiral Dirac fermions in particle physics, have not been observed yet in experiments. Recently, much effort has been devoted to explore Weyl fermions around band touching points of single-particle energy dispersions in certain solid state materials (named Weyl semimetals), similar as graphene for Dirac fermions. Here we show that such Weyl semimetals also exist in the quasiparticle excitation spectrum of a three-dimensional spin-orbit-coupled Fulde-Ferrell superfluid. By varying Zeeman fields, the properties of Weyl fermions, such as their creation and annihilation, number and position, as well as anisotropic linear dispersions around band touching points, can be tuned. We study the manifestation of anisotropic Weyl fermions in sound speeds of Fulde-Ferrell fermionic superfluids, which are detectable in experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, Lakshya; Gaiotto, Davide; Kapustin, Anton
It is possible to describe fermionic phases of matter and spin-topological field theories in 2+1d in terms of bosonic “shadow” theories, which are obtained from the original theory by “gauging fermionic parity”. Furthemore, the fermionic/spin theories are recovered from their shadow by a process of fermionic anyon condensation: gauging a one-form symmetry generated by quasi-particles with fermionic statistics. We apply the formalism to theories which admit gapped boundary conditions. We obtain Turaev-Viro-like and Levin-Wen-like constructions of fermionic phases of matter. Here, we describe the group structure of fermionic SPT phases protected by Z 2f × G. The quaternion group makesmore » a surprise appearance.« less
Superfluid Boson-Fermion Mixture: Structure Formation and Collective Periodic Motion
NASA Astrophysics Data System (ADS)
Mitra, A.
2018-01-01
Multiple periodic domain formation due to a modulation instability in a boson-fermion mixture superfluid in the unitary regime has been studied. The periodicity of the structure evolves with time. At the early stage of evolution, bosonic domains show the periodic nature, whereas the periodicity in the fermionic (Cooper pair) domains appears at the late stage of evolution. The nature of interatomic interspecies interactions affects the domain formation. In a harmonic trap, the mixture executes an undamped oscillation. The frequency of the oscillation depends on the relative coupling strength between boson-fermion and fermion-fermion. The repulsive boson-fermion interaction reduces the oscillation frequency, whereas the attractive interaction enhances the frequency significantly.
Fermion emission from a Julia-Zee dyon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaer, A.S.; Christ, N.H.; Tang, J.
1982-04-15
A relationship is obtained between the S matrix for the charge-exchange scattering of a fermion by a Julia-Zee dyon and the flux of fermions emitted by the dyon when the mass of the fermions is sufficiently small. In the limit of a pointlike dyon, the required S-matrix elements are obtained in closed form and the corresponding fermion flux is computed explicitly.
Charged fermions below 100 GeV
NASA Astrophysics Data System (ADS)
Egana-Ugrinovic, Daniel; Low, Matthew; Ruderman, Joshua T.
2018-05-01
How light can a fermion be if it has unit electric charge? We revisit the lore that LEP robustly excludes charged fermions lighter than about 100 GeV. We review LEP chargino searches, and find them to exclude charged fermions lighter than 90 GeV, assuming a higgsino-like cross section. However, if the charged fermion couples to a new scalar, destructive interference among production channels can lower the LEP cross section by a factor of 3. In this case, we find that charged fermions as light as 75 GeV can evade LEP bounds, while remaining consistent with constraints from the LHC. As the LHC collects more data, charged fermions in the 75-100 GeV mass range serve as a target for future monojet and disappearing track searches.
Ghost free systems with coexisting bosons and fermions
NASA Astrophysics Data System (ADS)
Kimura, Rampei; Sakakihara, Yuki; Yamaguchi, Masahide
2017-08-01
We study the coexistence system of both bosonic and fermionic degrees of freedom. Even if a Lagrangian does not include higher derivatives, fermionic ghosts exist. For a Lagrangian with up to first derivatives, we find the fermionic ghost free condition in Hamiltonian analysis, which is found to be the same as requiring that the equations of motion of fermions be first order in Lagrangian formulation. When fermionic degrees of freedom are present, the uniqueness of time evolution is not guaranteed a priori because of the Grassmann property. We confirm that the additional condition, which is introduced to close Hamiltonian analysis, also ensures the uniqueness of the time evolution of the system.
NASA Astrophysics Data System (ADS)
Duret, Q.; Machet, B.
2010-10-01
Starting from Wigner's symmetry representation theorem, we give a general account of discrete symmetries (parity P, charge conjugation C, time-reversal T), focusing on fermions in Quantum Field Theory. We provide the rules of transformation of Weyl spinors, both at the classical level (grassmanian wave functions) and quantum level (operators). Making use of Wightman's definition of invariance, we outline ambiguities linked to the notion of classical fermionic Lagrangian. We then present the general constraints cast by these transformations and their products on the propagator of the simplest among coupled fermionic system, the one made with one fermion and its antifermion. Last, we put in correspondence the propagation of C eigenstates (Majorana fermions) and the criteria cast on their propagator by C and CP invariance.
Scales of mass generation for quarks, leptons, and majorana neutrinos.
Dicus, Duane A; He, Hong-Jian
2005-06-10
We study 2-->n inelastic fermion-(anti)fermion scattering into multiple longitudinal weak gauge bosons and derive universal upper bounds on the scales of fermion mass generation by imposing unitarity of the S matrix. We place new upper limits on the scales of fermion mass generation, independent of the electroweak symmetry breaking scale. Strikingly, we find that the strongest 2-->n limits fall in a narrow range, 3-170 TeV (with n=2-24), depending on the observed fermion masses.
Stochastic quantization and holographic Wilsonian renormalization group of free massive fermion
NASA Astrophysics Data System (ADS)
Moon, Sung Pil
2018-06-01
We examine a suggested relation between stochastic quantization and the holographic Wilsonian renormalization group in the massive fermion case on Euclidean AdS space. The original suggestion about the general relation between the two theories is posted in arXiv:1209.2242. In the previous researches, it is already verified that scalar fields, U(1) gauge fields, and massless fermions are consistent with the relation. In this paper, we examine the relation in the massive fermion case. Contrary to the other case, in the massive fermion case, the action needs particular boundary terms to satisfy boundary conditions. We finally confirm that the proposed suggestion is also valid in the massive fermion case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, David H.
2008-05-15
To investigate the viability of the 4th root trick for the staggered fermion determinant in a simpler setting, we consider a 2-taste (flavor) lattice fermion formulation with no taste mixing but with exact taste-nonsinglet chiral symmetries analogous to the taste-nonsinglet U(1){sub A} symmetry of staggered fermions. Creutz's objections to the rooting trick apply just as much in this setting. To counter them we show that the formulation has robust would-be zero modes in topologically nontrivial gauge backgrounds, and that these manifest themselves in a viable way in the rooted fermion determinant and also in the disconnected piece of the pseudoscalarmore » meson propagator as required to solve the U(1) problem. Also, our rooted theory is heuristically seen to be in the right universality class for QCD if the same is true for an unrooted mixed fermion action theory.« less
A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies
NASA Astrophysics Data System (ADS)
Lu, Wei
2017-09-01
We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.
Parametrically coupled fermionic oscillators: Correlation functions and phase-space description
NASA Astrophysics Data System (ADS)
Ghosh, Arnab
2015-01-01
A fermionic analog of a parametric amplifier is used to describe the joint quantum state of the two interacting fermionic modes. Based on a two-mode generalization of the time-dependent density operator, time evolution of the fermionic density operator is determined in terms of its two-mode Wigner and P function. It is shown that the equation of motion of the Wigner function corresponds to a fermionic analog of Liouville's equation. The equilibrium density operator for fermionic fields developed by Cahill and Glauber is thus extended to a dynamical context to show that the mathematical structures of both the correlation functions and the weight factors closely resemble their bosonic counterpart. It has been shown that the fermionic correlation functions are marked by a characteristic upper bound due to Fermi statistics, which can be verified in the matter wave counterpart of photon down-conversion experiments.
Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2.
Yan, Mingzhe; Huang, Huaqing; Zhang, Kenan; Wang, Eryin; Yao, Wei; Deng, Ke; Wan, Guoliang; Zhang, Hongyun; Arita, Masashi; Yang, Haitao; Sun, Zhe; Yao, Hong; Wu, Yang; Fan, Shoushan; Duan, Wenhui; Zhou, Shuyun
2017-08-15
Topological semimetals have recently attracted extensive research interests as host materials to condensed matter physics counterparts of Dirac and Weyl fermions originally proposed in high energy physics. Although Lorentz invariance is required in high energy physics, it is not necessarily obeyed in condensed matter physics, and thus Lorentz-violating type-II Weyl/Dirac fermions could be realized in topological semimetals. The recent realization of type-II Weyl fermions raises the question whether their spin-degenerate counterpart-type-II Dirac fermions-can be experimentally realized too. Here, we report the experimental evidence of type-II Dirac fermions in bulk stoichiometric PtTe 2 single crystal. Angle-resolved photoemission spectroscopy measurements and first-principles calculations reveal a pair of strongly tilted Dirac cones along the Γ-A direction, confirming PtTe 2 as a type-II Dirac semimetal. Our results provide opportunities for investigating novel quantum phenomena (e.g., anisotropic magneto-transport) and topological phase transition.Whether the spin-degenerate counterpart of Lorentz-violating Weyl fermions, the Dirac fermions, can be realized remains as an open question. Here, Yan et al. report experimental evidence of such type-II Dirac fermions in bulk PtTe 2 single crystal with a pair of strongly tilted Dirac cones.
Anomaly-free dark matter models are not so simple
NASA Astrophysics Data System (ADS)
Ellis, John; Fairbairn, Malcolm; Tunney, Patrick
2017-08-01
We explore the anomaly-cancellation constraints on simplified dark matter (DM) models with an extra U(1)' gauge boson Z '. We show that, if the Standard Model (SM) fermions are supplemented by a single DM fermion χ that is a singlet of the SM gauge group, and the SM quarks have non-zero U(1)' charges, the SM leptons must also have non-zero U(1)' charges, in which case LHC searches impose strong constraints on the Z ' mass. Moreover, the DM fermion χ must have a vector-like U(1)' coupling. If one requires the DM particle to have a purely axial U(1)' coupling, which would be the case if χ were a Majorana fermion and would reduce the impact of direct DM searches, the simplest possibility is that it is accompanied by one other new singlet fermion, but in this case the U(1)' charges of the SM leptons still do not vanish. This is also true in a range of models with multiple new singlet fermions with identical charges. Searching for a leptophobic model, we then introduce extra fermions that transform non-trivially under the SM gauge group. We find several such models if the DM fermion is accompanied by two or more other new fermions with non-identical charges, which may have interesting experimental signatures. We present benchmark representatives of the various model classes we discuss.
Phase space methods for Majorana fermions
NASA Astrophysics Data System (ADS)
Rushin Joseph, Ria; Rosales-Zárate, Laura E. C.; Drummond, Peter D.
2018-06-01
Fermionic phase space representations are a promising method for studying correlated fermion systems. The fermionic Q-function and P-function have been defined using Gaussian operators of fermion annihilation and creation operators. The resulting phase-space of covariance matrices belongs to the symmetry class D, one of the non-standard symmetry classes. This was originally proposed to study mesoscopic normal-metal-superconducting hybrid structures, which is the type of structure that has led to recent experimental observations of Majorana fermions. Under a unitary transformation, it is possible to express these Gaussian operators using real anti-symmetric matrices and Majorana operators, which are much simpler mathematical objects. We derive differential identities involving Majorana fermion operators and an antisymmetric matrix which are relevant to the derivation of the corresponding Fokker–Planck equations on symmetric space. These enable stochastic simulations either in real or imaginary time. This formalism has direct relevance to the study of fermionic systems in which there are Majorana type excitations, and is an alternative to using expansions involving conventional Fermi operators. The approach is illustrated by showing how a linear coupled Hamiltonian as used to study topological excitations can be transformed to Fokker–Planck and stochastic equation form, including dissipation through particle losses.
Implication of Tsallis entropy in the Thomas–Fermi model for self-gravitating fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ourabah, Kamel; Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr
The Thomas–Fermi approach for self-gravitating fermions is revisited within the theoretical framework of the q-statistics. Starting from the q-deformation of the Fermi–Dirac distribution function, a generalized Thomas–Fermi equation is derived. It is shown that the Tsallis entropy preserves a scaling property of this equation. The q-statistical approach to Jeans’ instability in a system of self-gravitating fermions is also addressed. The dependence of the Jeans’ wavenumber (or the Jeans length) on the parameter q is traced. It is found that the q-statistics makes the Fermionic system unstable at scales shorter than the standard Jeans length. -- Highlights: •Thomas–Fermi approach for self-gravitatingmore » fermions. •A generalized Thomas–Fermi equation is derived. •Nonextensivity preserves a scaling property of this equation. •Nonextensive approach to Jeans’ instability of self-gravitating fermions. •It is found that nonextensivity makes the Fermionic system unstable at shorter scales.« less
Fermionic topological quantum states as tensor networks
NASA Astrophysics Data System (ADS)
Wille, C.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.
Dynamic origins of fermionic D -terms
NASA Astrophysics Data System (ADS)
Hudson, Jonathan; Schweitzer, Peter
2018-03-01
The D -term is defined through matrix elements of the energy-momentum tensor, similarly to mass and spin, yet this important particle property is experimentally not known any fermion. In this work we show that the D -term of a spin 1/2 fermion is of dynamical origin: it vanishes for a free fermion. This is in pronounced contrast to the bosonic case where already a free spin-0 boson has a non-zero intrinsic D -term. We illustrate in two simple models how interactions generate the D -term of a fermion with an internal structure, the nucleon. All known matter is composed of elementary fermions. This indicates the importance to study this interesting particle property in more detail, which will provide novel insights especially on the structure of the nucleon.
Superfluid and Insulating Phases of Fermion Mixtures in Optical Lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iskin, M.; Sa de Melo, C. A. R.
2007-08-24
The ground state phase diagram of fermion mixtures in optical lattices is analyzed as a function of interaction strength, fermion filling factor, and tunneling parameters. In addition to standard superfluid, phase-separated or coexisting superfluid-excess-fermion phases found in homogeneous or harmonically trapped systems, fermions in optical lattices have several insulating phases, including a molecular Bose-Mott insulator (BMI), a Fermi-Pauli (band) insulator (FPI), a phase-separated BMI-FPI mixture or a Bose-Fermi checkerboard (BFC). The molecular BMI phase is the fermion mixture counterpart of the atomic BMI found in atomic Bose systems, the BFC or BMI-FPI phases exist in Bose-Fermi mixtures, and lastly themore » FPI phase is particular to the Fermi nature of the constituent atoms of the mixture.« less
Phenomenology of fermion production during axion inflation
NASA Astrophysics Data System (ADS)
Adshead, Peter; Pearce, Lauren; Peloso, Marco; Roberts, Michael A.; Sorbo, Lorenzo
2018-06-01
We study the production of fermions through a derivative coupling with a pseudoscalar inflaton and the effects of the produced fermions on the scalar primordial perturbations. We present analytic results for the modification of the scalar power spectrum due to the produced fermions, and we estimate the amplitude of the non-Gaussianities in the equilateral regime. Remarkably, we find a regime where the effect of the fermions gives the dominant contribution to the scalar spectrum while the amplitude of the bispectrum is small and in agreement with observation. We also note the existence of a regime in which the backreaction of the fermions on the evolution of the zero-mode of the inflaton can lead to inflation even if the potential of the inflaton is steep and does not satisfy the slow-roll conditions.
On the regularized fermionic projector of the vacuum
NASA Astrophysics Data System (ADS)
Finster, Felix
2008-03-01
We construct families of fermionic projectors with spherically symmetric regularization, which satisfy the condition of a distributional MP-product. The method is to analyze regularization tails with a power law or logarithmic scaling in composite expressions in the fermionic projector. The resulting regularizations break the Lorentz symmetry and give rise to a multilayer structure of the fermionic projector near the light cone. Furthermore, we construct regularizations which go beyond the distributional MP-product in that they yield additional distributional contributions supported at the origin. The remaining freedom for the regularization parameters and the consequences for the normalization of the fermionic states are discussed.
Semiclassical fermion pair creation in de Sitter spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stahl, Clément, E-mail: clement.stahl@icranet.org; Eckhard, Strobel, E-mail: eckhard.strobel@irap-phd.eu; Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome
2015-12-17
We present a method to semiclassically compute the pair creation rate of bosons and fermions in de Sitter spacetime. The results in the bosonic case agree with the ones in the literature. We find that for the constant electric field the fermionic and bosonic pair creation rate are the same. This analogy of bosons and fermions in the semiclassical limit is known from several flat spacetime examples.
Perturbative quantum field theory in the framework of the fermionic projector
NASA Astrophysics Data System (ADS)
Finster, Felix
2014-04-01
We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.
NASA Astrophysics Data System (ADS)
Shifman, M.; Yung, A.
2018-03-01
Non-Abelian strings are considered in non-supersymmetric theories with fermions in various appropriate representations of the gauge group U(N). We derive the electric charge quantization conditions and the index theorems counting fermion zero modes in the string background both for the left-handed and right-handed fermions. In both cases we observe a non-trivial N dependence.
Topology and strong four fermion interactions in four dimensions
NASA Astrophysics Data System (ADS)
Catterall, Simon; Butt, Nouman
2018-05-01
We study massless fermions interacting through a particular four-fermion term in four dimensions. Exact symmetries prevent the generation of bilinear fermion mass terms. We determine the structure of the low-energy effective action for the auxiliary field needed to generate the four-fermion term and find it has an novel structure that admits topologically nontrivial defects with nonzero Hopf invariant. We show that fermions propagating in such a background pick up a mass without breaking symmetries. Furthermore, pairs of such defects experience a logarithmic interaction. We argue that a phase transition separates a phase where these defects proliferate from a broken phase where they are bound tightly. We conjecture that, by tuning one additional operator, the broken phase can be eliminated with a single BKT-like phase transition separating the massless from massive phases.
Chen, Hua-Jun; Zhu, Ka-Di
2015-01-01
In the present work, we theoretically propose an optical scheme to detect the possible signature of Majorana fermions via the optical pump-probe spectroscopy, which is very different from the current tunneling measurement based on electrical methods. The scheme consists of a metal nanoparticle and a semiconductor quantum dot coupled to a hybrid semiconductor/superconductor heterostructures. The results show that the probe absorption spectrum of the quantum dot presents a distinct splitting due to the existence of Majorana fermions. Owing to surface plasmon enhanced effect, this splitting will be more obvious, which makes Majorana fermions more easy to be detectable. The technique proposed here open the door for new applications ranging from robust manipulation of Majorana fermions to quantum information processing based on Majorana fermions. PMID:26310929
Cosmological singularities and bounce in Cartan-Einstein theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucat, Stefano; Prokopec, Tomislav, E-mail: s.lucat@students.uu.nl, E-mail: t.prokopec@uu.nl
We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh ( in-in ) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins inmore » a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce . We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).« less
Cosmological singularities and bounce in Cartan-Einstein theory
NASA Astrophysics Data System (ADS)
Lucat, Stefano; Prokopec, Tomislav
2017-10-01
We consider a generalized Einstein-Cartan theory, in which we add the unique covariant dimension four operators to general relativity that couples fermionic spin current to the torsion tensor (with an arbitrary strength). Since torsion is local and non-dynamical, when integrated out it yields an effective four-fermion interaction of the gravitational strength. We show how to renormalize the theory, in the one-loop perturbative expansion in generally curved space-times, obtaining the first order correction to the 2PI effective action in Schwinger-Keldysh (in-in) formalism. We then apply the renormalized theory to study the dynamics of a collapsing universe that begins in a thermal state and find that—instead of a big crunch singularity—the Universe with torsion undergoes a bounce. We solve the dynamical equations (a) classically (without particle production); (b) including the production of fermions in a fixed background in the Hartree-Fock approximation and (c) including the quantum backreaction of fermions onto the background space-time. In the first and last cases the Universe undergoes a bounce. The production of fermions due to the coupling to a contracting homogeneous background speeds up the bounce, implying that the quantum contributions from fermions is negative, presumably because fermion production contributes negatively to the energy-momentum tensor. When compared with former works on the subject, our treatment is fully microscopic (namely, we treat fermions by solving the corresponding Dirac equations) and quantum (in the sense that we include fermionic loop contributions).
Fermion systems in discrete space-time
NASA Astrophysics Data System (ADS)
Finster, Felix
2007-05-01
Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.
New chiral fermions, a new gauge interaction, Dirac neutrinos, and dark matter
de Gouvea, Andre; Hernandez, Daniel
2015-10-07
Here, we propose that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard-model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. Hypercharge, for example, plays this role for the SM fermions. We introduce a new symmetry, U(1) ν , for all new light fermionic states. Anomaly cancellations mandate the existence of several new fermion fields with nontrivial U(1) ν charges. We develop a concrete model of this type, for which we show that (i) some fermions remain massless after U(1) ν breaking — similar to SM neutrinos —more » and (ii) accidental global symmetries translate into stable massive particles — similar to SM protons. These ingredients provide a solution to the dark matter and neutrino mass puzzles assuming one also postulates the existence of heavy degrees of freedom that act as “mediators” between the two sectors. The neutrino mass mechanism described here leads to parametrically small Dirac neutrino masses, and the model also requires the existence of at least four Dirac sterile neutrinos. Finally, we describe a general technique to write down chiral-fermions-only models that are at least anomaly-free under a U(1) gauge symmetry.« less
New chiral fermions, a new gauge interaction, Dirac neutrinos, and dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Gouvea, Andre; Hernandez, Daniel
Here, we propose that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard-model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. Hypercharge, for example, plays this role for the SM fermions. We introduce a new symmetry, U(1) ν , for all new light fermionic states. Anomaly cancellations mandate the existence of several new fermion fields with nontrivial U(1) ν charges. We develop a concrete model of this type, for which we show that (i) some fermions remain massless after U(1) ν breaking — similar to SM neutrinos —more » and (ii) accidental global symmetries translate into stable massive particles — similar to SM protons. These ingredients provide a solution to the dark matter and neutrino mass puzzles assuming one also postulates the existence of heavy degrees of freedom that act as “mediators” between the two sectors. The neutrino mass mechanism described here leads to parametrically small Dirac neutrino masses, and the model also requires the existence of at least four Dirac sterile neutrinos. Finally, we describe a general technique to write down chiral-fermions-only models that are at least anomaly-free under a U(1) gauge symmetry.« less
String theory, quantum phase transitions, and the emergent Fermi liquid.
Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad
2009-07-24
A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid.
Bosonization of fermions coupled to topologically massive gravity
NASA Astrophysics Data System (ADS)
Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.
2014-03-01
We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.
A four-dimensional model with the fermionic determinant exactly evaluated
NASA Astrophysics Data System (ADS)
Mignaco, J. A.; Rego Monteiro, M. A.
1986-07-01
A method is presented to compute the fermion determinant of some class of field theories. By this method the following results of the fermion determinant in two dimensions are easily recovered: (i) Schwinger model without reference to a particular gauge. (ii) QCD in the light-cone gauge. (iii) Gauge invariant result of QCD. The method is finally applied to give an analytical solution of the fermion determinant of a four-dimensional, non-abelian, Dirac-like theory with massless fermions interacting with an external vector field through a pseudo-vectorial coupling. Fellow of the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil.
Jia, Shaoyang; Pennington, M. R.
2017-08-01
With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé approximation for the spectral functions is also investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Shaoyang; Pennington, M. R.
With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion propagator spectral functions are obtained in four dimensions with a renormalizable version of the Gauge Technique anzatz for the fermion-photon vertex in the quenched approximation in the Landau gauge. Despite the limitations of this model, having an explicit solution provides a guiding example of the fermion propagator with the correct analytic structure. The Padé approximation for the spectral functions is also investigated.
Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair
NASA Astrophysics Data System (ADS)
Čubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad
2011-10-01
We provide evidence that the holographic dual to a strongly coupled charged Fermi liquid has a non-zero fermion density in the bulk. We show that the pole-strength of the stable quasiparticle characterizing the Fermi surface is encoded in the AdS probability density of a single normalizable fermion wavefunction in AdS. Recalling Migdal's theorem which relates the pole strength to the Fermi-Dirac characteristic discontinuity in the number density at ω F , we conclude that the AdS dual of a Fermi liquid is described by occupied on-shell fermionic modes in AdS. Encoding the occupied levels in the total spatially averaged probability density of the fermion field directly, we show that an AdS Reissner-Nordström black holein a theory with charged fermions has a critical temperature, at which the system undergoes a first-order transition to a black hole with a non-vanishing profile for the bulk fermion field. Thermodynamics and spectral analysis support that the solution with non-zero AdS fermion-profile is the preferred ground state at low temperatures.
Effective interaction of electroweak-interacting dark matter with Higgs boson and its phenomenology
NASA Astrophysics Data System (ADS)
Hisano, Junji; Kobayashi, Daiki; Mori, Naoya; Senaha, Eibun
2015-03-01
We study phenomenology of electroweak-interacting fermionic dark matter (DM) with a mass of O (100) GeV. Constructing the effective Lagrangian that describes the interactions between the Higgs boson and the SU (2)L isospin multiplet fermion, we evaluate the electric dipole moment (EDM) of electron, the signal strength of Higgs boson decay to two photons and the spin-independent elastic-scattering cross section with proton. As representative cases, we consider the SU (2)L triplet fermions with zero/nonzero hypercharges and SU (2)L doublet fermion. It is found that the electron EDM gives stringent constraints on those model parameter spaces. In the cases of the triplet fermion with zero hypercharge and the doublet fermion, the Higgs signal strength does not deviate from the standard model prediction by more than a few % once the current DM direct detection constraint is taken into account, even if the CP violation is suppressed. On the contrary, O (10- 20)% deviation may occur in the case of the triplet fermion with nonzero hypercharge. Our representative scenarios may be tested by the future experiments.
Majorana-Based Fermionic Quantum Computation.
O'Brien, T E; Rożek, P; Akhmerov, A R
2018-06-01
Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O(1) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.
Observing fermionic statistics with photons in arbitrary processes
Matthews, Jonathan C. F.; Poulios, Konstantinos; Meinecke, Jasmin D. A.; Politi, Alberto; Peruzzo, Alberto; Ismail, Nur; Wörhoff, Kerstin; Thompson, Mark G.; O'Brien, Jeremy L.
2013-01-01
Quantum mechanics defines two classes of particles-bosons and fermions-whose exchange statistics fundamentally dictate quantum dynamics. Here we develop a scheme that uses entanglement to directly observe the correlated detection statistics of any number of fermions in any physical process. This approach relies on sending each of the entangled particles through identical copies of the process and by controlling a single phase parameter in the entangled state, the correlated detection statistics can be continuously tuned between bosonic and fermionic statistics. We implement this scheme via two entangled photons shared across the polarisation modes of a single photonic chip to directly mimic the fermion, boson and intermediate behaviour of two-particles undergoing a continuous time quantum walk. The ability to simulate fermions with photons is likely to have applications for verifying boson scattering and for observing particle correlations in analogue simulation using any physical platform that can prepare the entangled state prescribed here. PMID:23531788
Majorana-Based Fermionic Quantum Computation
NASA Astrophysics Data System (ADS)
O'Brien, T. E.; RoŻek, P.; Akhmerov, A. R.
2018-06-01
Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O (1 ) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.
Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure
He, Qing Lin; Pan, Lei; Stern, Alexander L.; ...
2017-07-21
Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantummore » computing.« less
Novel foamy origin for singlet fermion masses
NASA Astrophysics Data System (ADS)
Ellis, John; Mavromatos, Nick E.; Nanopoulos, Dimitri V.
2017-10-01
We show how masses for singlet fermions can be generated by interactions with a D-particle model of space-time foam inspired by brane theory. It has been shown previously by one of the authors (N. E. M.) that such interactions may generate dynamically small masses for charged fermions via the recoils of D-particle defects interacting with photons. In this work we consider the direct interactions of D-particle with uncharged singlet fermions such as right-handed neutrinos. Quantum fluctuations of the lattice of D-particles have massless vector (spin-one) excitations that are analogues of phonons. These mediate forces with the singlet fermions, generating large dynamical masses that may be communicated to light neutrinos via the seesaw mechanism.
Coupled kinetic equations for fermions and bosons in the relaxation-time approximation
NASA Astrophysics Data System (ADS)
Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw
2018-02-01
Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.
Quantum Gas Microscope for Fermionic Atoms
NASA Astrophysics Data System (ADS)
Okan, Melih; Cheuk, Lawrence; Nichols, Matthew; Lawrence, Katherine; Zhang, Hao; Zwierlein, Martin
2016-05-01
Strongly interacting fermions define the properties of complex matter throughout nature, from atomic nuclei and modern solid state materials to neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. In this poster we demonstrate the realization of a quantum gas microscope for fermionic 40 K atoms trapped in an optical lattice and the recent experiments which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high- resolution optics to simultaneously cool and image individual atoms with single lattice site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site resolved imaging of fermions enables the direct observation of magnetic order, time resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement. NSF, AFOSR-PECASE, AFOSR-MURI on Exotic Phases of Matter, ARO-MURI on Atomtronics, ONR, a Grant from the Army Research Office with funding from the DARPA OLE program, and the David and Lucile Packard Foundation.
Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices
NASA Astrophysics Data System (ADS)
Zhu, Yan-Qing; Zhang, Dan-Wei; Yan, Hui; Xing, Ding-Yu; Zhu, Shi-Liang
2017-09-01
The discovery of relativistic spin-1/2 fermions such as Dirac and Weyl fermions in condensed-matter or artificial systems opens a new era in modern physics. An interesting but rarely explored question is whether other relativistic spinal excitations could be realized with artificial systems. Here, we construct two- and three-dimensional tight-binding models realizable with cold fermionic atoms in optical lattices, where the low energy excitations are effectively described by the spin-1 Maxwell equations in the Hamiltonian form. These relativistic (linear dispersion) excitations with unconventional integer pseudospin, beyond the Dirac-Weyl-Majorana fermions, are an exotic kind of fermions named as Maxwell fermions. We demonstrate that the systems have rich topological features. For instance, the threefold degenerate points called Maxwell points may have quantized Berry phases and anomalous quantum Hall effects with spin-momentum locking may appear in topological Maxwell insulators in the two-dimensional lattices. In three dimensions, Maxwell points may have nontrivial monopole charges of ±2 with two Fermi arcs connecting them, and the merging of the Maxwell points leads to topological phase transitions. Finally, we propose realistic schemes for realizing the model Hamiltonians and detecting the topological properties of the emergent Maxwell quasiparticles in optical lattices.
Modeling electron fractionalization with unconventional Fock spaces.
Cobanera, Emilio
2017-08-02
It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality [Formula: see text] of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.
Non-thermal leptogenesis with distinct CP violation and minimal dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hang; Gu, Pei-Hong, E-mail: einsteinzh@sjtu.edu.cn, E-mail: peihong.gu@sjtu.edu.cn
We demonstrate a unified scenario for neutrino mass, baryon asymmetry, dark matter and inflation. In addition to a fermion triplet for the so-called minimal dark matter, we extend the standard model by three heavy fields including a scalar singlet, a fermion triplet and a fermion singlet/Higgs triplet. The heavy scalar singlet, which is expected to drive an inflation, and the dark matter fermion triplet are odd under an unbroken Z {sub 2} discrete symmetry, while the other fields are all even. The heavy fermion triplet offers a tree-level type-III seesaw and then mediates a three-body decay of the inflaton intomore » the standard model lepton and Higgs doublets with the dark matter fermion triplet. The heavy fermion singlet/Higgs triplet not only results in a type-I/II seesaw at tree level but also contributes to the inflaton decay at one-loop level. In this scenario, the type-I/II seesaw contains all of the physical CP phases in the lepton sector and hence the CP violation for the non-thermal leptogenesis by the inflaton decay exactly comes from the imaginary part of the neutrino mass matrix.« less
Fermion-induced quantum critical points.
Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai; Yao, Hong
2017-08-22
A unified theory of quantum critical points beyond the conventional Landau-Ginzburg-Wilson paradigm remains unknown. According to Landau cubic criterion, phase transitions should be first-order when cubic terms of order parameters are allowed by symmetry in the Landau-Ginzburg free energy. Here, from renormalization group analysis, we show that second-order quantum phase transitions can occur at such putatively first-order transitions in interacting two-dimensional Dirac semimetals. As such type of Landau-forbidden quantum critical points are induced by gapless fermions, we call them fermion-induced quantum critical points. We further introduce a microscopic model of SU(N) fermions on the honeycomb lattice featuring a transition between Dirac semimetals and Kekule valence bond solids. Remarkably, our large-scale sign-problem-free Majorana quantum Monte Carlo simulations show convincing evidences of a fermion-induced quantum critical points for N = 2, 3, 4, 5 and 6, consistent with the renormalization group analysis. We finally discuss possible experimental realizations of the fermion-induced quantum critical points in graphene and graphene-like materials.Quantum phase transitions are governed by Landau-Ginzburg theory and the exceptions are rare. Here, Li et al. propose a type of Landau-forbidden quantum critical points induced by gapless fermions in two-dimensional Dirac semimetals.
NASA Astrophysics Data System (ADS)
Sakamoto, R.; Ono, Y.; Hatsuda, R.; Shiina, K.; Arahata, E.; Mori, H.
2018-03-01
We found that a spin current of fermions could be induced in spin-orbit coupled Bose-Fermi mixture at zero temperature. Since spatial change of the spin structure of the bosons is necessary to induce the spin current of the fermions, we analyzed the ground state of the bosons in the mixture system, using a variational method. The obtained phase diagram indicated the presence of a bosonic phase that allowed the fermions to have a spin current.
Spin-Orbit Coupling and Novel Electronic States at the Interfaces of Heavy Fermion Materials
2016-02-22
idea, which is to study novel electronic phases at the interfaces of heavy fermion heterostructures. The key physics is that the strong and tunable...of Heavy Fermion Materials The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 2D heavy fermions, quantum criticality, spin-orbit
Fermion mass without symmetry breaking
Catterall, Simon
2016-01-20
We examine a model of reduced staggered fermions in three dimensions interacting through an SO (4) invariant four fermion interaction. The model is similar to that considered in a recent paper by Ayyer and Chandrasekharan. We present theoretical arguments and numerical evidence which support the idea that the system develops a mass gap for sufficiently strong four fermi coupling without producing a symmetry breaking fermion bilinear condensate. As a result, massless and massive phases appear to be separated by a continuous phase transition.
Itinerant quantum multicriticality of two-dimensional Dirac fermions
NASA Astrophysics Data System (ADS)
Roy, Bitan; Goswami, Pallab; Juričić, Vladimir
2018-05-01
We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d =2 ) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S1) and O(S2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the ɛ =(3 -d ) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S1+S2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either O(S1) or O(S2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.
NASA Astrophysics Data System (ADS)
Abanov, Ar.; Chubukov, Andrey V.; Schmalian, J.
2003-03-01
We present the full analysis of the normal state properties of the spin-fermion model near the antiferromagnetic instability in two dimensions. The model describes low-energy fermions interacting with their own collective spin fluctuations, which soften at the antiferromagnetic transition. We argue that in 2D, the system has two typical energies-an effective spin-fermion interaction bar g and an energy ysf below which the system behaves as a Fermi liquid. The ratio of the two determines the dimensionless coupling constant for spin-fermion interaction lambda (2) alpha /line g /omega _{sf} . We show that u scales with the spin correlation length and diverges at criticality. This divergence implies that the conventional perturbative expansion breaks down. We develop a novel approach to the problem-the expansion in either the inverse number of hot spots in the Brillouin zone, or the inverse number of fermionic flavours-which allows us to explicitly account for all terms which diverge as powers of u, and treat the remaining, O(logu) terms in the RG formalism. We apply this technique to study the properties of the spin-fermion model in various frequency and temperature regimes. We present the results for the fermionic spectral function, spin susceptibility, optical conductivity and other observables. We compare our results in detail with the normal state data for the cuprates, and argue that the spin-fermion model is capable of explaining the anomalous normal state properties of the high Tc materials. We also show that the conventional Ӓ theory of the quantum-critical behaviour is inapplicable in 2D due to the singularity of the Ӓ vertex.
Superfluid response in heavy fermion superconductors
NASA Astrophysics Data System (ADS)
Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang
2017-10-01
Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.
Fermion bag approach to Hamiltonian lattice field theories in continuous time
NASA Astrophysics Data System (ADS)
Huffman, Emilie; Chandrasekharan, Shailesh
2017-12-01
We extend the idea of fermion bags to Hamiltonian lattice field theories in the continuous time formulation. Using a class of models we argue that the temperature is a parameter that splits the fermion dynamics into small spatial regions that can be used to identify fermion bags. Using this idea we construct a continuous time quantum Monte Carlo algorithm and compute critical exponents in the 3 d Ising Gross-Neveu universality class using a single flavor of massless Hamiltonian staggered fermions. We find η =0.54 (6 ) and ν =0.88 (2 ) using lattices up to N =2304 sites. We argue that even sizes up to N =10 ,000 sites should be accessible with supercomputers available today.
Amplified fermion production from overpopulated Bose fields
NASA Astrophysics Data System (ADS)
Berges, J.; Gelfand, D.; Sexty, D.
2014-01-01
We study the real-time dynamics of fermions coupled to scalar fields in a linear sigma model, which is often employed in the context of preheating after inflation or as a low-energy effective model for quantum chromodynamics. We find a dramatic amplification of fermion production in the presence of highly occupied bosonic quanta for weak as well as strong effective couplings. For this we consider the range of validity of different methods: lattice simulations with male/female fermions, the mode functions approach and the quantum 2PI effective action with its associated kinetic theory. For strongly coupled fermions we find a rapid approach to a Fermi-Dirac distribution with time-dependent temperature and chemical potential parameters, while the bosons are still far from equilibrium.
Heavy Fermion Materials and Quantum Phase Transitions Workshop on Frontiers of the Kondo Effect
2016-02-12
Stefan Kirchner (Max Planck) discussed the role of quantum criticality on the superconducting condensation in heavy-fermion superconductors , and...Collin Broholm (Johns Hopkins) discussed magnetic excitations of heavy fermion superconductors . The workshop concluded with a wide-ranging talk by
Connecting dark matter annihilation to the vertex functions of Standard Model fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Jason; Light, Christopher, E-mail: jkumar@hawaii.edu, E-mail: lightc@hawaii.edu
We consider scenarios in which dark matter is a Majorana fermion which couples to Standard Model fermions through the exchange of charged mediating particles. The matrix elements for various dark matter annihilation processes are then related to one-loop corrections to the fermion-photon vertex, where dark matter and the charged mediators run in the loop. In particular, in the limit where Standard Model fermion helicity mixing is suppressed, the cross section for dark matter annihilation to various final states is related to corrections to the Standard Model fermion charge form factor. These corrections can be extracted in a gauge-invariant manner frommore » collider cross sections. Although current measurements from colliders are not precise enough to provide useful constraints on dark matter annihilation, improved measurements at future experiments, such as the International Linear Collider, could improve these constraints by several orders of magnitude, allowing them to surpass the limits obtainable by direct observation.« less
Discovery of Lorentz-violating type II Weyl fermions in LaAlGe
Xu, Su-Yang; Alidoust, Nasser; Chang, Guoqing; Lu, Hong; Singh, Bahadur; Belopolski, Ilya; Sanchez, Daniel S.; Zhang, Xiao; Bian, Guang; Zheng, Hao; Husanu, Marious-Adrian; Bian, Yi; Huang, Shin-Ming; Hsu, Chuang-Han; Chang, Tay-Rong; Jeng, Horng-Tay; Bansil, Arun; Neupert, Titus; Strocov, Vladimir N.; Lin, Hsin; Jia, Shuang; Hasan, M. Zahid
2017-01-01
In quantum field theory, Weyl fermions are relativistic particles that travel at the speed of light and strictly obey the celebrated Lorentz symmetry. Their low-energy condensed matter analogs are Weyl semimetals, which are conductors whose electronic excitations mimic the Weyl fermion equation of motion. Although the traditional (type I) emergent Weyl fermions observed in TaAs still approximately respect Lorentz symmetry, recently, the so-called type II Weyl semimetal has been proposed, where the emergent Weyl quasiparticles break the Lorentz symmetry so strongly that they cannot be smoothly connected to Lorentz symmetric Weyl particles. Despite some evidence of nontrivial surface states, the direct observation of the type II bulk Weyl fermions remains elusive. We present the direct observation of the type II Weyl fermions in crystalline solid lanthanum aluminum germanide (LaAlGe) based on our photoemission data alone, without reliance on band structure calculations. Moreover, our systematic data agree with the theoretical calculations, providing further support on our experimental results. PMID:28630919
Direct optical detection of Weyl fermion chirality in a topological semimetal
NASA Astrophysics Data System (ADS)
Ma, Qiong; Xu, Su-Yang; Chan, Ching-Kit; Zhang, Cheng-Long; Chang, Guoqing; Lin, Yuxuan; Xie, Weiwei; Palacios, Tomás; Lin, Hsin; Jia, Shuang; Lee, Patrick A.; Jarillo-Herrero, Pablo; Gedik, Nuh
2017-09-01
A Weyl semimetal is a novel topological phase of matter, in which Weyl fermions arise as pseudo-magnetic monopoles in its momentum space. The chirality of the Weyl fermions, given by the sign of the monopole charge, is central to the Weyl physics, since it directly serves as the sign of the topological number and gives rise to exotic properties such as Fermi arcs and the chiral anomaly. Here, we directly detect the chirality of the Weyl fermions by measuring the photocurrent in response to circularly polarized mid-infrared light. The resulting photocurrent is determined by both the chirality of Weyl fermions and that of the photons. Our results pave the way for realizing a wide range of theoretical proposals for studying and controlling the Weyl fermions and their associated quantum anomalies by optical and electrical means. More broadly, the two chiralities, analogous to the two valleys in two-dimensional materials, lead to a new degree of freedom in a three-dimensional crystal with potential novel pathways to store and carry information.
New vector-like fermions and flavor physics
Ishiwata, Koji; Ligeti, Zoltan; Wise, Mark B.
2015-10-06
We study renormalizable extensions of the standard model that contain vector-like fermions in a (single) complex representation of the standard model gauge group. There are 11 models where the vector-like fermions Yukawa couple to the standard model fermions via the Higgs field. These models do not introduce additional fine-tunings. They can lead to, and are constrained by, a number of different flavor-changing processes involving leptons and quarks, as well as direct searches. An interesting feature of the models with strongly interacting vector-like fermions is that constraints from neutral meson mixings (apart from CP violation inmore » $$ {K}^0-{\\overline{K}}^0 $$ mixing) are not sensitive to higher scales than other flavor-changing neutral-current processes. We identify order 1/(4πM) 2 (where M is the vector-like fermion mass) one-loop contributions to the coefficients of the four-quark operators for meson mixing, that are not suppressed by standard model quark masses and/or mixing angles.« less
Entanglement entropies and fermion signs of critical metals
NASA Astrophysics Data System (ADS)
Kaplis, N.; Krüger, F.; Zaanen, J.
2017-04-01
The fermion sign problem is often viewed as a sheer inconvenience that plagues numerical studies of strongly interacting electron systems. Only recently has it been suggested that fermion signs are fundamental for the universal behavior of critical metallic systems and crucially enhance their degree of quantum entanglement. In this work we explore potential connections between emergent scale invariance of fermion sign structures and scaling properties of bipartite entanglement entropies. Our analysis is based on a wave-function Ansatz that incorporates collective, long-range backflow correlations into fermionic Slater determinants. Such wave functions mimic the collapse of a Fermi liquid at a quantum critical point. Their nodal surfaces, a representation of the fermion sign structure in many-particle configurations space, show fractal behavior up to a length scale ξ that diverges at a critical backflow strength. We show that the Hausdorff dimension of the fractal nodal surface depends on ξ , the number of fermions and the exponent of the backflow. For the same wave functions we numerically calculate the second Rényi entanglement entropy S2. Our results show a crossover from volume scaling, S2˜ℓθ (θ =2 in d =2 dimensions), to the characteristic Fermi-liquid behavior S2˜ℓ lnℓ on scales larger than ξ . We find that volume scaling of the entanglement entropy is a robust feature of critical backflow fermions, independent of the backflow exponent and hence the fractal dimension of the scale invariant sign structure.
Opendf - An Implementation of the Dual Fermion Method for Strongly Correlated Systems
NASA Astrophysics Data System (ADS)
Antipov, Andrey E.; LeBlanc, James P. F.; Gull, Emanuel
The dual fermion method is a multiscale approach for solving lattice problems of interacting strongly correlated systems. In this paper, we present the opendfcode, an open-source implementation of the dual fermion method applicable to fermionic single- orbital lattice models in dimensions D = 1, 2, 3 and 4. The method is built on a dynamical mean field starting point, which neglects all local correlations, and perturbatively adds spatial correlations. Our code is distributed as an open-source package under the GNU public license version 2.
Fermions tunnelling from the charged dilatonic black holes
NASA Astrophysics Data System (ADS)
Chen, De-You; Jiang, Qing-Quan; Zu, Xiao-Tao
2008-10-01
Kerner and Mann's recent work shows that for an uncharged and non-rotating black hole its Hawking temperature can be correctly derived by fermions tunnelling from its horizons. In this paper, our main work is to improve the analysis to deal with charged fermion tunnelling from the general dilatonic black holes, specifically including the charged, spherically symmetric dilatonic black hole, the rotating Einstein Maxwell dilaton axion (EMDA) black hole and the rotating Kaluza Klein (KK) black hole. As a result, the correct Hawking temperatures are well recovered by charged fermions tunnelling from these black holes.
SDG Fermion-Pair Algebraic SO(12) and Sp(10) Models and Their Boson Realizations
NASA Astrophysics Data System (ADS)
Navratil, P.; Geyer, H. B.; Dobes, J.; Dobaczewski, J.
1995-11-01
It is shown how the boson mapping formalism may be applied as a useful many-body tool to solve a fermion problem. This is done in the context of generalized Ginocchio models for which we introduce S-, D-, and G-pairs of fermions and subsequently construct the sdg-boson realizations of the generalized Dyson type. The constructed SO(12) and Sp(10) fermion models are solved beyond the explicit symmetry limits. Phase transitions to rotational structures are obtained also in situations where there is no underlying SU(3) symmetry.
Quantization of set theory and generalization of the fermion algebra
NASA Astrophysics Data System (ADS)
Arik, M.; Tekin, S. C.
2002-05-01
The quantum states of a d-dimensional fermion algebra are in one to one correspondence with the subsets of a d-element universal set. In this paper we use this set theoretical motivation to construct a one-parameter deformation of the fermion algebra and extend it to a d-dimensional generalization which is invariant under the group U(d). This discrete fermionic oscillator system is extended to the continuous case. We also show that the q-deformation of these systems is related to supercovariant q-oscillators.
Baby Skyrme model and fermionic zero modes
NASA Astrophysics Data System (ADS)
Queiruga, J. M.
2016-09-01
In this work we investigate some features of the fermionic sector of the supersymmetric version of the baby Skyrme model. We find that, in the background of Bogomol'nyi-Prasad-Sommerfield compact baby Skyrmions, fermionic zero modes are confined to the defect core. Further, we show that, while three Supersymmetry (SUSY) generators are broken in the defect core, SUSY is completely restored outside. We study also the effect of a D-term deformation of the model. Such a deformation allows for the existence of fermionic zero modes and broken SUSY outside the compact defect.
Two-dimensional conductors with interactions and disorder from particle-vortex duality
NASA Astrophysics Data System (ADS)
Goldman, H.; Mulligan, M.; Raghu, S.; Torroba, G.; Zimet, M.
2017-12-01
We study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U (1 ) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.
Instantons and Massless Fermions in Two Dimensions
DOE R&D Accomplishments Database
Callan, C. G. Jr.; Dashen, R.; Gross, D. J.
1977-05-01
The role of instantons in the breakdown of chiral U(N) symmetry is studied in a two dimensional model. Chiral U(1) is always destroyed by the axial vector anomaly. For N = 2 chiral SU(N) is also spontaneously broken yielding massive fermions and three (decoupled) Goldstone bosons. For N greater than or equal to 3 the fermions remain massless. Realistic four dimensional theories are believed to behave in a similar way but the critical N above which the fermions cease to be massive is not known in four dimensions.
Jia, Shaoyang; Pennington, M. R.
2016-12-12
In this paper, we derive the gauge covariance requirement imposed on the QED fermion-photon three-point function within the framework of a spectral representation for fermion propagators. When satisfied, such requirement ensures solutions to the fermion propagator Schwinger-Dyson equation (SDE) in any covariant gauge with arbitrary numbers of spacetime dimensions to be consistent with the Landau-Khalatnikov-Fradkin transformation (LKFT). The general result has been verified by the special cases of three and four dimensions. Additionally, we present the condition that ensures the vacuum polarization is independent of the gauge parameter. Finally, as an illustration, we show how the gauge technique dimensionally regularizedmore » in four dimensions does not satisfy the covariance requirement.« less
Diffusion in higher dimensional SYK model with complex fermions
NASA Astrophysics Data System (ADS)
Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong
2018-01-01
We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.
Experimental Observation of Three-Component New Fermions in Topological Semimetal MoP
NASA Astrophysics Data System (ADS)
Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Ma, J.-Z.; Kong, L.-Y.; Richard, Pierre; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, Tian; Ding, Hong; Paul Scherrer Institute, Swiss Light Source, CH-5232 Villigen PSI, Switzerland Team; Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics Team; University of Chinese Academy of Sciences, Beijing 100190, China Team; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Team
Condensed matter systems can host quasiparticle excitations that are analogues to elementary particles such as Majorana, Weyl, and Dirac fermions. Recent advances in band theory have expanded the classification of fermions in crystals, and revealed crystal symmetry-protected electron excitations that have no high-energy counterparts. Here, using angle-resolved photoemission spectroscopy, we demonstrate the existence of a triply degenerate point in the electronic structure of MoP crystal, where the quasiparticle excitations are beyond the Majorana-Weyl-Dirac classification. Furthermore, we observe pairs of Weyl points in the bulk electronic structure coexisting with the new fermions, thus introducing a platform for studying the interplay between different types of fermions. We thank Binbin Fu, Nan Xu, and Xin Gao for the assistance in the ARPES experiments.
Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution
NASA Astrophysics Data System (ADS)
Staples, G. Stacey
2017-12-01
Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph's adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph's vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an "indeterminate" fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.
NASA Astrophysics Data System (ADS)
Giuliano, Domenico; Nava, Andrea
2015-09-01
Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within the bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.
Chiral Majorana fermion modes in a quantum anomalous Hall insulator-superconductor structure.
He, Qing Lin; Pan, Lei; Stern, Alexander L; Burks, Edward C; Che, Xiaoyu; Yin, Gen; Wang, Jing; Lian, Biao; Zhou, Quan; Choi, Eun Sang; Murata, Koichi; Kou, Xufeng; Chen, Zhijie; Nie, Tianxiao; Shao, Qiming; Fan, Yabin; Zhang, Shou-Cheng; Liu, Kai; Xia, Jing; Wang, Kang L
2017-07-21
Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantum computing. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Hartree-Fock treatment of Fermi polarons using the Lee-Low-Pine transformation
NASA Astrophysics Data System (ADS)
Kain, Ben; Ling, Hong Y.
2017-09-01
We consider the Fermi polaron problem at zero temperature, where a single impurity interacts with noninteracting host fermions. We approach the problem starting with a Fröhlich-like Hamiltonian where the impurity is described with canonical position and momentum operators. We apply the Lee-Low-Pine (LLP) transformation to change the fermionic Fröhlich Hamiltonian into the fermionic LLP Hamiltonian, which describes a many-body system containing host fermions only. We adapt the self-consistent Hartree-Fock (HF) approach, first proposed by Edwards, to the fermionic LLP Hamiltonian in which a pair of host fermions with momenta k and k' interact with a potential proportional to k .k' . We apply the HF theory, which has the advantage of not restricting the number of particle-hole pairs, to repulsive Fermi polarons in one dimension. When the impurity and host fermion masses are equal our variational ansatz, where HF orbitals are expanded in terms of free-particle states, produces results in excellent agreement with McGuire's exact analytical results based on the Bethe ansatz. This work raises the prospect of using the HF ansatz and its time-dependent generalization as building blocks for developing all-coupling theories for both equilibrium and nonequilibrium Fermi polarons in higher dimensions.
Type-III and IV interacting Weyl points
NASA Astrophysics Data System (ADS)
Nissinen, J.; Volovik, G. E.
2017-04-01
3+1-dimensional Weyl fermions in interacting systems are described by effective quasi-relativistic Green's functions parametrized by a 16-element matrix e α μ in an expansion around the Weyl point. The matrix e α μ can be naturally identified as an effective tetrad field for the fermions. The correspondence between the tetrad field and an effective quasi-relativistic metric gμν governing the Weyl fermions allows for the possibility to simulate different classes of metric fields emerging in general relativity in interacting Weyl semimetals. According to this correspondence, there can be four types of Weyl fermions, depending on the signs of the components g 00 and g 00 of the effective metric. In addition to the conventional type-I fermions with a tilted Weyl cone and type-II fermions with an overtilted Weyl cone for g 00 > 0 and, respectively, g 00 > 0 or g 00 < 0, we find additional "type-III" and "type-IV" Weyl fermions with instabilities (complex frequencies) for g 00 < 0 and g 00 > 0 or g 00 < 0, respectively. While the type-I and type-II Weyl points allow us to simulate the black hole event horizon at an interface where g 00 changes sign, the type-III Weyl point leads to effective spacetimes with closed timelike curves.
Simple Z2 lattice gauge theories at finite fermion density
NASA Astrophysics Data System (ADS)
Prosko, Christian; Lee, Shu-Ping; Maciejko, Joseph
2017-11-01
Lattice gauge theories are a powerful language to theoretically describe a variety of strongly correlated systems, including frustrated magnets, high-Tc superconductors, and topological phases. However, in many cases gauge fields couple to gapless matter degrees of freedom, and such theories become notoriously difficult to analyze quantitatively. In this paper we study several examples of Z2 lattice gauge theories with gapless fermions at finite density, in one and two spatial dimensions, that are either exactly soluble or whose solution reduces to that of a known problem. We consider complex fermions (spinless and spinful) as well as Majorana fermions and study both theories where Gauss' law is strictly imposed and those where all background charge sectors are kept in the physical Hilbert space. We use a combination of duality mappings and the Z2 slave-spin representation to map our gauge theories to models of gauge-invariant fermions that are either free, or with on-site interactions of the Hubbard or Falicov-Kimball type that are amenable to further analysis. In 1D, the phase diagrams of these theories include free-fermion metals, insulators, and superconductors, Luttinger liquids, and correlated insulators. In 2D, we find a variety of gapped and gapless phases, the latter including uniform and spatially modulated flux phases featuring emergent Dirac fermions, some violating Luttinger's theorem.
Heavy fermion behavior explained by bosons
NASA Technical Reports Server (NTRS)
Kallio, A.; Poykko, S.; Apaja, V.
1995-01-01
Conventional heavy fermion (HF) theories require existence of massive fermions. We show that heavy fermion phenomena can also be simply explained by existence of bosons with moderate mass but temperature dependent concentration below the formation temperature T(sub B), which in turn is close to room temperature. The bosons B(++) are proposed to be in chemical equilibrium with a system of holes h(+): B(++) = h(+) + h(+). This equilibrium is governed by a boson breaking function f(T), which determines the decreasing boson density and the increasing fermion density with increasing temperature. Since HF-compounds are hybridized from minimum two elements, we assume in addition existence of another fermion component h(sub s)(+) with temperature independent density. This spectator component is thought to be the main agent in binding the bosons in analogy with electronic or muonic molecules. Using a linear boson breaking function we can explain temperature dependence of the giant linear specific heat coefficient gamma(T) coming essentially from bosons. The maxima in resistivity, Hall coefficient, and susceptibility are explained by boson localization effects due to the Wigner crystallization. The antiferromagnetic transitions in turn are explained by similar localization of the pairing fermion system when their density n(sub h)(T(sub FL)) becomes lower than n(sub WC), the critical density of Wigner crystallization. The model applies irrespective whether a compound is superconducting or not. The same model explains the occurrence of low temperature antiferromagnetism also in high-T(sub c) superconductors. The double transition in UPt3 is proposed to be due to the transition of the pairing fermion liquid from spin polarized to unpolarized state.
Infrared problem in non-Abelian gauge theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Y.
1976-03-22
I extend the Bloch--Nordsieck idea to show that in the lowest nontrivial order of radiative correction the fermion--fermion and gauge-meson--fermion scattering rates are finite, provided that they are averaged over the initial and summed over the final internal spin states. Questions of the physical gauge coupling and infrared slavery are discussed. (AIP)
Superalgebra and fermion-boson symmetry
Miyazawa, Hironari
2010-01-01
Fermions and bosons are quite different kinds of particles, but it is possible to unify them in a supermultiplet, by introducing a new mathematical scheme called superalgebra. In this article we discuss the development of the concept of symmetry, starting from the rotational symmetry and finally arriving at this fermion-boson (FB) symmetry. PMID:20228617
Relaxation of Fermionic Excitations in a Strongly Attractive Fermi Gas in an Optical Lattice
2011-09-27
decreases both with temperature and deviation of the fermion density from half filling. We show that quasiparticle and phase degrees of freedom are...the interaction strength to the bandwidth of the system. Thus, at strong coupling, the fermionic quasiparticles and the motion of the bosonic molecules
Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials.
Wang, Jing
2018-03-28
We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.
Bose-Fermi degeneracies in large N adjoint QCD
Basar, Gokce; Cherman, Aleksey; McGady, David
2015-07-06
Here, we analyze the large N limit of adjoint QCD, an SU( N) gauge theory with N f flavors of massless adjoint Majorana fermions, compactified on S 3 × S 1. We focus on the weakly-coupled confining small- S 3 regime. If the fermions are given periodic boundary conditions on S 1, we show that there are large cancellations between bosonic and fermionic contributions to the twisted partition function. These cancellations follow a pattern previously seen in the context of misaligned supersymmetry, and lead to the absence of Hagedorn instabilities for any S 1 size L, even though the bosonicmore » and fermionic densities of states both have Hagedorn growth. Adjoint QCD stays in the confining phase for any L ~ N 0, explaining how it is able to enjoy large N volume independence for any L. The large N boson-fermion cancellations take place in a setting where adjoint QCD is manifestly non-supersymmetric at any finite N, and are consistent with the recent conjecture that adjoint QCD has emergent fermionic symmetries in the large N limit.« less
NASA Astrophysics Data System (ADS)
Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; Dagotto, Elbio
2015-06-01
Lattice spin-fermion models are important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the "spins," are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The "traveling cluster approximation" (TCA) is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 103 sites. In this publication, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. This allows us to solve generic spin-fermion models easily on 104 lattice sites and with some effort on 105 lattice sites, representing the record lattice sizes studied for this family of models.
Fermionic entanglement that survives a black hole
NASA Astrophysics Data System (ADS)
Martín-Martínez, Eduardo; León, Juan
2009-10-01
We introduce an arbitrary number of accessible modes when analyzing bipartite entanglement degradation due to Unruh effect between two partners Alice and Rob. Under the single mode approximation (SMA) a fermion field only had a few accessible levels due to Pauli exclusion principle conversely to bosonic fields which had an infinite number of excitable levels. This was argued to justify entanglement survival in the fermionic case in the SMA infinite acceleration limit. Here we relax SMA. Hence, an infinite number of modes are excited as the observer Rob accelerates, even for a fermion field. We will prove that, despite this analogy with the bosonic case, entanglement loss is limited. We will show that this comes from fermionic statistics through the characteristic structure it imposes on the infinite dimensional density matrix for Rob. Surprisingly, the surviving entanglement is independent of the specific maximally entangled state chosen, the kind of fermionic field analyzed, and the number of accessible modes considered. We shall discuss whether this surviving entanglement goes beyond the purely statistical correlations, giving insight concerning the black hole information paradox.
Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials
NASA Astrophysics Data System (ADS)
Wang, Jing
2018-03-01
We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.
Van Dyke, John S.; Massee, Freek; Allan, Milan P.; Davis, J. C. Séamus; Petrovic, Cedomir; Morr, Dirk K.
2014-01-01
To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high-temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference imaging to reveal quantitatively the momentum space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ekα,β with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5 then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by f-electron magnetism. PMID:25062692
Zitterbewegung in time-reversal Weyl semimetals
NASA Astrophysics Data System (ADS)
Huang, Tongyun; Ma, Tianxing; Wang, Li-Gang
2018-06-01
We perform a systematic study of the Zitterbewegung effect of fermions, which are described by a Gaussian wave with broken spatial-inversion symmetry in a three-dimensional low-energy Weyl semimetal. Our results show that the motion of fermions near the Weyl points is characterized by rectilinear motion and Zitterbewegung oscillation. The ZB oscillation is affected by the width of the Gaussian wave packet, the position of the Weyl node, and the chirality and anisotropy of the fermions. By introducing a one-dimensional cosine potential, the new generated massless fermions have lower Fermi velocities, which results in a robust relativistic oscillation. Modulating the height and periodicity of periodic potential demonstrates that the ZB effect of fermions in the different Brillouin zones exhibits quasi-periodic behavior. These results may provide an appropriate system for probing the Zitterbewegung effect experimentally.
Trial wave functions for a composite Fermi liquid on a torus
NASA Astrophysics Data System (ADS)
Fremling, M.; Moran, N.; Slingerland, J. K.; Simon, S. H.
2018-01-01
We study the two-dimensional electron gas in a magnetic field at filling fraction ν =1/2 . At this filling the system is in a gapless state which can be interpreted as a Fermi liquid of composite fermions. We construct trial wave functions for the system on a torus, based on this idea, and numerically compare these to exact wave functions for small systems found by exact diagonalization. We find that the trial wave functions give an excellent description of the ground state of the system, as well as its charged excitations, in all momentum sectors. We analyze the dispersion of the composite fermions and the Berry phase associated with dragging a single fermion around the Fermi surface and comment on the implications of our results for the current debate on whether composite fermions are Dirac fermions.
Wigner functions for fermions in strong magnetic fields
NASA Astrophysics Data System (ADS)
Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun
2018-02-01
We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.
Benchmark results in the 2D lattice Thirring model with a chemical potential
NASA Astrophysics Data System (ADS)
Ayyar, Venkitesh; Chandrasekharan, Shailesh; Rantaharju, Jarno
2018-03-01
We study the two-dimensional lattice Thirring model in the presence of a fermion chemical potential. Our model is asymptotically free and contains massive fermions that mimic a baryon and light bosons that mimic pions. Hence, it is a useful toy model for QCD, especially since it, too, suffers from a sign problem in the auxiliary field formulation in the presence of a fermion chemical potential. In this work, we formulate the model in both the world line and fermion-bag representations and show that the sign problem can be completely eliminated with open boundary conditions when the fermions are massless. Hence, we are able accurately compute a variety of interesting quantities in the model, and these results could provide benchmarks for other methods that are being developed to solve the sign problem in QCD.
Projective flatness in the quantisation of bosons and fermions
NASA Astrophysics Data System (ADS)
Wu, Siye
2015-07-01
We compare the quantisation of linear systems of bosons and fermions. We recall the appearance of projectively flat connection and results on parallel transport in the quantisation of bosons. We then discuss pre-quantisation and quantisation of fermions using the calculus of fermionic variables. We define a natural connection on the bundle of Hilbert spaces and show that it is projectively flat. This identifies, up to a phase, equivalent spinor representations constructed by various polarisations. We introduce the concept of metaplectic correction for fermions and show that the bundle of corrected Hilbert spaces is naturally flat. We then show that the parallel transport in the bundle of Hilbert spaces along a geodesic is a rescaled projection provided that the geodesic lies within the complement of a cut locus. Finally, we study the bundle of Hilbert spaces when there is a symmetry.
Renormalization of Coulomb interactions in a system of two-dimensional tilted Dirac fermions
NASA Astrophysics Data System (ADS)
Lee, Yu-Wen; Lee, Yu-Li
2018-01-01
We investigate the effects of long-ranged Coulomb interactions in a tilted Dirac semimetal in two dimensions by using the perturbative renormalization-group (RG) method. Depending on the magnitude of the tilting parameter, the undoped system can have either Fermi points (type I) or Fermi lines (type II). Previous studies usually performed the renormalization-group transformations by integrating out the modes with large momenta. This is problematic when the Fermi surface is open, like type-II Dirac fermions. In this work we study the effects of Coulomb interactions, following the spirit of Shankar [Rev. Mod. Phys. 66, 129 (1994), 10.1103/RevModPhys.66.129], by introducing a cutoff in the energy scale around the Fermi surface and integrating out the high-energy modes. For type-I Dirac fermions, our result is consistent with that of the previous work. On the other hand, we find that for type-II Dirac fermions, the magnitude of the tilting parameter increases monotonically with lowering energies. This implies the stability of type-II Dirac fermions in the presence of Coulomb interactions, in contrast with previous results. Furthermore, for type-II Dirac fermions, the velocities in different directions acquire different renormalization even if they have the same bare values. By taking into account the renormalization of the tilting parameter and the velocities due to the Coulomb interactions, we show that while the presence of a charged impurity leads only to charge redistribution around the impurity for type-I Dirac fermions, for type-II Dirac fermions, the impurity charge is completely screened, albeit with a very long screening length. The latter indicates that the temperature dependence of physical observables are essentially determined by the RG equations we derived. We illustrate this by calculating the temperature dependence of the compressibility and specific heat of the interacting tilted Dirac fermions.
Grassmann phase space methods for fermions. II. Field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, B.J., E-mail: bdalton@swin.edu.au; Jeffers, J.; Barnett, S.M.
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, thoughmore » fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.« less
Fermion localization on a split brane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.
2011-05-15
In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qing Lin; Pan, Lei; Stern, Alexander L.
Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures. This finding may open up an avenue to control Majorana fermions for implementing robust topological quantummore » computing.« less
Two-dimensional conductors with interactions and disorder from particle-vortex duality
Goldman, H.; Mulligan, M.; Raghu, S.; ...
2017-12-27
Here, we study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U(1) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.
A search for excited fermions in electron-proton collisions at HERA
NASA Astrophysics Data System (ADS)
Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Schlereth, J.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Romeo, G. Cara; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Frasconi, F.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Garcia, Y. Zamora; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckart, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schneider, J.-L.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarebska, E.; Suszycki, L.; Zajac, J.; Kedzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Böttcher, S.; Coldewey, C.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Göttlicher, P.; Gutjahr, B.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Kroger, W.; Krüger, J.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Schroeder, J.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, I.; Jamieson, V. A.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Fürtjes, A.; Hagge, L.; Lohrmann, E.; Mainusch, J.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Terron, J.; Zetsche, F.; Bacon, T. C.; Beuselinck, R.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Del Peso, J.; Puga, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; St. Laurent, M.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Bentvelsen, S.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Jong, P.; de Kamps, M.; Kooijman, P.; Kruse, A.; O'Dell, V.; Tenner, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; Lindemann, L.; McFall, J.; Nath, C.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; de Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Iori, M.; Marini, G.; Mattioli, M.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nagira, T.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprazak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Tsurugai, T.; Bhadra, S.; Frisken, W. R.; Furutani, K. M.
1995-12-01
A search for excited states of the standard model fermions was performed using the ZEUS detector at the HERA electron-proton collider, operating at a centre of mass energy of 296 GeV. In a sample corresponding to an integrated luminosity of 0.55 pb-1, no evidence was found for any resonant state decaying into final states composed of a fermion and a gauge boson. Limits on the coupling strength times branching ratio of excited fermions are presented for masses between 50 GeV and 250 GeV, extending previous search regions significantly.
The 't Hooft vertex for staggered fermions and flavor-singlet mesons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald, Gordon C.; Davies, Christine T.H.; Follana, Eduardo
2011-01-01
We derive the ’t Hooft vertex for staggered fermions and examine its symmetries for nonzero lattice spacing. We also derive a set of structural properties for the eigenvectors of the staggered Dirac operator, which should emerge in the continuum limit, if staggered fermions yield four species. This property also is needed for flavor-taste-singlet correlators to behave correctly. We then test numerically whether the needed structure arises: it does. This structure and symmetry of (unrooted) staggered fermions also imply that Creutz’s (latest) objections to the rooted determinant are without foundation.
Cosmological BCS mechanism and the big bang singularity
NASA Astrophysics Data System (ADS)
Alexander, Stephon; Biswas, Tirthabir
2009-07-01
We provide a novel mechanism that resolves the big bang singularity present in Friedman-Lemaitre-Robertson-Walker space-times without the need for ghost fields. Building on the fact that a four-fermion interaction arises in general relativity when fermions are covariantly coupled, we show that at early times the decrease in scale factor enhances the correlation between pairs of fermions. This enhancement leads to a BCS-like condensation of the fermions and opens a gap dynamically driving the Hubble parameter H to zero and results in a nonsingular bounce, at least in some special cases.
Iliesiu, Luca; Kos, Filip; Poland, David; ...
2016-03-17
We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Two-dimensional conductors with interactions and disorder from particle-vortex duality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, H.; Mulligan, M.; Raghu, S.
Here, we study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U(1) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.
Fluctuations of a q-deformed fermion gas
NASA Astrophysics Data System (ADS)
Zeng, Qijun; Ge, Jing; Luo, Yongsong
2018-05-01
The theory of q-deformed fermions is one of the theories of q-deformed oscillators. Within the framework of this theory and the traditional fluctuation theory, we investigate fluctuations of q-deformed fermion gas and obtain the expressions of fluctuations of the internal energy U, the particle number N and the correlation of fluctuations of the two physical quantities above. Further numerical calculation reveals that fluctuations of such a system have some interesting and particular features. We consider that this work may provide much insight into the theory of q fermions, and may also be helpful for the theory of q-deformed oscillators.
NASA Astrophysics Data System (ADS)
Das, Aritra; Bandyopadhyay, Aritra; Roy, Pradip K.; Mustafa, Munshi G.
2018-02-01
We have systematically constructed the general structure of the fermion self-energy and the effective quark propagator in the presence of a nontrivial background such as a hot magnetized medium. This is applicable to both QED and QCD. The hard thermal loop approximation has been used for the heat bath. We have also examined transformation properties of the effective fermion propagator under some of the discrete symmetries of the system. Using the effective fermion propagator we have analyzed the fermion dispersion spectra in a hot magnetized medium along with the spinor for each fermion mode obtained by solving the modified Dirac equation. The fermion spectra is found to reflect the discrete symmetries of the two-point functions. We note that for a chirally symmetric theory the degenerate left- and right-handed chiral modes in vacuum or in a heat bath get separated and become asymmetric in the presence of a magnetic field without disturbing the chiral invariance. The obtained general structure of the two-point functions is verified by computing the three-point function, which agrees with the existing results in one-loop order. Finally, we have computed explicitly the spectral representation of the two-point functions which would be very important to study the spectral properties of the hot magnetized medium corresponding to QED and QCD with background magnetic field.
NASA Astrophysics Data System (ADS)
Zwierlein, Martin
2017-04-01
Strongly interacting fermions govern physics at all length scales, from nuclear matter to modern electronic materials and neutron stars. The interplay of the Pauli principle with strong interactions can give rise to exotic properties that we do not understand even at a qualitative level. In recent years, ultracold Fermi gases of atoms have emerged as a new type of strongly interacting fermionic matter that can be created and studied in the laboratory with exquisite control. Feshbach resonances allow for unitarity limited interactions, leading to scale invariance, universal thermodynamics and a superfluid phase transition already at 17 Trapped in optical lattices, fermionic atoms realize the Fermi-Hubbard model, believed to capture the essence of cuprate high-temperature superconductors. Here, a microscope allows for single-atom, single-site resolved detection of density and spin correlations, revealing the Pauli hole as well as anti-ferromagnetic and doublon-hole correlations. Novel states of matter are predicted for fermions interacting via long-range dipolar interactions. As an intriguing candidate we created stable fermionic molecules of NaK at ultralow temperatures featuring large dipole moments and second-long spin coherence times. In some of the above examples the experiment outperformed the most advanced computer simulations of many-fermion systems, giving hope for a new level of understanding of strongly interacting fermions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BLUM,T.; SONI,A.
The workshop was held to mark the 10th anniversary of the first numerical simulations of QCD using domain wall fermions initiated at BNL. It is very gratifying that in the intervening decade widespread use of domain wall and overlap fermions is being made. It therefore seemed appropriate at this stage for some ''communal introspection'' of the progress that has been made, hurdles that need to be overcome, and physics that can and should be done with chiral fermions. The meeting was very well attended, drawing about 60 registered participants primarily from Europe, Japan and the US. It was quite remarkablemore » that pioneers David Kaplan, Herbert Neuberger, Rajamani Narayanan, Yigal Shamir, Sinya Aoki, and Pavlos Vranas all attended the workshop. Comparisons between domain wall and overlap formulations, with their respective advantages and limitations, were discussed at length, and a broad physics program including pion and kaon physics, the epsilon regime, nucleon structure, and topology, among others, emerged. New machines and improved algorithms have played a key role in realizing realistic dynamical fermion lattice simulations (small quark mass, large volume, and so on), so much in fact that measurements are now as costly. Consequently, ways to make the measurements more efficient were also discussed. We were very pleased to see the keen and ever growing interest in chiral fermions in our community and the significant strides our colleagues have made in bringing chiral fermions to the fore of lattice QCD calculations. Their contributions made the workshop a success, and we thank them deeply for sharing their time and ideas. Finally, we must especially acknowledge Norman Christ and Bob Mawhinney for their early and continued collaboration without which the success of domain wall fermions would not have been possible.« less
Multiple Types of Topological Fermions in Transition Metal Silicides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Peizhe; Zhou, Quan; Zhang, Shou -Cheng
Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, whichmore » is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.« less
Chiral fermions in asymptotically safe quantum gravity
NASA Astrophysics Data System (ADS)
Meibohm, J.; Pawlowski, J. M.
2016-05-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Conceptual Foundations of Soliton Versus Particle Dualities Toward a Topological Model for Matter
NASA Astrophysics Data System (ADS)
Kouneiher, Joseph
2016-06-01
The idea that fermions could be solitons was actually confirmed in theoretical models in 1975 in the case when the space-time is two-dimensional and with the sine-Gordon model. More precisely S. Coleman showed that two different classical models end up describing the same fermions particle, when the quantum theory is constructed. But in one model the fermion is a quantum excitation of the field and in the other model the particle is a soliton. Hence both points of view can be reconciliated.The principal aim in this paper is to exhibit a solutions of topological type for the fermions in the wave zone, where the equations of motion are non-linear field equations, i.e. using a model generalizing sine- Gordon model to four dimensions, and describe the solutions for linear and circular polarized waves. In other words, the paper treat fermions as topological excitations of a bosonic field.
Two- and four-dimensional representations of the PT - and CPT -symmetric fermionic algebras
NASA Astrophysics Data System (ADS)
Beygi, Alireza; Klevansky, S. P.; Bender, Carl M.
2018-03-01
Fermionic systems differ from their bosonic counterparts, the main difference with regard to symmetry considerations being that T2=-1 for fermionic systems. In PT -symmetric quantum mechanics an operator has both PT and CPT adjoints. Fermionic operators η , which are quadratically nilpotent (η2=0 ), and algebras with PT and CPT adjoints can be constructed. These algebras obey different anticommutation relations: η ηPT+ηPTη =-1 , where ηPT is the PT adjoint of η , and η ηCPT+ηCPTη =1 , where ηCPT is the CPT adjoint of η . This paper presents matrix representations for the operator η and its PT and CPT adjoints in two and four dimensions. A PT -symmetric second-quantized Hamiltonian modeled on quantum electrodynamics that describes a system of interacting fermions and bosons is constructed within this framework and is solved exactly.
Chiral fermions in asymptotically safe quantum gravity.
Meibohm, J; Pawlowski, J M
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Free-fermion descriptions of parafermion chains and string-net models
NASA Astrophysics Data System (ADS)
Meichanetzidis, Konstantinos; Turner, Christopher J.; Farjami, Ashk; Papić, Zlatko; Pachos, Jiannis K.
2018-03-01
Topological phases of matter remain a focus of interest due to their unique properties: fractionalization, ground-state degeneracy, and exotic excitations. While some of these properties can occur in systems of free fermions, their emergence is generally associated with interactions between particles. Here, we quantify the role of interactions in general classes of topological states of matter in one and two spatial dimensions, including parafermion chains and string-net models. Surprisingly, we find that certain topological states can be exactly described by free fermions, while others saturate the maximum possible distance from their optimal free-fermion description [C. J. Turner et al., Nat. Commun. 8, 14926 (2017), 10.1038/ncomms14926]. Our work opens the door to understanding the complexity of topological models by establishing new types of fermionization procedures to describe their low-energy physics, thus making them amenable to experimental realizations.
Phase diagram and re-entrant fermionic entanglement in a hybrid Ising-Hubbard ladder
NASA Astrophysics Data System (ADS)
Sousa, H. S.; Pereira, M. S. S.; de Oliveira, I. N.; Strečka, J.; Lyra, M. L.
2018-05-01
The degree of fermionic entanglement is examined in an exactly solvable Ising-Hubbard ladder, which involves interacting electrons on the ladder's rungs described by Hubbard dimers at half-filling on each rung, accounting for intrarung hopping and Coulomb terms. The coupling between neighboring Hubbard dimers is assumed to have an Ising-like nature. The ground-state phase diagram consists of four distinct regions corresponding to the saturated paramagnetic, the classical antiferromagnetic, the quantum antiferromagnetic, and the mixed classical-quantum phase. We have exactly computed the fermionic concurrence, which measures the degree of quantum entanglement between the pair of electrons on the ladder rungs. The effects of the hopping amplitude, the Coulomb term, temperature, and magnetic fields on the fermionic entanglement are explored in detail. It is shown that the fermionic concurrence displays a re-entrant behavior when quantum entanglement is being generated at moderate temperatures above the classical saturated paramagnetic ground state.
Multiple Types of Topological Fermions in Transition Metal Silicides
Tang, Peizhe; Zhou, Quan; Zhang, Shou -Cheng
2017-11-17
Exotic massless fermionic excitations with nonzero Berry flux, other than the Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with threefold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using the ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe, and CoGe, when spin-orbit coupling is considered. Their nontrivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on the side surface, whichmore » is confirmed by (001) surface electronic spectra of CoSi. Additionally, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.« less
The Fermionic Projector, entanglement and the collapse of the wave function
NASA Astrophysics Data System (ADS)
Finster, Felix
2011-07-01
After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.
Drude Conductivity of Dirac Fermions in Graphene
2010-01-01
interband transitions, as required by the sum rule. Our surprising observation indicates that many-body effects and Dirac fermion-impurity interactions...reduction of free electron oscillator strength is corroborated by corresponding changes in graphene interband transitions, as required by the sum...dimensions. Researchers have demonstrated in graphene exotic Dirac fermion phenomena ranging from anomalous quantum Hall effects 1,2 to Klein tunneling 3 in
New excitations in the Thirring model
NASA Astrophysics Data System (ADS)
Cortés, J. L.; Gamboa, J.; Schmidt, I.; Zanelli, J.
1998-12-01
The quantization of the massless Thirring model in the light-cone using functional methods is considered. The need to compactify the coordinate x- in the light-cone spacetime implies that the quantum effective action for left-handed fermions contains excitations similar to abelian instantons produced by composite of left-handed fermions. Right-handed fermions don't have a similar effective action. Thus, quantum mechanically, chiral symmetry must be broken as a result of the topological excitations. The conserved charge associated to the topological states is quantized. Different cases with only fermionic excitations or bosonic excitations or both can occur depending on the boundary conditions and the value of the coupling.
Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors
Schemm, E. R.; Levenson-Falk, E. M.; Kapitulnik, A.
2016-11-30
The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. Moreover, with the notable exception of 3He-B, all of the known or suspected chiral – that is to say time-reversal symmetry-breaking (TRSB) – superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. We review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.
NASA Astrophysics Data System (ADS)
Markov, Yu. A.; Shishmarev, A. A.
2010-11-01
Based on the most general principles of materiality, gauge, and re-parameterized invariance, the problem of constructing an action describing the dynamics of a classical color-charged particle moving in external non-Abelian gauge and fermion fields is considered. The case of a linear Lagrangian dependence on the external fermion fields is discussed. Within the framework of the description of the color degree of freedom of the particle with half-integer spin by the Grassmann color charges, a new concept of the Grassmann color source of the particle being a fermion analog of the conventional color current is introduced.
A beam splitter for Dirac-Weyl fermions through the Goos-Hänchen-like shift
NASA Astrophysics Data System (ADS)
Zheng, Ren-fei; Zhou, Lu; Zhang, Weiping
2017-12-01
We propose a method of realizing an effective beam splitter for Dirac-Weyl fermions through the Goos-Hänchen-like shift. It is implemented via the birefringence of a wave packet of pseudospin-3/2 Dirac-Weyl fermions impinging upon a potential barrier. It is shown that experimentally observable spatial separation between the transmitted fermions with helicity-1/2 and 3/2 can be generated by the Goos-Hänchen-like shift. The dependence of Goos-Hänchen-like shift and the corresponding transmission probability on the incident angle, the height and width of the potential barrier are carefully studied.
The Rational Hybrid Monte Carlo algorithm
NASA Astrophysics Data System (ADS)
Clark, Michael
2006-12-01
The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.
Ladder physics in the spin fermion model
NASA Astrophysics Data System (ADS)
Tsvelik, A. M.
2017-05-01
A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. It is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d -Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.
Stability of the two-dimensional Fermi polaron
NASA Astrophysics Data System (ADS)
Griesemer, Marcel; Linden, Ulrich
2018-02-01
A system composed of an ideal gas of N fermions interacting with an impurity particle in two space dimensions is considered. The interaction between impurity and fermions is given in terms of two-body point interactions whose strength is determined by the two-body binding energy, which is a free parameter of the model. If the mass of the impurity is 1.225 times larger than the mass of a fermion, it is shown that the energy is bounded below uniformly in the number N of fermions. This result improves previous, N-dependent lower bounds, and it complements a recent, similar bound for the Fermi polaron in three space dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodama, Yuta; Kokubu, Kento; Sawado, Nobuyuki
We construct brane solutions in 6-dimensional Einstein-Skyrme systems. A class of baby-Skyrmion solutions realizes warped compactification of the extra dimensions and gravity localization on the brane for the negative bulk cosmological constant. Coupling of the fermions with brane Skyrmions leads to brane localized fermions. In terms of the level crossing picture, emergence of the massive localized modes are observed. The nonlinear nature of Skyrmions brings richer information for the fermions' level structure. It comprises doubly degenerate lowest plus single excited modes. Three generations of fundamental fermions are associated with this distinctive structure. The mass hierarchy of quarks or leptons appearedmore » in terms of slightly deformed baby Skyrmions with topological charge three.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinotti, M.; Pal, A.; Ren, W. J.
Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. These quasi-two-dimensional bismuth layers based materials were recently designed and provide an arena for studying the interplay between anisotropic Dirac fermions, magnetism, and structural changes, allowing the formation of Weyl fermions in condensed matter. We perform an optical investigation of YbMnBi 2 , a representative type-II Weyl semimetal, and contrast its excitation spectrum with the optical response of the more conventional semimetal EuMnBi 2 . This comparative study allows us to disentangle the optical fingerprints of type-II Weyl fermions, but also challengesmore » the present theoretical understanding of their electrodynamic response.« less
Fermion localization and resonances on a de Sitter thick brane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yuxiao; Yang Jie; Zhao Zhenhua
2009-09-15
In C. A. S. Almeida, R. Casana, M. M. Ferreira, Jr., and A. R. Gomes, Phys. Rev. D 79, 125022 (2009), the simplest Yukawa coupling {eta}{psi}{phi}{chi}{psi} was considered for a two-scalar-generated Bloch brane model. Fermionic resonances for both chiralities were obtained, and their appearance is related to branes with internal structure. Inspired on this result, we investigate the localization and resonance spectrum of fermions on a one-scalar-generated de Sitter thick brane with a class of scalar-fermion couplings {eta}{psi}{phi}{sup k}{psi} with positive odd integer k. A set of massive fermionic resonances for both chiralities is obtained when provided large coupling constantmore » {eta}. We find that the masses and lifetimes of left and right chiral resonances are almost the same, which demonstrates that it is possible to compose massive Dirac fermions from the left and right chiral resonances. The resonance with lower mass has longer lifetime. For a same set of parameters, the number of resonances increases with k and the lifetime of the lower level resonance for larger k is much longer than the one for smaller k.« less
Superfluidity of identical fermions in an optical lattice: Atoms and polar molecules
NASA Astrophysics Data System (ADS)
Fedorov, A. K.; Yudson, V. I.; Shlyapnikov, G. V.
2018-02-01
In this work we discuss the emergence of p-wave superfluids of identical fermions in 2D lattices. The optical lattice potential manifests itself in an interplay between an increase in the density of states on the Fermi surface and the modification of the fermion-fermion interaction (scattering) amplitude. The density of states is enhanced due to an increase of the effective mass of atoms. In deep lattices, for short-range interacting atoms the scattering amplitude is strongly reduced compared to free space due to a small overlap of wavefunctions of fermions sitting in the neighboring lattice sites, which suppresses the p-wave superfluidity. However, we show that for a moderate lattice depth there is still a possibility to create atomic p-wave superfluids with sizable transition temperatures. The situation is drastically different for fermionic polar molecules. Being dressed with a microwave field, they acquire a dipole-dipole attractive tail in the interaction potential. Then, due to a long-range character of the dipole-dipole interaction, the effect of the suppression of the scattering amplitude in 2D lattices is absent. This leads to the emergence of a stable topological px + ipy superfluid of identical microwave-dressed polar molecules.
Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; ...
2015-06-08
Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less
Nontrivial Berry phase in magnetic BaMnSb2 semimetal
Huang, Silu; Shelton, W. A.; Plummer, E. W.; Jin, Rongying
2017-01-01
The subject of topological materials has attracted immense attention in condensed-matter physics because they host new quantum states of matter containing Dirac, Majorana, or Weyl fermions. Although Majorana fermions can only exist on the surface of topological superconductors, Dirac and Weyl fermions can be realized in both 2D and 3D materials. The latter are semimetals with Dirac/Weyl cones either not tilted (type I) or tilted (type II). Although both Dirac and Weyl fermions have massless nature with the nontrivial Berry phase, the formation of Weyl fermions in 3D semimetals require either time-reversal or inversion symmetry breaking to lift degeneracy at Dirac points. Here we demonstrate experimentally that canted antiferromagnetic BaMnSb2 is a 3D Weyl semimetal with a 2D electronic structure. The Shubnikov–de Hass oscillations of the magnetoresistance give nearly zero effective mass with high mobility and the nontrivial Berry phase. The ordered magnetic arrangement (ferromagnetic ordering in the ab plane and antiferromagnetic ordering along the c axis below 286 K) breaks the time-reversal symmetry, thus offering us an ideal platform to study magnetic Weyl fermions in a centrosymmetric material. PMID:28539436
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris
Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less
On the simulation of indistinguishable fermions in the many-body Wigner formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellier, J.M., E-mail: jeanmichel.sellier@gmail.com; Dimov, I.
2015-01-01
The simulation of quantum systems consisting of interacting, indistinguishable fermions is an incredible mathematical problem which poses formidable numerical challenges. Many sophisticated methods addressing this problem are available which are based on the many-body Schrödinger formalism. Recently a Monte Carlo technique for the resolution of the many-body Wigner equation has been introduced and successfully applied to the simulation of distinguishable, spinless particles. This numerical approach presents several advantages over other methods. Indeed, it is based on an intuitive formalism in which quantum systems are described in terms of a quasi-distribution function, and highly scalable due to its Monte Carlo nature.more » In this work, we extend the many-body Wigner Monte Carlo method to the simulation of indistinguishable fermions. To this end, we first show how fermions are incorporated into the Wigner formalism. Then we demonstrate that the Pauli exclusion principle is intrinsic to the formalism. As a matter of fact, a numerical simulation of two strongly interacting fermions (electrons) is performed which clearly shows the appearance of a Fermi (or exchange–correlation) hole in the phase-space, a clear signature of the presence of the Pauli principle. To conclude, we simulate 4, 8 and 16 non-interacting fermions, isolated in a closed box, and show that, as the number of fermions increases, we gradually recover the Fermi–Dirac statistics, a clear proof of the reliability of our proposed method for the treatment of indistinguishable particles.« less
NASA Astrophysics Data System (ADS)
Mendel Horwitz, Roberto Ruben
1982-03-01
In the framework of the Glashow-Weinberg-Salem model without elementary scalar particles, we show that masses for fermions and intermediate vector bosons can be generated dynamically. The mechanism is the formation of fermion-antifermion pseudoscalar bound states of zero total four momentum, which form a condensate in the physical vacuum. The force responsible for the binding is the short distance part of the net Coulomb force due to photon and Z exchange. Fermions and bosons acquire masses through their interaction with this condensate. The neutrinos remain massless because their righthanded components have no interactions. Also the charge -1/3 quarks remain massless because the repulsive force from the Z exchange dominates over the Coulomb force. To correct this, we propose two possible modifications to the theory. One is to cut off the Z exchange at very small distances, so that all fermions except the neutrinos acquire masses, which are then, purely electromagnetic in origin. The other is to introduce an additional gauge boson that couples to all quarks with a pure vector coupling. To make this vector boson unobservable at usual energies, at least two new fermions must couple to it. The vector boson squared masses receive additive contributions from all the fermion squared masses. The photon remains massless and the masses of the Z and W('(+OR -)) bosons are shown to be related through the Weinberg angle in the conventional way. Assuming only three families of fermions, we obtain estimates for the top quark mass.
Universal Behavior of Quantum Spin Liquid and Optical Conductivity in the Insulator Herbertsmithite
NASA Astrophysics Data System (ADS)
Shaginyan, V. R.; Msezane, A. Z.; Stephanovich, V. A.; Popov, K. G.; Japaridze, G. S.
2018-04-01
We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to expose the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field. We consider an experimental manifestation (optical conductivity) of a new state of matter (so-called fermion condensate) realized in quantum spin liquids, for, in many ways, they exhibit typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite produce important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of a strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to reveal the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field.
Competing forces in five-dimensional fermion condensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Jongmin; Peskin, Michael E.
We study fermion condensation in the Randall-Sundrum background as a setting for composite Higgs models. We formalize the computation of the Coleman-Weinberg potential and present a simple, general formula. Using this tool, we study the competition of fermion multiplets with different boundary conditions, to find conditions for creating a little hierarchy with the Higgs field expectation value much smaller than the intrinsic Randall-Sundrum mass scale.
Yamamoto, Arata
2016-07-29
We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.
NASA Technical Reports Server (NTRS)
Wilczek, Frank
1987-01-01
A simple heuristic proof of the Nielsen-Ninomaya theorem is given. A method is proposed whereby the multiplication of fermion species on a lattice is reduced to the minimal doubling, in any dimension, with retention of appropriate chiral symmetries. Also, it is suggested that use of spatially thinned fermion fields is likely to be a useful and appropriate approximation in QCD - in any case, it is a self-checking one.
Competing forces in five-dimensional fermion condensation
Yoon, Jongmin; Peskin, Michael E.
2017-12-27
We study fermion condensation in the Randall-Sundrum background as a setting for composite Higgs models. We formalize the computation of the Coleman-Weinberg potential and present a simple, general formula. Using this tool, we study the competition of fermion multiplets with different boundary conditions, to find conditions for creating a little hierarchy with the Higgs field expectation value much smaller than the intrinsic Randall-Sundrum mass scale.
Competing forces in five-dimensional fermion condensation
NASA Astrophysics Data System (ADS)
Yoon, Jongmin; Peskin, Michael E.
2017-12-01
We study fermion condensation in the Randall-Sundrum background as a setting for composite Higgs models. We formalize the computation of the Coleman-Weinberg potential and present a simple, general formula. Using this tool, we study the competition of fermion multiplets with different boundary conditions, to find conditions for creating a little hierarchy with the Higgs field expectation value much smaller than the intrinsic Randall-Sundrum mass scale.
Ladder physics in the spin fermion model
Tsvelik, A. M.
2017-05-01
A link is established between the spin fermion (SF) model of the cuprates and the approach based on the analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders. This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N approximation in the SF model. Here, it is shown that the paramagnon exchange postulated in the SF model has exactly the right form to facilitate the emergence of the fully gapped d-Mott state in the region of the Brillouin zone at the hot spots of the Fermi surface.more » Hence, the SF model provides an adequate description of the pseudogap.« less
Weak antilocalization of composite fermions in graphene
NASA Astrophysics Data System (ADS)
Laitinen, Antti; Kumar, Manohar; Hakonen, Pertti J.
2018-02-01
We demonstrate experimentally that composite fermions in monolayer graphene display weak antilocalization. Our experiments deal with fractional quantum Hall (FQH) states in high-mobility, suspended graphene Corbino disks in the vicinity of ν =1 /2 . We find a strong temperature dependence of conductivity σ away from half filling, which is consistent with the expected electron-electron interaction-induced gaps in the FQH state. At half filling, however, the temperature dependence of conductivity σ (T ) becomes quite weak, as anticipated for a Fermi sea of composite fermions, and we find a logarithmic dependence of σ on T . The sign of this quantum correction coincides with the weak antilocalization of graphene composite fermions, indigenous to chiral Dirac particles.
Numerical studies of a model fermion-boson system
NASA Astrophysics Data System (ADS)
Cheng, T.; Gospodarczyk, E. R.; Su, Q.; Grobe, R.
2010-02-01
We study the spectral and dynamical properties of a simplified model system of interacting fermions and bosons. The spatial discretization and an effective truncation of the Hilbert space permit us to compute the distribution of the bare fermions and bosons in the energy eigenstates of the coupled system. These states represent the physical particles and are used to examine the validity of the analytical predictions by perturbation theory and by the Greenberg-Schweber approximation that assumes all fermions are at rest. As an example of our numerical framework, we examine how a bare electron can trigger the creation of a cloud of virtual bosons around. We relate this cloud to the properties of the associated energy eigenstates.
Yang-Mills matrix mechanics and quantum phases
NASA Astrophysics Data System (ADS)
Pandey, Mahul; Vaidya, Sachindeo
The SU(2) Yang-Mills matrix model coupled to fundamental fermions is studied in the adiabatic limit, and quantum critical behavior is seen at special corners of the gauge field configuration space. The quantum scalar potential for the gauge field induced by the fermions diverges at the corners, and is intimately related to points of enhanced degeneracy of the fermionic Hamiltonian. This in turn leads to superselection sectors in the Hilbert space of the gauge field, the ground states in different sectors being orthogonal to each other. The SU(2) Yang-Mills matrix model coupled to two Weyl fermions has three quantum phases. When coupled to a massless Dirac fermion, the number of quantum phases is four. One of these phases is the color-spin locked phase. This paper is an extended version of the lectures given by the second author (SV) at the International Workshop on Quantum Physics: Foundations and Applications, Bangalore, in February 2016, and is based on [1].
Strings, boundary fermions and coincident D-branes
NASA Astrophysics Data System (ADS)
Wulff, Linus
2007-01-01
This thesis describes an attempt to write down covariant actions for coincident D-branes using so-called boundary fermions instead of matrices to describe the non-abelian fields. These fermions can be thought of as Chan-Paton degrees of freedom for the open string. It is shown that by gauge-fixing and by suitably quantizing these boundary fermions the non-abelian action that is known, the Myers action, can be reproduced. Furthermore it is shown that under natural assumptions, unlike the Myers action, the action formulated using boundary fermions also posseses kappa-symmetry when formulated on superspace. Another aspect of string theory discussed in this thesis is that of tensionless strings. These are of great interest for example because of their possible relation to higher spin gauge theories via the AdS/CFT-correspondence. The tensionless superstring in a plane wave background, a Penrose limit of the near-horizon geometry of a stack of D3-branes, is considered and compared to the tensile case.
Effect of boson on-site repulsion on the superfluidity in the boson-fermion-Hubbard model
NASA Astrophysics Data System (ADS)
Sajna, A. S.; Micnas, R.
2018-03-01
We analyze the finite-temperature phase diagram of the boson-fermion-Hubbard model with Feshbach converting interaction, using the coherent-state path-integral method. We show that depending on the position of the bosonic band, this type of interaction, even if weak, can drive the system into the resonant superfluid phase in the strong bosonic interaction limit. It turns out that this phase can exist for an arbitrary number of fermions (i.e., fermionic concentration between 0 and 2), but with the bosonic particle number very close to an integer value. We point out that the standard time-of-flight method in optical lattice experiments can be an adequate technique to confirm the existence of this resonant phase. Moreover, in the nonresonant regime, the enhancement of the critical temperature of the superfluid phase due to Feshbach interaction is also observed. We account for this interesting phenomena for a hole- or particlelike pairing mechanism depending on the system density and mutual location of the fermionic and bosonic bands.
NASA Astrophysics Data System (ADS)
Bergner, Georg; Piemonte, Stefano
2018-04-01
Non-Abelian gauge theories with fermions transforming in the adjoint representation of the gauge group (AdjQCD) are a fundamental ingredient of many models that describe the physics beyond the Standard Model. Two relevant examples are N =1 supersymmetric Yang-Mills (SYM) theory and minimal walking technicolor, which are gauge theories coupled to one adjoint Majorana and two adjoint Dirac fermions, respectively. While confinement is a property of N =1 SYM, minimal walking technicolor is expected to be infrared conformal. We study the propagators of ghost and gluon fields in the Landau gauge to compute the running coupling in the MiniMom scheme. We analyze several different ensembles of lattice Monte Carlo simulations for the SU(2) adjoint QCD with Nf=1 /2 ,1 ,3 /2 , and 2 Dirac fermions. We show how the running of the coupling changes as the number of interacting fermions is increased towards the conformal window.
Shen, Bing; Yu, Li; Liu, Kai; ...
2017-06-01
We have carried out high-resolution angle-resolved photoemission measurements on the Cebased heavy fermion compound CePt 2In 7 that exhibits stronger two-dimensional character than the prototypical heavy fermion system CeCoIn 5. Multiple Fermi surface sheets and a complex band structure are clearly resolved. We have also performed detailed band structure calculations on CePt 2In 7. The good agreement found between our measurements and the calculations suggests that the band renormalization effect is rather weak in CePt 2In 7. A comparison of the common features of the electronic structure of CePt 2In 7 and CeCoIn5 indicates that CeCoIn 5 shows a muchmore » stronger band renormalization effect than CePt 2In 7. These results provide new information for understanding the heavy fermion behaviors and unconventional superconductivity in Ce-based heavy fermion systems.« less
Hybrid Monte Carlo approach to the entanglement entropy of interacting fermions
NASA Astrophysics Data System (ADS)
Drut, Joaquín E.; Porter, William J.
2015-09-01
The Monte Carlo calculation of Rényi entanglement entropies Sn of interacting fermions suffers from a well-known signal-to-noise problem, even for a large number of situations in which the infamous sign problem is absent. A few methods have been proposed to overcome this issue, such as ensemble switching and the use of auxiliary partition-function ratios. Here, we present an approach that builds on the recently proposed free-fermion decomposition method; it incorporates entanglement in the probability measure in a natural way; it takes advantage of the hybrid Monte Carlo algorithm (an essential tool in lattice quantum chromodynamics and other gauge theories with dynamical fermions); and it does not suffer from noise problems. This method displays no sign problem for the same cases as other approaches and is therefore useful for a wide variety of systems. As a proof of principle, we calculate S2 for the one-dimensional, half-filled Hubbard model and compare with results from exact diagonalization and the free-fermion decomposition method.
Multipartite entanglement in fermionic systems via a geometric measure
NASA Astrophysics Data System (ADS)
Lari, Behzad; Durganandini, P.; Joag, Pramod S.
2010-12-01
We study multipartite entanglement in a system consisting of indistinguishable fermions. Specifically, we have proposed a geometric entanglement measure for N spin-(1)/(2) fermions distributed over 2L modes (single-particle states). The measure is defined on the 2L qubit space isomorphic to the Fock space for 2L single-particle states. This entanglement measure is defined for a given partition of 2L modes containing m⩾2 subsets. Thus this measure applies to m⩽2L partite fermionic systems where L is any finite number, giving the number of sites. The Hilbert spaces associated with these subsets may have different dimensions. Further, we have defined the local quantum operations with respect to a given partition of modes. This definition is generic and unifies different ways of dividing a fermionic system into subsystems. We have shown, using a representative case, that the geometric measure is invariant under local unitary operators corresponding to a given partition. We explicitly demonstrate the use of the measure to calculate multipartite entanglement in some correlated electron systems.
Production of black holes and their angular momentum distribution in models with split fermions
NASA Astrophysics Data System (ADS)
Dai, De-Chang; Starkman, Glenn D.; Stojkovic, Dejan
2006-05-01
In models with TeV-scale gravity it is expected that mini black holes will be produced in near-future accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large n-n¯ oscillations, flavor changing neutral currents, large mixing between leptons, etc. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross section for the production of black holes and their angular momentum distribution in these models with “split” fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.
Entanglement and the fermion sign problem in auxiliary field quantum Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Broecker, Peter; Trebst, Simon
2016-08-01
Quantum Monte Carlo simulations of fermions are hampered by the notorious sign problem whose most striking manifestation is an exponential growth of sampling errors with the number of particles. With the sign problem known to be an NP-hard problem and any generic solution thus highly elusive, the Monte Carlo sampling of interacting many-fermion systems is commonly thought to be restricted to a small class of model systems for which a sign-free basis has been identified. Here we demonstrate that entanglement measures, in particular the so-called Rényi entropies, can intrinsically exhibit a certain robustness against the sign problem in auxiliary-field quantum Monte Carlo approaches and possibly allow for the identification of global ground-state properties via their scaling behavior even in the presence of a strong sign problem. We corroborate these findings via numerical simulations of fermionic quantum phase transitions of spinless fermions on the honeycomb lattice at and below half filling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz, Gerardo, E-mail: ortizg@indiana.edu; Cobanera, Emilio
We investigate Majorana modes of number-conserving fermionic superfluids from both basic physics principles, and concrete models perspectives. After reviewing a criterion for establishing topological superfluidity in interacting systems, based on many-body fermionic parity switches, we reveal the emergence of zero-energy modes anticommuting with fermionic parity. Those many-body Majorana modes are constructed as coherent superpositions of states with different number of fermions. While realization of Majorana modes beyond mean field is plausible, we show that the challenge to quantum-control them is compounded by particle-conservation, and more realistic protocols will have to balance engineering needs with astringent constraints coming from superselection rules.more » Majorana modes in number-conserving systems are the result of a peculiar interplay between quantum statistics, fermionic parity, and an unusual form of spontaneous symmetry breaking. We test these ideas on the Richardson–Gaudin–Kitaev chain, a number-conserving model solvable by way of the algebraic Bethe ansatz, and equivalent in mean field to a long-range Kitaev chain.« less
The linear -- non-linear frontier for the Goldstone Higgs
Gavela, M. B.; Kanshin, K.; Machado, P. A. N.; ...
2016-12-01
The minimalmore » $SO(5)/SO(4)$ sigma model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone boson ancestry. Varying the $$\\sigma$$ mass allows to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators.« less
Fermion-induced quantum criticality with two length scales in Dirac systems
NASA Astrophysics Data System (ADS)
Torres, Emilio; Classen, Laura; Herbut, Igor F.; Scherer, Michael M.
2018-03-01
The quantum phase transition to a Z3-ordered Kekulé valence bond solid in two-dimensional Dirac semimetals is governed by a fermion-induced quantum critical point, which renders the putatively discontinuous transition continuous. We study the resulting universal critical behavior in terms of a functional RG approach, which gives access to the scaling behavior on the symmetry-broken side of the phase transition, for general dimensions and number of Dirac fermions. In particular, we investigate the emergence of the fermion-induced quantum critical point for spacetime dimensions 2
Spectral properties of four-time fermionic Green's functions
Shvaika, A. M.
2016-09-01
The spectral relations for the four-time fermionic Green's functions are derived in the most general case. The terms which correspond to the zero-frequency anomalies, known before only for the bosonic Green's functions, are separated and their connection with the second cumulants of the Boltzmann distribution function is elucidated. Furthermore, the high-frequency expansions of the four-time fermionic Green's functions are provided for different directions in the frequency space.
Spectral properties of four-time fermionic Green's functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvaika, A. M.
The spectral relations for the four-time fermionic Green's functions are derived in the most general case. The terms which correspond to the zero-frequency anomalies, known before only for the bosonic Green's functions, are separated and their connection with the second cumulants of the Boltzmann distribution function is elucidated. Furthermore, the high-frequency expansions of the four-time fermionic Green's functions are provided for different directions in the frequency space.
Local moment relaxation in heavy-fermion compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simanek, E.; Sasahara, K.
1987-02-01
The Korringa relaxation rate for a local moment of an impurity in a heavy fermion compound is calculated using the model of Yoshimori and Kasai. Consistent with the recent ESR data for local moments in UBe/sub 13/, the relaxation rate is found to be unaffected by the heavy fermion renormalizations. This result can be traced to the single-site approximation and the weak k dependence of the conduction electron self-energy.
Three-dimensional Majorana fermions in chiral superconductors
Kozii, Vladyslav; Venderbos, Jorn W. F.; Fu, Liang
2016-12-07
Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary naturemore » of chiral pairing in spin-orbit–coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs 4Sb 12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.« less
How Kondo-holes create intense nanoscale heavy-fermion hybridization disorder
Hamidian, Mohammad H.; Schmidt, Andrew R.; Firmo, Inês A.; Allan, Milan P.; Bradley, Phelim; Garrett, Jim D.; Williams, Travis J.; Luke, Graeme M.; Dubi, Yonatan; Balatsky, Alexander V.; Davis, J. C.
2011-01-01
Replacing a magnetic atom by a spinless atom in a heavy-fermion compound generates a quantum state often referred to as a “Kondo-hole”. No experimental imaging has been achieved of the atomic-scale electronic structure of a Kondo-hole, or of their destructive impact [Lawrence JM, et al. (1996) Phys Rev B 53:12559–12562] [Bauer ED, et al. (2011) Proc Natl Acad Sci. 108:6857–6861] on the hybridization process between conduction and localized electrons which generates the heavy-fermion state. Here we report visualization of the electronic structure at Kondo-holes created by substituting spinless thorium atoms for magnetic uranium atoms in the heavy-fermion system URu2Si2. At each thorium atom, an electronic bound state is observed. Moreover, surrounding each thorium atom we find the unusual modulations of hybridization strength recently predicted to occur at Kondo-holes [Figgins J, Morr DK (2011) Phys Rev Lett 107:066401]. Then, by introducing the “hybridization gapmap” technique to heavy-fermion studies, we discover intense nanoscale heterogeneity of hybridization due to a combination of the randomness of Kondo-hole sites and the long-range nature of the hybridization oscillations. These observations provide direct insight into both the microscopic processes of heavy-fermion forming hybridization and the macroscopic effects of Kondo-hole doping. PMID:22006302
Three-dimensional Majorana fermions in chiral superconductors.
Kozii, Vladyslav; Venderbos, Jörn W F; Fu, Liang
2016-12-01
Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs 4 Sb 12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.
Three-dimensional Majorana fermions in chiral superconductors
Kozii, Vladyslav; Venderbos, Jörn W. F.; Fu, Liang
2016-01-01
Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit–coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs4Sb12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions. PMID:27957543
NASA Astrophysics Data System (ADS)
Bai, Ke-Ke; Qiao, Jia-Bin; Jiang, Hua; Liu, Haiwen; He, Lin
2017-05-01
Massless Dirac fermions in graphene provide unprecedented opportunities to realize the Klein paradox, which is one of the most exotic and striking properties of relativistic particles. In the seminal theoretical work [M. I. Katsnelson et al., Nat. Phys. 2, 620 (2006), 10.1038/nphys384], it was predicted that the massless Dirac fermions can pass through one-dimensional (1D) potential barriers unimpededly at normal incidence. Such a result seems to preclude confinement of the massless Dirac fermions in graphene by using 1D potential barriers. Here, we demonstrate both experimentally and theoretically that massless Dirac fermions can be trapped in a quasi-1D n p n junction of a continuous graphene monolayer. Because of highly anisotropic transmission of the massless Dirac fermions at n-p junction boundaries (the so-called Klein tunneling in graphene), charge carriers incident at large oblique angles will be reflected from one edge of the junction with high probability and continue to bounce from the opposite edge. Consequently, these electrons are trapped for a finite time to form quasibound states in the quasi-1D n p n junction. The quasibound states seen as pronounced resonances are probed and the quantum interference patterns arising from these states are directly visualized in our scanning tunneling microscope measurements.
Hierarchical fermions and detectable Z' from effective two-Higgs-triplet 3-3-1 model
NASA Astrophysics Data System (ADS)
Barreto, E. R.; Dias, A. G.; Leite, J.; Nishi, C. C.; Oliveira, R. L. N.; Vieira, W. C.
2018-03-01
We develop a SU (3 )C⊗SU (3 )L⊗U (1 )X model where the number of fermion generations is fixed by cancellation of gauge anomalies, being a type of 3-3-1 model with new charged leptons. Similarly to the economical 3-3-1 models, symmetry breaking is achieved effectively with two scalar triplets so that the spectrum of scalar particles at the TeV scale contains just two C P even scalars, one of which is the recently discovered Higgs boson, plus a charged scalar. Such a scalar sector is simpler than the one in the Two Higgs Doublet Model, hence more attractive for phenomenological studies, and has no flavor changing neutral currents (FCNC) mediated by scalars except for the ones induced by the mixing of Standard Model (SM) fermions with heavy fermions. We identify a global residual symmetry of the model which guarantees mass degeneracies and some massless fermions whose masses need to be generated by the introduction of effective operators. The fermion masses so generated require less fine-tuning for most of the SM fermions and FCNC are naturally suppressed by the small mixing between the third family of quarks and the rest. The effective setting is justified by an ultraviolet completion of the model from which the effective operators emerge naturally. A detailed particle mass spectrum is presented, and an analysis of the Z' production at the LHC run II is performed to show that it could be easily detected by considering the invariant mass and transverse momentum distributions in the dimuon channel.
The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave
NASA Astrophysics Data System (ADS)
Finster, Felix; Reintjes, Moritz
2017-05-01
We give a non-perturbative construction of a distinguished state for the quantized Dirac field in Minkowski space in the presence of a time-dependent external field of the form of a plane electromagnetic wave. By explicit computation of the fermionic signature operator, it is shown that the Dirac operator has the strong mass oscillation property. We prove that the resulting fermionic projector state is a Hadamard state.
Staggered fermions, zero modes, and flavor-singlet mesons
Donald, Gordon C; Davies, Christine T.H.; Follana, Eduardo; ...
2011-09-12
We examine the taste structure of eigenvectors of the staggered-fermion Dirac operator. We derive a set of conditions on the eigenvectors of modes with small eigenvalues (near-zero modes), such that staggered fermions reproduce the 't Hooft vertex in the continuum limit. We also show that, assuming these conditions, the correlators of flavor-singlet mesons are free of contributions singular in 1/m, where m is the quark mass. This conclusion holds also when a single flavor of sea quark is represented by the fourth root of the staggered-fermion determinant. We then test numerically, using the HISQ action, whether these conditions hold onmore » realistic lattice gauge fields. We find that the needed structure does indeed emerge.« less
Counting local integrals of motion in disordered spinless-fermion and Hubbard chains
NASA Astrophysics Data System (ADS)
Mierzejewski, Marcin; Kozarzewski, Maciej; Prelovšek, Peter
2018-02-01
We develop a procedure which systematically generates all conserved operators in the disordered models of interacting fermions. Among these operators, we identify and count the independent and local integrals of motion (LIOM), which represent the hallmark of the many-body localization (MBL). The method is tested first on the prototype disordered chain of interacting spinless fermions. As expected for full MBL, we find for large enough disorder NM=2M-1 independent and quasilocal LIOM with support on M consecutive sites. On the other hand, the study of the disordered Hubbard chain reveals that 3M-1
Split Orthogonal Group: A Guiding Principle for Sign-Problem-Free Fermionic Simulations
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Ye-Hua; Iazzi, Mauro; Troyer, Matthias; Harcos, Gergely
2015-12-01
We present a guiding principle for designing fermionic Hamiltonians and quantum Monte Carlo (QMC) methods that are free from the infamous sign problem by exploiting the Lie groups and Lie algebras that appear naturally in the Monte Carlo weight of fermionic QMC simulations. Specifically, rigorous mathematical constraints on the determinants involving matrices that lie in the split orthogonal group provide a guideline for sign-free simulations of fermionic models on bipartite lattices. This guiding principle not only unifies the recent solutions of the sign problem based on the continuous-time quantum Monte Carlo methods and the Majorana representation, but also suggests new efficient algorithms to simulate physical systems that were previously prohibitive because of the sign problem.
Particlelike solutions of the Einstein-Dirac equations
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel; Yau, Shing-Tung
1999-05-01
The coupled Einstein-Dirac equations for a static, spherically symmetric system of two fermions in a singlet spinor state are derived. Using numerical methods, we construct an infinite number of solitonlike solutions of these equations. The stability of the solutions is analyzed. For weak coupling (i.e., small rest mass of the fermions), all the solutions are linearly stable (with respect to spherically symmetric perturbations), whereas for stronger coupling, both stable and unstable solutions exist. For the physical interpretation, we discuss how the energy of the fermions and the (ADM) mass behave as functions of the rest mass of the fermions. Although gravitation is not renormalizable, our solutions of the Einstein-Dirac equations are regular and well behaved even for strong coupling.
Magnetotransport in Layered Dirac Fermion System Coupled with Magnetic Moments
NASA Astrophysics Data System (ADS)
Iwasaki, Yoshiki; Morinari, Takao
2018-03-01
We theoretically investigate the magnetotransport of Dirac fermions coupled with localized moments to understand the physical properties of the Dirac material EuMnBi2. Using an interlayer hopping form, which simplifies the complicated interaction between the layers of Dirac fermions and the layers of magnetic moments in EuMnBi2, the theory reproduces most of the features observed in this system. The hysteresis observed in EuMnBi2 can be caused by the valley splitting that is induced by the spin-orbit coupling and the external magnetic field with the molecular field created by localized moments. Our theory suggests that the magnetotransport in EuMnBi2 is due to the interplay among Dirac fermions, localized moments, and spin-orbit coupling.
Electrodynamic response of the type-II Weyl semimetal YbMnBi 2
Chinotti, M.; Pal, A.; Ren, W. J.; ...
2016-12-01
Weyl fermions play a major role in quantum field theory but have been quite elusive as fundamental particles. These quasi-two-dimensional bismuth layers based materials were recently designed and provide an arena for studying the interplay between anisotropic Dirac fermions, magnetism, and structural changes, allowing the formation of Weyl fermions in condensed matter. We perform an optical investigation of YbMnBi 2 , a representative type-II Weyl semimetal, and contrast its excitation spectrum with the optical response of the more conventional semimetal EuMnBi 2 . This comparative study allows us to disentangle the optical fingerprints of type-II Weyl fermions, but also challengesmore » the present theoretical understanding of their electrodynamic response.« less
NASA Astrophysics Data System (ADS)
Foster, Kerwin Crayton
The fractional quantum Hall effect (FQHE) occurs when a two-dimensional electron gas is placed in a strong magnetic field at low temperatures. When this effect occurs the Hall resistance, RH, defined to be the Hall voltage divided by the current, is quantized, with RH = (1/nu)h/ e2 where nu = p/q is the Landau level filling fraction; and p and q are relatively prime integers. For almost all observed FQHE states, q is odd with one notable exception: the nu = 5/2 FQHE state. Understanding the nature of this incompressible even-denominator state is one of the central questions in the theory of the FQHE and is the subject of this Dissertation. We use a powerful theoretical tool for studying the FQHE: composite fermion theory. Composite fermions can be viewed as electrons bound to an even number of magnetic flux quanta. Jain has shown that the FQHE for electrons can be viewed as an integer quantum Hall effect (p = 1) for composite fermions. More recently, Halperin, Lee and Read developed a successful theory of the compressible nu = 1/2 state using composite fermions. There is now compelling theoretical evidence that the 5/2 state is a so-called Moore-Read state---a state which can be viewed as a spin-polarized p-wave superconductor of composite fermions. We have developed a semi-phenomenological description of this state by modifying the Halperin-Lee-Read theory, adding a p-wave pairing interaction between composite fermions by hand. The electromagnetic response functions for the resulting superconducting state of composite fermions are then calculated. We show that these response functions exhibit the expected BCS 'coherence factor' effects, such as the Hebel-Slichter peak. Using the composite fermion response functions, we then calculate the corresponding electronic response functions using Chern-Simons theory. We find that in the electronic response, the most striking coherence factor effects (e.g., the Hebel-Slichter peak) are strongly suppressed. However, the low-temperature o = 2Delta threshold behavior does show clear coherence factor effects. Finally, we use our model to predict the wave-vector and frequency dependence of the longitudinal conductivity, sigmaxx( q, o), which can be measured in surface-acoustic-wave propagation experiments.
NASA Technical Reports Server (NTRS)
Strecker, Kevin; Truscott, Andrew; Partridge, Guthrie; Chen, Ying-Cheng
2003-01-01
Dual evaporation gives 50 million fermions at T = 0.1 T(sub F). Demonstrated suppression of interactions by coherent superposition - applicable to atomic clocks. Looking for evidence of Cooper pairing and superfluidity.
Calculation of K →π π decay amplitudes with improved Wilson fermion action in lattice QCD
NASA Astrophysics Data System (ADS)
Ishizuka, N.; Ishikawa, K.-I.; Ukawa, A.; Yoshié, T.
2015-10-01
We present our result for the K →π π decay amplitudes for both the Δ I =1 /2 and 3 /2 processes with the improved Wilson fermion action. Expanding on the earlier works by Bernard et al. and by Donini et al., we show that mixings with four-fermion operators with wrong chirality are absent even for the Wilson fermion action for the parity odd process in both channels due to CPS symmetry. Therefore, after subtraction of an effect from the lower dimensional operator, a calculation of the decay amplitudes is possible without complications from operators with wrong chirality, as for the case with chirally symmetric lattice actions. As a first step to verify the possibility of calculations with the Wilson fermion action, we consider the decay amplitudes at an unphysical quark mass mK˜2 mπ . Our calculations are carried out with Nf=2 +1 gauge configurations generated with the Iwasaki gauge action and nonperturbatively O (a )-improved Wilson fermion action at a =0.091 fm , mπ=280 MeV , and mK=580 MeV on a 323×64 (L a =2.9 fm ) lattice. For the quark loops in the penguin and disconnected contributions in the I =0 channel, the combined hopping parameter expansion and truncated solver method work very well for variance reduction. We obtain, for the first time with a Wilson-type fermion action, that Re A0=60 (36 )×1 0-8 GeV and Im A0=-67 (56 )×1 0-12 GeV for a matching scale q*=1 /a . The dependence on the matching scale q* for these values is weak.
Fermionic influence on inflationary fluctuations
NASA Astrophysics Data System (ADS)
Boyanovsky, Daniel
2016-04-01
Motivated by apparent persistent large scale anomalies in the cosmic microwave background we study the influence of fermionic degrees of freedom on the dynamics of inflaton fluctuations as a possible source of violations of (nearly) scale invariance on cosmological scales. We obtain the nonequilibrium effective action of an inflaton-like scalar field with Yukawa interactions (YD ,M) to light fermionic degrees of freedom both for Dirac and Majorana fields in de Sitter space-time. The effective action leads to Langevin equations of motion for the fluctuations of the inflaton-like field, with self-energy corrections and a stochastic Gaussian noise. We solve the Langevin equation in the super-Hubble limit implementing a dynamical renormalization group resummation. For a nearly massless inflaton its power spectrum of super-Hubble fluctuations is enhanced, P (k ;η )=(H/2 π )2eγt[-k η ] with γt[-k η ]=1/6 π2 [∑i =1 NDYi,D 2+2 ∑j =1 NMYj,M 2]{ln2[-k η ]-2 ln [-k η ]ln [-k η0]} for ND Dirac and NM Majorana fermions, and η0 is the renormalization scale at which the inflaton mass vanishes. The full power spectrum is shown to be renormalization group invariant. These corrections to the super-Hubble power spectrum entail a violation of scale invariance as a consequence of the coupling to the fermionic fields. The effective action is argued to be exact in the limit of a large number of fermionic fields. A cancellation between the enhancement from fermionic degrees of freedom and suppression from light scalar degrees of freedom conformally coupled to gravity suggests the possibility of a finely tuned supersymmetry among these fields.
Classification of compactified su( N c ) gauge theories with fermions in all representations
NASA Astrophysics Data System (ADS)
Anber, Mohamed M.; Vincent-Genod, Loïc
2017-12-01
We classify su( N c ) gauge theories on R^3× S^1 with massless fermions in higher representations obeying periodic boundary conditions along S^1 . In particular, we single out the class of theories that is asymptotically free and weakly coupled in the infrared, and therefore, is amenable to semi-classical treatment. Our study is conducted by carefully identifying the vacua inside the affine Weyl chamber using Verma bases and Frobenius formula techniques. Theories with fermions in pure representations are generally strongly coupled. The only exceptions are the four-index symmetric representation of su(2) and adjoint representation of su( N c ). However, we find a plethora of admissible theories with fermions in mixed representations. A sub-class of these theories have degenerate perturbative vacua separated by domain walls. In particular, su( N c ) theories with fermions in the mixed representations adjoint⊕fundamental and adjoint⊕two-index symmetric admit degenerate vacua that spontaneously break the parity P , charge conjugation C , and time reversal T symmetries. These are the first examples of strictly weakly coupled gauge theories on R^3× S^1 with spontaneously broken C , P , and T symmetries. We also compute the fermion zero modes in the background of monopole-instantons. The monopoles and their composites (topological molecules) proliferate in the vacuum leading to the confinement of electric charges. Interestingly enough, some theories have also accidental degenerate vacua, which are not related by any symmetry. These vacua admit different numbers of fermionic zero modes, and hence, different kinds of topological molecules. The lack of symmetry, however, indicates that such degeneracy might be lifted by higher order corrections. Finally, we study the general phase structure of adjoint⊕fundamental theories in the small circle and decompactification limits.
Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics.
Steglich, Frank; Wirth, Steffen
2016-08-01
This article overviews the development of heavy-fermion superconductivity, notably in such rare-earth-based intermetallic compounds which behave as Kondo-lattice systems. Heavy-fermion superconductivity is of unconventional nature in the sense that it is not mediated by electron-phonon coupling. Rather, in most cases the attractive interaction between charge carriers is apparently magnetic in origin. Fluctuations associated with an antiferromagnetic (AF) quantum critical point (QCP) play a major role. The first heavy-fermion superconductor CeCu2Si2 turned out to be the prototype of a larger group of materials for which the underlying, often pressure-induced, AF QCP is likely to be of a three-dimensional (3D) spin-density-wave (SDW) variety. For UBe13, the second heavy-fermion superconductor, a magnetic-field-induced 3D SDW QCP inside the superconducting phase can be conjectured. Such a 'conventional', itinerant QCP can be well understood within Landau's paradigm of order-parameter fluctuations. In contrast, the low-temperature normal-state properties of a few heavy-fermion superconductors are at odds with the Landau framework. They are characterized by an 'unconventional', local QCP which may be considered a zero-temperature 4 f-orbital selective Mott transition. Here, as concluded for YbRh2Si2, the breakdown of the Kondo effect concurring with the AF instability gives rise to an abrupt change of the Fermi surface. Very recently, superconductivity was discovered for this compound at ultra-low temperatures. Therefore, YbRh2Si2 along with CeRhIn5 under pressure provide a natural link between the large group of about fifty low-temperature heavy-fermion superconductors and other families of unconventional superconductors with substantially higher T c, e.g. the doped Mott insulators of the perovskite-type cuprates and the organic charge-transfer salts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinckmann, Jan; Woelfle, Peter
2004-11-01
The nearest-neighbor quantum antiferromagnetic (AF) Heisenberg model for spin-1/2 on a two-dimensional square lattice is studied in the auxiliary-fermion representation. Expressing spin operators by canonical fermionic particles requires a constraint on the fermion charge Q{sub i}=1 on each lattice site i, which is imposed approximately through the thermal average. The resulting interacting fermion system is first treated in mean-field theory (MFT), which yields an AF ordered ground state and spin waves in quantitative agreement with conventional spin-wave theory. At finite temperature a self-consistent approximation beyond mean field is required in order to fulfill the Mermin-Wagner theorem. We first discuss amore » fully self-consistent approximation, where fermions are renormalized due to fluctuations of their spin density, in close analogy to FLEX. While static properties like the correlation length, {xi}(T){proportional_to}exp(aJ/T), come out correctly, the dynamical response lacks the magnon-like peaks which would reflect the appearance of short-range order at low T. This drawback, which is caused by overdamping, is overcome in a 'minimal self-consistent approximation' (MSCA), which we derive from the equations of motion. The MSCA features dynamical scaling at small energy and temperature and is qualitatively correct both in the regime of order-parameter relaxation at long wavelengths {lambda}>{xi} and in the short-range-order regime at {lambda}<{xi}. We also discuss the impact of vertex corrections and the problem of pseudo-gap formation in the single-particle density of states due to long-range fluctuations. Finally we show that the (short-range) magnetic order in MFT and MSCA helps to fulfill the constraint on the local fermion occupancy.« less
Unitarity violation in noninteger dimensional Gross-Neveu-Yukawa model
NASA Astrophysics Data System (ADS)
Ji, Yao; Kelly, Michael
2018-05-01
We construct an explicit example of unitarity violation in fermionic quantum field theories in noninteger dimensions. We study the two-point correlation function of four-fermion operators. We compute the one-loop anomalous dimensions of these operators in the Gross-Neveu-Yukawa model. We find that at one-loop order, the four-fermion operators split into three classes with one class having negative norms. This implies that the theory violates unitarity, following the definition in Ref. [1].
Unconventional States of Matter with Cold Atoms and Dipolar Molecules
2014-08-20
ferromagnetic state. For alkaline-earth fermions, the large SU(2N) symmetry greatly enhances quantum spin fluctuations, which give rises to novel...both bosons and fermions, novel quantum magnetism with large spin SU(2N) al- kaline fermions, novel topological states with synthetic gauge fields...presented in Sect. 1.1. The study of novel quantum magnetism with large spin alkaline earth atoms is presented in Sect. 1.2. In Sect. 1.3, we present our
Fermion-to-qubit mappings with varying resource requirements for quantum simulation
NASA Astrophysics Data System (ADS)
Steudtner, Mark; Wehner, Stephanie
2018-06-01
The mapping of fermionic states onto qubit states, as well as the mapping of fermionic Hamiltonian into quantum gates enables us to simulate electronic systems with a quantum computer. Benefiting the understanding of many-body systems in chemistry and physics, quantum simulation is one of the great promises of the coming age of quantum computers. Interestingly, the minimal requirement of qubits for simulating Fermions seems to be agnostic of the actual number of particles as well as other symmetries. This leads to qubit requirements that are well above the minimal requirements as suggested by combinatorial considerations. In this work, we develop methods that allow us to trade-off qubit requirements against the complexity of the resulting quantum circuit. We first show that any classical code used to map the state of a fermionic Fock space to qubits gives rise to a mapping of fermionic models to quantum gates. As an illustrative example, we present a mapping based on a nonlinear classical error correcting code, which leads to significant qubit savings albeit at the expense of additional quantum gates. We proceed to use this framework to present a number of simpler mappings that lead to qubit savings with a more modest increase in gate difficulty. We discuss the role of symmetries such as particle conservation, and savings that could be obtained if an experimental platform could easily realize multi-controlled gates.
New directions in the pursuit of Majorana fermions in solid state systems.
Alicea, Jason
2012-07-01
The 1937 theoretical discovery of Majorana fermions-whose defining property is that they are their own anti-particles-has since impacted diverse problems ranging from neutrino physics and dark matter searches to the fractional quantum Hall effect and superconductivity. Despite this long history the unambiguous observation of Majorana fermions nevertheless remains an outstanding goal. This review paper highlights recent advances in the condensed matter search for Majorana that have led many in the field to believe that this quest may soon bear fruit. We begin by introducing in some detail exotic 'topological' one- and two-dimensional superconductors that support Majorana fermions at their boundaries and at vortices. We then turn to one of the key insights that arose during the past few years; namely, that it is possible to 'engineer' such exotic superconductors in the laboratory by forming appropriate heterostructures with ordinary s-wave superconductors. Numerous proposals of this type are discussed, based on diverse materials such as topological insulators, conventional semiconductors, ferromagnetic metals and many others. The all-important question of how one experimentally detects Majorana fermions in these setups is then addressed. We focus on three classes of measurements that provide smoking-gun Majorana signatures: tunneling, Josephson effects and interferometry. Finally, we discuss the most remarkable properties of condensed matter Majorana fermions-the non-Abelian exchange statistics that they generate and their associated potential for quantum computation.
NASA Astrophysics Data System (ADS)
Wehling, T. O.; Black-Schaffer, A. M.; Balatsky, A. V.
2014-01-01
A wide range of materials, like d-wave superconductors, graphene, and topological insulators, share a fundamental similarity: their low-energy fermionic excitations behave as massless Dirac particles rather than fermions obeying the usual Schrodinger Hamiltonian. This emergent behavior of Dirac fermions in condensed matter systems defines the unifying framework for a class of materials we call "Dirac materials''. In order to establish this class of materials, we illustrate how Dirac fermions emerge in multiple entirely different condensed matter systems and we discuss how Dirac fermions have been identified experimentally using electron spectroscopy techniques (angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy). As a consequence of their common low-energy excitations, this diverse set of materials shares a significant number of universal properties in the low-energy (infrared) limit. We review these common properties including nodal points in the excitation spectrum, density of states, specific heat, transport, thermodynamic properties, impurity resonances, and magnetic field responses, as well as discuss many-body interaction effects. We further review how the emergence of Dirac excitations is controlled by specific symmetries of the material, such as time-reversal, gauge, and spin-orbit symmetries, and how by breaking these symmetries a finite Dirac mass is generated. We give examples of how the interaction of Dirac fermions with their distinct real material background leads to rich novel physics with common fingerprints such as the suppression of back scattering and impurity-induced resonant states.
Thermoelectric Transport Signatures of Dirac Composite Fermions in the Half-Filled Landau Level
NASA Astrophysics Data System (ADS)
Potter, Andrew C.; Serbyn, Maksym; Vishwanath, Ashvin
2016-07-01
The half-filled Landau level is expected to be approximately particle-hole symmetric, which requires an extension of the Halperin-Lee-Read (HLR) theory of the compressible state observed at this filling. Recent work indicates that, when particle-hole symmetry is preserved, the composite fermions experience a quantized π -Berry phase upon winding around the composite Fermi surface, analogous to Dirac fermions at the surface of a 3D topological insulator. In contrast, the effective low-energy theory of the composite fermion liquid originally proposed by HLR lacks particle-hole symmetry and has vanishing Berry phase. In this paper, we explain how thermoelectric transport measurements can be used to test the Dirac nature of the composite fermions by quantitatively extracting this Berry phase. First, we point out that longitudinal thermopower (Seebeck effect) is nonvanishing because of the unusual nature of particle-hole symmetry in this context and is not sensitive to the Berry phase. In contrast, we find that off-diagonal thermopower (Nernst effect) is directly related to the topological structure of the composite Fermi surface, vanishing for zero Berry phase and taking its maximal value for π Berry phase. In contrast, in purely electrical transport signatures, the Berry phase contributions appear as small corrections to a large background signal, making the Nernst effect a promising diagnostic of the Dirac nature of composite fermions.
Taste symmetry breaking with hypercubic-smeared staggered fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Taegil; Adams, David H.; Kim, Hyung-Jin
2008-05-01
We study the impact of hypercubic (HYP) smearing on the size of taste-breaking for staggered fermions, comparing to unimproved and to asqtad-improved staggered fermions. As in previous studies, we find a substantial reduction in taste-breaking compared to unimproved staggered fermions (by a factor of 4-7 on lattices with spacing a{approx_equal}0.1 fm). In addition, we observe that discretization effects of next-to-leading order in the chiral expansion (O(a{sup 2}p{sup 2})) are markedly reduced by HYP smearing. Compared to asqtad valence fermions, we find that taste-breaking in the pion spectrum is reduced by a factor of 2.5-3, down to a level comparable tomore » the expected size of generic O(a{sup 2}) effects. Our results suggest that, once one reaches a lattice spacing of a{approx_equal}0.09 fm, taste-breaking will be small enough after HYP smearing that one can use a modified power counting in which O(a{sup 2})<
Fermion-number violation in regularizations that preserve fermion-number symmetry
NASA Astrophysics Data System (ADS)
Golterman, Maarten; Shamir, Yigal
2003-01-01
There exist both continuum and lattice regularizations of gauge theories with fermions which preserve chiral U(1) invariance (“fermion number”). Such regularizations necessarily break gauge invariance but, in a covariant gauge, one recovers gauge invariance to all orders in perturbation theory by including suitable counterterms. At the nonperturbative level, an apparent conflict then arises between the chiral U(1) symmetry of the regularized theory and the existence of ’t Hooft vertices in the renormalized theory. The only possible resolution of the paradox is that the chiral U(1) symmetry is broken spontaneously in the enlarged Hilbert space of the covariantly gauge-fixed theory. The corresponding Goldstone pole is unphysical. The theory must therefore be defined by introducing a small fermion-mass term that breaks explicitly the chiral U(1) invariance and is sent to zero after the infinite-volume limit has been taken. Using this careful definition (and a lattice regularization) for the calculation of correlation functions in the one-instanton sector, we show that the ’t Hooft vertices are recovered as expected.
Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer.
Setia, Kanav; Whitfield, James D
2018-04-28
Present quantum computers often work with distinguishable qubits as their computational units. In order to simulate indistinguishable fermionic particles, it is first required to map the fermionic state to the state of the qubits. The Bravyi-Kitaev Superfast (BKSF) algorithm can be used to accomplish this mapping. The BKSF mapping has connections to quantum error correction and opens the door to new ways of understanding fermionic simulation in a topological context. Here, we present the first detailed exposition of the BKSF algorithm for molecular simulation. We provide the BKSF transformed qubit operators and report on our implementation of the BKSF fermion-to-qubits transform in OpenFermion. In this initial study of a hydrogen molecule we have compared BKSF, Jordan-Wigner, and Bravyi-Kitaev transforms under the Trotter approximation. The gate count to implement BKSF is lower than Jordan-Wigner but higher than Bravyi-Kitaev. We considered different orderings of the exponentiated terms and found lower Trotter errors than the previously reported for Jordan-Wigner and Bravyi-Kitaev algorithms. These results open the door to the further study of the BKSF algorithm for quantum simulation.
Multiple quantum phase transitions and superconductivity in Ce-based heavy fermions.
Weng, Z F; Smidman, M; Jiao, L; Lu, Xin; Yuan, H Q
2016-09-01
Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology.
Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6
NASA Astrophysics Data System (ADS)
Custers, J.; Lorenzer, K.-A.; Müller, M.; Prokofiev, A.; Sidorenko, A.; Winkler, H.; Strydom, A. M.; Shimura, Y.; Sakakibara, T.; Yu, R.; Si, Q.; Paschen, S.
2012-03-01
How ground states of quantum matter transform between one another reveals deep insights into the mechanisms stabilizing them. Correspondingly, quantum phase transitions are explored in numerous materials classes, with heavy-fermion compounds being among the most prominent ones. Recent studies in an anisotropic heavy-fermion compound have shown that different types of transitions are induced by variations of chemical or external pressure, raising the question of the extent to which heavy-fermion quantum criticality is universal. To make progress, it is essential to broaden both the materials basis and the microscopic parameter variety. Here, we identify a cubic heavy-fermion material as exhibiting a field-induced quantum phase transition, and show how the material can be used to explore one extreme of the dimensionality axis. The transition between two different ordered phases is accompanied by an abrupt change of Fermi surface, reminiscent of what happens across the field-induced antiferromagnetic to paramagnetic transition in the anisotropic YbRh2Si2. This finding leads to a materials-based global phase diagram—a precondition for a unified theoretical description.
Scattering of fermions in the Yukawa theory coupled to unimodular gravity
NASA Astrophysics Data System (ADS)
Gonzalez-Martin, S.; Martin, C. P.
2018-03-01
We compute the lowest order gravitational UV divergent radiative corrections to the S matrix element of the fermion + fermion→ fermion + fermion scattering process in the massive Yukawa theory, coupled either to Unimodular Gravity or to General Relativity. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contribution in Dimensional Regularization. This is a nontrivial result, since in the classical action of Unimodular Gravity coupled to the Yukawa theory, the graviton field does not couple neither to the mass operator nor to the Yukawa operator. This is unlike the General Relativity case. The agreement found points in the direction that Unimodular Gravity and General Relativity give rise to the same quantum theory when coupled to matter, as long as the Cosmological Constant vanishes. Along the way we have come across another unexpected cancellation of UV divergences for both Unimodular Gravity and General Relativity, resulting in the UV finiteness of the one-loop and κ y^2 order of the vertex involving two fermions and one graviton only.
Interplay between magnetism and relativistic fermions in Eu doped (Sr/Ba)MnSb2
NASA Astrophysics Data System (ADS)
Liu, Jinyu; Hu, Jin; Zhu, Yanglin; Chuang, Alyssa; Graf, David; Jaime, Marcelo; Balakirev, Fedor; Weickert, Franziska; Zhang, Qiang; Ditusa, John; Wu, Yan; Cao, Huibo; Mao, Zhiqiang
Layered compounds AMnBi2 (A =Ca, Sr, Ba, Eu, and Yb) have been established as Dirac materials with fascinating properties. In our previous work, we have demonstrated that Sr1-y Mn1-z Sb2 (y, z <0.1), isostructural to AMnBi2, not only host relativistic fermions, but also exhibit ferromagnetic properties, with its ferromagnetism being coupled to the relativistic fermions' transport. To gain further insight into the relativistic fermion-magnetism coupling, we have synthesized a series of Eu doped (Sr/Ba)MnSb2 single crystals and found Eu moments order antiferromagnetically. Through neutron scattering experiments, we determined the magnetic structures for Sr1-xEuxMnSb2 with x = 0.2, 0.5, and 0.8. From magnetotransport measurements, we find the Eu antiferromagnetism is also coupled to relativistic fermion transport. More importantly, we observed a novel quantum phase with saturated magnetoresistivity near the quantum limit for the 10% Eu doped BaMnSb2 sample. We will discuss possible mechanisms for this novel phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Jainendra
2011-07-15
The fractional quantum Hall effect (FQHE) is one of the most amazing collective states discovered in modern times. A remarkably detailed and accurate understanding of its nonperturbative physics has been achieved in terms of a new class of exotic particles called composite fermions. I will begin with a brief review of the composite fermion theory and its outstanding successes. The rest of the talk will be concerned with fractional quantum Hall effect in graphene, observed recently. I will present results of theoretical studies that demonstrate that composite fermions are formed in graphene as well, but the spin and valley degeneraciesmore » and the linear dispersion of electrons produce interesting new physics relative to that in the usual two-dimensional GaAs systems. Composite fermion theory allows detailed predictions about FQHE in graphene in regimes when either or both of the spin and valley degeneracies are broken. I will discuss the relevance of our theory to recent experiments. This work on FQHE in graphene has been performed in collaboration with Csaba Toke.« less
Fermion-induced quantum critical points in two-dimensional Dirac semimetals
NASA Astrophysics Data System (ADS)
Jian, Shao-Kai; Yao, Hong
2017-11-01
In this paper we investigate the nature of quantum phase transitions between two-dimensional Dirac semimetals and Z3-ordered phases (e.g., Kekule valence-bond solid), where cubic terms of the order parameter are allowed in the quantum Landau-Ginzberg theory and the transitions are putatively first order. From large-N renormalization-group (RG) analysis, we find that fermion-induced quantum critical points (FIQCPs) [Z.-X. Li et al., Nat. Commun. 8, 314 (2017), 10.1038/s41467-017-00167-6] occur when N (the number of flavors of four-component Dirac fermions) is larger than a critical value Nc. Remarkably, from the knowledge of space-time supersymmetry, we obtain an exact lower bound for Nc, i.e., Nc>1 /2 . (Here the "1/2" flavor of four-component Dirac fermions is equivalent to one flavor of four-component Majorana fermions). Moreover, we show that the emergence of two length scales is a typical phenomenon of FIQCPs and obtain two different critical exponents, i.e., ν ≠ν' , by large-N RG calculations. We further give a brief discussion of possible experimental realizations of FIQCPs.
NASA Astrophysics Data System (ADS)
Sepehri, Alireza; Shoorvazi, Somayyeh
In this paper, we will consider the birth and evolution of fields during formation of N-dimensional manifolds from joining point-like ones. We will show that at the beginning, only there are point-like manifolds which some strings are attached to them. By joining these manifolds, 1-dimensional manifolds are appeared and gravity, fermion, and gauge fields are emerged. By coupling these manifolds, higher dimensional manifolds are produced and higher orders of fermion, gauge fields and gravity are emerged. By decaying N-dimensional manifold, two child manifolds and a Chern-Simons one are born and anomaly is emerged. The Chern-Simons manifold connects two child manifolds and leads to the energy transmission from the bulk to manifolds and their expansion. We show that F-gravity can be emerged during the formation of N-dimensional manifold from point-like manifolds. This type of F-gravity includes both type of fermionic and bosonic gravity. G-fields and also C-fields which are produced by fermionic strings produce extra energy and change the gravity.
Minimally doubled fermions and spontaneous chiral symmetry breaking
NASA Astrophysics Data System (ADS)
Osmanaj (Zeqirllari), Rudina; Hyka (Xhako), Dafina
2018-03-01
Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks - Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss - Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.
Effective four-fermion operators in top physics: A roadmap
NASA Astrophysics Data System (ADS)
Aguilar-Saavedra, J. A.
2011-02-01
We write down a minimal basis for dimension-six gauge-invariant four-fermion operators, with some operator replacements with respect to previous ones which make it simpler for calculations. Using this basis we classify all four-fermion operator contributions involving one or two top quarks. Taking into account the different fermion chiralities, possible colour contractions and independent flavour combinations, a total number of 572 gauge-invariant operators are involved. We apply this to calculate all three-body top decay widths t→dud, t→dei+ν, t→uuu, t→uej+ei-, t→uνν (with i,j,k generation indices) mediated by dimension-six four-fermion operators, including the interference with the Standard Model amplitudes when present. All single top production cross sections in pp, pp¯ and ee collisions are calculated as well, namely ud→dt, dd→ut, ud→dt, uu→ut, uu→ut, ee→ut and the charge conjugate processes. We also compute all top pair production cross sections, uu→tt¯, dd→tt¯, uu→tt and ee→tt¯. Our results are completely general, without assuming any particular relation among effective operator coefficients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Junzhang; Yi, Changjiang; Lv, Baiqing
Topological insulators (TIs) host novel states of quantum matter characterized by nontrivial conducting boundary states connecting valence and conduction bulk bands. All TIs discovered experimentally so far rely on either time-reversal or mirror crystal symmorphic symmetry to protect massless Dirac-like boundary states. Several materials were recently proposed to be TIs with nonsymmorphic symmetry, where a glide mirror protects exotic surface fermions with hourglass-shaped dispersion. However, an experimental confirmation of this new fermion is missing. Using angle-resolved photoemission spectroscopy, we provide experimental evidence of hourglass fermions on the (010) surface of crystalline KHgSb, whereas the (001) surface has no boundary state,more » in agreement with first-principles calculations. Our study will stimulate further research activities of topological properties of nonsymmorphic materials.« less
Scattering length of composite bosons in the three-dimensional BCS-BEC crossover
NASA Astrophysics Data System (ADS)
Salasnich, L.; Bighin, G.
2015-03-01
We study the zero-temperature grand potential of a three-dimensional superfluid made of ultracold fermionic alkali-metal atoms in the BCS-BEC crossover. In particular, we analyze the zero-point energy of both fermionic single-particle excitations and bosonic collective excitations. The bosonic elementary excitations, which are crucial to obtain a reliable equation of state in the Bose-Einstein condensate regime, are obtained with a low-momentum expansion up to the forth order of the quadratic (Gaussian) action of the fluctuating pairing field. By performing a cutoff regularization and renormalization of Gaussian fluctuations, we find that the scattering length aB of composite bosons, bound states of fermionic pairs, is given by aB=(2 /3 ) aF , where aF is the scattering length of fermions.
Ma, Junzhang; Yi, Changjiang; Lv, Baiqing; ...
2017-05-05
Topological insulators (TIs) host novel states of quantum matter characterized by nontrivial conducting boundary states connecting valence and conduction bulk bands. All TIs discovered experimentally so far rely on either time-reversal or mirror crystal symmorphic symmetry to protect massless Dirac-like boundary states. Several materials were recently proposed to be TIs with nonsymmorphic symmetry, where a glide mirror protects exotic surface fermions with hourglass-shaped dispersion. However, an experimental confirmation of this new fermion is missing. Using angle-resolved photoemission spectroscopy, we provide experimental evidence of hourglass fermions on the (010) surface of crystalline KHgSb, whereas the (001) surface has no boundary state,more » in agreement with first-principles calculations. Our study will stimulate further research activities of topological properties of nonsymmorphic materials.« less
Solution to the sign problem in a frustrated quantum impurity model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hann, Connor T., E-mail: connor.hann@yale.edu; Huffman, Emilie; Chandrasekharan, Shailesh
2017-01-15
In this work we solve the sign problem of a frustrated quantum impurity model consisting of three quantum spin-half chains interacting through an anti-ferromagnetic Heisenberg interaction at one end. We first map the model into a repulsive Hubbard model of spin-half fermions hopping on three independent one dimensional chains that interact through a triangular hopping at one end. We then convert the fermion model into an inhomogeneous one dimensional model and express the partition function as a weighted sum over fermion worldline configurations. By imposing a pairing of fermion worldlines in half the space we show that all negative weightmore » configurations can be eliminated. This pairing naturally leads to the original frustrated quantum spin model at half filling and thus solves its sign problem.« less
Annihilation of singlet fermionic dark matter into two photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettefaghi, M.M.; Moazzemi, R., E-mail: mettefaghi@qom.ac.ir, E-mail: r.moazzemi@qom.ac.ir
2013-02-01
We consider an extension of the standard model in which a singlet fermionic particle, to serve as cold dark matter, and a singlet Higgs are added. We perform a reanalysis on the free parameters. In particular, demanding a correct relic abundance of dark matter, we derive and plot the coupling of the singlet fermion with the singlet Higgs, g{sub s}, versus the dark matter mass. We analytically compute the pair annihilation cross section of singlet fermionic dark matter into two photons. The thermally averaged of this cross section is calculated for wide range of energies and plotted versus dark mattermore » mass using g{sub s} consistent with the relic abundance condition. We also compare our results with the Fermi-Lat observations.« less
Dirac fermions in an antiferromagnetic semimetal
NASA Astrophysics Data System (ADS)
Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng
2016-12-01
Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals. All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry . Here we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections and demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.
Landau Levels of Majorana Fermions in a Spin Liquid.
Rachel, Stephan; Fritz, Lars; Vojta, Matthias
2016-04-22
Majorana fermions, originally proposed as elementary particles acting as their own antiparticles, can be realized in condensed-matter systems as emergent quasiparticles, a situation often accompanied by topological order. Here we propose a physical system which realizes Landau levels-highly degenerate single-particle states usually resulting from an orbital magnetic field acting on charged particles-for Majorana fermions. This is achieved in a variant of a quantum spin system due to Kitaev which is distorted by triaxial strain. This strained Kitaev model displays a spin-liquid phase with charge-neutral Majorana-fermion excitations whose spectrum corresponds to that of Landau levels, here arising from a tailored pseudomagnetic field. We show that measuring the dynamic spin susceptibility reveals the Landau-level structure by a remarkable mechanism of probe-induced bound-state formation.
Baryon spectrum of SU(4) composite Higgs theory with two distinct fermion representations
NASA Astrophysics Data System (ADS)
Ayyar, Venkitesh; DeGrand, Thomas; Hackett, Daniel C.; Jay, William I.; Neil, Ethan T.; Shamir, Yigal; Svetitsky, Benjamin
2018-06-01
We use lattice simulations to compute the baryon spectrum of SU(4) lattice gauge theory coupled to dynamical fermions in the fundamental and two-index antisymmetric (sextet) representations simultaneously. This model is closely related to a composite Higgs model in which the chimera baryon made up of fermions from both representations plays the role of a composite top-quark partner. The dependence of the baryon masses on each underlying fermion mass is found to be generally consistent with a quark-model description and large-Nc scaling. We combine our numerical results with experimental bounds on the scale of the new strong sector to estimate a lower bound on the mass of the top-quark partner. We discuss some theoretical uncertainties associated with this estimate.
Gravitationally bound BCS state as dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Stephon; Cormack, Sam, E-mail: stephon_alexander@brown.edu, E-mail: samuel.c.cormack.gr@dartmouth.edu
2017-04-01
We explore the possibility that fermionic dark matter undergoes a BCS transition to form a superfluid. This requires an attractive interaction between fermions and we describe a possible source of this interaction induced by torsion. We describe the gravitating fermion system with the Bogoliubov-de Gennes formalism in the local density approximation. We solve the Poisson equation along with the equations for the density and gap energy of the fermions to find a self-gravitating, superfluid solution for dark matter halos. In order to produce halos the size of dwarf galaxies, we require a particle mass of ∼ 200 eV. We findmore » a maximum attractive coupling strength before the halo becomes unstable. If dark matter halos do have a superfluid component, this raises the possibility that they contain vortex lines.« less
Birefringent breakup of Dirac fermions on a square optical lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennett, Malcolm P.; Komeilizadeh, Nazanin; Kaveh, Kamran
2011-05-15
We introduce a lattice model for fermions in a spatially periodic magnetic field that also has spatially periodic hopping amplitudes. We discuss how this model might be realized with cold atoms in an artificial magnetic field on a square optical lattice. When there is an average flux of half a flux quantum per plaquette, the spectrum of low-energy excitations can be described by massless Dirac fermions in which the usually doubly degenerate Dirac cones split into cones with different ''speeds of light.'' These gapless birefringent Dirac fermions arise because of broken chiral symmetry in the kinetic energy term of themore » effective low-energy Hamiltonian. We characterize the effects of various perturbations to the low-energy spectrum, including staggered potentials, interactions, and domain-wall topological defects.« less
Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models
NASA Astrophysics Data System (ADS)
Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun
2018-03-01
The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.
Classification of symmetry-protected phases for interacting fermions in two dimensions
NASA Astrophysics Data System (ADS)
Cheng, Meng; Bi, Zhen; You, Yi-Zhuang; Gu, Zheng-Cheng
2018-05-01
Recently, it has been established that two-dimensional bosonic symmetry-protected topological (SPT) phases with on-site unitary symmetry G can be completely classified by the group cohomology H3( G ,U (1 ) ) . Later, group supercohomology was proposed as a partial classification for SPT phases of interacting fermions. In this work, we revisit this problem based on the algebraic theory of symmetry and defects in two-dimensional topological phases. We reproduce the partial classifications given by group supercohomology, and we also show that with an additional H1(G ,Z2) structure, a complete classification of SPT phases for two-dimensional interacting fermion systems with a total symmetry group G ×Z2f is obtained. We also discuss the classification of interacting fermionic SPT phases protected by time-reversal symmetry.
Adding gauge fields to Kaplan's fermions
NASA Astrophysics Data System (ADS)
Blum, T.; Kärkkäinen, Leo
1994-04-01
We experiment with adding dynamical gauge field to Kaplan (defect) fermions. In the case of U (1) gauge theory we use an inhomogenous Higgs mechanism to restrict the 3d gauge dynamics to a planar 2d defect. In our simulations the 3d theory produce the correct 2d gauge dynamics. We measure fermion propagators with dynamical gauge fields. They posses the correct chiral structure. The fermions at the boundary of the support of the gauge field (waveguide) are non-chiral, and have a mass two times heavier than the chiral modes. Moreover, these modes cannot be excited by a source at the defect; implying that they are dynamically decoupled. We have also checked that the anomaly relation is fullfilled for the case of a smooth external gauge field.
Local Hamiltonian Monte Carlo study of the massive schwinger model, the decoupling of heavy flavours
NASA Astrophysics Data System (ADS)
Ranft, J.
1983-12-01
The massive Schwinger model with two flavours is studied using the local hamiltonian lattice Monte Carlo method. Chiral symmetry breaking is studied using the fermion condensate as order parameter. For a small ratio of the two fermion masses, degeneracy of the two flavours is found. For a large ratio of the masses, the heavy flavour decouples and the light fermion behaves like in the one flavour Schwinger model. On leave from Sektion Physik, Karl-Marx-Universität, Leipzig, GDR.
Fermions tunneling from the Horowitz-Strominger Dilaton black hole
NASA Astrophysics Data System (ADS)
Li, Qiang; Zeng, Xiaoxiong
2009-06-01
Based on the work of Kerner and Mann, fermions tunneling from the Horowitz-Strominger Dilaton black hole on the membrane is studied. Owing to the coupling among electromagnetic field, matter field and gravity field, the Dirac equation of charged particles is introduced, and according to that, the expected emission temperature is obtained. After the self-gravitational interaction is considered, it is found that the tunneling rate of fermions also satisfies the underlying Unitary theory as the case of scalar particles.
Global analysis of fermion mixing with exotics
NASA Technical Reports Server (NTRS)
Nardi, Enrico; Roulet, Esteban; Tommasini, Daniele
1991-01-01
The limits are analyzed on deviation of the lepton and quark weak-couplings from their standard model values in a general class of models where the known fermions are allowed to mix with new heavy particles with exotic SU(2) x U(1) quantum number assignments (left-handed singlets or right-handed doublets). These mixings appear in many extensions of the electroweak theory such as models with mirror fermions, E(sub 6) models, etc. The results update previous analyses and improve considerably the existing bounds.
Gapped fermionic spectrum from a domain wall in seven dimension
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Subir; Rai, Nishal
2018-05-01
We obtain a domain wall solution in maximally gauged seven dimensional supergravity, which interpolates between two AdS spaces and spontaneously breaks a U (1) symmetry. We analyse frequency dependence of conductivity and find power law behaviour at low frequency. We consider certain fermions of supergravity in the background of this domain wall and compute holographic spectral function of the operators in the dual six dimensional theory. We find fermionic operators involving bosons with non-zero expectation value lead to gapped spectrum.
The Feynman-Vernon Influence Functional Approach in QED
NASA Astrophysics Data System (ADS)
Biryukov, Alexander; Shleenkov, Mark
2016-10-01
In the path integral approach we describe evolution of interacting electromagnetic and fermionic fields by the use of density matrix formalism. The equation for density matrix and transitions probability for fermionic field is obtained as average of electromagnetic field influence functional. We obtain a formula for electromagnetic field influence functional calculating for its various initial and final state. We derive electromagnetic field influence functional when its initial and final states are vacuum. We present Lagrangian for relativistic fermionic field under influence of electromagnetic field vacuum.
Coherent vs. incoherent pairing in 2D systems near magnetic instability
NASA Astrophysics Data System (ADS)
Abanov, Ar.; Chubukov, A. V.; Finkel'stein, A. M.
2001-05-01
We study the superconductivity in 2D fermionic systems near antiferromagnetic instability, assuming that the pairing is mediated by spin fluctuations. This pairing involves fully incoherent fermions and diffusive spin excitations. We show that the competition between fermionic incoherence and strong pairing interaction yields the pairing instability temperature Tins which increases and saturates as the magnetic correlation length ξ → ∞. We argue that in this quantum-critical regime the pairing problem is qualitatively different from the BCS one.
On bound-states of the Gross Neveu model with massive fundamental fermions
NASA Astrophysics Data System (ADS)
Frishman, Yitzhak; Sonnenschein, Jacob
2018-01-01
In the search for QFT's that admit boundstates, we reinvestigate the two dimensional Gross-Neveu model, but with massive fermions. By computing the self-energy for the auxiliary boundstate field and the effective potential, we show that there are no bound states around the lowest minimum, but there is a meta-stable bound state around the other minimum, a local one. The latter decays by tunneling. We determine the dependence of its lifetime on the fermion mass and coupling constant.
NASA Astrophysics Data System (ADS)
Moessner, Roderich
Condensed matter systems provide emergent mini-universes in which quasiparticles may exist which do not correspond to any experimentally detected elementary particle. Topological quantum materials have been particularly productive in this regard, with the present search focussing on Majorana fermions, known theoretically already for decades. Here, we discuss manifestations of magnetic Majorana fermions in the Kitaev model. We place particular emphasis on their fate when perturbations, such as Heisenberg terms, are added to the ideal model system, and address experimental signatures of their vestiges in phases adjacent to the spin liquid.
Entanglement of Dirac fields in an expanding spacetime
NASA Astrophysics Data System (ADS)
Fuentes, Ivette; Mann, Robert B.; Martín-Martínez, Eduardo; Moradi, Shahpoor
2010-08-01
We study the entanglement generated between Dirac modes in a 2-dimensional conformally flat Robertson-Walker universe. We find radical qualitative differences between the bosonic and fermionic entanglement generated by the expansion. The particular way in which fermionic fields get entangled encodes more information about the underlying spacetime than the bosonic case, thereby allowing us to reconstruct the parameters of the history of the expansion. This highlights the importance of bosonic/fermionic statistics to account for relativistic effects on the entanglement of quantum fields.
Magnetotransport study of Dirac fermions in YbMnBi 2 antiferromagnet
Wang, Aifeng; Zaliznyak, I.; Ren, Weijun; ...
2016-10-15
We report quantum transport and Dirac fermions in YbMnBi 2 single crystals. YbMnBi 2 is a layered material with anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, and small cyclotron mass indicate the presence of Dirac fermions. Lastly, angular-dependent magnetoresistance indicates a possible quasi-two-dimensional Fermi surface, whereas the deviation from the nontrivial Berry phase expected for Dirac states suggests the contribution of parabolic bands at the Fermi level or spin-orbit coupling.
Is the Luttinger Liquid a New State of Matter?
NASA Astrophysics Data System (ADS)
Afonin, V. V.; Petrov, V. Y.
2010-02-01
We are demonstrating that the Luttinger model with short range interaction can be treated as a type of Fermi liquid. In line with the main dogma of Landau’s theory one can define a fermion excitation renormalized by interaction and show that in terms of these fermions any excited state of the system is described by free particles. The fermions are a mixture of renormalized right and left electrons. The electric charge and chirality of the Landau quasi-particle is discussed.
The realization of Majorana fermions in Kitaev Quantum Spin Lattice
NASA Astrophysics Data System (ADS)
Do, Seung-Hwan; Park, Sang-Youn; Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi; Kwon, Y. S.; Adroja, D. T.; Voneshen, D.; Park, J.-H.; Choi, Kwang-Yong; Ji, Sungdae
The Kitaev honeycomb lattice is envisioned as an ideal host for Majorana fermions that are created out of the spin liquid background. Combining specific heat and neutron scattering experiments with theoretical calculations, here, we establish a hitherto unparalleled spin fractionalization to two species of Majorana fermions in the Kitaev material α-RuCl3. The specific heat data unveil a two-stage release of magnetic entropy by (R/2)ln2 and the T-linear dependence at intermediate temperatures. Our inelastic neutron scattering measurements further corroborate two distinct characters of fractionalized excitations: an Y-like, dispersive, magnetic continuum at higher energies and a dispersionless excitation at low energies around the Brillouin zone center. These dual features are well described by a Ferromagnetic Kitaev model, providing a smoking gun proof of the itinerant and localized Majorana fermions emergent in Kitaev magnets.
Proposal to probe quantum nonlocality of Majorana fermions in tunneling experiments
NASA Astrophysics Data System (ADS)
Sau, Jay D.; Swingle, Brian; Tewari, Sumanta
2015-07-01
Topological Majorana fermion (MF) quasiparticles have been recently suggested to exist in semiconductor quantum wires with proximity induced superconductivity and a Zeeman field. Although the experimentally observed zero bias tunneling peak and a fractional ac-Josephson effect can be taken as necessary signatures of MFs, neither of them constitutes a sufficient "smoking gun" experiment. Since one pair of Majorana fermions share a single conventional fermionic degree of freedom, MFs are in a sense fractionalized excitations. Based on this fractionalization we propose a tunneling experiment that furnishes a nearly unique signature of end state MFs in semiconductor quantum wires. In particular, we show that a "teleportation"-like experiment is not enough to distinguish MFs from pairs of MFs, which are equivalent to conventional zero energy states, but our proposed tunneling experiment, in principle, can make this distinction.
High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems
NASA Astrophysics Data System (ADS)
Chin, Siu A.
2015-03-01
In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.
Particle statistics and lossy dynamics of ultracold atoms in optical lattices
NASA Astrophysics Data System (ADS)
Yago Malo, J.; van Nieuwenburg, E. P. L.; Fischer, M. H.; Daley, A. J.
2018-05-01
Experimental control over ultracold quantum gases has made it possible to investigate low-dimensional systems of both bosonic and fermionic atoms. In closed one-dimensional systems there are many similarities in the dynamics of local quantities for spinless fermions and strongly interacting "hard-core" bosons, which on a lattice can be formalized via a Jordan-Wigner transformation. In this study, we analyze the similarities and differences for spinless fermions and hard-core bosons on a lattice in the presence of particle loss. The removal of a single fermion causes differences in local quantities compared with the bosonic case because of the different particle exchange symmetry in the two cases. We identify deterministic and probabilistic signatures of these dynamics in terms of local particle density, which could be measured in ongoing experiments with quantum gas microscopes.
Majorana fermion surface code for universal quantum computation
Vijay, Sagar; Hsieh, Timothy H.; Fu, Liang
2015-12-10
In this study, we introduce an exactly solvable model of interacting Majorana fermions realizing Z 2 topological order with a Z 2 fermion parity grading and lattice symmetries permuting the three fundamental anyon types. We propose a concrete physical realization by utilizing quantum phase slips in an array of Josephson-coupled mesoscopic topological superconductors, which can be implemented in a wide range of solid-state systems, including topological insulators, nanowires, or two-dimensional electron gases, proximitized by s-wave superconductors. Our model finds a natural application as a Majorana fermion surface code for universal quantum computation, with a single-step stabilizer measurement requiring no physicalmore » ancilla qubits, increased error tolerance, and simpler logical gates than a surface code with bosonic physical qubits. We thoroughly discuss protocols for stabilizer measurements, encoding and manipulating logical qubits, and gate implementations.« less
Realizing universal Majorana fermionic quantum computation
NASA Astrophysics Data System (ADS)
Wu, Ya-Jie; He, Jing; Kou, Su-Peng
2014-08-01
Majorana fermionic quantum computation (MFQC) was proposed by S. B. Bravyi and A. Yu. Kitaev [Ann. Phys. (NY) 298, 210 (2002), 10.1006/aphy.2002.6254], who indicated that a (nontopological) fault-tolerant quantum computer built from Majorana fermions may be more efficient than that built from distinguishable two-state systems. However, until now scientists have not known how to realize a MFQC in a physical system. In this paper we propose a possible realization of MFQC. We find that the end of a line defect of a p-wave superconductor or superfluid in a honeycomb lattice traps a Majorana zero mode, which becomes the starting point of MFQC. Then we show how to manipulate Majorana fermions to perform universal MFQC, which possesses possibilities for high-level local controllability through individually addressing the quantum states of individual constituent elements by using timely cold-atom technology.
Dirac fermions in an antiferromagnetic semimetal
Tang, Peizhe; Zhou, Quan; Xu, Gang; ...
2016-08-08
Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals. All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry. Here in this paper, we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections andmore » demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.« less
Optical Selection Rule of Excitons in Gapped Chiral Fermion Systems
NASA Astrophysics Data System (ADS)
Zhang, Xiaoou; Shan, Wen-Yu; Xiao, Di
2018-02-01
We show that the exciton optical selection rule in gapped chiral fermion systems is governed by their winding number w , a topological quantity of the Bloch bands. Specifically, in a CN-invariant chiral fermion system, the angular momentum of bright exciton states is given by w ±1 +n N with n being an integer. We demonstrate our theory by proposing two chiral fermion systems capable of hosting dark s -like excitons: gapped surface states of a topological crystalline insulator with C4 rotational symmetry and biased 3 R -stacked MoS2 bilayers. In the latter case, we show that gating can be used to tune the s -like excitons from bright to dark by changing the winding number. Our theory thus provides a pathway to electrical control of optical transitions in two-dimensional material.
Role of quantum statistics in multi-particle decay dynamics
NASA Astrophysics Data System (ADS)
Marchewka, Avi; Granot, Er'el
2015-04-01
The role of quantum statistics in the decay dynamics of a multi-particle state, which is suddenly released from a confining potential, is investigated. For an initially confined double particle state, the exact dynamics is presented for both bosons and fermions. The time-evolution of the probability to measure two-particle is evaluated and some counterintuitive features are discussed. For instance, it is shown that although there is a higher chance of finding the two bosons (as oppose to fermions, and even distinguishable particles) at the initial trap region, there is a higher chance (higher than fermions) of finding them on two opposite sides of the trap as if the repulsion between bosons is higher than the repulsion between fermions. The results are demonstrated by numerical simulations and are calculated analytically in the short-time approximation. Furthermore, experimental validation is suggested.
Custodial isospin violation in the Lee-Wick standard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chivukula, R. Sekhar; Farzinnia, Arsham; Foadi, Roshan
2010-05-01
We analyze the tension between naturalness and isospin violation in the Lee-Wick standard model (LW SM) by computing tree-level and fermionic one-loop contributions to the post-LEP electroweak parameters (S-circumflex, T-circumflex, W, and Y) and the Zb{sub L}b-bar{sub L} coupling. The model is most natural when the LW partners of the gauge bosons and fermions are light, but small partner masses can lead to large isospin violation. The post-LEP parameters yield a simple picture in the LW SM: the gauge sector contributes to Y and W only, with leading contributions arising at tree level, while the fermion sector contributes to S-circumflexmore » and T-circumflex only, with leading corrections arising at one loop. Hence, W and Y constrain the masses of the LW gauge bosons to satisfy M{sub 1}, M{sub 2} > or approx. 2.4 TeV at 95% C.L. Likewise, experimental limits on T-circumflex reveal that the masses of the LW fermions must satisfy M{sub q}, M{sub t} > or approx. 1.6 TeV at 95% C.L. if the Higgs mass is light and tend to exclude the LW SM for any LW fermion masses if the Higgs mass is heavy. Contributions from the top-quark sector to the Zb{sub L}b{sub L} coupling can be even more stringent, placing a lower bound of 4 TeV on the LW fermion masses at 95% C.L.« less
Fermionic Spinon Theory of Square Lattice Spin Liquids near the Néel State
NASA Astrophysics Data System (ADS)
Thomson, Alex; Sachdev, Subir
2018-01-01
Quantum fluctuations of the Néel state of the square lattice antiferromagnet are usually described by a CP1 theory of bosonic spinons coupled to a U(1) gauge field, and with a global SU(2) spin rotation symmetry. Such a theory also has a confining phase with valence bond solid (VBS) order, and upon including spin-singlet charge-2 Higgs fields, deconfined phases with Z2 topological order possibly intertwined with discrete broken global symmetries. We present dual theories of the same phases starting from a mean-field theory of fermionic spinons moving in π flux in each square lattice plaquette. Fluctuations about this π -flux state are described by (2 +1 )-dimensional quantum chromodynamics (QCD3 ) with a SU(2) gauge group and Nf=2 flavors of massless Dirac fermions. It has recently been argued by Wang et al. [Deconfined Quantum Critical Points: Symmetries and Dualities, Phys. Rev. X 7, 031051 (2017)., 10.1103/PhysRevX.7.031051] that this QCD3 theory describes the Néel-VBS quantum phase transition. We introduce adjoint Higgs fields in QCD3 and obtain fermionic dual descriptions of the phases with Z2 topological order obtained earlier using the bosonic CP1 theory. We also present a fermionic spinon derivation of the monopole Berry phases in the U(1) gauge theory of the VBS state. The global phase diagram of these phases contains multicritical points, and our results imply new boson-fermion dualities between critical gauge theories of these points.
Quasi-stationary states and fermion pair creation from a vacuum in supercritical Coulomb field
NASA Astrophysics Data System (ADS)
Khalilov, V. R.
2017-12-01
Creation of charged fermion pair from a vacuum in so-called supercritical Coulomb potential is examined for the case when fermions can move only in the same (one) plane. In which case, quantum dynamics of charged massive or massless fermions can be described by the two-dimensional Dirac Hamiltonians with an usual (-a/r) Coulomb potential. These Hamiltonians are singular and require the additional definition in order for them to be treated as self-adjoint quantum-mechanical operators. We construct the self-adjoint two-dimensional Dirac Hamiltonians with a Coulomb potential and determine the quantum-mechanical states for such Hamiltonians in the corresponding Hilbert spaces of square-integrable functions. We determine the scattering amplitude in which the self-adjoint extension parameter is incorporated and then obtain equations implicitly defining possible discrete energy spectra of the self-adjoint Dirac Hamiltonians with a Coulomb potential. It is shown that this quantum system becomes unstable in the presence of a supercritical Coulomb potential which manifests in the appearance of quasi-stationary states in the lower (negative) energy continuum. The energy spectrum of those states is quasi-discrete, consists of broadened levels with widths related to the inverse lifetimes of the quasi-stationary states as well as the probability of creation of charged fermion pair by a supercritical Coulomb field. Explicit analytical expressions for the creation probabilities of charged (massive or massless) fermion pair are obtained in a supercritical Coulomb field.
Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli
2015-01-01
We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion’s scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit. PMID:26522094
NASA Astrophysics Data System (ADS)
Andrews, Bartholomew; Möller, Gunnar
2018-01-01
We study the stability of composite fermion fractional quantum Hall states in Harper-Hofstadter bands with Chern number |C |>1 . From composite fermion theory, states are predicted to be found at filling factors ν =r /(k r |C |+1 ),r ∈Z , with k =1 for bosons and k =2 for fermions. Here, we closely analyze these series in both cases, with contact interactions for bosons and nearest-neighbor interactions for (spinless) fermions. In particular, we analyze how the many-body gap scales as the bands are tuned to the effective continuum limit of Chern number |C | bands, realized near flux density nϕ=1 /|C | . Near these points, the Hofstadter model requires large magnetic unit cells that yield bands with perfectly flat dispersion and Berry curvature. We exploit the known scaling of energies in the effective continuum limit in order to maintain a fixed square aspect ratio in finite-size calculations. Based on exact diagonalization calculations of the band-projected Hamiltonian for these lattice geometries, we show that for both bosons and fermions, the vast majority of finite-size spectra yield the ground-state degeneracy predicted by composite fermion theory. For the chosen interactions, we confirm that states with filling factor ν =1 /(k |C |+1 ) are the most robust and yield a clear gap in the thermodynamic limit. For bosons with contact interactions in |C |=2 and |C |=3 bands, our data for the composite fermion states are compatible with a finite gap in the thermodynamic limit. We also report new evidence for gapped incompressible states stabilized for fermions with nearest-neighbor interactions in |C |>1 bands. For cases with a clear gap, we confirm that the thermodynamic limit commutes with the effective continuum limit within finite-size error bounds. We analyze the nature of the correlation functions for the Abelian composite fermion states and find that the correlation functions for |C |>1 states are smooth functions for positions separated by |C | sites along both axes, giving rise to |C| 2 sheets; some of which can be related by inversion symmetry. We also comment on two cases which are associated with a bosonic integer quantum Hall effect (BIQHE): For ν =2 in |C |=1 bands, we find a strong competing state with a higher ground-state degeneracy, so no clear BIQHE is found in the band-projected Hofstadter model; for ν =1 in |C |=2 bands, we present additional data confirming the existence of a BIQHE state.
Domain wall fermion and CP symmetry breaking
NASA Astrophysics Data System (ADS)
Fujikawa, Kazuo; Suzuki, Hiroshi
2003-02-01
We examine the CP properties of chiral gauge theory defined by a formulation of the domain wall fermion, where the light field variables q and q¯ together with Pauli-Villars fields Q and Q¯ are utilized. It is shown that this domain wall representation in the infinite flavor limit N=∞ is valid only in the topologically trivial sector, and that the conflict among lattice chiral symmetry, strict locality and CP symmetry still persists for finite lattice spacing a. The CP transformation generally sends one representation of lattice chiral gauge theory into another representation of lattice chiral gauge theory, resulting in the inevitable change of propagators. A modified form of lattice CP transformation motivated by the domain wall fermion, which keeps the chiral action in terms of the Ginsparg-Wilson fermion invariant, is analyzed in detail; this provides an alternative way to understand the breaking of CP symmetry at least in the topologically trivial sector. We note that the conflict with CP symmetry could be regarded as a topological obstruction. We also discuss the issues related to the definition of Majorana fermions in connection with the supersymmetric Wess-Zumino model on the lattice.
Flavorful Z‧ signatures at LHC and ILC
NASA Astrophysics Data System (ADS)
Chen, Shao-Long; Okada, Nobuchika
2008-10-01
There are lots of new physics models which predict an extra neutral gauge boson, referred as Z‧-boson. In a certain class of these new physics models, the Z‧-boson has flavor-dependent couplings with the fermions in the Standard Model (SM). Based on a simple model in which couplings of the SM fermions in the third generation with the Z‧-boson are different from those of the corresponding fermions in the first two generations, we study the signatures of Z‧-boson at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). We show that at the LHC, the Z‧-boson with mass around 1 TeV can be produced through the Drell-Yan processes and its dilepton decay modes provide us clean signatures not only for the resonant production of Z‧-boson but also for flavor-dependences of the production cross sections. We also study fermion pair productions at the ILC involving the virtual Z‧-boson exchange. Even though the center-of-energy of the ILC is much lower than a Z‧-boson mass, the angular distributions and the forward-backward asymmetries of fermion pair productions show not only sizable deviations from the SM predictions but also significant flavor-dependences.
Direct observation of how the heavy-fermion state develops in CeCoIn5
NASA Astrophysics Data System (ADS)
Chen, Q. Y.; Xu, D. F.; Niu, X. H.; Jiang, J.; Peng, R.; Xu, H. C.; Wen, C. H. P.; Ding, Z. F.; Huang, K.; Shu, L.; Zhang, Y. J.; Lee, H.; Strocov, V. N.; Shi, M.; Bisti, F.; Schmitt, T.; Huang, Y. B.; Dudin, P.; Lai, X. C.; Kirchner, S.; Yuan, H. Q.; Feng, D. L.
2017-07-01
Heavy-fermion systems share some of the strange metal phenomenology seen in other unconventional superconductors, providing a unique opportunity to set strange metals in a broader context. Central to understanding heavy-fermion systems is the interplay of localization and itinerancy. These materials acquire high electronic masses and a concomitant Fermi volume increase as the f electrons delocalize at low temperatures. However, despite the wide-spread acceptance of this view, a direct microscopic verification has been lacking. Here we report high-resolution angle-resolved photoemission measurements on CeCoIn5, a prototypical heavy-fermion compound, which spectroscopically resolve the development of band hybridization and the Fermi surface expansion over a wide temperature region. Unexpectedly, the localized-to-itinerant transition occurs at surprisingly high temperatures, yet f electrons are still largely localized even at the lowest temperature. These findings point to an unanticipated role played by crystal-field excitations in the strange metal behavior of CeCoIn5. Our results offer a comprehensive experimental picture of the heavy-fermion formation, setting the stage for understanding the emergent properties, including unconventional superconductivity, in this and related materials.
NASA Astrophysics Data System (ADS)
Xiao, R. C.; Cheung, C. H.; Gong, P. L.; Lu, W. J.; Si, J. G.; Sun, Y. P.
2018-06-01
k paths exactly with symmetry allow to find triply degenerate points (TDPs) in band structures. The paths that host the type-II Dirac points in PtSe2 family materials also have the spatial symmetry. However, due to Kramers degeneracy (the systems have both inversion symmetry and time reversal symmetry), the crossing points in them are Dirac ones. In this work, based on symmetry analysis, first-principles calculations, and method, we predict that PtSe2 family materials should undergo topological transitions if the inversion symmetry is broken, i.e. the Dirac fermions in PtSe2 family materials split into TDPs in PtSeTe family materials (PtSSe, PtSeTe, and PdSeTe) with orderly arranged S/Se (Se/Te). It is different from the case in high-energy physics that breaking inversion symmetry I leads to the splitting of Dirac fermion into Weyl fermions. We also address a possible method to achieve the orderly arranged in PtSeTe family materials in experiments. Our study provides a real example that Dirac points transform into TDPs, and is helpful to investigate the topological transition between Dirac fermions and TDP fermions.
Fermion superfluid with hybridized s- and p-wave pairings
NASA Astrophysics Data System (ADS)
Zhou, LiHong; Yi, Wei; Cui, XiaoLing
2017-12-01
Ever since the pioneering work of Bardeen, Cooper and Schrieffer in the 1950s, exploring novel pairing mechanisms for fermion superfluids has become one of the central tasks in modern physics. Here, we investigate a new type of fermion superfluid with hybridized s- and p-wave pairings in an ultracold spin-1/2 Fermi gas. Its occurrence is facilitated by the co-existence of comparable s- and p-wave interactions, which is realizable in a two-component 40K Fermi gas with close-by s- and p-wave Feshbach resonances. The hybridized superfluid state is stable over a considerable parameter region on the phase diagram, and can lead to intriguing patterns of spin densities and pairing fields in momentum space. In particular, it can induce a phase-locked p-wave pairing in the fermion species that has no p-wave interactions. The hybridized nature of this novel superfluid can also be confirmed by measuring the s- and p-wave contacts, which can be extracted from the high-momentum tail of the momentum distribution of each spin component. These results enrich our knowledge of pairing superfluidity in Fermi systems, and open the avenue for achieving novel fermion superfluids with multiple partial-wave scatterings in cold atomic gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levay, Peter; Nagy, Szilvia; Pipek, Janos
An elementary formula for the von Neumann and Renyi entropies describing quantum correlations in two-fermionic systems having four single-particle states is presented. An interesting geometric structure of fermionic entanglement is revealed. A connection with the generalized Pauli principle is established.
Wang, Lei; Troyer, Matthias
2014-09-12
We present a new algorithm for calculating the Renyi entanglement entropy of interacting fermions using the continuous-time quantum Monte Carlo method. The algorithm only samples the interaction correction of the entanglement entropy, which by design ensures the efficient calculation of weakly interacting systems. Combined with Monte Carlo reweighting, the algorithm also performs well for systems with strong interactions. We demonstrate the potential of this method by studying the quantum entanglement signatures of the charge-density-wave transition of interacting fermions on a square lattice.
Resonant pairing between fermions with unequal masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Shin-Tza; Pao, C.-H.; Yip, S.-K.
We study via mean-field theory the pairing between fermions of different masses, especially at the unitary limit. At equal populations, the thermodynamic properties are identical with the equal mass case provided an appropriate rescaling is made. At unequal populations, for sufficiently light majority species, the system does not phase separate. For sufficiently heavy majority species, the phase separated normal phase have a density larger than that of the superfluid. For atoms in harmonic traps, the density profiles for unequal mass fermions can be drastically different from their equal-mass counterparts.
Yang-Baxter and other relations for free-fermion and Ising models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, B.
1987-02-01
Eight-vertex, free fermion, and Ising models are formulated using a convention that emphasizes the algebra of the local transition operators that arise in the quantum inverse method. Equivalent classes of models, are investigated, with particular emphasis on the role of the star-triangle relations. Using these results, a natural and symmetrical parametrization is introduced and Yang-Baxter relations are constructed in an elementary way. The paper concludes with a consideration of duality, which links the present work to a recent paper of Baxter on the free fermion model.
The Emergence of Fermions and the E11 Content
NASA Astrophysics Data System (ADS)
Englert, François; Houart, Laurent
Claudio's warm and endearing personality adds to our admiration for his achievements in physics a sense of friendliness. His constant interest in fundamental questions motivated the following presentation of our attempt to understand the nature of fermions. This problem is an essential element of the quantum world and might be related to the quest for quantum gravity. We shall review how space-time fermions can emerge out of bosons in string theory and how this fact affects the extended Kac-Moody approach to the M-theory project.
Gauge and Non-Gauge Tensor Multiplets in 5D Conformal Supergravity
NASA Astrophysics Data System (ADS)
Kugo, T.; Ohashi, K.
2002-12-01
An off-shell formulation of two distinct tensor multiplets, a massive tensor multiplet and a tensor gauge multiplet, is presented in superconformal tensor calculus in five-dimensional space-time. Both contain a rank 2 antisymmetric tensor field, but there is no gauge symmetry in the former, while it is a gauge field in the latter. Both multiplets have 4 bosonic and 4 fermionic on-shell modes, but the former consists of 16 (boson)+16 (fermion) component fields, while the latter consists of 8 (boson)+8 (fermion) component fields.
Parametrization of fermion mixing matrices in Kobayashi-Maskawa form
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Nan; Ma Boqiang; Center for High Energy Physics, Peking University, Beijing 100871
2011-02-01
Recent works show that the original Kobayashi-Maskawa (KM) form of fermion mixing matrix exhibits some advantages, especially when discussing problems such as unitarity boomerangs and maximal CP violation hypothesis. Therefore, the KM form of fermion mixing matrix is systematically studied in this paper. Starting with a general triminimal expansion of the KM matrix, we discuss the triminimal and Wolfenstein-like parametrizations with different basis matrices in detail. The quark-lepton complementarity relations play an important role in our discussions on describing quark mixing and lepton mixing in a unified way.
Gauge fixing and BFV quantization
NASA Astrophysics Data System (ADS)
Rogers, Alice
2000-01-01
Non-singularity conditions are established for the Batalin-Fradkin-Vilkovisky (BFV) gauge-fixing fermion which are sufficient for it to lead to the correct path integral for a theory with constraints canonically quantized in the BFV approach. The conditions ensure that the anticommutator of this fermion with the BRST charge regularizes the path integral by regularizing the trace over non-physical states in each ghost sector. The results are applied to the quantization of a system which has a Gribov problem, using a non-standard form of the gauge-fixing fermion.
Dark solitons with Majorana fermions in spin-orbit-coupled Fermi gases.
Xu, Yong; Mao, Li; Wu, Biao; Zhang, Chuanwei
2014-09-26
We show that a single dark soliton can exist in a spin-orbit-coupled Fermi gas with a high spin imbalance, where spin-orbit coupling favors uniform superfluids over nonuniform Fulde-Ferrell-Larkin-Ovchinnikov states, leading to dark soliton excitations in highly imbalanced gases. Above a critical spin imbalance, two topological Majorana fermions without interactions can coexist inside a dark soliton, paving a way for manipulating Majorana fermions through controlling solitons. At the topological transition point, the atom density contrast across the soliton suddenly vanishes, suggesting a signature for identifying topological solitons.
Residual entanglement of accelerated fermions is not nonlocal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friis, Nicolai; Koehler, Philipp; Bertlmann, Reinhold A.
2011-12-15
We analyze the operational meaning of the residual entanglement in noninertial fermionic systems in terms of the achievable violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality. We demonstrate that the quantum correlations of fermions, which were previously found to survive in the infinite acceleration limit, cannot be considered to be nonlocal. The entanglement shared by an inertial and an accelerated observer cannot be utilized for the violation of the CHSH inequality in case of high accelerations. Our results are shown to extend beyond the single-mode approximation commonly used in the literature.
Lorentz symmetry violation in the fermion number anomaly with the chiral overlap operator
NASA Astrophysics Data System (ADS)
Makino, Hiroki; Morikawa, Okuto
2016-12-01
Recently, Grabowska and Kaplan proposed a four-dimensional lattice formulation of chiral gauge theories on the basis of a chiral overlap operator. We compute the classical continuum limit of the fermion number anomaly in this formulation. Unexpectedly, we find that the continuum limit contains a term which is not Lorentz invariant. The term is, however, proportional to the gauge anomaly coefficient, and thus the fermion number anomaly in this lattice formulation automatically restores the Lorentz-invariant form when and only when the anomaly cancellation condition is met.
Majorana fermions and orthogonal complex structures
NASA Astrophysics Data System (ADS)
Calderón-García, J. S.; Reyes-Lega, A. F.
2018-05-01
Ground states of quadratic Hamiltonians for fermionic systems can be characterized in terms of orthogonal complex structures. The standard way in which such Hamiltonians are diagonalized makes use of a certain “doubling” of the Hilbert space. In this work, we show that this redundancy in the Hilbert space can be completely lifted if the relevant orthogonal structure is taken into account. Such an approach allows for a treatment of Majorana fermions which is both physically and mathematically transparent. Furthermore, an explicit connection between orthogonal complex structures and the topological ℤ2-invariant is given.
Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi 2
Li, Lijun; Wang, Kefeng; Graf, D.; ...
2016-03-28
Here, we report two-dimensional quantum transport and Dirac fermions in BaMnBi 2 single crystals. BaMnBi 2 is a layered bad metal with highly anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, small cyclotron mass, and the first-principles band structure calculations indicate the presence of Dirac fermions in Bi square nets. Quantum oscillations in the Hall channel suggest the presence of both electron and hole pockets, whereas Dirac and parabolic states coexist at the Fermi level.
Aspect of Fermion Mass Hierarchy within Flavor Democracy for Yukawa Couplings
NASA Astrophysics Data System (ADS)
Higuchi, Katsuichi; Yamamoto, Katsuji
We discuss the fermion mass hierarchy by including vector-like fermions which are accommodated in E6 GUTs within flavor democracy for Yukawa couplings. In this framework, all Yukawa couplings for the standard Higgs doublet have the same strength, and all Yukawa couplings for the singlet Higgs have the same strength (New ansatz). In addition, singlet Higgs and right-handed neutrinos exist. Under this condition, the mass hierarchy mt ≫ mb ˜ mτ as well as mt ≫ mc, mu can be naturally explained.
Landau-Khalatnikov-Fradkin transformation for the fermion propagator in QED in arbitrary dimensions
Jia, Shaoyang; Pennington, Michael R.
2017-04-10
Here, we explore the dependence of fermion propagators on the covariant gauge fixing parameter in quantum electrodynamics (QED) with the number of spacetime dimensions kept explicit. Gauge covariance is controlled by the the Landau -Khalatnikov-Fradkin transformation (LKFT). Utilizing its group nature, the LKFT for a fermion propagator in Minkowski space is solved exactly. The special scenario of 3D has been used to test claims made for general cases. When renormalized correctly, the simplification of the LKFT in 4D has been achieved with the help of fractional calculus.
Decoherence and Collisional Frequency Shifts of Trapped Bosons and Fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibble, Kurt; LNE-SYRTE, Observatoire de Paris, 75014 Paris
2009-09-11
We perform exact calculations of collisional frequency shifts for several fermions or bosons using a singlet and triplet basis for pairs of particles. The 'factor of 2 controversy' for bosons becomes clear - the factor is always 2. Decoherence is described by singlet states and they are unaffected by spatially uniform clock fields. Spatial variations are critical, especially for fermions which were previously thought to be immune to collision shifts. The spatial variations lead to decoherence and a novel frequency shift that is not proportional to the partial density of internal states.
Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics
NASA Astrophysics Data System (ADS)
Steglich, Frank; Wirth, Steffen
2016-08-01
This article overviews the development of heavy-fermion superconductivity, notably in such rare-earth-based intermetallic compounds which behave as Kondo-lattice systems. Heavy-fermion superconductivity is of unconventional nature in the sense that it is not mediated by electron-phonon coupling. Rather, in most cases the attractive interaction between charge carriers is apparently magnetic in origin. Fluctuations associated with an antiferromagnetic (AF) quantum critical point (QCP) play a major role. The first heavy-fermion superconductor CeCu2Si2 turned out to be the prototype of a larger group of materials for which the underlying, often pressure-induced, AF QCP is likely to be of a three-dimensional (3D) spin-density-wave (SDW) variety. For UBe13, the second heavy-fermion superconductor, a magnetic-field-induced 3D SDW QCP inside the superconducting phase can be conjectured. Such a ‘conventional’, itinerant QCP can be well understood within Landau’s paradigm of order-parameter fluctuations. In contrast, the low-temperature normal-state properties of a few heavy-fermion superconductors are at odds with the Landau framework. They are characterized by an ‘unconventional’, local QCP which may be considered a zero-temperature 4 f-orbital selective Mott transition. Here, as concluded for YbRh2Si2, the breakdown of the Kondo effect concurring with the AF instability gives rise to an abrupt change of the Fermi surface. Very recently, superconductivity was discovered for this compound at ultra-low temperatures. Therefore, YbRh2Si2 along with CeRhIn5 under pressure provide a natural link between the large group of about fifty low-temperature heavy-fermion superconductors and other families of unconventional superconductors with substantially higher T c, e.g. the doped Mott insulators of the perovskite-type cuprates and the organic charge-transfer salts.
BCS to BEC evolution for mixtures of fermions with unequal masses
NASA Astrophysics Data System (ADS)
de Melo, Carlos A. R. Sa
2009-03-01
I discuss the zero and finite temperature phase diagrams of a mixture of fermions with unequal masses with and without population imbalance, which may correspond for example to mixtures of ^6Li and ^40K, ^6Li and ^87Sr, or ^40K and ^87Sr in the context of ultracold atoms. At zero temperature and when excess fermions are present, at least three phases may occur as the interaction parameter is changed from the BCS to the BEC regime. These phases correspond to normal, phase separation, or superfluid with coexistence between paired and excess fermions. The zero temperature phase diagram of population imbalance versus interaction parameter presents a remarkable asymmetry between the cases involving excess lighter or heavier fermions [1, 2], in sharp contrast with the symmetric phase diagram corresponding to the case of equal masses. At finite temperatures, the phase separation region of the phase diagram competes with superfluid regions possessing gapless elementary excitations [3] for certain ranges of the interaction parameter depending on the mass ratio. Furthermore, a phase transition may take place between two superfluid phases which are topologically distinct. The precise location of such transition is sensitive to the mass ratio between the two species of fermions. Signatures of this possible topological transition are present in the momentum distribution or structure factor, which may be measured experimentally in time-of-flight or through Bragg scattering, respectively. Lastly, throughout the evolution from BCS to BEC, I discuss the critical current and sound velocity for unequal mass systems as a function of interaction parameter and mass ratio. These quantities may also be measured via the same techniques already used in mixtures of fermions with equal masses. [1] M. Iskin, and C. A. R. Sa de Melo, Phys. Rev. Lett. 97, 100404 (2006). [2] M. Iskin and C. A. R. Sa de Melo, Phys. Rev. A 76, 013601 (2007). [3] Li Han, and C. A. R. Sa de Melo, arXiv:0812.xxxx
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
In particle physics, there are many different types of particles, mostly ending with the phrase “-on.” In this video, Fermilab’s Dr. Don Lincoln talks about fermions and bosons and what is the key difference between these two particles.
Fermion Cooper pairing with unequal masses: Standard field theory approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
He Lianyi; Jin Meng; Zhuang Pengfei
Fermion Cooper pairing with unequal masses is investigated in a standard field theory approach. We derived the superfluid density and Meissner mass squared of the U(1) gauge field in a general two-species model and found that the often used proportional relation between the two quantities is broken when the fermion masses are unequal. In the weak-coupling region, the superfluid density is always negative but the Meissner mass squared becomes mostly positive when the mass ratio between the pairing fermions is large enough. We established a proper momentum configuration of the LOFF pairing with unequal masses and showed that the LOFFmore » state is energetically favored due to the negative superfluid density. The single-plane-wave LOFF state is physically equivalent to an anisotropic state with a spontaneously generated superflow. The extension to a finite-range interaction is briefly discussed.« less
Flavor and topological current correlators in parity-invariant three-dimensional QED
NASA Astrophysics Data System (ADS)
Karthik, Nikhil; Narayanan, Rajamani
2017-09-01
We use lattice regularization to study the flow of the flavor-triplet fermion current central charge CJf from its free field value in the ultraviolet limit to its conformal value in the infrared limit of the parity-invariant three-dimensional QED with two flavors of two-component fermions. The dependence of CJf on the scale is weak with a tendency to be below the free field value at intermediate distances. Our numerical data suggest that the flavor-triplet fermion current and the topological current correlators become degenerate within numerical errors in the infrared limit, thereby supporting an enhanced O(4) symmetry predicted by strong self-duality. Further, we demonstrate that fermion dynamics is necessary for the scale-invariant behavior of parity-invariant three-dimensional QED by showing that the pure gauge theory with noncompact gauge action has a nonzero bilinear condensate.
Dark matter in E 6 Grand unification
NASA Astrophysics Data System (ADS)
Schwichtenberg, Jakob
2018-02-01
We discuss fermionic dark matter in non-supersymmetric E 6 Grand Unification. The fundamental representation of E 6 contains, in addition to the standard model fermions, exotic fermions and we argue that one of them is a viable, interesting dark matter candidate. Its stability is guaranteed by a discrete remnant symmetry, which is an unbroken subgroup of the E 6 gauge symmetry. We compute the symmetry breaking scales and the effect of possible threshold corrections by solving the renormalization group equations numerically after imposing gauge coupling unification. Since the Yukawa couplings of the exotic and the standard model fermions have a common origin, the mass of the dark matter particles is constrained. We find a mass range of 3 · 109 GeV ≲ m DM ≲ 1 · 1013 GeV for our E 6 dark matter candidate, which is within the reach of next-generation direct detection experiments.
Glamazda, A.; Lemmens, P.; Do, S. -H.; Choi, Y. S.; Choi, K. -Y.
2016-01-01
The fractionalization of elementary excitations in quantum spin systems is a central theme in current condensed matter physics. The Kitaev honeycomb spin model provides a prominent example of exotic fractionalized quasiparticles, composed of itinerant Majorana fermions and gapped gauge fluxes. However, identification of the Majorana fermions in a three-dimensional honeycomb lattice remains elusive. Here we report spectroscopic signatures of fractional excitations in the harmonic-honeycomb iridates β- and γ-Li2IrO3. Using polarization-resolved Raman spectroscopy, we find that the dynamical Raman response of β- and γ-Li2IrO3 features a broad scattering continuum with distinct polarization and composition dependence. The temperature dependence of the Raman spectral weight is dominated by the thermal damping of fermionic excitations. These results suggest the emergence of Majorana fermions from spin fractionalization in a three-dimensional Kitaev–Heisenberg system. PMID:27457278
Stationary states of fermions in a sign potential with a mixed vector–scalar coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castilho, W.M., E-mail: castilho.w@gmail.com; Castro, A.S. de, E-mail: castro@pq.cnpq.br
2014-01-15
The scattering of a fermion in the background of a sign potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling under the Sturm–Liouville perspective. When the vector coupling and the scalar coupling have different magnitudes, an isolated solution shows that the fermion under a strong potential can be trapped in a highly localized region without manifestation of Klein’s paradox. It is also shown that the lonely bound-state solution disappears asymptotically as one approaches the conditions for the realization of spin and pseudospin symmetries. --more » Highlights: •Scattering of fermions in a sign potential assessed under a Sturm–Liouville perspective. •An isolated bounded solution. •No pair production despite the high localization. •No bounded solution under exact spin and pseudospin symmetries.« less
Experiments with Ultracold Quantum-degenerate Fermionic Lithium Atoms
NASA Technical Reports Server (NTRS)
Ketterle, Wolfgang
2003-01-01
Experimental methods of laser and evaporative cooling, used in the production of atomic Bose-Einstein condensates have recently been extended to realize quantum degeneracy in trapped Fermi gases. Fermi gases are a new rich system to explore the implications of Pauli exclusion on scattering properties of the system, and ultimately fermionic superfluidity. We have produced a new macroscopic quantum system, in which a degenerate Li-6 Fermi gas coexists with a large and stable Na-23 BEC. This was accomplished using inter-species sympathetic cooling of fermionic 6Li in a thermal bath of bosonic Na-23. We have achieved high numbers of both fermions (less than 10(exp 5) and bosons (less than 10(exp 6), and Li-6 quantum degeneracy corresponding to one half of the Fermi temperature. This is the first time that a Fermi sea was produced with a condensate as a "refrigerator".
Higher first Chern numbers in one-dimensional Bose-Fermi mixtures
NASA Astrophysics Data System (ADS)
Knakkergaard Nielsen, Kristian; Wu, Zhigang; Bruun, G. M.
2018-02-01
We propose to use a one-dimensional system consisting of identical fermions in a periodically driven lattice immersed in a Bose gas, to realise topological superfluid phases with Chern numbers larger than 1. The bosons mediate an attractive induced interaction between the fermions, and we derive a simple formula to analyse the topological properties of the resulting pairing. When the coherence length of the bosons is large compared to the lattice spacing and there is a significant next-nearest neighbour hopping for the fermions, the system can realise a superfluid with Chern number ±2. We show that this phase is stable in a large region of the phase diagram as a function of the filling fraction of the fermions and the coherence length of the bosons. Cold atomic gases offer the possibility to realise the proposed system using well-known experimental techniques.
Probing the fermionic Higgs portal at lepton colliders
Fedderke, Michael A.; Lin, Tongyan; Wang, Lian -Tao
2016-04-26
Here, we study the sensitivity of future electron-positron colliders to UV completions of the fermionic Higgs portal operator H †Hχ¯χ. Measurements of precision electroweak S and T parameters and the e +e – → Zh cross-section at the CEPC, FCC-ee, and ILC are considered. The scalar completion of the fermionic Higgs portal is closely related to the scalar Higgs portal, and we summarize existing results. We devote the bulk of our analysis to a singlet-doublet fermion completion. Assuming the doublet is sufficiently heavy, we construct the effective field theory (EFT) at dimension-6 in order to compute contributions to the observables.more » We also provide full one-loop results for S and T in the general mass parameter space. In both completions, future precision measurements can probe the new states at the (multi-)TeV scale, beyond the direct reach of the LHC.« less
Probing the fermionic Higgs portal at lepton colliders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedderke, Michael A.; Lin, Tongyan; Wang, Lian -Tao
Here, we study the sensitivity of future electron-positron colliders to UV completions of the fermionic Higgs portal operator H †Hχ¯χ. Measurements of precision electroweak S and T parameters and the e +e – → Zh cross-section at the CEPC, FCC-ee, and ILC are considered. The scalar completion of the fermionic Higgs portal is closely related to the scalar Higgs portal, and we summarize existing results. We devote the bulk of our analysis to a singlet-doublet fermion completion. Assuming the doublet is sufficiently heavy, we construct the effective field theory (EFT) at dimension-6 in order to compute contributions to the observables.more » We also provide full one-loop results for S and T in the general mass parameter space. In both completions, future precision measurements can probe the new states at the (multi-)TeV scale, beyond the direct reach of the LHC.« less
The massive fermion phase for the U(N) Chern-Simons gauge theory in D=3 at large N
Bardeen, William A.
2014-10-07
We explore the phase structure of fermions in the U(N) Chern-Simons Gauge theory in three dimensions using the large N limit where N is the number of colors and the fermions are taken to be in the fundamental representation of the U(N) gauge group. In the large N limit, the theory retains its classical conformal behavior and considerable attention has been paid to possible AdS/CFT dualities of the theory in the conformal phase. In this paper we present a solution for the massive phase of the fermion theory that is exact to the leading order of ‘t Hooft’s large Nmore » expansion. We present evidence for the spontaneous breaking of the exact scale symmetry and analyze the properties of the dilaton that appears as the Goldstone boson of scale symmetry breaking.« less
Phase Space Approach to Dynamics of Interacting Fermions
NASA Astrophysics Data System (ADS)
Davidson, Shainen; Sels, Dries; Kasper, Valentin; Polkovnikov, Anatoli
Understanding the behavior of interacting fermions is of fundamental interest in many fields ranging from condensed matter to high energy physics. Developing numerically efficient and accurate simulation methods is an indispensable part of this. Already in equilibrium, fermions are notoriously hard to handle due to the sign problem. Out of equilibrium, an important outstanding problem is the efficient numerical simulation of the dynamics of these systems. In this work we develop a new semiclassical phase-space approach (a.k.a. the truncated Wigner approximation) for simulating the dynamics of interacting lattice fermions in arbitrary dimensions. We demonstrate the strength of the method by comparing the results to exact diagonalization (ED) on small 1D and 2D systems. We furthermore present results on Many-Body Localized (MBL) systems in 1D and 2D, and demonstrate how the method can be used to determine the MBL transition.
Emission of fermions in little string theory
NASA Astrophysics Data System (ADS)
Lorente-Espín, Oscar
2013-03-01
It is well known that little string theory (LST) black holes radiate a purely thermal spectrum of scalar particles. This theory lives in a Hagedorn phase with a fixed Hagedorn temperature that does not depend on its mass. Therefore, the theory keeps a thermal profile even taking into account self-gravitating effects and the backreaction of the metric. This has implications concerning the information loss paradox; one would not be able to recover any information from the LST black hole since the emission of scalar particles is totally uncorrelated. Several studies of the emission spectrum in LST concern scalar fields; it is our aim in this work to extend the study to the emission of fermions in order to verify that the most relevant conclusion for the scalar field remains valid for the fermion fields. Thus, we have calculated the emission probability, the flux, and also the greybody factor corresponding to a fermion field in LST background.
Spin-polaron nature of fermion quasiparticles and their d-wave pairing in cuprate superconductors
NASA Astrophysics Data System (ADS)
Val'kov, V. V.; Dzebisashvili, D. M.; Barabanov, A. F.
2016-11-01
In the framework of the spin-fermion model, to which the Emery model is reduced in the limit of strong electron correlations, it is shown that the fermion quasiparticles in cuprate high- T c superconductors (HTSCs) arise under a strong effect of exchange coupling between oxygen holes and spins of copper ions. This underlies the spin-polaron nature of fermion quasiparticles in cuprate HTSCs. The Cooper instability with respect to the d-wave symmetry of the order parameter is revealed for an ensemble of such quasiparticles. For the normal phase, the spin-polaron concept allows us to reproduce the fine details in the evolution of the Fermi surface with the changes in the doping level x observed in experiment for La2-xSrxCuO4. The calculated T-x phase diagram correlates well with the available experimental data for cuprate HTSCs.
NASA Astrophysics Data System (ADS)
Yang, Kun
2017-12-01
We consider an interface separating the Moore-Read state and Halperin 331 state in a half-filled Landau level, which can be realized in a double quantum well system with varying interwell tunneling and/or interaction strengths. In the presence of electron tunneling and strong Coulomb interactions across the interface, we find that all charge modes localize and the only propagating mode left is a chiral Majorana fermion mode. Methods to probe this neutral mode are proposed. A quantum phase transition between the Moore-Read and Halperin 331 states is described by a network of such Majorana fermion modes. In addition to a direct transition, they may also be separated by a phase in which the Majorana fermions are delocalized, realizing an incompressible state which exhibits quantum Hall charge transport and bulk heat conduction.
Exploring triplet-quadruplet fermionic dark matter at the LHC and future colliders
NASA Astrophysics Data System (ADS)
Wang, Jin-Wei; Bi, Xiao-Jun; Xiang, Qian-Fei; Yin, Peng-Fei; Yu, Zhao-Huan
2018-02-01
We study the signatures of the triplet-quadruplet dark matter model at the LHC and future colliders, including the 100 TeV Super Proton-Proton Collider and the 240 GeV Circular Electron Positron Collider. The dark sector in this model contains one fermionic electroweak triplet and two fermionic quadruplets, which have two kinds of Yukawa couplings to the Higgs doublet. Electroweak production signals of the dark sector fermions in the monojet+ ET, disappearing track, and multilepton+ET channels at the LHC and the Super Proton-Proton Collider are investigated. Moreover, we study the loop effects of this model on the Circular Electron Positron Collider precision measurements of e+e-→Z h and h →γ γ . We find that most of the parameter regions allowed by the observed dark matter relic density will be well explored by such direct and indirect searches at future colliders.
Cooling a band insulator with a metal: fermionic superfluid in a dimerized holographic lattice.
Haldar, Arijit; Shenoy, Vijay B
2014-10-17
A cold atomic realization of a quantum correlated state of many fermions on a lattice, eg. superfluid, has eluded experimental realization due to the entropy problem. Here we propose a route to realize such a state using holographic lattice and confining potentials. The potentials are designed to produces a band insulating state (low heat capacity) at the trap center, and a metallic state (high heat capacity) at the periphery. The metal "cools" the central band insulator by extracting out the excess entropy. The central band insulator can be turned into a superfluid by tuning an attractive interaction between the fermions. Crucially, the holographic lattice allows the emergent superfluid to have a high transition temperature - even twice that of the effective trap temperature. The scheme provides a promising route to a laboratory realization of a fermionic lattice superfluid, even while being adaptable to simulate other many body states.
Peccei-Quinn symmetry for Dirac seesaw and leptogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Pei-Hong
We extend the DFSZ invisible axion model to simultaneously explain small Dirac neutrino masses and cosmic matter-antimatter asymmetry. After the Peccei-Quinn and electroweak symmetry breaking, the effective Yukawa couplings of the Dirac neutrinos to the standard model Higgs scalar can be highly suppressed by the ratio of the vacuum expectation value of an iso-triplet Higgs scalar over the masses of some heavy gauge-singlet fermions, iso-doublet Higgs scalars or iso-triplet fermions. The iso-triplet fields can carry a zero or nonzero hypercharge. Through the decays of the heavy gauge-singlet fermions, iso-doublet scalars or iso-triplet fermions, we can obtain a lepton asymmetry inmore » the left-handed leptons and an opposite lepton asymmetry in the right-handed neutrinos. Since the right-handed neutrinos do not participate in the sphaleron processes, the left-handed lepton asymmetry can be partially converted to a baryon asymmetry.« less
Two Higgs doublets with fourth-generation fermions: Models for TeV-scale compositeness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soni A.; Bar-Shalom, S.; Nandi, S.
2011-09-21
We construct a class of two Higgs doublets models with a 4th sequential generation of fermions that may effectively accommodate the low-energy characteristics and phenomenology of a dynamical electroweak symmetry breaking scenario which is triggered by the condensates of the 4th family fermions. In particular, we single out the heavy quarks by coupling the heavier Higgs doublet ({Phi}{sub h}) which possesses a much larger VEV only to them while the lighter doublet ({Phi}{sub {ell}) couples only to the light fermions. We study the constraints on these models from precision electroweak data as well as from flavor data. We also discussmore » some distinct new features that have direct consequences on the production and decays of the 4th family quarks and leptons in high-energy colliders; in particular, the conventional search strategies for t{prime} and b{prime} may need to be significantly revised.« less
He, James J.; Wu, Jiansheng; Choy, Ting-Pong; Liu, Xiong-Jun; Tanaka, Y.; Law, K. T.
2014-01-01
Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors. PMID:24492649
Masuda, Hidetoshi; Sakai, Hideaki; Tokunaga, Masashi; Yamasaki, Yuichi; Miyake, Atsushi; Shiogai, Junichi; Nakamura, Shintaro; Awaji, Satoshi; Tsukazaki, Atsushi; Nakao, Hironori; Murakami, Youichi; Arima, Taka-hisa; Tokura, Yoshinori; Ishiwata, Shintaro
2016-01-01
For the innovation of spintronic technologies, Dirac materials, in which low-energy excitation is described as relativistic Dirac fermions, are one of the most promising systems because of the fascinating magnetotransport associated with extremely high mobility. To incorporate Dirac fermions into spintronic applications, their quantum transport phenomena are desired to be manipulated to a large extent by magnetic order in a solid. We report a bulk half-integer quantum Hall effect in a layered antiferromagnet EuMnBi2, in which field-controllable Eu magnetic order significantly suppresses the interlayer coupling between the Bi layers with Dirac fermions. In addition to the high mobility of more than 10,000 cm(2)/V s, Landau level splittings presumably due to the lifting of spin and valley degeneracy are noticeable even in a bulk magnet. These results will pave a route to the engineering of magnetically functionalized Dirac materials.
Three-component fermions with surface Fermi arcs in tungsten carbide
NASA Astrophysics Data System (ADS)
Ma, J.-Z.; He, J.-B.; Xu, Y.-F.; Lv, B. Q.; Chen, D.; Zhu, W.-L.; Zhang, S.; Kong, L.-Y.; Gao, X.; Rong, L.-Y.; Huang, Y.-B.; Richard, P.; Xi, C.-Y.; Choi, E. S.; Shao, Y.; Wang, Y.-L.; Gao, H.-J.; Dai, X.; Fang, C.; Weng, H.-M.; Chen, G.-F.; Qian, T.; Ding, H.
2018-04-01
Topological Dirac and Weyl semimetals not only host quasiparticles analogous to the elementary fermionic particles in high-energy physics, but also have a non-trivial band topology manifested by gapless surface states, which induce exotic surface Fermi arcs1,2. Recent advances suggest new types of topological semimetal, in which spatial symmetries protect gapless electronic excitations without high-energy analogues3-11. Here, using angle-resolved photoemission spectroscopy, we observe triply degenerate nodal points near the Fermi level of tungsten carbide with space group
Entanglement negativity bounds for fermionic Gaussian states
NASA Astrophysics Data System (ADS)
Eisert, Jens; Eisler, Viktor; Zimborás, Zoltán
2018-04-01
The entanglement negativity is a versatile measure of entanglement that has numerous applications in quantum information and in condensed matter theory. It can not only efficiently be computed in the Hilbert space dimension, but for noninteracting bosonic systems, one can compute the negativity efficiently in the number of modes. However, such an efficient computation does not carry over to the fermionic realm, the ultimate reason for this being that the partial transpose of a fermionic Gaussian state is no longer Gaussian. To provide a remedy for this state of affairs, in this work, we introduce efficiently computable and rigorous upper and lower bounds to the negativity, making use of techniques of semidefinite programming, building upon the Lagrangian formulation of fermionic linear optics, and exploiting suitable products of Gaussian operators. We discuss examples in quantum many-body theory and hint at applications in the study of topological properties at finite temperature.
Observation of Landau levels in potassium-intercalated graphite under a zero magnetic field
Guo, Donghui; Kondo, Takahiro; Machida, Takahiro; Iwatake, Keigo; Okada, Susumu; Nakamura, Junji
2012-01-01
The charge carriers in graphene are massless Dirac fermions and exhibit a relativistic Landau-level quantization in a magnetic field. Recently, it has been reported that, without any external magnetic field, quantized energy levels have been also observed from strained graphene nanobubbles on a platinum surface, which were attributed to the Landau levels of massless Dirac fermions in graphene formed by a strain-induced pseudomagnetic field. Here we show the generation of the Landau levels of massless Dirac fermions on a partially potassium-intercalated graphite surface without applying external magnetic field. Landau levels of massless Dirac fermions indicate the graphene character in partially potassium-intercalated graphite. The generation of the Landau levels is ascribed to a vector potential induced by the perturbation of nearest-neighbour hopping, which may originate from a strain or a gradient of on-site potentials at the perimeters of potassium-free domains. PMID:22990864
Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion
NASA Astrophysics Data System (ADS)
Sannomiya, Noriaki; Katsura, Hosho; Nakayama, Yu
2017-03-01
We introduce a lattice fermion model in one spatial dimension with supersymmetry (SUSY) but without particle number conservation. The Hamiltonian is defined as the anticommutator of two nilpotent supercharges Q and Q†. Each supercharge is built solely from spinless fermion operators and depends on a parameter g . The system is strongly interacting for small g , and in the extreme limit g =0 , the number of zero-energy ground states grows exponentially with the system size. By contrast, in the large-g limit, the system is noninteracting and SUSY is broken spontaneously. We study the model for modest values of g and show that under certain conditions spontaneous SUSY breaking occurs in both finite and infinite chains. We analyze the low-energy excitations both analytically and numerically. Our analysis suggests that the Nambu-Goldstone fermions accompanying the spontaneous SUSY breaking have cubic dispersion at low energies.
Quantum Szilard engines with arbitrary spin.
Zhuang, Zekun; Liang, Shi-Dong
2014-11-01
The quantum Szilard engine (QSZE) is a conceptual quantum engine for understanding the fundamental physics of quantum thermodynamics and information physics. We generalize the QSZE to an arbitrary spin case, i.e., a spin QSZE (SQSZE), and we systematically study the basic physical properties of both fermion and boson SQSZEs in a low-temperature approximation. We give the analytic formulation of the total work. For the fermion SQSZE, the work might be absorbed from the environment, and the change rate of the work with temperature exhibits periodicity and even-odd oscillation, which is a generalization of a spinless QSZE. It is interesting that the average absorbed work oscillates regularly and periodically in a large-number limit, which implies that the average absorbed work in a fermion SQSZE is neither an intensive quantity nor an extensive quantity. The phase diagrams of both fermion and boson SQSZEs give the SQSZE doing positive or negative work in the parameter space of the temperature and the particle number of the system, but they have different behaviors because the spin degrees of the fermion and the boson play different roles in their configuration states and corresponding statistical properties. The critical temperature of phase transition depends sensitively on the particle number. By using Landauer's erasure principle, we give the erasure work in a thermodynamic cycle, and we define an efficiency (we refer to it as information-work efficiency) to measure the engine's ability of utilizing information to extract work. We also give the conditions under which the maximum extracted work and highest information-work efficiencies for fermion and boson SQSZEs can be achieved.
Nonperturbative quantization of the electroweak model's electrodynamic sector
NASA Astrophysics Data System (ADS)
Fry, M. P.
2015-04-01
Consider the Euclidean functional integral representation of any physical process in the electroweak model. Integrating out the fermion degrees of freedom introduces 24 fermion determinants. These multiply the Gaussian functional measures of the Maxwell, Z , W , and Higgs fields to give an effective functional measure. Suppose the functional integral over the Maxwell field is attempted first. This paper is concerned with the large amplitude behavior of the Maxwell effective measure. It is assumed that the large amplitude variation of this measure is insensitive to the presence of the Z , W , and H fields; they are assumed to be a subdominant perturbation of the large amplitude Maxwell sector. Accordingly, we need only examine the large amplitude variation of a single QED fermion determinant. To facilitate this the Schwinger proper time representation of this determinant is decomposed into a sum of three terms. The advantage of this is that the separate terms can be nonperturbatively estimated for a measurable class of large amplitude random fields in four dimensions. It is found that the QED fermion determinant grows faster than exp [c e2∫d4x Fμν 2] , c >0 , in the absence of zero mode supporting random background potentials. This raises doubt on whether the QED fermion determinant is integrable with any Gaussian measure whose support does not include zero mode supporting potentials. Including zero mode supporting background potentials can result in a decaying exponential growth of the fermion determinant. This is prima facie evidence that Maxwellian zero modes are necessary for the nonperturbative quantization of QED and, by implication, for the nonperturbative quantization of the electroweak model.
Relativistic Fermions Generated by Square Lattices in Layered Compounds
NASA Astrophysics Data System (ADS)
Mao, Zhiqiang
Recent discoveries of topological semimetals have generated immense interests since they represent new topological states of quantum matters. In this talk, I will present our recent studies on topological semimetals, which are focused on Dirac/Weyl fermions generated by square lattices in layered compounds. I will first report on our discoveries of two new Dirac materials Sr1-yMn1-zSb2 and BaMnSb2 in which nearly massless Dirac fermions are generated by 2D Sb layers. In Sr1-yMn1-zSb2, Dirac fermions are found to coexist with ferromagnetism, offering a rare opportunity to investigate the interplay between relativistic fermions and spontaneous time reversal symmetry breaking and explore a possible magnetic Weyl state. Then I will show our quantum oscillation studies on two new Dirac nodal line semimetals - ZrSiSe and ZrSiTe. We have not only revealed their signatures of nodal-line fermions, but also demonstrated that their atomically thin crystals are accessible via mechanical exfoliation, raising the possibility of realizing the theoretically predicted 2D topological insulators. Finally I will discuss exotic quantum transport behavior arising from the zeroth Landau level in Weyl semimetal YbMnBi2. This work is supported by the U.S. DOE under Grant No. DE-SC0014208 (support for the work on ZrSiSe and ZrSiTe) and DOE-EPSCoR Grant No. DE-SC0012432 with additional support from the Louisiana BoR (support for the work on (Sr/Ba)MnSb2 and YbMnBi2).
String-inspired special grand unification
NASA Astrophysics Data System (ADS)
Yamatsu, Naoki
2017-10-01
We discuss a grand unified theory (GUT) based on an SO(32) GUT gauge group broken to its subgroups including a special subgroup. In the SO(32) GUT on the six-dimensional (6D) orbifold space M^4× T^2/\\mathbb{Z}_2, one generation of the standard model fermions can be embedded into a 6D bulk Weyl fermion in the SO(32) vector representation. We show that for a three-generation model, all the 6D and 4D gauge anomalies in the bulk and on the fixed points are canceled out without exotic chiral fermions at low energies.
Ward identities and chiral anomalies for coupled fermionic chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, L. C.; Ferraz, A.; Mastropietro, Vieri
2013-12-15
Coupled fermionic chains are usually described by an effective model written in terms of bonding and anti-bonding fermionic fields with linear dispersion in the vicinities of the respective Fermi points. We derive for the first time exact Ward Identities (WI) for this model, proving the existence of chiral anomalies which verify the Adler-Bardeen non-renormalization property. Such WI are expected to play a crucial role in the understanding of the thermodynamic properties of the system. Our results are non-perturbative and are obtained analyzing Grassmann functional integrals by means of constructive quantum field theory methods.
On the effective operators for Dark Matter annihilations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simone, Andrea De; Thamm, Andrea; Monin, Alexander
2013-02-01
We consider effective operators describing Dark Matter (DM) interactions with Standard Model fermions. In the non-relativistic limit of the DM field, the operators can be organized according to their mass dimension and their velocity behaviour, i.e. whether they describe s- or p-wave annihilations. The analysis is carried out for self-conjugate DM (real scalar or Majorana fermion). In this case, the helicity suppression at work in the annihilation into fermions is lifted by electroweak bremsstrahlung. We construct and study all dimension-8 operators encoding such an effect. These results are of interest in indirect DM searches.
Banerjee, D; Dalmonte, M; Müller, M; Rico, E; Stebler, P; Wiese, U-J; Zoller, P
2012-10-26
Using a Fermi-Bose mixture of ultracold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.
Composite fermion theory for bosonic quantum Hall states on lattices.
Möller, G; Cooper, N R
2009-09-04
We study the ground states of the Bose-Hubbard model in a uniform magnetic field, motivated by the physics of cold atomic gases on lattices at high vortex density. Mapping the bosons to composite fermions (CF) leads to the prediction of quantum Hall fluids that have no counterpart in the continuum. We construct trial states for these phases and test numerically the predictions of the CF model. We establish the existence of strongly correlated phases beyond those in the continuum limit and provide evidence for a wider scope of the composite fermion approach beyond its application to the lowest Landau level.
NASA Astrophysics Data System (ADS)
Sugiyama, K.; Ónuki, Y.
Recent experimental results of high-field magnetization and de Haas-van Alphen experiments in f-electron systems are presented. The magnetic moment and the electronic state are simultaneously discussed because both properties are connected with each other. The first example is a drastic change of the Fermi surface in the antiferromagnet NdIn3. The second is the metamagnetic transition based on the quadrupolar interaction in PrCu2. The third is the metamagnetic transition in a typical heavy fermion compound CeRu2Si2, together with the heavy fermion uranium compounds such as UPd2Al3, URu2Si2 and UPt3.
Minimally doubled fermions at one loop
NASA Astrophysics Data System (ADS)
Capitani, Stefano; Weber, Johannes; Wittig, Hartmut
2009-10-01
Minimally doubled fermions have been proposed as a cost-effective realization of chiral symmetry at non-zero lattice spacing. Using lattice perturbation theory at one loop, we study their renormalization properties. Specifically, we investigate the consequences of the breaking of hyper-cubic symmetry, which is a typical feature of this class of fermionic discretizations. Our results for the quark self-energy indicate that the four-momentum undergoes a renormalization which is linearly divergent. We also compute renormalization factors for quark bilinears, construct the conserved vector and axial-vector currents and verify that at one loop the renormalization factors of the latter are equal to one.
NASA Astrophysics Data System (ADS)
Finster, Felix; Murro, Simone; Röken, Christian
2016-07-01
We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.
NASA Astrophysics Data System (ADS)
Sacramento, P. D.; Vieira, V. R.
2018-04-01
Mappings between models may be obtained by unitary transformations with preservation of the spectra but in general a change in the states. Non-canonical transformations in general also change the statistics of the operators involved. In these cases one may expect a change of topological properties as a consequence of the mapping. Here we consider some dualities resulting from mappings, by systematically using a Majorana fermion representation of spin and fermionic problems. We focus on the change of topological invariants that results from unitary transformations taking as examples the mapping between a spin system and a topological superconductor, and between different fermionic systems.
Production of a Scalar Boson and a Fermion Pair in Arbitrarily Polarized e - e + Beams
NASA Astrophysics Data System (ADS)
Abdullayev, S. K.; Gojayev, M. Sh.; Nasibova, N. A.
2018-05-01
Within the framework of the Standard Model (Minimal Supersymmetric Standard Model) we consider the production of the scalar boson HSM (h; H) and a fermion pair ff- in arbitrarily polarized, counterpropagating electron-positron beams e - e + ⇒ HSM (h; H) ff-. Characteristic features of the behavior of the cross sections and polarization characteristics (right-left spin asymmetry, degree of longitudinal polarization of the fermion, and transverse spin asymmetry) are investigated and elucidated as functions of the energy of the electron-positron beams and the mass of the scalar boson.
Singlet fermionic dark matter with Veltman conditions
NASA Astrophysics Data System (ADS)
Kim, Yeong Gyun; Lee, Kang Young; Nam, Soo-hyeon
2018-07-01
We reexamine a renormalizable model of a fermionic dark matter with a gauge singlet Dirac fermion and a real singlet scalar which can ameliorate the scalar mass hierarchy problem of the Standard Model (SM). Our model setup is the minimal extension of the SM for which a realistic dark matter (DM) candidate is provided and the cancellation of one-loop quadratic divergence to the scalar masses can be achieved by the Veltman condition (VC) simultaneously. This model extension, although renormalizable, can be considered as an effective low-energy theory valid up to cut-off energies about 10 TeV. We calculate the one-loop quadratic divergence contributions of the new scalar and fermionic DM singlets, and constrain the model parameters using the VC and the perturbative unitarity conditions. Taking into account the invisible Higgs decay measurement, we show the allowed region of new physics parameters satisfying the recent measurement of relic abundance. With the obtained parameter set, we predict the elastic scattering cross section of the new singlet fermion into target nuclei for a direct detection of the dark matter. We also perform the full analysis with arbitrary set of parameters without the VC as a comparison, and discuss the implication of the constraints by the VC in detail.
Multiscale Monte Carlo equilibration: Two-color QCD with two fermion flavors
Detmold, William; Endres, Michael G.
2016-12-02
In this study, we demonstrate the applicability of a recently proposed multiscale thermalization algorithm to two-color quantum chromodynamics (QCD) with two mass-degenerate fermion flavors. The algorithm involves refining an ensemble of gauge configurations that had been generated using a renormalization group (RG) matched coarse action, thereby producing a fine ensemble that is close to the thermalized distribution of a target fine action; the refined ensemble is subsequently rethermalized using conventional algorithms. Although the generalization of this algorithm from pure Yang-Mills theory to QCD with dynamical fermions is straightforward, we find that in the latter case, the method is susceptible tomore » numerical instabilities during the initial stages of rethermalization when using the hybrid Monte Carlo algorithm. We find that these instabilities arise from large fermion forces in the evolution, which are attributed to an accumulation of spurious near-zero modes of the Dirac operator. We propose a simple strategy for curing this problem, and demonstrate that rapid thermalization--as probed by a variety of gluonic and fermionic operators--is possible with the use of this solution. Also, we study the sensitivity of rethermalization rates to the RG matching of the coarse and fine actions, and identify effective matching conditions based on a variety of measured scales.« less
Infrared dynamics of minimal walking technicolor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino
2010-07-01
We study the gauge sector of minimal walking technicolor, which is an SU(2) gauge theory with n{sub f}=2 flavors of Wilson fermions in the adjoint representation. Numerical simulations are performed on lattices N{sub t}xN{sub s}{sup 3}, with N{sub s} ranging from 8 to 16 and N{sub t}=2N{sub s}, at fixed {beta}=2.25, and varying the fermion bare mass m{sub 0}, so that our numerical results cover the full range of fermion masses from the quenched region to the chiral limit. We present results for the string tension and the glueball spectrum. A comparison of mesonic and gluonic observables leads to themore » conclusion that the infrared dynamics is given by an SU(2) pure Yang-Mills theory with a typical energy scale for the spectrum sliding to zero with the fermion mass. The typical mesonic mass scale is proportional to and much larger than this gluonic scale. Our findings are compatible with a scenario in which the massless theory is conformal in the infrared. An analysis of the scaling of the string tension with the fermion mass toward the massless limit allows us to extract the chiral condensate anomalous dimension {gamma}{sub *}, which is found to be {gamma}{sub *}=0.22{+-}0.06.« less
Amplitudes in the N=4 supersymmetric Yang-Mills theory from quantum geometry of momentum space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorsky, A.
We discuss multiloop maximally helicity violating amplitudes in the N=4 supersymmetric Yang-Mills theory in terms of effective gravity in the momentum space with IR regulator branes as degrees of freedom. Kinematical invariants of external particles yield the moduli spaces of complex or Kahler structures which are the playgrounds for the Kodaira-Spencer or Kahler type gravity. We suggest fermionic representation of the loop maximally helicity violating amplitudes in the N=4 supersymmetric Yang-Mills theory assuming the identification of the IR regulator branes with Kodaira-Spencer fermions in the B model and Lagrangian branes in the A model. The two-easy mass box diagram ismore » related to the correlator of fermionic currents on the spectral curve in the B model or hyperbolic volume in the A model and it plays the role of a building block in the whole picture. The Bern-Dixon-Smirnov-like ansatz has the interpretation as the semiclassical limit of a fermionic correlator. It is argued that fermionic representation implies a kind of integrability on the moduli spaces. We conjecture the interpretation of the reggeon degrees of freedom in terms of the open strings stretched between the IR regulator branes.« less
Dark matter direct detection of a fermionic singlet at one loop
NASA Astrophysics Data System (ADS)
Herrero-García, Juan; Molinaro, Emiliano; Schmidt, Michael A.
2018-06-01
The strong direct detection limits could be pointing to dark matter - nucleus scattering at loop level. We study in detail the prototype example of an electroweak singlet (Dirac or Majorana) dark matter fermion coupled to an extended dark sector, which is composed of a new fermion and a new scalar. Given the strong limits on colored particles from direct and indirect searches we assume that the fields of the new dark sector are color singlets. We outline the possible simplified models, including the well-motivated cases in which the extra scalar or fermion is a Standard Model particle, as well as the possible connection to neutrino masses. We compute the contributions to direct detection from the photon, the Z and the Higgs penguins for arbitrary quantum numbers of the dark sector. Furthermore, we derive compact expressions in certain limits, i.e., when all new particles are heavier than the dark matter mass and when the fermion running in the loop is light, like a Standard Model lepton. We study in detail the predicted direct detection rate and how current and future direct detection limits constrain the model parameters. In case dark matter couples directly to Standard Model leptons we find an interesting interplay between lepton flavor violation, direct detection and the observed relic abundance.
Grassmann phase space methods for fermions. I. Mode theory
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Jeffers, J.; Barnett, S. M.
2016-07-01
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggest the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. The theory of Grassmann phase space methods for fermions based on separate modes is developed, showing how the distribution function is defined and used to determine quantum correlation functions, Fock state populations and coherences via Grassmann phase space integrals, how the Fokker-Planck equations are obtained and then converted into equivalent Ito equations for stochastic Grassmann variables. The fermion distribution function is an even Grassmann function, and is unique. The number of c-number Wiener increments involved is 2n2, if there are n modes. The situation is somewhat different to the bosonic c-number case where only 2 n Wiener increments are involved, the sign of the drift term in the Ito equation is reversed and the diffusion matrix in the Fokker-Planck equation is anti-symmetric rather than symmetric. The un-normalised B distribution is of particular importance for determining Fock state populations and coherences, and as pointed out by Plimak, Collett and Olsen, the drift vector in its Fokker-Planck equation only depends linearly on the Grassmann variables. Using this key feature we show how the Ito stochastic equations can be solved numerically for finite times in terms of c-number stochastic quantities. Averages of products of Grassmann stochastic variables at the initial time are also involved, but these are determined from the initial conditions for the quantum state. The detailed approach to the numerics is outlined, showing that (apart from standard issues in such numerics) numerical calculations for Grassmann phase space theories of fermion systems could be carried out without needing to represent Grassmann phase space variables on the computer, and only involving processes using c-numbers. We compare our approach to that of Plimak, Collett and Olsen and show that the two approaches differ. As a simple test case we apply the B distribution theory and solve the Ito stochastic equations to demonstrate coupling between degenerate Cooper pairs in a four mode fermionic system involving spin conserving interactions between the spin 1 / 2 fermions, where modes with momenta - k , + k-each associated with spin up, spin down states, are involved.
Asymptotically Safe Standard Model via Vectorlike Fermions.
Mann, R B; Meffe, J R; Sannino, F; Steele, T G; Wang, Z W; Zhang, C
2017-12-29
We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.
Asymptotically Safe Standard Model via Vectorlike Fermions
NASA Astrophysics Data System (ADS)
Mann, R. B.; Meffe, J. R.; Sannino, F.; Steele, T. G.; Wang, Z. W.; Zhang, C.
2017-12-01
We construct asymptotically safe extensions of the standard model by adding gauged vectorlike fermions. Using large number-of-flavor techniques we argue that all gauge couplings, including the hypercharge and, under certain conditions, the Higgs coupling, can achieve an interacting ultraviolet fixed point.
B-Parameters of 4-Fermion Operators from Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Rajan
1997-12-31
This talk summarizes the status of the calculations of B{sub K}, B{sub 7}, B{sub 8}, and B{sub s}, done in collaboration with T. Bhattacharya, C. Kilcup, and S. Sharpe. Results for staggered, Wilson, and Clover fermions are presented.
Universal relations with fermionic dark matter
NASA Astrophysics Data System (ADS)
Krut, A.; Argüelles, C. R.; Rueda, J. A.; Ruffini, R.
2018-01-01
We have recently introduced a new model for the distribution of dark matter (DM) in galaxies, the Ruffini-Argüelles-Rueda (RAR) model, based on a self-gravitating system of massive fermions at finite temperatures. The RAR model, for fermion masses above keV, successfully describes the DM halos in galaxies, and predicts the existence of a denser quantum core towards the center of each configuration. We demonstrate here, for the first time, that the introduction of a cutoff in the fermion phase-space distribution, necessary to account for galaxies finite size and mass, defines a new solution with a compact quantum core which represents an alternative to the central black hole (BH) scenario for SgrA*. For a fermion mass in the range 48keV ≤ mc2 ≤ 345keV, the DM halo distribution fulfills the most recent data of the Milky Way rotation curves while harbors a dense quantum core of 4×106M⊙ within the S2 star pericenter. In particular, for a fermion mass of mc2 ˜ 50keV the model is able to explain the DM halos from typical dwarf spheroidal to normal elliptical galaxies, while harboring dark and massive compact objects from ˜ 103M⊙ tp to 108M⊙ at their respective centers. The model is shown to be in good agreement with different observationally inferred universal relations, such as the ones connecting DM halos with supermassive dark central objects. Finally, the model provides a natural mechanism for the formation of supermassive BHs as heavy as few ˜ 108M⊙. We argue that larger BH masses (few ˜ 109-10M⊙) may be achieved by assuming subsequent accretion processes onto the above heavy seeds, depending on accretion efficiency and environment.
NASA Astrophysics Data System (ADS)
Nori, Franco
2014-03-01
We study a heterostructure which consists of a topological insulator and a superconductor with a hole. This system supports a robust Majorana fermion state bound to the vortex core. We study the possibility of using scanning tunneling spectroscopy (i) to detect the Majorana fermion in this setup and (ii) to study excited states bound to the vortex core. The Majorana fermion manifests itself as an H-dependent zero-bias anomaly of the tunneling conductance. The excited states spectrum differs from the spectrum of a typical Abrikosov vortex, providing additional indirect confirmation of the Majorana state observation. We also study how to manipulate and probe Majorana fermions using super-conducting circuits. In we consider a semiconductor nanowire quantum dot with strong spin-orbit coupling (SOC), which can be used to achieve a spin-orbit qubit. In contrast to a spin qubit, the spin-orbit qubit can respond to an external ac electric field, i.e., electric-dipole spin resonance. We develop a theory that can apply in the strong SOC regime. We find that there is an optimal SOC strength ηopt = √ 2/2, where the Rabi frequency induced by the ac electric field becomes maximal. Also, we show that both the level spacing and the Rabi frequency of the spin-orbit qubit have periodic responses to the direction of the external static magnetic field. These responses can be used to determine the SOC in the nanowire. FN is partly supported by the RIKEN CEMS, iTHES Project, MURI Center for Dynamic Magneto-Optics, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.
Causal fermion systems as a candidate for a unified physical theory
NASA Astrophysics Data System (ADS)
Finster, Felix; Kleiner, Johannes
2015-07-01
The theory of causal fermion systems is an approach to describe fundamental physics. Giving quantum mechanics, general relativity and quantum field theory as limiting cases, it is a candidate for a unified physical theory. We here give a non-technical introduction.
Limitation to Communication of Fermionic System in Accelerated Frame
NASA Astrophysics Data System (ADS)
Chang, Jinho; Kwon, Younghun
2015-03-01
In this article, we investigate communication between an inertial observer and an accelerated observer, sharing fermionic system, when they use classical and quantum communication using single rail or dual rail encoding. The purpose of this work is to understand the limit to the communication between an inertial observer and an accelerated observer, with single rail or dual rail encoding of fermionic system. We observe that at the infinite acceleration, the coherent information of single(or double) rail quantum channel vanishes, but those of classical ones may have finite values. In addition, we see that even when considering a method beyond the single-mode approximation, for the communication between Alice and Bob, the dual rail entangled state seems to provide better information transfer than the single rail entangled state, when we take a fixed choice of the Unruh mode. Moreover, we find that the single-mode approximation may not be sufficient to analyze communication of fermionic system in an accelerated frame.
Entanglement Entropy of the ν=1/2 Composite Fermion Non-Fermi Liquid State.
Shao, Junping; Kim, Eun-Ah; Haldane, F D M; Rezayi, Edward H
2015-05-22
The so-called "non-Fermi liquid" behavior is very common in strongly correlated systems. However, its operational definition in terms of "what it is not" is a major obstacle for the theoretical understanding of this fascinating correlated state. Recently there has been much interest in entanglement entropy as a theoretical tool to study non-Fermi liquids. So far explicit calculations have been limited to models without direct experimental realizations. Here we focus on a two-dimensional electron fluid under magnetic field and filling fraction ν=1/2, which is believed to be a non-Fermi liquid state. Using a composite fermion wave function which captures the ν=1/2 state very accurately, we compute the second Rényi entropy using the variational Monte Carlo technique. We find the entanglement entropy scales as LlogL with the length of the boundary L as it does for free fermions, but has a prefactor twice that of free fermions.
Theory of a peristaltic pump for fermionic quantum fluids
NASA Astrophysics Data System (ADS)
Romeo, F.; Citro, R.
2018-05-01
Motivated by the recent developments in fermionic cold atoms and in nanostructured systems, we propose the model of a peristaltic quantum pump. Differently from the Thouless paradigm, a peristaltic pump is a quantum device that generates a particle flux as the effect of a sliding finite-size microlattice. A one-dimensional tight-binding Hamiltonian model of this quantum machine is formulated and analyzed within a lattice Green's function formalism on the Keldysh contour. The pump observables, as, e.g., the pumped particles per cycle, are studied as a function of the pumping frequency, the width of the pumping potential, the particles mean free path, and system temperature. The proposed analysis applies to arbitrary peristaltic potentials acting on fermionic quantum fluids confined to one dimension. These confinement conditions can be realized in nanostructured systems or, in a more controllable way, in cold atoms experiments. In view of the validation of the theoretical results, we describe the outcomes of the model considering a fermionic cold atoms system as a paradigmatic example.
Dirac Fermions in an Antiferromagnetic Semimetal
NASA Astrophysics Data System (ADS)
Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng; Shou-Cheng Zhang's Group Team, Prof.
Analogues of the elementary particles have been extensively searched for in condensed matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low energy excitations in materials now known as Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry and inversion symmetry "". Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where both and "" are broken but their combination "" is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points under symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism. We acknowledge the DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515, NSF under Grant No.DMR-1305677 and FAME, one of six centers of STARnet.
Strongly-correlated crystal-field approach to heavy-fermion compounds and to 3d oxides
NASA Astrophysics Data System (ADS)
Radwanski, Ryszard; Ropka, Zofia
2005-03-01
The description of electronic and magnetic properties of real compounds like LaMnO3, LaCoO3, Na2V3O7, FeO, NdAl2 and ErNi5 as well as heavy-fermion superconductor UPd2Al3 and heavy-fermion metal YbRh2Si2, both zero-temperature ground state properties and thermodynamics, will be presented pointing out the existence of a discrete atomic-like low-energy, in the meV scale, electronic structure. This low-energy many-electron discrete atomic-like electronic structure is governed by very strong electron correlations, predominantly on-site, by the intra-atomic spin-orbit coupling and by details of the local surrounding (crystal-field interactions), but later is modified by inter-site interactions. Our studies indicate that there is the highest time to ``unquench'' the orbital moment in solid state physics in description of 3d-/4f-/5f-atom containing compounds and that heavy-fermion phenomena are of the relativistic origin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loh, Yen Lee; Randeria, Mohit; Trivedi, Nandini
The direct transition from an insulator to a superconductor (SC) in Fermi systems is a problem of long-standing interest, which necessarily goes beyond the standard BCS paradigm of superconductivity as a Fermi surface instability. We introduce here a simple, translationally invariant lattice fermion model that undergoes a SC-insulator transition (SIT) and elucidate its properties using analytical methods and quantum Monte Carlo simulations. We show that there is a fermionic band insulator to bosonic insulator crossover in the insulating phase and a BCS-to-BEC crossover in the SC. The SIT is always found to be from a bosonic insulator to a BEC-likemore » SC, with an energy gap for fermions that remains finite across the SIT. Hence, the energy scales that go critical at the SIT are the gap to pair excitations in the insulator and the superfluid stiffness in the SC. In addition to giving insight into important questions about the SIT in solid-state systems, our model should be experimentally realizable using ultracold fermions in optical lattices.« less
Pseudoscalar portal dark matter and new signatures of vector-like fermions
Fan, JiJi; Koushiappas, Savvas M.; Landsberg, Greg
2016-01-19
Fermionic dark matter interacting with the Standard Model sector through a pseudoscalar portal could evade the direct detection constraints while preserving a WIMP miracle. Here, we study the LHC constraints on the pseudoscalar production in simplified models with the pseudoscalar either dominantly coupled to b quarks ormore » $${{\\tau}}$$ leptons and explore their implications for the GeV excesses in gamma ray observations. We also investigate models with new vector-like fermions that could realize the simplfied models of pseudoscalar portal dark matter. Furthermore, these models yield new decay channels and signatures of vector-like fermions, for instance, bbb; b$${{\\tau}}$$ $${{\\tau}}$$, and $${{\\tau}}$$ $${{\\tau}}$$ $${{\\tau}}$$ resonances. Some of the signatures have already been strongly constrained by the existing LHC searches and the parameter space fitting the gamma ray excess is further restricted. Conversely, the pure $${{\\tau}}$$-rich final state is only weakly constrained so far due to the small electroweak production rate.« less
Conformal versus confining scenario in SU(2) with adjoint fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Debbio, L.; Pica, C.; Lucini, B.
2009-10-01
The masses of the lowest-lying states in the meson and in the gluonic sector of an SU(2) gauge theory with two Dirac flavors in the adjoint representation are measured on the lattice at a fixed value of the lattice coupling {beta}=4/g{sub 0}{sup 2}=2.25 for values of the bare fermion mass m{sub 0} that span a range between the quenched regime and the massless limit, and for various lattice volumes. Even for light constituent fermions the lightest glueballs are found to be lighter than the lightest mesons. Moreover, the string tension between two static fundamental sources strongly depends on the massmore » of the dynamical fermions and becomes of the order of the inverse squared lattice linear size before the chiral limit is reached. The implications of these findings for the phase of the theory in the massless limit are discussed and a strategy for discriminating between the (near-)conformal and the confining scenario is outlined.« less
Superconductor-insulator transition and Fermi-Bose crossovers
Loh, Yen Lee; Randeria, Mohit; Trivedi, Nandini; ...
2016-05-31
The direct transition from an insulator to a superconductor (SC) in Fermi systems is a problem of long-standing interest, which necessarily goes beyond the standard BCS paradigm of superconductivity as a Fermi surface instability. We introduce here a simple, translationally invariant lattice fermion model that undergoes a SC-insulator transition (SIT) and elucidate its properties using analytical methods and quantum Monte Carlo simulations. We show that there is a fermionic band insulator to bosonic insulator crossover in the insulating phase and a BCS-to-BEC crossover in the SC. The SIT is always found to be from a bosonic insulator to a BEC-likemore » SC, with an energy gap for fermions that remains finite across the SIT. Hence, the energy scales that go critical at the SIT are the gap to pair excitations in the insulator and the superfluid stiffness in the SC. In addition to giving insight into important questions about the SIT in solid-state systems, our model should be experimentally realizable using ultracold fermions in optical lattices.« less
Strongly Correlated Metal Built from Sachdev-Ye-Kitaev Models
NASA Astrophysics Data System (ADS)
Song, Xue-Yang; Jian, Chao-Ming; Balents, Leon
2017-11-01
Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond the quasiparticle description. The Sachdev-Ye-Kitaev (SYK) model describes a (0 +1 )D quantum cluster with random all-to-all four-fermion interactions among N fermion modes which becomes exactly solvable as N →∞ , exhibiting a zero-dimensional non-Fermi-liquid with emergent conformal symmetry and complete absence of quasiparticles. Here we study a lattice of complex-fermion SYK dots with random intersite quadratic hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in temperature resistivity in the incoherent regime, and a Lorentz ratio L ≡(κ ρ /T ) varies between two universal values as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated metal.
NASA Astrophysics Data System (ADS)
Cheng, Song; Yu, Yi-Cong; Batchelor, M. T.; Guan, Xi-Wen
2018-03-01
In this Rapid Communication, we show that low-energy macroscopic properties of the one-dimensional (1D) attractive Hubbard model exhibit two fluids of bound pairs and of unpaired fermions. Using the thermodynamic Bethe ansatz equations of the model, we first determine the low-temperature phase diagram and analytically calculate the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing correlation function for the partially polarized phase. We then show that for such an FFLO-like state in the low-density regime the effective chemical potentials of bound pairs and unpaired fermions behave like two free fluids. Consequently, the susceptibility, compressibility, and specific heat obey simple additivity rules, indicating the "free" particle nature of interacting fermions on a 1D lattice. In contrast to the continuum Fermi gases, the correlation critical exponents and thermodynamics of the attractive Hubbard model essentially depend on two lattice interacting parameters. Finally, we study scaling functions, the Wilson ratio and susceptibility, which provide universal macroscopic properties and dimensionless constants of interacting fermions at low energy.
Δmix parameter in the overlap on domain-wall mixed action
NASA Astrophysics Data System (ADS)
Lujan, M.; Alexandru, A.; Chen, Y.; Draper, T.; Freeman, W.; Gong, M.; Lee, F. X.; Li, A.; Liu, K. F.; Mathur, N.
2012-07-01
A direct calculation of the mixed action parameter Δmix with valence overlap fermions on a domain-wall fermion sea is presented. The calculation is performed on four ensembles of the 2+1 flavor domain-wall gauge configurations: 243×64 (aml=0.005, a=0.114fm) and 323×64 (aml=0.004, 0.006, 0.008, a=0.085fm). For pion masses close to 300 MeV we find Δmix=0.030(6)GeV4 at a=0.114fm and Δmix=0.033(12)GeV4 at a=0.085fm. The results are quite independent of the lattice spacing and they are significantly smaller than the results for valence domain-wall fermions on asqtad sea or those of valence overlap fermions on clover sea. Combining the results extracted from these two ensembles, we get Δmix=0.030(6)(5)GeV4, where the first error is statistical and the second is the systematic error associated with the fitting method.
Topological superconductivity in monolayer transition metal dichalcogenides.
Hsu, Yi-Ting; Vaezi, Abolhassan; Fischer, Mark H; Kim, Eun-Ah
2017-04-11
Theoretically, it has been known that breaking spin degeneracy and effectively realizing spinless fermions is a promising path to topological superconductors. Yet, topological superconductors are rare to date. Here we propose to realize spinless fermions by splitting the spin degeneracy in momentum space. Specifically, we identify monolayer hole-doped transition metal dichalcogenide (TMD)s as candidates for topological superconductors out of such momentum-space-split spinless fermions. Although electron-doped TMDs have recently been found superconducting, the observed superconductivity is unlikely topological because of the near spin degeneracy. Meanwhile, hole-doped TMDs with momentum-space-split spinless fermions remain unexplored. Employing a renormalization group analysis, we propose that the unusual spin-valley locking in hole-doped TMDs together with repulsive interactions selectively favours two topological superconducting states: interpocket paired state with Chern number 2 and intrapocket paired state with finite pair momentum. A confirmation of our predictions will open up possibilities for manipulating topological superconductors on the device-friendly platform of monolayer TMDs.
Baryon bags in strong coupling QCD
NASA Astrophysics Data System (ADS)
Gattringer, Christof
2018-04-01
We discuss lattice QCD with one flavor of staggered fermions and show that in the path integral the baryon contributions can be fully separated from quark and diquark contributions. The baryonic degrees of freedom (d.o.f.) are independent of the gauge field, and the corresponding free fermion action describes the baryons through the joint propagation of three quarks. The nonbaryonic dynamics is described by quark and diquark terms that couple to the gauge field. When evaluating the quark and diquark contributions in the strong coupling limit, the partition function completely factorizes into baryon bags and a complementary domain. Baryon bags are regions in space-time where the dynamics is described by a single free fermion made out of three quarks propagating coherently as a baryon. Outside the baryon bags, the relevant d.o.f. are monomers and dimers for quarks and diquarks. The partition sum is a sum over all baryon bag configurations, and for each bag, a free fermion determinant appears as a weight factor.
Dynamics of Fermionic Impurity in One Dimension
NASA Astrophysics Data System (ADS)
Guan, Huijie; Andrei, Natan
2014-03-01
We study the dynamics of a fermionic impurity propagating in a one dimensional infinite line. The system is described by the Gaudin-Yang Model and is exactly solvable by the Nested Bethe Ansatz. Starting from a generic initial state, we obtain the time evolution of the wavefunction by the Yudson Approach in which we expand the initial state with the Nested Bethe Ansatz solutions. One situation that we are interested in is where, initially, the impurity is embedded in host fermions with a lattice configuration and one remove the periodic potential at time zero. We calculate the density profile and correlation functions at a later time. Another situation is to shoot an impurity into a cloud of fermions and calculate the probability for it to pass through. While the repulsive case has been studied already[1], we extend it to the attractive case and study the role of bound states in the evolution. We are also interested in boson impurity problem, where not only impurity interacts with host particles, all host particles interact with each other.
R. Y. Chen; Gu, G. D.; Chen, Z. G.; ...
2015-10-22
We present a magnetoinfrared spectroscopy study on a newly identified three-dimensional (3D) Dirac semimetal ZrTe 5. We observe clear transitions between Landau levels and their further splitting under a magnetic field. Both the sequence of transitions and their field dependence follow quantitatively the relation expected for 3D massless Dirac fermions. The measurement also reveals an exceptionally low magnetic field needed to drive the compound into its quantum limit, demonstrating that ZrTe 5 is an extremely clean system and ideal platform for studying 3D Dirac fermions. The splitting of the Landau levels provides direct, bulk spectroscopic evidence that a relatively weakmore » magnetic field can produce a sizable Zeeman effect on the 3D Dirac fermions, which lifts the spin degeneracy of Landau levels. As a result, our analysis indicates that the compound evolves from a Dirac semimetal into a topological line-node semimetal under the current magnetic field configuration.« less
Quantum computing with Majorana fermion codes
NASA Astrophysics Data System (ADS)
Litinski, Daniel; von Oppen, Felix
2018-05-01
We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.
Atiyah-Patodi-Singer index from the domain-wall fermion Dirac operator
NASA Astrophysics Data System (ADS)
Fukaya, Hidenori; Onogi, Tetsuya; Yamaguchi, Satoshi
2017-12-01
The Atiyah-Patodi-Singer (APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. The mathematical setup for this theorem is, however, not directly related to the physical fermion system, as it imposes on the fermion fields a nonlocal boundary condition known as the "APS boundary condition" by hand, which is unlikely to be realized in the materials. In this work, we attempt to reformulate the APS index in a "physicist-friendly" way for a simple setup with U (1 ) or S U (N ) gauge group on a flat four-dimensional Euclidean space. We find that the same index as APS is obtained from the domain-wall fermion Dirac operator with a local boundary condition, which is naturally given by the kink structure in the mass term. As the boundary condition does not depend on the gauge fields, our new definition of the index is easy to compute with the standard Fujikawa method.
Vacuum Cherenkov radiation for Lorentz-violating fermions
NASA Astrophysics Data System (ADS)
Schreck, M.
2017-11-01
The current work focuses on the process of vacuum Cherenkov radiation for Lorentz-violating fermions that are described by the minimal standard-model extension (SME). To date, most considerations of this important hypothetical process have been restricted to Lorentz-violating photons, as the necessary theoretical tools for the SME fermion sector have not been available. With their development in a very recent paper, we are now in a position to compute the decay rates based on a modified Dirac theory. Two realizations of the Cherenkov process are studied. In the first scenario, the spin projection of the incoming fermion is assumed to be conserved, and in the second, the spin projection is allowed to flip. The first type of process is shown to be still forbidden for the dimensionful a and b coefficients where there are strong indications that it is energetically disallowed for the H coefficients, as well. However, it is rendered possible for the dimensionless c , d , e , f , and g coefficients. For large initial fermion energies, the decay rates for the c and d coefficients were found to grow linearly with momentum and to be linearly suppressed by the smallness of the Lorentz-violating coefficient where for the e , f , and g coefficients this suppression is even quadratic. The decay rates vanish in the vicinity of the threshold, as expected. The decay including a fermion spin-flip plays a role for the spin-nondegenerate operators and it was found to occur for the dimensionful b and H coefficients as well as for the dimensionless d and g . The characteristics of this process differ much from the properties of the spin-conserving one, e.g., there is no threshold. Based on experimental data of ultra-high-energy cosmic rays, new constraints on Lorentz violation in the quark sector are obtained from the thresholds. However, it does not seem to be possible to derive bounds from the spin-flip decays. This work reveals the usefulness of the quantum field theoretic methods recently developed to study the phenomenology of high-energy fermions within the framework of the SME.
Scaled lattice fermion fields, stability bounds, and regularity
NASA Astrophysics Data System (ADS)
O'Carroll, Michael; Faria da Veiga, Paulo A.
2018-02-01
We consider locally gauge-invariant lattice quantum field theory models with locally scaled Wilson-Fermi fields in d = 1, 2, 3, 4 spacetime dimensions. The use of scaled fermions preserves Osterwalder-Seiler positivity and the spectral content of the models (the decay rates of correlations are unchanged in the infinite lattice). In addition, it also results in less singular, more regular behavior in the continuum limit. Precisely, we treat general fermionic gauge and purely fermionic lattice models in an imaginary-time functional integral formulation. Starting with a hypercubic finite lattice Λ ⊂(aZ ) d, a ∈ (0, 1], and considering the partition function of non-Abelian and Abelian gauge models (the free fermion case is included) neglecting the pure gauge interactions, we obtain stability bounds uniformly in the lattice spacing a ∈ (0, 1]. These bounds imply, at least in the subsequential sense, the existence of the thermodynamic (Λ ↗ (aZ ) d) and the continuum (a ↘ 0) limits. Specializing to the U(1) gauge group, the known non-intersecting loop expansion for the d = 2 partition function is extended to d = 3 and the thermodynamic limit of the free energy is shown to exist with a bound independent of a ∈ (0, 1]. In the case of scaled free Fermi fields (corresponding to a trivial gauge group with only the identity element), spectral representations are obtained for the partition function, free energy, and correlations. The thermodynamic and continuum limits of the free fermion free energy are shown to exist. The thermodynamic limit of n-point correlations also exist with bounds independent of the point locations and a ∈ (0, 1], and with no n! dependence. Also, a time-zero Hilbert-Fock space is constructed, as well as time-zero, spatially pointwise scaled fermion creation operators which are shown to be norm bounded uniformly in a ∈ (0, 1]. The use of our scaled fields since the beginning allows us to extract and isolate the singularities of the free energy when a ↘ 0.
Liquid-gas phase transitions and C K symmetry in quantum field theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal
A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for the analytic determination of both the critical line and the disorder lines. Depending on the values of the parameters, either zero, one, or two disorder lines are found. Our numerical results for relativistic fermions give a very similar picture.« less
Liquid-gas phase transitions and C K symmetry in quantum field theories
Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal
2017-04-04
A general field-theoretic framework for the treatment of liquid-gas phase transitions is developed. Starting from a fundamental four-dimensional field theory at nonzero temperature and density, an effective three-dimensional field theory is derived. The effective field theory has a sign problem at finite density. Although finite density explicitly breaks charge conjugation C , there remains a symmetry under C K , where K is complex conjugation. Here, we consider four models: relativistic fermions, nonrelativistic fermions, static fermions and classical particles. The interactions are via an attractive potential due to scalar field exchange and a repulsive potential due to massive vector exchange.more » The field-theoretic representation of the partition function is closely related to the equivalence of the sine-Gordon field theory with a classical gas. The thermodynamic behavior is extracted from C K -symmetric complex saddle points of the effective field theory at tree level. In the cases of nonrelativistic fermions and classical particles, we find complex saddle point solutions but no first-order transitions, and neither model has a ground state at tree level. The relativistic and static fermions show a liquid-gas transition at tree level in the effective field theory. The liquid-gas transition, when it occurs, manifests as a first-order line at low temperature and high density, terminated by a critical end point. The mass matrix controlling the behavior of correlation functions is obtained from fluctuations around the saddle points. Due to the C K symmetry of the models, the eigenvalues of the mass matrix are not always real but can be complex. This then leads to the existence of disorder lines, which mark the boundaries where the eigenvalues go from purely real to complex. The regions where the mass matrix eigenvalues are complex are associated with the critical line. In the case of static fermions, a powerful duality between particles and holes allows for the analytic determination of both the critical line and the disorder lines. Depending on the values of the parameters, either zero, one, or two disorder lines are found. Our numerical results for relativistic fermions give a very similar picture.« less
Exact Boson-Fermion Duality on a 3D Euclidean Lattice
Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; ...
2018-01-05
The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. Here, we describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.
NASA Astrophysics Data System (ADS)
Göschl, Daniel
2018-03-01
We discuss simulation strategies for the massless lattice Schwinger model with a topological term and finite chemical potential. The simulation is done in a dual representation where the complex action problem is solved and the partition function is a sum over fermion loops, fermion dimers and plaquette-occupation numbers. We explore strategies to update the fermion loops coupled to the gauge degrees of freedom and check our results with conventional simulations (without topological term and at zero chemical potential), as well as with exact summation on small volumes. Some physical implications of the results are discussed.
Exact Boson-Fermion Duality on a 3D Euclidean Lattice.
Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; Raghu, S
2018-01-05
The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. We describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.
NASA Astrophysics Data System (ADS)
Kurkcuoglu, Doga Murat; de Melo, C. A. R. Sá
2018-05-01
We propose the creation and investigation of a system of spin-one fermions in the presence of artificial spin-orbit coupling, via the interaction of three hyperfine states of fermionic atoms to Raman laser fields. We explore the emergence of spinor physics in the Hamiltonian described by the interaction between light and atoms, and analyze spectroscopic properties such as dispersion relation, Fermi surfaces, spectral functions, spin-dependent momentum distributions and density of states. Connections to spin-one bosons and SU(3) systems is made, as well relations to the Lifshitz transition and Pomeranchuk instability are presented.
Magnitude of the magnetic exchange interaction in the heavy-fermion antiferromagnet CeRhIn 5
Das, Pinaki; Lin, S. -Z.; Ghimire, N. J.; ...
2014-12-08
We have used high-resolution neutron spectroscopy experiments to determine the complete spin wave spectrum of the heavy-fermion antiferromagnet CeRhIn₅. The spin wave dispersion can be quantitatively reproduced with a simple frustrated J₁-J₂ model that also naturally explains the magnetic spin-spiral ground state of CeRhIn₅ and yields a dominant in-plane nearest-neighbor magnetic exchange constant J₀=0.74(3) meV. Our results lead the way to a quantitative understanding of the rich low-temperature phase diagram of the prominent CeTIn₅ (T = Co, Rh, Ir) class of heavy-fermion materials.
Exact Boson-Fermion Duality on a 3D Euclidean Lattice
NASA Astrophysics Data System (ADS)
Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; Raghu, S.
2018-01-01
The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. We describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.
Statistical Transmutation in Floquet Driven Optical Lattices.
Sedrakyan, Tigran A; Galitski, Victor M; Kamenev, Alex
2015-11-06
We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state.
Anderson localization in sigma models
NASA Astrophysics Data System (ADS)
Bruckmann, Falk; Wellnhofer, Jacob
2018-03-01
In QCD above the chiral restoration temperature there exists an Anderson transition in the fermion spectrum from localized to delocalized modes. We investigate whether the same holds for nonlinear sigma models which share properties like dynamical mass generation and asymptotic freedom with QCD. In particular we study the spectra of fermions coupled to (quenched) CP(N-1) configurations at high temperatures. We compare results in two and three space-time dimensions: in two dimensions the Anderson transition is absent, since all fermion modes are localized, while in three dimensions it is present. Our measurements include a more recent observable characterizing level spacings: the distribution of ratios of consecutive level spacings.
Cosmic matter-antimatter asymmetry and gravitational force
NASA Technical Reports Server (NTRS)
Hsu, J. P.
1980-01-01
Cosmic matter-antimatter asymmetry due to the gravitational interaction alone is discussed, considering the gravitational coupling of fermion matter related to the Yang-Mills (1954) gauge symmetry with the unique generalization of the four-dimensional Poincare group. Attention is given to the case of weak static fields which determines the space-time metric where only large source terms are retained. In addition, considering lowest-order Feynman diagrams, there are presented gravitational potential energies between fermions, between antifermions, and between a fermion and an antifermion. It is concluded that the gravitational force between matter is different from that between antimatter; implications from this concerning the evolution of the universe are discussed.
Massless rotating fermions inside a cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambruş, Victor E., E-mail: victor.ambrus@gmail.com; Winstanley, Elizabeth
2015-12-07
We study rotating thermal states of a massless quantum fermion field inside a cylinder in Minkowski space-time. Two possible boundary conditions for the fermion field on the cylinder are considered: the spectral and MIT bag boundary conditions. If the radius of the cylinder is sufficiently small, rotating thermal expectation values are finite everywhere inside the cylinder. We also study the Casimir divergences on the boundary. The rotating thermal expectation values and the Casimir divergences have different properties depending on the boundary conditions applied at the cylinder. This is due to the local nature of the MIT bag boundary condition, whilemore » the spectral boundary condition is nonlocal.« less
A Formulation of Quantum Field Theory Realizing a Sea of Interacting Dirac Particles
NASA Astrophysics Data System (ADS)
Finster, Felix
2011-08-01
In this survey article, we explain a few ideas behind the fermionic projector approach and summarize recent results which clarify the connection to quantum field theory. The fermionic projector is introduced, which describes the physical system by a collection of Dirac states, including the states of the Dirac sea. Formulating the interaction by an action principle for the fermionic projector, we obtain a consistent description of interacting quantum fields which reproduces the results of perturbative quantum field theory. We find a new mechanism for the generation of boson masses and obtain small corrections to the field equations which violate causality.
Fermionic spectral functions in backreacting p-wave superconductors at finite temperature
NASA Astrophysics Data System (ADS)
Giordano, G. L.; Grandi, N. E.; Lugo, A. R.
2017-04-01
We investigate the spectral function of fermions in a p-wave superconducting state, at finite both temperature and gravitational coupling, using the AdS/CF T correspondence and extending previous research. We found that, for any coupling below a critical value, the system behaves as its zero temperature limit. By increasing the coupling, the "peak-dip-hump" structure that characterizes the spectral function at fixed momenta disappears. In the region where the normal/superconductor phase transition is first order, the presence of a non-zero order parameter is reflected in the absence of rotational symmetry in the fermionic spectral function at the critical temperature.
On the interpretation of a possible ~ 750 GeV particle decaying into γγ
Ellis, John; Ellis, Sebastian A. R.; Quevillon, Jeremie; ...
2016-03-25
We consider interpretations of the recent ~3σ reports by the CMS and ATLAS collaborations of a possible X(~ 750 GeV) state decaying into yy final states. We focus on the possibilities that this is a scalar or pseudoscalar electroweak isoscalar state produced by gluon-gluon fusion mediated by loops of heavy fermions. We consider several models for these fermions, including a single vector-like charge 2/3 T quark, a doublet of vector-like quarks (T;B), and a vector-like generation of quarks, with or without leptons that also contribute to the X → yy decay amplitude. We also consider the possibility that X(750) ismore » a dark matter mediator, with a neutral vector-like dark matter particle. These scenarios are compatible with the present and prospective direct limits on vector-like fermions from LHC Runs 1 and 2, as well as indirect constraints from electroweak precision measurements, and we show that the required Yukawa-like couplings between the X particle and the heavy vector-like fermions are small enough to be perturbative so long as the X particle has dominant decay modes into gg and yy. In conclusion, the decays X → ZZ,Zy and W +W - are interesting prospective signatures that may help distinguish between different vector-like fermion scenarios.« less
Soluyanov, Alexey A; Gresch, Dominik; Wang, Zhijun; Wu, QuanSheng; Troyer, Matthias; Dai, Xi; Bernevig, B Andrei
2015-11-26
Fermions--elementary particles such as electrons--are classified as Dirac, Majorana or Weyl. Majorana and Weyl fermions had not been observed experimentally until the recent discovery of condensed matter systems such as topological superconductors and semimetals, in which they arise as low-energy excitations. Here we propose the existence of a previously overlooked type of Weyl fermion that emerges at the boundary between electron and hole pockets in a new phase of matter. This particle was missed by Weyl because it breaks the stringent Lorentz symmetry in high-energy physics. Lorentz invariance, however, is not present in condensed matter physics, and by generalizing the Dirac equation, we find the new type of Weyl fermion. In particular, whereas Weyl semimetals--materials hosting Weyl fermions--were previously thought to have standard Weyl points with a point-like Fermi surface (which we refer to as type-I), we discover a type-II Weyl point, which is still a protected crossing, but appears at the contact of electron and hole pockets in type-II Weyl semimetals. We predict that WTe2 is an example of a topological semimetal hosting the new particle as a low-energy excitation around such a type-II Weyl point. The existence of type-II Weyl points in WTe2 means that many of its physical properties are very different to those of standard Weyl semimetals with point-like Fermi surfaces.
Renormalization and radiative corrections to masses in a general Yukawa model
NASA Astrophysics Data System (ADS)
Fox, M.; Grimus, W.; Löschner, M.
2018-01-01
We consider a model with arbitrary numbers of Majorana fermion fields and real scalar fields φa, general Yukawa couplings and a ℤ4 symmetry that forbids linear and trilinear terms in the scalar potential. Moreover, fermions become massive only after spontaneous symmetry breaking of the ℤ4 symmetry by vacuum expectation values (VEVs) of the φa. Introducing the shifted fields ha whose VEVs vanish, MS¯ renormalization of the parameters of the unbroken theory suffices to make the theory finite. However, in this way, beyond tree level it is necessary to perform finite shifts of the tree-level VEVs, induced by the finite parts of the tadpole diagrams, in order to ensure vanishing one-point functions of the ha. Moreover, adapting the renormalization scheme to a situation with many scalars and VEVs, we consider the physical fermion and scalar masses as derived quantities, i.e. as functions of the coupling constants and VEVs. Consequently, the masses have to be computed order by order in a perturbative expansion. In this scheme, we compute the self-energies of fermions and bosons and show how to obtain the respective one-loop contributions to the tree-level masses. Furthermore, we discuss the modification of our results in the case of Dirac fermions and investigate, by way of an example, the effects of a flavor symmetry group.
Quantum Algorithms to Simulate Many-Body Physics of Correlated Fermions
NASA Astrophysics Data System (ADS)
Jiang, Zhang; Sung, Kevin J.; Kechedzhi, Kostyantyn; Smelyanskiy, Vadim N.; Boixo, Sergio
2018-04-01
Simulating strongly correlated fermionic systems is notoriously hard on classical computers. An alternative approach, as proposed by Feynman, is to use a quantum computer. We discuss simulating strongly correlated fermionic systems using near-term quantum devices. We focus specifically on two-dimensional (2D) or linear geometry with nearest-neighbor qubit-qubit couplings, typical for superconducting transmon qubit arrays. We improve an existing algorithm to prepare an arbitrary Slater determinant by exploiting a unitary symmetry. We also present a quantum algorithm to prepare an arbitrary fermionic Gaussian state with O (N2) gates and O (N ) circuit depth. Both algorithms are optimal in the sense that the numbers of parameters in the quantum circuits are equal to those describing the quantum states. Furthermore, we propose an algorithm to implement the 2D fermionic Fourier transformation on a 2D qubit array with only O (N1.5) gates and O (√{N }) circuit depth, which is the minimum depth required for quantum information to travel across the qubit array. We also present methods to simulate each time step in the evolution of the 2D Fermi-Hubbard model—again on a 2D qubit array—with O (N ) gates and O (√{N }) circuit depth. Finally, we discuss how these algorithms can be used to determine the ground-state properties and phase diagrams of strongly correlated quantum systems using the Hubbard model as an example.
Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd₃As₂.
Jeon, Sangjun; Zhou, Brian B; Gyenis, Andras; Feldman, Benjamin E; Kimchi, Itamar; Potter, Andrew C; Gibson, Quinn D; Cava, Robert J; Vishwanath, Ashvin; Yazdani, Ali
2014-09-01
Condensed-matter systems provide a rich setting to realize Dirac and Majorana fermionic excitations as well as the possibility to manipulate them for potential applications. It has recently been proposed that chiral, massless particles known as Weyl fermions can emerge in certain bulk materials or in topological insulator multilayers and give rise to unusual transport properties, such as charge pumping driven by a chiral anomaly. A pair of Weyl fermions protected by crystalline symmetry effectively forming a massless Dirac fermion has been predicted to appear as low-energy excitations in a number of materials termed three-dimensional Dirac semimetals. Here we report scanning tunnelling microscopy measurements at sub-kelvin temperatures and high magnetic fields on the II-V semiconductor Cd3As2. We probe this system down to atomic length scales, and show that defects mostly influence the valence band, consistent with the observation of ultrahigh-mobility carriers in the conduction band. By combining Landau level spectroscopy and quasiparticle interference, we distinguish a large spin-splitting of the conduction band in a magnetic field and its extended Dirac-like dispersion above the expected regime. A model band structure consistent with our experimental findings suggests that for a magnetic field applied along the axis of the Dirac points, Weyl fermions are the low-energy excitations in Cd3As2.
Instability of gravitational baryogenesis with fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbuzova, E.; Dolgov, A., E-mail: arbuzova@uni-dubna.ru, E-mail: dolgov@fe.infn.it
2017-06-01
The derivative coupling of baryonic current to the curvature scalar in gravitational baryogenesis scenarios leads to higher order equations for gravitational field. It is shown that these equations are strongly unstable and destroy standard cosmology. This is a generalization of our earlier results obtained for scalar baryons to realistic fermions.
Chiral symmetry breaking in quenched massive strong-coupling four-dimensional QED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawes, F.T.; Williams, A.G.
1995-03-15
We present results from a study of subtractive renormalization of the fermion propagator Dyson-Schwinger equation (DSE) in massive strong-coupling quenched four-dimensional QED. The results are compared for three different fermion-photon proper vertex [ital Ansa]$[ital uml---tze]: bare [gamma][sup [mu
Ground State Structure of a Coupled 2-Fermion System in Supersymmetric Quantum Mechanics
NASA Astrophysics Data System (ADS)
Finster, Felix
1997-05-01
We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to theN=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like
WTO — a deterministic approach to 4-fermion physics
NASA Astrophysics Data System (ADS)
Passarino, Giampiero
1996-09-01
The program WTO, which is designed for computing cross sections and other relevant observables in the e+e- annihilation into four fermions, is described. The various quantities are computed over both a completely inclusive experimental set-up and a realistic one, i.e. with cuts on the final state energies, final state angles, scattering angles and final state invariant masses. Initial state QED corrections are included by means of the structure function approach while final state QCD corrections are applicable in their naive formulation. A gauge restoring mechanism is included according to the Fermion-Loop scheme. The program structure is highly modular and particular care has been devoted to computing efficiency and speed.
Bold Diagrammatic Monte Carlo Method Applied to Fermionized Frustrated Spins
NASA Astrophysics Data System (ADS)
Kulagin, S. A.; Prokof'ev, N.; Starykh, O. A.; Svistunov, B.; Varney, C. N.
2013-02-01
We demonstrate, by considering the triangular lattice spin-1/2 Heisenberg model, that Monte Carlo sampling of skeleton Feynman diagrams within the fermionization framework offers a universal first-principles tool for strongly correlated lattice quantum systems. We observe the fermionic sign blessing—cancellation of higher order diagrams leading to a finite convergence radius of the series. We calculate the magnetic susceptibility of the triangular-lattice quantum antiferromagnet in the correlated paramagnet regime and reveal a surprisingly accurate microscopic correspondence with its classical counterpart at all accessible temperatures. The extrapolation of the observed relation to zero temperature suggests the absence of the magnetic order in the ground state. We critically examine the implications of this unusual scenario.
Non-Markovian dynamics of fermionic and bosonic systems coupled to several heat baths
NASA Astrophysics Data System (ADS)
Hovhannisyan, A. A.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Lacroix, D.
2018-03-01
Employing the fermionic and bosonic Hamiltonians for the collective oscillator linearly FC-coupled with several heat baths, the analytical expressions for the collective occupation number are derived within the non-Markovian quantum Langevin approach. The master equations for the occupation number of collective subsystem are derived and discussed. In the case of Ohmic dissipation with Lorenzian cutoffs, the possibility of reduction of the system with several heat baths to the system with one heat bath is analytically demonstrated. For the fermionic and bosonic systems, a comparative analysis is performed between the collective subsystem coupled to two heat baths and the reference case of the subsystem coupled to one bath.
Numerical studies of the Bethe-Salpeter equation for a two-fermion bound state
NASA Astrophysics Data System (ADS)
de Paula, W.; Frederico, T.; Salmè, G.; Viviani, M.
2018-03-01
Some recent advances on the solution of the Bethe-Salpeter equation (BSE) for a two-fermion bound system directly in Minkowski space are presented. The calculations are based on the expression of the Bethe-Salpeter amplitude in terms of the so-called Nakanishi integral representation and on the light-front projection (i.e. the integration of the light-front variable k - = k 0 - k 3). The latter technique allows for the analytically exact treatment of the singularities plaguing the two-fermion BSE in Minkowski space. The good agreement observed between our results and those obtained using other existing numerical methods, based on both Minkowski and Euclidean space techniques, fully corroborate our analytical treatment.
Quantum Reflection of Massless Neutrinos from a Torsion-Induced Potential
NASA Astrophysics Data System (ADS)
Alimohammadi, M.; Shariati, A.
In the context of the Einstein-Cartan-Dirac model, where the torsion of the space-time couples to the axial currents of the fermions, we study the effects of this quantum-gravitational interaction on a massless neutrino beam crossing through a medium with a high number density of fermions at rest. We calculate the reflection amplitude and show that a specific fraction of the incident neutrinos reflects from this potential if the polarization of the medium is different from zero. We also discuss the order of magnitude of the fermionic number density in which this phenomenon is observable, in other theoretical contexts, for example, the strong gravity regime and the effective field theory approach.
Fourier transform for fermionic systems and the spectral tensor network.
Ferris, Andrew J
2014-07-04
Leveraging the decomposability of the fast Fourier transform, I propose a new class of tensor network that is efficiently contractible and able to represent many-body systems with local entanglement that is greater than the area law. Translationally invariant systems of free fermions in arbitrary dimensions as well as 1D systems solved by the Jordan-Wigner transformation are shown to be exactly represented in this class. Further, it is proposed that these tensor networks be used as generic structures to variationally describe more complicated systems, such as interacting fermions. This class shares some similarities with the Evenbly-Vidal branching multiscale entanglement renormalization ansatz, but with some important differences and greatly reduced computational demands.
SU(2) with fundamental fermions and scalars
NASA Astrophysics Data System (ADS)
Hansen, Martin; Janowski, Tadeusz; Pica, Claudio; Toniato, Arianna
2018-03-01
We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness models featuring strongly interacting scalar fields in addition to fermions. Here we describe the lattice setup for our study of this class of models and a first exploration of the lattice phase diagram. In particular we then investigate how the presence of a strongly coupled scalar field affects the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90
Scattering of massless fermions by Schwarzschild and Reissner-Nordström black holes
NASA Astrophysics Data System (ADS)
Sporea, Ciprian A.
2017-12-01
We study the scattering of massless Dirac fermions by Schwarzschild and Reissner-Nordström black holes. This is done by applying partial wave analysis to the scattering modes obtained after solving the massless Dirac equation in the asymptotic regions of the two black hole geometries. We successfully obtain analytic phase shifts, with the help of which the scattering cross section is computed. The glory and spiral scattering phenomena are shown to be present, as in the case of massive fermion scattering by black holes. Supported by a grant of the Ministry of National Education and Scientific Research, RDI Programme for Space Technology and Advanced Research - STAR, project number 181/20.07.2017
Deterministic Impulsive Vacuum Foundations for Quantum-Mechanical Wavefunctions
NASA Astrophysics Data System (ADS)
Valentine, John S.
2013-09-01
By assuming that a fermion de-constitutes immediately at source, that its constituents, as bosons, propagate uniformly as scalar vacuum terms with phase (radial) symmetry, and that fermions are unique solutions for specific phase conditions, we find a model that self-quantizes matter from continuous waves, unifying bosons and fermion ontologies in a single basis, in a constitution-invariant process. Vacuum energy has a wavefunction context, as a mass-energy term that enables wave collapse and increases its amplitude, with gravitational field as the gradient of the flux density. Gravitational and charge-based force effects emerge as statistics without special treatment. Confinement, entanglement, vacuum statistics, forces, and wavefunction terms emerge from the model's deterministic foundations.
Parametric control in coupled fermionic oscillators
NASA Astrophysics Data System (ADS)
Ghosh, Arnab
2014-10-01
A simple model of parametric coupling between two fermionic oscillators is considered. Statistical properties, in particular the mean and variance of quanta for a single mode, are described by means of a time-dependent reduced density operator for the system and the associated P function. The density operator for fermionic fields as introduced by Cahill and Glauber [K. E. Cahill and R. J. Glauber, Phys. Rev. A 59, 1538 (1999), 10.1103/PhysRevA.59.1538] thus can be shown to provide a quantum mechanical description of the fields closely resembling their bosonic counterpart. In doing so, special emphasis is given to population trapping, and quantum control over the states of the system.
Fermionic Field Theory for Trees and Forests
NASA Astrophysics Data System (ADS)
Caracciolo, Sergio; Jacobsen, Jesper Lykke; Saleur, Hubert; Sokal, Alan D.; Sportiello, Andrea
2004-08-01
We prove a generalization of Kirchhoff’s matrix-tree theorem in which a large class of combinatorial objects are represented by non-Gaussian Grassmann integrals. As a special case, we show that unrooted spanning forests, which arise as a q→0 limit of the Potts model, can be represented by a Grassmann theory involving a Gaussian term and a particular bilocal four-fermion term. We show that this latter model can be mapped, to all orders in perturbation theory, onto the N-vector model at N=-1 or, equivalently, onto the σ model taking values in the unit supersphere in R1|2. It follows that, in two dimensions, this fermionic model is perturbatively asymptotically free.
Gaps, Pseudogaps, and the Nature of Charge in Holographic Fermion Models
NASA Astrophysics Data System (ADS)
Vanacore, Garrett; Phillips, Philip
Building on prior holographic constructions of Fermi arcs and Mott physics, we investigate the landscape of gapped and gapless strongly-correlated phases resulting from bulk fermion interactions in gauge/gravity duality. We test a proposed connection between bulk chiral symmetry and gapless boundary states, and discuss implications for discrete symmetry breaking in pseudogapped systems like the cuprate superconductors. Numerical methods are used to treat gravitational backreaction of bulk fermions, allowing more rigorous investigation of the existence of holographic Fermi surfaces and their adherence to Luttinger's rule. We use these techniques to study deviations from Luttinger's rule in holography, testing a recent claim that momentum-deconfined charges are at the heart of the Mott state.
NASA Astrophysics Data System (ADS)
Yamada, Hiroki; Fukui, Takahiro
2004-02-01
We study Anderson localization of non-interacting random hopping fermions on bipartite lattices in two dimensions, focusing our attention to strong disorder features of the model. We concentrate ourselves on specific models with a linear dispersion in the vicinity of the band center, which can be described by a Dirac fermion in the continuum limit. Based on the recent renormalization group method developed by Carpentier and Le Doussal for the XY gauge glass model, we calculate the density of states, inverse participation ratios, and their spatial correlations. It turns out that their behavior is quite different from those expected within naive weak disorder approaches.
Anselm's Discovery of the Gross-Neveu Model in 1958
NASA Astrophysics Data System (ADS)
Shifman, M.
2013-06-01
The Gross-Neveu model comprises quantum field theory of N Dirac fermions interacting via four-fermion interaction in one spatial and one time dimension. It was introduced in 1974 (shortly after quantum chromodynamics was discovered) by David Gross and André Neveu [1] as a toy model which mimics two crucial features of quantum chromodynamics: asymptotic freedom and spontaneous breaking of a chiral symmetry. The model is based on N Dirac (i.e. complex two-component) fermions, ψ1, ψ2, ..., ψN. The Lagrangian of the Gross-Neveau model is [ {L} = bar{psi}ipartial_{mu}gamma^{mu}psi + frac{g^{2}}{2}(sumlimits_{k = 1}^{N}bar{psi}_{k}psi^{k})^{2}.
Baryon axial charges from chirally improved fermions - first results
NASA Astrophysics Data System (ADS)
Engel, G.; Gattringer, C.; Glozman, L. Y.; Lang, C. B.; Limmer, M.; Mohler, D.; Schäfer, A.
We present first results from dynamical Chirally Improved (CI) fermion simulations for the axial charge $G_A$ of various hadrons. We work with 16^3x32 lattices of spatial extent 2.4 fm and use the variational method with a suitable basis of Jacobi-smeared interpolators to suppress contaminations from excited states.
Dynamical Lorentz symmetry breaking in 3D and charge fractionalization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charneski, B.; Gomes, M.; Silva, A. J. da
2009-03-15
We analyze the breaking of Lorentz invariance in a 3D model of fermion fields self-coupled through four-fermion interactions. The low-energy limit of the theory contains various submodels which are similar to those used in the study of graphene or in the description of irrational charge fractionalization.
Witten Effect and Fractional Charges on the Domain Wall and the D-Brane-Like Dot
NASA Astrophysics Data System (ADS)
Kanazawa, I.; Maeda, R.
2018-04-01
We have discussed the anomalous excitations such as dyons, Majorana fermions, and quark-like fermions on the domain wall in topological materials and the D-brane-like dot, and the relation to low-energy hadrons in QCD, from the viewpoint of a field-theoretical formula.
Hyperquarks and generation number
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchmann, Alfons J.; Schmid, Michael L.
2005-03-01
In a model in which quarks and leptons are built up from two spin-(1/2) preons as fundamental entities, a new class of fermionic bound states (hyperquarks) arises. It turns out that these hyperquarks are necessary to fulfill the 't Hooft anomaly constraint, which then links the number of fermionic generations to the number of colors and hypercolors.
Does H → γγ taste like vanilla new physics?
NASA Astrophysics Data System (ADS)
Almeida, L. G.; Bertuzzo, E.; Machado, P. A. N.; Funchal, R. Zukanovich
2012-11-01
We analyse the interplay between the Higgs to diphoton rate and electroweak precision measurements constraints in extensions of the Standard Model with new uncolored charged fermions that do not mix with the ordinary ones. We also compute the pair production cross sections for the lightest fermion and compare them with current bounds.
Perturbative description of the fermionic projector: Normalization, causality, and Furry's theorem
NASA Astrophysics Data System (ADS)
Finster, Felix; Tolksdorf, Jürgen
2014-05-01
The causal perturbation expansion of the fermionic projector is performed with a contour integral method. Different normalization conditions are analyzed. It is shown that the corresponding light-cone expansions are causal in the sense that they only involve bounded line integrals. For the resulting loop diagrams we prove a generalized Furry theorem.
Impenetrability in Floquet Scattering in One Dimension
NASA Astrophysics Data System (ADS)
Volosniev, A. G.; Smith, D. H.
2018-07-01
We study the scattering off a time-periodic zero-range potential in one spatial dimension. We focus on the parameter regions that lead to zero-transmission probability (ZTP). For static potentials, ZTP leads to fermionization of distinguishable equal-mass particles. For time-periodic potentials, fermionization is prevented by the formation of evanescent waves.
Topological Quantum Information Processing Mediated Via Hybrid Topological Insulator Structures
2013-11-13
manipulation, entanglement and detection ofMajorana fermions in diamond-topological insulator - superconductor heterojunctions. Furthennore, we propose to...the formation, manipulation, entanglement and detection of Majorana fermions in diamond-topological insulator - superconductor heterojunctions...Interactions between Superconductors and Topological Insulators Recent advances have revealed a new type of information processing, topological quantum
Quantum oscillations in the type-II Dirac semi-metal candidate PtSe2
NASA Astrophysics Data System (ADS)
Yang, Hao; Schmidt, Marcus; Süss, Vicky; Chan, Mun; Balakirev, Fedor F.; McDonald, Ross D.; Parkin, Stuart S. P.; Felser, Claudia; Yan, Binghai; Moll, Philip J. W.
2018-04-01
Three-dimensional topological semi-metals carry quasiparticle states that mimic massless relativistic Dirac fermions, elusive particles that have never been observed in nature. As they appear in the solid body, they are not bound to the usual symmetries of space-time and thus new types of fermionic excitations that explicitly violate Lorentz-invariance have been proposed, the so-called type-II Dirac fermions. We investigate the electronic spectrum of the transition-metal dichalcogenide PtSe2 by means of quantum oscillation measurements in fields up to 65 T. The observed Fermi surfaces agree well with the expectations from band structure calculations, that recently predicted a type-II Dirac node to occur in this material. A hole- and an electron-like Fermi surface dominate the semi-metal at the Fermi level. The quasiparticle mass is significantly enhanced over the bare band mass value, likely by phonon renormalization. Our work is consistent with the existence of type-II Dirac nodes in PtSe2, yet the Dirac node is too far below the Fermi level to support free Dirac–fermion excitations.
Zombie states for description of structure and dynamics of multi-electron systems
NASA Astrophysics Data System (ADS)
Shalashilin, Dmitrii V.
2018-05-01
Canonical Coherent States (CSs) of Harmonic Oscillator have been extensively used as a basis in a number of computational methods of quantum dynamics. However, generalising such techniques for fermionic systems is difficult because Fermionic Coherent States (FCSs) require complicated algebra of Grassmann numbers not well suited for numerical calculations. This paper introduces a coherent antisymmetrised superposition of "dead" and "alive" electronic states called here Zombie State (ZS), which can be used in a manner of FCSs but without Grassmann algebra. Instead, for Zombie States, a very simple sign-changing rule is used in the definition of creation and annihilation operators. Then, calculation of electronic structure Hamiltonian matrix elements between two ZSs becomes very simple and a straightforward technique for time propagation of fermionic wave functions can be developed. By analogy with the existing methods based on Canonical Coherent States of Harmonic Oscillator, fermionic wave functions can be propagated using a set of randomly selected Zombie States as a basis. As a proof of principles, the proposed Coupled Zombie States approach is tested on a simple example showing that the technique is exact.
NASA Astrophysics Data System (ADS)
Boyack, Rufus; Guo, Hao; Levin, K.
2015-03-01
Recent experiments on both unitary Fermi gases and high temperature superconductors (arxiv:1410.4835 [cond-mat.quant-gas], arxiv:1409.5820 [cond-mat.str-el].) have led to renewed interest in near perfect fluidity in condensed matter systems. This is quantified by studying the ratio of shear viscosity to entropy density. In this talk we present calculations of this ratio in homogeneous bosonic and fermionic superfluids, with the latter ranging from BCS to BEC. While the shear viscosity exhibits a power law (for bosons) or exponential suppression (for fermions), a similar dependence is found for the respective entropy densities. As a result, strict BCS and (true) bosonic superfluids have an analogous viscosity to entropy density ratio, behaving linearly with temperature times the (T-dependent) dissipation rate; this is characteristic of imperfect fluidity in weakly coupled fluids. This is contrasted with the behavior of fermions at unitarity which we argue is a consequence of additional terms in the entropy density thereby leading to more perfect fluidity. (arXiv:1407.7572v1 [cond-mat.quant-gas])
Higher representations on the lattice: Numerical simulations, SU(2) with adjoint fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Debbio, Luigi; Patella, Agostino; Pica, Claudio
2010-05-01
We discuss the lattice formulation of gauge theories with fermions in arbitrary representations of the color group and present in detail the implementation of the hybrid Monte Carlo (HMC)/rational HMC algorithm for simulating dynamical fermions. We discuss the validation of the implementation through an extensive set of tests and the stability of simulations by monitoring the distribution of the lowest eigenvalue of the Wilson-Dirac operator. Working with two flavors of Wilson fermions in the adjoint representation, benchmark results for realistic lattice simulations are presented. Runs are performed on different lattice sizes ranging from 4{sup 3}x8 to 24{sup 3}x64 sites. Formore » the two smallest lattices we also report the measured values of benchmark mesonic observables. These results can be used as a baseline for rapid cross-checks of simulations in higher representations. The results presented here are the first steps toward more extensive investigations with controlled systematic errors, aiming at a detailed understanding of the phase structure of these theories, and of their viability as candidates for strong dynamics beyond the standard model.« less
Fidelity Witnesses for Fermionic Quantum Simulations
NASA Astrophysics Data System (ADS)
Gluza, M.; Kliesch, M.; Eisert, J.; Aolita, L.
2018-05-01
The experimental interest and developments in quantum spin-1 /2 chains has increased uninterruptedly over the past decade. In many instances, the target quantum simulation belongs to the broader class of noninteracting fermionic models, constituting an important benchmark. In spite of this class being analytically efficiently tractable, no direct certification tool has yet been reported for it. In fact, in experiments, certification has almost exclusively relied on notions of quantum state tomography scaling very unfavorably with the system size. Here, we develop experimentally friendly fidelity witnesses for all pure fermionic Gaussian target states. Their expectation value yields a tight lower bound to the fidelity and can be measured efficiently. We derive witnesses in full generality in the Majorana-fermion representation and apply them to experimentally relevant spin-1 /2 chains. Among others, we show how to efficiently certify strongly out-of-equilibrium dynamics in critical Ising chains. At the heart of the measurement scheme is a variant of importance sampling specially tailored to overlaps between covariance matrices. The method is shown to be robust against finite experimental-state infidelities.
Evidence for magnetic Weyl fermions in a correlated metal
NASA Astrophysics Data System (ADS)
Kuroda, K.; Tomita, T.; Suzuki, M.-T.; Bareille, C.; Nugroho, A. A.; Goswami, P.; Ochi, M.; Ikhlas, M.; Nakayama, M.; Akebi, S.; Noguchi, R.; Ishii, R.; Inami, N.; Ono, K.; Kumigashira, H.; Varykhalov, A.; Muro, T.; Koretsune, T.; Arita, R.; Shin, S.; Kondo, Takeshi; Nakatsuji, S.
2017-11-01
Weyl fermions have been observed as three-dimensional, gapless topological excitations in weakly correlated, inversion-symmetry-breaking semimetals. However, their realization in spontaneously time-reversal-symmetry-breaking phases of strongly correlated materials has so far remained hypothetical. Here, we report experimental evidence for magnetic Weyl fermions in Mn3Sn, a non-collinear antiferromagnet that exhibits a large anomalous Hall effect, even at room temperature. Detailed comparison between angle-resolved photoemission spectroscopy (ARPES) measurements and density functional theory (DFT) calculations reveals significant bandwidth renormalization and damping effects due to the strong correlation among Mn 3d electrons. Magnetotransport measurements provide strong evidence for the chiral anomaly of Weyl fermions--namely, the emergence of positive magnetoconductance only in the presence of parallel electric and magnetic fields. Since weak magnetic fields (approximately 10 mT) are adequate to control the distribution of Weyl points and the large fictitious fields (equivalent to approximately a few hundred T) produced by them in momentum space, our discovery lays the foundation for a new field of science and technology involving the magnetic Weyl excitations of strongly correlated electron systems such as Mn3Sn.
Temperature-driven massless Kane fermions in HgCdTe crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teppe, F.; Marcinkiewicz, M.; Krishtopenko, S. S.
2016-08-30
It has recently been shown that electronic states in bulk gapless HgCdTe offer another realization of pseudo-relativistic three-dimensional particles in condensed matter systems. These single valley relativistic states, massless Kane fermions, cannot be described by any other relativistic particles. Furthermore, the HgCdTe band structure can be continuously tailored by modifying cadmium content or temperature. At critical concentration or temperature, the bandgap collapses as the system undergoes a semimetal-to-semiconductor topological phase transition between the inverted and normal alignments. Here, using far-infrared magneto-spectroscopy we explore the continuous evolution of band structure of bulk HgCdTe as temperature is tuned across the topological phasemore » transition. We demonstrate that the rest mass of Kane fermions changes sign at critical temperature, whereas their velocity remains constant. The velocity universal value of (1.07±0.05) × 106 m s -1 remains valid in a broad range of temperatures and Cd concentrations, indicating a striking universality of the pseudo-relativistic description of the Kane fermions in HgCdTe.« less
Two-component quantum Hall effects in topological flat bands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Tian-Sheng; Zhu, Wei; Sheng, D. N.
2017-03-27
Here in this paper, we study quantum Hall states for two-component particles (hardcore bosons and fermions) loading in topological lattice models. By tuning the interplay of interspecies and intraspecies interactions, we demonstrate that two-component fractional quantum Hall states emerge at certain fractional filling factors ν = 1/2 for fermions (ν = 2/3 for bosons) in the lowest Chern band, classified by features from ground states including the unique Chern number matrix (inverse of the K matrix), the fractional charge and spin pumpings, and two parallel propagating edge modes. Moreover, we also apply our strategy to two-component fermions at integer fillingmore » factor ν = 2 , where a possible topological Neel antiferromagnetic phase is under intense debate very recently. For the typical π -flux checkerboard lattice, by tuning the onsite Hubbard repulsion, we establish a first-order phase transition directly from a two-component fermionic ν = 2 quantum Hall state at weak interaction to a topologically trivial antiferromagnetic insulator at strong interaction, and therefore exclude the possibility of an intermediate topological phase for our system.« less
Scalar versus fermionic top partner interpretations of toverline{t}+{E}_T^{miss} searches at the LHC
NASA Astrophysics Data System (ADS)
Kraml, Sabine; Laa, Ursula; Panizzi, Luca; Prager, Hugo
2016-11-01
We assess how different ATLAS and CMS searches for supersymmetry in the toverline{t}+{E}_T^{miss} final state at Run 1 of the LHC constrain scenarios with a fermionic top partner and a dark matter candidate. We find that the efficiencies of these searches in all-hadronic, 1-lepton and 2-lepton channels are quite similar for scalar and fermionic top partners. Therefore, in general, efficiency maps for stop-neutralino simplified models can also be applied to fermionic top-partner models, provided the narrow width approximation holds in the latter. Owing to the much higher production cross-sections of heavy top quarks as compared to stops, masses up to m T ≈ 850 GeV can be excluded from the Run 1 stop searches. Since the simplified-model results published by ATLAS and CMS do not extend to such high masses, we provide our own efficiency maps obtained with C heckMATE and M adA nalysis 5 for these searches. Finally, we also discuss how generic gluino/squark searches in multi-jet final states constrain heavy top partner production.
Fermionic halos at finite temperature in AdS/CFT
NASA Astrophysics Data System (ADS)
Argüelles, Carlos R.; Grandi, Nicolás E.
2018-05-01
We explore the gravitational backreaction of a system consisting in a very large number of elementary fermions at finite temperature, in asymptotically AdS space. We work in the hydrodynamic approximation, and solve the Tolman-Oppenheimer-Volkoff equations with a perfect fluid whose equation of state takes into account both the relativistic effects of the fermionic constituents, as well as its finite temperature effects. We find a novel dense core-diluted halo structure for the density profiles in the AdS bulk, similarly as recently reported in flat space, for the case of astrophysical dark matter halos in galaxies. We further study the critical equilibrium configurations above which the core undergoes gravitational collapse towards a massive black hole, and calculate the corresponding critical central temperatures, for two qualitatively different central regimes of the fermions: the diluted-Fermi case, and the degenerate case. As a probe for the dual CFT, we construct the holographic two-point correlator of a scalar operator with large conformal dimension in the worldline limit, and briefly discuss on the boundary CFT effects at the critical points.
Patterns of symmetry breaking in chiral QCD
NASA Astrophysics Data System (ADS)
Bolognesi, Stefano; Konishi, Kenichi; Shifman, Mikhail
2018-05-01
We consider S U (N ) Yang-Mills theory with massless chiral fermions in a complex representation of the gauge group. The main emphasis is on the so-called hybrid ψ χ η model. The possible patterns of realization of the continuous chiral flavor symmetry are discussed. We argue that the chiral symmetry is broken in conjunction with a dynamical Higgsing of the gauge group (complete or partial) by bifermion condensates. As a result a color-flavor locked symmetry is preserved. The 't Hooft anomaly matching proceeds via saturation of triangles by massless composite fermions or, in a mixed mode, i.e. also by the "weakly" coupled fermions associated with dynamical Abelianization, supplemented by a number of Nambu-Goldstone mesons. Gauge-singlet condensates are of the multifermion type and, though it cannot be excluded, the chiral symmetry realization via such gauge invariant condensates is more contrived (requires a number of four-fermion condensates simultaneously and, even so, problems remain) and less plausible. We conclude that in the model at hand, chiral flavor symmetry implies dynamical Higgsing by bifermion condensates.
Realizing three generations of the Standard Model fermions in the type IIB matrix model
NASA Astrophysics Data System (ADS)
Aoki, Hajime; Nishimura, Jun; Tsuchiya, Asato
2014-05-01
We discuss how the Standard Model particles appear from the type IIB matrix model, which is considered to be a nonperturbative formulation of superstring theory. In particular, we are concerned with a constructive definition of the theory, in which we start with finite- N matrices and take the large- N limit afterwards. In that case, it was pointed out recently that realizing chiral fermions in the model is more difficult than it had been thought from formal arguments at N = ∞ and that introduction of a matrix version of the warp factor is necessary. Based on this new insight, we show that two generations of the Standard Model fermions can be realized by considering a rather generic configuration of fuzzy S2 and fuzzy S2 × S2 in the extra dimensions. We also show that three generations can be obtained by squashing one of the S2's that appear in the configuration. Chiral fermions appear at the intersections of the fuzzy manifolds with nontrivial Yukawa couplings to the Higgs field, which can be calculated from the overlap of their wave functions.
Fermion dark matter in gauge-Higgs unification
Maru, Nobuhito; Miyaji, Takashi; Okada, Nobuchika; ...
2017-07-11
Here, we propose a Majorana fermion dark matter in the context of a s imple gauge-Higgs Unification (GHU) scenario based on the gauge group SU(3)×U(1)' in 5-dimensional Minkowski space with a compactification of the 5th dimension on S 1/Z 2 orbifold. The dark matter particle is identified with the lightest mode in SU(3) triplet fermions additionally introduced in the 5-dimensional bulk. We find an allowed parameter region for the dark matter mass around a half of the Standard Model Higgs boson mass, which is consistent with the observed dark matter density and the constraint from the LUX 2016 result formore » the direct dark matter search. The entire allowed region will be covered by, for example, the LUX-ZEPLIN dark matter experiment in the near future. We also show that in the presence of the bulk SU(3) triplet fermions the 125 GeV Higgs boson mas s is reproduced through the renormalization group evolution of Higgs quartic coupling with the compactification scale of around 10 8 GeV.« less
Lefschetz thimbles in fermionic effective models with repulsive vector-field
NASA Astrophysics Data System (ADS)
Mori, Yuto; Kashiwa, Kouji; Ohnishi, Akira
2018-06-01
We discuss two problems in complexified auxiliary fields in fermionic effective models, the auxiliary sign problem associated with the repulsive vector-field and the choice of the cut for the scalar field appearing from the logarithmic function. In the fermionic effective models with attractive scalar and repulsive vector-type interaction, the auxiliary scalar and vector fields appear in the path integral after the bosonization of fermion bilinears. When we make the path integral well-defined by the Wick rotation of the vector field, the oscillating Boltzmann weight appears in the partition function. This "auxiliary" sign problem can be solved by using the Lefschetz-thimble path-integral method, where the integration path is constructed in the complex plane. Another serious obstacle in the numerical construction of Lefschetz thimbles is caused by singular points and cuts induced by multivalued functions of the complexified scalar field in the momentum integration. We propose a new prescription which fixes gradient flow trajectories on the same Riemann sheet in the flow evolution by performing the momentum integration in the complex domain.
Fast algorithms for chiral fermions in 2 dimensions
NASA Astrophysics Data System (ADS)
Hyka (Xhako), Dafina; Osmanaj (Zeqirllari), Rudina
2018-03-01
In lattice QCD simulations the formulation of the theory in lattice should be chiral in order that symmetry breaking happens dynamically from interactions. In order to guarantee this symmetry on the lattice one uses overlap and domain wall fermions. On the other hand high computational cost of lattice QCD simulations with overlap or domain wall fermions remains a major obstacle of research in the field of elementary particles. We have developed the preconditioned GMRESR algorithm as fast inverting algorithm for chiral fermions in U(1) lattice gauge theory. In this algorithm we used the geometric multigrid idea along the extra dimension.The main result of this work is that the preconditioned GMRESR is capable to accelerate the convergence 2 to 12 times faster than the other optimal algorithms (SHUMR) for different coupling constant and lattice 32x32. Also, in this paper we tested it for larger lattice size 64x64. From the results of simulations we can see that our algorithm is faster than SHUMR. This is a very promising result that this algorithm can be adapted also in 4 dimension.
Role of the pair potential for the saturation of generalized Pauli constraints
NASA Astrophysics Data System (ADS)
Legeza, Örs; Schilling, Christian
2018-05-01
The dependence of the (quasi-)saturation of the generalized Pauli constraints on the pair potential is studied for ground states of few-fermion systems. For this, we consider spinless fermions in one dimension which are harmonically confined and interact by pair potentials of the form | xi-xj|s with -1 ≤s ≤5 . We use the density matrix renormalization group approach and large orbital basis to achieve the convergence on more than ten digits of both the variational energy and the natural occupation numbers. Our results confirm that the conflict between energy minimization and fermionic exchange symmetry results in a universal and nontrivial quasisaturation of the generalized Pauli constraints (quasipinning), implying tremendous structural simplifications of the fermionic ground state for all s . Those numerically exact results are complemented by an analytical study based on a self-consistent perturbation theory which we develop for this purpose. The respective results for the weak-coupling regime eventually elucidate the singular behavior found for the specific values s =2 ,4 ,..., resulting in an extremely strong quasipinning.
Momentum-space cluster dual-fermion method
NASA Astrophysics Data System (ADS)
Iskakov, Sergei; Terletska, Hanna; Gull, Emanuel
2018-03-01
Recent years have seen the development of two types of nonlocal extensions to the single-site dynamical mean field theory. On one hand, cluster approximations, such as the dynamical cluster approximation, recover short-range momentum-dependent correlations nonperturbatively. On the other hand, diagrammatic extensions, such as the dual-fermion theory, recover long-ranged corrections perturbatively. The correct treatment of both strong short-ranged and weak long-ranged correlations within the same framework is therefore expected to lead to a quick convergence of results, and offers the potential of obtaining smooth self-energies in nonperturbative regimes of phase space. In this paper, we present an exact cluster dual-fermion method based on an expansion around the dynamical cluster approximation. Unlike previous formulations, our method does not employ a coarse-graining approximation to the interaction, which we show to be the leading source of error at high temperature, and converges to the exact result independently of the size of the underlying cluster. We illustrate the power of the method with results for the second-order cluster dual-fermion approximation to the single-particle self-energies and double occupancies.
Kinetic theory of fermions in curved spacetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fidler, Christian; Pitrou, Cyril, E-mail: christian.fidler@uclouvain.be, E-mail: pitrou@iap.fr
We build a statistical description of fermions, taking into account the spin degree of freedom in addition to the momentum of particles, and we detail its use in the context of the kinetic theory of gases of fermions particles. We show that the one-particle distribution function needed to write a Liouville equation is a spinor valued operator. The degrees of freedom of this function are covariantly described by an intensity function and by a polarisation vector which are parallel transported by free streaming. Collisions are described on the microscopic level and lead to a Boltzmann equation for this operator. Wemore » apply our formalism to the case of weak interactions, which at low energies can be considered as a contact interaction between fermions, allowing us to discuss the structure of the collision term for a few typical weak-interaction mediated reactions. In particular we find for massive particles that a dipolar distribution of velocities in the interacting species is necessary to generate linear polarisation, as opposed to the case of photons for which linear polarisation is generated from the quadrupolar distribution of velocities.« less
Dark sector shining through 750 GeV dark Higgs boson at the LHC
NASA Astrophysics Data System (ADS)
Ko, P.; Nomura, Takaaki
2016-07-01
We consider a dark sector with SU(3)C × U(1)Y × U(1)X and three families of dark fermions that are chiral under dark U(1)X gauge symmetry, whereas scalar dark matter X is the SM singlet. U(1)X dark symmetry is spontaneously broken by nonzero VEV of dark Higgs field 〈 Φ 〉, generating the masses of dark fermions and dark photon Z‧. The resulting dark Higgs boson ϕ can be produced at the LHC by dark quark loop (involving 3 generations) and will decay into a pair of photon through charged dark fermion loop. Its decay width can be easily ∼ 45 GeV due to its possible decays into a pair of dark photon, which is not strongly constrained by the current LHC searches pp → ϕ →Z‧Z‧ followed by Z‧ decays into the SM fermion pairs. The scalar DM can achieve thermal relic density without conflict with direct detection bound or the invisible ϕ decay into a pair of DM.
Critical behavior of reduced QED4 ,3 and dynamical fermion gap generation in graphene
NASA Astrophysics Data System (ADS)
Kotikov, A. V.; Teber, S.
2016-12-01
The dynamical generation of a fermion gap in graphene is studied at the infra-red Lorentz-invariant fixed point where the system is described by an effective relativistic-like field theory: reduced QED4 ,3 with N four-component fermions (N =2 for graphene), where photons are (3 +1 ) dimensional and mediate a fully retarded interaction among (2 +1 )-dimensional fermions. A correspondence between reduced QED4 ,3 and QED3 allows us to derive an exact gap equation for QED4 ,3 up to next-to-leading order. Our results show that a dynamical gap is generated for α >αc, where 1.03 <αc<1.08 in the case N =2 or for N
Six-dimensional regularization of chiral gauge theories
NASA Astrophysics Data System (ADS)
Fukaya, Hidenori; Onogi, Tetsuya; Yamamoto, Shota; Yamamura, Ryo
2017-03-01
We propose a regularization of four-dimensional chiral gauge theories using six-dimensional Dirac fermions. In our formulation, we consider two different mass terms having domain-wall profiles in the fifth and the sixth directions, respectively. A Weyl fermion appears as a localized mode at the junction of two different domain walls. One domain wall naturally exhibits the Stora-Zumino chain of the anomaly descent equations, starting from the axial U(1) anomaly in six dimensions to the gauge anomaly in four dimensions. Another domain wall implies a similar inflow of the global anomalies. The anomaly-free condition is equivalent to requiring that the axial U(1) anomaly and the parity anomaly are canceled among the six-dimensional Dirac fermions. Since our formulation is based on a massive vector-like fermion determinant, a nonperturbative regularization will be possible on a lattice. Putting the gauge field at the four-dimensional junction and extending it to the bulk using the Yang-Mills gradient flow, as recently proposed by Grabowska and Kaplan, we define the four-dimensional path integral of the target chiral gauge theory.
Electrodynamic properties of the semimetallic Dirac material SrMnB i2 : Two-carrier-model analysis
NASA Astrophysics Data System (ADS)
Park, H. J.; Park, Byung Cheol; Lee, Min-Cheol; Jeong, D. W.; Park, Joonbum; Kim, Jun Sung; Ji, Hyo Seok; Shim, J. H.; Kim, K. W.; Moon, S. J.; Kim, Hyeong-Do; Cho, Deok-Yong; Noh, T. W.
2017-10-01
The electrodynamics of free carriers in the semimetallic Dirac material SrMnB i2 was investigated using optical spectroscopy and first-principles calculations. Using a two-carrier-model analysis, the total free-carrier response was successfully decomposed into individual contributions from Dirac fermions and non-Dirac free carriers. Possible roles of chiral pseudospin, spin-orbit interaction (SOI), antiferromagnetism, and electron-phonon (e -p h ) coupling in the Dirac fermion transport were also addressed. The Dirac fermions possess a low scattering rate of ˜10 meV at low temperature and thereby experience coherent transport. However, at high temperatures, we observed that the Dirac fermion transport becomes significantly incoherent, possibly due to strong e -p h interactions. The SOI-induced gap and antiferromagnetism play minor roles in the electrodynamics of the free carriers in SrMnB i2 . We also observed a seemingly optical-gap-like feature near 120 meV, which emerges at low temperatures but becomes filled in with increasing temperature. This gap-filling phenomenon is ascribed to phonon-assisted indirect transitions promoted at high temperatures.
Quantum return probability of a system of N non-interacting lattice fermions
NASA Astrophysics Data System (ADS)
Krapivsky, P. L.; Luck, J. M.; Mallick, K.
2018-02-01
We consider N non-interacting fermions performing continuous-time quantum walks on a one-dimensional lattice. The system is launched from a most compact configuration where the fermions occupy neighboring sites. We calculate exactly the quantum return probability (sometimes referred to as the Loschmidt echo) of observing the very same compact state at a later time t. Remarkably, this probability depends on the parity of the fermion number—it decays as a power of time for even N, while for odd N it exhibits periodic oscillations modulated by a decaying power law. The exponent also slightly depends on the parity of N, and is roughly twice smaller than what it would be in the continuum limit. We also consider the same problem, and obtain similar results, in the presence of an impenetrable wall at the origin constraining the particles to remain on the positive half-line. We derive closed-form expressions for the amplitudes of the power-law decay of the return probability in all cases. The key point in the derivation is the use of Mehta integrals, which are limiting cases of the Selberg integral.
Hawking fluxes, fermionic currents, W{sub 1+{infinity}} algebra, and anomalies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonora, L.; Cvitan, M.; Theoretical Physics Department, Faculty of Science, University of Zagreb Bijenicka cesta 32, HR-10002 Zagreb
2009-10-15
We complete the analysis carried out in previous papers by studying the Hawking radiation for a Kerr black hole carried to infinity by fermionic currents of any spin. We find agreement with the thermal spectrum of the Hawking radiation for fermionic degrees of freedom. We start by showing that the near-horizon physics for a Kerr black hole is approximated by an effective two-dimensional field theory of fermionic fields. Then, starting from two-dimensional currents of any spin that form a W{sub 1+{infinity}} algebra, we construct an infinite set of covariant currents, each of which carries the corresponding moment of the Hawkingmore » radiation. All together they agree with the thermal spectrum of the latter. We show that the predictive power of this method is based not on the anomalies of the higher-spin currents (which are trivial) but on the underlying W{sub 1+{infinity}} structure. Our results point toward the existence in the near-horizon geometry of a symmetry larger than the Virasoro algebra, which very likely takes the form of a W{sub {infinity}} algebra.« less
Solitonic Excitations in Fermionic Superfluids and Progress towards Fermi Gas in Uniform Potential
NASA Astrophysics Data System (ADS)
Ku, Mark; Mukherjee, Biswaroop; Guardado-Sanchez, Elmer; Yan, Zhenjie; Patel, Parth; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin
2015-05-01
We follow the evolution of a superfluid Fermi gas of 6Li atoms following a one-sided π phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, and its subsequent snaking and decay into a vortex ring. The latter eventually breaks at the boundary of the superfluid, finally leaving behind a single, remnant solitonic vortex. The nodal surface is directly imaged and reveals its decay into a vortex ring via a puncture of the initial soliton plane. At intermediate stages we find evidence for more exotic structures resembling Φ-solitons. The observed evolution of the nodal surface represents dynamics that occurs at the length scale of the interparticle spacing, thus providing new experimental input for microscopic theories of strongly correlated fermions. We also report on the trapping of fermionic atoms of 6Li in a quasi-homogenous all-optical potential, and discuss progress towards directly observing the momentum distribution of the fermions in a box. This new tool offers the possibility to quantitatively study Fermi gases at finite temperature and in the presence of spin-imbalance, with unprecedented accuracy.
The Epstein–Glaser causal approach to the light-front QED{sub 4}. II: Vacuum polarization tensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bufalo, R., E-mail: rodrigo.bufalo@helsinki.fi; Instituto de Física Teórica; Pimentel, B.M., E-mail: pimentel@ift.unesp.br
2014-12-15
In this work we show how to construct the one-loop vacuum polarization for light-front QED{sub 4} in the framework of the perturbative causal theory. Usually, in the canonical approach, it is considered for the fermionic propagator the so-called instantaneous term, but it is known in the literature that this term is controversial because it can be omitted by computational reasons; for instance, by compensation or vanishing by dimensional regularization. In this work we propose a solution to this paradox. First, in the Epstein–Glaser causal theory, it is shown that the fermionic propagator does not have instantaneous term, and with thismore » propagator we calculate the one-loop vacuum polarization, from this calculation it follows the same result as those obtained by the standard approach, but without reclaiming any extra assumptions. Moreover, since the perturbative causal theory is defined in the distributional framework, we can also show the reason behind our obtaining the same result whether we consider or not the instantaneous fermionic propagator term. - Highlights: • We develop the Epstein–Glaser causal approach for light-front field theory. • We evaluate in detail the vacuum polarization at one-loop for the light-front QED. • We discuss the subtle issues of the Instantaneous part of the fermionic propagator in the light-front. • We evaluate the vacuum polarization at one-loop for the light-front QED with the Instantaneous fermionic part.« less
NASA Astrophysics Data System (ADS)
Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi
2016-07-01
Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.
NASA Astrophysics Data System (ADS)
Gukelberger, Jan; Kozik, Evgeny; Hafermann, Hartmut
2017-07-01
The dual fermion approach provides a formally exact prescription for calculating properties of a correlated electron system in terms of a diagrammatic expansion around dynamical mean-field theory (DMFT). Most practical implementations, however, neglect higher-order interaction vertices beyond two-particle scattering in the dual effective action and further truncate the diagrammatic expansion in the two-particle scattering vertex to a leading-order or ladder-type approximation. In this work, we compute the dual fermion expansion for the two-dimensional Hubbard model including all diagram topologies with two-particle interactions to high orders by means of a stochastic diagrammatic Monte Carlo algorithm. We benchmark the obtained self-energy against numerically exact diagrammatic determinant Monte Carlo simulations to systematically assess convergence of the dual fermion series and the validity of these approximations. We observe that, from high temperatures down to the vicinity of the DMFT Néel transition, the dual fermion series converges very quickly to the exact solution in the whole range of Hubbard interactions considered (4 ≤U /t ≤12 ), implying that contributions from higher-order vertices are small. As the temperature is lowered further, we observe slower series convergence, convergence to incorrect solutions, and ultimately divergence. This happens in a regime where magnetic correlations become significant. We find, however, that the self-consistent particle-hole ladder approximation yields reasonable and often even highly accurate results in this regime.
From Jack to Double Jack Polynomials via the Supersymmetric Bridge
NASA Astrophysics Data System (ADS)
Lapointe, Luc; Mathieu, Pierre
2015-07-01
The Calogero-Sutherland model occurs in a large number of physical contexts, either directly or via its eigenfunctions, the Jack polynomials. The supersymmetric counterpart of this model, although much less ubiquitous, has an equally rich structure. In particular, its eigenfunctions, the Jack superpolynomials, appear to share the very same remarkable combinatorial and structural properties as their non-supersymmetric version. These super-functions are parametrized by superpartitions with fixed bosonic and fermionic degrees. Now, a truly amazing feature pops out when the fermionic degree is sufficiently large: the Jack superpolynomials stabilize and factorize. Their stability is with respect to their expansion in terms of an elementary basis where, in the stable sector, the expansion coefficients become independent of the fermionic degree. Their factorization is seen when the fermionic variables are stripped off in a suitable way which results in a product of two ordinary Jack polynomials (somewhat modified by plethystic transformations), dubbed the double Jack polynomials. Here, in addition to spelling out these results, which were first obtained in the context of Macdonal superpolynomials, we provide a heuristic derivation of the Jack superpolynomial case by performing simple manipulations on the supersymmetric eigen-operators, rendering them independent of the number of particles and of the fermionic degree. In addition, we work out the expression of the Hamiltonian which characterizes the double Jacks. This Hamiltonian, which defines a new integrable system, involves not only the expected Calogero-Sutherland pieces but also combinations of the generators of an underlying affine {widehat{sl}_2} algebra.
Strongly Interacting Fermi Gases: Non-Equilibrium Dynamics and Dimensional Crossover
NASA Astrophysics Data System (ADS)
Sommer, Ariel
2015-05-01
Strongly interacting atomic Fermi gases near Feshbach resonances give access to a rich variety of phenomena in many-fermion physics and superfluidity. This flexible and microscopically well-characterized system provides a pristine platform in which to benchmark many-body theories. I will describe three experiments on gases of fermionic 6Li atoms. In the first experiment, we study spin transport in the return to equilibrium after a spin excitation. From the dynamics near equilibrium, we obtain spin transport coefficients over a range of temperatures and interaction strengths, and observe quantum-limited spin diffusion at unitarity. In separate experiments, we study the effect of dimensionality on the binding of pairs of fermions. We tune the system from three to two dimensions by adjusting the strength of a one-dimensional optical lattice, and measure the binding energy of fermion pairs using radio-frequency spectroscopy. In a third set of experiments, we study nonlinear excitations of a fermionic superfluid. Imprinting a phase jump on the superfluid order parameter causes a long-lived, localized density depletion that oscillates through the cloud. We measure the oscillation period and find that it corresponds to an emergent particle with an effective mass of up to several hundred times the bare mass. This excitation has been identified as a solitonic vortex that results from the decay of a planar soliton. This work was performed at the Massachusetts Institute of Technology under the supervision of Prof. Martin Zwierlein.
Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea
NASA Astrophysics Data System (ADS)
Balram, Ajit C.; Jain, J. K.
2017-12-01
The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν <1 /2 but kF*=√{4 π ρh } for ν >1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .
NASA Astrophysics Data System (ADS)
Liu, Qihang; Zunger, Alex
A Cubic Dirac Fermion in condensed-matter physics refers to a band crossing in periodic solids that has 4-fold degeneracy with cubic dispersions in certain directions. Such a crystalline symmetry induced fermion is composed of 6 Weyl fermions where 3 have left-handed and 3 have right-handed chirality, and constitutes one of the ``new fermions'' that have no counterpart in high-energy physics. However, no prediction has yet pointed to a plausible example of a material candidate hosting such a cubically-dispersed Dirac semimetal (CDSM). Here we establish the design principles for CDSM finding that only 2 out of 230 space groups possess the required symmetry elements. Adding the required band occupancy criteria, we conduct a material search using density functional band theory identifying a group of quasi-one-dimensional molybdenum chalcogenide compounds A(MoX)3 (A = Na, K, Rb, In, Tl; X = S, Se, Te) with space group P63/m as ideal CDSM candidates. Studying the stability of the A(MoX)3 family towards a Peierls distortion reveals a few candidates such as Rb(MoTe)3 and Tl(MoTe)3 that are resilliant to Peierls distortion, thus retaining the metallic character. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under Grant No. DE-FG02-13ER46959 to University of Colorado, Boulder.
Superconductivity from a non-Fermi-liquid metal: Kondo fluctuation mechanism in slave-fermion theory
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok
2010-03-01
We propose Kondo fluctuation mechanism of superconductivity, differentiated from the spin-fluctuation theory as the standard model for unconventional superconductivity in the weak-coupling approach. Based on the U(1) slave-fermion representation of an effective Anderson lattice model, where localized spins are described by the Schwinger boson theory and hybridization or Kondo fluctuations weaken antiferromagnetic correlations of localized spins, we found an antiferromagnetic quantum critical point from an antiferromagnetic metal to a heavy-fermion metal in our recent study. The Kondo-induced antiferromagnetic quantum critical point was shown to be described by both conduction electrons and fermionic holons interacting with critical spin fluctuations given by deconfined bosonic spinons with a spin quantum number 1/2. Surprisingly, such critical modes turned out to be described by the dynamical exponent z=3 , giving rise to the well-known non-Fermi-liquid physics such as the divergent Grüneisen ratio with an exponent 2/3 and temperature-linear resistivity in three dimensions. We find that the z=3 antiferromagnetic quantum critical point becomes unstable against superconductivity, where critical spinon excitations give rise to pairing correlations between conduction electrons and between fermionic holons, respectively, via hybridization fluctuations. Such two kinds of pairing correlations result in multigap unconventional superconductivity around the antiferromagnetic quantum critical point of the slave-fermion theory, where s -wave pairing is not favored generically due to strong correlations. We show that the ratio between each superconducting gap for conduction electrons Δc and holons Δf and the transition temperature Tc is 2Δc/Tc˜9 and 2Δf/Tc˜O(10-1) , remarkably consistent with CeCoIn5 . A fingerprint of the Kondo mechanism is emergence of two kinds of resonance modes in not only spin but also charge fluctuations, where the charge resonance mode at an antiferromagnetic wave vector originates from d -wave pairing of spinless holons. We discuss how the Kondo fluctuation theory differs from the spin-fluctuation approach.
Living without supersymmetry—the conformal alternative and a dynamical Higgs boson
NASA Astrophysics Data System (ADS)
Mannheim, Philip D.
2017-11-01
We show that the key results of supersymmetry can be achieved via conformal symmetry instead. We propose that the Higgs boson be a dynamical fermion-antifermion bound state rather than an elementary scalar field, so that there is then no quadratically divergent self-energy problem for it and thus no need to invoke supersymmetry to resolve the problem. To obtain such a dynamical Higgs boson we study a conformal invariant gauge theory of interacting fermions and gauge bosons. The conformal invariance of the theory is realized via scaling with anomalous dimensions in the ultraviolet, and by a dynamical symmetry breaking via fermion bilinear condensates in the infrared, a breaking in which the dynamical dimension of the composite operator \\bar{\\psi }\\psi is reduced from three to two. With this reduction in dimension we can augment the gauge theory with a four-fermion interaction made renormalizable by this reduction, and can reinterpret the theory as a renormalizable version of the Nambu-Jona-Lasinio (NJL) model, with the gauge theory sector with its now massive fermion being a mean-field theory and the four-fermion interaction being the residual interaction. It is this residual interaction and not the mean field that then generates dynamical Goldstone and Higgs states, states that, as noted by Baker and Johnson, the gauge theory sector itself does not possess. The Higgs boson is found to be a narrow resonance just above threshold, with its width potentially being a diagnostic that could distinguish a dynamical Higgs boson from an elementary one. We couple the theory to a gravity theory, conformal gravity, that is equally conformal invariant, with the interplay between conformal gravity and the four-fermion interaction taking care of the vacuum energy problem. With conformal gravity being a unitary and renormalizable quantum theory of gravity there is no need for string theory with its supersymmetric underpinnings. With the vacuum energy problem being resolved and with conformal gravity fits to phenomena such as galactic rotation curves and the accelerating universe not needing dark matter, there is no need to introduce supersymmetry for either the vacuum energy problem or to provide a potential dark matter candidate. We propose that it is conformal symmetry rather than supersymmetry that is fundamental, with the theory of nature being a locally conformal, locally gauge invariant, non-Abelian NJL theory.
From Kondo lattices to Kondo superlattices
NASA Astrophysics Data System (ADS)
Shimozawa, Masaaki; Goh, Swee K.; Shibauchi, Takasada; Matsuda, Yuji
2016-07-01
The realization of new classes of ground states in strongly correlated electron systems continues to be a major issue in condensed matter physics. Heavy fermion materials, whose electronic structure is essentially three-dimensional, are one of the most suitable systems for obtaining novel electronic states because of their intriguing properties associated with many-body effects. Recently, a state-of-the-art molecular beam epitaxy technique was developed to reduce the dimensionality of heavy electron systems by fabricating artificial superlattices that include heavy fermion compounds; this approach can produce a new type of electronic state in two-dimensional (2D) heavy fermion systems. In artificial superlattices of the antiferromagnetic heavy fermion compound CeIn3 and the conventional metal LaIn3, the magnetic order is suppressed by a reduction in the thickness of the CeIn3 layers. In addition, the 2D confinement of heavy fermions leads to enhancement of the effective electron mass and deviation from the standard Fermi liquid electronic properties, which are both associated with the dimensional tuning of quantum criticality. In the superconducting superlattices of the heavy fermion superconductor CeCoIn5 and nonmagnetic metal YbCoIn5, signatures of superconductivity are observed even at the thickness of one unit-cell layer of CeCoIn5. The most remarkable feature of this 2D heavy fermion superconductor is that the thickness reduction of the CeCoIn5 layers changes the temperature and angular dependencies of the upper critical field significantly. This result is attributed to a substantial suppression of the Pauli pair-breaking effect through the local inversion symmetry breaking at the interfaces of CeCoIn5 block layers. The importance of the inversion symmetry breaking in this system has also been supported by site-selective nuclear magnetic resonance spectroscopy, which can resolve spectroscopic information from each layer separately, even within the same CeCoIn5 block layer. In addition, recent experiments involving CeCoIn5/YbCoIn5 superlattices have shown that the degree of the inversion symmetry breaking and, in turn, the Rashba splitting are controllable, offering the prospect of achieving even more fascinating superconducting states. Thus, these Kondo superlattices pave the way for the exploration of unconventional metallic and superconducting states.
Stochastic theory of non-Markovian open quantum system
NASA Astrophysics Data System (ADS)
Zhao, Xinyu
In this thesis, a stochastic approach to solving non-Markovian open quantum system called "non-Markovian quantum state diffusion" (NMQSD) approach is discussed in details. The NMQSD approach can serve as an analytical and numerical tool to study the dynamics of the open quantum systems. We explore three main topics of the NMQSD approach. First, we extend the NMQSD approach to many-body open systems such as two-qubit system and coupled N-cavity system. Based on the exact NMQSD equations and the corresponding master equations, we investigate several interesting non-Markovian features due to the memory effect of the environment such as the entanglement generation in two-qubit system and the coherence and entanglement transfer between cavities. Second, we extend the original NMQSD approach to the case that system is coupled to a fermionic bath or a spin bath. By introducing the anti-commutative Grassmann noise and the fermionic coherent state, we derive a fermionic NMQSD equation and the corresponding master equation. The fermionic NMQSD is illustrated by several examples. In a single qubit dissipative example, we have explicitly demonstrated that the NMQSD approach and the ordinary quantum mechanics give rise to the exactly same results. We also show the difference between fermionic bath and bosonic bath. Third, we combine the bosonic and fermionic NMQSD approach to develop a unified NMQSD approach to study the case that an open system is coupled to a bosonic bath and a fermionic bath simultaneously. For all practical purposes, we develop a set of useful computer programs (NMQSD Toolbox) to implement the NMQSD equation in realistic computations. In particular, we develop an algorithm to calculate the exact O operator involved in the NMQSD equation. The NMQSD toolbox is designed to be user friendly, so it will be especially valuable for a non-expert who has interest to employ the NMQSD equation to solve a practical problem. Apart from the central topics on the NMQSD approach, we also study the environment-assisted error correction (EAEC) scheme. We have proposed two new schemes beyond the original EAEC scheme. Our schemes can be used to recover an unknown entangled initial state for a dephasing channel and recover an arbitrary unknown initial state for a dissipative channel using a generalized quantum measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cartas-Fuentevilla, Roberto; Escalante, Alberto; Germán, Gabriel
Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aimsmore » we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ-bar in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb’s law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb’s law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb’s law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally observed or astrophysically inferred photon mass, are far beyond its upper bound, positively testing the viability of our tachyonic braneworld. Moreover, the 5D parameters that define these corrections possess the same order, providing naturalness to our model, however, a fine-tuning between them is needed in order to fit the corresponding upper bound on the photon mass.« less
Isospin Breaking Corrections to the HVP with Domain Wall Fermions
NASA Astrophysics Data System (ADS)
Boyle, Peter; Guelpers, Vera; Harrison, James; Juettner, Andreas; Lehner, Christoph; Portelli, Antonin; Sachrajda, Christopher
2018-03-01
We present results for the QED and strong isospin breaking corrections to the hadronic vacuum polarization using Nf = 2 + 1 Domain Wall fermions. QED is included in an electro-quenched setup using two different methods, a stochastic and a perturbative approach. Results and statistical errors from both methods are directly compared with each other.
Application of a number-conserving boson expansion theory to Ginocchio's SO(8) model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.h.; Pedrocchi, V.G.; Tamura, T.
1986-05-01
A boson expansion theory based on a number-conserving quasiparticle approach is applied to Ginocchio's SO(8) fermion model. Energy spectra and E2 transition rates calculated by using this new boson mapping are presented and compared against the exact fermion values. A comparison with other boson approaches is also given.
NASA Astrophysics Data System (ADS)
Jensen, Kristan
2018-01-01
We conjecture a new sequence of dualities between Chern-Simons gauge theories simultaneously coupled to fundamental bosons and fermions. These dualities reduce to those proposed by Aharony when the number of bosons or fermions is zero. Our conjecture passes a number of consistency checks. These include the matching of global symmetries and consistency with level/rank duality in massive phases.
Momentum sharing in imbalanced Fermi systems
NASA Astrophysics Data System (ADS)
Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16
2014-10-01
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.
From Majorana fermions to topological order.
Terhal, Barbara M; Hassler, Fabian; DiVincenzo, David P
2012-06-29
We consider a system consisting of a 2D network of links between Majorana fermions on superconducting islands. We show that the fermionic Hamiltonian modeling this system is topologically ordered in a region of parameter space: we show that Kitaev's toric code emerges in fourth-order perturbation theory. By using a Jordan-Wigner transformation we can map the model onto a family of signed 2D Ising models in a transverse field where the signs, ferromagnetic or antiferromagnetic, are determined by additional gauge bits. Our mapping allows an understanding of the nonperturbative regime and the phase transition to a nontopological phase. We discuss the physics behind a possible implementation of this model and argue how it can be used for topological quantum computation by adiabatic changes in the Hamiltonian.
Auxiliary-Field Quantum Monte Carlo Simulations of Strongly-Correlated Systems, the Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.
In this final report, we present preliminary results of ground state phases of interacting spinless Dirac fermions. The name "Dirac fermion" originates from the fact that low-energy excitations of electrons hopping on the honeycomb lattice are described by a relativistic Dirac equation. Dirac fermions have received much attention particularly after the seminal work of Haldale1 which shows that the quantum Hall physics can be realized on the honeycomb lattice without magnetic fields. Haldane's work later becomes the foundation of topological insulators (TIs). While the physics of TIs is based largely on spin-orbit coupled non-interacting electrons, it was conjectured that topologicalmore » insulators can be induced by strong correlations alone.« less
Gauge covariance of the fermion Schwinger–Dyson equation in QED
Jia, Shaoyang; Pennington, Michael R.
2017-03-27
Any practical application of the Schwinger–Dyson equations to the study of n-point Green's functions in a strong coupling field theory requires truncations. In the case of QED, the gauge covariance, governed by the Landau–Khalatnikov–Fradkin transformations (LKFT), provides a unique constraint on such truncation. Here, by using a spectral representation for the massive fermion propagator in QED, we are able to show that the constraints imposed by the LKFT are linear operations on the spectral densities. We formally define these group operations and show with a couple of examples how in practice they provide a straightforward way to test the gaugemore » covariance of any viable truncation of the Schwinger–Dyson equation for the fermion 2-point function.« less
Cooling schemes for two-component fermions in layered optical lattices
NASA Astrophysics Data System (ADS)
Goto, Shimpei; Danshita, Ippei
2017-12-01
Recently, a cooling scheme for ultracold atoms in a bilayer optical lattice has been proposed (A. Kantian et al., arXiv:1609.03579). In their scheme, the energy offset between the two layers is increased dynamically such that the entropy of one layer is transferred to the other layer. Using the full-Hilbert-space approach, we compute cooling dynamics subjected to the scheme in order to show that their scheme fails to cool down two-component fermions. We develop an alternative cooling scheme for two-component fermions, in which the spin-exchange interaction of one layer is significantly reduced. Using both full-Hilbert-space and matrix-product-state approaches, we find that our scheme can decrease the temperature of the other layer by roughly half.
NASA Astrophysics Data System (ADS)
Nakatani, Y.; Aratani, H.; Fujiwara, H.; Mori, T.; Tsuruta, A.; Tachibana, S.; Yamaguchi, T.; Kiss, T.; Yamasaki, A.; Yasui, A.; Yamagami, H.; Miyawaki, J.; Ebihara, T.; Saitoh, Y.; Sekiyama, A.
2018-03-01
We present clear experimental evidence for the momentum-dependent heavy fermionic electronic structures of the 4 f -based strongly correlated system CeNi2Ge2 by soft x-ray angle-resolved photoemission spectroscopy. A comparison between the experimental three-dimensional quasiparticle dispersion of LaNi2Ge2 and CeNi2Ge2 has revealed that heavy fermionic electronic structures are seen in the region surrounding a specific momentum. Furthermore, the wave vectors between the observed "heavy spots" are consistent with a result of neutron scattering reflecting magnetic correlations, which could be a trigger for the superconductivity in CeNi2Ge2 .
Field equations from Killing spinors
NASA Astrophysics Data System (ADS)
Açık, Özgür
2018-02-01
From the Killing spinor equation and the equations satisfied by their bilinears, we deduce some well-known bosonic and fermionic field equations of mathematical physics. Aside from the trivially satisfied Dirac equation, these relativistic wave equations in curved spacetimes, respectively, are Klein-Gordon, Maxwell, Proca, Duffin-Kemmer-Petiau, Kähler, twistor, and Rarita-Schwinger equations. This result shows that, besides being special kinds of Dirac fermions, Killing fermions can be regarded as physically fundamental. For the Maxwell case, the problem of motion is analysed in a reverse manner with respect to the studies of Einstein-Groemer-Infeld-Hoffmann and Jean Marie Souriau. In the analysis of the gravitino field, a generalised 3-ψ rule is found which is termed the vanishing trace constraint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, R.D.; denBoer, M.L.; Raaen, S.
1984-08-01
Valence-band photoemission studies, using synchrotron light and employing Fano resonances to enhance f-derived features, were made of the three known heavy-fermion superconductors: CeCu/sub 2/Si/sub 2/, UBe/sub 13/, and UPt/sub 3/. The results for CeCu/sub 2/Si/sub 2/ and UBe/sub 13/ contrast markedly with those reported earlier, reflecting closer control of surface contamination in the present study. We infer from the present study and other considerations that in all three systems there is sig- nificant hybridization between the f electrons and the nearest-neighbor ligands, which may be essential to the phenomenon of heavy-fermion superconductivity.
Five-dimensional fermionic Chern-Simons theory
NASA Astrophysics Data System (ADS)
Bak, Dongsu; Gustavsson, Andreas
2018-02-01
We study 5d fermionic CS theory with a fermionic 2-form gauge potential. This theory can be obtained from 5d maximally supersymmetric YM theory by performing the maximal topological twist. We put the theory on a five-manifold and compute the partition function. We find that it is a topological quantity, which involves the Ray-Singer torsion of the five-manifold. For abelian gauge group we consider the uplift to the 6d theory and find a mismatch between the 5d partition function and the 6d index, due to the nontrivial dimensional reduction of a selfdual two-form gauge field on a circle. We also discuss an application of the 5d theory to generalized knots made of 2d sheets embedded in 5d.
Neutrino mass with large S U (2 )L multiplet fields
NASA Astrophysics Data System (ADS)
Nomura, Takaaki; Okada, Hiroshi
2017-11-01
We propose an extension of the standard model introducing large S U (2 )L multiplet fields which are quartet and septet scalars and quintet Majorana fermions. These multiplets can induce the neutrino masses via interactions with the S U (2 ) doublet leptons. We then find the neutrino masses are suppressed by a small vacuum expectation value of the quartet/septet and an inverse of the quintet fermion mass, relaxing the Yukawa hierarchies among the standard model fermions. We also discuss collider physics at the Large Hadron Collider, considering the production of charged particles in these multiplets, and due to the effects of violating the custodial symmetry, some specific signatures can be found. Then, we discuss the detectability of these signals.
Entanglement dynamics in itinerant fermionic and bosonic systems
NASA Astrophysics Data System (ADS)
Pillarishetty, Durganandini
2017-04-01
The concept of quantum entanglement of identical particles is fundamental in a wide variety of quantum information contexts involving composite quantum systems. However, the role played by particle indistinguishabilty in entanglement determination is being still debated. In this work, we study, theoretically, the entanglement dynamics in some itinerant bosonic and fermionic systems. We show that the dynamical behaviour of particle entanglement and spatial or mode entanglement are in general different. We also discuss the effect of fermionic and bosonic statistics on the dynamical behaviour. We suggest that the different dynamical behaviour can be used to distinguish between particle and mode entanglement in identical particle systems and discuss possible experimental realizations for such studies. I acknowledge financial support from DST, India through research Grant.
Higgs-like mechanism for spontaneous spacetime symmetry breaking
NASA Astrophysics Data System (ADS)
Nishimura, Kimihide
2015-10-01
The study of spontaneous breakdown of spacetime symmetries leads to the discovery of another type of Higgs mechanism operating in a chiral SU(2) model. Some of the Nambu-Goldstone vector mesons emergent from simultaneous violations of gauge and Lorentz symmetries are, in this case, absorbed by a left-handed doublet and endow one of the fermions with a right-handed state, while another part becomes emergent as photons. Accordingly, this mechanism allows a chiral fermion to acquire a mass, and it may enable the emergent theory to reproduce the electromagnetism equivalent to the QED sector in the standard theory. It is also mentioned that the "fermion-boson puzzle" known in the presence of a 't Hooft-Polyakov monopole does not exist in our theory.
Heavy fermion behavior in the quasi-one-dimensional Kondo lattice CeCo 2Ga 8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Le; Fu, Zhaoming; Sun, Jianping
Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo 2Ga 8. Resistivity measurements at ambient pressure reveal the onset of coherence at T * ≈ 20 K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 and 2 K and reaches 800 mJ/mol K 2 atmore » 1 K, suggesting that CeCo 2Ga 8 is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature–pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional spin chain from 300 K down to T *, and first-principles calculations predict flat Fermi surfaces for the itinerant f-electron bands. These suggest that CeCo 2Ga 8 is a rare example of the quasi-one-dimensional Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh 2Si 2 family. The study of the quasi-one-dimensional CeCo 2Ga 8 family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.« less
Heavy fermion behavior in the quasi-one-dimensional Kondo lattice CeCo2Ga8
NASA Astrophysics Data System (ADS)
Wang, Le; Fu, Zhaoming; Sun, Jianping; Liu, Min; Yi, Wei; Yi, Changjiang; Luo, Yongkang; Dai, Yaomin; Liu, Guangtong; Matsushita, Yoshitaka; Yamaura, Kazunari; Lu, Li; Cheng, Jin-Guang; Yang, Yi-feng; Shi, Youguo; Luo, Jianlin
2017-07-01
Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo2Ga8. Resistivity measurements at ambient pressure reveal the onset of coherence at T * ≈ 20 K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 and 2 K and reaches 800 mJ/mol K2 at 1 K, suggesting that CeCo2Ga8 is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature-pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional spin chain from 300 K down to T *, and first-principles calculations predict flat Fermi surfaces for the itinerant f-electron bands. These suggest that CeCo2Ga8 is a rare example of the quasi-one-dimensional Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh2Si2 family. The study of the quasi-one-dimensional CeCo2Ga8 family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.
Nonlinear Bogolyubov-Valatin transformations: Two modes
NASA Astrophysics Data System (ADS)
Scharnhorst, K.; van Holten, J.-W.
2011-11-01
Extending our earlier study of nonlinear Bogolyubov-Valatin transformations (canonical transformations for fermions) for one fermionic mode, in the present paper, we perform a thorough study of general (nonlinear) canonical transformations for two fermionic modes. We find that the Bogolyubov-Valatin group for n=2 fermionic modes, which can be implemented by means of unitary SU(2n=4) transformations, is isomorphic to SO(6;R)/Z2. The investigation touches on a number of subjects. As a novelty from a mathematical point of view, we study the structure of nonlinear basis transformations in a Clifford algebra [specifically, in the Clifford algebra C(0,4)] entailing (supersymmetric) transformations among multivectors of different grades. A prominent algebraic role in this context is being played by biparavectors (linear combinations of products of Dirac matrices, quadriquaternions, sedenions) and spin bivectors (antisymmetric complex matrices). The studied biparavectors are equivalent to Eddington's E-numbers and can be understood in terms of the tensor product of two commuting copies of the division algebra of quaternions H. From a physical point of view, we present a method to diagonalize any arbitrary two-fermion Hamiltonians. Relying on Jordan-Wigner transformations for two-spin- {1}/{2} and single-spin- {3}/{2} systems, we also study nonlinear spin transformations and the related problem of diagonalizing arbitrary two-spin- {1}/{2} and single-spin- {3}/{2} Hamiltonians. Finally, from a calculational point of view, we pay due attention to explicit parametrizations of SU(4) and SO(6;R) matrices (of respective sizes 4×4 and 6×6) and their mutual relation.
Heavy fermion behavior in the quasi-one-dimensional Kondo lattice CeCo 2Ga 8
Wang, Le; Fu, Zhaoming; Sun, Jianping; ...
2017-07-04
Dimensionality plays an essential role in determining the anomalous non-Fermi liquid properties in heavy fermion systems. So far most heavy fermion compounds are quasi-two-dimensional or three-dimensional. Here we report the synthesis and systematic investigations of the single crystals of the quasi-one-dimensional Kondo lattice CeCo 2Ga 8. Resistivity measurements at ambient pressure reveal the onset of coherence at T * ≈ 20 K and non-Fermi liquid behavior with linear temperature dependence over a decade in temperature from 2 to 0.1 K. The specific heat increases logarithmically with lowering temperature between 10 and 2 K and reaches 800 mJ/mol K 2 atmore » 1 K, suggesting that CeCo 2Ga 8 is a heavy fermion compound in the close vicinity of a quantum critical point. Resistivity measurements under pressure further confirm the non-Fermi liquid behavior in a large temperature–pressure range. The magnetic susceptibility is found to follow the typical behavior for a one-dimensional spin chain from 300 K down to T *, and first-principles calculations predict flat Fermi surfaces for the itinerant f-electron bands. These suggest that CeCo 2Ga 8 is a rare example of the quasi-one-dimensional Kondo lattice, but its non-Fermi liquid behaviors resemble those of the quasi-two-dimensional YbRh 2Si 2 family. The study of the quasi-one-dimensional CeCo 2Ga 8 family may therefore help us to understand the role of dimensionality on heavy fermion physics and quantum criticality.« less
Spin imbalance effect on the Larkin-Ovchinnikov-Fulde-Ferrel state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshii, Ryosuke; Tsuchiya, Shunji; Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521
2011-07-01
We study spin imbalance effects on the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state relevant for superconductors under a strong magnetic field and spin polarized ultracold Fermi gas. We obtain the exact solution for the condensates with arbitrary spin imbalance and the fermion spectrum perturbatively in the presence of small spin imbalance. We also obtain fermion zero mode exactly without perturbation theory.
Fermionic Tunneling Effect and Hawking Radiation in a Non Commutative FRW Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhalouf, H.; Aissaoui, H.; Mebarki, N.
2010-10-31
The formalism of a non commutative gauge gravity is applied to an FRW universe and the corresponding modified metric, veirbein and spin connection components are obtained. Moreover, using the Hamilton-Jacobi method and as a pure space-time deformation effect, the NCG Hawking radiation via a fermionic tunneling transition through the dynamical NCG horizon is also studied.
The Bravyi-Kitaev transformation for quantum computation of electronic structure
NASA Astrophysics Data System (ADS)
Seeley, Jacob T.; Richard, Martin J.; Love, Peter J.
2012-12-01
Quantum simulation is an important application of future quantum computers with applications in quantum chemistry, condensed matter, and beyond. Quantum simulation of fermionic systems presents a specific challenge. The Jordan-Wigner transformation allows for representation of a fermionic operator by O(n) qubit operations. Here, we develop an alternative method of simulating fermions with qubits, first proposed by Bravyi and Kitaev [Ann. Phys. 298, 210 (2002), 10.1006/aphy.2002.6254; e-print arXiv:quant-ph/0003137v2], that reduces the simulation cost to O(log n) qubit operations for one fermionic operation. We apply this new Bravyi-Kitaev transformation to the task of simulating quantum chemical Hamiltonians, and give a detailed example for the simplest possible case of molecular hydrogen in a minimal basis. We show that the quantum circuit for simulating a single Trotter time step of the Bravyi-Kitaev derived Hamiltonian for H2 requires fewer gate applications than the equivalent circuit derived from the Jordan-Wigner transformation. Since the scaling of the Bravyi-Kitaev method is asymptotically better than the Jordan-Wigner method, this result for molecular hydrogen in a minimal basis demonstrates the superior efficiency of the Bravyi-Kitaev method for all quantum computations of electronic structure.
B+ L violation at colliders and new physics
NASA Astrophysics Data System (ADS)
Cerdeño, David G.; Reimitz, Peter; Sakurai, Kazuki; Tamarit, Carlos
2018-04-01
Chiral electroweak anomalies predict baryon ( B) and lepton ( L) violating fermion interactions, which can be dressed with large numbers of Higgs and gauge bosons. The estimation of the total B + L-violating rate from an initial two-particle state — potentially observable at colliders — has been the subject of an intense discussion, mainly centered on the resummation of boson emission, which is believed to contribute to the cross-section with an exponential function of the energy, yet with an exponent (the "holy-grail" function) which is not fully known in the energy range of interest. In this article we focus instead on the effect of fermions beyond the Standard-Model (SM) in the polynomial contributions to the rate. It is shown that B + L processes involving the new fermions have a polynomial contribution that can be several orders of magnitude greater than in the SM, for high centre-of-mass energies and light enough masses. We also present calculations that hint at a simple dependence of the holy grail function on the heavy fermion masses. Thus, if anomalous B + L violating interactions are ever detected at high-energy colliders, they could be associated with new physics.
Why threefold-replication of families?
NASA Astrophysics Data System (ADS)
Fitzpatrick, Gerald L.
1998-04-01
In spite of the many successes of the standard model of particle physics, the observed proliferation of matter-fields, in the form of ``replicated'' generations or families, is a major unsolved problem. In this paper, I explore some of the algebraic, geometric and physical consequences of a new organizing principle for fundamental fermions (quarks and leptons)(Gerald L. Fitzpatrick, phThe Family Problem--New Internal Algebraic and Geometric Regularities), Nova Scientific Press, Issaquah, Washington, 1997. Read more about this book (ISBN 0--9655695--0--0) and its subject matter at: http://www.tp.umu.se/TIPTOP A> and/or http://www.amazon.com.. The essence of the new organizing principle is the idea that the standard-model concept of scalar fermion numbers f can be generalized. In particular, a ``generalized fermion number,'' which consists of a 2× 2 matrix F that ``acts'' on an internal 2-space, instead of spacetime, is taken to describe certain internal properties of fundamental fermions. This generalization automatically introduces internal degrees of freedom that ``explain,'' among other things, family replication and the number (three) of families observed in nature.
NASA Astrophysics Data System (ADS)
Xu, Nan; Autes, Gabriel; Matt, Christian; Lv, Baiqing; Bisti, Federico; Strocov, Vladimir; Gawryluk, Dariusz; Pomjakushina, Ekaterina; Conder, Kazimierz; Plumb, Nicholas; Radovic, Milan; Qian, Tian; Yazyev, Oleg; Mesot, Joel; Ding, Hong; Shi, Ming
By performing ARPES and first-principle calculations, we demonstrate that Weyl fermions quasiparticles in bulk and Fermi arc on surface show distinct evolutions with the bulk band topology in transition-metal monophosphides. While Weyl fermion quasiparticles exist only when the chemical potential is located between two saddle points of the Weyl cone features, the Fermi arc states extend in a larger energy scale and are robust across the bulk Lifshitz transitions associated with the recombination of two non-trivial Fermi surfaces enclosing one Weyl point into a single trivial Fermi surface enclosing two Weyl points of opposite chirality. Therefore, in some systems (NbP), Fermi arc states are preserved even if Weyl fermion quasiparticles are absent in the bulk. Our findings not only provide insight into the relationship between the exotic physical phenomena and the intrinsic bulk band topology in Weyl semimetals, but also resolve the apparent puzzle of the different magneto-transport properties observed in TaAs, TaP and NbP, where the Fermi arc states are similar. The Sino-Swiss Science and Technology Cooperation (No. IZLCZ2138954), NCCR-MARVEL funded by the Swiss National Science Foundation.
Effects of flavor-symmetry violation from staggered fermion lattice simulations of graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giedt, Joel; Nayak, Saroj; Skinner, Andrew
2011-01-15
We analyze the effects of flavor splitting from staggered fermion lattice simulations of a low-energy effective theory for graphene. Both the unimproved action and the tadpole-improved action with a Naik term show significant flavor-symmetry breaking in the spectrum of the Dirac operator. Note that this is true even in the vicinity of the second-order phase transition point where it has been argued that the flavor-symmetry breaking should be small due to the continuum limit being approached. We show that at weaker couplings the flavor splitting is drastically reduced by stout link smearing, while this mechanism is ineffective at the strongermore » couplings relevant to suspended graphene. We also measure the average plaquette and describe how it calls for a reinterpretation of previous lattice Monte Carlo simulation results, due to tadpole improvement. After taking into account these effects, we conclude that previous lattice simulations are possibly indicative of an insulating phase, although the effective number of light flavors could be effectively less than two due to the flavor-splitting effects. If that is true, then simulations with truly chiral fermions (such as overlap fermions) are needed in order to settle the question.« less
Weiss oscillations and particle-hole symmetry at the half-filled Landau level
NASA Astrophysics Data System (ADS)
Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael
2017-06-01
Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ±e2/2 h at half filling. We study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. We find an approximate "sum rule" obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.
Work distributions of one-dimensional fermions and bosons with dual contact interactions
NASA Astrophysics Data System (ADS)
Wang, Bin; Zhang, Jingning; Quan, H. T.
2018-05-01
We extend the well-known static duality [M. Girardeau, J. Math. Phys. 1, 516 (1960), 10.1063/1.1703687; T. Cheon and T. Shigehara, Phys. Rev. Lett. 82, 2536 (1999), 10.1103/PhysRevLett.82.2536] between one-dimensional (1D) bosons and 1D fermions to the dynamical version. By utilizing this dynamical duality, we find the duality of nonequilibrium work distributions between interacting 1D bosonic (Lieb-Liniger model) and 1D fermionic (Cheon-Shigehara model) systems with dual contact interactions. As a special case, the work distribution of the Tonks-Girardeau gas is identical to that of 1D noninteracting fermionic system even though their momentum distributions are significantly different. In the classical limit, the work distributions of Lieb-Liniger models (Cheon-Shigehara models) with arbitrary coupling strength converge to that of the 1D noninteracting distinguishable particles, although their elementary excitations (quasiparticles) obey different statistics, e.g., the Bose-Einstein, the Fermi-Dirac, and the fractional statistics. We also present numerical results of the work distributions of Lieb-Liniger model with various coupling strengths, which demonstrate the convergence of work distributions in the classical limit.
Extensions of the standard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramond, P.
1983-01-01
In these lectures we focus on several issues that arise in theoretical extensions of the standard model. First we describe the kinds of fermions that can be added to the standard model without affecting known phenomenology. We focus in particular on three types: the vector-like completion of the existing fermions as would be predicted by a Kaluza-Klein type theory, which we find cannot be realistically achieved without some chiral symmetry; fermions which are vector-like by themselves, such as do appear in supersymmetric extensions, and finally anomaly-free chiral sets of fermions. We note that a chiral symmetry, such as the Peccei-Quinnmore » symmetry can be used to produce a vector-like theory which, at scales less than M/sub W/, appears to be chiral. Next, we turn to the analysis of the second hierarchy problem which arises in Grand Unified extensions of the standard model, and plays a crucial role in proton decay of supersymmetric extensions. We review the known mechanisms for avoiding this problem and present a new one which seems to lead to the (family) triplication of the gauge group. Finally, this being a summer school, we present a list of homework problems. 44 references.« less
Fermionic spin liquid analysis of the paramagnetic state in volborthite
NASA Astrophysics Data System (ADS)
Chern, Li Ern; Schaffer, Robert; Sorn, Sopheak; Kim, Yong Baek
2017-10-01
Recently, thermal Hall effect has been observed in the paramagnetic state of volborthite, which consists of distorted kagome layers with S =1 /2 local moments. Despite the appearance of magnetic order below 1 K , the response to external magnetic field and unusual properties of the paramagnetic state above 1 K suggest possible realization of exotic quantum phases. Motivated by these discoveries, we investigate possible spin liquid phases with fermionic spinon excitations in a nonsymmorphic version of the kagome lattice, which belongs to the two-dimensional crystallographic group p 2 g g . This nonsymmorphic structure is consistent with the spin model obtained in the density functional theory calculation. Using projective symmetry group analysis and fermionic parton mean field theory, we identify twelve distinct Z2 spin liquid states, four of which are found to have correspondence in the eight Schwinger boson spin liquid states we classified earlier. We focus on the four fermionic states with bosonic counterpart and find that the spectrum of their corresponding root U (1 ) states features spinon Fermi surface. The existence of spinon Fermi surface in candidate spin liquid states may offer a possible explanation of the finite thermal Hall conductivity observed in volborthite.
Non-Abelian fermion parity interferometry of Majorana bound states in a Fermi sea
NASA Astrophysics Data System (ADS)
Dahan, Daniel; Tanhayi Ahari, Mostafa; Ortiz, Gerardo; Seradjeh, Babak; Grosfeld, Eytan
We study the quantum dynamics of Majorana and regular fermion bound states coupled to a one-dimensional lead. The dynamics following the quench in the coupling to the lead exhibits a series of dynamical revivals as the bound state propagates in the lead and reflects from the boundaries. We show that the nature of revivals for a single Majorana bound state depends uniquely on the presence of a resonant level in the lead. When two spatially separated Majorana modes are coupled to the lead, the revivals depend only on the phase difference between their host superconductors. Remarkably, the quench in this case effectively performs a fermion-parity interferometry between Majorana bound states, revealing their unique non-Abelian braiding. Using both analytical and numerical techniques, we find the pattern of fermion parity transfers following the quench, study its evolution in the presence of disorder and interactions, and thus, ascertain the fate of Majorana in a rough Fermi sea. Work supported in part by BSF Grant No. 2014345, ISF Grant Nos. 401/12 and 1626/16, EU Seventh Framework Programme (FP7/2007-2013) Grant No. 303742, NSF CAREER Grant DMR-1350663 and the College of Arts and Sciences at Indiana University.
Weiss oscillations and particle-hole symmetry at the half-filled Landau level
Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael
2017-06-15
Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ± e 2/2h at half filling. Here, we study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015)]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. Wemore » find an approximate “sum rule” obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.« less
Strength functions, entropies, and duality in weakly to strongly interacting fermionic systems.
Angom, D; Ghosh, S; Kota, V K B
2004-01-01
We revisit statistical wave function properties of finite systems of interacting fermions in the light of strength functions and their participation ratio and information entropy. For weakly interacting fermions in a mean-field with random two-body interactions of increasing strength lambda, the strength functions F(k) (E) are well known to change, in the regime where level fluctuations follow Wigner's surmise, from Breit-Wigner to Gaussian form. We propose an ansatz for the function describing this transition which we use to investigate the participation ratio xi(2) and the information entropy S(info) during this crossover, thereby extending the known behavior valid in the Gaussian domain into much of the Breit-Wigner domain. Our method also allows us to derive the scaling law lambda(d) approximately 1/sqrt[m] ( m is number of fermions) for the duality point lambda= lambda(d), where F(k) (E), xi(2), and S(info) in both the weak ( lambda=0 ) and strong mixing ( lambda= infinity ) basis coincide. As an application, the ansatz function for strength functions is used in describing the Breit-Wigner to Gaussian transition seen in neutral atoms CeI to SmI with valence electrons changing from 4 to 8.
Discovery of a new type of topological Weyl fermion semimetal state in Mo xW 1-xTe 2
Belopolski, Ilya; Sanchez, Daniel S.; Ishida, Yukiaki; ...
2016-12-05
Here, the recent discovery of a Weyl semimetal in TaAs offers the first Weyl fermion observed in nature and dramatically broadens the classification of topological phases. However, in TaAs it has proven challenging to study the rich transport phenomena arising from emergent Weyl fermions. The series Mo xW 1-xTe 2 are inversion-breaking, layered, tunable semimetals already under study as a promising platform for new electronics and recently proposed to host Type II, or strongly Lorentz-violating, Weyl fermions. Here we report the discovery of a Weyl semimetal in Mo xW 1-xTe 2 at x=25%. We use pump-probe angle-resolved photoemission spectroscopy (pump-probemore » ARPES) to directly observe a topological Fermi arc above the Fermi level, demonstrating a Weyl semimetal. The excellent agreement with calculation suggests that Mo xW 1-xTe 2 is a Type II Weyl semimetal. We also find that certain Weyl points are at the Fermi level, making Mo xW 1-xTe 2 a promising platform for transport and optics experiments on Weyl semimetals.« less
Discovery of a new type of topological Weyl fermion semimetal state in Mo xW 1-xTe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belopolski, Ilya; Sanchez, Daniel S.; Ishida, Yukiaki
Here, the recent discovery of a Weyl semimetal in TaAs offers the first Weyl fermion observed in nature and dramatically broadens the classification of topological phases. However, in TaAs it has proven challenging to study the rich transport phenomena arising from emergent Weyl fermions. The series Mo xW 1-xTe 2 are inversion-breaking, layered, tunable semimetals already under study as a promising platform for new electronics and recently proposed to host Type II, or strongly Lorentz-violating, Weyl fermions. Here we report the discovery of a Weyl semimetal in Mo xW 1-xTe 2 at x=25%. We use pump-probe angle-resolved photoemission spectroscopy (pump-probemore » ARPES) to directly observe a topological Fermi arc above the Fermi level, demonstrating a Weyl semimetal. The excellent agreement with calculation suggests that Mo xW 1-xTe 2 is a Type II Weyl semimetal. We also find that certain Weyl points are at the Fermi level, making Mo xW 1-xTe 2 a promising platform for transport and optics experiments on Weyl semimetals.« less
Theory of scanning tunneling spectroscopy: from Kondo impurities to heavy fermion materials
NASA Astrophysics Data System (ADS)
Morr, Dirk K.
2017-01-01
Kondo systems ranging from the single Kondo impurity to heavy fermion materials present us with a plethora of unconventional properties whose theoretical understanding is still one of the major open problems in condensed matter physics. Over the last few years, groundbreaking scanning tunneling spectroscopy (STS) experiments have provided unprecedented new insight into the electronic structure of Kondo systems. Interpreting the results of these experiments—the differential conductance and the quasi-particle interference spectrum—however, has been complicated by the fact that electrons tunneling from the STS tip into the system can tunnel either into the heavy magnetic moment or the light conduction band states. In this article, we briefly review the theoretical progress made in understanding how quantum interference between these two tunneling paths affects the experimental STS results. We show how this theoretical insight has allowed us to interpret the results of STS experiments on a series of heavy fermion materials providing detailed knowledge of their complex electronic structure. It is this knowledge that is a conditio sine qua non for developing a deeper understanding of the fascinating properties exhibited by heavy fermion materials, ranging from unconventional superconductivity to non-Fermi-liquid behavior in the vicinity of quantum critical points.
Weiss oscillations and particle-hole symmetry at the half-filled Landau level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael
Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ± e 2/2h at half filling. Here, we study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015)]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. Wemore » find an approximate “sum rule” obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.« less
Pseudotopological quasilocal energy of torsion gravity
NASA Astrophysics Data System (ADS)
Ko, Sheng-Lan; Lin, Feng-Li; Ning, Bo
2017-08-01
Torsion gravity is a natural extension to Einstein gravity in the presence of fermion matter sources. In this paper we adopt Wald's covariant method of calculating the Noether charge to construct the quasilocal energy of the Einstein-Cartan-fermion system, and find that its explicit expression is formally independent of the coupling constant between the torsion and axial current. This seemingly topological nature is unexpected and is reminiscent of the quantum Hall effect and topological insulators. However, a coupling dependence does arise when evaluating it on shell, and thus the situation is pseudotopological. Based on the expression for the quasilocal energy, we evaluate it for a particular solution on the entanglement wedge and find agreement with the holographic relative entropy obtained before. This shows the equivalence of these two quantities in the Einstein-Cartan-fermion system. Moreover, the quasilocal energy in this case is not always positive definite, and thus it provides an example of a swampland in torsion gravity. Based on the covariant Noether charge, we also derive the nonzero fermion effect on the Komar angular momentum. The implications of our results for future tests of torsion gravity in gravitational-wave astronomy are also discussed.
NASA Astrophysics Data System (ADS)
Bandos, Igor A.; Ortín, Tomás
2016-08-01
We review and investigate different aspects of scalar fields in supergravity theories both when they parametrize symmetric spaces and when they parametrize spaces of special holonomy which are not necessarily symmetric (Kähler and Quaternionic-Kähler spaces): their rôle in the definition of derivatives of the fermions covariant under the R-symmetry group and (in gauged supergravities) under some gauge group, their dualization into ( d - 2)-forms, their role in the supersymmetry transformation rules (via fermion shifts, for instance) etc. We find a general definition of momentum map that applies to any manifold admitting a Killing vector and coincides with those of the holomorphic and tri-holomorphic momentum maps in Kähler and quaternionic-Kähler spaces and with an independent definition that can be given in symmetric spaces. We show how the momen-tum map occurs ubiquitously: in gauge-covariant derivatives of fermions, in fermion shifts, in the supersymmetry transformation rules of ( d - 2)-forms etc. We also give the general structure of the Noether-Gaillard-Zumino conserved currents in theories with fields of different ranks in any dimension.
SU(3) Orbital Kondo Effect with Ultracold Atoms
NASA Astrophysics Data System (ADS)
Nishida, Yusuke
2013-09-01
We propose a simple but novel scheme to realize the Kondo effect with ultracold atoms. Our system consists of a Fermi sea of spinless fermions interacting with an impurity atom of different species which is confined by an isotropic potential. The interspecies attraction can be tuned with an s-wave Feshbach resonance so that the impurity atom and a spinless fermion form a bound dimer that occupies a threefold-degenerate p orbital of the confinement potential. Many-body scatterings of this dimer and surrounding spinless fermions occur with exchanging their angular momenta and thus exhibit the SU(3) orbital Kondo effect. The associated Kondo temperature has a universal leading exponent given by TK∝exp[-π/(3apkF3)] that depends only on an effective p-wave scattering volume ap and a Fermi wave vector kF. We also elucidate a Kondo singlet formation at zero temperature and an anisotropic interdimer interaction mediated by surrounding spinless fermions. The Kondo effect thus realized in ultracold atom experiments may be observed as an increasing atom loss by lowering the temperature or with radio-frequency spectroscopy. Our scheme and its extension to a dense Kondo lattice will be useful to develop new insights into yet unresolved aspects of Kondo physics.
Systematic dimensionality reduction for continuous-time quantum walks of interacting fermions
NASA Astrophysics Data System (ADS)
Izaac, J. A.; Wang, J. B.
2017-09-01
To extend the continuous-time quantum walk (CTQW) to simulate P distinguishable particles on a graph G composed of N vertices, the Hamiltonian of the system is expanded to act on an NP-dimensional Hilbert space, in effect, simulating the multiparticle CTQW on graph G via a single-particle CTQW propagating on the Cartesian graph product G□P. The properties of the Cartesian graph product have been well studied, and classical simulation of multiparticle CTQWs are common in the literature. However, the above approach is generally applied as is when simulating indistinguishable particles, with the particle statistics then applied to the propagated NP state vector to determine walker probabilities. We address the following question: How can we modify the underlying graph structure G□P in order to simulate multiple interacting fermionic CTQWs with a reduction in the size of the state space? In this paper, we present an algorithm for systematically removing "redundant" and forbidden quantum states from consideration, which provides a significant reduction in the effective dimension of the Hilbert space of the fermionic CTQW. As a result, as the number of interacting fermions in the system increases, the classical computational resources required no longer increases exponentially for fixed N .
Phase-space mass bound for fermionic dark matter from dwarf spheroidal galaxies
NASA Astrophysics Data System (ADS)
Di Paolo, Chiara; Nesti, Fabrizio; Villante, Francesco L.
2018-04-01
We reconsider the lower bound on the mass of a fermionic dark matter (DM) candidate resulting from the existence of known small dwarf spheroidal galaxies, in the hypothesis that their DM halo is constituted by degenerate fermions, with phase-space density limited by the Pauli exclusion principle. By relaxing the common assumption that the DM halo scale radius is tied to that of the luminous stellar component and by marginalizing on the unknown stellar velocity dispersion anisotropy, we prove that observations lead to rather weak constraints on the DM mass, which could be as low as tens of eV. In this scenario, however, the DM haloes would be quite large and massive, so that a bound stems from the requirement that the time of orbital decay due to dynamical friction in the hosting Milky Way DM halo is longer than their lifetime. The smallest and nearest satellites Segue I and Willman I lead to a final lower bound of m ≳ 100 eV, still weaker than previous estimates but robust and independent on the model of DM formation and decoupling. We thus show that phase-space constraints do not rule out the possibility of sub-keV fermionic DM.
Fermion masses and mixing in general warped extra dimensional models
NASA Astrophysics Data System (ADS)
Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel
2015-06-01
We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.
Exact results for the star lattice chiral spin liquid
NASA Astrophysics Data System (ADS)
Kells, G.; Mehta, D.; Slingerland, J. K.; Vala, J.
2010-03-01
We examine the star lattice Kitaev model whose ground state is a chiral spin liquid. We fermionize the model such that the fermionic vacua are toric-code states on an effective Kagome lattice. This implies that the Abelian phase of the system is inherited from the fermionic vacua and that time-reversal symmetry is spontaneously broken at the level of the vacuum. In terms of these fermions we derive the Bloch-matrix Hamiltonians for the vortex-free sector and its time-reversed counterpart and illuminate the relationships between the sectors. The phase diagram for the model is shown to be a sphere in the space of coupling parameters around the triangles of the lattices. The Abelian phase lies inside the sphere and the critical boundary between topologically distinct Abelian and non-Abelian phases lies on the surface. Outside the sphere the system is generically gapped except in the planes where the coupling parameters between the vertices on triangles are zero. These cases correspond to bipartite lattice structures and the dispersion relations are similar to that of the original Kitaev honeycomb model. In a further analysis we demonstrate the threefold non-Abelian ground-state degeneracy on a torus by explicit calculation.
Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock
NASA Astrophysics Data System (ADS)
Bromley, S. L.; Kolkowitz, S.; Bothwell, T.; Kedar, D.; Safavi-Naini, A.; Wall, M. L.; Salomon, C.; Rey, A. M.; Ye, J.
2018-04-01
Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.
Magnetic-tunnelling-induced Weyl node annihilation in TaP
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Long; Xu, Su-Yang; Wang, C. M.; Lin, Ziquan; Du, Z. Z.; Guo, Cheng; Lee, Chi-Cheng; Lu, Hong; Feng, Yiyang; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Liu, Haiwen; Lin, Hsin; Li, Liang; Zhang, Chi; Zhang, Jinglei; Xie, Xin-Cheng; Neupert, Titus; Hasan, M. Zahid; Lu, Hai-Zhou; Wang, Junfeng; Jia, Shuang
2017-10-01
Weyl nodes are topological objects in three-dimensional metals. Whereas the energy of the lowest Landau band of a conventional Fermi pocket increases with magnetic field due to the zero-point energy (1/2ℏω), the lowest Landau band of Weyl cones stays at zero energy unless a strong magnetic field couples Weyl fermions of opposite chirality. In the Weyl semimetal TaP, which possesses two types of Weyl nodes (four pairs of W1 and eight pairs of W2 nodes), we observed such a magnetic coupling between the electron pockets arising from the W1 Weyl fermions. As a result, their lowest Landau bands move above the chemical potential, leading to a sharp sign reversal in the Hall resistivity at a specific magnetic field corresponding to the separation in momentum space of the W1 Weyl nodes, . By contrast, annihilation is not observed for the hole pocket because the separation of the W2 Weyl nodes is much larger. These findings reveal the nontrivial topology of Weyl fermions in high-field transport measurements and demonstrate the observation of Weyl node annihilation, which is a unique topological phenomenon associated with Weyl fermions.
Correction of Cardy–Verlinde formula for Fermions and Bosons with modified dispersion relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadatian, S. Davood, E-mail: sd-sadatian@um.ac.ir; Dareyni, H.
Cardy–Verlinde formula links the entropy of conformal symmetry field to the total energy and its Casimir energy in a D-dimensional space. To correct black hole thermodynamics, modified dispersion relation can be used which is proposed as a general feature of quantum gravity approaches. In this paper, the thermodynamics of Schwarzschild four-dimensional black hole is corrected using the modified dispersion relation for Fermions and Bosons. Finally, using modified thermodynamics of Schwarzschild four-dimensional black hole, generalization for Cardy–Verlinde formula is obtained. - Highlights: • The modified Cardy–Verlinde formula obtained using MDR for Fermions and Bosons. • The modified entropy of the blackmore » hole used to correct the Cardy–Verlinde formula. • The modified entropy of the CFT has been obtained.« less
Momentum sharing in imbalanced Fermi systems
Hen, O.; Sargsian, M.; Weinstein, L. B.; ...
2014-10-16
The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less
Split fermions baryogenesis from the Kobayashi-Maskawa phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, Gilad; Volansky, Tomer
2005-11-15
A new scenario of baryogenesis is presented, within the split fermions framework. Our model employs a first order phase transition of the localizer field. The standard model (SM), Kobayashi-Maskawa phase induces a sizable CP asymmetry. The usual suppression of CP violation which arises in the SM baryogenesis is absent due to the existence of order one Yukawa couplings before the fermions are localized in the extra dimension. Models of the above type naturally contain B-L violating operators, allowed by the SM symmetries, which induce the baryon asymmetry. Our mechanism demonstrates the following concept: the flavor puzzle and the SM failuremore » to create the baryon asymmetry are linked and may have a common resolution which does not rely on introduction of new CP violating sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MCCLEAN, JARROD; HANER, THOMAS; STEIGER, DAMIAN
FermiLib is an open source software package designed to facilitate the development and testing of algorithms for simulations of fermionic systems on quantum computers. Fermionic simulations represent an important application of early quantum devices with a lot of potential high value targets, such as quantum chemistry for the development of new catalysts. This software strives to provide a link between the required domain expertise in specific fermionic applications and quantum computing to enable more users to directly interface with, and develop for, these applications. It is an extensible Python library designed to interface with the high performance quantum simulator, ProjectQ,more » as well as application specific software such as PSI4 from the domain of quantum chemistry. Such software is key to enabling effective user facilities in quantum computation research.« less
Topological charge and the spectrum of exactly massless fermions on the lattice
NASA Astrophysics Data System (ADS)
Chiu, Ting-Wai
1998-10-01
The square root of the positive definite Hermitian operator D†wDw in Neuberger's proposal of exactly massless quarks on the lattice is implemented by the recursion formula Yk+1=12(Yk+D†wDwY-1k) with Y0=1, where Y2k converges to D†wDw quadratically. The spectrum of the lattice Dirac operator for single massless fermion in two dimensional background U(1) gauge fields is investigated. For smooth background gauge fields with nonzero topological charge, the exact zero modes with definite chirality are reproduced to a very high precision on a finite lattice and the index theorem is satisfied exactly. The fermionic determinants are also computed and they are in good agreement with the continuum exact solution.
Li, Ying
2016-09-16
Fault-tolerant quantum computing in systems composed of both Majorana fermions and topologically unprotected quantum systems, e.g., superconducting circuits or quantum dots, is studied in this Letter. Errors caused by topologically unprotected quantum systems need to be corrected with error-correction schemes, for instance, the surface code. We find that the error-correction performance of such a hybrid topological quantum computer is not superior to a normal quantum computer unless the topological charge of Majorana fermions is insusceptible to noise. If errors changing the topological charge are rare, the fault-tolerance threshold is much higher than the threshold of a normal quantum computer and a surface-code logical qubit could be encoded in only tens of topological qubits instead of about 1,000 normal qubits.
Majorana Fermions in Particle Physics, Solid State and Quantum Information
NASA Astrophysics Data System (ADS)
Borsten, L.; Duff, M. J.
This review is based on lectures given by M. J. Duff summarising the far reaching contributions of Ettore Majorana to fundamental physics, with special focus on Majorana fermions in all their guises. The theoretical discovery of the eponymous fcrmion in 1937 has since had profound implications for particlc physics, solid state and quantum computation. The breadth of these disciplines is testimony to Majorana's genius, which continues to permeate physics today. These lectures offer a whistle-stop tour through some limited subset of the key ideas. In addition to touching on these various applications, we will draw out some fascinating relations connecting the normed division algebras R, ℂ, H, O to spinors, trialities. K-theory and the classification of stable topological states of symmetry-protected gapped free-fermion systems.
Nuclear physics. Momentum sharing in imbalanced Fermi systems.
Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I
2014-10-31
The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.
Klein tunneling and electron optics in Dirac-Weyl fermion systems with tilted energy dispersion
NASA Astrophysics Data System (ADS)
Nguyen, V. Hung; Charlier, J.-C.
2018-06-01
The transport properties of relativisticlike fermions have been extensively studied in solid-state systems with isotropic energy dispersions. Recently, several two-dimensional and three-dimensional Dirac-Weyl (DW) materials exhibiting tilted energy dispersions around their DW cones have been explored. Here, we demonstrate that such a tilt character could induce drastically different transport phenomena, compared to the isotropic-dispersion cases. Indeed, the Klein tunneling of DW fermions of opposite chiralities is predicted to appear along two separated oblique directions. In addition, valley filtering and beam splitting effects are easily tailored by dopant engineering techniques whereas the refraction of electron waves at a (p -n )-doped interface is dramatically modified by the tilt, thus paving the way for emerging applications in electron optics and valleytronics.
High-pressure studies on heavy fermion systems
NASA Astrophysics Data System (ADS)
Ye, Chen; Zongfa, Weng; Smidman, Michael; Xin, Lu; Huiqiu, Yuan
2016-07-01
In this review article, we give a brief overview of heavy fermions, which are prototype examples of strongly correlated electron systems. We introduce the application of physical pressure in heavy fermion systems to construct their pressure phase diagrams and to study the close relationship between superconductivity (SC) and other electronic instabilities, such as antiferromagnetism (AFM), ferromagnetism (FM), and valence transitions. Field-angle dependent heat capacity and point-contact spectroscopic measurements under pressure are taken as examples to illustrate their ability to investigate novel physical properties of the emergent electronic states. Project supported by the National Basic Research Program of China (Grant No. 2011CBA00103), the National Natural Science Foundation of China (Grant Nos. 11174245 and 11374257), the Science Challenge Program of China, and the Fundamental Research Funds for the Central Universities of China.
Decay of Complex-Time Determinantal and Pfaffian Correlation Functionals in Lattices
NASA Astrophysics Data System (ADS)
Aza, N. J. B.; Bru, J.-B.; de Siqueira Pedra, W.
2018-04-01
We supplement the determinantal and Pfaffian bounds of Sims and Warzel (Commun Math Phys 347:903-931, 2016) for many-body localization of quasi-free fermions, by considering the high dimensional case and complex-time correlations. Our proof uses the analyticity of correlation functions via the Hadamard three-line theorem. We show that the dynamical localization for the one-particle system yields the dynamical localization for the many-point fermionic correlation functions, with respect to the Hausdorff distance in the determinantal case. In Sims and Warzel (2016), a stronger notion of decay for many-particle configurations was used but only at dimension one and for real times. Considering determinantal and Pfaffian correlation functionals for complex times is important in the study of weakly interacting fermions.
The half-filled Landau level: The case for Dirac composite fermions
NASA Astrophysics Data System (ADS)
Geraedts, Scott D.; Zaletel, Michael P.; Mong, Roger S. K.; Metlitski, Max A.; Vishwanath, Ashvin; Motrunich, Olexei I.
2016-04-01
In a two-dimensional electron gas under a strong magnetic field, correlations generate emergent excitations distinct from electrons. It has been predicted that “composite fermions”—bound states of an electron with two magnetic flux quanta—can experience zero net magnetic field and form a Fermi sea. Using infinite-cylinder density matrix renormalization group numerical simulations, we verify the existence of this exotic Fermi sea, but find that the phase exhibits particle-hole symmetry. This is self-consistent only if composite fermions are massless Dirac particles, similar to the surface of a topological insulator. Exploiting this analogy, we observe the suppression of 2kF backscattering, a characteristic of Dirac particles. Thus, the phenomenology of Dirac fermions is also relevant to two-dimensional electron gases in the quantum Hall regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hye-Sung; Soni, Amarjit
2013-01-01
We present a very simple 4th-generation (4G) model with an Abelian gauge interaction under which only the 4G fermions have nonzero charge. The U(1) gauge symmetry can have a Z_2 residual discrete symmetry (4G-parity), which can stabilize the lightest 4G particle (L4P). When the 4G neutrino is the L4P, it would be a neutral and stable particle and the other 4G fermions would decay into the L4P leaving the trace of missing energy plus the standard model fermions. Because of the new symmetry, the 4G particle creation and decay modes are different from those of the sequential 4G model, andmore » the 4G particles can be appreciably lighter than typical experimental bounds.« less
Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan; ...
2015-01-01
Here, we present a lattice QCD calculation of transverse momentum dependent parton distribution functions (TMDs) of protons using staple-shaped Wilson lines. For time-reversal odd observables, we calculate the generalized Sivers and Boer-Mulders transverse momentum shifts in SIDIS and DY cases, and for T-even observables we calculate the transversity related to the tensor charge and the generalized worm-gear shift. The calculation is done on two different n f = 2+1 ensembles: domain-wall fermion (DWF) with lattice spacing 0:084fm and pion mass of 297 MeV, and clover fermion with lattice spacing 0:114 fm and pion mass of 317 MeV. The results frommore » those two different discretizations are consistent with each other.« less
Sarkar, Sujit
2017-05-12
An attempt is made to understand the topological quantum phase transition, emergence of relativistic modes and local topological order of light in a strongly interacting light-matter system. We study this system, in a one dimensional array of nonlinear cavities. Topological quantum phase transition occurs with massless excitation only for the finite detuning process. We present a few results based on the exact analytical calculations along with the physical explanations. We observe the emergence of massive Majorana fermion mode at the topological state, massless Majorana-Weyl fermion mode during the topological quantum phase transition and Dirac fermion mode for the non-topological state. Finally, we study the quantized Berry phase (topological order) and its connection to the topological number (winding number).
Decay of Complex-Time Determinantal and Pfaffian Correlation Functionals in Lattices
NASA Astrophysics Data System (ADS)
Aza, N. J. B.; Bru, J.-B.; de Siqueira Pedra, W.
2018-06-01
We supplement the determinantal and Pfaffian bounds of Sims and Warzel (Commun Math Phys 347:903-931, 2016) for many-body localization of quasi-free fermions, by considering the high dimensional case and complex-time correlations. Our proof uses the analyticity of correlation functions via the Hadamard three-line theorem. We show that the dynamical localization for the one-particle system yields the dynamical localization for the many-point fermionic correlation functions, with respect to the Hausdorff distance in the determinantal case. In Sims and Warzel (2016), a stronger notion of decay for many-particle configurations was used but only at dimension one and for real times. Considering determinantal and Pfaffian correlation functionals for complex times is important in the study of weakly interacting fermions.
Quantum corrections in thermal states of fermions on anti-de Sitter space-time
NASA Astrophysics Data System (ADS)
Ambruş, Victor E.; Winstanley, Elizabeth
2017-12-01
We study the energy density and pressure of a relativistic thermal gas of massless fermions on four-dimensional Minkowski and anti-de Sitter space-times using relativistic kinetic theory. The corresponding quantum field theory quantities are given by components of the renormalized expectation value of the stress-energy tensor operator acting on a thermal state. On Minkowski space-time, the renormalized vacuum expectation value of the stress-energy tensor is by definition zero, while on anti-de Sitter space-time the vacuum contribution to this expectation value is in general nonzero. We compare the properties of the vacuum and thermal expectation values of the energy density and pressure for massless fermions and discuss the circumstances in which the thermal contribution dominates over the vacuum one.
Tunable Fermi Contour Anisotropy in GaAs Electron and Hole Systems
NASA Astrophysics Data System (ADS)
Kamburov, Dobromir G.
This Thesis explores the ballistic transport of quasi two-dimensional (2D) electron and hole systems confined to GaAs quantum wells and subjected to a periodic, strain-induced density modulation. In the presence of an applied perpendicular magnetic field, whenever the diameter of the charged carriers' cyclotron orbit becomes commensurate with the period of the density modulation, the sample's resistance exhibits commensurability features. We use the commensurability effects to directly probe the size of the cyclotron orbit, the Fermi contour, and the spin-polarization of particles at low magnetic field and of composite fermions near even-denominator Landau level filling factors (nu). We establish how the commensurability signatures depend on the sample parameters, including the carrier density, the modulation period, and the width of the confining quantum well. In the presence of a small perpendicular magnetic field (B⊥ ), both 2D electrons and holes are essentially spin-unpolarized and their Fermi contours are nearly circular. When an additional parallel component B∥ is introduced, it couples to the carriers' out-of-plane motion and leads to a severe distortion of the energy bands and the Fermi contours. The degree of anisotropy is typically stronger in the wider quantum wells but it also depends on the carrier type. For a given QW width, holes become anisotropic more readily than electrons. The application of B ∥ also affects the spin-polarization of the carriers. Hole samples, for example, become more spin-polarized compared to electrons. We can semi-quantitatively explain the shape and size of the electron and hole Fermi contours with a theoretical calculation with no adjustable parameters based on an 8 x 8 Kane Hamiltonian. In addition to the electron and hole data at low perpendicular magnetic fields, we observe commensurability features for composite fermions near Landau level filling factors nu = 3=2, 1/2, and 1/4. Our data reveal an asymmetry of the composite fermion commensurability features on the two sides of filling factors nu = 1=2 and 3=2. The asymmetry is a fascinating manifestation of a subtle breaking of the particle-hole equivalence in the ballistic transport of composite fermions. It is consistent with a transport picture in which the minority carriers capture flux quanta to form composite fermions. We also employ commensurability oscillations as a tool to probe and quantify the effect of B∥ on the composite fermion Fermi contours. Our measurements reveal that, thanks to the finite layer thickness of the carriers and the coupling of their out-of-plane motion to B∥, the Fermi contours of nu = 1=2 and 3/2 composite fermions are significantly distorted. Furthermore, depending on the width of the quantum well and the sample density, in the vicinity of nu = 3=2 the spin-polarization of the composite fermions varies while near nu = 1=2 they remain fully spin-polarized.
Mixtures of Bosonic and Fermionic atoms
NASA Astrophysics Data System (ADS)
Albus, Alexander
2003-12-01
The theory of atomic Boson-Fermion mixtures in the dilute limit beyond mean-field is considered in this thesis. Extending the formalism of quantum field theory we derived expressions for the quasi-particle excitation spectra, the ground state energy, and related quantities for a homogenous system to first order in the dilute gas parameter. In the framework of density functional theory we could carry over the previous results to inhomogeneous systems. We then determined to density distributions for various parameter values and identified three different phase regions: (i) a stable mixed regime, (ii) a phase separated regime, and (iii) a collapsed regime. We found a significant contribution of exchange-correlation effects in the latter case. Next, we determined the shift of the Bose-Einstein condensation temperature caused by Boson-Fermion interactions in a harmonic trap due to redistribution of the density profiles. We then considered Boson-Fermion mixtures in optical lattices. We calculated the criterion for stability against phase separation, identified the Mott-insulating and superfluid regimes both, analytically within a mean-field calculation, and numerically by virtue of a Gutzwiller Ansatz. We also found new frustrated ground states in the limit of very strong lattices. ----Anmerkung: Der Autor ist Träger des durch die Physikalische Gesellschaft zu Berlin vergebenen Carl-Ramsauer-Preises 2004 für die jeweils beste Dissertation der vier Universitäten Freie Universität Berlin, Humboldt-Universität zu Berlin, Technische Universität Berlin und Universität Potsdam. Ziel der Arbeit war die systematische theoretische Behandlung von Gemischen aus bosonischen und fermionischen Atomen in einem Parameterbereich, der sich zur Beschreibung von aktuellen Experimenten mit ultra-kalten atomaren Gasen eignet. Zuerst wurde der Formalismus der Quantenfeldtheorie auf homogene, atomare Boson-Fermion Gemische erweitert, um grundlegende Größen wie Quasiteilchenspektren, die Grundzustandsenergie und daraus abgeleitete Größen über die Molekularfeldtheorie hinaus zu berechnen. Unter Zuhilfenahme der dieser Resultate System wurde ein Boson-Fermion Gemisch in einem Fallenpotential im Rahmen der Dichtefunktionaltheorie beschrieben. Daraus konnten die Dichteprofile ermittelt werden und es ließen sich drei Bereiche im Phasendiagramm identifizieren: (i) ein Bereich eines stabilen Gemisches, (ii) ein Bereich, in dem die Spezies entmischt sind und (iii) ein Bereich, in dem das System kollabiert. Im letzten dieser drei Fällen waren Austausch--Korrelationseffekte signifikant. Weiterhin wurde die Änderung der kritischen Temperatur der Bose-Einstein-Kondensation aufgrund der Boson-Fermion-Wechselwirkung berechnet. Verursacht wird dieser Effekt von Dichtumverteilungen aufgrund der Wechselwirkung. Dann wurden Boson-Fermion Gemische in optischen Gittern betrachtet. Ein Stabilitätskriterium gegen Phasenentmischung wurde gefunden und es ließen sich Bedingungen für einen supraflüssig zu Mott-isolations Phasenübergang angeben. Diese wurden sowohl mittels einer Molekularfeldrechnung als auch numerisch im Rahmen eines Gutzwilleransatzes gefunden. Es wurden weiterhin neuartige frustrierte Grundzustände im Fall von sehr großen Gitterstärken gefunden.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A principle of quantum theory, devised in 1925 by Wolfgang Pauli (1900-58), which states that no two fermions may exist in the same quantum state. The quantum state of a particle is defined by a set of numbers that describe quantities such as energy, angular momentum and spin. Fermions are particles such as quarks, protons, neutrons and electrons, that have spin = ½ (in units of h/2π, where h is ...
Cranking of Nuclei at Finite Temperature:
NASA Astrophysics Data System (ADS)
Bartel, J.; Bencheikh, K.; Quentin, P.
We present a generalization of the Extended Thomas Fermi (ETF) theory to fermionic systems at finite temperature and finite angular momentum. In fact the present approach is more general in the sense that it is able to treat an excited system of fermions subject to an external vector field which in the case of nuclear rotations, developed more extensively here, is simply ěc{r}×ěc{ω }.
Polynomial complexity despite the fermionic sign
NASA Astrophysics Data System (ADS)
Rossi, R.; Prokof'ev, N.; Svistunov, B.; Van Houcke, K.; Werner, F.
2017-04-01
It is commonly believed that in unbiased quantum Monte Carlo approaches to fermionic many-body problems, the infamous sign problem generically implies prohibitively large computational times for obtaining thermodynamic-limit quantities. We point out that for convergent Feynman diagrammatic series evaluated with a recently introduced Monte Carlo algorithm (see Rossi R., arXiv:1612.05184), the computational time increases only polynomially with the inverse error on thermodynamic-limit quantities.
The Principle of the Fermionic Projector: An Approach for Quantum Gravity?
NASA Astrophysics Data System (ADS)
Finster, Felix
In this short article we introduce the mathematical framework of the principle of the fermionic projector and set up a variational principle in discrete space-time. The underlying physical principles are discussed. We outline the connection to the continuum theory and state recent results. In the last two sections, we speculate on how it might be possible to describe quantum gravity within this framework.
Domain Wall Fermion Inverter on Pentium 4
NASA Astrophysics Data System (ADS)
Pochinsky, Andrew
2005-03-01
A highly optimized domain wall fermion inverter has been developed as part of the SciDAC lattice initiative. By designing the code to minimize memory bus traffic, it achieves high cache reuse and performance in excess of 2 GFlops for out of L2 cache problem sizes on a GigE cluster with 2.66 GHz Xeon processors. The code uses the SciDAC QMP communication library.
Computational and Theoretical Investigations of Strongly Correlated Fermions in Optical Lattices
2013-08-29
and two-particle spectral functions across the disorder - driven superconductor - insulator transition". 22. Invited speaker, \\Fermions in Optical...energy gaps across the disorder - driven superconductor - insulator transition", October 7, 2010, Harvard. 27. Seminar on \\Probing Quantum Phases of...Perimeter Institute, November 14, 2011. 37. Seminar on \\Single and two-particle energy gaps across the disorder - driven superconductor - insulator transition
Exotic Signals of Vectorlike Quarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobrescu, Bogdan A.; Yu, Felix
2016-12-06
Vectorlike fermions are an important target for hadron collider searches. We show that the vectorlike quarks may predominantly decay via higher-dimensional operators into a quark plus a couple of other Standard Model fermions. Pair production of vectorlike quarks of charge 2/3 at the LHC would then lead to a variety of possible final states, includingmore » $$t\\bar t + 4\\tau$$, $$t\\bar b\
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Jae Hyeok; Essig, Rouven; McDermott, Samuel D.
We consider the constraints from Supernova 1987A on particles with small couplings to the Standard Model. We discuss a model with a fermion coupled to a dark photon, with various mass relations in the dark sector; millicharged particles; dark-sector fermions with inelastic transitions; the hadronic QCD axion; and an axion-like particle that couples to Standard Model fermions with couplings proportional to their mass. In the fermion cases, we develop a new diagnostic for assessing when such a particle is trapped at large mixing angles. Our bounds for a fermion coupled to a dark photon constrain small couplings and masses <200more » MeV, and do not decouple for low fermion masses. They exclude parameter space that is otherwise unconstrained by existing accelerator-based and direct-detection searches. In addition, our bounds are complementary to proposed laboratory searches for sub-GeV dark matter, and do not constrain several "thermal" benchmark-model targets. For a millicharged particle, we exclude charges between 10^(-9) to a few times 10^(-6) in units of the electron charge; this excludes parameter space to higher millicharges and masses than previous bounds. For the QCD axion and an axion-like particle, we apply several updated nuclear physics calculations and include the energy dependence of the optical depth to accurately account for energy loss at large couplings. We rule out a hadronic axion of mass between 0.1 and a few hundred eV, or equivalently bound the PQ scale between a few times 10^4 and 10^8 GeV, closing the hadronic axion window. For an axion-like particle, our bounds disfavor decay constants between a few times 10^5 GeV up to a few times 10^8 GeV. In all cases, our bounds differ from previous work by more than an order of magnitude across the entire parameter space. We also provide estimated systematic errors due to the uncertainties of the progenitor.« less
NASA Astrophysics Data System (ADS)
Pu, Songyang; Wu, Ying-Hai; Jain, J. K.
2017-11-01
We achieve an explicit construction of the lowest Landau level (LLL) projected wave functions for composite fermions in the periodic (torus) geometry. To this end, we first demonstrate how the vortex attachment of the composite fermion (CF) theory can be accomplished in the torus geometry to produce the "unprojected" wave functions satisfying the correct (quasi)periodic boundary conditions. We then consider two methods for projecting these wave functions into the LLL. The direct projection produces valid wave functions but can be implemented only for very small systems. The more powerful and more useful projection method of Jain and Kamilla fails in the torus geometry because it does not preserve the periodic boundary conditions and thus takes us out of the original Hilbert space. We have succeeded in constructing a modified projection method that is consistent with both the periodic boundary conditions and the general structure of the CF theory. This method is valid for a large class of states of composite fermions, called "proper states," which includes the incompressible ground states at electron filling factors ν =n/2 p n +1 , their charged and neutral excitations, and also the quasidegenerate ground states at arbitrary filling factors of the form ν =ν/*2pν*+1 , where n and p are integers and ν* is the CF filling factor. Comparison with exact results known for small systems for the ground and excited states at filling factors ν =1 /3 , 2/5, and 3/7 demonstrates our LLL-projected wave functions to be extremely accurate representations of the actual Coulomb eigenstates. Our construction enables the study of large systems of composite fermions on the torus, thereby opening the possibility of investigating numerous interesting questions and phenomena.
Fermionic vacuum polarization by an Abelian magnetic tube in the cosmic string spacetime
NASA Astrophysics Data System (ADS)
Maior de Sousa, M. S.; Ribeiro, R. F.; Bezerra de Mello, E. R.
2017-02-01
In this paper, we consider a charged massive fermionic quantum field in the idealized cosmic string spacetime and in the presence of a magnetic field confined in a cylindrical tube of finite radius. Three distinct configurations for the magnetic fields are taken into account: (i) a cylindrical shell of radius a , (ii) a magnetic field proportional to 1 /r , and (iii) a constant magnetic field. In these three cases, the axis of the infinitely long tube of radius a coincides with the cosmic string. Our main objectives in this paper are to analyze the fermionic condensate (FC) and the vacuum expectation value (VEV) of the fermionic energy-momentum tensor. In order to do that, we explicitly construct the complete set of normalized wave functions for each configuration of the magnetic field. We show that in the region outside the tube, the FC and the VEV of the energy-momentum tensor are decomposed into two parts: The first ones correspond to the zero-thickness magnetic flux contributions, and the second ones are induced by the nontrivial structure of the magnetic field, named core-induced contributions. The latter present specific forms depending on the magnetic field configuration considered. We also show that the VEV of the energy-momentum tensor is diagonal and obeys the conservation condition, and its trace is expressed in terms of the fermionic condensate. The zero-thickness contributions to the FC and VEV of the energy-momentum tensor depend only on the fractional part of the ration of the magnetic flux inside the tube by the quantum one. As to the core-induced contributions, they depend on the total magnetic flux inside the tube and, consequently, in general, are not a periodic function of the magnetic flux.
q -deformed statistics and the role of light fermionic dark matter in SN1987A cooling
NASA Astrophysics Data System (ADS)
Guha, Atanu; J, Selvaganapathy; Das, Prasanta Kumar
2017-01-01
The light dark matter (≃1 - 30 MeV ) particles pair produced in electron-positron annihilation e-e+→ γ χ χ ¯ inside the supernova core can take away the energy released in the supernova SN1987A explosion. Working within the formalism of q -deformed statistics [with the average value of the supernovae core temperature (fluctuating) being TS N=30 MeV ] and using the Raffelt's criterion on the emissivity for any new channel ɛ ˙ (e+e-→χ χ ¯ )≤1 019 erg g-1 s-1 , we find that as the deformation parameter q changes from 1.0 (undeformed scenario) to 1.1 (deformed scenario), the lower bound on the scale Λ of the dark matter effective theory varies from 3.3 ×1 06 TeV to 3.2 ×1 07 TeV for a dark matter fermion of mass mχ=30 MeV . Using the optical depth criteria on the free streaming of the dark matter fermion, we find the lower bound on Λ ˜1 08 TeV for mχ=30 MeV . In a scenario, where the dark matter fermions are pair produced in the outermost sector of the supernova core [with radius 0.9 Rc≤r ≤Rc , Rc(=10 km ) being the supernova core radius or the radius of protoneutron star], we find that the bound on Λ (˜3 ×1 07 TeV ) obtained from SN cooling criteria (Raffelt's criteria) is comparable with the bound obtained from free streaming (optical depth criterion) for light fermion dark matter of mass mχ=10 - 30 MeV .
Lattice QCD with two dynamical flavors of domain wall fermions
NASA Astrophysics Data System (ADS)
Aoki, Y.; Blum, T.; Christ, N.; Dawson, C.; Hashimoto, K.; Izubuchi, T.; Laiho, J. W.; Levkova, L.; Lin, M.; Mawhinney, R.; Noaki, J.; Ohta, S.; Orginos, K.; Soni, A.
2005-12-01
We present results from the first large-scale study of two-flavor QCD using domain wall fermions (DWF), a chirally symmetric fermion formulation which has been proven to be very effective in the quenched approximation. We work on lattices of size 163×32, with a lattice cutoff of a-1≈1.7GeV and dynamical (or sea) quark masses in the range mstrange/2≲msea≲mstrange. After discussing the algorithmic and implementation issues involved in simulating dynamical DWF, we report on the low-lying hadron spectrum, decay constants, static quark potential, and the important kaon weak matrix element describing indirect CP violation in the standard model, BK. In the latter case we include the effect of nondegenerate quark masses (ms≠mu=md), finding BKM Smacr (2GeV)=0.495(18).
Bolech, C J; Heidrich-Meisner, F; Langer, S; McCulloch, I P; Orso, G; Rigol, M
2012-09-14
We study the sudden expansion of spin-imbalanced ultracold lattice fermions with attractive interactions in one dimension after turning off the longitudinal confining potential. We show that the momentum distribution functions of majority and minority fermions quickly approach stationary values due to a quantum distillation mechanism that results in a spatial separation of pairs and majority fermions. As a consequence, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations are lost during the expansion. Furthermore, we argue that the shape of the stationary momentum distribution functions can be understood by relating them to the integrals of motion in this integrable quantum system. We discuss our results in the context of proposals to observe FFLO correlations, related to recent experiments by Liao et al., Nature (London) 467, 567 (2010).
Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model
Chen, Cheng-Chien; Muechler, Lukas; Car, Roberto; ...
2016-08-25
We study the two-dimensional (2D) Hubbard model using exact diagonalization for spin-1/2 fermions on the triangular and honeycomb lattices decorated with a single hexagon per site. In certain parameter ranges, the Hubbard model maps to a quantum compass model on those lattices. On the triangular lattice, the compass model exhibits collinear stripe antiferromagnetism, implying d-density wave charge order in the original Hubbard model. On the honeycomb lattice, the compass model has a unique, quantum disordered ground state that transforms nontrivially under lattice reflection. The ground state of the Hubbard model on the decorated honeycomb lattice is thus a 2D fermionicmore » symmetry-protected topological phase. This state—protected by time-reversal and reflection symmetries—cannot be connected adiabatically to a free-fermion topological phase.« less
Unification with vector-like fermions and signals at LHC
NASA Astrophysics Data System (ADS)
Bhattacherjee, Biplob; Byakti, Pritibhajan; Kushwaha, Ashwani; Vempati, Sudhir K.
2018-05-01
We look for minimal extensions of Standard Model with vector like fermions leading to precision unification of gauge couplings. Constraints from proton decay, Higgs stability and perturbativity are considered. The simplest models contain several copies of vector fermions in two different (incomplete) representations. Some of these models encompass Type III seesaw mechanism for neutrino masses whereas some others have a dark matter candidate. In all the models, at least one of the candidates has non-trivial representation under SU(3)color. In the limit of vanishing Yukawa couplings, new QCD bound states are formed, which can be probed at LHC. The present limits based on results from 13 TeV already probe these particles for masses around a TeV. Similar models can be constructed with three or four vector representations, examples of which are presented.
Optical spectroscopy and ultrafast pump-probe studies on the heavy-fermion compound CePt 2 In 7
Chen, R. Y.; Zhang, S. J.; Bauer, E. D.; ...
2016-07-29
We report optical spectroscopy and ultrafast pump-probe measurements on the antiferromagnetic heavy-fermion compound CePt 2 In 7 , a member showing stronger two dimensionality than other compounds in the CeIn 3 -derived heavy-fermion family. Here, we identify clear and typical hybridization spectral structures at low temperature from the two different spectroscopy probes. But, the strength and related energy scale of the hybridization are much weaker and smaller than that in the superconducting compounds CeCoIn 5 and CeIrIn 5 . The features are more similar to observations on the antiferromagnetic compounds CeIn 3 and CeRhIn 5 in the same family. Ourmore » results clearly indicate that the Kondo interaction and hybridizations exist in the antiferromagnetic compounds but with weaker strength.« less
Fidelity of Majorana-based quantum operations
NASA Astrophysics Data System (ADS)
Tanhayi Ahari, Mostafa; Ortiz, Gerardo; Seradjeh, Babak
2015-03-01
It is well known that one-dimensional p-wave superconductor, the so-called Kitaev model, has topologically distinct phases that are distinguished by the presence of Majorana fermions. Owing to their topological protection, these Majorana fermions have emerged as candidates for fault-tolerant quantum computation. They furnish the operation of such a computation via processes that produce, braid, and annihilate them in pairs. In this work we study some of these processes from the dynamical perspective. In particular, we determine the fidelity of the Majorana fermions when they are produced or annihilated by tuning the system through the corresponding topological phase transition. For a simple linear protocol, we derive analytical expressions for fidelity and test various perturbative schemes. For more general protocols, we present exact numerics. Our results are relevant for the operation of Majorana-based quantum gates and quantum memories.